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Abstract—Survival analysis is a statistical method used to 

predict when an event will occur. Machine learning survival 

models have been used in many cancer studies. However, 

machine learning models may not always be interpretable. The 

current lack of research for explainable survival analysis for 

urothelial cancer prompted this study. This study offers an 

insight into the generalizability and explainability of machine 

learning models for urothelial cancer. We also determine how 

we can make the models interpretable in the presence of 

collinearity. In this study, we compared the performance of 

the models; Rank Linear Support Vector Machine (SVM), 

Rank Kernel SVM, Coxnet, Random Survival Forest (RSF), 

and Gradient Boosting (Gboost). We used the Memorial Sloan 

Kettering (MSK) and The Cancer Genome Atlas (TCGA) 

datasets. We used gene expression variables and clinical vari- 

ables to train our models. We evaluated these models based on 

the C-index. We used Permutation Feature Importance (PFI), 

a model-agnostic method, to explain our models and used 

Principal Component Analysis (PCA) to deal with collinearity. 

We determined that the best linear model was Rank Linear 

SVM (C-index = 0.58) and the best non-linear model was RSF 

(C-index = 0.63). Using PFI showed that some of the top-most 

important genes were expressed in urothelial cancer, one of 

them even being a prognostic marker. With PCA, we were 

able to deal with collinearity, and the performance using PCA 

was comparable to models not using it. PFI with PCA showed 

that processes exhibited in the top genes were prevalent in 

cancer. 

Keywords: survival analysis, urothelial, generalizability, ex- 

plainability, model-agnostic, Coxnet, Rank SVM, RSF, GBoost, 

C-index, PFI, PCA. 

 

1. Introduction 

Survival analysis, also known as time-to-event predic- 
tion, is a statistical method used to predict when an event 
will occur. It is applicable in many areas, and also prevalent 
in medicine where it is used to indicate when a patient 
with a particular disease may die or when a patient may 
be in remission of a particular disease [1]. With increasing 
machine learning trends and data availability, one would 
assume that standard machine learning models can be used 
for survival analysis. However, this is not the case since 

there is absence of event information in survival data, i.e., 
there are a lot of samples in the data that have not observed 
the event of interest. This may be because, for instance, 
the patient, while being observed, did not experience the 
event of interest. This is known as censoring, and it is 
important that we take into account censored data as they 
carry valuable information. 

In 2020 alone, there were 19.3 million new cancer 
cases with 10.0 million new deaths [2]. Current methods in 
cancer survival diagnosis involve making predictions based 
on the average survival rate of a patient with a specific 
type of cancer [3]. This method just indicates the patient’s 
survival, and it only involves a few factors such as age and 
tumor stage. Every individual is different, so why would 
one not look into patient-specific survival rates instead? 
This is where survival analysis based on machine learning 
comes in which has the ability to provide patient-specific 
survival. Many studies have made use of survival analysis 
with machine learning and have had good results. There 
have been promising results within the realm of 3 of the 
topmost occurring cancers; breast cancer [4], [5], [6], lung 

cancer [7] and prostate cancer [8]. 
Urothelial cancer made up 3% of the 19.3 million new 

cancer cases in 2020, with over 200 000 deaths. While 
there have been some studies that look at predicting sur- 
vival [9], [10] for urothelial cancer, not many look at the 
gene expression data while using machine learning survival 
methods. Gene expression data can considerably improve 
our understanding of cancer [11]. Gene expression data 
may contain hidden information that may help predict the 
survival of a cancer patient and may also help provide 
patient-specific results [12]. 

A major issue with machine learning models, in general, 
is that some of the models are not interpretable and are 
complicated [13]. They are, so to say, black-box models. 
These models learn from the data given directly, and even 
the people who implement/use these models are unable to 
explain how it came to the prediction that it made [13]. 
These models have been designed to be good predictors, 
but unfortunately, not good explainers. Explainable models 
are necessary as they can help in providing insight as to 
what is important for the model to make predictions. This 
can then, for instance, help in creating target treatment for 
patients [14]. Now, certain machine learning methods such 
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as Random Forest and Linear Regression provide some sort 
of interpretability. But this interpretability only lies within 
the particular model and cannot be extended to other models. 
Therefore, we need a more model-agnostic approach to 
model explainability. Model-agnostic approaches provide 
model flexibility, explanation flexibility and allow us to 
compare multiple models [15]. In addition to to using a 
model-agnostic approach, it is important to think about when 
feature variables may be correlated to one another as this 
leads to problems with interpretability. Unfortunately, there 
is not much research for survival analysis that offers model 
explainability, and that also deals with model explainability 
with the presence of collinearity. 

The shortcomings mentioned above are what prompted 
this study. The contributions of this study involve using 
machine learning for survival analysis of urothelial cancer 
while using mRNA gene expression data and clinical data. 

 

 

Figure 1: Right-Censoring. The red dots indicate that the 
patient experienced death. The blue dots indicate right- 
censoring since the patient did not death within the observed 

This study also provides an insight into a model-agnostic 
approach for explaining these models. We then also show 
how we can potentially deal with collinearity. 

time t max. 

Therefore, the research questions we try to answer are: 
1) Which machine learning survival models perform and 
generalize the best when predicting survival for urothelial 
cancer? 2) Can we then explain how these models were able 
to predict survival? 3) Further, can we make the models 
more explainable in the presence of collinearity? 

