
Explainable Survival Analy-
sis
for Urothelial Cancer

Sukhleen Kaur

T
e
c
h
n
is

c
h
e

 U
n
iv

e
rs

it
e
it
 D

e
lf
t

Explainable Survival Analysis
for Urothelial Cancer

by

Sukhleen Kaur

to obtain the degree of Master of Science

at Technische Universiteit Delft,

to be defended publicly on on Thursday the 26th of August 2021 at 15:00.

Student number: 5053307

Project duration: November 2020 ­ August 2021

Thesis committee: Prof. Dr. Marcel Reinders Pattern Recognition & Bioinformatics

 Dr. Joana Gonçalves Pattern Recognition & Bioinformatics, supervisor

 Dr. Thomas Höllt Computer Graphics & Visualization

An electronic version of this thesis is available at: ?iiT,ff`2TQbBiQ`vXim/2H7iXMHf.

Cover Image: Eric Snyder 2015 for National Cancer Institute

Preface

I was always interested in diagnostics and wanted to work on a project with applicability to the real

world. I approached my supervisor with this in mind, and she happened to have the perfect project

for me. This thesis is the result of 8 months of work that started last November. It has been quite the

experience to do a project at this scale with many struggles, especially in the beginning when I could

not figure out the package I was using. Nonetheless, I have learned many new things, and this project

has shaped me to be a better data scientist. I am proud of the hard work I have put into this project,

and I hope that as you read my thesis, you can see it too.

I would like to express my most profound appreciation to my supervisor, Professor Joana Gonçalves,

whose immense guidance and support have made this thesis possible. I would also like to thank my

daily supervisor, Dr. Attila Csala, for giving me critical insights and helping me throughout the whole

process. I would also like to thank both my supervisors for answering all of the silly questions I had and

lending me an ear when I had anything to share!

I would also like to thank my father, Dr. Harvinder Singh, and my mother, Sukhpreet Kaur. They

encouraged me and believed in me throughout this project and beyond. I would not have been able to

make it this far if it was not for them.

I would like to thank my partner, Sho Cremers, for all of his love and cheerleading! I would also

like to thank my friends, Lianne, Josefine, Sofia, and Zoe, for showering me with uplifting messages

and pepping me up as I got close to the finish line.

Last but not least, I want to thank Kanya and Olivia. The three of us started our thesis together

and have endured the same struggle to keep positive amidst the COVID­19 pandemic. Their company

has made this process a little less stressful and a lot more fun!

Sukhleen Kaur

Delft, August 2021

iii

Explainable Survival Analysis for Urothelial Cancer

Sukhleen Kaur

Pattern Recognition & Bioinformatics

Technische Universiteit Delft

Delft, The Netherlands 2628 CD

Email: S.Kaur@student.tudelft.nl

Abstract—Survival analysis is a statistical method used to

predict when an event will occur. Machine learning survival

models have been used in many cancer studies. However,

machine learning models may not always be interpretable. The

current lack of research for explainable survival analysis for

urothelial cancer prompted this study. This study offers an

insight into the generalizability and explainability of machine

learning models for urothelial cancer. We also determine how

we can make the models interpretable in the presence of

collinearity. In this study, we compared the performance of

the models; Rank Linear Support Vector Machine (SVM),

Rank Kernel SVM, Coxnet, Random Survival Forest (RSF),

and Gradient Boosting (Gboost). We used the Memorial Sloan

Kettering (MSK) and The Cancer Genome Atlas (TCGA)

datasets. We used gene expression variables and clinical vari-

ables to train our models. We evaluated these models based on

the C-index. We used Permutation Feature Importance (PFI),

a model-agnostic method, to explain our models and used

Principal Component Analysis (PCA) to deal with collinearity.

We determined that the best linear model was Rank Linear

SVM (C-index = 0.58) and the best non-linear model was RSF

(C-index = 0.63). Using PFI showed that some of the top-most

important genes were expressed in urothelial cancer, one of

them even being a prognostic marker. With PCA, we were

able to deal with collinearity, and the performance using PCA

was comparable to models not using it. PFI with PCA showed

that processes exhibited in the top genes were prevalent in

cancer.

Keywords: survival analysis, urothelial, generalizability, ex-

plainability, model-agnostic, Coxnet, Rank SVM, RSF, GBoost,

C-index, PFI, PCA.

1. Introduction

Survival analysis, also known as time-to-event predic-
tion, is a statistical method used to predict when an event
will occur. It is applicable in many areas, and also prevalent
in medicine where it is used to indicate when a patient
with a particular disease may die or when a patient may
be in remission of a particular disease [1]. With increasing
machine learning trends and data availability, one would
assume that standard machine learning models can be used
for survival analysis. However, this is not the case since

there is absence of event information in survival data, i.e.,
there are a lot of samples in the data that have not observed
the event of interest. This may be because, for instance,
the patient, while being observed, did not experience the
event of interest. This is known as censoring, and it is
important that we take into account censored data as they
carry valuable information.

In 2020 alone, there were 19.3 million new cancer
cases with 10.0 million new deaths [2]. Current methods in
cancer survival diagnosis involve making predictions based
on the average survival rate of a patient with a specific
type of cancer [3]. This method just indicates the patient’s
survival, and it only involves a few factors such as age and
tumor stage. Every individual is different, so why would
one not look into patient-specific survival rates instead?
This is where survival analysis based on machine learning
comes in which has the ability to provide patient-specific
survival. Many studies have made use of survival analysis
with machine learning and have had good results. There
have been promising results within the realm of 3 of the
topmost occurring cancers; breast cancer [4], [5], [6], lung

cancer [7] and prostate cancer [8].
Urothelial cancer made up 3% of the 19.3 million new

cancer cases in 2020, with over 200 000 deaths. While
there have been some studies that look at predicting sur-
vival [9], [10] for urothelial cancer, not many look at the
gene expression data while using machine learning survival
methods. Gene expression data can considerably improve
our understanding of cancer [11]. Gene expression data
may contain hidden information that may help predict the
survival of a cancer patient and may also help provide
patient-specific results [12].

A major issue with machine learning models, in general,
is that some of the models are not interpretable and are
complicated [13]. They are, so to say, black-box models.
These models learn from the data given directly, and even
the people who implement/use these models are unable to
explain how it came to the prediction that it made [13].
These models have been designed to be good predictors,
but unfortunately, not good explainers. Explainable models
are necessary as they can help in providing insight as to
what is important for the model to make predictions. This
can then, for instance, help in creating target treatment for
patients [14]. Now, certain machine learning methods such

mailto:S.Kaur@student.tudelft.nl

as Random Forest and Linear Regression provide some sort
of interpretability. But this interpretability only lies within
the particular model and cannot be extended to other models.
Therefore, we need a more model-agnostic approach to
model explainability. Model-agnostic approaches provide
model flexibility, explanation flexibility and allow us to
compare multiple models [15]. In addition to to using a
model-agnostic approach, it is important to think about when
feature variables may be correlated to one another as this
leads to problems with interpretability. Unfortunately, there
is not much research for survival analysis that offers model
explainability, and that also deals with model explainability
with the presence of collinearity.

The shortcomings mentioned above are what prompted
this study. The contributions of this study involve using
machine learning for survival analysis of urothelial cancer
while using mRNA gene expression data and clinical data.

Figure 1: Right-Censoring. The red dots indicate that the
patient experienced death. The blue dots indicate right-
censoring since the patient did not death within the observed

This study also provides an insight into a model-agnostic
approach for explaining these models. We then also show
how we can potentially deal with collinearity.

time t max.

Therefore, the research questions we try to answer are:
1) Which machine learning survival models perform and
generalize the best when predicting survival for urothelial
cancer? 2) Can we then explain how these models were able
to predict survival? 3) Further, can we make the models
more explainable in the presence of collinearity?

2. Methodology

In this section, we first describe the task at hand. Then,
we provide details about the dataset, pre-processing steps,
the experiments, and the models and techniques that were
used.

2.1. The Task

A common objective for survival analysis in clinical
research is to predict the time of death. In a way, such a
problem can be seen as a regression, but it cannot sim-
ply be solved using regression techniques due to censored
data. As briefly mentioned in Section 1, censoring refers
to the absence of event information. There are different
types of censoring, but in this study, we deal with right-
censoring [16] and hence, simply refer to it as censoring.
Right censoring occurs when the actual survival time is
more than the time the patient was observed. For instance,
assume that there are 4 patients in a COVID-19 clinic and
are observed for a certain amount of time, say tmax. Here,
we are interested in when a patient might die of COVID-

19. If we look at Figure 1, we see that patient 1 and 4 died
before tmax whereas patient 2 and 3 did not. We then say
that patient 2 and 3 are censored.

