
 
 

Delft University of Technology

Capturing Electricity Market Dynamics in Strategic Market Participation Using Neural
Network Constrained Optimization

Dolanyi, Mihaly; Bruninx, Kenneth; Toubeau, Jean Francois; Delarue, Erik

DOI
10.1109/TPWRS.2023.3242356
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Power Systems

Citation (APA)
Dolanyi, M., Bruninx, K., Toubeau, J. F., & Delarue, E. (2024). Capturing Electricity Market Dynamics in
Strategic Market Participation Using Neural Network Constrained Optimization. IEEE Transactions on
Power Systems, 39(1), 533-545. https://doi.org/10.1109/TPWRS.2023.3242356

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TPWRS.2023.3242356
https://doi.org/10.1109/TPWRS.2023.3242356


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



1

Capturing Electricity Market Dynamics in Strategic
Market Participation using Neural Network

Constrained Optimization
Mihály Dolányi, Kenneth Bruninx, Jean-François Toubeau, and Erik Delarue

Abstract—In competitive electricity markets, the optimal bid
or offer problem of a strategic agent is commonly formulated
as a bi-level program and solved as a mathematical program
with equilibrium constraints (MPEC). If the lower-level part of
the problem can be well approximated as a convex problem, this
approach leads to a global optimum. However, electricity markets
are governed by non-convex (partially known) constraints and
reward functions of the participating agents. In this paper, an
alternative data-driven paradigm, labeled as a mathematical
program with neural network constraint (MPNNC), is developed.
The method uses a neural network to represent the mapping
between the upper-level (agent) decisions and the lower-level
(market) outcomes, i.e., it replaces the lower-level problem with
a surrogate model. In the presented case studies, the proposed
model is used to find the optimal load shedding strategy of a
strategic load-serving entity. First, the MPNNC performance is
compared to the MPEC approach, both in convex and non-convex
environments, showing that the proposed MPNNC achieves sim-
ilar performance to an ideal MPEC that has perfect knowledge
of the simulated market environment. Then, aggregated supply
curves from the Belgian spot exchange are used to assess
the potential gains of using the developed model in real-life
applications.

Index Terms—Strategic bidding, electricity markets, mathe-
matical program with neural network constraint

NOMENCLATURE

Parameters
αi Minimum fuel cost of power plant i (e /t)
βi Marginal cost of power plant i (e /MWh)
γi Minimum emission of power plant i (tCO2/t)

∆G↓
i Maximum ramp-down rate of power plant i (MW/dt)

∆G↑
i Maximum ramp-up rate of power plant i (MW/dt)

Gi Maximum capacity of power plant i (MW)
Gi Minimum capacity of power plant i (MW)
AFi ,t Availability factor of power plant i at time-step t (-)
cgeni Average generation cost of power plant i (e /MWh)
Dt Demand at time-step t (MWh)
emi Average emissions of power plant i (tCO2/MWh)
pCO2 Carbon price (e /tCO2)
VOLL Value of lost load (e /MWh)
MDTi Minimum down time of power plant i
MUTi Minimum up time of power plant i
STCi Start-up cost of power plant i (e /start-up)
Sets and indices
i ∈ I Set of generators
i ∈ ID Set of dispatchable generators
i ∈ IV Set of variable (renewable) generators

t ∈ T Time-steps
Variables
λt Electricity market price at time t (e /MWh)
enst Energy not served at time t (MWh)
gi ,t Generation of unit i at time-step t (MWh)
vi ,t Start-up status of i at time step t {0,1}
wi ,t Shut-down status of i at time step t {0,1}
zi ,t On/off-status of power plant i at time step t {0,1}

I. INTRODUCTION

IN competitive electricity systems, the production, and con-
sumption of electrical energy are coordinated by markets

wherein self-interested agents trade demand for and supply of
electrical energy. In order to improve their individual strate-
gies, market actors are interested in defining mathematical
models that capture the market dynamics. Such a model may
then be integrated into the market agent’s scheduling problem
to maximize its reward. Traditionally, this goal is achieved by
modeling a Stackelberg Game [1] as a bi-level program, most
frequently solved as a single-level Mathematical Program with
Equilibrium Constraints (MPEC) [2], [3].