 

2. Methodology 

In this section, we first describe the task at hand. Then, 
we provide details about the dataset, pre-processing steps, 
the experiments, and the models and techniques that were 
used. 

 
2.1. The Task 

A common objective for survival analysis in clinical 
research is to predict the time of death. In a way, such a 
problem can be seen as a regression, but it cannot sim- 
ply be solved using regression techniques due to censored 
data. As briefly mentioned in Section 1, censoring refers 
to the absence of event information. There are different 
types of censoring, but in this study, we deal with right- 
censoring [16] and hence, simply refer to it as censoring. 
Right censoring occurs when the actual survival time is 
more than the time the patient was observed. For instance, 
assume that there are 4 patients in a COVID-19 clinic and 
are observed for a certain amount of time, say tmax. Here, 
we are interested in when a patient might die of COVID- 

19. If we look at Figure 1, we see that patient 1 and 4 died 
before tmax whereas patient 2 and 3 did not. We then say 
that patient 2 and 3 are censored. 

Survival  data   is   then   defined   using   a   tuple: 

(Xi, ti, δi) [17].   Xi   is   the   feature   vector   for   patient 
i, δi is the event indicator stating whether the death was 

observed (δi = 1) or not (δi = 0). ti indicates the time 
component. If death is observed ti is the observed time 

of death whereas if death is not observed then ti is the 
censored time. 

The objective of the machine learning survival models 
is to predict then a survival function that provides the risk 
score. The risk score is the probability of dying beyond a 
given time. 

In this study, the models are trained on a feature vector 
containing gene expression variables as well as clinical 
variables to compute the risk score. 

 

2.2. Dataset 

The urothelial cancer dataset for this study was retrieved 
from cBioPortal [18], [19]. We make use of two cohorts, 
namely, Memorial Sloan Kettering (MSK) [20] and The 
Cancer Genome Atlas (TCGA) [21]. This study refers to the 
MSK dataset as cohort 1 and the TCGA dataset as cohort 2. 
In cohort 1, there are 476 patient samples, and in cohort 2 
there are 413 patient samples. There are over 20000 genes 
measured from each patient and over 10 clinical variables 
in each of the cohorts. The values for the gene expression 
data is given as Transcripts Per Million (TPM) values. Both 
cohorts contain the event indicator variable as well as the 
time variable. A sample of the dataset can be seen in Table 1. 

 

2.3. Pre-processing 

Since there were overlapping patients between the two 
cohorts, the first step involved removing these overlaps. All 
of the overlapping patients were removed from cohort 2. 
This was important as having repeat observations would 
cause the machine learning model to give extra weight to 
those observations creating a biased model. This step then 
left us with 381 samples in total. 

There were some missing hugo symbols (indicating gene 
symbols) which were then labeled based on their corre- 
sponding entrez gene ID number. To do this, the library 



{ } 
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Patient ID Survival Time Event Indicator Gene1 ... Genep Clinical1 ... Clinicalk 

TCGA-FD-A3B4 16.75 Deceased 452 ... 11047 55 ... Female 

TCGA-YF-AA3M 13.64 Living 214 ... 3903 57 ... Male 

TCGA-DK-AA6L 38.21 Deceased 67 ... 2237 48 ... Male 

TABLE 1: Dataset sample. 

 

mygene [22] was used. This was done in order to be able 
to identify the features and their biological processes during 
feature analysis. 

Next, the 2 samples with zero or unknown survival time 
were dealt with since the machine learning models required 
these values to be non-zero. 

We followed current best practices for pre-processing the 
gene expression data, that is we applied log-transformation 
with a pseudo-count of 1 [23]. 

Then, all the genes with 0 variance were removed, as 
this was important for the machine learning models not to 
encounter zero-divide situations. Next, we also made sure to 
keep only the same features between the two cohorts. This 
step left us with around 17500 features containing both gene 
expression and clinical variables. The clinical variables we 
used for this study involved; tumor stage, age, sex, and race. 
We removed samples with unknown tumor stage. The tumor 
stage variable was then ordinal encoded while the sex and 
race were label encoded. 

 

2.4. Exploratory Analysis 

Due to the low number of samples between the two 
cohorts (only 379), we chose to create a dataset by com- 
bining the two cohorts together. However, this cannot be 
done simply as you may need to account for batch effect. 
To check whether the correction for batch effect is necessary, 
we use Principal Component Analysis (PCA) and check for 
any clusters that form based on cohort type. Figure 2 shows 
a plot where the gene expression features of two cohorts 
have been decomposed to 2-dimensions using PCA. From 
this figure, we can see that the two cohorts do not seem to 
cluster or have any separation in the 2-dimensions. Based 
on this, the two cohorts were combined by simply adding 
cohort 2 to cohort 1. 

 

2.5. Experiments, Training and Parameter Tuning 

For this study, 80% of the combined dataset is used for 
training and 20% of the combined dataset is used for testing. 
We performed more analysis where the training and testing 
were done on separate cohorts. These results can be seen in 
Supplementary Section A.1. 

The training set is undersampled such that there are an 
equal number of samples of each class (death or no death). 
This is done in order to reduce bias within the machine 
learning models [24]. The machine learning models are 10 
fold cross-validated on the training set in order to check for 
overfitting as well as tune hyper-parameters. 

