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With the need for immediate mitigation strategies to minimize 
the negative impacts of climate change, the transition to renewable 
energy sources is crucial. Hydrogen is recognized as a promising 
energy carrier for decarbonization, and water electrolyzers can 
produce clean hydrogen using excess electrical energy from 
renewable sources. However, the high current density operation 
required for higher production rates produces a large amount of 
gas near the electrodes, leading to multiphase � ow hydrodynamics 
in electrochemical devices. � is thesis aims to provide analytical 
models for the multiphase hydrodynamics in electrochemical 
cells. � ese relations can be used to optimize their design for 
e�  cient hydrogen production.
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2 1. INTRODUCTION

1.1. SOCIETAL RELEVANCE
As per Intergovernmental Panel on Climate Change [1], the rise in global mean surface
temperature (GMST) beyond 1.5° C from pre-industrial (1850 AD-1900 AD) level has as-
sociated impacts such as increased frequency of heatwaves, increased intensity of heavy
precipitation events and droughts, and rise in sea level. This will severely impact health,
food security, economic growth, and overall loss of biodiversity. Due to the rapid in-
dustrialization and human activities, the emissions of greenhouse gases have already
increased the GMST by approximately 1.3° C (https://globalwarmingindex.org/)
compared to the pre-industrial revolution level, see Fig. 1.1 reproduced from http://
www.columbia.edu/~mhs119/Temperature/, using the monthly updates of global tem-
perature. If the current unconstrained rise (≈ 0.18° per decade) in GMST continues, a 1.5°
increase in GMST could occur before 2040. Therefore, immediate mitigation strategies
are needed at multiple frontiers to minimize the negative impacts of climate change.

12 month running average
132 month running average
January-December average
Linear Fit, 1970-2015 (0.18°C/decade)
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Figure 1.1: Evolution of global mean surface temperature over time relative to 1880-1920 average showing a
rapid and sustained increase post the industrial revolution. Figure reproduced from the monthly updates of
global temperature on http://www.columbia.edu/~mhs119/Temperature/

At the heart of these mitigation strategies lies the transition from non-renewable fos-
sil fuel energy resources to renewable energy resources such as wind and solar. These
energy sources are intermittent and unevenly distributed across the earth. However,
the demand for energy is relatively constant. As such, we require large-scale energy
storage solutions to make renewable energy a viable alternative to non-renewable en-
ergy sources. The role of hydrogen in energy transition has been recognized across the
globe [2–4]. It is arguably well-placed as a promising energy carrier and is expected to
play a crucial role in decarbonization through its use as industrial feedstock [5] and sec-
ondary energy source. The global demand for hydrogen is projected to increase seven-
fold from 70 million metric tonnes in 2019 to more than 500 million metric tonnes in
2070 in the sustainable development scenario [6]. Therefore, it is critical that hydrogen
production and its use is clean, sustainable, and economical.
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One of the existing ways of producing clean hydrogen is using water electrolyzers.
Water electrolzyers can use electrical energy from renewable sources and split water into
hydrogen and oxygen. The produced hydrogen can be used later to generate electricity
using fuel cells or as an industrial feedstock to produce useful chemicals such as ammo-
nia and hydrogen peroxide. Water electrolysis accounts for only 4% of the total hydrogen
production [7, 8]. However, decreasing capital cost, increasing production rate and ef-
ficiency, decreasing cost of renewable electricity, and increasing carbon taxes will help
water electrolyzers gain a competitive advantage over less sustainable hydrogen produc-
tion processes. In the sustainable development scenario, more than half of the hydrogen
is expected to be produced through electrolysis [8], see Fig. 1.2.

800
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hydrogen (right axis)

Fossil w/o CCUS

Refining CNR
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Electricity

Mt H2/year

2019 2030 2040 2050 2060 2070

Figure 1.2: Global hydrogen production by technology in Sustainable Development scenario of International
Energy Agency. Figure taken from the report on Energy Technology Perspectives, 2020 [8].

While the electrolyzer technology is not new, research efforts are ongoing to im-
prove it further. From an electrochemical point of view, researchers are looking for more
durable, cheaper, and better catalysts through morphology control and doping [9–14].
Emphasis on the scale-up of electrochemical cells has led to fundamental research in
gas evolution near the electrodes and resulting multiphase hydrodynamics inside such
devices.

High current density operation of electrochemical cells, required for higher produc-
tion rate, inevitably produces a large amount of gas near the electrodes. Due to the in-
creased amount of gas and usually low solubility of gases in liquid electrolytes, gas bub-
bles are formed leading to multiphase flow hydrodynamics in the electrochemical de-
vices. Due to the low conductivity of the gas bubbles, the ohmic resistance of the whole
cell may increase. The evolved gas bubbles may also block a part of the reactive surface
area of the electrode, further increasing the losses in the electrochemical cell. Therefore,
the performance of an electrochemical device is closely linked to its multiphase hydro-
dynamics.
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1.2. MULTIPHASE FLOW IN ELECTROCHEMICAL CELLS
Different types of multiphase flow can occur in an electrochemical cell depending on its
configuration. We will briefly discuss the relevant configuration for this work. Conven-
tional proton exchange membrane (PEM) fuel cells and electrolyzers have a membrane
electrode assembly (MEA) consisting of a diffusion layer, catalyst layer, and a membrane
as shown in Fig. 1.3. Darcy flow may occur in the porous diffusion layer in electrochem-
ical cell configurations, where the gas and liquid move through very small pores due to
the capillary pressure gradient. The capillary pressure depends on the relative saturation
of the two phases and the pore structure of the diffusion layer. While many researchers
have studied the transport of gases and liquids in porous diffusion layers through nu-
merical simulations and experiments, very few attempts have been made to study such
flows analytically.
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Gas diffusion layer Gas diffusion layer

Anode MEA Cathode MEA

2 H2O O2 + 4 H+ + 4 e– 2 H+ + 2 e– H2

Figure 1.3: Schematic of a Membrane electrode assembly commonly used in PEM/AEM fuel cells and electrol-
ysis. The reaction shown at the bottom is for PEM electrolysis.

Another configuration where Darcy flow may occur is porous flow through electrodes
recently proposed for membraneless electrolysis operation. Membraneless flow through
electrolyzer uses flow to avoid gases crossing over to the opposing electrodes, as shown
in Fig. 1.4. This has the advantage that costs, resistance and potential degradation as-
sociated with the membrane or a separator are not present. However, the geometrical
design parameters such as electrode thickness, height, gap thickness, and pore size may
directly affect the pumping power for the required flow rate. The current design of the
membraneless electrolyzer is mostly influenced by previous experimental studies, and
an analytical understanding of the design is limited.

Membraneless electrochemical cells can operate in another configuration with par-
allel plate electrodes, as shown in Fig. 1.5. In such electrolyzers, the gas evolves as dis-
persed bubbles at both electrodes and moves in a plume that grows in thickness along
the height of the electrode. The gas plume may set the liquid electrolyte in motion due to
buoyancy. Many researchers in the past have studied this configuration, mostly with the
help of experiments and numerical simulations. A few attempts have also been made to
understand the multiphase flow in such a configuration. However, a simple analytical
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closed
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flow
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Figure 1.4: A schematic view of flow-through configuration considered with, inside the porous electrodes, flow
parallel to the current, outwards from the gap, through the electrodes. The liquid pushes the gas bubbles to
the backside of the electrodes [15].

relation for the maximum allowable height for a given electrode gap and current density
is still missing from the literature. Such a design equation would be very helpful in the
initial design estimates for electrochemical cells.

Electrolyte
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Figure 1.5: A schematic view of membraneless parallel plate electrolyzer. The bubbles are generated on the
electrode surface and move inside the inter/electrode gap. The flow, either forced or buoyancy/driven, is used
to separate the two gases. The shaded region represents the gas plume
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The gas bubble plumes are also relevant for another potentially useful configuration
of a zero-gap electrochemical cell, as shown in Fig. 1.6. The two electrodes are brought
very close to the membrane or a separator in a zero-gap electrochemical cell. This results
in a much shorter distance between the electrolyte, leading to a smaller ohmic resistance
of the electrolyte. As there is little or no space between the electrodes and the separator,
the gas is released at the back of the electrode, forming a gas plume in the channel be-
hind the electrodes. A similar configuration is also relevant for traditional alkaline water
electrolyzers where a single gas plume is formed between the electrode and the mem-
brane. Analytical characterization of the gas plumes in such configurations is required
before establishing analytical design principles.

O2 H2

Anode Cathode

E
le

ct
ro

ly
te

E
le

ct
ro

ly
te

Separator/Membrane

Water in Water in

Figure 1.6: A schematic representation of the zero-gap electrolyzer. The gas is generated on the back side of
the electrode. The gas bubbles rise due to buoyancy and induce a buoyancy-driven electrolyte flow in the
chamber. The chamber is replenished with water from the bottom of the electrolyte chamber.

1.3. THIS THESIS

The primary objective of this work is to provide new analytical models to support the
theoretical understanding of multiphase flows in various electrochemical systems. Most
of the previous works in this field use either experiments or numerical simulations to
understand the hydrodynamics of the multiphase flows. In this thesis, various new an-
alytical models are derived for different cell configurations discussed in section 1.2 and
new design equations are provided that can be readily used as a first estimate for a new
electrochemical cell. The novelty of this work lies in providing new analytical approaches
to develop a theoretical understanding of electrochemical cells.

RESEARCH QUESTIONS AND OUTLINE
In particular, this thesis answers the following specific research questions in the subse-
quent chapters:
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CHAPTER 2
"How does multiphase flow influence the limiting current in a gas diffusion layer?"

To answer this question, a new analytical framework in 1-D based on visco-capillary
equations is provided that provides simple relations for liquid saturation, effective dif-
fusivity, and limiting current density taking into account the pore size distribution of a
porous diffusion layer.

CHAPTER 3
"What is the minimum velocity required to operate a membraneless flow-through elec-
trolyzer effectively?"

A relation for the minimum required velocity that avoids bubbles entering the gap is
derived using the visco-capillary equations to answer this question.

CHAPTER 4
"What is the maximum height of a parallel plate electrolyzer without a separator at a
given operating condition using only buoyancy-driven flow?"

Using a mixture model formulation, a simplified semi-analytical framework is pro-
posed for multiphase flow in a parallel plate electrolyzer without a separator. This frame-
work provides simple relations for electrode surface gas fraction, pressure drop, and the
maximum height of the electrolyzer.

CHAPTER 5
"How does the gas plume thickness, electrode surface gas fraction, peak liquid velocity and
flow rate scale with the height and current density of the electrolyzer?"

First, a certain velocity profile and gas fraction profile are assumed based on numer-
ical simulations. Using these profiles in the mixture model equations and integrating
them over the control volume, scaling laws are derived for the useful quantities listed in
the research question.

CHAPTER 6
This chapter summarizes the key findings of this thesis, addresses their limitations, and
proposes future research outlook based on the insights gained from this thesis.





2
AN ANALYTICAL MODEL FOR

LIQUID AND GAS DIFFUSION

LAYERS IN ELECTROLYZERS AND

FUEL CELLS

The diffusion layer is a crucial part of most fuel cells and electrolyzers. We analytically
solve a simplified set of visco-capillary equations for the gas and liquid saturation profiles
inside such layers. Contrary to existing numerical simulations, this approach allows us
to obtain general scaling relations. We derive simple explicit equations for the limiting
current density associated with reactant starvation, flooding, and membrane dehydra-
tion, including the effect of fluid properties, contact angle, tortuosity, and the pore size
distribution. A more even pore size distribution generally allows higher currents. Explicit
expressions for the minimum pore size and maximum layer thickness show that modern
diffusion layers are typically well-designed.

This chapter has been published in Journal of the Electrochemical Society [16].

9
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Figure 2.1: Illustrative profiles of s, pn , and pw throughout a diffusion layer. The wetting-phase saturation
s is the volume fraction of the wetting phase reactant Rw relative to the total fluid volume. It runs between
s0 at x = 0 at the channel-DL interface and s1 at x = L at the DL-CL interface. The difference between the
non-wetting phase pressure pn and wetting phase pressure pw is the capillary pressure pc . The wetting and
non-wetting phases moves with a superficial velocity Uw and Un to the left and right, respectively. As a result
the capillary pressure always increases and the saturation always decreases in the direction of x̄.

2.1. INTRODUCTION
Increased awareness of greenhouse gases has prompted accelerated efforts for switching
to renewable and cleaner sources of energy. Primary renewable energy sources like solar
and wind have intermittent supply and hence require energy storage [17]. Hydrogen
is an attractive energy carrier that can be obtained sustainably through electrolysis of
water [18] and converted back to electricity using fuel cells [19, 20].

Fuel cells (FC) and water electrolyzers (WE) generally consists of a membrane elec-
trode assembly (MEA) comprising a diffusion layer (DL), catalyst layer (CL), and a mem-
brane, as shown in Fig. 2.1. The membrane is often a polymer electrolyte membrane
(PEM) that transports cations, like protons, or an anion exchange membrane (AEM) that
transports anions, like hydroxyl ions. The membrane serves to separate the reactants
and the products formed at the two electrodes. The diffusion layer facilitates the trans-
port of reactants and products to and from the catalyst layer. It provides an electrical
connection between the catalyst layer and the current collector and provides the me-
chanical strength to allow high-pressure operation. Simultaneously, reaction products
should be able to leave through the diffusion layer, while reactants move in the oppo-
site direction to the catalyst layer. Therefore in the case of gaseous reactants and liquid
products, as in a hydrogen fuel cell, for example, a hydrophobic gas diffusion layer (GDL)
is used. The hydrophobicity makes the reactant gases the wetting phase, facilitating the
transport of gases into the system. For the same reason, a hydrophilic diffusion layer
is used in, for example, water electrolyzers, where water is the wetting phase. Refer-
ence [21] illustrates an exception where a hydrophobic layer is used to obtain bubble-
free alkaline water electrolyzer operation, which requires water to be supplied from the
opposite direction.

Figure 2.1 shows the transport of the wetting and non-wetting phases across the dif-
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fusion layer.
For PEM/AEM water electrolyzers and hydrogen fuel cells, the half-reactions in which

liquid and gas phases move in opposite directions, are written as:

PEM: 2 H2O
Electrolyzer

Fuel Cell
O2 + 4 H+ + 4 e–,

AEM: 2 H2O + 2 e– Electrolyzer

Fuel Cell
H2 + 2 OH–.

(2.1)

In both fuel cells and water electrolyzers, water management is crucial. In water
electrolyzers, water is the reactant and water starvation should be avoided [22, 23]. Ac-
cumulation of oxygen in the anode catalyst layer is often held responsible for observed
mass transport losses [24] although the origin is still very much under debate [25] and
various, arguably less convincing hypotheses, have recently been proposed [26, 27].

In hydrogen fuel cells, too much product water can flood the diffusion layer, pre-
venting the reactant gases from reaching the catalyst layer [28]. On the other hand, some
water needs to be present to hydrate the membrane sufficiently for it to remain well con-
ducting.

Various studies [29–33] provide models and insights, focusing on a single applica-
tion. Here, we highlight the similarities in transport between different applications in
which gases and liquids move in opposite directions. This is relevant for a wide range of
applications including AEM/PEM hydrogen fuel cells [34–36], water electrolyzers (WE)
[37, 38], direct alcohol fuel cells [39] like direct methanol fuel cells (DMFC) [40, 41] and
direct ethanol fuel cells (DEFC) [42, 43], alkaline anion exchange membrane (AAEM) fuel
cells [44], and CO2 gas diffusion electrodes (CO2-GDE) [45–48].

We assume that in the diffusion layer no phase change occurs, which is a good ap-
proximation when a gaseous phase enters fully saturated. This allows us to provide ex-
plicit formulas that would enable engineering estimates, provide useful insight into the
relevant parameters and their scalings, can be used for analytical optimization, and in
real-time energy management systems.

We first introduce the model equations and their approximate analytical solutions.
We define and provide expressions for the limiting current density and overpotentials
associated with the diffusion layer. We discuss the accuracy of the analytical model
by comparing with numerical solutions and, finally, summarize the key insights gained
from the model.

2.2. MATHEMATICAL MODEL

2.2.1. MODEL EQUATIONS
Using a multiphase Darcy model [49–52] in 1-D, we write the pressure gradient of a phase
i as:

d pi

d x
=−µiUi

K ki
, (2.2)

where the phase index i = w,n denotes either the wetting or non-wetting phase, Ui is the
x-component of the superficial velocity, which can be both positive or negative, µi is the
dynamic viscosity, ki is the relative permeability, and K is the absolute permeability.
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Figure 2.2: Capillary pressure curves for different pore size distribution index λ for pt = 10 kPa. The dashed

lines show the linearization pc = pt
1+λ−s

λ
near s = 1 for the two different values of λ.

The above equation assumes that both phases independently obey the Darcy law,
i.e., there is no mutual friction between the two phases. This is generally true in the case
of fuel cells and electrolyzers where the reactant and products are in the gaseous and
the liquid phases. Depending on the hydrophobicity of the porous medium, the gas,
and the liquid will encounter varying degrees of resistance depending on the pore size
and tortuosity of the medium. Consequently, the gases and liquid will form separate
continuous pathways in different regions of the porous diffusion layers. For example, in
the case of fuel cells, with hydrophobic diffusion layers, the liquid will be localized in the
large pores with smaller threshold pressure, while the gas will occupy the small pores.

Using Faraday’s law

Ui =± ziVi

F
j , (2.3)

with a plus sign for i = w and a minus sign for i = n. Here j is magnitude of the total cur-
rent density, Vi is the molar volume1, F is Faraday’s constant, and zi is the stoichiometric
coefficient introduced in Fig. 2.1.

The relative permeabilities are expressed as kw = sq and kn = (1− s)q [50], where s is
the saturation of the wetting phase. In this work we use q = 3, although different powers
between 2 and 8 have also been used in the recent literature [30]. We provide expressions
for general q in 2.D.

The capillary pressure is the pressure difference between the non-wetting and the
wetting phase. Various models are proposed in the literature, like the Leverett-Udell
model [49, 53], the Van-Genuchten model [54], the Brooks-Corey model [55] or analyti-
cal fractal models [56, 57]. The Leverett-Udell model is an empirical model that relates

12.C illustrates that Vi corresponds to the total molar volume, not the partial molar volume of the reaction or
product species in case of mixtures. For an ideal gas, Vi = RT /pi , where R is the gas constant, pi is the partial
pressure and T is the operating temperature.
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the water content to the capillary pressure using a capillary pore radius distribution. It
assumes that the soil is composed of identical pores with a log-normal distribution of
radii. The Brooks-Corey model, on the other hand, is a more mechanistic model that as-
sumes that a power-law distribution of pore sizes. The Van-Genuchten model assumes
the presence of at least one interconnected pore-pathway that contains pores of suf-
ficient size such that capillary pressure can be disregarded. The primary distinction
between the Van-Genuchten and Brooks-Corey models is that while the Brooks-Corey
model includes an entry pressure (where capillary pressure is non-zero at unity satura-
tion), the Van-Genuchten model does not. The analytical fractal model is more complex
and accounts for fractal nature of pore structure. It is comptationally demanding and
requires detailed information of the pore structure. We use the Brooks-Corey relation
[58–60], because of its mathematical simplicity, to describe the capillary pressure as

pc ≡ pn −pw = pt s−1/λ. (2.4)

For hydrophilic layers, s is the liquid saturation, while for hydrophobic layers, s is the gas
saturation.

The threshold displacement pressure may be related to the surface tension σ and
contact angle θ by the Young-Laplace equation, that is valid for the capillary pressure
when the pores would form cylindrical channels of radius rmax, as

pt = 2σ |cos(θ)|
rmax

. (2.5)

In a general porous medium Eq. (2.5) may be seen as the definition of pt , loosely related
to the maximum pore size rmax. A high value of the pore size distribution index λ is as-
sociated with a relatively flat capillary pressure curve, as illustrated in Fig. 2.2. This is
associated with a more narrow pore size distribution, with most pores near the maxi-
mum pore size, and only a small fraction of smaller pores. Lower values of λ correspond
to wider pore size distributions.

Combining Eq. (2.2) and (2.3) with Eq. (2.4), using x̄ = x/L, we obtain

d s−1/λ

d x̄
= ȷ̄n

(1− s)3 + ȷ̄w

s3 , (2.6)

where ȷ̄i = ki |d(pi /pt )/d x̄| = µi |Ui |/pt K is a dimensionless pressure gradient or veloc-
ity. With Eq. (2.3) it can also be seen as a dimensionless current density. Note that be-
cause the wetting phase moves in the positive x-direction and the non-wetting phase
in the negative x-direction, both terms in Eq. (2.6) are positive, despite the minus sign

in Eq. (2.4). With d s−1/λ

d x̄ = − 1
λ s−

1
λ
−1 d s

d x̄ we thus see that s is a monotonously decreasing
function of x̄.

With Eqs. (2.2) and (2.3) we can write ȷ̄i = j / ji where

ji = pt K

µi L

F

ziVi
=

Ji︷ ︸︸ ︷
2σ |cos(θ)|F

Viµi zi

1/L̄︷ ︸︸ ︷
K

rmaxL
. (2.7)
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It should be noted that for applications like air fuel cells there will be consumption of
oxygen at the catalyst layer, which has to be replenished. This can be done in part by
diffusion but necessarily also at least in part by the so-called Stefan flow [61–63] as de-
scribed in 2.C. In such cases, the j̄w that we mention will actually be lower than the one
calculated using Eq. (2.3). For simplicity and providing insights, we will, however, con-
tinue to use the value of j̄w given by Eq. (2.7).

Based on the work of Ref. [64], Refs. [65, 66] relate the permeability to the capillary

pressure curve as K = αϵ3
∫1

0
(σcosθ)2

p2
c

d s, where the material-dependent constant α is of

order unity. With Eq. (2.4) this gives2

K = αϵ3

4

λ

λ+2
r 2

max. (2.8)

This gives for L̄ = rmaxL/K

L̄ ≡ 4(1+2/λ)

αϵ3

L

rmax
. (2.9)

so for a given porous material L̄ is a multiple of the characteristic maximum pore size
rmax.

2.2.2. BOUNDARY CONDITION
The relative permeability model of Eq. (2.2) assumes that there are continuous pathways
for each phase. When applied to different porous media, the pressures across their in-
terface are also assumed to be continuous. When bubbles or droplets are present at the
flow channel-DL interface, they will typically be much larger than the maximum pore
size so that their capillary pressure is much smaller than pt . From Eq. (2.4), this implies
that s remains close to its maximum, s0 ≈ 1.

As s0 approaches unity, the interstitial velocity un =Un/ϵ(1− s0) of the non-wetting
phase starts to exert a non-negligible dynamic pressure 1

2ρnu2
n . With continuity of pres-

sure we can approximately equate this to pt to give with Eq. (2.3)

s0 ≈ 1−
√

ρn

2pt

znVn

ϵF
j . (2.10)

Even for very large current densities of many A/cm2 this usually negligibly deviates from
s0 = 1. Therefore, from now on, we will use s0 = 1 as a boundary condition. Recent
measurements found this indeed to hold true over a wide range of current densities in
PEMWEs [25]. For PEMFCs something similar is found, although there the exact value of
s0 depends also on the relative humidity of the inlet gas and can be substantially different
behind flow channel ribs [68]. Also the presence of a micro-porous layer can disturb the
entire saturation profile s0 [69].

Other authors have previously used a different constant value [49, 70] or
semi-empirical formula [71] as a boundary condition for s0. In 2.B we treat the general
case in which the capillary pressure of small droplets or bubbles cannot be neglected.

2Comparing with the Karman-Cozeny [67] result K = d2
p ϵ

3

180(1−ϵ)2 , for a porous medium consisting of spherical

particles of diameter dp , this gives rmax = dp
1−ϵ

√
1+2/λ

45α .
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Note that we may modify Eq. (2.4) to pc = pt
(
s−1/λ− s−1/λ

0

)
without changing (2.6).

In this case the maximum pore size disappears and for s > s0 the capillary pressures be-
comes negative as in, for example, Ref. [72]. Such a capillary pressure curve may roughly
approximate a hydrophobic medium in which the largest pores are coated with a hy-
drophilic layer, or vice versa. Equal gas and liquid pressures at the channel-DL interface
give s = s0 as a boundary condition, as was also used in Ref. [35]. Also, sometimes part
of the saturation is considered immobile [73]. This fraction can, however, for most pur-
poses be simply added to the solid volume fraction.

2.3. ANALYTICAL SOLUTIONS

2.3.1. ANALYTICAL SOLUTION FOR THE SATURATION
As discussed below Eq. 2.6, the wetting phase saturation s1 at the DL-CL interface will be
below that at the channel-DL interface, s0. An exact analytical solution to Eq. (2.6) is not
possible, so we approximate the solution by dividing the domain into two parts where
we neglect either the first or the second term on the right-hand side, respectively. We
define the saturation s∗ as the saturation for which both terms are equal, which is the
case when

s∗ = 1

1+ (Jw /Jn)1/3
. (2.11)

Here Jw /Jn = µn znVn/µw zwVw is a constant, independent of the current density j , that
depends only on ratios of fluid properties and reaction stoichiometries.

For s > s∗ we neglect the second term on the right-hand side of Eq. 2.6, so that inte-
grating gives

ȷ̄n x̄ = Iλn

∣∣∣s

s0
(s > s∗) . (2.12)

The integral Iλn ≡ ∫
(1− s)3d s−1/λ = − 1

λ

∫
(1− s)3s−1− 1

λ d s can be performed analytically,
giving

Iλn

∣∣∣s

0
= s

−1
λ

(
1+ 3s

λ−1
− 3s2

2λ−1
+ s3

3λ−1

)
. (2.13)

Solving Eq. 2.12 for s in terms of x̄ can only be done numerically. An approximation
near s ≈ 1 can however be obtained using the linearized capillary pressure shown in
Fig. (2.2). Equation (2.6) with the second term neglected becomes

− 1

λ

d s

d x̄
= ȷ̄n

(1− s)3 (s ≈ 1) , (2.14)

which is solved by s ≈ 1− (
(1− s0)4 +4λȷ̄n x̄

)1/4
, or with the boundary condition s0 = 1 3

s ≈ 1− (
4λȷ̄n x̄

)1/4 (
s ≳ 0.6

)
. (2.15)

3Comparing with the numerical solution for large λ shows that this is accurate to a relative error in 1− s of
at most 10 % when used for s ≳ 0.6. For lower values of λ = 3,2,1 rather only apply it for s ≳ 0.65,0.7,0.75,
respectively.
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This analytical solution is similar to that obtained in Ref. [74] for a Leverett-J function
capillary pressure relation.

When s = s∗ at x = x∗, Eq. (2.12) gives

x̄∗ =
Iλn

∣∣s∗
s0

ȷ̄n

s∗≳0.6−−−−−→
s0≈1

(1− s∗)4

4λȷ̄n
. (2.16)

where the final expression was obtained from Eq. (2.15).
For x̄ ≥ x̄∗ the saturation drops below s∗ and we will neglect the first term on the

right-hand side of Eq. (2.6), so that integrating Eq. (2.6) gives

ȷ̄w (x̄ − x̄∗) = Iλw

∣∣∣s

s∗
(s > s∗) . (2.17)

The wetting integral Iλw ≡∫
s3d s−1/λ evaluates to

Iλw

∣∣∣s

0
=− s3− 1

λ

3λ−1
, (2.18)

so that Eq. (2.17) gives

s ≈
[

s
3− 1

λ∗ − (3λ−1) ȷ̄w (x̄ − x̄∗)

] 1
3−1/λ

(s ≤ s∗). (2.19)

2.3.2. ANALYTICAL SOLUTION FOR THE MAXIMUM CURRENT
Various problems, like flooding in hydrogen fuel cells or membrane dehydration in water
electrolyzers, are associated with a low saturation s1. We here consider the question what
maximum current density is associated with a minimum saturation smin. The reasons for
such a minimum saturation can be diverse, and may also depend on subjective criteria,
an analysis of which is beyond the scope of this work.