Survival data is then defined using a tuple:

(Xi, ti, δi) [17]. Xi is the feature vector for patient
i, δi is the event indicator stating whether the death was

observed (δi = 1) or not (δi = 0). ti indicates the time
component. If death is observed ti is the observed time

of death whereas if death is not observed then ti is the
censored time.

The objective of the machine learning survival models
is to predict then a survival function that provides the risk
score. The risk score is the probability of dying beyond a
given time.

In this study, the models are trained on a feature vector
containing gene expression variables as well as clinical
variables to compute the risk score.

2.2. Dataset

The urothelial cancer dataset for this study was retrieved
from cBioPortal [18], [19]. We make use of two cohorts,
namely, Memorial Sloan Kettering (MSK) [20] and The
Cancer Genome Atlas (TCGA) [21]. This study refers to the
MSK dataset as cohort 1 and the TCGA dataset as cohort 2.
In cohort 1, there are 476 patient samples, and in cohort 2
there are 413 patient samples. There are over 20000 genes
measured from each patient and over 10 clinical variables
in each of the cohorts. The values for the gene expression
data is given as Transcripts Per Million (TPM) values. Both
cohorts contain the event indicator variable as well as the
time variable. A sample of the dataset can be seen in Table 1.

2.3. Pre-processing

Since there were overlapping patients between the two
cohorts, the first step involved removing these overlaps. All
of the overlapping patients were removed from cohort 2.
This was important as having repeat observations would
cause the machine learning model to give extra weight to
those observations creating a biased model. This step then
left us with 381 samples in total.

There were some missing hugo symbols (indicating gene
symbols) which were then labeled based on their corre-
sponding entrez gene ID number. To do this, the library

{ }
{ }

Patient ID Survival Time Event Indicator Gene1 ... Genep Clinical1 ... Clinicalk

TCGA-FD-A3B4 16.75 Deceased 452 ... 11047 55 ... Female

TCGA-YF-AA3M 13.64 Living 214 ... 3903 57 ... Male

TCGA-DK-AA6L 38.21 Deceased 67 ... 2237 48 ... Male

TABLE 1: Dataset sample.

mygene [22] was used. This was done in order to be able
to identify the features and their biological processes during
feature analysis.

Next, the 2 samples with zero or unknown survival time
were dealt with since the machine learning models required
these values to be non-zero.

We followed current best practices for pre-processing the
gene expression data, that is we applied log-transformation
with a pseudo-count of 1 [23].

Then, all the genes with 0 variance were removed, as
this was important for the machine learning models not to
encounter zero-divide situations. Next, we also made sure to
keep only the same features between the two cohorts. This
step left us with around 17500 features containing both gene
expression and clinical variables. The clinical variables we
used for this study involved; tumor stage, age, sex, and race.
We removed samples with unknown tumor stage. The tumor
stage variable was then ordinal encoded while the sex and
race were label encoded.

2.4. Exploratory Analysis

Due to the low number of samples between the two
cohorts (only 379), we chose to create a dataset by com-
bining the two cohorts together. However, this cannot be
done simply as you may need to account for batch effect.
To check whether the correction for batch effect is necessary,
we use Principal Component Analysis (PCA) and check for
any clusters that form based on cohort type. Figure 2 shows
a plot where the gene expression features of two cohorts
have been decomposed to 2-dimensions using PCA. From
this figure, we can see that the two cohorts do not seem to
cluster or have any separation in the 2-dimensions. Based
on this, the two cohorts were combined by simply adding
cohort 2 to cohort 1.

2.5. Experiments, Training and Parameter Tuning

For this study, 80% of the combined dataset is used for
training and 20% of the combined dataset is used for testing.
We performed more analysis where the training and testing
were done on separate cohorts. These results can be seen in
Supplementary Section A.1.

The training set is undersampled such that there are an
equal number of samples of each class (death or no death).
This is done in order to reduce bias within the machine
learning models [24]. The machine learning models are 10
fold cross-validated on the training set in order to check for
overfitting as well as tune hyper-parameters.

Figure 2: Plot depicting the separation of cohort 1 and cohort
2 on a 2-dimensional space. Principal component 1 (PC1)
can be seen on the horizontal axis and principal component
2 (PC2) on the vertical axis.

2.6. Hyper-parameter Tuning

As mentioned earlier in Section 2.5, hyper-parameters

for each of the models were tuned. To do this we made
use of grid search with cross-validation. Grid search is
an exhaustive search method to tune hyper-parameters. It
searches over all the combinations of parameters that are
given beforehand and returns the parameters that yield the
best results. To perform grid search, we made use of the
GridSearchCV function from the scikit-learn [25] library.

The working of grid search is illustrated with a simple
example. Assume a model that has hyper-parameters A

and B and a set of values where A = 0.1, 0.5 and

B = 10, 100 . Here, there are a total of 4 combinations in
which grid search tries to find the optimal value. It would
apply each of these 4 combinations to the model and then
select the one which helps the model score the best. But,
we also apply cross-validation. Given that we apply 5 fold
cross-validation, the grid-search would apply all of these
combinations on the 5 folds and then yield the best scoring

ones. Let’s say the first combination is: A = 0.1 and B = 10.
Grid search would then apply this combination to all the
5 folds and average the scores yielded over the 5 folds,
which would then tell us how the model performed using
this combination of hyper-parameter values.

×

In this study, during training of each model, we deter-
mine the optimal parameters and then use the best model to
test. The full range of hyper-parameters used while training
the models can be seen in Figure 12 in Supplementary
Section A.2.

2.7. Machine Learning Survival Analysis Models

This section summarizes the key elements of the models
used in this study. The scikit-survival [26] library was
used in this study for all the models. The hyper-parameter
values used are mentioned in the appropriate sections for the
models. The values that were set to default can be found in
Table 4 in Supplementary Section A.2.

2.7.1. Cox Proportional Hazards Model (CoxPH). The
Cox Proportional Hazards (CoxPH) [27] model is one of
the most popular, classical models and is a semi-parametric
model. The model assumes a linear relationship between
the feature variables and the survival time. CoxPH tries to
model the hazard function (Equation 1) which indicates the
probability of an event occurring at a particular time:

h(t, Xi) = h0(t) exp (X1β1 + X2β2 + . . . + Xnβn) (1)

where h0(t) is a baseline function which is an unspecified
function giving the model it’s semi-parametric property.

(X1 + X2 + . . . + Xn) is the feature vector with n = p + k
and β is the coefficient vector of the features.

In order to avoid overfitting, regularization is applied. L1
and L2 penalties are two of the most popular regularization
techniques. L1, also known as LASSO regression, adds a
penalty that is the absolute sum of the coefficients of the
feature variables. With increasing values of the coefficients,
the more the penalty is applied, the cost function that the
penalty is applied to decreases the value of the coefficient
to reduce loss [28]. L2, also known as ridge regression,
adds a penalty to the cost function that is the square of
the coefficients. A coefficient to the penalty term is added

as well, λ. If λ > 0, then there is more constraint on the
coefficients such that the value of the coefficient will tend
to zero [28].

Here, we apply the elastic net penalty [29] to the CoxPH
model and we now refer to this model as Coxnet. The elastic
net penalty is a linear combination of L1 and L2 penalties.
The elastic net penalty is able to use the benefits of both
the L1 and L2 penalties to its advantage.

In the case of a dataset containing more features than
samples, the L1 penalty will not be able to choose more
features than there are samples. In the case of collinearity,
the L1 penalty will become unstable [29]. The net elastic
penalty is then able to use the L1 term to create a sparse
model and is able to use the L2 term to remove the limitation
on how many features can be selected as well as introduce
a grouping effect in the case of collinearity [29].

In this study, the net elasticity mixing parameter is set
to l1_ratio is set to 0.0001. Along with this, the number

of penalties on the regularization path n_alphas is set to
100. All the other parameters are set to their default values.

2.7.2. Ranking Support Vector Machine (Rank SVM).
Support Vector Machines (SVMs) have the ability to account
for complex and non-linear relationships between features
and the outcome. In a classification problem, the basis of
SVMs is to find a hyperplane that separates the classes the
best. This hyperplane maximizes the distance between itself
and the data points [30]. The SVM methods tend to perform
the same as or better than the classical CoxPH model [31]
for survival analysis.

In this study, we make use of a special case of SVM
called Rank SVM [32]. This model converts the survival
analysis problem into a ranking problem [33] where the goal
is to predict the risk ranks between the patients. It considers
all the possible pairs of patients in the dataset based on that,
it gives a rank to the sample [33]. The shorter the survival
time for a patient, the lower the rank assigned to that patient.