 

 
Figure 2: Plot depicting the separation of cohort 1 and cohort 
2 on a 2-dimensional space. Principal component 1 (PC1) 
can be seen on the horizontal axis and principal component 
2 (PC2) on the vertical axis. 

 

2.6. Hyper-parameter Tuning 

 
As mentioned earlier in Section 2.5, hyper-parameters 

for each of the models were tuned. To do this we made 
use of grid search with cross-validation. Grid search is 
an exhaustive search method to tune hyper-parameters. It 
searches over all the combinations of parameters that are 
given beforehand and returns the parameters that yield the 
best results. To perform grid search, we made use of the 
GridSearchCV function from the scikit-learn [25] library. 

The working of grid search is illustrated with a simple 
example. Assume a model that has hyper-parameters A 

and B and a set of values where A = 0.1, 0.5 and 

B = 10, 100 . Here, there are a total of 4 combinations in 
which grid search tries to find the optimal value. It would 
apply each of these 4 combinations to the model and then 
select the one which helps the model score the best. But, 
we also apply cross-validation. Given that we apply 5 fold 
cross-validation, the grid-search would apply all of these 
combinations on the 5 folds and then yield the best scoring 

ones. Let’s say the first combination is: A = 0.1 and B = 10. 
Grid search would then apply this combination to all the 
5 folds and average the scores yielded over the 5 folds, 
which would then tell us how the model performed using 
this combination of hyper-parameter values. 



× 

In this study, during training of each model, we deter- 
mine the optimal parameters and then use the best model to 
test. The full range of hyper-parameters used while training 
the models can be seen in Figure 12 in Supplementary 
Section A.2. 

 

2.7. Machine Learning Survival Analysis Models 

This section summarizes the key elements of the models 
used in this study. The scikit-survival [26] library was 
used in this study for all the models. The hyper-parameter 
values used are mentioned in the appropriate sections for the 
models. The values that were set to default can be found in 
Table 4 in Supplementary Section A.2. 

2.7.1. Cox Proportional Hazards Model (CoxPH). The 
Cox Proportional Hazards (CoxPH) [27] model is one of 
the most popular, classical models and is a semi-parametric 
model. The model assumes a linear relationship between 
the feature variables and the survival time. CoxPH tries to 
model the hazard function (Equation 1) which indicates the 
probability of an event occurring at a particular time: 

h(t, Xi) = h0(t) exp (X1β1 + X2β2 + . . . + Xnβn) (1) 

where h0(t) is a baseline function which is an unspecified 
function giving the model it’s semi-parametric property. 

(X1 + X2 + . . . + Xn) is the feature vector with n = p + k 
and β is the coefficient vector of the features. 

In order to avoid overfitting, regularization is applied. L1 
and L2 penalties are two of the most popular regularization 
techniques. L1, also known as LASSO regression, adds a 
penalty that is the absolute sum of the coefficients of the 
feature variables. With increasing values of the coefficients, 
the more the penalty is applied, the cost function that the 
penalty is applied to decreases the value of the coefficient 
to reduce loss [28]. L2, also known as ridge regression, 
adds a penalty to the cost function that is the square of 
the coefficients. A coefficient to the penalty term is added 

as well, λ. If λ > 0, then there is more constraint on the 
coefficients such that the value of the coefficient will tend 
to zero [28]. 

Here, we apply the elastic net penalty [29] to the CoxPH 
model and we now refer to this model as Coxnet. The elastic 
net penalty is a linear combination of L1 and L2 penalties. 
The elastic net penalty is able to use the benefits of both 
the L1 and L2 penalties to its advantage. 

In the case of a dataset containing more features than 
samples, the L1 penalty will not be able to choose more 
features than there are samples. In the case of collinearity, 
the L1 penalty will become unstable [29]. The net elastic 
penalty is then able to use the L1 term to create a sparse 
model and is able to use the L2 term to remove the limitation 
on how many features can be selected as well as introduce 
a grouping effect in the case of collinearity [29]. 

In this study, the net elasticity mixing parameter is set 
to l1_ratio is set to 0.0001. Along with this, the number 

of penalties on the regularization path n_alphas is set to 
100. All the other parameters are set to their default values. 

2.7.2. Ranking Support Vector Machine (Rank SVM). 
Support Vector Machines (SVMs) have the ability to account 
for complex and non-linear relationships between features 
and the outcome. In a classification problem, the basis of 
SVMs is to find a hyperplane that separates the classes the 
best. This hyperplane maximizes the distance between itself 
and the data points [30]. The SVM methods tend to perform 
the same as or better than the classical CoxPH model [31] 
for survival analysis. 

In this study, we make use of a special case of SVM 
called Rank SVM [32]. This model converts the survival 
analysis problem into a ranking problem [33] where the goal 
is to predict the risk ranks between the patients. It considers 
all the possible pairs of patients in the dataset based on that, 
it gives a rank to the sample [33]. The shorter the survival 
time for a patient, the lower the rank assigned to that patient. 

This study looks at two Rank SVM models; Linear SVM 
and Radial Basis Function (RBF) Kernel SVM. The Linear 
SVM assumes a linear relationship between the features and 

outcome. In contrast, the Kernel SVM is able to model 
complex, non-linear relationships. We also apply L2 reg- 

ularization in order to avoid overfitting. 

