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Abstract

Depression, a leading cause of disability world-
wide, is challenging to diagnose due to its reliance
on subjective clinical evaluations. Metabolomics,
which analyzes small molecules to reflect physio-
logical and pathological states, holds promise for
enhancing the diagnosis and identifying biomark-
ers for depression, potentially leading to better
understanding and treatment options. Despite
the complexity of metabolomics data, deep learn-
ing methods have not been extensively explored
due to issues with interpretability, which are cru-
cial for gaining insights into biological mecha-
nisms. This study evaluates a biologically inter-
pretable deep neural network, MetaboNet, trained
on metabolomics data, for predicting depression
and identifying key metabolites and biochemical
pathways relevant to the condition. Our results
demonstrate that MetaboNet outperforms logistic
regression, though the overall classification perfor-
mance remains modest. Notably, the classification
results revealed sex-related differences, with better
performance observed in females. Our findings do
not support the capability of MetaboNet to identify
biologically relevant individual metabolites. How-
ever, MetaboNet shows promise in identifying bio-
chemical sub-pathways and super-pathways rele-
vant to depression, which are validated by existing
literature.

1 Introduction
Metabolomics is the extensive analysis of metabolites, which
are small molecules such as amino acids, lipids, bile acids,
carbohydrates, and organic acids [1]. Within the omics field,
metabolomics is recognized as the closest to the phenotype
because it reflects information from various omics layers
[2–4]. Metabolomics offers a comprehensive snapshot of an
organism’s metabolic state by profiling and measuring a wide
range of metabolites, making it possible to identify metabolic
signatures linked to various physiological and pathological
conditions [5]. Due to these capabilities, metabolomics is
a rapidly emerging field [1], with broad implications and
potential applications in prognosis, therapy, diagnosis, and
the development of personalized medicine, particularly be-
cause of its direct applicability to biomarker discovery [6, 7].
Biomarkers are quantifiable attributes of an individual that
potentially signify risk factors for a disease or outcome, or
serve as indicators of the advancement of a disease or alter-
ations associated with treatment [8].

One of the major public health issues that could benefit
from advancements in metabolomics is depression [9–13].
Depression is a prevalent and serious psychological condi-
tion marked by feelings of sadness and a lack of interest,
which may potentially result in suicidal tendencies [12]. The
World Health Organization ranks depression as the leading
cause of disability worldwide [14]. In the current medical
practice, the diagnosis and treatment of depression rely on

subjective evaluations of various symptoms that represent dif-
ferent underlying characteristics [15]. Mental health special-
ists typically conduct routine medical and behavioural as-
sessments through interviews to diagnose depression [16].
However, this diagnostic approach is not economical, and
obtaining an accurate diagnosis necessitates highly qualified
medical professionals, more time to perform, and a psycho-
metric evaluation based on interviews [17]. Consequently,
there is a pressing need to establish an objective and practi-
cal standard for diagnosing depression [9] and metabolomics
biomarkers may be a promising approach as many studies
have shown altered metabolomics profiles in people with de-
pression [9–13,17–19]. Furthermore, metabolic disorders are
viewed as contributing factors to depression [11]. Identify-
ing new biomarkers would not only lead to more accurate di-
agnoses but also enhance our knowledge of the underlying
mechanisms of the disease, which is useful for better thera-
peutic management of depression [9].

Utilization of machine learning (ML) in metabolomics
may significantly improve diagnosis, identify more targets
for therapies, and enable more accurate predictions of dis-
ease outcomes by potentially better addressing the inherent
challenges of metabolomics data [1]. Metabolomics data
is characterized by linear and nonlinear correlations among
metabolites, as well as challenges like missing values, batch
effects during quantification, data noise, and the challenge of
high-dimensional data [1]. In recent years, the most com-
monly applied ML algorithms in metabolomics research are
random forest, support vector machines, and logistic regres-
sion (LR) [2]. Despite deep learning (DL) outperforming tra-
ditional algorithms in scenarios involving high-dimensional,
large-scale, and particularly complex data [20, 21], its appli-
cation in metabolomics is relatively recent and still emerging,
especially when compared to other omics fields [2]. This slow
adoption may be attributed to challenges in interpretability
and explainability, which are crucial for gaining insights into
biological mechanisms [20, 21], and the significant computa-
tional power required [2].

To address the research gap in depression and the chal-
lenges associated with deep learning, we propose an inter-
pretable deep neural network called MetaboNet for predict-
ing depression from metabolomics data. MetaboNet incorpo-
rates prior biological knowledge about biochemical pathways
to establish meaningful connections. Consequently, the neu-
ral network is memory efficient, interpretable, and provides
biological insights for its predictions. The model architecture
is based on the GenNet architecture described by van Hilten
et al. [22].