This study looks at two Rank SVM models; Linear SVM
and Radial Basis Function (RBF) Kernel SVM. The Linear
SVM assumes a linear relationship between the features and

outcome. In contrast, the Kernel SVM is able to model
complex, non-linear relationships. We also apply L2 reg-

ularization in order to avoid overfitting.

Here, for Rank Linear SVM, the L2 penalty, alpha, is
set to 0.01 with a maximum iteration, max_iter of 10000.
For Rank Kernel SVM, the L2 penalty, alpha, is set to

1 10−7, the maximum iteration, max_iter is set to 1500
and the kernel coefficient, gamma, is set to 0.0001. All of
the other parameters are set to their default values.

2.7.3. Random Survival Forest (RSF). The Random Sur-
vival Forests (RSF) [34] model is yet another classical model
with slightly better performance than CoxPH [35] when
applied to survival data. RSF functions similarly to the
standard Random Forest model. RSF, though, has the ability
to take into account censored data. RSF is an ensemble
of tree-based predictors that can create un-correlated trees
and, therefore, internally control error. It can do so as it
builds each tree on a different dataset sample [34]. The
RSF takes bootstrapped samples from the dataset and grows
a tree on each of those samples. It then randomly selects
some features and a split value that maximizes a particular
statistic. It then repeats this step until a terminal node has
been reached and then computes the Cumulative Hazard
Function (CHF) [36] for each tree. It then averages it over
all the samples [37].

A penalty like L1 and L2 cannot be applied to the
RSF model, but in order to prevent overfitting, different
parameters such as minimum samples needed to split the
node are tuned. Here, the minimum samples needed to

split the node, min_samples_split is set to 2, the
minimum number of samples required to be at leaf node,

min_samples_leaf is set to 2 and the maximum number

of features used, max_features, is set to 1 (all features).
All of the other parameters are set to their default values.

2.7.4. Gradient Boosting (GBoost). The basis of Gradient
Boosting (GBoost) [38] lies in the idea that a sequence of
weak base learners can become strong predictors. It com-

L

bines the prediction of the many base learners in an additive Formally, it is written as [43]:
manner to ’boost’ its predictive power [38]. Here, the base
learners are decision trees, and more decision trees are added

L
i j (ηi < ηj) (ti > tj)δj

 (2)

one at a time while keeping the previous trees the same. The
c =

i j (ti > tj)δj

aim is to optimize a loss function. Here the loss function
to optimize is the Cox partial likelihood function, and it
is optimized with gradient descent [39]. GBoost has been
said to outperform existing survival models [40] making it
a good candidate to compare performances.

Here, regularization is applied using dropout. The
dropout rate, dropout_rate, is set to 0.0001 and
the shrinkage of contribution of each base learner,
learning_rate, is set to 0.0001. The tree based learn-
ers in Gboost have a parameter where the node will split
only if it decreases in impurity at a particular value. This
parameter, min_imp_decrease is set to 0. The rest of
the parameters, are set to their default values.

2.8. Evaluation Metric: The C-index

To evaluate the models, we look at the C-index [41].
The C-index is a generalization of the Area Under Curve
(AUC) accounting for censored data. The interpretation of
the C-index is like so: the higher the value, the better the
model. If the value is 0.5, then the model is said to perform
at random.

The intuition behind the C-index is that a patient with a
high risk score will have a shorter survival time. Given two

patients i and j and that i j [42]:

• If the survival time for i and j is known, then we
know a death occurs.

If the risk score of i > j and the survival
time of i < j then i and j are said to be
concordant.
If the risk score of i > j and the survival
time of i > j then i and j are said to be
discordant.

• If the survival time for i and j are censored, we
cannot assume anything about death and hence, we
do not consider this pair.

• If the survival time for either i or j is censored then
one death occurs. Assume, i dies and hence j is
censored.

If the survival time for i > j, then it is
uncertain who dies first and hence we do not
consider the pair.

◦ If the survival time for i < j, then i dies first.

· If the risk score of i > j, then the pair is
concordant.

· If the risk score of i < j, then the pair is
discordant.

The C-index is then given as:

C-index =
 # concordant pairs

concordant pairs + # discordant pairs

where, η is the risk score, t is the survival time and δ is the
event indicator.

2.9. Permutation Feature Importance (PFI)

Permutation feature importance [44] is a model-agnostic
way of computing feature importance. It has the ability
to virtually work on all models without the need of re-
training them which is one of its main advantages. This
method works by looking at how much the prediction error
changes after permuting a feature. The algorithm works as
follows [45]:

Given a trained model m, feature vector X of size n, target
vector y and the evaluation metric (here C-index) C(y, m)

1) Compute the original prediction error E =
C(y, m(X))

2) For each feature q:

• Create feature matrix Xperm by permuting q
in X.

• Compute Eperm = C(y, m(Xperm)).
• Compute importance as Eperm − E

For this study, we make use of the ELI5 [46] package.
We perform permutation feature importance on two models;
the best performing linear model and the best performing
non-linear model. We use all the features for the permutation

and perform the analysis on both the train and test set.
Performing the analysis on the train set gives us an indica-
tion of which features are important in making a prediction,
whereas performing the analysis on the test set gives us an
indication of which features are important to generalize [45].

We also need to set the iteration number. This iteration
indicates how many times the algorithm is performed. The
score for each of the features is then the average over these
iterations. If the number of iterations is high, it is said to
provide better estimates, whereas if the iterations are low,
then the algorithm would run faster [46]. Due to the large
number of features and in the interest of time, the number

of iterations is set to 15.
Collinearity is when feature variables are correlated with

other feature variables. This can affect the interpretability
of the model. If features are correlated, PFI can lead to
unrealistic results. With two correlated features, when PFI
permutes their value, it may lead to unrealistic values for
those features. We would end up using these unrealistic
observations to compute importance which then would not
lead to anything meaningful if those values for the features
do not occur in reality [45]. Also, adding correlated features
would end up decreasing the importance of the associated
features as the importance would be split amongst them [45].
Given, two highly correlated features and we train a model
on them, say random forest. Some trees in random forest
may find the first feature important whereas the others would

◦

◦

◦

find the second feature more important [45]. This may then
bring down the importance of both of these features as their
importance may mean more together than when the features
are used alone.

To combat this issue of collinearity, we make use of
Principal Component Analysis (PCA). When PCA decom-
poses the features to Principal Components (PCs) it does
so by finding the line that best fits the data while making
the features orthogonal [30] to each other. This orthogonal
property then means that the features are uncorrelated.

For this study, we decomposed all of the features (the
gene expression data and the clinical variables) and chose
the number of PCs based on how many PCs it took to
explain 90% of the variance. We chose 71 PCs and this
can be seen in Figure 13 in Supplementary Section A.3.

The dataset was then curated to have the 71 PCs as the
feature matrix. The dataset was split into train (80%) and
test (20%) and the best performing linear model and the
best performing non-linear model from the previous analysis
were trained on the training set. Like our original analysis,
the models were 10-fold cross-validated on the train set and
grid search was used to tune to hyper-parameters of the
models. The values of the hyper-parameters can be found
in Table 3 in Supplementary Section A.2. The performance
was then evaluated on the test set and the performance was
also compared to the performance of models based on the
original analysis. Then, PFI was performed on these 71 PCs.

2.10. Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) [47] allows us to
determine what kind of biological processes a set of genes
(that are ranked) share based on an annotated gene set.
GSEA determines how the annotated genes are represented
in the ranked set of genes, whether they are over-expressed
(on top of the list) or under-expressed (at the bottom of
the list) [47]. The GSEA algorithm involves three main
steps [47], which are described in general below:

1) Determine the enrichment score. This tells us how
much the annotated genes are over or under-
expressed in the ranked set of genes.

2) Estimate the statistical significance of the enrich-
ment score by a ”phenotypic-based permutation
test” [47].

3) Normalize the enrichment score for each gene set
that is being analyzed.

In this study, it helps us to indicate what kind of bi-
ological process the important genes exhibit. We use the
GSEAPY [48] library for this study and for the annotated
gene set we use Gene Ontology (GO) Biological Processes
2018 [49], [50].

Here, we look into the loadings of the top PCs in the
feature analysis. We took the intersection of the top 20 most
important PCs between the train and test dataset for Linear
SVM and the top 20 most important PCs between the train
and test dataset for RSF. We then compute the loadings
of these PCs and choose the top 20 genes to perform the
GSEA.