Here, for Rank Linear SVM, the L2 penalty, alpha, is 
set to 0.01 with a maximum iteration, max_iter of 10000. 
For Rank Kernel SVM, the L2 penalty, alpha, is set to 

1   10−7, the maximum iteration, max_iter is set to 1500 
and the kernel coefficient, gamma, is set to 0.0001. All of 
the other parameters are set to their default values. 

 

2.7.3. Random Survival Forest (RSF). The Random Sur- 
vival Forests (RSF) [34] model is yet another classical model 
with slightly better performance than CoxPH [35] when 
applied to survival data. RSF functions similarly to the 
standard Random Forest model. RSF, though, has the ability 
to take into account censored data. RSF is an ensemble 
of tree-based predictors that can create un-correlated trees 
and, therefore, internally control error. It can do so as it 
builds each tree on a different dataset sample [34]. The 
RSF takes bootstrapped samples from the dataset and grows 
a tree on each of those samples. It then randomly selects 
some features and a split value that maximizes a particular 
statistic. It then repeats this step until a terminal node has 
been reached and then computes the Cumulative Hazard 
Function (CHF) [36] for each tree. It then averages it over 
all the samples [37]. 

A penalty like L1 and L2 cannot be applied to the 
RSF model, but in order to prevent overfitting, different 
parameters such as minimum samples needed to split the 
node are tuned. Here, the minimum samples needed to 

split the node, min_samples_split is set to 2, the 
minimum number of samples required to be at leaf node, 

min_samples_leaf is set to 2 and the maximum number 

of features used, max_features, is set to 1 (all features). 
All of the other parameters are set to their default values. 

 

2.7.4. Gradient Boosting (GBoost). The basis of Gradient 
Boosting (GBoost) [38] lies in the idea that a sequence of 
weak base learners can become strong predictors. It com- 



L 

bines the prediction of the many base learners in an additive Formally, it is written as [43]: 
manner to ’boost’ its predictive power [38]. Here, the base 
learners are decision trees, and more decision trees are added 

L
i   j  (ηi < ηj) (ti > tj)δj 

 
 

 (2) 

one at a time while keeping the previous trees the same. The 
c = 

i j (ti > tj)δj 

aim is to optimize a loss function. Here the loss function 
to optimize is the Cox partial likelihood function, and it 
is optimized with gradient descent [39]. GBoost has been 
said to outperform existing survival models [40] making it 
a good candidate to compare performances. 

Here, regularization is applied using dropout. The 
dropout rate, dropout_rate, is set   to   0.0001   and 
the shrinkage of contribution of each base learner, 
learning_rate, is set to 0.0001. The tree based learn- 
ers in Gboost have a parameter where the node will split 
only if it decreases in impurity at a particular value. This 
parameter, min_imp_decrease is set to 0. The rest of 
the parameters, are set to their default values. 

 

2.8. Evaluation Metric: The C-index 

To evaluate the models, we look at the C-index [41]. 
The C-index is a generalization of the Area Under Curve 
(AUC) accounting for censored data. The interpretation of 
the C-index is like so: the higher the value, the better the 
model. If the value is 0.5, then the model is said to perform 
at random. 

The intuition behind the C-index is that a patient with a 
high risk score will have a shorter survival time. Given two 

patients i and j and that i j [42]: 

• If the survival time for i and j is known, then we 
know a death occurs. 

If the risk score of i > j and the survival 
time of i < j then i and j are said to be 
concordant. 
If the risk score of i > j and the survival 
time of i > j then i and j are said to be 
discordant. 

• If the survival time for i and j are censored, we 
cannot assume anything about death and hence, we 
do not consider this pair. 

• If the survival time for either i or j is censored then 
one death occurs. Assume, i dies and hence j is 
censored. 

If the survival time for i > j, then it is 
uncertain who dies first and hence we do not 
consider the pair. 

◦ If the survival time for i < j, then i dies first. 

· If the risk score of i > j, then the pair is 
concordant. 

· If the risk score of i < j, then the pair is 
discordant. 

The C-index is then given as: 

C-index =
  # concordant pairs  

# concordant pairs + # discordant pairs 

where, η is the risk score, t is the survival time and δ is the 
event indicator. 

 

2.9. Permutation Feature Importance (PFI) 

Permutation feature importance [44] is a model-agnostic 
way of computing feature importance. It has the ability 
to virtually work on all models without the need of re- 
training them which is one of its main advantages. This 
method works by looking at how much the prediction error 
changes after permuting a feature. The algorithm works as 
follows [45]: 

Given a trained model m, feature vector X of size n, target 
vector y and the evaluation metric (here C-index) C(y, m) 

1) Compute   the   original   prediction   error   E = 
C(y, m(X)) 

2) For each feature q: 

• Create feature matrix Xperm by permuting q 
in X. 

• Compute Eperm = C(y, m(Xperm)). 
• Compute importance as Eperm − E 

For this study, we make use of the ELI5 [46] package. 
We perform permutation feature importance on two models; 
the best performing linear model and the best performing 
non-linear model. We use all the features for the permutation 

and perform the analysis on both the train and test set. 
Performing the analysis on the train set gives us an indica- 
tion of which features are important in making a prediction, 
whereas performing the analysis on the test set gives us an 
indication of which features are important to generalize [45]. 