The main objective of this study is to assess the perfor-
mance of MetaboNet in comparison to LR, a widely used
machine learning model in metabolomics [2], for classify-
ing individuals with depression based on metabolomics data.
Additionally, this research aims to validate the effectiveness
of MetaboNet and LR in identifying biologically important
metabolites for predicting depression. For MetaboNet, we
will further analyze its biologically interpretable architecture
to assess whether the model identifies biologically relevant
biochemical sub-pathways and super-pathways important for
depression. The identified important metabolites and bio-
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chemical pathways will be cross-referenced with existing lit-
erature to ensure their biological relevance with depression,
thereby validating the models’ potential to discover new bio-
logical insights for depression.

2 Methodology
2.1 Metabolomics Dataset and Prior Knowledge
Our study utilized the Rotterdam study [23]. The dataset
comprises 597 females, of which 62 are considered de-
pressed, and 470 males, of which 24 are considered de-
pressed. In total, there are 86 individuals with depression and
982 healthy control subjects.

Depression Measurement
The measurement of depression was conducted on individu-
als who completed the Center for Epidemiologic Studies De-
pression scale (CES-D). The CES-D is a widely used self-
report scale designed to measure depressive symptomatology
in the general population [24]. A score ≥ 16 was used to
indicate depression [25, 26].

Metabolite Measurements
The Rotterdam study [23] analyzed blood metabolites from
1082 participants using the untargeted Metabolon HD4 plat-
form, which encompasses 1387 metabolites across various
biochemical pathways, including lipids, amino acids, xeno-
biotics, nucleotides, cofactors and vitamins, peptides, car-
bohydrates, energy-related metabolites, and uncharacterized
metabolites. Before analysis, the data underwent preprocess-
ing. Initially, 14 samples missingness exceeding five times
the standard deviation (SD) of the mean missingness in all
samples were excluded. Additionally, metabolites with miss-
ingness greater than five times the SD of the mean missing-
ness in metabolites and a coefficient of variance exceeding
30% in internal control samples (NIST Standard Reference
Material) were excluded. The remaining metabolites (N =
1111) were log2 transformed. In addition, metabolites that
had missingness greater than thirty percent were eliminated,
leaving 991 metabolites in 1068 samples. Finally, missing
values were imputed using the K-nearest neighbor method,
which has demonstrated robust performance across various
evaluation schemes [27].

Biochemical Pathways
The prior knowledge pathway annotations were obtained us-
ing the Metabolon HD4 platform. The biochemical super-
pathways of the metabolites are categorized as follows: lipids
(390 metabolites), amino acids (197 metabolites), xenobi-
otics (99 metabolites), nucleotides (32 metabolites), cofac-
tors and vitamins (27 metabolites), peptides (24 metabolites),
carbohydrates (17 metabolites), energy-related metabolites (8
metabolites), partially characterizable molecules (14 metabo-
lites), and uncharacterized metabolites (183 metabolites).
There were further 99 sub-pathway groups used for metabo-
lites. The complete table of metabolites, sub-pathways and
super-pathways can be found in the annotations.txt file in
MetaboNet repository [28].

Dataset Visualization
We used t-Distributed Stochastic Neighbor Embedding (t-
SNE) [29] in order to visualize the high-dimensional data in
2 dimensions. This non-linear technique was chosen because
of its ability to effectively preserve the local structure of the
data, potentially allowing for the identification of clusters and
patterns that are not easily detectable in higher dimensions.
Random seed 0 was used to ensure reproducibility.

2.2 Machine Learning Used for Classification
MetaboNet uses prior biological knowledge about biochem-
ical pathways to establish meaningful connections as por-
trayed graphically in Figure 1. Metabolites are connected to
the first hidden layer, where neurons represent sub-pathways.
These sub-pathways are then connected to super-pathways in
the second hidden layer. To achieve a fair interpretation of
connection weights, each layer is preceded by batch normal-
ization, without scaling and centring, to standardize the input
to zero mean and unit standard deviation. The sigmoid func-
tion was used as the final activation function for binary clas-
sification. This architecture makes the network inherently in-
terpretable and lightweight, with fewer learnable parameters
compared to a fully connected neural network. MetaboNet
is implemented using PyTorch (version 2.3.0.) [30] and the
codebase is available on GitHub [28].

The baseline model used was LR, one of the most com-
monly used models in metabolomics [2]. It was implemented
with PyTorch using a linear layer with a sigmoid function.

Figure 1: MetaboNet is constructed using prior biological knowl-
edge about biochemical sub-pathways and super-pathways to estab-
lish meaningful connections. This architecture makes the network
inherently interpretable and lightweight.

2.3 Machine Learning Model Development and
Evaluation Workflow

The workflow for model development was the same for both
models to ensure fair comparability. The model develop-
ment workflow followed the general methodology described
by Galal et al. [2]. The initial workflow optimized the hyper-
parameters, and then with those optimized hyperparameters,
we evaluated the performance of the model in the evaluation
workflow.
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To ensure reproducibility, account for randomness, and
achieve more robust results, we ran workflows multiple times
with different random seeds. By varying the random seeds,
we ensured diverse train-validation-test splits. This approach
not only captures the overall performance but also provides
insights into the models’ stability across different random
runs.