3. Results and Discussions

3.1. Survival and Feature Analysis Using Gene

Expression Data and Clinical Variables

We first look at the results on the cross-validation per-
formances of the best models obtained using grid search for
each of the models. Figure 3 shows that all the complex,
non-linear models have high C-indexes in the training folds
(C-index = 0.96 to C-index = 1.00) while their performances
in the validation folds (C-index = 0.50 to C-index = 0.62)
drop significantly. Looking at the linear models, we see that
Coxnet has a much higher performance score in the training
folds (C-index = 0.94) than in the validation folds (C-index

= 0.58). In contrast, while the performance of the Rank
Linear SVM drops in the validation folds (C-index = 0.63)
from the training folds (C-index = 0.72), this drop is much
less. We can therefore see that the non-linear models and the
Coxnet model tend to overfit. In contrast, the Rank Linear
SVM is less susceptible to overfitting, and overall, tends to
generalize the best.

We now look at the performances of the models on
the testing set (See Figure 4). The performances for all
the models range from a C-index of 0.50 to a C-index of
0.63. The best performing model here is RSF (C-index =
0.63) and both the linear models; Coxnet (C-index = 0.59)
and Rank Linear SVM (C-index = 0.58) performs similarly.
Based on the results seen in Figure 3, Rank Linear SVM is
the better linear model. And, while RSF tends to perform
the best in the testing set, the performance in the validation
folds in Figure 3 tends to be quite unstable. In contrast, the
performance of Rank Linear SVM tends to be more stable.

In Section 2.5, we briefly mentioned that we performed

more analysis where cohort 1 was used for training and
cohort 2 was used for testing. This was to see how the
models would generalize to new, unseen data. The results
of this can be seen in Supplementary Section A.1. Again,
we first look at the performances of the best models on the
cross-validation folds. From Figure 10, we can again see
that that all the non-linear models and the Coxnet model
have a much higher performance score in the training folds
(C-index = 0.92 to C-index = 1.00) than the validation folds
(C-index = 0.50 to C-index = 0.66). Again, we see that while
the performance of Rank Linear SVM drops in the validation
folds (C-index = 0.61) from the training folds (C-index =
0.80), it is less compared to the other models. These results,
again indicate that the non-linear models and Coxnet model
tend to overfit whereas the Rank Linear SVM model is less
susceptible to overfitting.

We now look at the performances of the models on the
testing set in Supplementary Section A.1. There are two
cases for the testing set where the models are tested on
samples only from cohort 1 (Figure 11a) and then again
on samples only from cohort 2 (Figure 11b). Looking at
Figure 11a, we can see that the best performing model is
GBoost (C-index = 0.73) and the best performing linear

Figure 3: Performance (vertical axis) of all the models in
the training set which are 10 fold cross validated (horizontal
axis). Top shows the performance on the training folds and
bottom shows the performance on the validation folds.

model in Rank Linear SVM (C-index = 0.68). From Fig-
ure 11b, we see that the best performing model is RSF (C-
index = 0.64) and the best performing linear model is Rank
Linear SVM (C-index = 0.58). These results indicate that
the best non-linear model is RSF and the best linear model
is Rank Linear SVM when it comes to generalizability.

Overall, we see here that all of the non-linear models and
the Coxnet model tend to overfit; their performances in the

Figure 4: Performance (vertical axis) of all the models
(horizontal axis) on the testing set.

training folds are much higher than in the validation folds.
We see that while the models show some generalizability
characteristics compared to one another, they do not tend to
generalize that well overall. Generalizability depends highly
on the representativeness of the dataset. If a model spends
a lot of its computational effort in obtaining an accurate fit
on the training set, there would be an increase in error on
new data [51]. In this study, it could be the case that the
dataset was not representative enough for the models to learn
general patterns. Another reason could be that the models
are simply too complex and cannot distinguish noise from
the valuable parts of the data. Yet, another reason is that we
do not have enough data. The number of samples is much
less than the number of features (356 samples vs. 17500
features). However, we do see that the Rank Linear SVM
model tends to perform rather similarly between the training
folds and the validation folds. This can be because this
model does not learn any non-linear relationships between
the features and the outcome and therefore does not add any
degree of complexity. It is also interesting to see that Rank
Linear SVM performed comparably to even the highest
performing model (RSF) in the testing set. With it being
less susceptible to overfitting and its ability to perform
comparably, if one were to choose just one model from this
analysis, it may be the Rank Linear SVM model, especially
if you consider the Occam’s Razor principle.

Based on the results above, we perform further analysis
with RSF and Rank Linear SVM. Here, we look at the
feature importance scores of RSF and Rank Linear SVM
computed using the Permutation Feature Importance (PFI)
method for both the training set and the testing set. Fig-
ure 5 shows the result of the top 50 most important gene

expression features plus the clinical variables. It is sorted
by the importance in the testing set. We see that the clinical
variables are not deemed important and that all the features
tend to have a low score in general. We can also see from
the figures that the feature importance in the testing set tends
to vary a lot. This is a reflection of how differently these
models perform on the training set and testing set. We have
seen that the models tend to have a higher performance
in the training set than in the testing set. So, the features
required to learn a prediction are not the same as those
needed to generalize.

Looking at the results for the feature analysis in Figure 5,

we also explored the top 10 genes between the training
and testing set for each of the two models. We look into
whether they are expressed in urothelial cancer and whether
they act as a prognostic marker. To check for this, we make
use of the Human Protein Atlas [52]. For the top 10 genes
between the training and testing set of Rank Linear SVM,
we get four genes; B2M, FN1, KRT17, KRT5. For the top
10 genes between the training and testing set of RSF, we
get one gene; ASTE1. All of these genes are expressed in
urothelial cancer with ASTE1 being a prognostic marker
as well. These results indicate that the models were able
to learn something from the given dataset and that there
is some promise in modeling explainability using the PFI
method.

3.2. Survival and Feature Analysis Using Decom-

posed Features (PCA)

In this section, we show the results of using PCA to
deal with collinearity. We perform this analysis on the two
models. Figure 6 shows the performance of the models;
Rank Linear SVM and RSF on the training set. Here,
the gene expression features and the clinical variables are
decomposed using PCA. Again, the training set was 10-fold
cross-validated which indicates the models’ performance in
each fold for both the train and validation folds. In Figure 6,
we can see that the models trained on the regular features
and the decomposed features perform quite similarly. We see
that the performance in the training folds for RSF (C-index

= 0.94) is much higher than in the validation folds (C-index
= 0.62), and also that the performance in the validation folds
is unstable. We also see that the performance of Rank Linear
SVM, while higher in the training folds (C-index = 0.73)
than in the validation folds (C-index = 0.59), the difference
is still much less than RSF.

Figure 6: Performance (vertical axis) of Rank Linear SVM
and RSF with and without PCA in the training set which
are 10-fold cross validated (horizontal axis). Top shows the
performance on the training folds and bottom shows the
performance on the validation folds.

We can see the results of the models in the training set
in Figure 7. Here, we can see that the performances of the
PCA versions of the models are comparable to the original
versions of the models. Looking closely, we see that the
performance of Rank Linear SVM with PCA (C-index =
0.64) is higher compared to the performance of the original
Rank Linear SVM model (C-index = 0.58). In contrast, we
see that the performance of RSF with PCA (C-index = 0.50)
is lower compared to the performance of the original RSF
model (C-index = 0.63). The reason for this decrease may
be because PCA creates a linear combination of the feature
variables which would make sense for a linear model but not
for RSF since it looks for complex, non-linear relationship.

(a) SVM

(b) RSF

Figure 5: Feature analysis plot for (a) SVM and (b) RSF showing the importance score (vertical axis) of the top 50 most
important gene expression features plus clinical variables (horizontal axis) for both the training and testing set. They are
sorted by the importance in the testing set.

Figure 7: Performance (vertical axis) of SVM and RSF with
and without using PCA (horizontal axis) on the testing set.

For further analysis, we look into the feature importances

of the two models using the PCA decomposed features. We
can see these results in Figure 8 which show the importance
score of all the 71 principal components. Again, we notice
here that there is a lot of variance between the training set
and testing set. This, again, is a reflection of the differences
between the performances in the training set and testing set.
We also notice here that there seems to be more overlap
between the principal components in the training and testing
set for Rank Linear SVM than for RSF. In Table 2, we can
see these overlaps. The table shows the overlap between
the top 20 PCs in the training and testing set for both the
models. We can see here that most of the PCs chosen tend
to occur in the top 10 for Rank Linear SVM whereas for
RSF they tend to be lowly ranked.

 Methods Dataset PC1 PC4 PC10 PC13

SVM Train 5 17 2 6

SVM Test 4 5 2 1

RSF Train 12 11 3 15

RSF Test 6 2 10 1

TABLE 2: Rank of overlapping PCs from the top 20 PCs in
the training and testing set for both Rank Linear SVM and
RSF models.