When s > s∗, Eq. (2.12) immediately gives jmax = jn Iλn
∣∣smin

s0
. Although useful and ac-

curate when smin is well above s∗, an arguably more insightful result is obtained when
additionally smin ≳ 0.6 so that we may use the final expression in Eq. (2.15) to write

jmax ≈ jn

λ

(1− smin)4

4
(smin ≥ s∗) . (2.20)

Inserting Eq. (2.7) and Eq. (2.8) shows more clearly the dependence on the various pa-
rameters

jmax ≈ Jn
ϵ3

λ+2

rmax

L

(1− smin)4

16
. (2.21)

where Jn = 2σ |cos(θ)|F /Vnµn zn contains the non-wetting phase fluid properties. In
terms of the diffusion layer properties, clearly a sufficient porosity ϵ and a pore aspect
ratio rmax/L are beneficial for obtaining a high maximum current density while main-
taining a sufficient saturation smin. The influence of the pore size distribution parame-
ter is less strong and only shows a strong negative influence in case of very uniform pore
size distributions with λ≫ 1.
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When smin < s∗ we can solve Eq. (2.19) with s = smin at x̄ = 1 for ȷ̄w = j / jw , to give

jmax ≈ jw

λ

s
3− 1

λ∗ − s
3− 1

λ

min

(1− x̄∗) (3−1/λ)
(smin ≤ s∗) . (2.22)

This is an implicit equation, since x̄∗ depends on current density. If s∗ ≳ 0.6, or from
Eq. (2.11) jw ≲ 0.3 jn , we can use the final expression in Eq. (2.16) to give 4

jmax ≈ jn
(1− s∗)4

4λ
+ jw

s
3− 1

λ∗ − s
3− 1

λ

min

3λ−1
(smin ≤ s∗) . (2.23)

We note that there may just as well be a maximum smax to avoid, for example, mem-
brane dehydration in case of a gas-fed fuel cell. In this case the above equations can be
used for a minimum current density jmin, by interchanging the subscripts max and min.

2.3.3. INTERPRETATION
With s0 ≈ 1 the diverging first term on the right-hand side of Eq. (2.6) causes a rapid
drop in saturation near the channel-DL interface as described by Eq. (2.15) and illus-
trated in Fig. 2.1. In this regime, Eq. (2.20) determines the maximum current density
associated with a minimum saturation smin. The interpretation of this result is relatively
straightforward. From Eq. (2.4) we have a driving capillary pressure gradient d pc /d x ≈
−(

pt /λ
)

d s/d x near s = 1. This shows how a wider pore size distribution, associated with
a lower value of λ, gives a higher driving capillary pressure gradient allowing a higher
maximum current density. With kw = 1, Eq. (2.14) would be solved by s ≈ 1−λȷ̄n so that
jmax = jn

1−smin
λ . The wetting phase however strongly increases the friction through the

relative permeability (1−s)3, which introduces the 4 in both the power and denominator
of Eq. (2.20).

For s ≤ s∗ the second term on the right-hand side of Eq. (2.6) dominates. This term
represents the friction of the wetting phase, which in this regime determines the maxi-
mum current density. The presence of the non-wetting phase through the relative per-
meability s3, in this case, introduces the 3− 1/λ in Eq. (2.22). Once the wetting phase
pressure gradient starts to dominate, the saturation has already decreased to s∗, but also
the remaining distance L−x∗ to the catalyst layer, over which the capillary pressure gra-
dient acts, has decreased, explaining the appearance of these terms in Eq. (2.22).

Finally, Eq. (2.23) combines the results of Eqs. (2.20) and Eq. (2.22). This may be
interpreted in analogy with a series circuit of ‘resistances’ proportional to 1/ jn and 1/ jw ,
but also depending non-linearly on the ‘potential’ s.

We note that, while in accordance with the discussion in section 2.2.2 we assumed a
boundary condition s0 = 1, it is straightforward to generalize the above equations to an
arbitrary value of s0. We note that when s0 ≤ s∗, we can use Eq. (2.19) with s∗ = s0 and
x̄∗ = 0.

With a gaseous reactant and liquid product, usually jw / jn = µn znVn
µw zwVw

≪ 1 so that,

from Eq. (2.11), s∗ ≳ 0.6 and Eqs. (2.15), (2.20), and (2.23) can be used. Note that in this
case, usually, the first term in Eq. (2.23) can be neglected.

4For a general s0, (1− s∗)4 is replaced by (1− s∗)4 − (1− s0)4.
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Given the right integral Iλn , Eq. (2.12) can be used for any type of capillary pressure
relation. Different relative permeability models can be accommodated after suitably re-
defining s∗. In 2.G we work out the integral Iλn for the Leverett-J function.

2.4. PERFORMANCE LOSSES IN A DIFFUSION LAYER

2.4.1. ACTIVATION OVERPOTENTIALS η
A limiting current density arises when reactants cannot diffuse to the catalyst layer at a
sufficient rate. We assume that the concentration-dependent Tafel equation describes
the half-reaction in the catalyst layer as:

j =χ j⋆

(
c1

c0

)r

exp
{η

b

}
, (2.24)

where r is the order of the reaction in the reactant concentration c1, assumed constant
throughout the thin catalyst layer, χ is the fraction of total surface area covered by the
wetting phase reactant, j⋆ is the superficial exchange current density of the catalyst layer
[75] at the bulk concentration c0 at x̄ = 0, and the Tafel slope b = RT /αF [76], where
α≲ 1 is the charge transfer coefficient. Rearranging Eq. (2.24), we can split the activation
overpotential η into three separate terms

η=

ηa︷ ︸︸ ︷
b ln

j

j⋆
+

ηχ︷ ︸︸ ︷
b ln

1

χ
+

ηc︷ ︸︸ ︷
r b ln

c0

c1
. (2.25)

Here ηa is the overpotential required when the entire reactive area is wetted with reac-
tant at the concentration c0. In Eq. (2.25) ηχ is the additional overpotential due to the
non-wetting phase covering a fraction χ of the reactive area, and ηc is the concentration
overpotential.

We note here that an often considered voltage loss that is not mentioned in Eq. (2.25)
is the change in equilibrium potential due to the dissolved gases [22, 23, 27, 33, 71, 77,
78]. If the associated reaction steps are not rate-determining, they may be considered in
equilibrium and described by the Nernst equation

∆Emt = RTzn

F
ln

C

Cref
, (2.26)

with C the concentration of the dissolved product gases at the position of the catalyst
layer, and Cref a reference value. See, for example, Ref. [27] for a simple model to estimate
C .

2.4.2. WETTING OVERPOTENTIAL ηχ

The surface coverage can be calculated using χ= s̃
λ̃−1
λ̃ from 2.F, so that

ηχ =
(
1/λ̃−1

)
b ln s̃. (2.27)
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Variables dressed with a tilde denote the properties of the catalyst layer. As the catalyst
layer pore size distribution parameter λ̃→ 1 Eq. (2.27) gives that ηχ → 0 and the surface
coverage does not adversely impact performance. The reason is that the smallest pores,
that have most of the surface area, remain available for the reaction. If λ̃≫ 1, Eq. (2.27)
reduces to ηχ = −b ln s̃, which is used, for example, in Refs. [70, 71]. In liquid-phase
electrolyzers this is often referred to as the bubble overpotential [23].

For a very thin catalyst layer formed by spraying small particles on the diffusion layer,
we may use s̃ = s1. For a more extended layer, with potentially a wettability different from
that of the diffusion layer, we may assume continuity of the capillary pressure[79, 80]

which, from Eq. (2.4), gives s̃ = (pt s−1/λ
1 /p̃t )−λ̃. Both of these models are, however, obvi-

ously simplifications that have to be used with caution. The latter formula for example,
may give rise to s̃ > 1 in case of very small catalyst layer pores, something that may be
ameliorated by including dynamic pressures as in 2.A. Often there will be a mixed wetta-
bility in the catalyst layer, influencing the relation between s1 and s̃.

2.4.3. CONCENTRATION OVERPOTENTIAL ηc
In water electrolyzers, water is always present in high concentrations (c1 ≈ c0) and any
transport losses occur mainly due to the surface area of the catalyst layer getting covered
by gas. For applications such as hydrogen fuel cells or CO2-reduction-GDEs, reactant
gases have to diffuse through either a mixture of gases or through water to reach the
catalyst surface [81]. In the dilute limit, c1 can then be obtained from Fick’s law [82, 83]
for the molar flux

zw

F
j = Deff

c0 − c1

L
, (2.28)

where Deff is the effective diffusion coefficient, modified by the saturation profile. A
limiting current is obtained when c1 → 0, which gives

jlim = F Deffc0

zw L
. (2.29)

In the absence of the non-wetting phase we have a limiting current density

jlim0 =
F D c0

zw L
, (2.30)

where D = D0ϵ/τ in terms of the porosity ϵ and tortuosity τ, and the single phase diffu-
sivity D0. Often a power law relation τ = ϵ1−m approximately holds so that D = D0ϵ

m .
It has been pointed out that m = 1.5 as in Bruggeman’s correlation underestimates the
effect of tortuosity in diffusion layers and often a value between 2 and 5 is more appro-
priate [84, 85].

Inserting c1 from Eq. (2.28) in ηc from Eq. (2.25) gives the concentration overpotential
as

ηc = r b ln

(
1

1− j / jlim

)
. (2.31)
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2.4.4. EFFECTIVE DIFFUSIVITY DEFF

Since the diffusivity of gases in liquids is several orders of magnitude lower than that
in gases, we neglect the transport of gases in the liquid phase. This implies that the
transport of reactant gas in the presence of liquids will be slower than in a dry GDL,
leading to a lower limiting current. In the presence of liquid non-wetting phase, the
effective diffusivity of the gaseous wetting phase is reduced, as described by Eq. (2.79):

D

Deff
=

∫1

0
s−nd x̄. (2.32)

In general, the exponent n can differ from the exponent m, but is also typically in the
range between 2 and 5 [84, 85]. Equation (2.32) shows that the effective diffusivity tends
to zero as the saturation of the non-wetting gaseous phase, s approaches 1. However, in
such cases, we will have small molecular diffusion through the liquid which is neglected
in Eq. (2.32). To approximate this integral we use the same approach as in section 2.3.1
and split the integral in two parts. Between x̄ = 0 and x̄∗ we neglect the final term in

Eq. (2.6) so that we can make a change of variables and write
∫s∗

0 s−nd x̄ = λn
λ

Iλn
n

∣∣∣s1

s0
ȷ̄n

, as

shown in Eq. (2.83). Here λn = λ
1+λn or

1

λn
= 1

λ
+n. (2.33)

We hope that no confusion arises because of our use of a subscript n here, not referring
to the non-wetting phase but instead to the exponent n in Eq. (2.32). Beyond x̄∗ we
neglect again the first term in Eq. (2.6) resulting in

D

Deff
≈


λn
λ

Iλn
n

∣∣∣s1

s0
ȷ̄n

s1 > s∗

λn
λ

(
Iλn

n

∣∣∣s∗
s0

ȷ̄n
+

Iλn
w

∣∣∣s1

s∗
ȷ̄w

)
s1 ≤ s∗.

(2.34)

The quantity in Eq. (2.34), inversely proportional to the effective diffusivity, is a dimen-
sionless mass transfer resistance and has the structure of two resistances in series. 5

2.4.5. DIFFUSION LIMITED CURRENT DENSITY jLIM

First we consider the case in which s1 ≥ s∗ ≳ 0.6 so that with s0 ≈ 1, Eq. (2.15) can be
used. In this case we can derive the Eq. (2.81), or with 4(4/5)4 ≈ 1.6

D

Deff
≈

(
1−

(
1.6λ

j

jn

)1/4
)−n

. (2.35)

From Eq. (2.15) this remains valid up to 1.6λ j
jn

≈ 0.01 in which case the diffusivity is

reduced by a factor 0.68n . This exponential dependence on n highlights the importance

5Note that for λ = λn , using Eqs. (2.16) and Eq. (2.17), the first and last term between brackets of Eq. (2.34)
become x̄∗ and 1− x̄∗ so that Deff = D as it should for n = 0.
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of straight non-tortuous gas pathways, potentially using techniques as in Ref. [86], that
lower n. Inserting into Eq. (2.29) gives

jlim ≈ jlim0

(
1−

(
1.6λ

jlim

jn

)1/4
)m

. (2.36)

Comparing with the numerical solution for λ ≥ 1 shows that this approximation has a
relative error below 10 % when jlim ≲ jn

0.003
n+λ . In general, this implicit equation has to be

solved numerically. When, however, n = 4 we find

jlim ≈
(

j−1/4
lim0 +

(
jn

1.6λ

)−1/4
)−4

. (2.37)

Note that jlim will always be lower than the smallest of jlim0 and jn/1.6λ. This makes
sense, as the presence of the non-wetting phase can only lower the effective diffusivity
and therewith the diffusional limiting current. We previously found that the maximum
current that can be maintained by capillary action, considering only the friction of the
non-wetting phase, is proportional to jn/λ, see e.g. Eq. (2.20).

Next, we consider the case in which s1 < s∗ for which the bottom result of Eq. (2.34)
has to be used. Inserting into Eq. (2.29) gives an implicit equation

Iλn
n

∣∣∣s∗

s0
jn + Iλn

w

∣∣∣s1

s∗
jw ≈ jlim0 (1+λn) . (2.38)

When the first term can be neglected 6 this gives, after some algebra

jlim ≈ jw s
3− 1

λ∗
1−

(
1+ jlim0

jw

1−λ(3−n)

s3−1/λn∗

) 3−1/λ
3−1/λn

(3λ−1)(1− x̄∗)
(2.39)

where s∗ and x∗ are given by Eqs. (2.11) and Eq. (2.11), respectively. Eq. (2.39) simplifies
in the following two limits

jlim ≈


jw

1−x̄∗
s

3− 1
λ∗

3λ−1
jlim0

jw s3−1/λn∗
≫ 1

jlim0sm∗
1−x̄∗

jlim0

jw s3−1/λn∗
≪ 1.

(2.40)

The top equation is exactly Eq. (2.23) for smin = 0, which makes sense since when the sat-
uration s1 vanishes, the effective diffusivity vanishes as well, causing a limiting current.
If s∗ ≳ 0.6 we can use Eq. (2.16), similar to in Eq. (2.23), to give for the bottom case of
Eq. (2.40)

jlim ≈ jlim0sn
∗ + jn

(1− s∗)4

4λ
. (2.41)

6When s∗ ≳ 0.6 we can use Eqs. (2.16), Eq. (2.18), Eq. (2.11) to write 1−s∗
4λn

≪ s
3− 1

λn∗ −s
3− 1

λn
1

s3∗(3λn−1)
. This is usually the

case when s1 drops somewhat below s∗, or from Eq. (2.16) when j ≳ jn
(1−s∗)4

4λ .
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Here jlim0 is reduced by a factor sn∗ due to the lower saturation s∗, which in this limit does
not drop much further. The final term in Eq. (2.41) adds a bit for the initial part where
s > s∗.

2.5. RESULTS AND DISCUSSIONS
For the hydrophobic SGL carbon paper, Toray090, E-Tek Cloth “A” and Lyflex felts, λ lies
between 0.95-4 and pt varies between 6-39 kPa [87]. These hydrophobic diffusion layers
are typically a few hundred micrometres thick [87, 88]. Water electrolyzers usually have
titanium-based hydrophilic layers with the largest pore diameter roughly 12-16 µm, the
permeability of the order 10−12 m2, and a thickness around 1 mm [89] corresponding to
a threshold pressure pt of the order of 10 kPa. For illustration, we choose the diffusion
layer parameters for both electrolyzers and fuel cells to be same as that of Toray090 [87]
for which λ ≈ 4 and pt = 10 kPa. Table 2.1 lists the properties for exemplary gaseous
and liquid wetting phase cases, representative of a typical PEM fuel cell and water elec-
trolyzer, respectively.

Table 2.1: Characteristics and operating conditions for example diffusion layers at 1.2 bar and 60◦C. The com-
mon structural parameters used are K = 8 ·10−12 m2, pt = 10 kPa, rmax = 10 µm, 2σ|cosθ| = 0.1 N/m, λ = 4,
m = n = 3, and ϵ = 0.78 [87]. A diffusivity DO2 = 2 ·10−5 m2/s for oxygen in air gives jlim0 = 11 A/cm2. Note
that for µn and Vn property we used the wetting phase properties of the adjacent column.

Wetting phase Gaseous Liquid

Examples
PEMFC,
AEMFC,
CO2-GDE

PEMWE,
AEMWE, Di-
rect alcohol
fuel cells

L [µm] 300 [87] 1000 [89]
L̄ = rmaxL/K 375 1250
µw [Pa-s] 2.2 ·10−5 4.7 ·10−4

Vw [m3/mol] 23 ·10−3 1.8 ·10−5

1/zw 4 2
1/zn 2 4
s∗ 0.75 0.25
Jw /Jn 0.03 30
Jw [A/m2] 7.6 ·1010 2.3 ·1012

Jn [A/m2] 2.3 ·1012 7.6 ·1010

jw [A/m2] 2 ·108 1.8 ·109

jn [A/m2] 6.1 ·109 6.1 ·107

j [A/m2] 2 ·104 2 ·104

2.5.1. VERIFICATION OF THE ANALYTICAL MODEL

Figure 2.3(a) shows a comparison between analytical and numerical saturation profiles
for the two cases listed in Table 2.1. The analytical solution for the wetting phase satura-
tion is always higher than the numerical solution. This is expected, because we always
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x̄

s
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1
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Numerical

0

x̄∗ x̄∗

Numerical

Analytical

PEMFC (
L̄ = 8.8 ·103

)

PEMEC (
L̄ = 3.8 ·105

)
Eq. (2.12)

Eq. (2.19)

Eq. (2.12)
Eq. (2.19)s∗

s∗

(b)

Figure 2.3: A comparison between the analytical and numerical wetting phase saturation s across the diffusion
layer for j = 2 A/cm2 and the typical diffusion layer properties listed in Table 2.1 (a). For the bottom figure (b)
we used a much higher L̄ = 8.8·103 and 3.8·105 for the PEMFC and PEMWE case respectively to show the effect
of, for example, a much smaller pore size. For x̄ < x̄∗, the non-wetting phase dominates and Eq. (2.12) is used
for analytical solution while for x̄ > x̄∗, the wetting phase dominates and Eq. (2.19) is used.

neglect one of the terms on the right-hand side of Eq. (2.6) and hence underestimate the
capillary pressure gradient. The agreement with Eq. (2.15) is nonetheless good since s
remains rather high.

In Fig. 2.3(b) we also show a case where we increased L̄ to show the effect of, for
example, a much smaller pore size. In this case in part of the diffusion layer the wetting
phase pressure gradient dominates, represented by the final term in Eq. (2.6). In this case
we used the analytical result of Eq. (2.19) for which the agreement with the numerical
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result is reasonable.

Numerical

Eq. (2.76)

Eq. (2.22)
Eq. (2.23)

s0

j m
ax

/j
w

0.05

0.04

0.03

0.02

0.01

0
0 0.2 0.4 0.6 0.8 1

Figure 2.4: The maximum current for which s1 = smin = 0 as a function of s0 for the gaseous wetting phase prop-
erties given in Table2.1. The solid black line indicates the numerical result obtained by solving Eq. (2.6), the
solid gray line indicates the two-regime analytical solution described in section 2.3.2 and the dashed gray line
indicates the three-regime analytical solution described in 2.H. In this model we also consider a third domain
where the saturation profile is assumed to be linear, and contributions from both ȷ̄n and ȷ̄w are important.

2.5.2. MAXIMUM CURRENT DENSITY

For the properties listed in Table 2.1, to reach smin = 0, according to Eq. (2.22) requires
a current density jmax ≈ 107 A/m2 for both layers. This extremely high current density
shows that for the typical diffusion layer properties of Table 2.1 there will be no risk of
approaching smin = 0.

Although the boundary condition s0 ≈ 1 was argued to be the relevant boundary con-
dition for most cases, in Fig. 2.4 we show the effect of s0 on the limiting currents. This
can be useful for mixed-wettability layers and because different boundary conditions are
sometimes used [35, 70, 71]. Figure 2.4 shows that the limiting current jmax is insensitive
to the exact boundary condition when s0 is close to 1. The reason is the large drop in s
that occurs in a very thin layer near x̄ = 0 seen in Fig. (2.3). This strong decrease is caused
by the first term on the right-hand side of Eq. (2.6) and described by the formula given
just above Eq. (2.15).

2.5.3. LIMITING CURRENT DENSITY

Air with 21 v% of oxygen at 1.2 bar and 60◦ has an oxygen concentration of c0 = 9.1
mol/m3 7, so that with DO2 = 2 ·10−5 m2/s, n = 3, and the gaseous wetting phase prop-
erties in Table 2.1, we find a single phase diffusion-limited current density of jlim0 =
F D c0/zw L ≈ 11 A/cm2. Since this is below 0.01 jw /4λ we can use Eq. (2.35) to calculate
Deff. Solving Eq. (2.29) for j = jlim iteratively gives jlim ≈ 8.1 A/cm2. The presence of wa-

7From 2.C, a better approximation would be to use ln 1
1−0.21 ≈ 0.24 times the molar volume, but in line the

with present dilute approximation we use 0.21, instead.
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ter in this case actually only moderately decreases the limiting current density, which is
expected giving the high saturation throughout the diffusion layer, shown in Fig. 2.3(a).

Using the explicit Eq. (2.37) gives jlim ≈ 7.3 A/cm2, which is slightly lower than the
numerical value because it was derived for a higher value n = 4.

2.5.4. MASS TRANSPORT LOSSES

The limiting current densities calculated in section 2.5.3 are well above typical desirable
current densities so that the associated concentration overpotentials will be small. With
j = 2 A/cm2, for example, Eq. (2.31) gives ηc /b = 0.28 amounting to at most a few tens
of millivolts. It has been pointed out previously that modern diffusion layers do not
contribute significantly to transport limitations [81].

For a water electrolyzer concentration overpotentials are negligible, but the lowered
saturation at the catalyst layer can incur a wetting or bubble overpotential ηχ according
to Eq. (2.27). With λ̃= 4 and s̃ = s1 = 0.75 from Fig. 2.3 this gives ηχ/b ≈ 0.21.

(a)

1061051041031020

0.2

0.4

0.6

0.8

1

L̄

s1

Deff/D0ϵ
3

Numerical
Analytical

Eq. (2.34)

Eq. (2.15)

Eq. (2.19)

(b)

1061051041031020

0.5

1

1.5

2 λ= 1.2

Analytical
Numerical

λ= 4

L̄

η
c/

b

Figure 2.5: (a) The effective diffusivity Deff (black) and the saturation s1 (grey) at the DL-CL interface as a
function of L̄ = rmaxL/K at a current density of 2 A/cm2 for the gaseous wetting phase properties listed in
Table 2.1. A discontinuity appears because the approximation Eq. (2.15) is used only for high s. (b) The associ-
ated concentration overpotentials, calculated using Eq. (2.25). The diffusion coefficient is taken to be equal to
DO2 = 2 ·10−5 m2/s.

2.5.5. DESIGN LIMITATIONS ON L̄

Figure 2.5 shows the saturation s1 at the DL-CL interface and the effective diffusivity Deff

as well as the associated concentration overpotential as a function of the dimensionless
diffusion layer thickness L̄. For not too low s ≳ 0.6, we can use Eq. (2.37) to calculate
explicitly what the maximum dimensionless layer thickness L̄ = Lrmax/K is to reach a
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desired limiting current density jlim
8

L̄ ≈ Jn

1.6λ

(
j−1/4

lim − j−1/4
lim0

)4
. (2.42)

With the values from Table 2.1, this gives L̄ ≈ 2 ·105 for λ = 4 and L̄ ≈ 7 ·105 for λ = 1.2.
Despite the different value m = 4 used to derive Eq. (2.42) this is in reasonable agreement
with the results of Fig. 2.5.

The value of L̄ ≈ 2 ·105 for λ = 4 corresponds to a very small maximum pore size of
rmax ≈ 0.02 µm for the same thickness, L and is actually not much smaller than the pores
of rmax ≈ 0.1 µm typically used in a microporous layer [73, 90, 91]. These microporous
layers are, however, typically much thinner than the diffusion layers so that their contri-
bution to the mass transport resistance remains limited.

Even for jlim = 6 A/cm2 the value L̄ = 2 ·104 is well above the 375 in Table 2.1. This
shows that even with substantially smaller pores the liquid saturation does not decreas-
ing the limiting current density to values in the typically desired operating window. There-
fore, the diffusion layer designs are often influenced by other considerations such as
electrical resistance and mechanical strength [92].

When s∗ ≳ 0.6, usually the case for gaseous reactants, we can use Eqs. (2.23) and (2.20)
to find the value of L̄ that corresponds to a desired s1 :

L̄ ≈


Jn

jmax

(1−s1)4

4λ s1 ≥ s∗

Jn
jmax

(1−s∗)4

4λ + Jw
jmax

s
3− 1

λ∗ −s
3− 1

λ
1

3λ−1 s1 < s∗.
(2.43)

Using Eq. 2.9 in the top result gives

(2+λ)L

αϵ3rmax
≈ Jn

j

(
1− s1

2

)4

, s1 ≥ s∗ (2.44)

where rmax = 2σ |cos(θ)|/pt and Jn = 2σ |cos(θ)|F/
Vnµn zn from Eqs. (2.5) and (2.7).

Eq. (2.44) shows the various geometrical diffusion layer parameters on the left, and op-
erational and material parameters on the right.

This shows that, for example, for the same s1 at a two times higher current density
would require, equivalently, halving the DL thickness L, doubling rmax or increasing ϵ by
a factor 21/3 ≈ 1.26.

2.6. CONCLUSIONS
We thoroughly studied the multiphase flow in porous diffusion layers, providing a gen-
eral unified framework, valid for both fuel cells and electrolyzer as long as gas and liquid
move in opposite directions. The obtained expressions can be readily used to provide
guidance on choosing for example the layer thickness and pore size distribution.

8With Eq. (2.30) we can also solve Eq. (2.42) explicitly for L, to give L ≈
Jn K

1.6λ jlimrmax(
1+

(
Jn K

1.6λ jlimrmax
zw

F D c0

)1/4
)4
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We derived accurate semi-analytical expressions for saturation profiles, Eqs. (2.19)
and Eq. (2.15). These were used in Eqs. (2.20)-(2.23) to calculate the maximum current
density for which the saturation at the diffusion layer-catalyst layer interface becomes
critically low. Equations (2.37)- (2.41) give useful expressions for the diffusion-limited
current density.

These results show that for modern gas diffusion layers the wetting phase saturation
usually remains above 0.8 so that performance is only modestly impacted and that they
are well-designed for their intended operating conditions.

APPENDICES

2.A. BOUNDARY CONDITION FOR s1
Here we consider what happens when the porosity or wetting properties suddenly change.
This is relevant, for example, at the interface between the diffusion layer and microp-
orous layer or catalyst layer, but also at the interface between the diffusion layer and
the channel. Neglecting friction over the interface we can use Bernoulli’s equation to
equate the total pressure pi + 1

2ρi u2
i on either side of the interface. Using a + and − to

denote properties right (slightly larger x) and left (lower x) of the interface this gives with
pc = pn −pw :

pc−+ 1

2

(
ρn−u2

n−−ρw−u2
w−

)
= pc++ 1

2

(
ρn+u2

n+−ρw+u2
w+

) (2.45)

Usually dynamic pressures 1
2ρi u2

i are negligible, resulting in the frequently used conti-
nuity of capillary pressure pc− = pc+ [79, 80]. With an explicit capillary pressure-saturation
relation this can then be used to relate the saturations on either side of the interface. Us-
ing e.g. Eq. (2.4) gives pt−s−1/λ−− = pt+s−1/λ++ , or

s+ =
(

pt+
pt−

)λ+
sλ+/λ−− (2.46)

If the threshold pressure of the right medium is much larger than that of the left, as may
be the case for a diffusion layer - microporous layer interface this equation may give
s+ > 1 so that the dynamic pressure of the non-wetting phase has to be included to give,
assuming ρn+ = ρn− = ρn

1

2
ρn

(
u2

n−−u2
n+

)2 = pc+−pc− (2.47)

The average interstitial velocity un = Un/ϵ (1− s) where, from Eq. (2.3) we have U 2
n =(

znVn j /F
)2. With an capillary pressure-saturation relation like (2.4) this gives an ex-

plicit relation between s+ and s− that has to be solved numerically in general. There
are obviously several assumptions in this analysis that require further investigation and
validation, which is beyond the scope of this work.
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2.B. BOUNDARY CONDITION FOR s0

x̄

Rc

π−θ

pc− pc+

− +

Figure 2.6: Schematic of a potential transition region near a droplet (or bubble, in which case π−θ becomes
θ) the flow channel, we assume any deviation from one-dimensionality to be negligible. The ’-’ and ’+’ are
denoted in the figure. The contact angle is denoted as θ and the radius of curvature of bubble/droplet is
denoted as Rc .