The tuning metric was the Matthews correlation coefficient
(MCC) [31], as it accounts for all four categories of the con-
fusion matrix, providing a balanced measure even with an un-
balanced dataset.

Using a batch size of 32, every model was trained on a
single GPU Nvidia GeForce GTX 2080 Ti.

Hyperparameter Optimization Workflow
Firstly, the dataset was split into 60% training, 20% vali-
dation, and 20% test sets, ensuring an equal proportion of
both classes in all sets. The splits were performed using
the train test split function from the scikit-learn Python li-
brary (version 1.5.0) [32]. Next, hyperparameter grid search
was achieved through stratified 5-fold cross-validation on the
training set, utilizing the StratifiedKFold and ParameterGrid
classes from the scikit-learn library. We trained the model
for 100 epochs. To obtain more stable models, we decided to
determine the best model based on the average of the top 10
best-performing epoch model states, and then average their
weights. The best-performing model from the hyperparam-
eter grid search was evaluated on an independent validation
set. Hyperparameter optimization workflow was run 5 times
with seeds 1 to 5 and the best-performing hyperparameters on
validation set were selected to be final hyperparameters.

Hyperparameter Grid
The hyperparameters optimized for both models were pos-
itive class weight, learning rate, L1 regularization penalty,
and scheduler. For MetaboNet we also optimized the acti-
vation function. Options for the positive class weight were
8, 12, and 16, with 12 chosen as the middle value because it
represents the ratio of the count of negative class samples to
positive class samples. Learning rates considered were 0.01
and 0.001. L1 regularization penalty options were 0.1, 0.01,
0.001, and 0. We tested three PyTorch schedulers: StepLR,
with a step size of 30 and gamma of 0.1, ReduceLROnPlateau
with a patience of 20 and factor of 0.1, and CosineAnneal-
ingLR with T max set to 100. We evaluated three activa-
tion functions for MetaboNet: hyperbolic tangent, ReLU,
and PReLU. The hyperbolic tangent function was coupled
with Xavier uniform weight initialization, while ReLU and
PReLU were combined with Kaiming normal weight initial-
ization.

Evaluation Workflow
The dataset was split into 60% training, 20% validation, and
20% test sets. Next, the final model was trained on the train-
ing set using the optimized hyperparameters and validated on
the validation set. We ran the training for 100 epochs, and
the 10 best-performing epoch model states on the validation
set were averaged to obtain the final model. The final model
was then evaluated on an independent test set. This evalua-
tion workflow was repeated 100 times with seeds 1 to 100 to

get a dataset of classification performances.

2.4 Evaluation Metrics
In the context of our binary classification task with signifi-
cant class imbalance, we decided to use the following met-
rics: MCC, F1 score, area under the precision-recall curve
(AUC-PR), and area under the receiver operating character-
istic curve (AUC-ROC). Collectively, these metrics provide a
comprehensive view of classification performance.

MCC [31] is a robust metric that considers all four quad-
rants of the confusion matrix and is generally regarded as
a balanced measure that can be used even if the classes are
of different sizes. The F1 score [33] is the harmonic mean
of precision and recall, and it provides a balanced measure
of a model’s performance by considering both false posi-
tives and false negatives. The PR-AUC [34] plots precision
against recall for different threshold values. The area un-
der this curve provides an aggregate measure of performance
across all thresholds, focusing on the positive class . The
AUC-ROC [33] metric measures the model’s ability to distin-
guish between classes. It plots the true positive rate against
the false positive rate at various threshold settings. The area
under this curve is a single scalar value that summarizes the
model’s performance across all thresholds.

The metrics were implemented using the scikit-learn
Python library (version 1.5.0) [32].

2.5 Statistical Tests
The relative classification performance across model eval-
uation workflow runs of MetaboNet and LR was assessed
with paired t-tests since the train-test splits were the same,
making the samples dependent. An independent t-test was
employed to evaluate the relative classification performance
across sexes, comparing the performance metrics between
male and female groups.

Additionally, the Mann-Whitney U test was utilized to as-
sess the t-SNE visualization, specifically to determine the
similarity between the dimensions of the depressed and con-
trol groups. This non-parametric test was chosen due to its
robustness against non-normality.

We considered the threshold for statistical significance to
be 0.05 for all statistical tests, and they were implemented
using the SciPy Python library (version 1.13.1) [35].