In such MPECs, the electricity market is represented in
the lower level via its optimality conditions, and the decision
problem which intends to optimally stimulate the market forms
the upper-level (as depicted in Fig 1). However, the convex

Fig. 1: Schematic showing the bi-level programming structure on the
left, and the MPEC and MPNNC reformulations on the right side.

market model that is most frequently used in the bi-level
programming paradigm may be an erroneous approximation
of the real market dynamics due to three main reasons: (i) the
dynamically changing risk-averse and potentially non-rational
objectives of the market agents are difficult to estimate and are
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continuously impacted by information asymmetry, (ii) there is
a complex set of non-convex constraints (e.g., minimum up
and down times of power plants) characterizing the feasibility
space of the market clearing problem, and (iii) the model
parameters, as well as the representation of uncertainties, are
only partially known.

To address problem (i), Guo et al. [4] propose an inverse
learning approach to reconstruct the market agents’ reward
functions for the Australian electricity market. To deploy
similar methods in other markets, the agents’ bids need to
be available, which is not the case, e.g., in European power
exchanges.

To address (ii), Ye et al. [5] offer an option for incorporating
non-convexities into MPECs, but it happens at the expense of
increased computational burden. Including every non-convex
feature of a real market environment may lead to computation-
ally intractable problems. Moreover, (i) remains unaddressed
in this line of research.

In conclusion, current model-based representation of the
lower-level problem would not lead to a reliable replication
of the price formation mechanism, thus the resulting bidding
strategy may exhibit poor real-life performance.

To improve consistency between models and real-world
data, reinforcement learning (RL) may be seen as an alterna-
tive to the model-based MPEC approach, leading to a fully
data-driven solution method wherein the optimal policy is
directly learned from interactions with the market environ-
ment. In [6], Boukas et al. improve the trading strategy in
the (multi-stage) intra-day market using deep Q-learning, i.e.,
a combination of value-based RL with deep neural networks
[7]. The same problem is tackled in [8] using policy-based
RL, where a stochastic threshold policy is approximated with
a parametric function to boost both performance and compu-
tational tractability. However, typical model-free RL methods
are limited in their ability to embed expert knowledge (i.e.,
they are not able to consider specific analytical equations to
drive the solution towards feasible and optimal points), which
may slow the convergence of the learning procedure, and can
lead to sub-optimal decisions for unobserved system states.

Motivated by the above challenges in existing approaches,
hybrid modeling strategies intend to combine the strengths of
model-based and model-free approaches. This can be achieved
by (i) incorporating data-driven surrogate learning models into
existing optimization problems [9]–[11], or by (ii) developing
novel methodologies to embed hard constraints in model-free
[12], [13] and in model-based reinforcement learning methods
[14], [15]. To fully benefit from the modeling power, as well
as the convergence and potential guarantees of optimality of
optimization models, this paper focuses on the first category.
This approach has previously been used to capture the feasible
space and non-convexities of optimal power flow problems
[16]–[21], focusing on reducing the computational burden.
This work instead aims to leverage the learning abilities of
neural networks to enable a data-driven representation of the
(imperfectly known) LL optimization problem in the bi-level
formulation of a load agent’s optimal bidding strategy, leading
to a Mathematical Program with Neural Network Constraint
(MPNNC) (right part of Fig 1).