Near x = 0, the presence of bubbles or droplets on the diffusion layer surface may
cause the saturation to show variations also in the normal directions as schematically
indicated in Fig. 2.6 similar to what was postulated for near the catalyst layer in Ref. [73].
Likely this disturbance from one-dimensional profiles is of the order of the droplets or
bubble. Here we will assume the transition zone to be negligibly thin compared to the
diffusion layer thickness. The capillary pressure of the droplets or bubbles will be

pc− ≈ 2σ |cos(θ)|
Rc

= pt
rmax

Rc
(2.48)

where Rc is the radius of curvature of the bubble or droplet. Here we assumed that the
contact angle is the same as inside the porous medium. Correcting for an effective con-
tact angle will be possible using the Cassie-Baxter equation [93, 94].

Usually Rc ≫ rmax so that the capillary pressure of the droplets or bubbles is negligi-
ble compared to that inside the porous medium. With pc+ = pt s−1/λ

0 this implies that s0

will be close to unity. Neglecting therefore the dynamic pressure of the wetting-phase,
we can use Eq. (2.47) to write

ρnU 2
n

2pt

(
1

Θ2 − 1

ϵ2 (1− s0)2

)2

= s−1/λ
0 − rmax

Rc
(2.49)

where Θ is the fractional bubble coverage, for which correlations exist in terms of j [95].
This implicit relation for s0 can be re-written to

s0 ≈ 1− 1

ϵ

√
1
Θ2 −

√
2pt

ρnU 2
n

(
s−1/λ

0 − rmax
Rc

) (2.50)
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where U 2
n = (

znVn j /F
)2. In the circumstances where dynamic pressures dominate over

capillary pressures, this gives for the saturation of the wetting phase 1− s0 ≈Θ/ϵ, which
represents the fraction of the pores covered with the non-wetting phase. In the more
common case of dominant capillary pressure, this gives that s0 is close to unity. With
rmax ≪ Rc Eq. (2.10) results.

2.C. STEFAN VELOCITY
In the model of section 2.2 we assume purely convective transport of reactants. However,
if the reactant forms only a small fraction of the total wetting phase it will be transported
primarily by diffusion, as assumed in sections 2.4.3-2.4.5. Here we consider the general
case in which transport consists of both diffusion and advection, a problem referred to
as Stefan flow.

Consider the case of a reacting species with concentration c and a nonreacting species
with concentration cN . The may, for example, correspond to oxygen and nitrogen in an
air mixture at the cathode of a fuel cell. We assume that the total concentration

C = cN + c (2.51)

is a constant, which is a good approximation for gases. The flux of non-reacting species
ucN −DdcN /d x = 0, with D the mutual diffusion coefficient. Or, with Eq. (2.51):

0 = u(C − c)+D
dc

d x
. (2.52)

With boundary conditions c0 = f C at the flow channel at x = 0 and c1 = 0 at the CL at
x = L, the differential equation (2.52) can be solved for the Stefan velocity u as

u = D

L
ln

1

1− f
. (2.53)

Using Eq. (2.52), the reacting species flux is N = uc −Ddc/d x = uC so that the velocity
reads u = N /C = f N /c0. We thus see that in Eq. (2.3) the molar volume is that of the total
mixture. In the dilute limit f ≪ 1 we have ln 1

1− f ≈ f so that from Eq. (2.53) Fick’s law

N = uC = Dc0
L is obtained.

2.D. EFFECT OF POWER q IN RELATIVE PERMEABILITY AND SAT-
URATION RELATIONSHIP

Using a power law, we write the relative permeabilities as

kw = sq and kn = (1− s)q (2.54)

Values of q between 2 and 8 have been reported in recent literature [30]. In the main text,
we used q = 3, which is actually inconsistent with the use of the Brooks-Corey power law
capillary pressure model for which it can be derived that

kw = s3+2/λ and kn = (1− s)2
(
1− s1+ 2

λ

)
(2.55)
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See e.g. Ref. [65]. Only in the limit λ≫ 1 do these reduce to Eq. (2.54) with q = 3. The
added complexity, in particular of the expression for kn in Eq. (2.55), does not weigh up
to the potential improvement in accuracy.

For general q and s0, Eq. (2.15) is easily generalized to

s ≈ 1− (
(1− s0)q+1 + (

q +1
)
λȷ̄n x̄

) 1
q+1 (2.56)

Note that for the Brooks-Corey relative permeability kn of Eq. (2.55) actually a somewhat
higher accuracy can be obtained Eq. (2.56) using a value for q slightly lower than 3. A

suitable value can be found by solving (1− s)2
(
1− s1+ 2

λ

)
= (1− s)q for a desired s in the

range of interest.
Equation (2.12) can be generalized as

x̄ = s−
1
λ

ȷ̄n

(
1−

q∑
z=1

(−1)z sz

z!(zλ−1)

z−1∏
k=0

(q −k)

)∣∣∣∣∣
s

s0

, (2.57)

and Eq. (2.19) can be replaced by

s =
[

s
qλ−1
λ∗ − (

qλ−1
)
ȷ̄w (x̄ − x̄∗)

] λ
qλ−1

. (2.58)

For a non-integer power q , the solution to Eq. (2.6) must be obtained numerically. Figure
2.7 shows that as the power q increases, the limiting current density decreases.

q=3
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q=5
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j m
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Figure 2.7: Effect of parameter ‘q’ in the power law of Eq. (2.54) on the limiting current density in a fuel cell
obtained using Eq. (2.57) and Eq. (2.58) for the gaseous wetting phase layer parameters listed in Table 2.1.

2.E. APPROXIMATE SATURATION FOR GENERAL λ
The solution shown in Eq. (2.12) and Eq. (2.57) is valid for all values ofλ except for integer
values r ≡ 1

λ . The solution for r = 1
λ can be written as:
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x̄ =

s−
1
λ −

 q
(q−1

r−1

)
ln s

(−1)r +
q∑

r=1
r λ̸=1

(−1)r sr− 1
λ

r−1∏
k=0

(q−k)

r !(rλ−1)

∣∣∣∣∣∣
s

s0

ȷ̄n
, (2.59)

where
(q−1

r−1

) = (q−1)!
(q−r )!(r−1)! is the binomial coefficient. For example, if q = 3 and λ = 1,

Eq. (2.12) is not valid and therefore Eq. (2.59) can be written as:

x̄ = 1

ȷ̄n

(
s2

2
−3s + 1

s
+3ln s

)∣∣∣∣s

s0

, (s > s∗), (2.60)

which is the same expression as in Eq. (2.12) when we consider the limit λ→ 1. Under

this limit, the term 3s1− 1
λ

λ−1 becomes 3ln s. Similarily, if q = 3 and λ = 1/2, (2.59) can be
written as:

x̄ = 1

ȷ̄n

(
2s − 6

s
+ 1

s2 −6ln s

)∣∣∣∣s

s0

, (s > s∗). (2.61)

If q = 3 and λ= 1/3, (2.59) can be written as:

x̄ = 1

ȷ̄n

(
1

3s3 − 3

2s2 + 3

s
+ ln s

)∣∣∣∣s

s0

, (s > s∗). (2.62)

2.F. SURFACE AREA FROM SATURATION

The wetting phase saturation s ≡ Vw
Vpore

, where Vw is the volume of the pores occupied by

the wetting phase and Vpore is the total volume of the pores. The total surface area of the
pores covered by the wetting phase can be related to the capillary pressure as [96]

Aw = 1

σ |cos(θ)|
∫Vw

0
pc dVw . (2.63)

The capillary pressure in the Brooks-Corey model [55] can be written as pc = pt s−1/λ,
where pt = 2σ |cos(θ)|/rmax and λ is the pore size distribution for the porous medium.
Dividing Eq. (2.63) with Vtot =Vpore/ϵ gives

aw = 2ϵ

rmax

∫s

0
s−

1
λ d s = 2ϵ

rmax

λ

λ−1
s
λ−1
λ , (2.64)

where aw ≡ Aw /Vtot is the volumetric surface area covered by the wetting phase. It
should be noted that Eq. (2.64) is only valid for λ > 1. For λ ≤ 1, the integral diverges
unless we define a minimum saturation. The reason is that for such a wide pore size
distribution the smallest pores have an infinite surface area. When s = 1, Eq. (2.64) gives
aw,max = 2ϵ

rmax

λ
λ−1 , while at a saturation s the relative surface area covered by the wetting

phase is given by

χ≡ aw

aw,max
= s

λ−1
λ . (2.65)
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2.G. UDELL LEVERETT-J FUNCTION
The dimensionless capillary pressure pc /pt is often referred to as the Leverett J-function.
In the main text we used J (s) = s−λ. A particularly popular function is that by Udell [49]:

J (s) = 1.417(1− s)−2.12(1− s)2 +1.263(1− s)3 (2.66)

Note that in Eq. (2.66) the capillary pressure vanishes for s = 1, the pressure pt is no
longer associated with the capillary pressure of the largest pores as in Eq. (2.5). Equa-
tion (2.6) is now replaced by

d J (s)

d s

d s

d x̄
= ȷ̄n

(1− s)3 + ȷ̄w

s3 , (2.67)

Similar to the main text we can again introduce a non-wetting phase integral

In ≡
∫s

0
(1− s)3 d J (s)

d s
d s (2.68)

= (1− s)4
(

1.417

4
− 4.24(1− s)

5
+ 3.789(1− s)2

6

)
(2.69)

−0.13775

Note that Eq. (2.66) corresponds to a fixed normalized pore size distribution, so there

is no free parameter like λ in the Brooks-Corey model. The slope 1
pt

d pc
d s

∣∣∣
s=1

= −1.417

using Eq. (2.66). This is equal to the −1/λ of the Brooks-Corey model. The variation in
capillary pressure however is much smaller for intermediate s. At s = 0.5, for example,

the same slope is obtained for λ ≈ 9. For s close to 1, solving −1.417 d s
d x̄ = ȷ̄n

(1−s)3 , similar
to Eq. (2.14), gives

s ≈ 1− (
2.82 ȷ̄n x̄

)1/4 (2.70)

Similarly, for Iw (s), we have

Iw ≡
∫s

0
s3 d J (s)

d s
d s (2.71)

=−s4(0.6315s2 −0.6676s +0.2415) (2.72)

The integrals Eq. (2.69) and (2.71) can be used in, for example, Eqs. (2.12), (2.12), and (2.34)
to calculate for example jmax and jlim.

2.H. THREE-REGIME SOLUTION
In the analysis of the main text, we always neglect one of the pressure gradients in Eq. (2.6).
However, around s∗, both the wetting phase and the non-wetting phase pressure gra-

dients are important. We define s∗,1 as the saturation above which the ratio d pn /d x
d pw /d x =

kw jw
kn jn

≳ 5 and we neglect the wetting phase pressure gradient. We also define s∗,2 as
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the saturation below which the ratio d pw /d x
d pn /d x = kn jn

kw jw
≳ 5 and we neglect the non-wetting

phase pressure gradient. By using Eq. (2.6) and above definition for s∗,1 and s∗,2, we can
write9

s∗,1 = 1

1+
(

jw
5 jn

)1/3
, and s∗,2 = 1

1+
(

jw
5 jn

)1/3
. (2.73)

When s > s∗,1, we use Eq. (2.12) to calculate the saturation. When s < s∗,2, we use
Eq. (2.19) to calculate the saturation. For s∗,1 < s < s∗,2, we consider a linear variation
of saturation. At sa ≡ (s∗,1 + s∗,2)/2, using Eq. (2.6) we can write

d s

d x̄

∣∣∣∣
x̄=x̄a

=
(

ȷ̄n

(1− sa)3 − ȷ̄w

s3
a

)
λs

1
λ
+1

a . (2.74)

The non-dimensional coordinates x̄∗,1 at which s = s∗,1 and x̄∗,2 at which s = s∗,2 are
evaluated using Eq. (2.12) or Eq. (2.57). If s∗,2 < s0 < s∗,1, we take x̄∗,1 = 0 and s∗,1 = s0 in
Eq. (2.74). In the linear part, we then have

s = s∗,1 +
(
x̄ − x̄∗,1

) d s

d x̄

∣∣∣∣
x̄=x̄a

. (2.75)

The limiting current for a three-regime analysis is given as

jmax

jw
=

s
3λ−1
λ

∗,2 − s
3λ−1
λ

min

(1− x̄∗,2) (3λ−1)
. (2.76)

2.I. EXPRESSION FOR THE EFFECTIVE DIFFUSIVITY
We assume that the diffusion of gas through liquid is negligible and the diffusion flux of
the reactant is a constant and given by Fick’s law in the dilute limit as:

zw j

F
= D sn dc

d x
. (2.77)

Integrating from x = 0 to x = L, we get,

c1 − c0 = j Lzw

F Deff
. (2.78)

where the effective diffusivity

Deff =
D∫1

0 s−nd x̄
(2.79)

For a high-s design GDL s ≥ s∗ ≳ 0.6. When, furthermore s0 ≈ 1 we can use Eq. (2.15) to
write

9We chose the ratio
d pn /d x
d pw /d x ≳ 5 to neglect d pw /d x and

d pw /d x
d pn /d x ≳ 5 to neglect d pn /d x as it gives the best

approximation for the numerical solution. For values between 3 and 8, the analytical solution does not change
significantly but for higher or lower values, the analytical solution gives a larger deviation.
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D

Deff
=

∫1

0
s−nd x̄ ≈

∫1

0

(
1− (

4λȷ̄n x̄
)1/4

)−n
d x̄, (2.80)

To first order in
(
4λȷ̄n x̄

)1/4 the integrand reads 1+n
(
4λȷ̄n x̄

)1/4. Performing the inte-

grating therefore gives to leading order 1+ 4n
5

(
4λȷ̄n

)1/4 ≈
(
1− 4n

5

(
4λȷ̄n

)1/4
)−n

. The sec-

ond expression is a substantially more accurate approximation, with which Eq. (2.80)
becomes

D

Deff
≈

(
1− 4

5
(4λȷ̄n)1/4

)−n

. (2.81)

For a low-s design GDL, we consider that s < s∗. Therefore we can write the effective
diffusivity Deff as:

D

Deff
=

∫1

0
s−nd x̄ =

∫x̄∗

0
s−nd x̄ +

∫1

x̄∗
s−nd x̄, (2.82)

clearly showing how the effective diffusion resistance proportional to 1/Deff is split into
the sum of the two resistances, one in the domain 0 to x̄∗ and the other in the domain
x̄∗ to 1. Inserting Eq. 2.6 in Eq. (2.82) and neglecting the wetting phase pressure gradient
for x̄ < x̄∗ and the non-wetting phase pressure gradient for x̄ > x̄∗, we can integrate by
changing variables to give

D

Deff
=

∫s∗

s0

−s−
1
λ
−m−1(1− s)3

λȷ̄n
d s +

∫s1

s∗

−s2− 1
λ
−m

λȷ̄w
d s

= λn

λ

∫s∗
s0

(1− s)3d s−
1
λn

ȷ̄n
+

∫s1
s∗ d s3− 1

λn

ȷ̄w (1−3λn)

 ,

(2.83)

where λn ≡ λ
nλ+1 . These integrals are those of Eq. (2.12) and (2.18) with λn instead of λ.

Therefore we can rewrite Eq. (2.83) as

D

Deff
= λn

λ

 Iλn
n

∣∣∣s∗

s0

ȷ̄n
+

Iλn
w

∣∣∣s1

s∗
ȷ̄w

 (s1 < s∗). (2.84)

It is also possible to include the diffusion of liquid through the gas by interchang-
ing the pressure gradients ȷ̄n and ȷ̄w in Eq. (2.83) and adding these two expressions to
Eq. (2.83), forming a parallel circuit. Since diffusion of liquid in gas is much faster than
the diffusion of gas in liquid, this effect is usually negligible.



3
MULTIPHASE FLOW MODEL FOR

MEMBRANELESS GAS-EVOLVING

FLOW-THROUGH POROUS

ELECTRODES

Flow-through electrolyzers, with flow parallel to the current, are used in a wide range of
industrial applications. The presence of flow avoids concentration gradients but can also
be used to separate evolved gases, allowing membrane-less operation. In this work, we
propose a simple multiphase flow-through electrode model. We derive and experimentally
validate an analytical expression for the minimum velocity required to ensure effective
gas separation. We show that this minimum velocity increases as a square root of current
density for thin electrodes and linearly with current density for thick electrodes.

This chapter has been modified from the published article in Journal of Power Sources [15].
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3.1. INTRODUCTION
Porous flow-through electrodes have been studied for a long time due to their superior
mass transfer [97, 98]. Flow-through porous electrodes are traditionally used in elec-
trosynthesis [99, 100], redox flow batteries [101–103], metals removal from waste streams
[104–106], electrochemical destruction of cyanide [107, 108], and water electrolysis [109–
113].

closed

current

flow

gap

Figure 3.1: A schematic view of flow-through configuration considered with, inside the porous electrodes, flow
parallel to the current, outwards from the gap, through the electrodes.

The flow in a porous electrode can be parallel to the current as in Fig. 3.1, normal,
or a combination as in the interdigitated configuration [114]. A flow-through electrode
with flow parallel to the current has traditionally in the literature often been referred to
as flow-by [115, 116] a term nowadays, particularly in the flow battery literature, more
commonly reserved for flow that largely bypasses the electrodes in a separate channel
next to the electrodes, see e.g. [102, 117]. Here we will consider the flow configuration
of Fig. 3.1 in which the flow enters in between and flows out through the electrode. This
configuration has similarities with both crossflow and dead-end separators used for fil-
tration.

In many electrochemical processes the gases are evolved in a liquid electrolyte, in-
cluding the chlor-alkali process used for producing chlorine, the electrosynthesis of chlo-
rate [118], or fluorine [119], the Hall-Héroult process for smelting aluminium, electrowin-
ning of metals, various forms of CO2 reduction [120], and water electrolysis.

Typically a membrane or separator is used to avoid gases crossing over to the op-
posing electrode where they may react back and cause inefficiencies, cause product im-
purity, or safety concerns as in the case of oxygen and hydrogen for example [121–123].
Various membraneless designs have also been proposed, for example based on selec-
tive coating [124] or lift forces on bubbles [125]. Since a membrane or separator adds
costs, resistance, and potential degradation, there seems significant potential for mem-
braneless designs. The design under consideration here uses outward flow to separate
the produced gases, as depicted schematically in Fig. 3.1. This configuration was already
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studied for water electrolysis in e.g. Refs. [109, 126, 127] but only recently its potential
for membraneless operation has been highlighted in Refs. [110, 111, 128, 129].

Many studies have been devoted to modelling flow-through electrodes [115, 116, 130,
131] focusing mostly on mass transfer [127, 132, 133] while far fewer include the effect of
gas evolution [134–138]. All these models assume that distinct bubbles move with a ve-
locity proportional to the liquid velocity. This assumption is likely invalidated when the
pores become smaller than the 100 µm [118] that is typical for the diameter of electrolyt-
ically generated bubbles. For the small pores typically present in rocks or the diffusion
layers of PEM fuel cells [35, 49, 50] and electrolyzers [32, 70, 71], often the assumption is
made that gas forms continuous pathways rather than bubbles [16]. This can be likened
to the annular flow regime in pipe flow. In this case Darcy’s law, which supposes a linear
relation between pressure gradient and velocity, can be assumed to hold approximately.
Although this is a strong simplification with various limitations [139] we will discuss here
the conclusions that follow from such a model and contrast it with the hitherto used
bubble flow assumption.

A largely unanswered question is: what values for the various geometrical design pa-
rameters in Fig. 3.1, like electrode thickness, height, gap thickness, and pore size, are
optimal from the perspective of energy efficiency. The answer crucially depends on both
the flow direction and the minimum required flow rate. When flow is used for mass
transfer, various useful references exist [115, 116, 131, 140, 141]. However, when flow is
used to allow membrane-less operation of a gas-evolving electrolyzer very little is known.
Reference [112] achieved, in a membraneless alkaline water electrolyzer, a current den-
sity of roughly 2 A/cm2 at a cell voltage of 2.5 V and 4 A/cm2 at 3.3 V. Compared to,
typically much thinner, separators the used 2.5 mm gap seems to leave significant room
for improvement. Smaller gaps however also require smaller pores, to ensure good dis-
tribution of flow, hence our interest in models beyond the assumption of bubbly flow.

Recently [113] an extremely high current density of 25 A/cm2 was obtained at 3.5 V,
for more than 100 hours, in an alkaline water electrolyzer with flow through a microfibre
nickel felt perpendicular to the current. These results were obtained using an extremely
thin polyethersulfone 0.1-0.15 µm thickness membrane, which showed immediate fail-
ure due to heat at even higher current densities.

The likely reasons that high multi-A/cm2 current densities have been achieved in
alkaline systems only in the presence of flow is likely due to flow-enhanced mass trans-
fer of dissolved gases, electrolyte, and bubbles, reducing the Nernstian open-circuit po-
tential or concentration polarization [142, 143], bubble overpotentials [144–146] and in-
crease the limiting current density [123, 147], respectively.

Our primary goal here will be to determine the optimal geometrical and operational
conditions for membrane-less flow-through electrolysis, to ascertain whether this can
be competitive with conventional operation with a separator. A question that, however,
first has to be answered is: what is the required flow velocity, as a function of current
density, to allow membraneless operation.
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3.2. MULTIPHASE FLOW-THROUGH ELECTRODE MODEL

3.2.1. GOVERNING EQUATIONS
In the model previously used in Refs. [134–138] and considered in 3.A.2, gas bubbles al-
ways move in the direction of the flow so that any non-zero velocity allows effective gas
separation. Obviously, especially at large current densities, gas bubbles will also enter
the gap between the electrodes, unless an unknown minimum flow-through liquid ve-
locity is used. Here we consider a simple multiphase electrode model to obtain explicit
analytical expressions for this velocity. We consider pores that are small compared to the
electrode thickness so that an average description over many pores can be used. The gas
will be assumed to form continuous pathways so that the extended Darcy equation can
be used.

For a hydrophilic electrode, we may use the following differential equation, discussed
in more detail in section 2.2, to describe the liquid fraction or saturation s,

d pt s−1/λ

d x
=− µgUg

K (1− s)n + µlUl

K sn . (3.1)

The left-hand side shows the derivative of the capillary pressure, the gas pressure minus
the liquid pressure, with respect to the x-coordinate through the electrode; with x = 0
upstream, at the gap, and x = L downstream, at the rear. According to Darcy’s law, the
gas and liquid pressure gradients are proportional to the gas and liquid superficial veloc-
ities Ug and Ul and viscosities µg and µl . The capillary pressure pt s−1/λ is related to the
saturation through the Brooks-Corey relation, with λ the pore size distribution index - a
smaller value corresponding to a more narrow distribution. The threshold pressure pt is
the capillary pressure at s = 1, so corresponding to the largest pore. It is routinely mea-
sured in the analytical porosimetry technique as the ‘bubble point pressure’, the mini-
mum pressure that has to be applied to the gas phase on one side of a porous medium
to see bubbles appearing on the other side.

The permeability K for the liquid is reduced by the presence of the gas through the
‘relative permeability’ sn , and similarly (1− s)n for the gas permeability. Although actu-
ally only consistent with the Brooks-Corey relation for n = 3 in the limit λ→∞ [65] (see
section 2.2), often a power-law fits well to experiments, see for example Ref. [148]. We
note that in the following analysis, approximations near s = 1 are used.

Approximating the pores as cylinders with a maximum diameter dmax we can write 1

pt = 4σ

dmax
, K = c1ϵ

3d 2
max. (3.2)

Here ϵ is the porosity and c1 a material-dependent parameter [16, 64–66].
If both the gas and the electronic current move to the right through the porous elec-

trode, the gas velocity Ug will be proportional to local electronic current density i by
Faraday’s law as

Ug = ziVmi

F
. (3.3)

1Assuming a strongly water wetting medium with zero contact angle θ, otherwise we may replace σ with

σcosθ. We have c1 = α
16

λ
λ+2 in the notation of [66] where α= ziβ in the notation of Ref. [65].
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Here the gas molar volume of an ideal gas Vm = RT /p, zi is the stochiometric coefficient
for a single electron transfer, and F is Faraday’s constant giving the charge of a mole of
electrons.
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Figure 3.2: A possible profile of the electronic current i throughout the electrode, with most of the current
generated in the shaded region within a distance EL to the gap, minimizing the ohmic drop that ions have to
travel.

At the gap side x = 0 both Ug and i vanish, and at the rear both are at their maximum

and i (x = L) = j the current density magnitude. In general we can write i ′0 ≡ di
d x

∣∣∣
x=0

=
1
E

j
L , in terms of the electrode effectiveness factor E as illustrated in Fig. 3.2. Using the

approximation of Eq. (3.17) this gives

i ′0 ≈
j

L

(
1+ j L

2κb

)
, κ≈ ϵ1.5κ0. (3.4)

The effective conductivity of the porous electrode is often approximated by the Brugge-
mans relation κ≈ ϵ1.5κ0 in terms of the electrolyte conductivity κ0. Here we neglect the
influence of the gas fraction, which we show in 3.A to be modest, consistent with the
approximation that s is close to 1.

3.2.2. NUMERICAL SOLUTIONS
Figure 3.3 shows the solution to Eqs. (3.1) and (3.3) for a linearly varying current density
i = (x/L) j and a boundary condition s(x = L) = 0.999. The actual value used for s(x = L)
is not of much influence for the solution near x = 0. The produced gases hydrogen and
oxygen are created in dissolved form first and advected with the flow, before a sufficiently
high supersaturation causes nucleation of gas bubbles that grow and coalesce. We there-
fore assume that a minimum saturation s(x = 0) = s0, which can be slightly below unity,
will allow effective membrane-less operation without bubbles entering the gap. Next, we
aim to find an analytical expression for the associated minimum liquid velocity.
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1

0.9

s

1x/L
0

d s
d x =−λŪl

Ūl = 0.3

Ūl = 1

s0

Figure 3.3: The saturation profile throughout the electrode from solving Eqs. (3.1) and (3.3) with a linearly

current density profile, or d s−1/λ

d(x/L) =− ȷ̄(x/L)
(1−s)n + Ūl

sn with n = 3,λ= 4
3 , ȷ̄ ≡ µg L

K pt

zi Vm j
F = 3·10−4, and Ūl ≡ µl LUl

K pt
= 1

and 0.3. At the rear side, we somewhat arbitrarily assumed s(L) = 0.999 but the exact value can be seen to
impact only the solution near x = L. As the liquid velocity is decreased, s(x = 0) decreases which could result
in an accumulation of gas bubbles near the entrance. Over most of the domain the right-hand side of Eq. (3.1)

approximately vanishes so that s ≈ 1/
(
1+ (

j̄ (x/L)/Ūl )
)1/n

)
, a solution that is indicated by the dotted lines.

Equating the derivative of this solution to that of the solution near x = 0, indicated by the grey dashed lines, we

obtain s0 ≈ 1−
√

j̄ /nλ/Ūl = 0.99 and 0.97 for Ūl = 1 and Ūl = 0.3, respectively, in agreement with the numerical
result. This expression for s0 is used to derive Eq. (3.5).