We also need to set the iteration number. This iteration 
indicates how many times the algorithm is performed. The 
score for each of the features is then the average over these 
iterations. If the number of iterations is high, it is said to 
provide better estimates, whereas if the iterations are low, 
then the algorithm would run faster [46]. Due to the large 
number of features and in the interest of time, the number 

of iterations is set to 15. 
Collinearity is when feature variables are correlated with 

other feature variables. This can affect the interpretability 
of the model. If features are correlated, PFI can lead to 
unrealistic results. With two correlated features, when PFI 
permutes their value, it may lead to unrealistic values for 
those features. We would end up using these unrealistic 
observations to compute importance which then would not 
lead to anything meaningful if those values for the features 
do not occur in reality [45]. Also, adding correlated features 
would end up decreasing the importance of the associated 
features as the importance would be split amongst them [45]. 
Given, two highly correlated features and we train a model 
on them, say random forest. Some trees in random forest 
may find the first feature important whereas the others would 

◦ 

◦ 

◦ 



find the second feature more important [45]. This may then 
bring down the importance of both of these features as their 
importance may mean more together than when the features 
are used alone. 

To combat this issue of collinearity, we make use of 
Principal Component Analysis (PCA). When PCA decom- 
poses the features to Principal Components (PCs) it does 
so by finding the line that best fits the data while making 
the features orthogonal [30] to each other. This orthogonal 
property then means that the features are uncorrelated. 

For this study, we decomposed all of the features (the 
gene expression data and the clinical variables) and chose 
the number of PCs based on how many PCs it took to 
explain 90% of the variance. We chose 71 PCs and this 
can be seen in Figure 13 in Supplementary Section A.3. 

The dataset was then curated to have the 71 PCs as the 
feature matrix. The dataset was split into train (80%) and 
test (20%) and the best performing linear model and the 
best performing non-linear model from the previous analysis 
were trained on the training set. Like our original analysis, 
the models were 10-fold cross-validated on the train set and 
grid search was used to tune to hyper-parameters of the 
models. The values of the hyper-parameters can be found 
in Table 3 in Supplementary Section A.2. The performance 
was then evaluated on the test set and the performance was 
also compared to the performance of models based on the 
original analysis. Then, PFI was performed on these 71 PCs. 

2.10. Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) [47] allows us to 
determine what kind of biological processes a set of genes 
(that are ranked) share based on an annotated gene set. 
GSEA determines how the annotated genes are represented 
in the ranked set of genes, whether they are over-expressed 
(on top of the list) or under-expressed (at the bottom of 
the list) [47]. The GSEA algorithm involves three main 
steps [47], which are described in general below: 

1) Determine the enrichment score. This tells us how 
much the annotated genes are over or under- 
expressed in the ranked set of genes. 

2) Estimate the statistical significance of the enrich- 
ment score by a ”phenotypic-based permutation 
test” [47]. 

3) Normalize the enrichment score for each gene set 
that is being analyzed. 

In this study, it helps us to indicate what kind of bi- 
ological process the important genes exhibit. We use the 
GSEAPY [48] library for this study and for the annotated 
gene set we use Gene Ontology (GO) Biological Processes 
2018 [49], [50]. 

Here, we look into the loadings of the top PCs in the 
feature analysis. We took the intersection of the top 20 most 
important PCs between the train and test dataset for Linear 
SVM and the top 20 most important PCs between the train 
and test dataset for RSF. We then compute the loadings 
of these PCs and choose the top 20 genes to perform the 
GSEA. 

3. Results and Discussions 

 
3.1. Survival and Feature Analysis Using Gene 

Expression Data and Clinical Variables 

We first look at the results on the cross-validation per- 
formances of the best models obtained using grid search for 
each of the models. Figure 3 shows that all the complex, 
non-linear models have high C-indexes in the training folds 
(C-index = 0.96 to C-index = 1.00) while their performances 
in the validation folds (C-index = 0.50 to C-index = 0.62) 
drop significantly. Looking at the linear models, we see that 
Coxnet has a much higher performance score in the training 
folds (C-index = 0.94) than in the validation folds (C-index 

= 0.58). In contrast, while the performance of the Rank 
Linear SVM drops in the validation folds (C-index = 0.63) 
from the training folds (C-index = 0.72), this drop is much 
less. We can therefore see that the non-linear models and the 
Coxnet model tend to overfit. In contrast, the Rank Linear 
SVM is less susceptible to overfitting, and overall, tends to 
generalize the best. 

We now look at the performances of the models on 
the testing set (See Figure 4). The performances for all 
the models range from a C-index of 0.50 to a C-index of 
0.63. The best performing model here is RSF (C-index = 
0.63) and both the linear models; Coxnet (C-index = 0.59) 
and Rank Linear SVM (C-index = 0.58) performs similarly. 
Based on the results seen in Figure 3, Rank Linear SVM is 
the better linear model. And, while RSF tends to perform 
the best in the testing set, the performance in the validation 
folds in Figure 3 tends to be quite unstable. In contrast, the 
performance of Rank Linear SVM tends to be more stable. 