3.3. Gene Set Enrichment Analysis

We finally look at the GSEA results. Here, we took the
top 20 genes from each PC mentioned in Table 2. This was
determined based on their loadings in the PC. We chose 20
genes as the threshold since the loadings tend to drop a lot
after the top 20 genes. This can be seen in Figure 14 in
Supplementary Section A.4. We can see the results in Fig-
ure 9 of the GSEA. From Figure 9a, it can be seen that the

genes chosen from PC1 seem to exhibit immune response
as well as extracellular matrix organization. Similarly, from
Figure 9b, for PC4, the genes exhibit extracellular matrix
organization process. From Figure 9c for PC10 and 9d for
PC13, the genes exhibit immune response and cell growth
process, and metabolic processes, respectively.

The processes exhibited by the genes above do have a
relationship with cancer in general. The extracellular matrix
organization process serves as a ’niche’ [53] for cancer
stem cells which then initiate tumors. It provides structural
support to regulate proliferation and also differentiation of
the cancer stem cells. The immune system response process
is something that is prevalent whenever one is suffering from
a disease. In cancer, damaged DNA cells produce tumor
antigens which signal to the immune system to target the
cancer cells to eliminate them [54]. Cancer occurs due to
cell proliferation which is also one of the processes that
seemed to be exhibited. Urothelial cancer cells need a shift
to glycolysis-dependent metabolism in order to proliferate, it
is the main energy source [55]. This process is also exhibited
by the genes in the PCs here.

(a) SVM

(b) RSF

Figure 8: Feature analysis plot for (a) SVM and (b) RSF showing the importance score (y-axis) of the PCs (x-axis) for both
the training (yellow) and testing set (blue). They are sorted by the importance in the testing set.

extracellular matrix organization (GO:0030198)

GO_Biological_Process_2018

antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent (GO:0002480)

regulation of immune response (GO:0050776)

antigen processing and presentation of peptide antigen via MHC class I (GO:0002474)

collagen fibril organization (GO:0030199)

protein complex subunit organization (GO:0071822)

interferon-gamma-mediated signaling pathway (GO:0060333)

hemidesmosome assembly (GO:0031581)

cell-substrate junction assembly (GO:0007044)

antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent (GO:0002479)

0 1 2

3 4 5 6

(a) PC1

epidermis development (GO:0008544)

-log10(Adjusted P-value)

GO_Biological_Process_2018

skin development (GO:0043588)

collagen fibril organization (GO:0030199)

protein complex subunit organization (GO:0071822)

leukocyte aggregation (GO:0070486)

hemidesmosome assembly (GO:0031581)

cell-substrate junction assembly (GO:0007044)

defense response to fungus (GO:0050832)

morphogenesis of an epithelium (GO:0002009)

skeletal system development (GO:0001501)

(b) PC3

0 1 2 3
-log10(Adjusted P-value)

defense response to fungus (GO:0050832)

GO_Biological_Process_2018

antimicrobial humoral immune response mediated by antimicrobial peptide (GO:0061844)

leukocyte aggregation (GO:0070486)

positive regulation of growth (GO:0045927)

neutrophil degranulation (GO:0043312)

neutrophil activation involved in immune response (GO:0002283)

neutrophil mediated immunity (GO:0002446)

positive regulation of cell growth (GO:0030307)

platelet degranulation (GO:0002576)

glycolytic process through glucose-6-phosphate (GO:0061620)

0 1 2 3 4

(c) PC9

daunorubicin metabolic process (GO:0044597)

-log10(Adjusted P-value)

GO_Biological_Process_2018

aminoglycoside antibiotic metabolic process (GO:0030647)

doxorubicin metabolic process (GO:0044598)

quinone metabolic process (GO:1901661)

progesterone metabolic process (GO:0042448)

prostanoid metabolic process (GO:0006692)

glycoside metabolic process (GO:0016137)

cellular response to hormone stimulus (GO:0032870)

C21-steroid hormone metabolic process (GO:0008207)

prostaglandin metabolic process (GO:0006693)

(d) PC12

0 1 2 3 4 5

-log10(Adjusted P-value)

Figure 9: GSEA plots for top 20 genes in each PC.

4. Conclusion

This study aimed to determine the generalizability and
explainability of machine learning survival analysis models
and to determine whether they can be explained under
the presence of collinearity. Overall, we can see that the
models do not generalize as well but do seem to show some
promise in the approach when it comes to their explain-
ability. They are able to detect genes that are expressed in
urothelial cancer, with one of them even being a prognostic
marker. Through the PCA analysis, we are able to deal with
collinearity, and the performance seems to be comparable
to the models that do not use the decomposed features. The
feature analysis with models using the PCA features also
gives us an insight into which kind of processes seem to be
important.

For future work, more regularization can be added. In
this study, grid search was performed, so the number of
parameter values that were exhausted was not that many.
Hence, with more regularization, overfitting may be avoided.
More data should be gathered as that would improve perfor-
mance (an instance of this can be seen in Figure 15 in Sec-
tion A.5) of the models. Increasing the number of iterations
for permutation feature importance, may also yield more
precise results. Also, other forms of model-agnostic feature
importance can be used, for instance, Shapley values.

5. Tools and Packages Used

Python 3.7 and Jupyter Notebook [56] were used for data
processing and running the analysis. The following libraries
were used (along with their function):

• Pandas (V. 1.2.3) [57]: data processing
• NumPy (V. 1.20.1) [58]: data processing
• Scikit-Survival (V. 0.14.0)n [26]: survival modeling
• Scikit-Learn (V. 0.24.2) [25]: hyperparameter tuning,

cross-validation, PCA
• Joblib (V. 1.0.1) [59]: parallelization
• Ray (V. 1.2.0) [60]: parallelization
• ELI5 (V. 0.11.0) [46]: feature analysis
• GSEAPY (V. 0.10.4) [48]: gene set enrichment anal-

ysis

• MyGen (V. 3.1.0) [22]: labeling unknown genes

References

[1] J. Emmerson and J. Brown, “Understanding survival analysis in
clinical trials,” Clinical Oncology, vol. 33, no. 1, pp. 12–14, Jan.
2021. [Online]. Available: https://doi.org/10.1016/j.clon.2020.07.014

[2] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram,
A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers
in 185 countries,” CA: A Cancer Journal for Clinicians,
vol. 71, no. 3, pp. 209–249, Feb. 2021. [Online]. Available:
https://doi.org/10.3322/caac.21660

[3] T. Hakulinen, K. Seppä, and P. C. Lambert, “Choosing the relative
survival method for cancer survival estimation,” European Journal
of Cancer, vol. 47, no. 14, pp. 2202–2210, Sep. 2011. [Online].
Available: https://doi.org/10.1016/j.ejca.2011.03.011

[4] O. S. Tătaru, M. D. Vartolomei, J. J. Rassweiler, O. Virgil,
G. Lucarelli, F. Porpiglia, D. Amparore, M. Manfredi, G. Carrieri,
U. Falagario, D. Terracciano, O. de Cobelli, G. M. Busetto, F. D.
Giudice, and M. Ferro, “Artificial intelligence and machine learning
in prostate cancer patient management—current trends and future
perspectives,” Diagnostics, vol. 11, no. 2, p. 354, Feb. 2021.
[Online]. Available: https://doi.org/10.3390/diagnostics11020354

[5] A. Abadi, P. Yavari, M. Arani, H. Alavi Majd, E. Ghasemi, F. Aman-
pour, and C. Bajdik, “Cox models survival analysis based on breast
cancer treatments,” Iranian journal of cancer prevention, vol. 7, pp.
124–9, 03 2014.

[6] I. K. Omurlu, M. Ture, and F. Tokatli, “The comparisons of
random survival forests and cox regression analysis with simulation
and an application related to breast cancer,” Expert Systems with
Applications, vol. 36, no. 4, pp. 8582–8588, May 2009. [Online].
Available: https://doi.org/10.1016/j.eswa.2008.10.023

[7] L. Cui, H. Li, W. Hui, S. Chen, L. Yang, Y. Kang, Q. Bo, and J. Feng,
“A deep learning-based framework for lung cancer survival analysis
with biomarker interpretation,” BMC Bioinformatics, vol. 21, no. 1,
Mar. 2020. [Online]. Available: https://doi.org/10.1186/s12859-020-
3431-z

[8] O. S. Tătaru, M. D. Vartolomei, J. J. Rassweiler, O. Virgil,
G. Lucarelli, F. Porpiglia, D. Amparore, M. Manfredi, G. Carrieri,
U. Falagario, D. Terracciano, O. de Cobelli, G. M. Busetto, F. D.
Giudice, and M. Ferro, “Artificial intelligence and machine learning
in prostate cancer patient management—current trends and future
perspectives,” Diagnostics, vol. 11, no. 2, p. 354, Feb. 2021.
[Online]. Available: https://doi.org/10.3390/diagnostics11020354

[9] M. Kolasa, R. Wojtyna, R. Długosz, and W. Jóźwicki, “Application
of artificial neural network to predict survival time for patients with
bladder cancer,” Advances in Soft Computing Computers in Medical
Activity, p. 113–122, 2009.