3.2.3. ANALYTICAL SOLUTION
The numerical solutions reveal two distinctive features that can be used to find an ana-
lytical approximation for the required liquid velocity. First, the second term in Eq. (3.1),
representing the frictional pressure gradient due to liquid flow, dominates near x = 0

when s0 ≈ 1. Locally, this allows the equation to be approximated by − 1
λpt s′ = µl Ul

K .
A second observation from the numerical solutions of Fig. 3.3 is that, in the rest of the

domain, the two terms in Eq. (3.1) approximately cancel so that
( 1−s

s

)n ≈ µg Ug

µl Ul
. Taking

the derivative of this expression at x = 0 gives −n(1− s0)n−1s−n−1
0 s′ ≈ µg U ′

g 0

µl Ul
, where U ′

g 0 ≡
dUg

d x

∣∣∣
x=0

=. Matching the two foregoing approximations for s′ gives U 2
l (1− s0)n−1 s−n−1

0 =
µg K ptU ′

g 0/nλµ2
l . This solution for s0 was compared with the numerical result and found

to give excellent agreement as long as s0 ≳ 0.9. From Eqs. (3.3) and Eq. (3.4) U ′
g 0 =

ziVm
F

j
L

(
1+ j L

2κb

)
so that with Eq. (3.2) we obtain

Ul =
√

c2 j dmax

L

(
1+ j L

2κb

)
, (3.5)

with c2 = 4σc1ϵ
3sn+1

0

nλ(1−s0)n−1
µg

µ2
l

ziVm
F [m4/C/s]. If we assume that the minimum saturation s0 re-
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quired to avoid bubbles in the gap is approximately constant, Eq. (3.5) gives an expres-
sion for the minimally required liquid velocity. This velocity is predicted to increase with√

j /L or j for electrodes that are thin or thick relative to κb/ j , respectively. The associ-
ated value of s0 in this model is a constant that has to be obtained from experiments.

3.3. EXPERIMENTAL VALIDATION
To validate the above model predictions, we consider a typical “filter press"-like [149–
151] alkaline water electrolyzer setup used in [15]. Two different configurations are con-
sidered using Ni-felt electrodes with a maximum diameter dmax = 8 µm, porosity ϵ= 0.75
and permeability K = 1.3×10−13 m2. In configuration 1, nylon 1 mesh with dmax = 35 µm
and thickness 53 µm is pressed to the electrodes, while in configuration 2, a much coarser
nylon 2 mesh with dmax = 1930 µm is used as a spacer to fill the entire gap of 1100 µm,
see Fig. 3.4.

l = 1.1 mml = 1.1 mm

configuration 1 configuration 2

nylongap

53 µm

h
=

28
m

m

L = 0.3 mm

Figure 3.4: In Configuration 1, nylon meshes of thickness 53 µm, aperture dmax = 35 µm, and dimensions
slightly larger than the electrodes, are pressed to the electrodes at their circumference by a 1 mm thick rubber
gasket. In Configuration 2, a nylon mesh of thickness 1.1 mm and aperture dmax = 1.93 mm is used as a spacer
between the electrodes.

In Fig. 3.5, the time-averaged steady-state cell voltage for configuration 1 of Fig. 3.4
with the Ni-felt electrode, as a function of liquid flow rate, for three different current
densities is shown. The cell voltage at largest used flow rate is subtracted in these results.
We see a dramatic increase of almost 1.5 V for j = 4000 A/m2, which can be explained
by an additional ohmic drop introduced by gas accumulating in front of and inside the
electrode. This was further investigated in Ref. [15] using a dedicated visually accessible
setup. The additional voltage disappears after applying a larger flow rate showing that
bubbles can be pushed into the electrodes.

We define, somewhat arbitrarily, a threshold voltage for bubble-induced losses as 0.1
V. The threshold voltage will relate, among other experimental conditions, to the satura-
tion s0. The velocity required to keep the bubble-induced losses below 0.1 V is termed
minimum liquid velocity and is plotted in Fig. 3.6.
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Figure 3.5: The relative cell voltage measured in configuration 1 with nickel felt electrodes, as a function of the
superficial liquid velocity, for three different current densities. We subtracted the cell voltage ≈ 2.4, 2.85, and
3.5 V recorded at the maximum flow rate for the three current densities, respectively. The horizontal solid line
is the threshold of 100 mV used in Fig. 3.6.

With the values from Table 3.1 we have 2κb/L ≈ 1.3 A/cm2 so that, in the range of
current densities of Fig. 3.6, Eq. (3.5) predicts that the minimum liquid velocity scales
approximately with

√
j /L. This proportionality is indeed approximately observed in the

data of Fig. 3.6, where the required liquid velocity increases sub-linearly with current
density. As an additional test, we also checked the dependence on electrode thickness
with L = 600 µm. As predicted by Eq. (3.5) a lower liquid velocity is indeed required in
this case.

The solid lines in Fig. 3.6 indicate Eq. (3.5) with a coefficient c2 = 5 · 10−8 m2/C/s,
showing reasonable agreement for both L = 300 µm and 600 µm. With the parameters
of Table 3.1 this gives s0 ≈ 0.97, well within the range in which Eq. (3.5) is successfully
verified against numerical simulations of Eq. (3.1).

Table 3.1: Approximate values used in the calculations, relevant for hydrogen evolution in configuration 1 with
30 w% KOH at ambient conditions. We calculate the effective electrode conductivity from κ ≈ κelϵ

1.5 with
ϵ= 0.75 and κel ≈ 60 S/m [152], the molar volume from Vg = RT /p, and the Tafel slope from b = RT /αF with
charge transfer coefficient α = 1/2,. The order of magnitude values in the second table were estimated from
the measurements in Ref. [15] with n = 3.

µl 2 mPa s
µg 8.4 µPa s
κ 40 S/m
b 50 mV

Vg 25 l/mol
σ 73 mN/m
zi 1/2 -

Ni-felt - conf. 1
pt 0.37 bar
K 10−13 m2

λ 4/3 -
c1 5 ·10−3 -

c2 5 ·10−8 m4

Cs
s0 0.97 -
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We also performed similar validation for configuration 2 of Fig. 3.4. In this case a
larger liquid velocity is required. The obtained value of c2 − 10−7 m4/Cs corresponds
with the values in Table 3.1 with s0 ≈ 0.98. It seems likely that the hydrophilic nylon 1
with its relatively small aperture size of 35 µm of nylon 1, not too dissimilar from the
pore sizes of the Ni felt, avoids bubbles to enter the gap. Comparing with tests without
a nylon spacer, an added advantage seems to be that bubbles trapped in the gap can be
removed again upon increasing the flow rate. The aperture size of nylon 2 is, however,
too large, both compared to the felt pore sizes as well as typical bubble sizes, to have a
strong positive influence.

0

1

2

3

4

0 1 2 3 4

U
l

[m
m

/s
]

j [kA/m2]

config. 2

config. 1

L = 600 µm

Ni mesh

Eq. (3.5)

c2 = 10−7 m4

Cs

c2 = 5 ·10−8 m4

Cs

Figure 3.6: The measured minimum required liquid velocity Ul to keep the bubble associated overpotential
below 0.1, as outlined in Fig. 3.5. For configuration 1 (diamonds) we varied both the electrode thickness (cir-
cles) and the aperture size (crosses). The continuous lines show a comparison with Eq. (3.5) using c2 = 5 ·10−8

m2/(Cs). For configuration 2 (squares) a larger value c2 = 1 ·10−7 m2/(Cs) is required to obtain a reasonable
agreement, while for the Ni-mesh we do expect a bubbly flow regime in which the theory behind the equation
does not hold.

3.4. DISCUSSION

We have made various simplifications in the analyses that warrant further discussion.
First of all, our assumption of a flow regime in which the gas forms a continuous phase
rather than dispersed bubbles is likely valid for small enough pores, but the exact condi-
tions under which Darcy’s law holds are still under investigation [139]. For definiteness
we assumed power-law dependences on the liquid saturation of the relative permeabili-
ties and capillary pressure in Eq. (3.1), but these can easily be replaced by different forms
in the derivation of Eq. (3.5). Note that, since the derivation considers high liquid satura-
tions, the model parameters are ideally obtained from empirical fits in this same range.

We considered the porous anode and cathode to have similar properties and fo-
cussed on hydrogen evolution in application to water electrolysis. We note that the dy-
namic viscosity µg of oxygen is roughly twice that of hydrogen but also zi = 1/2 is half
that for hydrogen evolution, so that the relevant quantity ziµg in c2 is similar.
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3.5. CONCLUSION
We studied here the potential of flow-through electrodes for membraneless operation in
case of gas-evolving reactions. To minimize ohmic dissipation a small gap between the
electrodes is preferred, increasing pumping losses. Therefore, an important parameter is
the minimally required flow velocity that allows effective membraneless operation with-
out bubbles entering the gap. Previously studied bubble models cannot give insight into
this parameter, nor are they suitable to describe electrodes with small pores. Small pores
are preferred for their high reactive surface area and sufficient pressure drop to allow a
homogeneous flow distribution. Therefore, we studied a multiphase Darcy-flow model
from which we derived a simple analytical relation, Eq. (3.5), for the required liquid ve-
locity. This relation was successfully verified with respect to numerical simulations and
validated against experimental data.

APPENDICES

3.A. ACTIVATION OVERPOTENTIAL

3.A.1. GENERAL EQUATIONS
The superficial gas velocity is given by Faraday’s law as

Ug = ziVm

F
i , (3.6)

where i is the electronic current density, which varies from i = 0 at x = 0 to i = j at x = L.
Assuming the electrode conductivity is much higher than the electrolyte conductivity
and assuming negligible concentration gradients of electrolyte and reactants, Ohm’s law
and the Tafel equation can be written as [75]

dη

d x
= j − i

κsq , (3.7)

di

d x
= j⋆aeη/b . (3.8)

Here the surface overpotential η is equal to a constant minus the electrolyte potential, a
is the active volumetric surface area, and b is the Tafel slope. We assumed the effective
electrode conductivity can be written as κsq with exponent q , often taken to be 1.5 or
2, to account for the presence of gas [153, 154]. Equation 3.8 gives the overpotential at
x = 0 as

η0 = b ln

(
j

aL j⋆E

)
, (3.9)

where the effectiveness factor E ≡ j
Li ′0

.

3.A.2. BUBBLE FLOW REGIME
For completeness and comparison we provide here the analysis for larger pore sizes in
which a bubble flow regime may be assumed. The average interstitial gas and liquid
velocities, ug and ul , are related to superficial velocities, Ug and Ul , as

ug = Ug

ϵ(1− s)
, ul =

Ul

ϵs
. (3.10)
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Assuming the gas bubbles move with a fraction f ≡ ug /ul of the liquid velocity, Eqs. (3.10)
and (3.6) combine to give

s = 1

1+ r i / j
, r ≡ j ziVm

f Ul F
, (3.11)

with r f the ratio Ug /Ul at x = L. Taking a derivative of Eq. (3.8) with respect to x and
inserting Eqs. (3.7) and (3.11) gives

d 2i

d x2 =
(
1+ r

i

j

)q j − i

bκ

di

d x
. (3.12)

With z ≡ di
d x , we have d 2i

d x2 = z d z
di so that Eq. (3.12), using Eq. (3.8), can be written as

d

di

(
j⋆aeη/b

)
=

(
1+ r

i

j

)q j − i

bκ
. (3.13)

For constant parameters, we can integrate with respect to i between i (0) = 0 and i (L) = j
to give

eη0/b −eηL /b = j 2

2 j⋆abκeff
, (3.14)

where
κ

κeff
= 2

r
(
1+q

) (
(r +1)q+2 −1

r
(
2+q

) −1

)
. (3.15)

In the presence of bubbles, the effective conductivity κeff decreases below κ. With, for
example q = 1,2 or 3, Eq. (3.15) simplifies to

κ

κeff
= 1+ r ×


1
3 q = 1
2
3 + r

6 q = 2

1+ r
2 + r 2

10 q = 3.

(3.16)

For high current densities we can neglect the term on the left-hand side of Eq. (3.14)
with respect to the first, to obtain Eq. (3.9) with the electrochemical Thiele modulus
1/Ej L/κeffb→∞ = j L/2κeffb. This is equal to the ohmic drop of ions reacting halfway the
electrode at this effective conductivity [75, 155, 156]. Using the approximation of Ref. [75]
we may write

E ≈ 1

1+ j L/2κeffb
. (3.17)

With this, a general expression

η0 ≈ b ln

(
j

j⋆aL
+ j 2

2bκeff j⋆a

)
, (3.18)

is obtained. To explain the measured overpotentials of 0.1-0.5 V in Ref. [138] required
unrealistically high gas fractions s0 ≥ 0.85 associated with a very small slip factor f =
ug /ul ≈ 0.0016. Visual observations from the set-up of Ref. [15] rather showed f ≈ 1.8.
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3.A.3. DARCY FLOW REGIME
As mentioned in the main text, numerical simulations with s0 ≈ 1 show that over most of
the domain the two terms of Eq. (3.1) approximately balance so that

s ≈ 1

1+
(
µg Ug

µl Ul

)1/n
. (3.19)

Comparing with Eq. (3.11) we can redo the above analysis replacing r i / j with R(i / j )1/n

in Eq. (3.13), where

Rn = µg

µl

j ziVm

FUl
= µg

µl

ziVm

F

√
2κb

c2dmax
, (3.20)

is the ratio between gas and liquid velocities at x = L times the ratio µg /µl . In the second

equality of Eq. (3.20), we neglected the first term in Eq. (3.5) so that Ul = j
√

c2dmax/2κb.
This is valid for large current densities or thick electrodes. Integrating Eq. (3.13) with
R(i / j )1/n instead of r i / j gives, for example with n = 3

κ

κeff
= 1+R ×


1

10 q = 1
1
5 + R

28 q = 2
3

10 + 3R
28 + R2

55 q = 3.

(3.21)

With the values from Table 3.1 for Ni-felt and, say, C = 30 mM, we obtain R ≈ 0.1. From
Eq. (3.21) this gives κ

κeff
≤ 1.2 when q ≤ 3, so only a small correction.



4
AN ANALYTICAL MULTIPHASE

FLOW MODEL FOR PARALLEL

PLATE ELECTROLYZERS

Membraneless parallel-plate electrolyzers use electrolyte flow to avoid product crossover.
Using a mixture model neglecting inertia, and assuming an exponential gas fraction pro-
file, we derive approximate analytical expressions for the velocity profile and pressure
drop for thin plumes. We verify these expressions using numerical solutions obtained
with COMSOL and validate them using experimental data from the literature. We find
that the wall gas fraction increases rapidly at small heights, but becomes fairly constant
at larger heights. These expressions serve as a guiding framework for designing a mem-
braneless parallel-plate electrolyzer by quantifying the maximum possible height. We find
that buoyancy driven membraneless parallel-plate electrolyzers with a typical 3 mm gap
can be designed with a maximum height of around 7.6 cm at 1000 A/m2 for operation
with 98% product purity at atmospheric pressure. For a forced flow at Re= 1000, the same
electrolyzer can be made around 17.6 cm tall at 1000 A/m2. These limits can be further
improved with smaller bubbles or higher pressure.

This chapter has been published in Chemical Engineering Science [157].
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4.1. INTRODUCTION

Clean hydrogen can be produced by splitting water in electrolyzers using electricity from
renewable sources. Traditionally, a membrane or a separator is used between the cath-
ode and the anode that allows the transport of ions and separates the gaseous prod-
ucts. However, these membranes and separators are susceptible to degradation [158],
gas crossover [159] or blockage in the presence of impurities [160] reducing the durabil-
ity of the electrolyzer.

Membraneless electrolyzers have been studied as one of the promising alternatives
to existing electrolyzer technologies. Various designs for membraneless operation of
electrochemical cells have been studied including flow-through porous electrodes [15,
110, 128, 158, 161] and flow-by electrodes [103, 124, 162–164]. Esposito [128] provides a
good overview of challenges and opportunities for membraneless electrolyzers. In this
paper, we deal with electrolyzers without a separator, diaphragm or membrane, where
the flow is parallel to the electrodes. Such electrolyzers may offer potential reduction in
costs and ohmic resistance.

Previous experimental studies have focused on demonstrating the use of flow to mit-
igate gas crossover [110, 124, 162, 164, 165]. Pang et al. [165] recently made the first
attempt to systematically explore the performance limits and trade-offs between var-
ious parameters such as current density, efficiency, product purity, and electrode size
in membraneless parallel plate electrolyzers. In the past, many researchers studied the
gas evolution between vertical electrodes with narrow interelectrode gap using experi-
ments [118, 166–170] and numerical simulations [161, 171–176] to investigate the two-
phase hydrodynamics. Very few researchers made an attempt to analytically model the
two-phase flow in a membraneless parallel plate electrolyzer [172, 177–180]. In this
work, we develop an analytical model for a membraneless parallel plate electrolyzer
without a separator, see Fig. 4.1. We first introduce a numerical model to simulate the
multiphase flow under laminar flow conditions in section 4.2. Using the insights from
the numerical model and governing equations, we derive approximate analytical expres-
sions in section 4.3 for the velocity profile, superficial velocity, shear stress, and pressure
drop. Finally, we provide an expression for the maximum height of the electrolyzer based
on interelectrode gap and flow conditions in section 4.5.

4.2. MATHEMATICAL MODEL

4.2.1. MODEL CONFIGURATION

Figure 4.1 shows a configuration of a membraneless parallel plate electrolyzer. The co-
ordinates z and x represent the vertical and wall-normal directions, respectively. The
vertical electrodes have a height h and are assumed to have a depth much larger than
the interelectrode gap l . This allows us to represent the electrolyzer in 2D. The bubbles
in the electrolyzer move in a plume of e-folding thickness δg(z), which is expected to be-
come thicker with height as more gas is generated. The wall gas fraction on the electrode
surface is denoted by ε0. The liquid electrolyte enters with a vertical interstitial velocity
w(x) because of forced flow or buoyancy due to the presence of the bubbles. The heights
for the entrance region and the exit region are denoted by hen and hexit.
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Figure 4.1: Configuration of a membraneless parallel plate electrolyzer. The gas bubbles are generated at the
electrode surface and move in a plume of e-folding width δg. The wall gas fraction is denoted by ε0. The liquid
electrolyte moves vertically with interstitial velocity w(x).

4.2.2. NUMERICAL MODEL
We model the two-phase hydrodynamics for laminar flow in the electrochemical cell
with the mixture model formulation [171, 172, 181] using COMSOL Multiphysics v5.6,
update 2 [182]. The mixture model formulation is valid when the gaseous phase is in
equilibrium with the liquid phase. This is a reasonable approximation for small electro-
chemical bubbles that have a much smaller density than that of the liquid electrolyte.
We assume that the gas bubbles are spherical due to their small diameter db and that the
presence of high molarity electrolytes prevents coalescence [183–185]. The velocities of
the liquid phase and the gas phase are denoted by u and ug, respectively, while the gas
fraction is denoted by ε. The mixture dynamic viscosity µm = µµr = µ

1−ε [186], where

µ is the dynamic viscosity of the liquid electrolyte and µr = 1
1−ε . The mixture density

ρm = (1−ε)ρ+ερg where ρg and ρ are the densities of the gaseous and the liquid phase,
respectively. Note that we do not use any subscript for the properties corresponding to
the liquid phase, but use subscript ’g ’ for the properties corresponding to the gaseous
phase. The continuity equation for the mixture in steady state is

∇· (ρmUm) = 0, (4.1)

and the momentum equation for the mixture at steady state is

ρmUm ·∇Um =−∇p +∇· (µm
(∇Um + (∇Um)T ))−ρmg ẑ, (4.2)

where Um = (1− ε)u+ εug = u+ εus is the superficial mixture velocity. The difference
between the gas and the liquid interstitial velocity is the slip velocity us ≡ ug −u. Riviere
and Cartellier [180] use a different closure relation for shear stress giving µ instead of
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µm in the second term of Eq. (4.2). However, past works show that the effective mixture
viscosity increases with an increase in gas fraction, and even diverges above a certain
maximum gas fraction [187–189]. Nonetheless, In this work we have provided relations
for both cases – a constant mixture viscosity case in the main text and a gas fraction
dependent increasing mixture viscosity in 4.A.

The continuity equation for the gaseous phase for laminar flow in steady state as-
suming constant gas density, using Us = ε(1−ε)us, can be rewritten as

Um ·∇ε=−∇·Us. (4.3)

We describe the relative motion of the gas bubbles as the superposition of relative mo-
tion due to various phenomena by writing

us = uSt +uSa +uHd +uSd +uSm, (4.4)

In Eq. (4.4), we expressed the total slip velocity as a superposition of five different
components. We describe below the physical meaning of each of these slip velocities.
The first term uSt arises due to the balance between buoyancy and drag force and gives

a slip velocity equal to the rise velocity of the bubble in liquid, uSt = f (ε)
ρg d 2

b
18µ ẑ. Here,

f (ε) = (1 − ε)4 is a hindrance function for a swarm of particles [190, 191]. Note that
we used a power 4 in the hindrance function to give expressions similar to [172], while
Ref. [190] and Ref. [191] find a slightly higher power of 4.65 and 5, respectively. However,
we checked our simulations with these slightly higher powers in the hindrance function
and find negligible differences in the numerical results. There have been some other
works which suggest that the bubble swarm velocities may be higher than for a single
isolated bubble [184, 192, 193].

The exact expression for f (ε) is, therefore, debatable. Smaller powers of (1− ε) in
f (ε) would make the gas plumes more exponential in shpae, leading to a better ac-
curacy of our model. The drag force is assumed to be Stokes’ drag, which is valid for

ReSt = f (ε)
ρ2g d 3

b
18µ2 ≪1. For ε→ 0, this corresponds to a bubble diameter of approximately

100 µm. However, with higher gas fractions usually observed in electrolyzers, the error
becomes smaller for larger bubble diameters.

The second term uSa corresponds to the Saffman lift force experienced by the parti-
cles translating and rotating in a velocity gradient [194–196]. The Saffman lift acts in a
direction perpendicular to the vorticity vector and the slip velocity vector. In a buoyancy
driven flow, ∂w

∂x ≫ ∂u
∂z and the slip velocity due to buoyancy is dominant in the verti-

cal direction. So, as a simplification, we assume that the Saffman lift force is given by

uSa = 0.17wSt

√
d 2

b
µ

∣∣∣ ∂w
∂x

∣∣∣sign
(
∂|w |
∂x

)
x̂ [194] and acts only in the wall-normal direction. The

Saffman lift force tends to push the bubbles from a region of high velocity to a region
of low velocity. It should be noted that here we neglected the vertical component of the
Saffman lift force because it is expected to be much smaller than wSt.

The third term uHd is due to collision-like interaction between bubbles, similar to hy-
drodynamic dispersion of suspended particles [171, 172, 191, 197, 198], given by uHd =
−dbwSt

2
D·∇ε
ε . Here, D=

(
1 0
0 8

)
is a non-isotropic dimensionless dispersion tensor [191].
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Inserting the expression of uHd in Eq. (4.3) gives a diffusion term∇·(DHd·∇ε) with disper-

sion coefficient DHd =D
dbwSt(1−ε)

2 . The expression for DHd differs from the expression
provided by Ref. [173] where the dispersion coefficient is multiplied by an additional
factor ε. However, our expression is consistent with the experimentally observed hydro-
dynamic dispersion [191, 197] where the dispersion coefficient is proportional to dbwSt.
The dispersion coefficient used in the expression of uHd is a consequence of the random
path taken by the liquid in the presence of bubbles similar to hydrodynamic dispersion
in a porous medium [199, 200] and is not the same as the turbulent eddy viscosity, which
we have neglected in this work.

The fourth and the fifth terms, uSd and uSm, are results of increased bubble-bubble
interactions in a sheared flow. This causes a dispersion of bubbles from regions of high
gas fraction regions to low gas fraction region, called shear induced diffusion given by

uSd =−d 2
b

4

∣∣∣ ∂w
∂x

∣∣∣ ε(1+0.5e8.8ε)
3(1−ε) ∇ε [201, 202], and from regions of high shear rate to regions of

low shear rate, called shear induced migration given by uSm =−sign
d 2

b
4

(
∂w
∂x

)
0.6ε
1−ε∇ ∂w

∂x [202].

All expressions of slip velocities assume that the liquid flow is primarily in the vertical
direction. In regions where the flow is not vertical, the slip velocity expressions should
be modified. However, as shown later in Fig. 4.3, we see that for the present configura-
tion, the flow is primarily in the vertical direction. The validity of these expressions for
high current density where these bubble-bubble interactions are significant is further
established by comparison with four-way coupled DNS simulations for laminar flows in
Ref. [203].

For water electrolysis, producing one mole of hydrogen at the cathode involves trans-
fer of two moles of electrons, while producing one mole of oxygen at the anode involves
transfer of four moles of electrons. The volumetric flux, or superficial gas velocity Ug of
the electrogenerated gas in the x-direction can be directly related to the applied current
density using the Faraday’s law as:

Ug,c = Vm

2F
j , and Ug,a =−Vm

4F
j , (4.5)

where Vm is the molar volume of the gas. For an ideal gas, Vm = RT /p where R is the
universal gas constant. For simplicity, we assume a 100% gas evolution efficiency [204]. It
should be noted that increasing the pressure of the system, decreases the molar volume
of the gas, thereby reducing the gas flux. Moreover, as the pressure increases, the gas
evolution efficiency may decrease, further lowering the volumetric flux in Eq. (4.5).

4.3. ANALYTICAL MODEL

In this section, we find an approximate analytical solution for Eq. (4.2) and derive ex-
pressions for the velocity profile, average superficial velocity, and pressure drop along
the height of the electrode. We will also highlight the assumptions and limits of the ana-
lytical solution.
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4.3.1. VOLUME FRACTION
We assume that the gas fraction in the interelectrode gap can be written as

ε= ε0

(
e
− x
δg +e

− l−x
δg

)
, (4.6)

where ε0 is the gas fraction at the electrode surface and δg is the e-folding plume thick-
ness. Here, we assume equal gas fraction at both electrodes, but treat a more general
case of different gas fractions in 4.A. We also assume that the plume thickness is equal
on the cathode and the anode side. This is approximately valid as long as the diameter
of the oxygen and the hydrogen are similar. We provide a general solution for different
plume thicknesses in 4.B. Using Eq. (4.6), the average gas fraction in the electrode gap
can be written as

〈ε〉 =
2ε0δg

(
1−e

− l
δg

)
l

, (4.7)

which gives 〈ε〉 = 2ε0δg

l for δg ≪ l and 〈ε〉 = 2ε0 for δg ≫ l .

4.3.2. PLUME THICKNESS
We assume that the plume thickness can be written as

δg = Aza

〈W 〉b
, (4.8)

where A is a dimensional constant depending on the current density, electrolyte, and
the electrode. Schillings et al. [172] conducted an analytical scaling study for natural
recirculation when the bubble diffusion coefficient is much smaller than the liquid ki-
netic viscosity so that bubble diffusion is smaller than momentum diffusion, to give

δg ∼
(
ρg zd 6

b
µlUg

)1/4

. At high current density, shear-induced diffusion becomes dominant,

and the plume thickness is predicted to be given by δg ∼ (d 2
bz)1/3 [172]. Schillings et al.

[172] also showed analytically that for a forced flow, b = 1/3. Reference [205] analyzed
the existing experimental data of Refs. [206], [207], and [168] and showed that at low
current density and heights, a ≈ 0.5. Bongenaar-Schlenter et al. [208] found from both
theory and experiments that a ≈ 0.3 and b ≈ 1/3 under forced flow conditions. Fukunaka
et al. [209] found that the bubble layer grows along the vertical height with a ≈ 0.33 for
current densities ranging from 200 A/m2 to 1000 A/m2, while a ≈ 0.4 for 100 A/m2. Lee
et al. [170] experimentally observed in a forced flow that b ranges from 0.3 to 0.7. Pang
et al. [165] made use of high speed videography and fitted the plume thickness for the
region above the electrode with a = b = 0.47.