 
In Section 2.5, we briefly mentioned that we performed 

more analysis where cohort 1 was used for training and 
cohort 2 was used for testing. This was to see how the 
models would generalize to new, unseen data. The results 
of this can be seen in Supplementary Section A.1. Again, 
we first look at the performances of the best models on the 
cross-validation folds. From Figure 10, we can again see 
that that all the non-linear models and the Coxnet model 
have a much higher performance score in the training folds 
(C-index = 0.92 to C-index = 1.00) than the validation folds 
(C-index = 0.50 to C-index = 0.66). Again, we see that while 
the performance of Rank Linear SVM drops in the validation 
folds (C-index = 0.61) from the training folds (C-index = 
0.80), it is less compared to the other models. These results, 
again indicate that the non-linear models and Coxnet model 
tend to overfit whereas the Rank Linear SVM model is less 
susceptible to overfitting. 

We now look at the performances of the models on the 
testing set in Supplementary Section A.1. There are two 
cases for the testing set where the models are tested on 
samples only from cohort 1 (Figure 11a) and then again 
on samples only from cohort 2 (Figure 11b). Looking at 
Figure 11a, we can see that the best performing model is 
GBoost (C-index = 0.73) and the best performing linear 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Performance (vertical axis) of all the models in 
the training set which are 10 fold cross validated (horizontal 
axis). Top shows the performance on the training folds and 
bottom shows the performance on the validation folds. 

 

model in Rank Linear SVM (C-index = 0.68). From Fig- 
ure 11b, we see that the best performing model is RSF (C- 
index = 0.64) and the best performing linear model is Rank 
Linear SVM (C-index = 0.58). These results indicate that 
the best non-linear model is RSF and the best linear model 
is Rank Linear SVM when it comes to generalizability. 

Overall, we see here that all of the non-linear models and 
the Coxnet model tend to overfit; their performances in the 

Figure 4: Performance (vertical axis) of all the models 
(horizontal axis) on the testing set. 

 

training folds are much higher than in the validation folds. 
We see that while the models show some generalizability 
characteristics compared to one another, they do not tend to 
generalize that well overall. Generalizability depends highly 
on the representativeness of the dataset. If a model spends 
a lot of its computational effort in obtaining an accurate fit 
on the training set, there would be an increase in error on 
new data [51]. In this study, it could be the case that the 
dataset was not representative enough for the models to learn 
general patterns. Another reason could be that the models 
are simply too complex and cannot distinguish noise from 
the valuable parts of the data. Yet, another reason is that we 
do not have enough data. The number of samples is much 
less than the number of features (356 samples vs. 17500 
features). However, we do see that the Rank Linear SVM 
model tends to perform rather similarly between the training 
folds and the validation folds. This can be because this 
model does not learn any non-linear relationships between 
the features and the outcome and therefore does not add any 
degree of complexity. It is also interesting to see that Rank 
Linear SVM performed comparably to even the highest 
performing model (RSF) in the testing set. With it being 
less susceptible to overfitting and its ability to perform 
comparably, if one were to choose just one model from this 
analysis, it may be the Rank Linear SVM model, especially 
if you consider the Occam’s Razor principle. 

Based on the results above, we perform further analysis 
with RSF and Rank Linear SVM. Here, we look at the 
feature importance scores of RSF and Rank Linear SVM 
computed using the Permutation Feature Importance (PFI) 
method for both the training set and the testing set. Fig- 
ure 5 shows the result of the top 50 most important gene 

 
 



expression features plus the clinical variables. It is sorted 
by the importance in the testing set. We see that the clinical 
variables are not deemed important and that all the features 
tend to have a low score in general. We can also see from 
the figures that the feature importance in the testing set tends 
to vary a lot. This is a reflection of how differently these 
models perform on the training set and testing set. We have 
seen that the models tend to have a higher performance 
in the training set than in the testing set. So, the features 
required to learn a prediction are not the same as those 
needed to generalize. 

 
Looking at the results for the feature analysis in Figure 5, 

we also explored the top 10 genes between the training 
and testing set for each of the two models. We look into 
whether they are expressed in urothelial cancer and whether 
they act as a prognostic marker. To check for this, we make 
use of the Human Protein Atlas [52]. For the top 10 genes 
between the training and testing set of Rank Linear SVM, 
we get four genes; B2M, FN1, KRT17, KRT5. For the top 
10 genes between the training and testing set of RSF, we 
get one gene; ASTE1. All of these genes are expressed in 
urothelial cancer with ASTE1 being a prognostic marker 
as well. These results indicate that the models were able 
to learn something from the given dataset and that there 
is some promise in modeling explainability using the PFI 
method. 

 

 

 

 

3.2. Survival and Feature Analysis Using Decom- 

posed Features (PCA) 

 

 

 
 

In this section, we show the results of using PCA to 
deal with collinearity. We perform this analysis on the two 
models. Figure 6 shows the performance of the models; 
Rank Linear SVM and RSF on the training set. Here, 
the gene expression features and the clinical variables are 
decomposed using PCA. Again, the training set was 10-fold 
cross-validated which indicates the models’ performance in 
each fold for both the train and validation folds. In Figure 6, 
we can see that the models trained on the regular features 
and the decomposed features perform quite similarly. We see 
that the performance in the training folds for RSF (C-index 

= 0.94) is much higher than in the validation folds (C-index 
= 0.62), and also that the performance in the validation folds 
is unstable. We also see that the performance of Rank Linear 
SVM, while higher in the training folds (C-index = 0.73) 
than in the validation folds (C-index = 0.59), the difference 
is still much less than RSF. 