2.6 Interpreting Machine Learning Models to
Identify Important Metabolites and
Biochemical Pathways

We analyzed MetaboNet and LR models to identify the
most important metabolites for classification prediction. The
MetaboNet architecture facilitated a further examination of
the importance of biochemical pathways. To ensure ro-
bust relative importance, we averaged the relative impor-
tance values obtained from 100 different model develop-
ment workflows. We identified the top seven metabolites
from both models and cross-referenced them with existing
literature for validation. Additionally, we compared the top
four MetaboNet sub-pathways and the most significant super-
pathway with findings from previous studies to confirm their
relevance.
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MetaboNet architecture, defined by prior biological knowl-
edge about biochemical pathways, ensures innate inter-
pretability, with each node and connection representing a
specific biological entity. The weights learned between lay-
ers reflect the influence of metabolites on sub-pathways or
the impact of super-pathways on prediction, where stronger
weights indicate greater importance. The relative importance
in MetaboNet is determined by multiplying the weights along
the path from the end node to the input metabolite. At each
input, a value representing its contribution is obtained. To
get the relative feature importance, the absolute values of
weights are normalized by the absolute value of the sum over
the weights on that layer. The relative importance is then
summed according to the groups of the next layer to obtain
a relative importance estimate for each node in the network.

In the LR model, we determined the most important
metabolites by comparing the absolute values of the coeffi-
cients, since the inputs were already normalized.

It is important to note that in our context when comparing
relative importance, it is more akin to effect size or odds ratio
than to statistical significance [22].

3 Results and Discussion
3.1 The Depression and Control Groups Show

Significant Similarities in t-SNE Data
Visualization

To gain insight into the separability of the data, we employed
the t-SNE visualization technique, as illustrated in Figure
2. Additionally, the Mann-Whitney U test was conducted
to assess the differences between the depression and con-
trol groups within the two-dimensional space generated by
t-SNE. The results indicate a substantial overlap between the
distributions of the depression and control groups.

The mean and standard deviation of t-SNE dimensions are
summarized in table 1, along with Mann-Whitney U test p-
values. For Dimension 1, the p-value value was 0.33, while
for Dimension 2, the p-value was 0.34. Both p-values exceed
the 0.05 significance threshold, indicating no statistically sig-
nificant differences between the groups in either dimension.
These results suggest that the distributions of the depression
and control groups overlap substantially, implying a lack of
clear separability in the current dataset. This substantial over-
lap is consistent with the visual observation from the t-SNE
plot, where no distinct clustering of the groups was evident.
The inability to differentiate between depressed individuals
and controls based on this analysis suggests that the current
dataset might lack features that provide meaningful discrimi-
nation.

3.2 Modest Classification Performance With
MetaboNet Outperforming Logistic
Regression

Our objective was to evaluate the classification performance
in correctly identifying depressed and healthy individuals us-
ing the metabolomics dataset with MetaboNet and LR mod-
els, and then investigate their relative performance. The per-
formance of both models is modest; however, MetaboNet
shows a pattern of outperforming LR.

Figure 2: Significant overlap can be observed between the depres-
sion and control groups in the two-dimensional t-SNE visualization.
There are no obvious patterns or distinct clusters that would suggest
that the two groups can be easily separated.

Dimension Depressed Control p-values
Dimension 1 0.82± 12.0 −0.44± 10.5 0.33
Dimension 2 −1.52± 9.9 −0.55± 9.0 0.34

Table 1: Mean and standard deviation of t-SNE dimensionality re-
duction and Mann-Whitney U test p-value for depressed and control
groups. There are no statistically significant differences between
the groups in either dimension, as indicated by the two p-values
exceeding the 0.05 significance threshold. These findings indicate
that there is a significant overlap between the depression and control
group distributions.

To obtain robust results and account for randomness, we
ran the evaluation workflow for both models using 100 dif-
ferent random seeds. The metrics we used to evaluate the
efficacy of the model classification were MCC, F1 score, PR-
AUC, and ROC-AUC. The mean and standard deviation re-
sults are presented in Table 2. We validated the relative per-
formance of both models using paired t-tests, with results also
shown in Table 2. Additionally, we plotted the averaged con-
fusion matrix, which is displayed in Figure 3.

Metric MetaboNet LR p-value
MCC 0.171 ± 0.066 0.148 ± 0.078 0.023
F1 score 0.236 ± 0.043 0.225 ± 0.068 0.173
PR-AUC 0.189 ± 0.060 0.160 ± 0.044 2 · 10−4

ROC-AUC 0.702 ± 0.054 0.650 ± 0.060 5 · 10−9

Table 2: Comparison of performance metrics (mean ± standard de-
viation) and paired t-test p-values between MetaboNet and LR de-
pression classification. MetaboNet shows a pattern of outperform-
ing LR. The performance of both models remains modest. Random
baselines are: 0 for MCC, 0.08 for F1 score and PR-AUC, and 0.5
for ROC-AUC.