[10] A. Y. Abuhelwa, G. Kichenadasse, R. A. McKinnon, A. Rowland,
A. M. Hopkins, and M. J. Sorich, “Machine learning for prediction
of survival outcomes with immune-checkpoint inhibitors in urothelial
cancer,” Cancers, vol. 13, no. 9, p. 2001, Apr. 2021. [Online].
Available: https://doi.org/10.3390/cancers13092001

[11] W. N. van Wieringen, D. Kun, R. Hampel, and A.-L. Boulesteix,
“Survival prediction using gene expression data: A review
and comparison,” Computational Statistics & Data Analysis,
vol. 53, no. 5, pp. 1590–1603, Mar. 2009. [Online]. Available:
https://doi.org/10.1016/j.csda.2008.05.021

[12] A. N. Burska, K. Roget, M. Blits, L. S. Gomez, F. van de Loo,
L. D. Hazelwood, C. L. Verweij, A. Rowe, G. N. Goulielmos,
L. G. M. van Baarsen, and F. Ponchel, “Gene expression analysis
in RA: towards personalized medicine,” The Pharmacogenomics
Journal, vol. 14, no. 2, pp. 93–106, Mar. 2014. [Online]. Available:
https://doi.org/10.1038/tpj.2013.48

[13] C. Rudin and J. Radin, “Why are we using black box models
in AI when we don’t need to? a lesson from an explainable AI
competition,” 1.2, vol. 1, no. 2, Nov. 2019. [Online]. Available:
https://doi.org/10.1162/99608f92.5a8a3a3d

[14] U. Pawar, D. O'Shea, S. Rea, and R. O'Reilly, “Explainable
AI in healthcare,” in 2020 International Conference on
Cyber Situational Awareness, Data Analytics and Assess-
ment (CyberSA). IEEE, Jun. 2020. [Online]. Available:
https://doi.org/10.1109/cybersa49311.2020.9139655

[15] M. T. Ribeiro, S. Singh, and C. Guestrin, “Model-agnostic inter-
pretability of machine learning,” ArXiv, vol. abs/1606.05386, 2016.

[16] J. Klein, Survival analysis : techniques for censored and truncated
data. New York: Springer, 2003.

[17] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival
analysis: A survey,” vol. 51, no. 6, 2019. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1145/3214306

[18] E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer,
B. A. Aksoy, A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson,
Y. Antipin, B. Reva, A. P. Goldberg, C. Sander, and N. Schultz,
“The cBio cancer genomics portal: An open platform for
exploring multidimensional cancer genomics data: Figure 1.” Cancer
Discovery, vol. 2, no. 5, pp. 401–404, May 2012. [Online]. Available:
https://doi.org/10.1158/2159-8290.cd-12-0095

[19] J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O.
Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, and et al., “In-
tegrative analysis of complex cancer genomics and clinical profiles
using the cbioportal,” Science Signaling, vol. 6, no. 269, 2013.

[20] A. Kamoun, A. de Reyniès, Y. Allory, G. Sjödahl, A. G. Robertson,
R. Seiler, K. A. Hoadley, C. S. Groeneveld, H. Al-Ahmadie,
W. Choi, M. A. Castro, J. Fontugne, P. Eriksson, Q. Mo, J. Kardos,
A. Zlotta, A. Hartmann, C. P. Dinney, J. Bellmunt, T. Powles,
N. Malats, K. S. Chan, W. Y. Kim, D. J. McConkey, P. C. Black,
L. Dyrskjøt, M. Höglund, S. P. Lerner, F. X. Real, F. Radvanyi,
M. Aine, H. Al-Ahmadie, Y. Allory, J. Bellmunt, I. Bernard-Pierrot,
P. C. Black, M. A. Castro, K. S. Chan, W. Choi, B. Czerniak,
C. P. Dinney, L. Dyrskjøt, P. Eriksson, J. Fontugne, E. A. Gibb,
C. S. Groeneveld, A. Hartmann, K. A. Hoadley, M. Höglund,
A. Kamoun, J. Kardos, J. Kim, W. Y. Kim, D. J. Kwiatkowski,
T. Lebret, S. P. Lerner, F. Liedberg, N. Malats, D. J. McConkey,
Q. Mo, T. Powles, F. Radvanyi, F. X. Real, A. de Reyniès, A. G.
Robertson, A. Siefker-Radtke, N. Sirab, R. Seiler, G. Sjödahl,
A. Taber, J. Weinstein, and A. Zlotta, “A consensus molecular
classification of muscle-invasive bladder cancer,” European Urology,
vol. 77, no. 4, pp. 420–433, Apr. 2020. [Online]. Available:
https://doi.org/10.1016/j.eururo.2019.09.006

[21] A. G. Robertson, J. Kim, H. Al-Ahmadie, J. Bellmunt, G. Guo,
A. D. Cherniack, T. Hinoue, P. W. Laird, K. A. Hoadley, R. Akbani,
M. A. Castro, E. A. Gibb, R. S. Kanchi, D. A. Gordenin, S. A.
Shukla, F. Sanchez-Vega, D. E. Hansel, B. A. Czerniak, V. E. Reuter,
X. Su, B. de Sa Carvalho, V. S. Chagas, K. L. Mungall, S. Sadeghi,
C. S. Pedamallu, Y. Lu, L. J. Klimczak, J. Zhang, C. Choo, A. I.
Ojesina, S. Bullman, K. M. Leraas, T. M. Lichtenberg, C. J. Wu,

N. Schultz, G. Getz, M. Meyerson, G. B. Mills, D. J. McConkey,
J. N. Weinstein, D. J. Kwiatkowski, S. P. Lerner, R. Akbani,
H. Al-Ahmadie, M. Albert, I. Alexopoulou, A. Ally, T. Antic,
M. Aron, M. Balasundaram, J. Bartlett, S. B. Baylin, A. Beaver,
J. Bellmunt, I. Birol, L. Boice, M. S. Bootwalla, J. Bowen,
R. Bowlby, D. Brooks, B. M. Broom, W. Bshara, S. Bullman,
E. Burks, F. M. Cárcano, R. Carlsen, B. S. Carvalho, A. L. Carvalho,
E. P. Castle, M. A. Castro, P. Castro, J. W. Catto, V. S. Chagas,
A. D. Cherniack, D. W. Chesla, C. Choo, E. Chuah, S. Chudamani,
V. K. Cortessis, S. L. Cottingham, D. Crain, E. Curley, B. A.
Czerniak, S. Daneshmand, J. A. Demchok, N. Dhalla, H. Djaladat,
J. Eckman, S. C. Egea, J. Engel, I. Felau, M. L. Ferguson,
J. Gardner, J. M. Gastier-Foster, M. Gerken, G. Getz, E. A. Gibb,
C. R. Gomez-Fernandez, D. A. Gordenin, G. Guo, D. E. Hansel,
J. Harr, A. Hartmann, L. M. Herbert, T. Hinoue, T. H. Ho, K. A.
Hoadley, R. A. Holt, C. M. Hutter, S. J. Jones, M. Jorda, R. J.
Kahnoski, R. S. Kanchi, K. Kasaian, J. Kim, L. J. Klimczak,
D. J. Kwiatkowski, P. H. Lai, P. W. Laird, B. R. Lane, K. M.
Leraas, S. P. Lerner, T. M. Lichtenberg, J. Liu, L. Lolla, Y. Lotan,