 

 

Figure 6: Performance (vertical axis) of Rank Linear SVM 
and RSF with and without PCA in the training set which 
are 10-fold cross validated (horizontal axis). Top shows the 
performance on the training folds and bottom shows the 
performance on the validation folds. 

 

 

 
 

We can see the results of the models in the training set 
in Figure 7. Here, we can see that the performances of the 
PCA versions of the models are comparable to the original 
versions of the models. Looking closely, we see that the 
performance of Rank Linear SVM with PCA (C-index = 
0.64) is higher compared to the performance of the original 
Rank Linear SVM model (C-index = 0.58). In contrast, we 
see that the performance of RSF with PCA (C-index = 0.50) 
is lower compared to the performance of the original RSF 
model (C-index = 0.63). The reason for this decrease may 
be because PCA creates a linear combination of the feature 
variables which would make sense for a linear model but not 
for RSF since it looks for complex, non-linear relationship. 



 
 

(a) SVM 

(b) RSF 

 

Figure 5: Feature analysis plot for (a) SVM and (b) RSF showing the importance score (vertical axis) of the top 50 most 
important gene expression features plus clinical variables (horizontal axis) for both the training and testing set. They are 
sorted by the importance in the testing set. 

 
 



 

 

Figure 7: Performance (vertical axis) of SVM and RSF with 
and without using PCA (horizontal axis) on the testing set. 

 
For further analysis, we look into the feature importances 

of the two models using the PCA decomposed features. We 
can see these results in Figure 8 which show the importance 
score of all the 71 principal components. Again, we notice 
here that there is a lot of variance between the training set 
and testing set. This, again, is a reflection of the differences 
between the performances in the training set and testing set. 
We also notice here that there seems to be more overlap 
between the principal components in the training and testing 
set for Rank Linear SVM than for RSF. In Table 2, we can 
see these overlaps. The table shows the overlap between 
the top 20 PCs in the training and testing set for both the 
models. We can see here that most of the PCs chosen tend 
to occur in the top 10 for Rank Linear SVM whereas for 
RSF they tend to be lowly ranked. 

   Methods Dataset PC1 PC4 PC10 PC13  
 

SVM Train 5 17 2 6 

SVM Test 4 5 2 1 

RSF Train 12 11 3 15 

RSF Test 6 2 10 1 

TABLE 2: Rank of overlapping PCs from the top 20 PCs in 
the training and testing set for both Rank Linear SVM and 
RSF models. 

 
 

3.3. Gene Set Enrichment Analysis 

We finally look at the GSEA results. Here, we took the 
top 20 genes from each PC mentioned in Table 2. This was 
determined based on their loadings in the PC. We chose 20 
genes as the threshold since the loadings tend to drop a lot 
after the top 20 genes. This can be seen in Figure 14 in 
Supplementary Section A.4. We can see the results in Fig- 
ure 9 of the GSEA. From Figure 9a, it can be seen that the 

genes chosen from PC1 seem to exhibit immune response 
as well as extracellular matrix organization. Similarly, from 
Figure 9b, for PC4, the genes exhibit extracellular matrix 
organization process. From Figure 9c for PC10 and 9d for 
PC13, the genes exhibit immune response and cell growth 
process, and metabolic processes, respectively. 

The processes exhibited by the genes above do have a 
relationship with cancer in general. The extracellular matrix 
organization process serves as a ’niche’ [53] for cancer 
stem cells which then initiate tumors. It provides structural 
support to regulate proliferation and also differentiation of 
the cancer stem cells. The immune system response process 
is something that is prevalent whenever one is suffering from 
a disease. In cancer, damaged DNA cells produce tumor 
antigens which signal to the immune system to target the 
cancer cells to eliminate them [54]. Cancer occurs due to 
cell proliferation which is also one of the processes that 
seemed to be exhibited. Urothelial cancer cells need a shift 
to glycolysis-dependent metabolism in order to proliferate, it 
is the main energy source [55]. This process is also exhibited 
by the genes in the PCs here. 



 

 

 

 

(a) SVM 

(b) RSF 

Figure 8: Feature analysis plot for (a) SVM and (b) RSF showing the importance score (y-axis) of the PCs (x-axis) for both 
the training (yellow) and testing set (blue). They are sorted by the importance in the testing set. 
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Figure 9: GSEA plots for top 20 genes in each PC. 



4. Conclusion 

This study aimed to determine the generalizability and 
explainability of machine learning survival analysis models 
and to determine whether they can be explained under 
the presence of collinearity. Overall, we can see that the 
models do not generalize as well but do seem to show some 
promise in the approach when it comes to their explain- 
ability. They are able to detect genes that are expressed in 
urothelial cancer, with one of them even being a prognostic 
marker. Through the PCA analysis, we are able to deal with 
collinearity, and the performance seems to be comparable 
to the models that do not use the decomposed features. The 
feature analysis with models using the PCA features also 
gives us an insight into which kind of processes seem to be 
important. 