The performance metrics mean and standard deviation for
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Figure 3: Averaged confusion matrices for MetaboNet (left) and LR
(right) depression classification, with values shown as mean ± stan-
dard deviation. MetaboNet shows better identification of depressed
individuals with more true positives and fewer false negatives. In
contrast, LR correctly classifies more healthy individuals (true neg-
atives) and has fewer false positives.

MetaboNet and LR are summarized in Table 2. MetaboNet
achieved an MCC of 0.171 ± 0.066, higher than LR’s MCC
of 0.148 ± 0.078 (p = 0.023), indicating a statistically
significant difference. The F1 score for MetaboNet was
0.236 ± 0.043, compared to 0.225 ± 0.068 for LR (p =
0.173), showing no statistically significant difference. PR-
AUC for MetaboNet was 0.189± 0.060, outperforming LR’s
0.160 ± 0.044 (p = 2 · 10−4), with statistical significance.
ROC-AUC also demonstrated MetaboNet’s superior perfor-
mance at 0.702 ± 0.054 compared to LR’s 0.650 ± 0.060
(p = 5 · 10−9).

Both models demonstrate the ability to classify depression
more effectively than random prediction, though the improve-
ment is modest. To provide context, MCC ranges from -1 to
1, where 1 indicates perfect prediction, 0 indicates random
prediction, and -1 indicates complete disagreement between
prediction and observation [31]. For the F1 score and PR-
AUC, values range from 0 to 1, with 0.08 representing the
random prediction score, reflecting the proportion of the de-
pression class in the dataset. The AUC-ROC has a random
baseline of 0.5, with scores ranging from 0 (worst) to 1 (best).

The modest performance of both models could be partially
attributed to several factors, including the limited size of the
dataset, the high dimensionality of the data, and the signif-
icant class imbalance, with only 8% of the dataset consist-
ing of depressed individuals. These factors likely constrain
the models’ ability to generalize and accurately classify de-
pressed individuals versus healthy controls.

The results demonstrate that MetaboNet outperforms LR in
several key metrics, namely MCC, PR-AUC, and ROC-AUC,
in a statistically significant manner. Although MetaboNet
also outperformed LR in terms of the F1 score, this differ-
ence did not reach statistical significance at the 0.05 level.

The superior performance of MetaboNet over LR can po-
tentially be explained by the different architecture of the mod-
els. LR is a linear model, while MetaboNet is capable of
modeling non-linear relationships. Given that metabolites are
known to exhibit non-linear relationships [1], MetaboNet’s
ability to capture these complexities likely contributes to its
better performance. Moreover, the high dimensionality of the

data favors deep learning models like MetaboNet, which are
known to handle high-dimensional data more effectively than
traditional machine learning models [20, 21].

Figure 3 presents the confusion matrices for MetaboNet
and LR. MetaboNet demonstrates a superior capability in
identifying depressed individuals, as evidenced by a higher
number of true positives and a lower number of false nega-
tives compared to LR. Conversely, LR shows a higher num-
ber of correctly classified healthy individuals (true negatives)
and fewer false positives than MetaboNet.

These results suggest that MetaboNet is more effective
in detecting depression cases, reducing the likelihood of
missing depressed individuals. However, this comes at the
cost of a higher rate of false positives, indicating a tendency
to misclassify healthy individuals as depressed.

Overall, these results suggest that while both models exhibit
limited performance on the current dataset, MetaboNet
outperforms LR, highlighting a promising direction for
improving depression diagnostics. Future work should focus
on acquiring larger datasets with more depressed samples
to enhance model training. Additionally, advanced feature
selection techniques and dimensionality reduction methods
should be explored to better manage the high dimensionality
of the data. Finally, applying these models to larger and
more diverse cohorts will be essential for validating their
effectiveness in real-world clinical settings.

3.3 Superior Female Classification Performance
To evaluate potential biases in our depression classification
models related to the sex covariate, we examined how well
the MetaboNet and LR models, trained on metabolomics
data, classified samples within each sex category. Our anal-
ysis revealed a statistically significant trend of better classi-
fication performance for females across several performance
metrics in both models.

The classification results from running the evaluation
workflow with 100 different random seeds were grouped and
analyzed based on sex. The performance of the models for
each sex was assessed using MCC, F1 score, PR-AUC, and
ROC-AUC metrics. Independent t-tests were employed to
validate the relative performance differences between the two
sex groups.

The performance metrics for MetaboNet and LR by sex are
summarized in Table 3. For MetaboNet, statistically signifi-
cant differences were observed between males and females in
MCC, F1 score, and PR-AUC, with females showing better
performance in these metrics. However, no significant dif-
ference was found in ROC-AUC between males and females.
For LR, female classification performed better across all met-
rics. The F1 score and PR-AUC showed statistically signif-
icant differences, while MCC and ROC-AUC had p-values
slightly above the 0.05 threshold, at 0.08 and 0.06, respec-
tively.