Y. Lu, F. R. Lucchesi, Y. Ma, R. D. Machado, D. T. Maglinte,
D. Mallery, M. A. Marra, S. E. Martin, M. Mayo, D. J. McConkey,
A. Meraney, M. Meyerson, G. B. Mills, A. Moinzadeh, R. A.
Moore, E. M. M. Pinero, S. Morris, C. Morrison, K. L. Mungall,
A. J. Mungall, J. B. Myers, R. Naresh, P. H. O'Donnell, A. I.
Ojesina, D. J. Parekh, J. Parfitt, J. D. Paulauskis, C. S. Pedamallu,
R. J. Penny, T. Pihl, S. Porten, M. E. Quintero-Aguilo, N. C.
Ramirez, W. K. Rathmell, V. E. Reuter, K. Rieger-Christ, A. G.
Robertson, S. Sadeghi, C. Saller, A. Salner, F. Sanchez-Vega,
G. Sandusky, C. Scapulatempo-Neto, J. E. Schein, A. K. Schuckman,
N. Schultz, C. Shelton, T. Shelton, S. A. Shukla, J. Simko, P. Singh,
P. Sipahimalani, N. D. Smith, H. J. Sofia, A. Sorcini, M. L. Stanton,
G. D. Steinberg, R. Stoehr, X. Su, T. Sullivan, Q. Sun, A. Tam,
R. Tarnuzzer, K. Tarvin, H. Taubert, N. Thiessen, L. Thorne, K. Tse,
K. Tucker, D. J. V. D. Berg, K. E. van Kessel, S. Wach, Y. Wan,

Z. Wang, J. N. Weinstein, D. J. Weisenberger, L. Wise, T. Wong,
Y. Wu, C. J. Wu, L. Yang, L. A. Zach, J. C. Zenklusen, J. J.
Zhang, J. Zhang, E. Zmuda, and E. C. Zwarthoff, “Comprehensive
molecular characterization of muscle-invasive bladder cancer,” Cell,
vol. 171, no. 3, pp. 540–556.e25, Oct. 2017. [Online]. Available:
https://doi.org/10.1016/j.cell.2017.09.007

[22] “mygene.” [Online]. Available: https://pypi.org/project/mygene/

[23] M. D. Luecken and F. J. Theis, “Current best practices in single-
cell RNA-seq analysis: a tutorial,” Molecular Systems Biology, vol.
15, no. 6, Jun. 2019. [Online]. Available:
https://doi.org/10.15252/msb.20188746

[24] S. Fotouhi, S. Asadi, and M. W. Kattan, “A comprehensive data
level analysis for cancer diagnosis on imbalanced data,” Journal of
Biomedical Informatics, vol. 90, p. 103089, Feb. 2019. [Online].
Available: https://doi.org/10.1016/j.jbi.2018.12.003

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] S. Pölsterl, “scikit-survival: A library for time-to-event analysis
built on top of scikit-learn,” Journal of Machine Learning
Research, vol. 21, no. 212, pp. 1–6, 2020. [Online]. Available:
http://jmlr.org/papers/v21/20-729.html

[27] D. R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 34, no. 2, pp. 187–
202, jan 1972.

[28] C. M. Bishop, Pattern recognition and machine learning. Springer,
2016.

[29] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society. Series
B (Statistical Methodology), vol. 67, no. 2, pp. 301–320, 2005.
[Online]. Available: http://www.jstor.org/stable/3647580

[30] J. R. LESKOVEC, MINING OF MASSIVE DATA SETS. CAM-
BRIDGE UNIV PRESS, 2020.

[31] S. Goli, H. Mahjub, J. Faradmal, H. Mashayekhi, and A.-R.
Soltanian, “Survival prediction and feature selection in patients with
breast cancer using support vector regression,” Computational and
Mathematical Methods in Medicine, vol. 2016, pp. 1–12, 2016.
[Online]. Available: https://doi.org/10.1155/2016/2157984

[32] V. Van Belle, K. Pelckmans, J. Suykens, and S. Van Huffel, “Support
vector machines for survival analysis,” in Proceedings of the Third
International Conference on Computational Intelligence in Medicine
and Healthcare (CIMED2007), 2007, pp. 1–8.

[33] V. V. Belle, K. Pelckmans, S. V. Huffel, and J. A. Suykens, “Support
vector methods for survival analysis: a comparison between ranking
and regression approaches,” Artificial Intelligence in Medicine,
vol. 53, no. 2, pp. 107–118, Oct. 2011. [Online]. Available:
https://doi.org/10.1016/j.artmed.2011.06.006

[34] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, M. S. Lauer et al.,
“Random survival forests,” The annals of applied statistics, vol. 2,
no. 3, pp. 841–860, 2008.

[35] I. K. Omurlu, M. Ture, and F. Tokatli, “The comparisons of
random survival forests and cox regression analysis with simulation
and an application related to breast cancer,” Expert Systems with
Applications, vol. 36, no. 4, pp. 8582–8588, May 2009. [Online].
Available: https://doi.org/10.1016/j.eswa.2008.10.023

[36] C. Kartsonaki, “Survival analysis,” Diagnostic Histopathology,
vol. 22, no. 7, pp. 263–270, Jul. 2016. [Online]. Available:
https://doi.org/10.1016/j.mpdhp.2016.06.005

[37] Sukhleen Kaur, “Survey: Latest machine learning tech-
niques for survival analysis,” 2020. [Online]. Available:
http://rgdoi.net/10.13140/RG.2.2.35710.10568

[38] G. Ridgeway, “The state of boosting,” 1999.

http://jmlr.org/papers/v21/20-729.html
http://www.jstor.org/stable/3647580
http://rgdoi.net/10.13140/RG.2.2.35710.10568

[39] ——, “The state of boosting,” 1999.

[40] M. Bai, Y. Zheng, and Y. Shen, “Gradient boosting survival tree
with applications in credit scoring,” Journal of the Operational
Research Society, pp. 1–17, Jun. 2021. [Online]. Available:
https://doi.org/10.1080/01605682.2021.1919035

[41] J. Harrell, Frank E., R. M. Califf, D. B. Pryor, K. L. Lee, and
R. A. Rosati, “Evaluating the Yield of Medical Tests,” JAMA,
vol. 247, no. 18, pp. 2543–2546, 05 1982. [Online]. Available:
https://doi.org/10.1001/jama.1982.03320430047030

[42] K. Tay, “What is harrell’s c-index?” Oct 2019. [Online]. Avail-
able: https://statisticaloddsandends.wordpress.com/2019/10/26/what-
is-harrells-c-index/

[43] M. Schmid, M. N. Wright, and A. Ziegler, “On the use of harrell’s
c for clinical risk prediction via random survival forests,” Expert
Systems with Applications, vol. 63, pp. 450–459, nov 2016.

[44] A. J. Fisher, C. Rudin, and F. Dominici, “All models are wrong, but
many are useful: Learning a variable’s importance by studying an
entire class of prediction models simultaneously,” J. Mach. Learn.
Res., vol. 20, pp. 177:1–177:81, 2019.

[45] C. Molnar, Interpretable machine learning: a guide for making black
box models explainable. Leanpub, 2020.

[46] “Eli5.” [Online]. Available:
https://eli5.readthedocs.io/en/latest/overview.html

[47] “Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15 545–15 550, 2005. [Online]. Available:
http://www.jstor.org/stable/4143472

[48] “Gseapy.” [Online]. Available:
https://gseapy.readthedocs.io/en/latest/introduction.html

[49] “Gene ontology: tool for the unification of biology,” Nature
Genetics, vol. 25, no. 1, pp. 25–29, May 2000. [Online]. Available:
https://doi.org/10.1038/75556