For future work, more regularization can be added. In 
this study, grid search was performed, so the number of 
parameter values that were exhausted was not that many. 
Hence, with more regularization, overfitting may be avoided. 
More data should be gathered as that would improve perfor- 
mance (an instance of this can be seen in Figure 15 in Sec- 
tion A.5) of the models. Increasing the number of iterations 
for permutation feature importance, may also yield more 
precise results. Also, other forms of model-agnostic feature 
importance can be used, for instance, Shapley values. 

 

5. Tools and Packages Used 

Python 3.7 and Jupyter Notebook [56] were used for data 
processing and running the analysis. The following libraries 
were used (along with their function): 

• Pandas (V. 1.2.3) [57]: data processing 
• NumPy (V. 1.20.1) [58]: data processing 
• Scikit-Survival (V. 0.14.0)n [26]: survival modeling 
• Scikit-Learn (V. 0.24.2) [25]: hyperparameter tuning, 

cross-validation, PCA 
• Joblib (V. 1.0.1) [59]: parallelization 
• Ray (V. 1.2.0) [60]: parallelization 
• ELI5 (V. 0.11.0) [46]: feature analysis 
• GSEAPY (V. 0.10.4) [48]: gene set enrichment anal- 

ysis 

• MyGen (V. 3.1.0) [22]: labeling unknown genes 
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Appendix A. 

Supplementary Material 

A.1. Training on Cohort 1 and Testing on Cohort 2 

In Figure 10 we can see the results of the models when they were trained on samples from cohort 1. In Figure 11 we 
can see the performance of the models in the testing set. Figure 11a shows the performance of the models when tested on 
samples from cohort 1 and Figure 11b shows the performance of the models when tested on samples from cohort 2. All 
the non-linear models and the Coxnet model tend to overfit. Rank Linear SVM is less susceptible to overfitting. Looking 
at Figure 10 and Figure 11 we can see that Rank Linear SVM and RSF tend to perform the best. 

 

Figure 10: Performance (vertical axis) of all the models in the training set which are 10 fold cross validated (horizontal 
axis). Left shows the performance on the training folds and right shows the performance on the validation folds. 

 

 

(a) Test scores on cohort 1. (b) Test scores on cohort 2. 

Figure 11: Performance (vertical axis) of all the models (horizontal axis) on the testing set. 

 
 

 
 

 
 



A.2. Hyperparameter Tuning 
 

 

 

Figure 12: Table showing range of the values used for hyperparameter tuning. The bolded values are the values that were 
chosen as the best estimators. 

For the analysis with PCA, the models were trained again using the PCA features and hence the hyper-parameters were 
tuned again. Table 3 shows the values of the best models. The range of parameters is the same as in Figure 12. 

 

Model Parameter Value 

RSF max_features log2 
 min_samples_leaf 5 
 min_samples_split 2 

 n_estimators 1500 

Rank Linear SVM alpha 0.01 

 max_iter 10000 

TABLE 3: Hyper-parameter values of the models trained using PCA. 

 
 



Model Parameter Default Value 

Rank Linear SVM rank_ratio 1.0 
 fit_intercept False 

 optimizer avltree 

Kernel Linear SVM rank_ratio 1.0 
 fit_intercept False 

 optimizer rbtree 

Coxnet alpha_min_ratio auto 
 normalize False 
 copy_X True 
 tol 0.00000001 
 max_iter 100000 

 fit_baseline_model False 

RSF max_depth None 
 min_weight_fraction_leaf 0 
 max_leaf_nodes None 
 bootstrap True 

 n_jobs None 

GBoost loss coxph 
 n_estimatore 100 
 criterion friedman mse 
 min_samples_split 2 
 min_samples_leaf 2 
 min_weight_fraction_leaf 0.0 
 max_depth 3 
 max_features None 
 max_leaf_nodes None 
 subsample 1.0 

 ccp_alpha 0.0 

TABLE 4: Hyper-parameter with their default values. 

 
A.3. Principal Component Analysis (PCA) for Multi-collinearity 

Figure 13 shows the selection of the number of PCs to decompose our feature variables to. We chose 71 PCs as it is 
able to explain 90% of the variance. 

 

Figure 13: Cumulative sum of explained variance on the vertical axis and the number of components on the horizontal axis. 
The red dashed line indicate that 90% of the variance is explained using 71 PCs. 

 
 



A.4. Threshold for Number of Genes to Select for GSEA 

Figure 14 shows how the loadings change for each PC with increasing number of genes. There is a drop till 20 genes 
after which they all tend towards zero. 

 

Figure 14: Loadings for each of the PCs on the vertical axis and the number of genes on horizontal axis. The red dashed 
line represents the number of genes to use for the GSEA analysis − 20 genes. 

A.5. Effect of Adding More Samples to Training Set 

Figure 15 shows the effect of adding more samples to the training data. Excluding Kernel SVM which again performs 
completely at random, we can see here that the mean performance increases overall (except for Coxnet) while the variance 
decreases for all of the models. This indicates that increasing sample size would increase overall performance. We may not 
the see the same effect for Coxnet model since it may be more sensitive to differences between the two cohorts. 

 

Figure 15: Performance (vertical axis) of all the models (horizontal axis) on the training set. The non-shaded regions indicate 
the models trained on cohort 1 and the shaded regions indicate the models trained on the combined dataset. 

 
 

 
 