The results indicate a general trend of better performance
for females compared to males across several metrics, sug-
gesting that the models may more effectively capture patterns
related to depression in females. However, it is important to
recognize that the ROC-AUC metric, which did not show sta-
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MetaboNet Logistic regression
Metric Male Female p-value Male Female p-value

MCC 0.14± 0.11 0.18± 0.08 2 · 10−3 0.12± 0.14 0.15± 0.11 0.08

F1 score 0.17± 0.08 0.27± 0.06 5 · 10−21 0.17± 0.13 0.25± 0.10 3 · 10−7

PR-AUC 0.13± 0.09 0.24± 0.09 8 · 10−16 0.13± 0.12 0.20± 0.07 2 · 10−6

ROC-AUC 0.70± 0.13 0.69± 0.07 0.51 0.62± 0.16 0.65± 0.07 0.06

Table 3: Comparison of performance metrics (mean ± standard deviation) and independent t-test p-values by sex for MetaboNet and LR
depression classification. Female classification performance is significantly better than male classification performance in F1 score and PR-
AUC for both models, and in MCC score for MetaboNet. This indicates a strong trend of sex-related differences in the models’ performance.

tistically significant differences in classification performance
between sexes, has a limitation relevant to our context: it
can be overly optimistic for imbalanced datasets where the
majority class is well classified [33]. Therefore, the ROC-
AUC metric could be misleading because the majority class,
or control group, is well classified, as can be seen in Figure 3.

The better female classification performance trend could
potentially be explained by the fact that there are more de-
pressed females than males in our dataset, with 73% of the
depressed samples being female. There could also be differ-
ent metabolomic profiles of depression for males and females,
which means that the smaller dataset for males may fail to
generalize and learn about the male depression metabolomic
profile. There is evidence supporting significant differences
in metabolomic profiles between males and females [36].

A potential problem could be that the models may
not always be using biologically relevant metabolites for
depression but instead using metabolites that predict sex,
thereby acting as a proxy for predicting depression since
women are more likely to be depressed in our dataset and
the general population [37]. Thus, the lack of accounting for
a sex covariate in our classification is a limitation of our study.

Overall, our analysis revealed sex-related differences in
the performance of depression classification models, with
better classification performance for females. Future work
should focus on obtaining unbiased datasets and incorpo-
rating sex covariates, as well as potentially other important
covariates, to improve the generalizability and accuracy of
predictive models.

3.4 Metabolite and Pathway Importance Analysis
Validates MetaboNet’s Ability to Identify
Biologically Relevant Pathways

Our objective was to validate the effectiveness of MetaboNet
and LR models’ identification of biologically important
metabolites for predicting depression. For MetaboNet, we
further analyzed the biologically interpretable structure of the
model to derive insights about the importance of biochemical
sub-pathways and super-pathways, as illustrated in Figure 4.
We did not find evidence of either model accurately identi-
fying the correct important metabolites, however, MetaboNet
showed compelling evidence it is capable of correctly identi-
fying important biochemical pathways. The most compelling
evidence, based on our relative importance score and valida-

tion from previous work, highlighted the significance of food-
related metabolites for depression.

To obtain robust results, both models were trained, vali-
dated, and tested across 100 different random seeds, and we
then averaged the relative importance values of the models.
We cross-referenced the most important metabolites, and bio-
chemical pathways with existing literature for validation.

Important Metabolites Lack Validation From the
Literature
The analysis of the top seven metabolites most important for
the prediction models MetaboNet and LR revealed one com-
mon metabolite: methionine sulfone. The other metabolites
identified by MetaboNet include catechol sulfate, tiglylcarni-
tine (C5:1-DC), beta-hydroxyisovalerate, N,N,N-trimethyl-5-
aminovalerate, N-acetyl-2-aminoadipate, and isovalerylcar-
nitine (C5). Conversely, the top metabolites identified by
LR are sphinganine-1-phosphate, 3-methoxytyramine sulfate,
N-acetylasparagine, glucuronate, 2-O-methylascorbic acid,
and N-stearoyl-sphinganine (d18:0/18:0). To our knowledge,
none of these metabolites have been validated by other stud-
ies.

The poor overlap in the top seven most important metabo-
lites between the MetaboNet and LR models could suggest
that these models capture different aspects of the metabolic
profile relevant to the prediction task. This discrepancy
may be attributed to the distinct architectures of the models;
MetaboNet, a more complex model, can capture non-linear
relationships, whereas LR is constrained to linear associa-
tions. Additionally, the high dimensionality and correlation
within metabolomics data, as demonstrated in Figure 5, sug-
gest that multiple combinations of top metabolites could pro-
duce effective predictive results. The lack of validation from
the current body of research could partly be attributed to the
limited number of studies on the association between depres-
sion and metabolites. Our findings underscore the need for
further research in this area.