4.3.3. GOVERNING EQUATION AND BOUNDARY CONDITIONS
We assume that inertial forces are negligible in comparison to the sum of pressure forces
and buoyancy. It should be noted that for natural recirculation, this assumption may not
hold everywhere, especially in the core region where little or no gas is present. Therefore,
in such cases, we expect a deviation from the numerical solution. Neglecting the inertial
term in the z-component of the momentum equation from Eq. (4.2), we can write
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0 =−∂P

∂z
+ ∂

∂x

(
µm

∂w

∂x

)
+ερg , (4.9)

where P = p +ρg z is the reduced pressure and ε is given by Eq. (4.6). We used here the
limit ρg ≪ ρ, for which ρm = ρ(1−ε). We also assumed that ws ≪ w for small bubbles,
that allows us to write Wm = w+εws ≈ w . We now introduce the following dimensionless
and characteristic variables:

δ̄= δg

l
, x̄ = x

l
, wp =−∂P

∂z

l 2

12µ
and wb = ρg l 2

12µ
, (4.10)

and re-write Eq. (4.9) as

0 = 12wp + ∂

∂x̄

(
µr
∂w

∂x̄

)
+12wbε= 0. (4.11)

To solve Eq. (4.11), we need two boundary conditions which can be obtained from the
no-slip condition for the liquid electrolyte at the electrode surface so that w = 0 at x̄ = 0
and x̄ = 1.

4.3.4. ELECTROLYTE VELOCITY

In the below analysis, we assume µr = µm
µ = 1 to obtain more transparent equations, but

provide a more generally valid case of µr = 1
1−ε in 4.A.

INTERSTITIAL VELOCITY PROFILE

Solving Eq. 4.11 with Eq. (4.6), no-slip boundary conditions and assuming µm = µ, we
get

w = 6wpx̄(1− x̄)+12wbε0δ̄
2
(
1−e−

x̄
δ̄

)(
1−e−

1−x̄
δ̄

)
. (4.12)

The first term is the common pressure driven parabolic profile. For large δ̄≫ 1, Eq. (4.12)
tends to (6wp +12wbε0)x̄(1− x̄) so that buoyancy assists the pressure gradient in driv-
ing the parabolic flow profile. For thin plumes, in the limit of δ̄≪ 1, the second term
describes a plug flow with a constant velocity in the center, decreasing to zero in very
thin boundary layers near x̄ = 0 and x̄ = 1. In this limit, it can be approximated by

12wbε0δ̄
2
(
1− cosh

(
(2x̄−1)/2δ̄

)
cosh

(
1/2δ̄

) )
similar to the analytical solution for Hartmann flow in a

magnetic field [210, 211] and the Darcy-Brinkman equation for flow in a porous medium,
where δg is the square root of the ratio of permeability and porosity [212].

AVERAGE SUPERFICIAL VELOCITY

The average superficial velocity, 〈W 〉 =∫1
0 w(1−ε)d x̄ using Eq. (4.12) gives

〈W 〉 = wp +12ε0δ̄
2(wb −wp)

(
1−2δ̄+ (1+2δ̄)e−

1
δ̄

)
−12ε2

0δ̄
2wb

(
δ̄−2e−

1
δ̄ − δ̄e−

2
δ̄

) (4.13)

For thin plumes (ε0δ̄≪ 1 and e−1/δ̄ ≪ 1) with respect to interelectrode gap, Eq. (4.13)
can be written as
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〈W 〉 = wp +12wbε0δ̄
2(1−2δ̄),

{
wb ≫ wp or

12ε0δ̄
2 ≪ 1

(4.14)

In the limit of zero gas fraction, ε0 → 0, Eq. (4.14) reduces to the single phase Hagen–Poiseuille
relation, 〈W 〉 = wp. For the homogeneous limit (δ̄≫ 1), the gas fraction uniformly be-
comes 2ε0 and Eq. (4.13) gives

〈u〉 = 〈W 〉
1−2ε0

= wp +2ε0wb, (4.15)

where 〈u〉 is the interstitial electrolyte velocity. Equation (4.15) clearly shows buoyancy
assisting pressure driven flow and the effect of the liquid fraction through 1−2ε0.

4.3.5. ELECTRODE SURFACE GAS FRACTION
The gas fraction at the electrode surface, ε0, is hard to measure experimentally but is an
important quantity. In this section, we provide an analytical model to estimate it. The
average superficial gas velocity 〈Wg,c〉 due to gas generated at the cathode is related to
the superficial gas velocity Ug,c in the x-direction by the continuity equation as

〈Wg,c〉 =
∫z

0
Ug,cd z/l = jVmz

2F l
, (4.16)

where in the final expression, we assumed a constant current density j . The interstitial
liquid velocity is related to superficial gas velocity 〈Wg,c〉 as

〈Wg,c〉 = 〈εc(w +ws)〉, (4.17)

where ws is the vertical component of the slip velocity. Usually, it can be neglected. How-
ever, we provide the expressions for electrode surface gas fraction assuming a constant
slip velocity. It should be noted that while the approximate analytical results neglect the
slip velocity, the numerical solution includes all the slip velocities mentioned in Eq. (4.4).
A similar expression can be derived for the superficial gas velocity 〈Wg,a〉 at the anode.
For δ̄≫ 1, we can rewrite Eq. (4.17) as

〈Wg,c〉 = 2wbε
2
0 + (wp +ws)ε0, (4.18)

which on solving for ε0 gives

ε0 =
ε2

h

2εl

√
1+

(
2εl

εh

)2

−1

 , (4.19)

with εl = 〈Wg,c〉
wp+ws

and εh =
√

〈Wg,c〉
2wb

, where εl and εh are the limiting expressions for ε0

for low and high values, respectively. Equation (4.19) can also be approximated by ε0 ≈(
ε

p
l +εp

h

)1/p
with a relative maximum error of less than 4% for p =−1.43 or about 20% for

p =−1. This form manifestly shows that it is the smaller one of εl and εh that primarily
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determines ε0. Using Eq. (4.12), we can rewrite Eq. (4.17) for thin plumes (e−1/δ̄ ≪ 1)
with respect to interelectrode gap and small reduced pressure gradient as

〈Wg,c〉 = 6δ̄3wbε
2
0 +

(
6δ̄wp(1−2δ̄)+ws

)
δ̄ε0, (4.20)

and solve Eq. (4.20) using Eq. (4.14) for ε0 to give Eq. (4.19), now with

εl =
〈Wg,c〉

δ̄
(
6δ̄〈W 〉(1−2δ̄)+ws

) , εh =
√

〈Wg,c〉
6wbδ̄3(1−12δ̄(1−2δ̄)2)

. (4.21)

There are very few wall gas fraction measurements. Reference [209] calculated the
gas fraction using image analysis and Eq. (4.17) for low current density and low height
to give ε0 ∝ j 1/2 and δg ∝ j 0.26. At low current densities and low heights, it is expected
that εl dominates. We note that 〈Wg,c〉 varies linearly with current density as given by
Eq. (4.16). Using δg ∝ j 0.26 in the expression for εl and neglecting the slip velocity in
Eq. (4.21) gives ε0 ∝ j 0.48 similar to Ref. [209].

For higher heights, ε0 ≈ εh. Reference [209] measures the average gas fraction in a
bubble dispersion layer, proportional to our ε0, to scale as z0.26 and the plume thickness
as z0.31 for current densities above 93 A/m2. We approximate (1−12δ̄(1−2δ̄)2) ≈ 6.5×
10−3δ̄−1.5 as a power law in Eq. (4.21) for 0.06 < δ̄ < 0.15, so that with δg ∝ z0.31, ε0

becomes proportional to z0.27 very close to the scaling of gas fraction found by Ref. [209].

4.3.6. PRESSURE DROP
As argued at the end of the previous section, often the wall gas fraction tends to be fairly
constant beyond a certain height. Assuming a constant ε0, we can write the total pres-

sure drop across the electrode height, ∆P ≡ P (h)−P (0) =− 12µ
l 2

∫h
0 wpd z by inserting wp

from Eq. (4.14) and δ̄=Aza/〈W 〉b l as

∆P =−12µh〈W 〉
l 2

(
1−

( 〈W 〉nc

〈W 〉
)1+2b (

1−2δ̄h
2a +1

3a +1

))
. (4.22)

where δ̄h = δ̄|z=h . In the limit, ε0 → 0, Eq. (4.22) reduces again to the familiar Hagen-
Poisseuille relation. The negative sign in front of 〈W 〉nc shows that buoyancy opposes
the pressure drop due to viscous friction. The velocity obtained for ∆P = 0 in the limit
δ̄≪ 1 is given by 〈W 〉 = 〈W 〉nc where

〈W 〉nc =
(

12wbε0

1+2a

(
Aha

l

)2
) 1

1+2b

(4.23)

The subscript ‘nc’ stands for natural convection. Here, 〈W 〉nc is the expected superficial
velocity in case friction can be neglected for the natural convection flow. This may be a
good approximation in the case of electrodes immersed in a large container.

Eq. (4.23) gives the upper limit for natural convection velocity because at high ve-
locity, the dynamic pressure losses can not be neglected so that ∆P > 0. Eq. (4.23) gives
〈W 〉nc ∝ l−0.6 for b = 1/3 as both εl and εh are proportional to l when velocity slip can be
neglected. A similar dependence of recirculation velocity on gap width, l−0.5-l−0.65 is re-
ported in Reference [213]. We will use Eq. (4.23) in section 4.5 to calculate the maximum
height for a buoyancy driven electrolyzer.
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4.3.7. WALL SHEAR STRESS
Assuming a constant ε0, we can integrate Eq. (4.11) for thin plumes over the interelec-
trode gap to give the total shear stress at a particular height z as

τw = 2µ
∂w

∂x

∣∣∣∣
x=0

= 12µ

l

(
wp +2wbε0δ̄

)
. (4.24)

For single phase flow, the shear stress is given by τ0 = 12µ〈W 〉/l . Therefore, we can write
the ratio of the multiphase shear stress and single phase shear stress using Eq. (4.14) and
Eq. (4.24) as

τw

τ0
= 1+ wbε0δ̄

(
2−12δ̄(1−2δ̄)

)
〈W 〉 . (4.25)

For thick plumes, integrating Eq. (4.11) gives the ratio τw
τ0

= 1
1−2ε0

. Here, 1− 2ε0 is the
correction for increased interstitial velocity in the presence of average gas fraction 2ε0.
Various authors have previously studied the pressure drop or shear stress multiplier,
defined as the ratio of multiphase shear stress to single phase shear stress [214–218].
Equation (4.25) shows that for forced flow assisting buoyancy, considered here, the mul-
tiphase shear stress is always larger than the single phase shear stress and at constant
superficial liquid velocity. The multiphase shear stress increases as the average gas frac-
tion increases, but decreases as the plume thickness increases. It should be noted that
the wall shear stress in Eq. (4.24) and Eq. (4.25) varies with height z.

4.4. VALIDATION AND DISCUSSIONS
In the first part of this section, we compare our numerical model with two different ex-
perimental measurements: one under forced flow conditions by Pang et al. [165] and
another under bubble-induced free convection by Boissonneau [118]. Pang et al. [165]
estimated the gas fraction from images in the region above the electrodes, while Bois-
sonneau [118] measured the velocity profiles in the inter-electrode gap of a small elec-
trolyzer using laser doppler velocimetry (LDV). The dimensions and operating condi-
tions for the experiments are listed in Table 4.1. In the second part of this section, we
validate our analytical expressions for the surface gas fraction and velocity profile. In the
third part, we verify the analytical pressure drop relation of Eq. (4.22) against the numer-
ical simulations.

4.4.1. VALIDATION OF NUMERICAL MODEL
We solved the mixture model formulation in COMSOL v5.6, as described in section 4.2.2.
At the top, an outlet boundary condition is used with a pressure of 0 Pa so that both the
gas and the liquid can flow out of the domain. A parabolic velocity inlet boundary con-
dition is used at the bottom of the channel with zero gas flux such that the average veloc-
ity just below the electrode matches the average velocity measured in the experiments,
as shown in Fig. 4.2. This means that the flow enters the electrode as fully developed,
which may not be true if the velocity is high. However, for the conditions of Ref. [118],
hen = 40 mm is approximately equal to the entrance length for a laminar flow [219],
(0.625+0.044Re) l ≈ 34 mm, at the maximum velocity 〈W 〉 = 0.08 m/s observed at 2000
A/m2. Therefore, we can expect the flow to be parabolic at the bottom of the electrode
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Table 4.1: Dimensions and operating conditions for validation cases

Properties Pang et al. [165] Boissonneau [118]
Electrode 2 nm Ti and 50 nm Pt de-

posited sequentially on
Ti foil substrate

coated Titanium at
Cathode and DSA®

at Anode
Electrolyte 0.5 M H2SO4 50 g/l Na2SO4 (or

0.35 M)
Inter-electrode gap, l 4 mm 3 mm
Electrode height, h 9 mm 40 mm
Channel height above
electrode, hexit

12 mm 40 mm

Channel height below
electrode, hen

95 mm 40 mm

Temperature, T 60° C 25° C
Pressure 1 atm 1 atm
Electrolyte density, ρ 1030 kg/m3 1040 kg/m3

Electrolyte viscosity, µ 1.1 mPa-s 1.03 mPa-s

2000 A/m2

1000 A/m2

500 A/m2
0.00

0.02

0.04

0.06

0.08

0.10

0.12

w
(m

/s
)

x (mm)0 1 2 3

Figure 4.2: Velocity profiles at z =−5 mm slightly below the electrode (see Fig. 4.1), for the three current densi-
ties: j = 2000 A/m2 (red), j = 1000 A/m2 (green) and j = 500 A/m2 (blue). The circles represent the experimen-
tal measurements from Boissonneau [118], the dashed line represents the numerical solution and the almost
overlapping solid line represents the approximate analytical solution of Eq. (4.33). The parameters used are
listed in Table 4.1, Table 4.2 and Table 4.3 for buoyancy driven conditions. Eq. (4.33) gives a parabola when
ε0 = 0.

for the conditions of Ref. [118]. At the electrode wall, we used the mixture inlet boundary
condition, where we provided the mixture and the gas velocity to be equal and given by
Eq. (4.5). This boundary condition ensures that the gas enters from the electrodes at a
superficial velocity given by Eq. (4.5). In our simulations, we use a constant bubble di-
ameter at a given current density, see Table 4.2. Boissonneau [118] measured up to two
times larger average hydrogen bubble diameter at the top compared to the bottom of the
electrode. We used the average bubble diameter measured at the top of the electrode, as
listed in Table 4.2. The bubble diameter is assumed to be the same for both hydrogen
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Table 4.2: Average hydrogen bubble diameter measured experimentally at the top of the electrode for different
validation cases. The Reynolds number is defined as Re= ρul/µ.

Validation Case db [µm] 〈W 〉in [m/s]
Forced Flow (Pang et al. [165])

j = 2000 A/m2, Re= 297 157 0.08
j = 2000 A/m2, Re= 796 150 0.214

Natural Recirculation (Boissonneau [118])
j = 500 A/m2 62 0.041

j = 1000 A/m2 74 0.056
j = 2000 A/m2 87 0.08

and oxygen, as no information about the size of oxygen bubbles was provided in the two
references.

Figure 4.3 shows the liquid velocity vector overlaid on the contour plot of gas fraction.
We see that the gas moves in a plume near the electrode surface and the gas fraction
increases along the height of the electrode. The liquid velocity is initially parabolic at the
bottom of the electrode, but changes its shape due to buoyancy of the bubbles.

-5

45

z
(m

m
)

x (mm) x (mm)0 03 3
0

0.4

ε

j = 500 (A/m2) j = 2000 (A/m2)

Figure 4.3: Liquid velocity vectors overlaid on contour plots for gas fraction. The size of the arrow vector
represents the magnitude of the velocity. The parameters used are listed in Table 4.1, Table 4.2 and Table 4.3
for buoyancy driven conditions. The velocity vectors are shown at z = −5 mm, z = 20 m and z = 35 m. It
can be seen that the velocity is initially parabolic as shown in Fig. 4.2, but changes its shape along the vertical
coordinate as the gas fraction increases.

Figure 4.4 shows the magnitude of slip velocity near the top of the electrode (z = 35
mm) for the validation case solved in COMSOL corresponding to the experiments of
Boissonneau [118] at 2000 A/m2. The properties are listed in Table 4.1 and Table 4.2.
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It can be seen that the slip velocity due to hydrodynamic dispersion, Saffman force and
shear-induced diffusion are important, while shear migration can be neglected both in
horizontal and vertical direction. The hydrodynamic dispersion becomes important in
the region where the gas fraction is small. This is because the hindrance factor f (ε) re-
duces its magnitude in the region of high gas fraction. The slip velocity due to Saffman
force and shear-induced diffusion is significant near the electrodes due to high shear
rate in these regions.

(a) Vertical slip velocities at z = 35 mm
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(b) Horizontal slip velocities at z = 35 mm
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Figure 4.4: Magnitude of slip velocity near the top of the electrode (z = 35 mm) for the validation case corre-
sponding to the experiments of Boissonneau [118] at 2000 A/m2. The top figure shows the vertical slip veloci-
ties. It can be seen that in the vertical direction, the Stokes slip velocity due to buoyancy is dominant, while the
shear migration and shear diffusion slip velocities are negligible. In the horizontal direction, the shear migra-
tion slip velocity is always negligible compared to other slip velocities. The slip velocities due to Saffman force
and shear-induced diffusion are dominant near the wall, while hydrodynamic dispersion becomes important
in the bulk region where the gas fraction gradient is large and gas fraction is small.

PLUME THICKNESS

Here, we compare the plume thickness along the height hexit above the electrode with
the experimental data from Pang et al. [165]. Figure 4.5 shows the contour lines corre-
sponding to the location where 99% and 60% of the gas is located inside the plume for
the two different Reynolds numbers. We see a good agreement between the numerical
model and the experimental measurements. The analytical expression of Eq. (4.8) is also
shown in Fig. 4.5.
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(a) Re=297
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(b) Re=796
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Figure 4.5: Contour lines corresponding to the locations where 60% and 99% of the hydrogen gas is located
within the plume. The circles with error bars represent the experimental measurements from Pang et al. [165]
and the dashed line represents our numerical solution. The solid line represents the profile using Eq. (4.8) with
a = 0.5, b = 0.33 and A = 8.4×10−4 m0.83/s0.33 for the 60% profile. For the 99% profile, we used A = 2.1×10−3

m0.83/s0.33.

Table 4.3: Estimated parameters for plume thickness using a least square fit on simulation results for the con-
figuration used by Boissonneau [118]. While the electrolyzer used in Ref. [118] operates using buoyancy driven
flow, the forced flow results are obtained by doing multiple numerical simulations with different inlet veloci-
ties. The power of b = 1/3 is also observed by Schillings et al. [172].

At buoyancy-driven conditions [118]
j (A/m2) a A/〈W 〉b

500 0.35 6.6×10−4

1000 0.39 9.2×10−4

2000 0.4 1.2×10−3

Forced flow (simulations)
j (A/m2) a b A

500 0.44 0.33 3.4×10−4

1000 0.45 0.33 5×10−4

2000 0.45 0.32 6.9×10−4

In order to find the most suitable values of A, a, and b, we did multiple simulations
for the configuration used by Boissonneau [118] for current densities of 500 A/m2, 1000
A/m2 and 2000 A/m2 at different forced flow conditions such that 〈W 〉 ranges between
0.06 m/s and 0.33 m/s. Using the data from the simulations, we obtained the e-folding
plume thickness δg at every 1 mm between h = 0 mm and h = 40 mm by fitting Eq. (4.6)
such that the average gas fraction 〈ε〉 and the electrode gas fraction ε0 are the same as
in the numerical solution. Using this plume thickness data, we performed regression
using the least squares method to obtain the values of A, a and b reported in Table 4.3.
It can be seen from Fig. 4.7 that the estimated parameter values give a reasonable fit for
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the simulated plume thickness. We also note from Table 4.3 that A varies with current
density. Since, in our model, current density is proportional to volumetric flux Ug,c from
Eq. (4.5), we write, for forced flow

A ≈ 4.4×10−2Ug,c
0.5, (4.26)

as shown in Fig. 4.6. Eq. (4.26) should be used with caution, as it is obtained for forced
flow conditions and for bubble diameter varying with current density for only three data
points. The effect of increased bubble diameter is also included implicitly in Eq. (4.26).
Reference [165] also predicted a similar power of j 0.47 for forced flow conditions, how-
ever Ref. [208] predicted a much smaller power of j 0.1.

0

2

4

6

8

A
×1

04

Ug ,c (mm/s)
0 0.05 0.1 0.15 0.2 0.25 0.3

Eq. (4.26)

Figure 4.6: Variation of A with volumetric gas flux in horizontal direction Ug,c for forced flow simulations
corresponding to the configuration used by Boissonneau [118]. We see that A, shown as solid circles, varies
roughly as the square root of volumetric flux given by Eq. (4.26) for these simulations. It should be noted that
the current density is proportional to volumetric flux according to Eq. (4.5).

In our simulations, we used the bubble sizes in Table 4.2, independent of velocity.
Higher velocities result in smaller bubbles [165, 220, 221]. In addition to the direct effect
of flow on the plume width, this further reduces the plume thickness. This is because a
decrease in bubble size results in smaller lateral dispersion of bubbles as the slip veloci-
ties in the lateral direction are proportional to db, see Eq. (4.4). As such, the numerically
obtained value of b may be overestimated. Referring to Fig. 4.9, we note that the plumes
are not exactly exponential, especially at higher heights and current densities. Therefore,
we expect deviations from our analytical model, particularly for these conditions.

VELOCITY PROFILE

In Fig. 4.10, we compare the velocity profiles from the numerical model against the ex-
periments from Boissonneau [118] at different electrode heights and current densities.
The model shows good agreement with the experimental data. The simplification of
assuming a constant diameter in the numerical model is the likely reason for small dis-
crepancies. It should be noted that the measured velocities in Fig. 4.10 are always higher
than the velocities from the numerical and semi-analytical model. In part, this is be-
cause laser doppler velocimetry measures the bubble velocity, which is always slightly
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Figure 4.7: Scatter plot for simulated e-folding plume thickness δg for different heights, inlet velocities and
current densities for the configuration of Boissonneau [118] and corresponding properties listed in Table 4.1.
The plot contains data from 40 different heights ranging from 1 mm to 40 mm at different forced flow con-
ditions, such that 〈W 〉 ranges between 0.06 m/s and 0.33 m/s. The blue, green and red dots corresponds to
j = 500 A/m2, j = 1000 A/m2 and j = 2000 A/m2, respectively. It can be seen that the plume thickness can be

approximated reasonably well with Aza

〈W 〉b over this range of parameters whereA, a and b are listed in Table 4.3.
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Figure 4.8: Log-log plot for e-folding plume thickness δg with height z obtained from our numerical model for
the buoyancy driven flow in the configuration used by Boissonneau [118]. The colored dotted lines represent
the power law relation fitted using regression with parameters listed in Table 4.3. The black dotted line indi-
cates a slope of 0.4. It can be seen that at low values of δg, the power law underestimates the plume thickness.

higher than the liquid velocity due to slip. For a bubble diameter of 88 µm, we can esti-
mate wSt to be approximately 4 mm/s. The oxygen bubbles may be larger, giving larger
slip velocities – see 4.D.
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Figure 4.9: Gas fraction profiles for the configuration used by Boissonneau [118]. It can be seen that at low
current density, the gas fraction varies approximately exponentially with x while at larger current densities,
the gas fraction profiles are not exponential. Due to this, the estimated e-folding plume thickness using the
procedure described in section 4.3.2 overestimates the growth of plume thickness with height. This deviation
from an exponential profile will result in errors at higher heights and larger current densities.

4.4.2. VALIDATION OF ANALYTICAL MODEL

GAS FRACTION AT THE ELECTRODE

For the experimental values of 〈W 〉 from Boissonneau [118], we solve Eq. (4.35) and
Eq. (4.39) numerically to get the gas fraction ε0 and wp at a certain height. Since dif-
ferent amount of gas is generated at the cathode and the anode as described by Eq. (4.5),
we use Q = 0.8. In Fig. 4.11, we compare the analytical approximation for ε0 with that of
the numerical model. We see that the analytical model gives a similar trend for the gas
fraction at the electrode surface as the numerical model. Compared to the numerical
model, the analytical gas fraction is lower, especially at larger heights. This is because
we neglected the effect of inertial terms in our analysis. As such, the analytical profiles
have a larger peak velocity (see Fig. 4.10). From Eq. (4.17), this gives a lower gas fraction.

VELOCITY PROFILE

For calculating the velocity profile, we use the just obtained semi-analytical values of
ε0 and wp at a particular height to plot the velocity profile in Fig. 4.10 using Eq. (4.33).
Here, we used the relations from the appendix to reproduce asymmetric profiles due
to different wall gas fractions at the two electrodes. We see a reasonable agreement of
the semi-analytical model with the numerical model and experimental measurements.
The analytical results do not show the small velocity peak in the center of the channel
that is visible from simulations at z = 20 mm and j = 1000 A/m2 and j = 2000 A/m2.
The analytical results also show a higher velocity peak near the electrode surface. The
discrepancy arises because we neglected the inertial term, which lowers the velocity near
the peak and increase the velocity in the bulk. At higher current densities, the deviation
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(b) z = 35 mm
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Figure 4.10: Velocity profiles for the three current densities: j = 500 A/m2 (blue), j = 1000 A/m2 (green),
and j = 2000 A/m2 (red). The circles represent the experimental measurements from Boissonneau [118], the
dashed line represents the numerical solution and the solid line represents the semi-analytical solution. Here,
we used Eq. (4.33) to capture the asymmetry for water electrolysis. For the values of δg, we used parameters in
Fig. 4.8. It should be noted that the experimental velocity profiles are measured using laser Doppler velocime-
try, and hence represent bubble velocities. The liquid velocities are slightly lower than the bubble velocities
due to the slip velocity.

from the numerical model is larger because our assumption of thin exponential plumes
no longer holds.

PRESSURE DIFFERENCE

Due to lack of experimental data, we rely on our validated numerical simulations to ver-
ify Eq. (4.22) for the pressure drop along the electrode height. We used the configura-
tion from Boissonneau [118] and carried out various numerical simulations under forced
flow conditions for j = 1000 A/m2 by varying the inlet velocities. Figure 4.12 shows the
variation of the reduced pressure difference, ∆P with the superficial velocity, 〈W 〉. The
analytical pressure drop shows a reasonable agreement with the numerical results. At
low velocities, the presence of gas makes the reduced pressure drop positive, as the effect
of buoyancy becomes larger than that of friction. At high velocity, the plumes become
thinner, while the viscous forces are increased due to the modified viscosity µ

1−ε0
. Due

to the localized buoyancy force in thin plumes, the total pressure drop is similar to that
for a single phase flow. We neglected the inertial term in our model, which results in
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Figure 4.11: Variation of gas fraction at the cathode surface, ε0 with the vertical z−coordinate, z at different
current densities. The solid line represents the semi-analytical solution of Eq. (4.39), the dotted line represents
the semi-analytical solution for a constant gas fraction plume given by Eq. (4.53) using the values listed in
Table 4.3 for the buoyancy driven conditions, and the dashed line represents the solution from the numerical
model. We neglected the inertial term in our semi-analytical solution giving a larger peak velocity than that
obtained using COMSOL as shown in Fig. 4.10. Because most of the gas is localized near the electrode surface,
the larger velocity results in lower gas fraction according to mass conservation (see Eq. (4.17)). A log-log plot is
shown in the inset. The solid gray line represents the solution for small gas fraction given by Eq. (4.40). From
Eq. (4.40), εl ∝ z1−2a , which gives z0.3 for j = 500 A/m2 and z0.2 for j = 2000 A/m2 using the value of ‘a’ at
buoyancy driven conditions in Table 4.3.

large deviation, particularly, at high velocities. At low velocities, buoyancy is dominant
and the error due to inertial terms is small. The deviation at low velocities is primarily
because the plume thickness becomes large, and our assumption δ̄≪ 1 is only crudely
satisfied.