[50] and Seth Carbon, E. Douglass, B. M. Good, D. R. Unni, N. L. Harris,
C. J. Mungall, S. Basu, R. L. Chisholm, R. J. Dodson, E. Hartline,
P. Fey, P. D. Thomas, L.-P. Albou, D. Ebert, M. J. Kesling, H. Mi,
A. Muruganujan, X. Huang, T. Mushayahama, S. A. LaBonte, D. A.
Siegele, G. Antonazzo, H. Attrill, N. H. Brown, P. Garapati, S. J.
Marygold, V. Trovisco, G. dos Santos, K. Falls, C. Tabone, P. Zhou,
J. L. Goodman, V. B. Strelets, J. Thurmond, P. Garmiri, R. Ishtiaq,
M. Rodrı́guez-López, M. L. Acencio, M. Kuiper, A. Lægreid,
C. Logie, R. C. Lovering, B. Kramarz, S. C. C. Saverimuttu,
S. M. Pinheiro, H. Gunn, R. Su, K. E. Thurlow, M. Chibucos,
M. Giglio, S. Nadendla, J. Munro, R. Jackson, M. J. Duesbury,
N. Del-Toro, B. H. M. Meldal, K. Paneerselvam, L. Perfetto,
P. Porras, S. Orchard, A. Shrivastava, H.-Y. Chang, R. D. Finn,
A. L. Mitchell, N. D. Rawlings, L. Richardson, A. Sangrador-Vegas,
J. A. Blake, K. R. Christie, M. E. Dolan, H. J. Drabkin, D. P. Hill,
L. Ni, D. M. Sitnikov, M. A. Harris, S. G. Oliver, K. Rutherford,
V. Wood, J. Hayles, J. Bähler, E. R. Bolton, J. L. D. Pons, M. R.
Dwinell, G. T. Hayman, M. L. Kaldunski, A. E. Kwitek, S. J. F.
Laulederkind, C. Plasterer, M. A. Tutaj, M. Vedi, S.-J. Wang,
P. D’Eustachio, L. Matthews, J. P. Balhoff, S. A. Aleksander, M. J.
Alexander, J. M. Cherry, S. R. Engel, F. Gondwe, K. Karra, S. R.
Miyasato, R. S. Nash, M. Simison, M. S. Skrzypek, S. Weng,
E. D. Wong, M. Feuermann, P. Gaudet, A. Morgat, E. Bakker,
T. Z. Berardini, L. Reiser, S. Subramaniam, E. Huala, C. N. Arighi,
A. Auchincloss, K. Axelsen, G. Argoud-Puy, A. Bateman, M.-C.
Blatter, E. Boutet, E. Bowler, L. Breuza, A. Bridge, R. Britto,
H. Bye-A-Jee, C. C. Casas, E. Coudert, P. Denny, A. Estreicher,
M. L. Famiglietti, G. Georghiou, A. Gos, N. Gruaz-Gumowski,
E. Hatton-Ellis, C. Hulo, A. Ignatchenko, F. Jungo, K. Laiho,
P. L. Mercier, D. Lieberherr, A. Lock, Y. Lussi, A. MacDougall,
M. Magrane, M. J. Martin, P. Masson, D. A. Natale, N. Hyka-
Nouspikel, S. Orchard, I. Pedruzzi, L. Pourcel, S. Poux, S. Pundir,
C. Rivoire, E. Speretta, S. Sundaram, N. Tyagi, K. Warner, R. Zaru,

C. H. Wu, A. D. Diehl, J. N. Chan, C. Grove, R. Y. N. Lee, H.-M.
Muller, D. Raciti, K. V. Auken, P. W. Sternberg, M. Berriman,
M. Paulini, K. Howe, S. Gao, A. Wright, L. Stein, D. G. Howe,
S. Toro, M. Westerfield, P. Jaiswal, L. Cooper, and J. Elser, “The
gene ontology resource: enriching a GOld mine,” Nucleic Acids
Research, vol. 49, no. D1, pp. D325–D334, Dec. 2020. [Online].
Available: https://doi.org/10.1093/nar/gkaa1113

[51] G. Paris, D. Robilliard, and C. Fonlupt, “Exploring overfitting in
genetic programming,” in Artificial Evolution, P. Liardet, P. Collet,
C. Fonlupt, E. Lutton, and M. Schoenauer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 267–277.

[52] “The human protein atlas.” [Online]. Available:
https://www.proteinatlas.org/

[53] S. Nallanthighal, J. P. Heiserman, and D.-J. Cheon, “The role
of the extracellular matrix in cancer stemness,” Frontiers in Cell
and Developmental Biology, vol. 7, Jul. 2019. [Online]. Available:
https://doi.org/10.3389/fcell.2019.00086

[54] C. Australia, “The immune system and cancer,” Dec
2014. [Online]. Available: https://www.edcan.org.au/edcan-
learning-resources/supporting-resources/biology-of-cancer/defining-
cancer/immune-system

[55] F. Massari, C. Ciccarese, M. Santoni, R. Iacovelli, R. Mazzucchelli,
F. Piva, M. Scarpelli, R. Berardi, G. Tortora, A. Lopez-Beltran,
L. Cheng, and R. Montironi, “Metabolic phenotype of bladder
cancer,” Cancer Treatment Reviews, vol. 45, pp. 46–57, Apr. 2016.
[Online]. Available: https://doi.org/10.1016/j.ctrv.2016.03.005

[56] “Jupyter.” [Online]. Available: https://jupyter.org/

[57] J. R. W. M. jbrockmendel; Joris Van den Bossche; Tom
Augspurger; Phillip Cloud; gfyoung; Sinhrks; Adam Klein;
Matthew Roeschke; Simon Hawkins; Jeff Tratner; Chang She;
William Ayd; Terji Petersen; Marc Garcia; Jeremy Schendel;
Andy Hayden; MomIsBestFriend; Vytautas Jancauskas; Pietro
Battiston; Skipper Seabold; chris-b1; h-vetinari; Stephan Hoyer;
Wouter Overmeire; alimcmaster1; Kaiqi Dong; Christopher Whelan;
Mortada Mehyar, “pandas-dev/pandas: Pandas,” Feb. 2020. [Online].

Available: https://doi.org/10.5281/zenodo.3509134

[58] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[59] [Online]. Available: https://joblib.readthedocs.io/en/latest/

[60] “Ray v1.4.1.” [Online]. Available:
https://docs.ray.io/en/master/joblib.html

http://www.jstor.org/stable/4143472
http://www.proteinatlas.org/
http://www.edcan.org.au/edcan-

Appendix A.

Supplementary Material

A.1. Training on Cohort 1 and Testing on Cohort 2

In Figure 10 we can see the results of the models when they were trained on samples from cohort 1. In Figure 11 we
can see the performance of the models in the testing set. Figure 11a shows the performance of the models when tested on
samples from cohort 1 and Figure 11b shows the performance of the models when tested on samples from cohort 2. All
the non-linear models and the Coxnet model tend to overfit. Rank Linear SVM is less susceptible to overfitting. Looking
at Figure 10 and Figure 11 we can see that Rank Linear SVM and RSF tend to perform the best.

Figure 10: Performance (vertical axis) of all the models in the training set which are 10 fold cross validated (horizontal
axis). Left shows the performance on the training folds and right shows the performance on the validation folds.

(a) Test scores on cohort 1. (b) Test scores on cohort 2.

Figure 11: Performance (vertical axis) of all the models (horizontal axis) on the testing set.

A.2. Hyperparameter Tuning

Figure 12: Table showing range of the values used for hyperparameter tuning. The bolded values are the values that were
chosen as the best estimators.

For the analysis with PCA, the models were trained again using the PCA features and hence the hyper-parameters were
tuned again. Table 3 shows the values of the best models. The range of parameters is the same as in Figure 12.

Model Parameter Value

RSF max_features log2
 min_samples_leaf 5
 min_samples_split 2

 n_estimators 1500

Rank Linear SVM alpha 0.01

 max_iter 10000

TABLE 3: Hyper-parameter values of the models trained using PCA.

Model Parameter Default Value

Rank Linear SVM rank_ratio 1.0
 fit_intercept False

 optimizer avltree

Kernel Linear SVM rank_ratio 1.0
 fit_intercept False

 optimizer rbtree

Coxnet alpha_min_ratio auto
 normalize False
 copy_X True
 tol 0.00000001
 max_iter 100000

 fit_baseline_model False

RSF max_depth None
 min_weight_fraction_leaf 0
 max_leaf_nodes None
 bootstrap True

 n_jobs None

GBoost loss coxph
 n_estimatore 100
 criterion friedman mse
 min_samples_split 2
 min_samples_leaf 2
 min_weight_fraction_leaf 0.0
 max_depth 3
 max_features None
 max_leaf_nodes None
 subsample 1.0

 ccp_alpha 0.0

TABLE 4: Hyper-parameter with their default values.

A.3. Principal Component Analysis (PCA) for Multi-collinearity

Figure 13 shows the selection of the number of PCs to decompose our feature variables to. We chose 71 PCs as it is
able to explain 90% of the variance.

Figure 13: Cumulative sum of explained variance on the vertical axis and the number of components on the horizontal axis.
The red dashed line indicate that 90% of the variance is explained using 71 PCs.

A.4. Threshold for Number of Genes to Select for GSEA

Figure 14 shows how the loadings change for each PC with increasing number of genes. There is a drop till 20 genes
after which they all tend towards zero.

Figure 14: Loadings for each of the PCs on the vertical axis and the number of genes on horizontal axis. The red dashed
line represents the number of genes to use for the GSEA analysis − 20 genes.

A.5. Effect of Adding More Samples to Training Set

Figure 15 shows the effect of adding more samples to the training data. Excluding Kernel SVM which again performs
completely at random, we can see here that the mean performance increases overall (except for Coxnet) while the variance
decreases for all of the models. This indicates that increasing sample size would increase overall performance. We may not
the see the same effect for Coxnet model since it may be more sensitive to differences between the two cohorts.

Figure 15: Performance (vertical axis) of all the models (horizontal axis) on the training set. The non-shaded regions indicate
the models trained on cohort 1 and the shaded regions indicate the models trained on the combined dataset.