Top MetaboNet Sub-pathways Validated by Literature
The outer ring in Figure 4 illustrates the relative impor-
tance of biochemical sub-pathways in MetaboNet. The top
four sub-pathways are food component/plant (6%), leucine,
isoleucine and valine metabolism (6%), benzoate metabolism
(4%), and fatty acid dicarboxylate (3%).

Van der Spek et al. [38] conducted a large-scale
metabolome-wide association study and discovered that cir-
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culating metabolites modulated by food are linked to de-
pression. They identified metabolites either directly de-
rived from food or produced through host and gut microbial
metabolism of food-derived products as particularly signifi-
cant [38]. This finding is consistent with our results, which
highlight the food component/plant pathway as the most im-
portant sub-pathway. Growing evidence indicates that nutri-
tion influences mood through the modulation of gut micro-
biota [39, 40]. Specifically, the consumption of red and/or
processed meat, refined grains, sweets, and high-fat prod-
ucts is associated with an increased risk of depression [41],
whereas a high-quality diet rich in antioxidants, whole grains,
fish, and fresh fruits and vegetables is linked to improved gut
health [40] and a decreased risk of depression. These re-
sults suggest potential targets for diet-based therapies aimed
at treating depression. This interpretation underscores the
importance of dietary choices in mental health management
and highlights the potential of dietary interventions as a non-
pharmacological approach to depression management. How-
ever, it is important to note that while these findings are
promising, further research is needed to fully understand the
mechanisms involved and to develop effective dietary guide-
lines for depression management.

Leucine, isoleucine, and valine are branched-chain amino
acids that were found to be significantly associated with de-
pression [42]. Baranyi et al. [42] study found that these
branched-chain amino acids are significantly decreased in pa-
tients with major depression compared to healthy controls.
This reduction may lead to lower activation of the mam-
malian target of rapamycin (mTOR) pathway, which is cru-
cial for cell growth and energy metabolism [42]. Dysregula-
tion of mTOR is associated with depressive symptoms, sug-
gesting that branched-chain amino acid levels could serve as
biomarkers for depression and potential targets for novel an-
tidepressant therapies [42]. Furthermore, Whipp et al. [43]
found a significant negative association between valine and
depression, while leucine also showed a significant nega-
tive association. No significant association was found for
isoleucine. These findings imply that lower levels of cer-
tain BCAAs may be linked to higher rates of depression,
highlighting the need for further research into their role in
depressive disorders. However, it is important to note that
the data from Whipp et al. [43] was collected during ado-
lescence and young adulthood, which might limit its rele-
vance to our study, as our dataset does not focus on a specific
age range. A limitation of our work is that age was not in-
cluded as a covariate, and there appears to be a difference be-
tween juvenile-onset and adult-onset depression [44]. There-
fore, while our findings underscore the potential of BCAAs as
biomarkers for depression, they also indicate the necessity for
age-specific analyses in future research to fully understand
their role across different age groups.

The benzoate pathway exhibits potential therapeutic effects
on depression, as demonstrated by Cheng et al. [45]. Their
findings indicate that benzoate drugs may reduce brain in-
flammation [45]. Both in vitro and in vivo studies reveal that
benzoate achieves its anti-inflammatory effects by inhibiting
microglial activity [45]. Our research corroborates the sig-
nificance of benzoate metabolism in the context of depres-

sion, highlighting the promise of benzoate-based drugs as a
treatment option. Nevertheless, further research is essential
to elucidate the underlying mechanisms and to determine the
long-term efficacy and safety of benzoate-based therapies.

Prince et al. [46] found that metabolites associated with
dicarboxylated fatty acids were consistently linked with ab-
normal scores on a psychological self-report symptom scale
for depression. Fatty acid dicarboxylate is a diet-derived
metabolite [47], which further underscores the influence of
dietary factors in depression [40]. This suggests that dietary
interventions targeting specific fatty acids could potentially
modulate depressive symptoms, offering a novel approach for
prevention and treatment. However, the precise mechanisms
through which these metabolites affect mood regulation re-
main unclear, and further research is needed to elucidate these
pathways.

Top MetaboNet Super-pathway Validated by Literature

The inner ring of Figure 4 illustrates the relative importance
of biochemical super-pathways within MetaboNet. The anal-
ysis indicates that the lipid super-pathway is the most promi-
nent, accounting for 35%.

A comprehensive meta-analysis conducted by Bot et
al. [48] reveals a distinct profile of circulating lipid metabo-
lites linked to depression. Furthermore, lipids have been
suggested as biomarkers for depression by Parekh et al. [49].
These findings underscore the significant role that spe-
cific lipid metabolites may play in the pathophysiology
of depression, thereby validating the importance of the
lipid super-pathway in our MetaboNet model. Given that
lipids constitute the largest super-pathway group in our
dataset, comprising 39% of the total, their prominence in our
predictive model was expected. Although these results are
promising, specific recommendations should be approached
with caution due to the complexity and extensive nature
of lipid metabolism. Nonetheless, this insight points to a
valuable direction for future research.