4.5. DESIGN GUIDANCE

We can use our analytical model to guide the design of membraneless parallel plate elec-
trolyzers. To avoid bubble crossover, thick plumes are not desired. Usually, at the top of
the electrode, a divider to separate the gases would be present. For safe operation of
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Figure 4.12: The predicted reduced pressure difference between the top and the bottom of the electrode plot-
ted against the superficial velocity for h = 40 mm. The configuration used is similar to that used by Boisson-
neau [118], see Table 4.1. The hollow diamonds represent results from numerical simulations, the black dots
represent the numerical solution neglecting the inertial terms, the solid black line represents the result from
Eq. (4.42) and the dotted line represents the Hagen-Poiseuille pressure drop.

electrolyzer, the amount of H2 in oxygen should not exceed the lower explosion limit of
4% in O2. Since twice as much hydrogen volume is produced compared to oxygen, this
requires the cross-over rate of hydrogen to stay below 2%. We will assume that at least
98% of the gas fraction is contained between x = 0 and x = l /2,

∫l /2
0 ε0e−x/δg d x∫l

0 ε0e−x/δg d x
= 1

e−l/2δg +1
> 0.98. (4.27)

It would be more accurate to multiply the integrands with the gas velocity u +ws. How-
ever, to obtain more transparent expressions, we here take this simpler approach. Solv-
ing for l gives

l ≳ 7.8δh = 7.8
Aha

〈W 〉b
. (4.28)

From Eq. (4.28), requiring the gap to be almost an order of magnitude larger than the
plume thickness may seem like a very conservative criterion. However, mind that our
δg is that distance after which the gas fraction has decreased to a fraction 1/e=0.37 of its
value at the electrode. Plume thickness decreases with an increase in vertical velocity
of the electrolyte for a laminar flow. However, at large velocities, the flow may become
turbulent leading to a thicker plume [165]. Therefore, the maximum velocity is limited

by transition to turbulence. We can rearrange Eq. (4.28) using 〈W 〉 = Reµ
ρl , to give

h ≲

(
〈W 〉b l

7.8A

)1/a

=
(

l 1−b

7.8A

(
Reµ

ρ

)b
)1/a

. (4.29)
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Using Eq. (4.26) with properties from Table 4.1 and Table 4.3, corresponding to Ref. [118],
we can express Eq. (4.29) as

h ≲ 10.8
〈W 〉0.7l 2.2

U 1.1
g,c

. (4.30)

We again note that the power 0.5 in Eq. (4.26) is obtained using forced flow simula-
tions for the configuration used by Boissonneau [118], and a more detailed analysis of
how the plume thickness varies with current density is warranted. Therefore, Eq. (4.30)
should only be treated as an illustrative equation. Equation (4.29) and Eq. (4.30) shows
that a larger interelectrode gap l allows a larger electrode height without significant gas
crossover. However, this also increases the ohmic losses. Therefore, the maximum pos-
sible electrode height will be limited by the maximum allowable ohmic losses.

We also note that the maximum height increases with decrease in volumetric flux of
the gas in the horizontal direction. In Fig. 4.13, we see that for a lower current density,
the maximum height of the electrolyzer increases because a smaller current density cor-
responds to a lower horizontal volumetric flux of the gas. Similarly, a higher pressure
decreases the molar volume of the gas, thereby decreasing the volumetric flux. As such,
operation at higher pressure will give a larger maximum height for the electrolyzer.

In order to see whether parallel plate electrolyzers without separators can be a vi-
able alternative to electrolyzers with separators, we provide design estimates so that the
ohmic losses are lower than those of zero-gap electrolyzers with modern separators. The
most commonly used Zirfon Perl diaphragm has a thickness of only 0.5 mm, but the
ohmic losses are usually equivalent to 3.3 mm — 8 mm of KOH in a zero-gap config-
uration due to geometrical and gas effects [222, 223]. Therefore, we consider a mem-
braneless parallel plate electrolyzer of 3 mm, giving lower ohmic losses than a zero-gap
electrolyzer with Zirfon Perl separator. There will also be additional Ohmic loss due to
bubble, but the multiplier (≈ ∫1

0 (1− ε)−3/2d x̄) using Bruggeman’s relation [153] will be
close to 1 for thin plumes.

We first consider the design of the buoyancy driven electrolyzer used by Boissonneau
[118]. Inserting 〈W 〉nc from Eq. (4.43) in Eq. (4.28) gives

hmax ≈
 l

A

 6wbε0(2−ε0 +k2/2)

7.8
1+2b

b (1+2a)(1+ 6ε0δ̄max
1+a )

b
1
a

. (4.31)

where δ̄max ≈ 1/7.8 is the maximum allowable dimensionless plume thickness given by
Eq. (4.27) and k2 is defined in 4.A. For equal gas fraction at both electrodes, k2 = 0. Using
Eq. (4.31) and values from Table 4.3, we find that hmax ≈ 13.6 cm for l = 3 mm at 1000
A/m2, assuming ε0 = 0.3, and hmax ≈ 7.5 cm at 2000 A/m2, assuming ε0 = 0.35. These
are the upper limits because Eq. (4.43) overpredicts the natural recirculation velocity.
Friction in the external hydraulic circuit, including the downcomer is not taken into ac-
count. Also, at high velocities dynamic pressure losses will be important, and therefore
the actual recirculation velocity will be smaller, giving a smaller height.

We can also increase the liquid velocity to increase the height of the electrolyzer as
shown in Fig. 4.13. However, very high velocities can give rise to turbulence that en-
hances mixing, giving thicker plumes. This has been experimentally observed by Pang
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et al. [165] where turbulence starts increasing the plume thickness at a Reynolds num-
ber, Re ≳ 1200. At Re = 1000, Eq. 4.29, using the values in Table 4.3 from Boissonneau
[118], gives the maximum electrode height hmax without significant crossover as 24.8 cm
and 12.4 cm for a current density of 1000 A/m2 and 2000 A/m2, respectively. This shows
that using forced flow, the electrode height can be increased by more than two times.

For the electrode used by Pang et al. [165], the fit of Fig. 4.5 gives for j = 2000 A/cm2,
a slightly larger plume thickness than in the configuration used by Boissonneau [118].
This may be attributed to the larger bubble size in the experiments by Pang et al. [165]
(∼150 µm) compared to those in the experiments of Boissonneau [118] (∼88 µm). The
plume thickness crudely scales with δg ∝ d 2/3

b observed by Schillings et al. [172] at high
current density, for which shear induced diffusion becomes dominant. Equation 4.29,
in this case, gives a maximum height of 10.6 cm at Re = 1000 for j = 2000 A/cm2. It
should be noted that the size of the electrode can still be increased by increasing the
depth of the electrode to increase the total production rate. However, to further scale-up
the height of the electrolyzer, the electrode should be designed such that the bubble size
remains small. This can be done, for example, by using surfactants [224, 225], using a
more hydrophilic surface [226], engineering the topology of the electrode surface with
micro-crevices [227], or using magnetic fields [228].
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Figure 4.13: Maximum height hmax as a function of Reynolds number for a gap width of 3 mm at atmospheric
pressure. The buoyancy driven conditions are represented by the filled diamond. It can be seen that an in-
crease in Reynolds number significantly increases the maximum allowable height of the membraneless paral-
lel plate electrolyzer. The properties used are listed in Table 4.1 and Table 4.3.

4.6. CONCLUSIONS
In this paper, we provided both numerical and analytical modeling approaches to study
the multiphase flows in a membraneless parallel plate electrolyzer. Our numerical model
is based on a mixture model approach and is used to find the dependence of plume
thickness on height, velocity and the current density. Using the momentum equation
and neglecting inertial terms, analytical relations for the interstitial velocity (Eq. (4.12))
and superficial velocity (Eq. (4.14)) in the interelectrode gap are derived and verified
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against the numerical model and existing experimental results. These expressions are
valid as long as the plumes remain exponential and thin compared to the gap width. This
assumption will not hold above a certain height at high current densities and low veloci-
ties. We also derived an expression for the gas fraction at the electrode surface (Eq. (4.20))
using mass conservation and find that the gas fraction at the electrode increases most
rapidly in the first few millimeters of electrode height. Furthermore, we derived an an-
alytical expression for the pressure drop along the electrode height (Eq. (4.22)). At small
velocities, the increased shear stress due to the bubbles is negated by the increase in
buoyancy due to the bubbles.

Finally, analytical expressions for maximum height (Eq. (4.29)) for safe operation of
a membraneless parallel plate electrolyzer are provided for a given electrode gap. With
the help of analytical results, we calculated this maximum height of the electrolyzer at
buoyancy driven and forced flow conditions. We show that the maximum height of the
electrode decreases as the current density increases. We find that for an ohmic loss com-
parable to that of a zero-gap electrolyzer, we can design a membraneless parallel plate
electrolyzer operating using natural recirculation with a maximum height of ∼7 cm at
atmospheric pressure and a current density of 2000 A/m2 and a product purity of 98%.
The maximum height of the electrolyzer scales with the electrolyzer gap width l roughly
as l 1/a ∼ l 2.2. Thus, a larger electrolyzer gap will allow a significantly taller electrolyzer
using only the buoyancy driven flow. While the transition to turbulence limits the po-
tential of using the forced flow somewhat, the maximum height of the electrolyzer can
be significantly increased by using a forced flow, higher pressure or smaller bubbles.

APPENDICES

4.A. RELATIONS FOR DIFFERENT ANODE AND CATHODE SUR-
FACE GAS FRACTION TO µM = µ

1−ε
In this section, we generalize the results of main text, valid for µm = µ, to µm = µ

1−ε and
different electrode surface gas fractions. We define Q as the ratio of the gas fraction
at the anode surface and the gas fraction at cathode surface and rewrite Eq. (4.6) for
exponential plumes as

ε= ε0

(
e
− x
δg +Qe

− l−x
δg

)
. (4.32)

Solving Eq. 4.11 using Eq. (4.32) with no-slip boundary conditions for thin plumes

(e−1/δ̄ ≪ 1) we get

w = 6wpx̄(k1 − x̄)+12(wp +wb)ε0δ̄
2
(
1−e−

x̄
δ̄

)(
1−Qe−

1−x̄
δ̄

)
+6wpε0δ̄

((
e−

x̄
δ̄ −Qe−

1−x̄
δ̄

)
(k1 −2x̄)−k1

)
−6wbε

2
0δ̄

2
(
1−e−

2x̄
δ̄

)(
1−Q2e−

2−2x̄
δ̄

)
−6wbε0δ̄

2k2

(
ε0δ̄

(
e−

x̄
d −Qe−

1−x̄
d −1

)
+ x̄

)
,

(4.33)



C
h

ap
te

r
4

70 4. MULTIPHASE FLOW MODEL FOR PARALLEL PLATE ELECTROLYZERS

where k1 ≡ 1−2δ̄ε0
(
Q−(Q−1)δ̄

)
1−δ̄ε0(Q+1)

and k2 = (Q−1)(2−(Q+1)ε0)
1−δ̄ε0(Q+1)

. For Q < 2, ε0 < 0.5 and δ̄ < 0.5,

k1 ≈ 1 is a reasonable approximation. The shear rate at the cathode surface is given by

∂w

∂x

∣∣∣∣
x=0

= 6(1−ε0)
(
wpk1 +wbε0δ̄(2+ δ̄k2)

)
(4.34)

The average superficial velocity, 〈W 〉 = ∫1
0 w(1−ε)d x̄ using Eq. (4.33) for wb ≫ wp, can

be written as

〈W 〉 = wp
(
1−6ε0δ̄

)+3wbε0δ̄
2k2

(
1−2δ̄ε0(Q +1)

)
+3wbε0δ̄

2 (
4−2ε0 − (4(Q +1)+ε0(1−3Q2 +4Q))δ̄

)
.

(4.35)

For Q = 1, Eq. (4.35) reduces to

〈W 〉 = wp
(
1−6ε0δ̄

)+12wbε0δ̄
2
(
1−2δ̄− ε0(1+ δ̄)

2

)
. (4.36)

The differences with Eq. 13 are of the order ε0 as expected. In the limit δ̄≫ 1, the velocity
profile is given by

u = 6x̄(1− x̄)
(
wp +wbε0(Q +1)

)
(1− (Q +1)ε0). (4.37)

The extra (1 − (Q + 1)ε0) term in Eq, (4.37) is due to µr = 1
1−ε , where the gas fraction

becomes a constant given by ε = (Q + 1)ε0. For δ̄ ≫ 1, the superficial velocity, 〈W 〉 =∫l
0 u(1−ε)d x̄ can be written as

〈W 〉 = (wp + (Q +1)wbε0)(1− (Q +1)ε0)2. (4.38)

Here again, we see the combined effect of modified viscosity and the effect of liquid gas
fraction on superficial velocity through the term (1− (Q +1)ε0)2 in a buoyancy assisted
pressure driven flow.

Using Eq. (4.33), we can rewrite Eq. (4.17) for e−1/δ̄ ≪ 1 as

〈Wg,c〉 =− (3k2δ̄+4)δ̄3wbε
3
0 +3δ̄2 (

2wbδ̄(1+k2δ̄)−wp(k1 − δ̄)
)
ε2

0

+6wpδ̄
2ε0(k1 −2δ̄)+wsδ̄ε0.

(4.39)

Equation (4.39) can be solved for ε0 to give the electrode surface gas fraction. For low
values of ε0 ≪ 1, we get

εl =
〈Wg,c〉

δ̄(6wpδ̄(k1 −2δ̄)+ws)
, εh =

√ 〈Wg,c〉
6wbδ̄

3(1+k2)−3wp(k1 − δ̄)
. (4.40)

A semi-analytical solution is obtained by solving Eq. (4.36) and Eq. (4.39) for ε0 and wp.
However, an analytical approximation can also be obtained by using Eq. (4.48) and as-
suming δ̄c = δ̄a = δ̄ to give ε0 and then solving Eq. (4.36) for wp. The ε0 obtained using
Eq. (4.48) gives slightly lower values for ε0 than the one obtained by simultaneously solv-
ing Eq. (4.36) and Eq. (4.39).
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NATURAL RECIRCULATION VELOCITY

For Q < 2, ε0 < 0.5 and δ̄ < 0.5, k1 ≈ 1, so that we can rewrite Eq.(4.35) for ε0δ̄≪ 1 and
δ̄≪ 1 as

wp = (
1+6ε0δ̄

)〈W 〉−6wbε0δ̄
2 (2−ε0 +k2/2) . (4.41)

We can again integrate wp to get the total pressure drop as

∆P =−12µh〈W 〉
l 2

(
1−

( 〈W 〉nc

〈W 〉
)1+2b

)
, (4.42)

with

〈W 〉nc ≡
(

6wbε0(2−ε0 +k2/2)

(1+2a)(1+6δ̄ε0/(1+a))

(
Aha

l

)2
) 1

1+2b

. (4.43)

For Q = 1, k2 = 0. We have an addition term, 6δ̄ε0
1+a , in Eq. (4.43) compared to Eq. (4.23)

arising due to the non-constant relative viscosity µr. For ∆P = 0, Eq. (4.42) gives the
natural recirculation velocity as 〈W 〉 = 〈W 〉nc.

4.B. EXPRESSIONS FOR DIFFERENT ANODE AND CATHODE PLUME

THICKNESS
In our model, we have assumed equal plume thickness at the cathode and the anode.
However, this assumption does not always hold, and the plume thickness can be dif-
ferent on the two sides, if the bubble diameter or volumetric gas flow rates are signifi-
cantly different. In this section, we provide generalized expressions for different plume
thicknesses δ̄a at the anode and δ̄c at the cathode, respectively so that Eq. (4.6) can be
rewritten as:

ε= ε0

(
e−

x
δc +Qe−

l−x
δa

)
. (4.44)

Assuming µm ≈ µ and solving Eq. 4.11 using Eq. (4.44) with no-slip boundary con-

ditions for thin plumes compared to interelectrode gap (e−1/δ̄c ≪ 1 and e−1/δ̄a ≪ 1), we
get

w = 6wp x̄(1− x̄)+12wbε0

(
δ̄2

c

(
1− x̄ −e

− x̄
δ̄c

)
+Qδ̄2

a

(
x̄ −e

− 1−x̄
δ̄a

))
. (4.45)

The average superficial velocity, 〈W 〉 = ∫1
0 w(1− ε)d x̄ using Eq. (4.45) for thin plumes

with respect to interelectrode gap (δ̄2
a ≪ 1, e−1/δ̄a ≪ 1, δ̄2

c ≪ 1 and e−1/δ̄c ≪ 1), can be
written as

〈W 〉 = wp +6wbε0
(
δ̄2

c(1−2δ̄c −ε0δ̄c)+Qδ̄2
a(1−2δ̄a −Qε0δ̄a)

)
. (4.46)

where we assumed wp ≪ wb. For δ̄a = δ̄c = δ̄, ε0δ̄≪ 1 and Q = 1, Eq. (4.46) reduces to
Eq. (4.14). Using Eq. (4.45), we can rewrite Eq. (4.17) as

〈Wg,c〉 = 6wbδ̄
2
c(δ̄c −2δ̄2

c +2Qδ̄2
a)ε2

0 +
(
6δ̄c(1−2δ̄c)wp +ws

)
δ̄cε0. (4.47)

Solving Eq. (4.47) for ε0, we again obtain Eq. (4.21) with
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εl =
〈Wg,c〉

δ̄c(6wpδ̄c(1−2δ̄c)+ws)
,

εh =
√

〈Wg,c〉
6δ̄2

c(δ̄c −2δ̄2
c +2Qδ̄2

a)(1−12δ̄c(1−2δ̄c)2))wb
.

(4.48)

4.C. EXPRESSIONS FOR A STEP FUNCTION GAS FRACTION PRO-
FILE

In Fig. 4.9, we observed that at high current density, the plume is no longer exponential
and attains more of a block-shape. In this appendix, we provide analytical expressions
for velocity profiles and surface gas fraction, assuming a step function gas-fraction pro-
file

ε=


ε0, x < δb

0, δb ≤ x ≤ l −δb

ε0, l −δb < x < l ,

(4.49)

where δb is the thickness of the plume. At the interface of the plume, we assume con-
tinuity of flow and shear stress. Using no slip conditions at the electrode surface and
solving Eq. (4.11) for µr = 1

1−ε using Eq. (4.49) gives

u =6wpx̄(1− x̄)

−6ε0


[l ]wpx̄(1−2δ̄b)+wbx̄(x̄ −2δ̄b), x < δb

wpδ̄b(1−2δ̄b)−wbδ̄
2
b, δb ≤ x ≤ l −δb

wp(1− x̄)(1−2δ̄b)+wb(1− x̄)(1− x̄ −2δ̄b), l −δb < x.

(4.50)

Riviere and Cartellier [180] took a similar approach for a more general gas fraction profile
with an additional gas free layer near the electrode and a low gas fraction in the core
with a higher gas fraction region between the two regions. In their analysis, they used a
different closure model for shear stress giving εµm instead of µm in Eq. (4.2).

The average superficial velocity using 〈W 〉 =∫1
0 u(1−ε)d x̄ and Eq. (4.50) gives

〈W 〉 = (1−6ε0δ̄b)wp +6wbε0δ̄
2
b

(
1− 2δ̄b

3

)
. (4.51)

The average superficial gas velocity at the cathode 〈Wg,c〉 =
∫δ̄b

0 uε0d x̄ can be written as

〈Wg,c〉 = ε2
0δ̄

2
b

(
4δ̄bwb −3wp(1−2δ̄b)

)+ε0δ̄b
(
wpδ̄b(3−2δ̄b)+ws

)
. (4.52)

Equation (4.52) can be solved numerically to give the electrode surface gas fraction ε0.
For low values of ε0 ≪ 1, we get

εl =
〈Wg,c〉

δ̄b(wpδ̄b(3−2δ̄b)+ws)
, (4.53)
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where wp can be obtained for a given superficial liquid velocity using Eq. (4.51). Note
that the expression for εl is equal to that of Eq. (4.39) for Q = 1 upon replacing 6δg(1−
2δg) with 3δb(1− 2δb/3). It can be seen from the Fig. 4.11 that for j = 500 A/m2, the
exponential result of Eq. (4.39) gives satisfactory agreement with the numerical result,
while for j = 2000 A/m2 Eq. (4.53) gives a slope similar to the numerical solution for the
initial height of the electrode.

4.D. EFFECT OF BUBBLE DIAMETER
In Fig. 4.10, we see that velocities from numerical model shows deviation from the exper-
imental results, particularly on the oxygen side because we assumed that oxygen bubbles
are of similar size as the hydrogen bubbles. However, Boissonneau [118] suggest in their
discussion that the plume on the oxygen side is larger than the plume on the hydrogen
side. This may be due to the larger size of the oxygen bubble than the hydrogen bubble.
Here, we shortly discuss the results with different bubble size for oxygen and hydrogen.
The mixture Model in COMSOL allows only one dispersed phase and one continuous
phase. In order to simulate different bubble size for oxygen and hydrogen, we use fol-
lowing distribution of bubble size in the horizontal direction

db,new =


db, x ≤ l/3

db + 0.5db
l/3 (x − l /3), l/3 < x < 2l /3

1.5db, x ≥ 2l /3

. (4.54)

Equation (4.54) assumes that the oxygen bubbles are 50% bigger than the hydrogen bub-
bles. In the region l /3 < x < 2l/3 it is assumed that the diameter of dispersed phase bub-
bles increases from hydrogen bubble diameter to that of the oxygen bubble diameter
linearly. As the bubble sizes are not reported for the oxygen side, we have used the same
bubble size for both hydrogen and oxygen in the main text. Fig. 4.14 shows a compari-
son between the dispersed phase velocity profiles using this approach to that reported by
Boissonneau [118]. We see that accounting for different bubble sizes for hydrogen and
oxygen gives a better agreement between the experiments and our numerical simula-
tions. This is because bigger bubbles provide larger buoyancy and terminal rise velocity.
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Figure 4.14: Gas phase velocity profiles for the three current densities: j = 500 A/m2 (blue), j = 1000 A/m2

(green), and j = 2000 A/m2 (red). The circles represent the experimental measurements from Boissonneau
[118], the dashed line represents the numerical solution using the bubble diameter from Table 4.2 for both
oxygen and hydrogen, and the solid line represents the numerical solution where the bubble diameters are
different on the oxygen and the hydrogen side, and given by Eq. (4.54). We clearly see that accounting for
different bubble sizes for hydrogen and oxygen gives a better agreement between the experiments and our
numerical simulations.



5
AN ANALYTICAL MODEL FOR THE

VELOCITY AND GAS FRACTION

PROFILES NEAR GAS EVOLVING

ELECTRODES

Understanding multiphase flow close to the electrode surface is crucial to the design of
electrolyzers, such as alkaline water electrolyzers for the production of green hydrogen.
Vertical electrodes develop a narrow gas plume near their surface. We apply the integral
method to the mixture model. Considering both exponentially varying and step-function
gas fraction profiles, we derive analytical relations for plume thickness, velocity profile,
and gas fraction near the electrode as a function of height and current density. We verify
these analytical relations with the numerical solutions obtained using COMSOL. We find
that for low gas fractions, the plume thickness decreases with an increase in current density
for an exponentially varying gas fraction profile. In contrast, the plume thickness increases
with increasing current density at high gas fractions for an approximately step-function-
shaped gas fraction profile, in agreement with experiments from the literature.

This chapter has been published in International Journal of Hydrogen Energy. [229]

75



C
h

ap
te

r
5

76 5. ANALYTICAL VELOCITY AND GAS FRACTION PROFILES NEAR THE ELECTRODE

5.1. INTRODUCTION

Many electrochemical reactions produce gaseous products with low solubility in the
electrolyte. In this case, bubbles are evolved at the electrode surface, for example, in the
production of aluminium [230], sodium chlorate [118], chlorine [231, 232], and hydro-
gen using water electrolysis [157, 178, 208, 233, 234]. Bubbles add to the resistance of the
electrochemical systems by decreasing the effective conductivity of the electrolyte [15,
145, 193, 208, 222, 235] and by taking away the reactive electrode area [225, 236–240].
Bubbles also induce convection in the electrolyte [241–243], increasing the mass trans-
port of reactants and products. The efficiency of the electrochemical cell is, thus, closely
related to the two-phase hydrodynamics of bubbles and the electrolyte [244, 245].

Gas-evolving electrodes are usually oriented vertically [167] to avoid bubble accu-
mulation. Once released from the electrode surface, bubbles move primarily in a vertical
direction due to their buoyancy and the resulting electrolyte flow. Their drag on the fluid
induces natural convection of the electrolyte. Several hydrodynamics forces push the
bubbles in the lateral direction, forming a bubble curtain or plume, as shown in Fig. 5.1.
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Figure 5.1: A schematic of the gas fraction profile and velocities near a gas-evolving electrode with natural
convection electrolyte recirculation. Opposite the electrode may be the membrane in a conventional config-
uration, or the bipolar plate or back-wall in a zero-gap configuration. The gas bubbles are generated at the
electrode surface and escape from the top. The liquid electrolyte recirculates in the cell through a downcomer.
We simulate only a channel geometry shown on the left. The gas bubbles are generated at the electrode surface
and develop a plume of width δg. The liquid electrolyte moves vertically with velocity w(x, z). The boundary
conditions used are shown adjacent to each of the boundary.
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The study of velocity plumes near a vertical wall has been of interest for a long time,
particularly for natural convection effects [246–252]. In electrochemical applications,
gas may be evolved at electrodes on two opposing surfaces, for example, in a membrane-
less electrolyzer [110, 124, 128, 157, 158, 161, 162, 165] or only one of the two surfaces,
for example, in a zero-gap electrolyzer [151, 222, 253, 254] or a conventionally divided
electrolyzer in which the second surface is a membrane or a diaphragm [145, 255].

Previously, analytical attempts have been made to study the case pf two adjacent gas-
evolving electrodes resulting in two plumes on opposite walls [157, 172, 178, 180]. Ref-
erence [214] derives a criterion for the occurrence of back-flow. In Refs. [157, 180], the
relations for the velocity profile and the wall shear stress are derived assuming a known
gas fraction profile. While Ref. [180] used experiments to characterize the gas fraction
profile, Ref. [157] performed multiple simulations to relate the plume thickness to the
operating parameters. Reference [172] used a thermal analogy and dimensional analy-
sis to predict the scaling of plume thickness with geometric and operating parameters.
However, the prefactors for the scaling laws were not established due to the use of simple
dimensional analysis.

In this work, we focus on a single plume, relevant for electrochemical cells where the
bubbles are produced at only one electrode, when there is a membrane or diaphragm in
between the electrodes, or when the two electrodes are placed far apart. We start from
an integral method similar to that previously used for studying natural convection due
to solutal and thermal effects [247–249, 252, 256]. Our model contains several features
somewhat particular to the diffusion of gas bubbles - for example, the use of a constant
flux boundary condition, the effect of gas fraction on viscosity and density, and the exis-
tence of a maximum gas fraction. Such a maximum gas fraction is a feature typical to the
diffusion of electrolytic bubbles, owing to the volume they take up, and does not arise
in the case of diffusion of heat or species. To model this, we consider a step-function
gas fraction profile, in addition to the widely used exponential profile, in the integral
method. Using an assumed velocity profile, modified here to take into account the effect
of a finite domain, we provide analytical relations for the gas plume thickness, liquid ve-
locity profile, and liquid flow rate as a function of the height and current density of the
electrolyzer.

5.2. MODEL EQUATIONS

We use the laminar mixture model formulation [171, 172, 181] to describe the two-phase
hydrodynamics in the electrochemical cell.