Overall, our findings provide evidence that MetaboNet
is capable of accurately identifying biologically important
biochemical sub-pathways and super-pathways. However, we
did not find evidence supporting the accuracy of MetaboNet
in identifying specific biologically relevant metabolites for
depression. Similarly, LR also failed to identify metabolites
that have been highlighted in previous studies. However, it is
important to note that the body of research investigating the
association between metabolomics and depression is limited.
The most compelling evidence we have found for a single
pathway, based on our relative importance and existing liter-
ature, is related to food components. However, experimental
validation is necessary to confirm their biological relevance
and clinical significance. A notable limitation of our study
is the unbalanced, correlated, and high-dimensional nature
of the dataset. This characteristic may impact the robustness
and generalizability of our findings. Further research with
more balanced and comprehensive datasets is necessary to
validate and expand upon these results.
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Figure 4: MetaboNet biochemical pathways relative importance
sunburst. The relative importance of each pathway was obtained
from the learned weights of the MetaboNet models. The outer ring
is sub-pathways and the inner ring is super-pathways. The specific
metabolites are omitted for clarity. Lipids, with 35%, can be seen as
having the highest relative importance on the super-pathway level.

Figure 5: Display of the distribution of correlation scores between
the metabolites. The x-axis represents the correlation scores rang-
ing from -1 (perfect negative correlation) to 1 (perfect positive cor-
relation), while the y-axis shows the number of feature pairs that
fall within each correlation score bin. Overall, we can see that the
metabolites display a lot of positive correlations.

4 Responsible Research
Ensuring responsible research practices is integral to the sci-
entific process, promoting both ethical standards and repro-
ducibility. This section provides a comprehensive reflection

on the ethical considerations and reproducibility challenges
encountered during this research, along with the measures
taken to address them.

Code availability: To ensure transparency and facilitate
reproducibility, all code used in this research is publicly avail-
able on GitHub [28]. By making our code accessible, we pro-
vide a detailed view of the methods employed, allowing other
researchers to verify and build upon our work.

Data availability: Although the dataset used in this study
is not publicly available due to privacy regulations and in-
formed consent constraints, it can be requested from Erasmus
MC. Requests are subject to approval based on a predefined
protocol to protect participant privacy.

Data handling procedures: To ensure proper handling of
the dataset, the author read, signed, and adhered to the Rotter-
dam Study Data User Agreement. By following these guide-
lines, the author ensured that all data handling procedures
were conducted in accordance with ethical research standards
and privacy regulations. The dataset was used exclusively for
the agreed-upon research purposes. Additionally, the author
followed established security protocols to ensure the data’s
integrity and confidentiality.

Addressing biases: The dataset used in this research
presents certain biases that need to be acknowledged. Firstly,
there is a class imbalance, with a minority class of individ-
uals diagnosed with depression. Secondly, the data was col-
lected from a single geographical location, which could limit
the applicability of the findings to other populations. Lastly,
the dataset comprises a higher proportion of women, which
restricts its generalizability to men. However, addressing
these biases comprehensively was beyond the scope of this
research.

Reproducibility: Ensuring the reproducibility of research
findings is a fundamental aspect of responsible research. To
this end, the methodology was extensively described and we
utilized random seeds for all non-deterministic components
of our algorithms and documented the hardware and tooling
used.

Competing interests: There are no commercial or finan-
cial conflicts of interest to declare in this research.

Reliability of results: Due to the high variance in model
performances, we accounted for the effects of random seed
selection by running our algorithms with a large number of
different random seeds. This extensive testing ensures that
our results are not unduly influenced by any particular seed
choice. By using a broad range of seeds, we minimized the
potential bias that could arise from selecting a specific subset
of seeds that might favor our proposed model over the base-
line. This approach enhances the reliability and validity of
our findings.

5 Conclusion and Future Work
In this study, we assessed the performance of MetaboNet and
logistic regression (LR) in classifying individuals with de-
pression based on metabolomics data. Both models demon-
strated modest performance; however, MetaboNet showed a
promising trend of outperforming LR across several key met-
rics. Notably, the classification results revealed sex-related
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differences, with better performance observed in females.
We also aimed to validate whether the most impor-

tant metabolites identified by LR and the most important
metabolites, sub-pathways, and super-pathway identified by
MetaboNet align with existing literature regarding their bio-
logical relevance to depression. Our findings did not support
the capability of either model to identify biologically rele-
vant individual metabolites. Nonetheless, MetaboNet exhib-
ited promise in identifying sub- and super-pathways that are
relevant to depression as documented in existing literature.

This research underscores the necessity for developing un-
biased, diverse, and large datasets for studying depression.
While MetaboNet can suggest important factors in predicting
depression, experimental validation is necessary to confirm
their biological relevance and clinical significance.
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