The liquid velocities in the x and z direction are denoted by u and w , respectively
and we will use a subscript ‘g’ to denote the gas quantities. The volume fraction of gas
bubbles is denoted by ε and capital letters are used to denote superficial velocities: U =
(1−ε)u. We will use Ug here, only to denote the positive horizontal superficial gas velocity
at the electrode surface. The continuity equation for the gaseous phase at steady state
is given by ∇ · (εug) = 0, which can be integrated over a Gaussian pillbox bordering the
electrode at x = 0 to give

Ug = d

d z

∫l

0
εwd x, (5.1)
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where we assumed that the slip velocity in the vertical direction ws ≡ wg−w is negligible
compared to the liquid velocity, so ws ≪ w . The superficial gas velocity at the electrode
in the x-direction is given by Faraday’s law

Ug = Vm

nF
j , (5.2)

where Vm is the molar volume of the gas and n is the number of electrons required to
produce one gas molecule. Here we assumed that the gas evolution efficiency [204, 257]
is 100% so all of the produced gas is evolved as bubbles. At the surface of the electrode,
x = 0, we can write

Ug = εug|x=0 = εus|x=0. (5.3)

For a gas density much lower than that of the liquid, ρg ≪ ρ, the vertical z-component
of the steady state momentum conservation equation for the gas-liquid mixture can be
approximated [157] by

∂(1−ε)w2

∂z
+ ∂(1−ε)uw

∂x
=− 1

ρ

∂P

∂z
+ ∂

∂x

(
νm

∂w

∂x

)
+εg , (5.4)

where P = p +ρg z is the reduced pressure and p is the absolute pressure. Note that in
Eq. (5.4), we neglected the slip velocity in the vertical direction for the typically small
electrochemical bubbles. This allows us to approximate the mixture velocity with the
liquid velocity. The mixture kinematic viscosity νm can be expressed empirically using
the liquid viscosity ν and gas fraction ε as νm

ν = 1
1−ε ≥ 1 [186, 188, 214].

The model is completed by using empirical relations describing the relative velocity
between the bubbles and the electrolyte. While it has been observed that the bubble size
increases along the height of the electrode [118, 205], we assume here a constant bub-
ble diameter db for simplicity. The bubble diameter may also increase with increasing
current density [118], which can be easily included in the analytical model by insert-
ing the dependence of db on current density. The relative velocity of a bubble is mainly

Stokes’ rise velocity in the vertical direction, given by uSt = g d 2
b

18ν ez , where ez is the unit
vector in the vertical direction. For db ≳ 100 µm, Stokes’s velocity should be corrected
for the bubble Reynolds number as this becomes greater than 1 [258–260]. In this pa-
per, we neglect the effect of hindrance on the freely rising bubbles. For small gas frac-
tions, the lateral slip velocity of the bubbles is primarily due to hydrodynamic dispersion

uHd =− g d 3
b

36ν
D∇ε
ε(1−ε) [171, 172]. The non-isotropic dimensionless dispersion tensor is given

by D =
(
1 0
0 8

)
[157, 171, 172, 191] so the bubble dispersion coefficient1 becomes

Db = g d 3
b

36ν
, (5.5)

1From the gas conservation equation [157], if only hydrodynamic dispersion is present:

Um ·∇ε=∇· (ε(1−ε)us ) =∇·
(
g d3

bD∇ε/36ν
)
=∇· (DbD∇ε),

so the effective dispersion coefficient in the horizontal direction can be written as Db = dbwSt/2 = g d3
b

36ν . Here
Um is the superficial mixture velocity.
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in the horizontal direction. In the case of turbulent flow, a turbulent contribution may
be added. However, this will not be a constant and it will vanish at the electrode. Also,
the viscosity will be impacted by turbulence. Therefore, we limit our study to laminar
conditions with a spatially constant bubble dispersion coefficient.

Mono-sized spheres have a maximum theoretical packing density of π/
p

18 ≈ 0.74
(Kepler’s Conjecture) [261], while a maximum packing density of 0.6 has been reported
for loosely packed particles [262] and decreases as the particle size decreases [263]. As
the gas flux from the electrode is increased, the gas fraction tends to a maximum value [184,
264–267]. In electrolytes, still smaller maximum values of εmax = 0.2 − 0.5 have been
found and were attributed to the observed coalescence barrier [184, 268]. Electrolytic
bubbles have a surface charge, leading to electrostatic repulsion between bubbles [184].
The resulting interaction force due to this coalesce inhibition may be described using
the granular/frictional/solid pressure [269–272]. The additional transverse dispersion
and vertical rise velocity can be used to describe maximum gas fraction in plumes. Ad-
ditionally, there may be other transverse bubble interaction forces causing an apparent
maximum gas fraction. For example, shear-induced diffusion has been shown to lead to
an approximately step-function-shaped gas fraction profile [157, 171, 273] as well. While
the exact expression will depend on the underlying mechanisms, we propose a heuristic
relationship to simulate the maximum gas fraction by writing the slip velocity as

us = uSt + uHd

1−ε/εmax
. (5.6)

In this expression, the slip velocity will increase primarily in the horizontal direction, in
which the gas fraction gradients are largest, as the gas fraction approaches a maximum.
So, the maximum gas fraction is heuristically attributed here to the additional disper-
sion of the bubbles. This additional slip velocity will push the bubbles away from the
region of maximum gas fraction. The overall slip velocity, however, will typically remain
small because as the gas fraction approaches its maximum, 1

1−ε/εmax
increases, but ∇ε

also reduces sufficiently fast.

5.3. ANALYTICAL MODEL

We consider a vertical rectangular channel with width l and height h as shown in Fig. 5.1.
The gas flows in a thin plume with a thickness δg(z) and the gas fraction at the elec-
trode surface is denoted by ε0(z), where z is the vertical coordinate. We use the integral
method [247–249, 252, 256] to find analytical relations for gas plume thickness δg, wall
gas fraction ε0, flow boundary layer thickness δf and characteristic velocity W as a func-
tion of height z, and the superficial gas flux Ug entering through the electrode. Educated
guesses for the gas fraction and velocity profiles that satisfy the boundary conditions as a
function of these parameters are inserted into the governing differential eqns. (5.1), (5.3)
and (5.4), which we subsequently integrate from x = 0 to x = l . The resulting algebraic
equations can then be solved exactly. In section 5.3.2, we will consider a step-function
shaped gas fraction, relevant for high current densities and heights giving gas fractions
close to the maximum, but first we assume an exponential variation in the gas fraction.
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5.3.1. EXPONENTIAL GAS FRACTION PROFILE
For relatively low electrode height and low gas flux at low current density or elevated
pressure, we assume that the gas fraction decreases approximately exponentially with x
as

ε= ε0e−x/δg , (5.7)

where δg is the gas fraction e-folding plume thickness, whose development with z is yet
unknown. For the velocity profile, we take

w =
{
W

(
1− x

δf

)(
1−e−x/δg

)
, x < δf

0, x ≥ δf.
(5.8)

Here δg primarily determines the velocity gradient at the wall and the flow boundary
layer thickness δf determines the distance over which the velocity goes to zero. Since the
velocity is driven by buoyancy, it will always hold that q ≡ δf/δg > 1. For thermal con-
vection in a semi-infinite medium, often e−x/δf is used instead of 1−x/δf, so no separate
case w = 0 has to be introduced to avoid negative values. A polynomial decrease beyond
the maximum is also used in literature [247–249]. In our case of finite channel width,
we find from the simulations that back-flow precludes an exponential-like shape of the
velocity profile. Instead, we chose a linear decrease of velocity profile for simplicity. Neg-
ative vertical velocities arise far away from the electrode as a consequence of the adverse
pressure gradient in the boundary conditions shown in Fig. 1. The boundary conditions
model the unavoidable pressure drops associated with fluid deceleration and give rise
to this backflow. In the analytical derivation, however, we neglect the responsible ∂P/∂z
term [249]. Eq. (5.8) does not capture negative velocities away from the electrode in case
of an adverse pressure gradient. This downflow has to be considered when estimating
the total liquid flow rate. We define the ratio of the flow boundary layer thickness to the
gas plume thickness as

q ≡ δf

δg
. (5.9)

Using Eq. (5.7) and Eq. (5.8) for ∂P/∂z = 0 and neglecting the effect of the gas fraction on
viscosity, slip velocity, and inertial terms on the left-hand side of Eq. (5.4) for small ε, we
derive the following expressions (see 5.A):

δg =
(
νD2

bz

gUg

q +2

q H(q)

)1/5

, (5.10)

W =
(

Dbg 2U 2
g z3

ν2

q2

(q +2)2H(q)3

)1/5

, (5.11)

ε0 =
(
νU 4

g z

g D3
b

(q +2)

q H(q)

)1/5

, and (5.12)

w ′ ≡ ∂w

∂x

∣∣∣∣
x=0

= W

δg
=

(
g 3U 3

g

ν3

z2

Db

q3

q(q +2)3H(q)3

)1/5

, (5.13)
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where H(q) ≡ 4e−q−e−2q+2q−3
4q . The value of q can be explicitly calculated by

q ≈
√

50Prb

7

1+√
0.3Prb

1+√
Prb

. (5.14)

where the bubble Prandtl number Prb = ν
Db

and Db is given by Eq. (5.5). Electrolytically
generated bubbles typically have db < 150 µm, so Db < ν and Prb > 1 or q > 2. Note
that Ug can be replaced by the current density j using Eq. (5.2). The above analytical
results have a different prefactor but the same scalings with z and Ug as those previ-
ously reported for thermal and solutal natural convection with constant flux (Neumann)
boundary conditions [246–250], shown in Eq. (5.44). We see that the plume widens
very slowly with height, proprtional to z1/5, but much strongly with the bubble diam-
eter. From Eq. (5.5), Db ∝ d 3

b, so that Eq. (5.10) gives δg ∝ d 6/5
b . From Eq. (5.10), we

predict that the gas plume thickness decreases with increasing Ug or current density j .
This is because the velocity near the electrode increases with current density, increas-
ing the convective effect, which decreases the plume thickness. The same is predicted
in Ref. [172]. In Ref. [274], the hydrogen bubble plume thickness decreased in an alka-
line electrolyte under normal gravity. However, the bubble size was found to decrease
with increasing current density in this experiment, which could possibly by itself also
explain this result. However, sometimes this decreasing plume thickness is not observed
experimentally. Reference [209] shows an increase in gas plume thickness with increas-
ing current density. A likely reason is that D2

b ∼ d 6/5
b increases more than linearly with

j .
Note that the liquid flow rate, proportional to Wδg, increases with z. In the finite

domain used in the simulations, this increase has to be compensated by a downflow
away from the electrode that increases in magnitude with increasing height. We will
discuss in more detail how to do this in 5.D.

The scaling δg ∝ z1/5 is commonly obtained for constant flux while z1/4 is found
using a constant gas fraction, or temperature in case of thermal natural convection. As
expected for simulations with constant current density, our scaling δg ∝ z1/5 is actually
a better fit to the simulations of Ref. [172] than the z1/4 scaling derived there.

5.3.2. STEP-FUNCTION GAS FRACTION PROFILE
The exponential-shaped gas fraction profile is relevant at high pressure, low current den-
sity and small heights or for very large bubble dispersion coefficients Db due to a large
bubble size. Often above a certain height the gas fraction no longer decreases approxi-
mately exponentially as a maximum gas fraction is approached. From our simulations,
shown later, we see that the distribution of gas fraction near the maximum gas fraction
is approximately like a step-function profile:

ε=
{
ε0, x < δg

0, x ≥ δg.
(5.15)

Note that we use the same symbol δg here to refer to a related but slightly different quan-
tity as before (see Fig. 5.2). We restrict our analysis to a constant ε0 = εmax. This means
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that we consider a constant gas fraction with a constant flux at the electrode surface. This
boundary condition does not have an analogy in thermal or solutal natural convection.
Since in our simulations, the shape of the velocity profile does not change significantly
when the gas fraction reaches a maximum, we use the same velocity profile as before.
The assumed profiles of Eq. (5.8) and Eq. (5.15) are schematically shown in Fig. 5.2.
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Figure 5.2: The assumed gas fraction profile (Dotted: exponentially varying, Solid: step-function) and

the assumed velocity profile (dashed: Eq. (5.8)). The peak velocity wmax ≈ Wq
q+4 occurs at xp =

δg
(
q +1−LambertW(eq+1)

)
, where LambertW(x)eLambertW(x) = x. The approximation of wmax is obtained

from the asymptomatic matching of the exact expression w(xp) and has a maximum error of only 3%.

Rewriting Eq. (5.4) using the no-slip condition w(x = 0) = 0, ∂P
∂z = 0, and Eq. (5.15),

we get

W =
gε0δ

2
g

νm

q

q +2
, (5.16)

where νm = ν
1−εmax

is a constant. Substituting Eq. (5.8) and Eq. (5.15) in Eq. (5.4), inte-
grating between y = 0 and y = l for δg < δf < l , and using Eq. (5.16) gives

0 = 2νmW

qδg
− d

d z
( f (q)δgW

2), (5.17)

where f (q) ≈ −0.5e−2q+8e−q+0.67(q−2.05)((q−1.22)2+3.98)
2q2 − 0.34ε0

(q−0.71)2+0.04
2q2 . Note that we

round off the coefficients in f (q), and also subsequent expressions, to two significant
digits. The dependence on ε0 derives from the gas fraction dependence of inertial terms
in Eq. (5.4). Finally, Eq. (5.1) can be rewritten as

Ugz = h(q)δgε0W, (5.18)
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where h(q) = 1+(2q−4)e−1

2q . We wish to find the scalings of the relevant quantities with a
power of z, similar to Eqs. (5.10)-(5.13). Therefore, we express Eqs. (5.16)-(5.18) as power
law expressions in q so

W = q a
gε0δ

2
g

3νm
, (5.19)

0 = 2νmW

qδg
− f (1)

d

d z
(qb+1δgW

2), (5.20)

Ugz = h(1)qcδgε0W, (5.21)

where a ≡ ln
(

3q
q+2

)
ln(q) , b ≡ ln

(
f (q)

q f (1)

)
ln(q) and c ≡ ln

(
h(q)
h(1)

)
ln(q) . Assuming that q , δg W are proportional to

some power of z, Eqs. (5.19)-(5.21) give q ∝ zm , W∝ z
2
3 +m a−2c

3 and δg ∝ z
1
3 −m a+c

3 with

m =− 1

6+3b −4c −a
= ln

(
q
)

ln
(

3 f (1)3h(q)4

q2(q+2) f (q)3h(1)4

) , (5.22)

where we used the definitions of a, b, and c in the final expression. Since a, b and c
vanish as q →∞, m =−1/6 in this limit. Inserting the scalings for q , W, and δg, Eq. (5.20)
can be rewritten as

qb+2δ2
gW = 2νm

k f (1)
z. (5.23)

Here k = (b+1)m+ 1
3−m

3 (a+c)+ 4
3+ 2m

3 (a−2c) and lies between 1.43-1.73, using Eq. (5.22).
Therefore, we choose a constant value, k = 1.54, with a maximum relative error of 12%
to simplify Eq. (5.23). Eliminating W and δg, we can solve Eq. (5.19), Eq. (5.21), and
Eq. (5.23) for q to give

q =
(

z̄

z̄c

)m

, (5.24)

where

z̄ ≡
zU 4

g

gε5
0ν

2
m

, and z̄c ≡ 0.73h(1)4

f (1)3 ≈ 24

(1−ε0)3 . (5.25)

Equation (5.24) is implicit since m itself is a function of q , as given by Eq. (5.22). Com-
bining Eqs. (5.22) and Eq. (5.24) gives

2.2h(q)4

q2(q +2) f (q)3 = z̄. (5.26)

A good approximation, obtained by trial-and-error, to the solution of Eq. (5.26) is
given by

q ≈


z̄−1/6, z̄ ≤ 10−9

1.65z̄−1/7, 10−9 < z̄ ≤ 10−4

(z̄/z̄c)−
(1−ε0)1/4

7 , 10−4 < z̄ ≤ z̄c

. (5.27)

The power m =−(1−ε0)1/4/7 in the last approximation depends weakly on ε0 and varies
between −0.11 and −0.14 for ε0 = 0.7 and ε0 = 0, respectively. Eq. (5.26) or (5.27) can be
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used to obtain the value of q . As z̄ → z̄c, q → 1. The first two approximations in Eq. (5.27)
have a maximum error of 5% for the respective ranges of z̄, while the last expression
has a maximum error of 12% for the given range of z̄. Finally, δg solving Eq. (5.19) and
Eq. (5.21) gives

δg =
(
νmUgz(q +2)

gε2
0qh(q)

)1/3

, (5.28)

W =
(

gU 2
g z2q

νmε0(q +2)h(q)2

)1/3

. (5.29)

where q is given by Eq. (5.26). We can write in the limit q ≫ 1:

δg =
(

eνmUgz

ε2
0g

)1/3

and W =
(

e2gU 2
g z2

νmε0

)1/3

. (5.30)

and for the limit q → 1, derived in 5.C:

δg =
2.83ν0.13

m U 0.73
g z0.43

g 0.43ε1.17
0 z̄0.10

c
and W =

2.67g 0.21U 1.15
g z0.79

ν0.55
m ε0.93

0 z̄0.12
c

. (5.31)

where we used the last approximation in Eq. (5.27), evaluated at ε0 = 0.4.
For δg, the scaling with height changes from z1/5 for an exponential plume, at small

heights, to z1/3−z0.43 for a step-function gas fraction profile, at large heights. The plume
thickness, thus, increases much faster with z as the height increases. The plumes are
exponential for very low current densities and δg ∝U−1/5

g , see Eq. (5.10). As the current
density increases and a maximum wall gas fraction is approached, the step-function gas
fraction profile results in the scaling of δg between U 1/3

g −U 0.73
g , see Eqs. (5.30) and (5.31).

The dependence of velocityW on height increases from z3/5 for an exponential plume
to z2/3−z0.79 for a step-function gas fraction profile. The scaling for W with current den-
sity changes from U 2/5

g at low current densities to U 2/3
g at higher current densities when

the gas fraction approaches a maximum. For the higher current densities, this depen-
dence becomes approximately linear, U 1.15

g , according to Eq. (5.31). The velocity thus
also increases much faster with increasing current density.

In electrolyzers, the wall strain rate is often a quantity of interest, for example, to
estimate heat and mass transfer to the electrode. The wall strain rate also has an effect
on the removal of bubbles attached to the surface. From Eq. (5.29) and (5.28), we can

estimate the wall strain rate w ′ ≡ ∂w
∂x

∣∣∣
x=0

as

w ′ = W

δg
=

(
g 2Ugzε0q2

ν2
m(q +2)2h(q)

)1/3

. (5.32)

which gives, as shown in 5.C:

w ′ =
{

6.4
(
ε0Ugzν−1

m

)1/3
, q ≫ 1

3.9(1−ε0)0.06ε0.24
0 U 0.41

g z0.35ν−0.70
m , q → 1

. (5.33)
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Interestingly, the expression for w ′ has a minimum power of Ug and z near q ∼ 5. This
is because even though the powers of Ug and z in the expression of δg and W increase
as the height and the current density increase, the powers in δg increase faster than the
powers in W for q < 5. For q > 5, the powers of Ug and z in δg increases slower than in
W. For q ∼ 5, we find in 5.C

w ′ = 4.8(1−ε0)0.05ε0.42
0 U 0.27

g z0.31ν−0.63
m . (5.34)

From Eqs. (5.32), (5.33) and (5.34), we find that the scaling for w ′ changes from U 3/5
g for

an exponential gas fraction profile to U 0.27
g −U 0.41

g for a step-function gas fraction profile.
Another important quantity for electrolyzers is the liquid flow rate. We can calculate

the average superficial liquid velocity, 〈W 〉 = 1
l

∫l
0 w(1−ε)d x, to be

〈W 〉 = Ugz

ε0l

1+ (q −1)2 −2e−q −2e−1ε0(q −0.64)

2qh(q)
, (5.35)

where q is calculated at an effective height zeff for which the actual average velocity
between δf and l is negligible. Since we assumed ∂P/∂z = 0 and did not consider any
boundary condition for large x we effectively considered a semi-infinite domain in our
analysis. In our simulations and in practice, there will usually be an opposing wall and a
slight adverse pressure gradient ∂P/∂z, causing some backflow w < 0 beyond the plume
region, which is neglected in Eq. (5.35). In 5.D, simulations show that a good approxima-
tion for the superficial velocity is obtained by evaluating Eq. (5.35) at z = zeff ∼ h/3 may
be used as a rough approximation for relatively wide channels.

It should be noted that while deriving the results for the step-function gas fraction
profile, the diffusion equation is not used. As such, these relations will be valid as long as
we have an approximately step-function gas fraction profile with constant ε0, irrespec-
tive of the mechanism of transverse bubble transport.

5.4. VERIFICATION USING NUMERICAL SOLUTIONS
We solve the mixture model formulation for multiphase flow [157, 171, 172, 181] using
COMSOL Multiphysics v5.6, update 2 [182]. The physical properties of the electrolyzer
used for the simulations are listed in Table 5.1. We consider an electrolyzer setup as
shown in Fig 5.1. The gas is generated at the electrode on the left and escapes from
the top boundary. The liquid electrolyte is recirculated back into the electrode chan-
nel through a downcomer section. We simulate only the electrode channel as shown
in Fig. 5.1. This requires proper boundary conditions at the top and the bottom of the
channel.

BOUNDARY CONDITIONS
The mixture model allows only the mixture and gas boundary conditions. At the elec-
trode surface, we want to prescribe a no-slip condition for liquid and the gas flux. In the
horizontal direction at the electrode surface, we use an inlet boundary condition such
that the gas flux is equal to Ug. In the vertical direction, we impose a zero mixture veloc-
ity with zero slip velocity at the boundary nodes. This ensures that a no-slip boundary
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Table 5.1: Dimensions and operating conditions used in numerical simulations for verification cases

Properties Value
Channel Width, l 10 mm
Entrance height, hen 50 mm
Exit height, hexit 50 mm
Electrode height, h 900 mm
Electrolyte density, ρ 1000 kg/m3

Kinematic viscosity, ν 10−6 m2/s
Bubble Diameter, db 75 µm
Maximum gas fraction, εmax 0.4

condition is imposed for the liquid phase. At the opposite boundary, we use a no-slip
condition at the boundary nodes with zero mixture velocity. When the flow at the top is
in the positive z−direction, a pressure boundary condition (p = 0) is used with gas es-
caping from the top boundary. When the flow at the top is in the negative z−direction,

we specify a local Bernoulli condition p = −ρw2

2 with no gas recirculating back into the

channel. At the bottom, we specify a local Bernoulli condition p = ρg h − ρw2

2 with no
gas flux. The boundary conditions are also shown in Fig. 5.1. Similar boundary condi-
tions have been previously used for modeling natural thermal convection [275–277]. We
compared the results obtained using these boundary conditions with the simulation of
the full configuration of Fig. 5.1 in 5.B. Using these boundary conditions, we get the re-
sults almost indistinguishable from those in the full configuration, and we could achieve
faster and easier convergence of numerical results at larger heights.

VERIFICATION OF STEP-FUNCTION GAS FRACTION PROFILE RELATIONS
We verify our analytical expressions by comparing them with various numerical results

obtained using COMSOL. The numerical plume thickness is calculated byδg,n =∫l
0 εd x/ε0

and the numerical value of the characteristic velocity Wn is calculated by Wn = w ′
nδg,n.

We consider different cases involving different current densities, electrode heights, max-
imum gas fractions, and bubble diameters. All these simulation results are obtained
using the properties listed in Table 5.1.

Figure 5.3 and Fig. 5.4 show the development of the gas fraction profile and the
velocity profile as a function of height for Ug = 1 mm/s with a maximum gas fraction
εmax = 0.4. This corresponds to a current density of 8 kA/m2 at atmospheric conditions
for hydrogen evolution and is a representative case for the step-function gas function
profile. Under some simulated conditions, a degree of turbulence can arise in actuality,
which is not included in the simulations. Therefore, these results should be used with
caution. We see an increasing plume thickness and peak velocity as the height increases.
We also see that the gas fraction remains close to the maximum gas fraction and drops
quickly to 0 near the edge of the plume, justifying our assumption of a step-function gas
fraction profile. Interestingly, Fig. 5.4 shows that the velocity profiles all cross in the same
point around x ≈ 3 mm, indicating that δ f should be approximately independent of Ug

in this range. This implies that while δg increases with increasing Ug, q decreases, so
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that δf = qδg does not change. This is also indeed predicted by our analytical solution,
as shown in Fig. 5.5.

0

0.3

0.6

0.9

z
(m

)

0 10x (mm)
ε

0

0.4z = 0.9 m

z = 0.6 m

z = 0.3 m

Eq. (5.8), (5.26), (5.28) and (5.29)

Figure 5.3: The development of gas fraction profile and the velocity profile for the step-function gas fraction
profile at Ug = 1 mm/s for the properties used in Table 5.1. The gas fraction profile is shown in color, and the
numerical velocity profile is overlaid as an arrow plot at z = 0.3 m, z = 0.6 m and z = 0.9 m. The solid lines show
the analytical velocity profile given by Eq. (5.8) at the same heights. We used Eqs. (5.28) and (5.29) to determine
δf = qδg and W, after solving Eq. (5.26) numerically for q .
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Figure 5.4: Numerical results for gas fraction profiles (dashed) and the velocity profiles (solid) at different cur-
rent densities at z = 0.9 m for the properties listed in Table 5.1. Here, the gas fraction at the electrode surface
approaches a maximum value, and we see that the plume thickness, peak velocity and strain rate increase with
increasing current density.

The characteristic velocity W, gas plume thickness δg, and strain rate w ′ as a func-
tion of height are shown in Figure 5.6. We see that the analytical results obtained using
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1

2

3

4

q
,δ

f
(m

m
)

Eq. (5.26)

Eqs. (5.26) and (5.28)δf = qδg

q ∝U−0.47
g

10.90.80.70.60.50.40.3
Ug (mm/s)

Figure 5.5: Plot showing in our analytical model, the variation of q and δf with Ug at z = 0.9 m and a relatively
high current density at which a step-function can approximate the gas fraction profile. While q decreases,
δf remains relatively constant. This causes all velocity profiles to cross the same point around x = 3 mm in
Fig. 5.4. The power q ∝U−0.47 is obtained using the least squares fit on the analytical results of Eq. (5.26). It

is close to the power of U−4(1−ε0)1/4/7
g predicted by the last approximation in Eq. (5.27), which gives U−0.5

g for
ε0 = 0.4.
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δg ∝ z0.4
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∝ z
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Eq. (5.28)

Eq. (5.26)

q ∝ z−0.12
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w
′ ∝ z0.32

Figure 5.6: Log-log plot of W, plume thickness δg, and wall shear rate w ′ as a function of height z for Ug = 1
mm/s using the properties listed in Table 5.1. It can be seen that the analytical results (dashed line) have a
reasonably good agreement with the numerical results (solid line). There are small differences in the magni-
tude, possibly due to the discrepancy in the assumed velocity and gas fraction profiles. We used Eq. (5.26) to
numerically solve for q and found that it decreases as the height increases, highlighted explicitly in Eq. (5.27).



5.4. VERIFICATION USING NUMERICAL SOLUTIONS

C
h

ap
te

r
5

89

Eq. (5.29)-(5.32) show a reasonably good agreement with the numerical results obtained
using COMSOL. The dotted lines show the analytical results when q is calculated using
Eq. (5.26).

In Figure 5.7, we show W, δg and w ′ as a function of Ug at a height of 0.9 m for the
properties listed in Tab. 5.1. Due to the large range of Ug, we see a transition in scalings
for all quantities. At small values of Ug, the results for the exponential-shaped gas frac-
tion profile are valid, so W ∝ U 2/5

g , δg ∝ U−1/5
g and w ′ ∝ U 3/5

g . In contrast, the results
for step-function gas fraction profiles are valid at large values of Ug and we find, from a
least squares fit of the numerical results, that W∝U 0.68

g , δg ∝U 0.42
g and w ′ ∝U 0.26

g . To
obtain these scaling analytically, we first calculate q by using Eq. (5.14) for the exponen-
tial profile or by numerically solving Eq. (5.26) for the step-function profile. Once the
value of q is known, we use Eqs. (5.10), (5.11) and (5.13) for the exponential profile, while
Eqs. (5.28), (5.29) and (5.32) are used for the step-function gas fraction profile. We see
a good agreement with the numerical results and that the analytical results capture the
transition very well. The small offset in the predicted values may be due to the discrep-
ancy in the assumed and actual profiles, also seen in Fig. 5.3.
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0.25

0.5
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Figure 5.7: Log-log plot of W, plume thickness δg, and shear rate w ′ with Ug at z = 0.9 m using the properties
in Table 5.1. The solid line represents the numerical solution using COMSOL while the dashed lines corre-
spond to our analytical solution. Here, we used Eq. (5.26) to solve for q numerically. We see a transition from
an exponential gas fraction profile to a step-function gas fraction profile, evident from the change of slope.
For a hydrogen evolution reaction, Ug = 1 mm/s corresponds to a current density of 8 kA/m2 at atmospheric
conditions.



C
h

ap
te

r
5

90 5. ANALYTICAL VELOCITY AND GAS FRACTION PROFILES NEAR THE ELECTRODE

Reference [278] observes that w ′ ∝U 0.64
g for oxygen bubbles and w ′ ∝U 0.43

g for hy-

drogen bubbles for a current density range of 0.005-0.11 A/cm2. In alkaline electrolytes,
oxygen bubbles are substantially larger than hydrogen bubbles [274]. Therefore, it is
plausible that the oxygen gas fraction profile was approximately exponential, while the
hydrogen gas fraction profile was more similar to a step function. The scaling w ′ ∝U 0.64

g ,

observed for oxygen bubbles in Ref. [278] is in agreement with U 3/5
g derived for the expo-

nential gas fraction profile. while the scaling w ′ ∝U 0.43
g for hydrogen bubbles lies close

to the range U 1/3
g −U 0.41

g derived in Eq. (5.33) for the step-function gas fraction profile.

In Fig. 5.7, we observe a transition from a higher power (w ′ ∝U 3/5
g ) to a lower power

(w ′ ∝ U 0.26
g ) around Ug ≈ 0.08 mm/s or 800 A/m2, see Eq. (5.41). A similar transition

from a higher power at current densities around 50 A/m2 to the mentioned w ′ ∝U 0.43
g

was observed for hydrogen. The transition from an exponential to step-function gas
fraction profile could therefore be an explanation of the increasing slope of w ′ with Ug

observed in Ref. [278], particularly for hydrogen bubbles, even though there is a lot of
scatter in the experimental data at low current density. The step-function gas fraction
profile analysis will be relevant for many experimental results with small bubbles. For
bigger bubbles, the exponential gas profile analysis may be more appropriate.

In Fig. 5.8, we show the natural convection electrolyte flow rate as a function of the
superficial gas flux. We see that the flow rate increases as the gas flux is increased due
to the presence of a larger amount of bubbles, resulting in increased buoyancy. We also
see that Eq. (5.35) predicts the numerical results with good accuracy using z = 0.4h, in
agreement with Fig. 5.11 for l = 10 mm.
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m
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Eq. (5.35)

Eq. (5.42)

Eq. (5.35)

Eq. (5.42)

h = 0.9 m

h = 0.3 m

Figure 5.8: Log-log plot of the flow rate 〈W 〉 with Ug for the properties listed in Table 5.1. For the step-function
gas fraction profile, Eq. (5.35) valid at high Ug, we used zeff = 0.4h for l = 10 mm as indicated by Fig. 5.11(a). For
the exponential gas fraction profile, Eq. (5.42) valid at small Ug, we used zeff = 0.75h for l = 10 mm as indicated
by Fig. 5.11(b). It can be seen that the analytical results (dashed line) predict the flow rate with good accuracy.

For the verification of our step-function gas fraction profile results in Figs. 5.3-5.8,
we used a fixed bubble diameter of 75 µm and a maximum gas fraction of 0.4. We also
verified our results at a smaller bubble diameter of 50 µm and different maximum gas
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fractions of 0.3, 0.4, and 0.5. We used a smaller Ug = 0.2 mm/s, as the maximum gas frac-
tion is reached earlier for smaller bubble diameters due to the associated lower bubble
dispersion coefficient. We summarize these results in Table 5.2 for z = 0.9 m. We see
again a good agreement of analytical results with the numerical results obtained using
COMSOL.

Table 5.2: Comparison of analytical results with numerical results obtained using COMSOL for Ug = 0.2 mm/s
at z = 900 mm for a bubble diameter of 50 µm and properties used in Table 5.1.

Numerical Analytical Difference
ε0 W (m/s) δg (mm) w ′ (1/s) W (mm) δg (mm) w ′ (1/s) W δg w ′
0.3 1.88 1.11 1693.8 1.73 1.3 1324.5 -8% 17% -22%
0.4 1.61 0.92 1744.9 1.48 1.06 1393.6 -8% 15% -20%
0.5 1.39 0.82 1696.1 1.29 0.93 1389.9 -8% 13% -18%

5.5. CONCLUSIONS

In this paper, we provide analytical relations for the velocity and gas fraction profile near
a gas-evolving electrode. We derived analytical expressions for quantities like flow rate
and wall shear rate for natural convection conditions. These relations are derived using
the integral method, assuming first an exponentially shaped gas fraction profile and then
a step-function gas fraction profile with constant electrode surface gas fraction and gas
flux.

As we did not use any horizontal gas transport equation in our derivation, our ana-
lytical expressions for the step-function gas fraction profile are generally valid, for any
type of horizontal transport mechanism.

We found that the characteristic liquid velocity W and the gas plume thickness δg

increase as a function of height z for both exponential (δg ∝ z1/5, W ∝ z3/5) and step-
function

(
δg ∝ z1/3 − z0.43 , W∝ z2/3 − z0.79

)
gas fraction profiles. The exact power de-

pends on the value of q = δf/δg, which in case of a step-function gas fraction profile de-
pends on the gas flux and maximum gas fraction through Eq. (5.26). The characteristic
liquid velocity also increases with an increase in gas flux Ug. However, with an increase
in gas flux, the gas plume thickness decreases for an exponential gas fraction profile as
U−1/5

g , while it increases for a step-function gas fraction profile as U 1/3
g −U 0.73

g accord-
ing to Eq. (5.28). We also observed that at a given height, the velocity profiles all cross
at the same point for different high current densities. This is because while the plume
thickness increases, q decreases, so δf is almost a constant. Finally, we derived an an-
alytical expression for the average superficial liquid velocity due to natural convection,
Eq. (5.35), and validated it numerically for large current densities.

Both the exponential and step-function gas fraction profiles are relevant for water
electrolyzers. Small bubbles at atmospheric pressure reach their maximum gas fraction
quickly and develop a step-function gas fraction profile, while at high pressures, small
heights, and/or relatively large bubbles, the gas fraction profile will be approximately
exponential in shape.
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APPENDICES

5.A. EXPONENTIAL GAS FRACTION PROFILE
In section 5.3.1, we provided analytical relations for an exponential-shaped gas fraction
profile of Eq. (5.7). Here we provide the derivation of the provided analytical expressions.
At x = 0, the no-slip condition gives u = w = 0. In our derivation, we will neglect ε≪ 1 in
comparison to unity, so νm = ν and uHd

1−ε/εmax
≈ uHd. Using this, we can integrate Eq. (5.4)

from x = 0 to l with an exponential plume for δg ≪ l to give

W =
ε0gδ2

gq

ν(q +2)
. (5.36)

The conservation of gas volume in Eq. (5.1) can be rewritten as

Ugz = H(q)δgε0W. (5.37)

Eq. (5.6) gives us ≈ uSt+uHd, so u|x=0 ≈ uHd ≈ Db/δg. For ε0 ≪ 1, we can rewrite Eq. (5.3)
as

Dbε0

δg
=Ug. (5.38)

Substituting Eq. (5.7), Eq. (5.8) and Eq. (5.36) in Eq. (5.4) and integrating between
x = 0 and x = l for δg ≪ l gives

2νW

δgq
= d(F (q)δgW

2)

d z
, (5.39)

where F (q) ≡ 432e−q−27e−2q+36q3−162q2+378q−405
108q2 . Eqs. (5.36)-(5.39) allow solutions in terms

of powers of z. Eliminating ε0 from Eqs. (5.36) and (5.37) using (5.38) gives

W =
Uggδ3

gq

νDb(q +2)
and Dbz = H(q)δ2

gW. (5.40)

EliminatingW from Eq. (5.40), δg can be calculated by Eq. (5.10). Using (5.10) in Eqs. (5.40)
and (5.38), we can find W and ε0 using Eq. (5.11) and (5.12), respectively.

The exponential gas fraction profile will be relevant when the inlet gas flux Ug is
small. The transition to step-function profile occurs when ε0 ∼ εmax. We can calculate
the approximate condition for the transition in terms of gas flux using Eq. (5.12) as

Ug ≈
(

D3
bε

5
maxg q H(q)

νz(q +2)

)1/4

, (5.41)

which gives Ug ≈ 0.08 mm/s for the properties listed in Table 5.1. We see in Fig. 5.7 that
the transition to block plume indeed starts around this value.

We can estimate the superficial liquid velocity or the liquid flow rate per unit flow

area, 〈W 〉 = 1
l

∫l
0 w(1−ε)d x, using Eqs. (5.7) and (5.8) to be

〈W 〉 = Wδg
(
1−q +0.5q2 −e−q

)
ql

. (5.42)
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This expression should be evaluated at an effective height z = zeff for which the average
liquid flow rate beyond x = δf is zero, which is further analyzed in 5.D.

In thermal and solutal natural convection, Eq. (5.8) is often replaced by [249, 279]:

w =We
− x
δf

(
1−e−x/δg

)
, (5.43)

which gives

δg =
(
νD2

bz

gUg

(q +1)(q +2)(2q +1)

q3

)1/5

,

ε0 =
(
νU 4

g z

g D3
b

(q +1)(q +2)(2q +1)

q3

)1/5

,

W =
(

Dbg 2U 2
g z3

ν2

(q +1)2(2q +1)2

q4

)1/5

,

(5.44)

These expressions have the same powers of z and Ug as Eqs. (5.10)-(5.12), but depend
differently on q . q , in this case, is given by

q ≈
√

40Prb

7

1+√
Prb

1+2
√

Prb

. (5.45)

BUBBLE PRANDTL NUMBER
The analytical relations derived for the exponential-shaped gas fraction profile require
an estimate for q . Assuming that functions of q can be expressed as some power of q and
comparing powers, we find from Eqs. (5.36)-(5.39) that q ∝ z0. Eq. (5.39) can be written
as

F (q)
d(δgW

2)

d z
= 2νW

qδg
. (5.46)

Differentiating Eq. (5.37) with respect to z and using the expression in Eq. (5.1) gives

H(q)
d(δgε0W)

d z
=Ug. (5.47)

Dividing Eq. (5.46) by Eq. (5.47) using Eq. (5.38), we get

F (q)

H(q)

d
d z (δgW

2)
d

d z (δgε0W)
= 2νW

qDbε0
. (5.48)

Using the scalings W∝ z3/5, δ∝ z1/5 and ε0 ∝ z1/5 in Eq. (5.48) gives

Prb = ν

Db
= 7

10

qF (q)

H(q)
. (5.49)

Equation (5.49) can be solved for q for a given bubble Prandtl number. An excellent
approximation for all values of q with a relative error < 5% is given by Eq. (5.14).
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5.B. VERIFICATION OF BOUNDARY CONDITIONS
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Figure 5.9: Comparison of the numerical results for (left) simplified channel geometry used in the main text
and (right) the full recirculating channel geometry. The results are shown for the properties listed in Table 5.1
at a superficial gas flux of Ug = 0.5 mm/s. We see that both (top) the gas fraction and (bottom) the vertical
velocity are similar in both cases. This shows that the boundary conditions of Fig. 5.1 are appropriate to model
the natural recirculation due to the gas produced at the vertical electrode. We have resized the recirculating
geometry and the boxed region is zoomed to show the comparison with the simplified channel geometry.

In this section, we verify the boundary conditions discussed in the main text and
shown in the left part of Fig. 5.1 using a simulation of a full recirculation geometry in-
cluding the downcomer section shown on the right of Fig. 5.1. For the full recirculation
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geometry, we use the same inlet boundary condition for the electrode, such that the gas
flux is equal to Ug. At the top, we use a dispersed phase outlet boundary condition, so
the gas escapes from the top boundary. For the electrolyte, a slip boundary condition is
used at the top boundary. At other walls, a no-slip boundary condition is imposed. From
Fig. 5.9, we see that the results for the channel geometry used in the main text are similar
to the full recirculating channel results, both for the gas fraction and the velocity pro-
file with very minute differences near the top and the bottom of the channel, due to the
boundary conditions. Owing to the better convergence and reduced simulation time, we
used the channel geometry with the boundary conditions highlighted in Fig. 5.1.

5.C. EXPRESSIONS IN THE LIMIT q → 1
In this section, we derive Eqs. (5.31), (5.33) and (5.34). For the limit q → 1, the last ap-
proximation of Eq. (5.27) is given as

q =
(

gε0ν
2
m z̄c

zU 4
g

)(1−ε0)4/7

(5.50)

where the power 0.12 correspond to ε0 = 0.4 and may vary slightly between 0.11-0.14 for
a different ε0.

To derive the scaling in the limit q → 1 for δg, Ug and w ′, we first need to locally write
q+2

qh(q) , q
(q+2)h(q)2 and q2

(q+2)2h(q)
appearing in Eqs. (5.28), (5.29) and (5.32) as powers of q as

(
q +2

qh(q)

)1/3

= 2.83q a1 ,

(
q

(q +2)h(q)2

)1/3

= 2.67q a2 , and

(
q2

(q +2)2h(q)

)1/3

= 0.94q a3

(5.51)

where a1 =
ln

(
q+2

2.833 qh(q)

)
3ln(q) , a2 =

ln
(

q

2.673(q+2)h(q)2

)
3ln(q) and a3 =

ln

(
q2

0.943(q+2)2h(q)

)
3ln(q) .
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Figure 5.10: Semi-log plot showing the variation of powers a1, a2, and a3 with q . We observe that a1 and a2
change monotonously with q , while a3 has a maxima near q ∼ 5.
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In Fig. 5.10, we plot the powers a1, a2 and a3 as a function of q . We observe that a1

and a2 show a monotonous behavior with a finite negative value at q = 1 decreasing to
nearly 0 at large q . In this case, both δg and W increase as z̄ increases. Interestingly, a3

increases from -0.1 to 0.13 for q = 1−5 and then decreases to 0 as q approaches infinity.
In this case, we would have a local minimum in the power of Ug and z in the expression
of w ′. This minimum occurs when q ∼ 5.

We can, using a1 = −0.8, a2 = −0.95 and a3 = −0.15 and Eqs. (5.50) and (5.51), write
for the limit q → 1 :

δg = 2.83

(
zU 4

g

gε5
0ν

2
m z̄c

)0.114(1−ε0)1/4 (
νmUgz

gε2
0

)1/3

,

W = 2.67

(
zU 4

g

gε5
0ν

2
m z̄c

)0.136(1−ε0)1/4 (
gU 2

g z2

νmε0

)1/3

, and

w ′ = 0.94

(
zU 4

g

gε5
0ν

2
m z̄c

)0.021(1−ε0)1/4 (
g 2Ugzε0

ν2
m

)1/3

.

(5.52)

which on simplification gives Eqs. (5.31) and (5.33). Similarily, the local minima in the
powers of Ug and z in the expression of w ′ is obtained by using a3 = 0.13 near q → 5 in
Eq. (5.50) and (5.51) to give

w ′ = 0.94

(
gε0ν

2
m z̄c

zU 4
g

)0.019(1−ε0)1/4 (
g 2Ugzε0

ν2
m

)1/3

. (5.53)

resulting in Eq. (5.34) upon simplification and using ε0 = 0.4.

5.D. zEFF

In the main text, we used an effective height zeff for which the average velocity between
δf < x < l is negligible in simulations. In this section, we will try to quantify this height
with the help of our simulations. To do this, we performed various simulations varying
the current density, electrode height, channel width, and bubble diameter. In Fig. 5.11,
we show the results of various simulations varying different parameters and find that the
zeff becomes approximately independent of the channel width for wide channels of a
few cm in case of a step-function plume and a bit more in case of an exponential plume.
There is some variation with bubble size, height in case of an exponential plume, and
maximum gas fraction in case of a step-function plume. Except for thin channels, as a
rough approximation one may take zeff ∼ h/3 for a step-function plume and h/2 for an
exponential plume.
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(a) Step-function gas fraction profile
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(b) Exponential gas fraction profile

Figure 5.11: Plot showing zeff/h as a function of gap width for different electrolyzer heights, maximum gas
fraction, and bubble diameter. Here zeff is the height for which the average superficial velocities for the an-
alytical and numerical results are the same. Unless otherwise mentioned, the properties listed in Table 5.1
are used. These results for a step-function gas fraction profile (Ug = 1 mm/s) show that zeff/h becomes inde-
pendent of gap width l , but depends somewhat on db and εmax. The results for the exponential gas fraction
profile (Ug = 0.01 mm/s) seem to indicate that a large variation in zeff/h becomes independent of l for a bit
larger values. For the exponential case, the red and gray lines overlap as the gas fraction remains small, and
the maximum gas fraction has no effect on the hydrodynamics.
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6.1. SUMMARY
This thesis attempts to improve understanding of multiphase flow in various
electrochemical systems by developing new analytical models. This research focuses on
four different electrochemical cell configurations, viz. :- porous gas diffusion layers in a
membrane-electrode assembly; porous flow-through electrodes for membraneless
operations; gas-evolving membraneless parallel plate electrolyzers; and vertical
gas-evolving electrodes where the gas is produced at only one of the two parallel walls.
The analytical models for each of these configurations are developed to answer the
research questions outlined in section 1.3. Here we provide quick concluding remarks
pertaining to the posed research questions:

"How is the limiting current in a gas diffusion layer influenced by the structure of a porous
diffusion layer?": CHAPTER 2
We solved a simplified set of visco-capillary equations for the gas and liquid satura-
tion profiles inside a porous diffusion layer when the wetting and non-wetting phases
move in the opposite direction. Using the saturation profile, we derived explicit analyti-
cal expressions for effective diffusivity (Eq. (2.34)) and diffusion-limited current density
(Eqs. (2.37) and (2.39)) in a porous diffusion layer. These expressions are provided in
terms of geometrical parameters such as pore size distribution and thickness of the dif-
fusion layer. These expressions show that the presence of the non-wetting phase (water
in the case of fuel cells) decreases the effective diffusivity of the reacting species in the
wetting phase (oxygen in the case of fuel cells) and the corresponding diffusion-limited
current density.

We show through some example calculations that in modern diffusion layers, the
concentration of diffusing non-wetting phase reactant remains high so that the diffusion-
limited current density is well above the operating current density. As such, the perfor-
mance of the membrane-electrode assembly is only marginally impacted by the porous
diffusion layers, and they are well-designed for their intended operating current densi-
ties.

"What is the minimum velocity required to operate a membraneless flow-through elec-
trolyzer effectively?": CHAPTER 3
We proposed a simple multiphase flow-through electrode model based on the visco-
capillary equations introduced in chapter 2. For a membraneless operation, however,
we considered the case where the gas and the liquid move in the same direction. We
use the multiphase flow model to find a minimum required flow-through velocity to ef-
fectively push the gas bubbles out of the inter-electrode gap and minimize the ohmic
losses. This velocity is expressed in terms of pore size distribution and thickness of the
electrode (Eq. (3.5)). We show that this minimum velocity increases proportional to the
square root of current density for thin electrodes and linearly with current density for
thick electrodes.

"What is the maximum height of a parallel plate electrolyzer without a separator at a
given operating condition using only buoyancy-driven flow?": CHAPTER 4
We used a mixture model neglecting inertia to derive approximate analytical relations
for the velocity profile and the pressure drop in a parallel plate electrolyzer. We verified
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these results with existing velocity profile data in the literature and our computational
model.

Under the assumption that there are no external pressure losses in the system, we
derived an expression for the maximum allowable height of the electrolyzer under nat-
ural convection conditions (Eq. (4.31)). We show that the buoyancy-driven flow allows a
safe and efficient operation for parallel plate membraneless electrolyzers of height 5-10
cm under atmospheric conditions. We can use forced flow to make these electrolyzers
taller by another 5-10 cm before turbulent mixing starts.

"How does the plume thickness, electrode surface gas fraction, and liquid velocity scale
with the height and current density of the electrolyzer?": CHAPTER 5
We considered a vertical gas-evolving electrode under buoyancy-driven conditions with
no gas evolution on the opposite wall. The gas fraction near the electrode keeps on in-
creasing until it approaches a maximum value. We provide a mathematical model to
simulate the multiphase flow near this maximum value. We also provide analytical re-
lations for the gas plume thickness (Eqs. (5.10) and (5.28)), velocity profile (Eqs. (5.11)
and (5.29)), and shear strain (Eqs. (5.13) and (5.32)) using the integral method and verify
them using our numerical simulations. We provide these results for a gas fraction that
decreases exponentially with distance from the electrode, relevant at small heights and
current densities, and a step-function gas fraction profile suitable for larger heights and
current densities.

We found that the plume thickness and the strain rate always increase with height.
We found that the plume thickness decreases with increasing current density at small
heights and current densities when the gas plume is exponential in shape. As the cur-
rent density or the height increases and the gas fraction approaches its maximum value,
the gas plume transitions to a step-function profile. In this case, the plume thickness
increases with increasing current density.

Both these profiles are relevant for water electrolyzers. The exponential profile re-
sults are more appropriate for larger bubbles, low gas production rates, and smaller
heights. Small bubbles at atmospheric pressure develop the step-function gas fraction
profile quickly at high current density and height as the gas fraction approaches its max-
imum value.

6.2. DISCUSSIONS AND OUTLOOK
This thesis aims to create analytical models to answer important research questions
about electrochemical cells, particularly water electrolyzers and fuel cells. This required
us to make various simplifications and assumptions.

CHAPTER 2
The fundamental assumption in this chapter is that the gas and liquid phases individu-
ally follow Darcy’s law, without mutual friction between them. This holds in a wide range
of practical applications, including fuel cells and electrolyzers, in which reactants and
products exist in both gaseous and liquid phases. The gas and liquid phases encounter
varying degrees of transport resistance in the porous medium depending on several fac-
tors, such as the hydrophobicity of the material, pore size, and tortuosity. As a result,
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gases and liquids form distinct continuous pathways in various regions of the porous
diffusion layers. For example, hydrophobic diffusion layers in fuel cells allow liquids
to localize in larger pores with lower threshold pressure, while the gas phase occupies
smaller pores.

In this study, we assume that the phase change between the gaseous and liquid phases
is neglected. Since electrochemical cells usually operate above room temperature, any
evaporation leads to lower liquid saturation. Consequently, fuel cells have less liquid
in the porous transport layers, leading to an underestimation of the performance of the
diffusion layer. Conversely, the performance is overestimated for electrolyzers due to
significant evaporation at high temperatures. Therefore, it is prudent to include phase
change in future analytical models to improve their accuracy at high temperatures and
predict the effect of the relative humidity of the feed gas.

We neglected the effect of Knudsen diffusivity Dk on the limiting current in our model.
For very small pore sizes (< 0.1 µm) or high saturation, found in catalyst layers and some
microporous layers, Knudsen diffusion also becomes important. This usually results
in reduced effective diffusivity of the gas, decreasing the performance of the gas diffu-
sion layer. This can be taken into account by writing the single phase diffusivity D0 as
(D−1

m +D−1
k )−1, where Dm is the molecular diffusivity.

Finally, using our analytical model, or a similar numerical model, inevitably requires
information on the pore structure of the gas diffusion layers or the capillary pressure-
saturation relationship in the form of Brooks-Corey relation. Although there have been
many experiments to characterize diffusion layers, the data is scattered among several
papers. An instrumental contribution would be creating a dynamic central database
of gas diffusion layer properties that would allow researchers and industries to select
the most appropriate gas diffusion layer. Only the most important properties should
be included, such as porosity, permeability, electrical conductivity, thermal conduc-
tivity, contact angle, and wettability. Capillary pressure-saturation curves in the form
of Brooks-Corey/Van-Genuchten relations are important for understanding the water-
management behavior and should also be included in the database. This database should
be searchable and allow for filtering and sorting of the data based on various parameters.
The database should also include metadata such as experimental techniques used, au-
thors and publication details. This information is critical in searching and retrieving the
relevant information from the database. While creating this database is not trivial, it
would help reduce the time and effort required to locate and gather relevant data from a
wide range of data.

CHAPTER 3
We used the same set of visco-capillary equations as in chapter 2, so the discussion re-
garding phase change remains the same. Furthermore, we have introduced a free pa-
rameter in the form of the liquid saturation s0 at the gap-electrode interface. This is in-
fluenced by flow impacting bubble nucleation and release, through drag and transport
of dissolved reactants, and allowable voltage losses. For example, Ref. [15] found that s0

could be reduced by adding a nylon spacer. The hydrophilic nature and relatively small
aperture size likely give it some of the characteristics of a separator, albeit of much lower
thickness and cost. The higher flow rate reduces s0 and the corresponding overpoten-
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tials as seen in Ref.[15]. It would be interesting to see the effect of electrode shape and
roughness on s0, which should be evident from measured overpotentials.

CHAPTER 4
While deriving the analytical expressions in chapter 4, we neglected the inertial terms
compared to the sum of external pressure forces and buoyancy. The velocity in our ana-
lytical model will be overestimated near the electrodes while it is underestimated in the
core region of the interelectrode gap, where no or little gas is present.

There may also be some concerns regarding the slip velocity closure models used in
the numerical model in chapter 4. The empirical models used in this chapter are de-
rived from experiments conducted on rigid sedimenting particles. However, it is worth
noting that these empirical relations may require additional validation, especially when
used for bubbles. In particular, the expression for shear-diffusion is based on a limited
dataset consisting of only three data points from a single experiment [191]. There could
be some deviations in the case of charged electrochemical bubbles. In the case of elec-
trochemical bubbles, for example, the repulsion force between bubbles is largely due to
electrostatic interactions between the charges on their surfaces. This can lead to differ-
ent types of behavior compared to particle collisions where the repulsion force is mostly
due to collision. Furthermore, some coalescence may also occur in the case of bubbles.

The validation needed for shear diffusion or other bubble-bubble interactions could
be done either numerically using direct numerical simulations or experimentally.
Schillings et al. [203] attempted the direct numerical simulations and arrived at similar
results as obtained using the empirical models. Similar studies can also be conducted
for bubbles that may experience electrostatic repulsion or coalescence to test the
validity of these empirical models for bubbles. Experimental techniques such as
high-speed photography and PIV could be used to analyze the motion of bubbles and
surrounding fluid and may allow the determination of bubble slip velocity.

CHAPTER 5
In our derivation of the scaling, we have assumed a velocity profile that is non-negative
everywhere. As shown from our simulation, there is a negative velocity away from the
electrodes. The results for flow rate will become more accurate if the same analysis can
be extended to a more general velocity profile that allows negative velocities.

We have also postulated a heuristic relationship for the additional dispersion to sim-
ulate the maximum gas fraction in water electrolyzers. Such a maximum gas fraction is
seen with a high concentration of the electrolyte. It would be interesting to investigate
the additional dispersion mechanisms near the maximum gas fraction in more detail
using techniques such as PIV and compare it with our heuristic expression.
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With the need for immediate mitigation strategies to minimize 
the negative impacts of climate change, the transition to renewable 
energy sources is crucial. Hydrogen is recognized as a promising 
energy carrier for decarbonization, and water electrolyzers can 
produce clean hydrogen using excess electrical energy from 
renewable sources. However, the high current density operation 
required for higher production rates produces a large amount of 
gas near the electrodes, leading to multiphase � ow hydrodynamics 
in electrochemical devices. � is thesis aims to provide analytical 
models for the multiphase hydrodynamics in electrochemical 
cells. � ese relations can be used to optimize their design for 
e�  cient hydrogen production.
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