The integration of various machine learning models, e.g.,
neural networks, into optimization models may be done by
reformulating the trained neural network as mixed-integer
constraints [9], [20] or by directly differentiating the machine
learning-informed optimization model, using derivative-based
algorithms [10], [11]. The latter strategy, as the one employed
in this paper, offers the flexibility of integrating any NN
architecture, as an exact mixed-integer reformulation does not
exist for all NN models. A second-order Sequential Least
Squares Programming (SLSQP) method [22] is employed to
solve the MPNNC. Despite the more robust performance,
second-order methods are seldom used in the training of NNs
due to a large number of decision variables. The MPNNC,
however, has a much-reduced number of decision variables
(compared to the NN’s training problem), allowing for the
efficient application of second-order methods.

The main contributions of this paper are:
1) The learning capability of a neural network is used to
derive a surrogate representation of the (imperfectly known)
LL market clearing problem in the bi-level optimal bidding
model, leading to the novel MPNNC formulation that, opposed
to classical MPEC models, can capture the partially known
parameters and non-convex characteristics of electricity mar-
kets. Due to the explicit integration of the strategic agent’s
optimization problem in the MPNNC, interpretability and
data efficiency are improved compared to model-free solution
strategies.
2) The optimal bidding problem of a demand agent with load-
shifting capabilities is introduced, illustrating that the MPNNC
accommodates both box and inter-temporal constraints, which
is then solved by a second-order optimization technique.
3) First, a stylized case study illustrates that the MPEC and
the MPNNC are within 18% in terms of aggregated savings in
the idealized environment (i.e., a convex lower-level problem
that captures price formation with known parameters). Second,
to benchmark the proposed MPNNC model in a non-convex
environment, the MPEC formulation of [5] is implemented that
has a unit commitment problem in the LL with non-convex
techno-economic constraints. Lastly, the model’s performance
is further validated on the replication of the Belgian spot
exchange, for which MPECs can not be realistically employed.
This validation step intends to bridge the gap between theo-
retical and operable strategic bidding models.

While existing works in the field of power systems and
electricity market research aim to reformulate the various ML
models as (i) either a mixed-integer constraint set [23], (ii) or
as a set of disjunctive constraints (resulting in a non-convex
non-linear programming formulation), the proposed MPNNC:
(i) encodes the neural network as a single non-linear constraint,
y = NN(x), and (ii) utilizes the fully differentiable structure
of the NN to apply automatic differentiation w.r.t. the model’s
input (x), to optimize its output (y ) in the implemented
SLSQP optimization method. The benefit of this approach lies
in the flexibility of incorporating various state-of-the-art NN
architectures, for which, the exact mixed-integer reformulation
is not yet developed in the literature.

The proposed MPNNC structure allows characterizing most
UL problem classes relevant in electricity markets, e.g., the
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optimal bid problem of an asset owner or the welfare max-
imization problem of a social planner. To the best of the
authors’ knowledge, this is the first strategic bidding model
that captures the price formation process in real-life market
environments in the LL. As such, the presented methodology
may serve two purposes, (i) it may be utilized to find the
optimized market stimulus to achieve various upper-level
objectives, (ii) it can facilitate the recognition of a strategic
agent’s bidding behavior on various markets.

This paper continues as follows. Section II introduces the
modeled bi-level problem, and the implemented optimization
techniques to tackle both convex and non-convex LL problems.
Then, in Section III, the proposed MPNNC model is intro-
duced. Section IV presents the benchmarking of the MPNNC
model in two stylized market environments (a convex and a
non-convex one). Section IV investigates the performance of
the proposed model in the realistic replication of the Belgian
power exchange. Lastly, Section VI derives the conclusions
and potential outlook.

II. THE CLASSICAL BI-LEVEL PROGRAMMING APPROACH

Let us assume that the electricity market clearing, formu-
lated as the maximization of the social welfare, subject to
techno-economic constraints, characterizes (i) the mapping
between its inputs x (e.g., the participants’ quantity bids:
{Gi ·AFi ,t ,Dt}, and price bids: cgeni ) and the resulting dispatch
(yDP = gi ,t) of the generation f ED : x 7→ yDP , (ii) the
mapping between the resulting dispatch and corresponding
market equilibrium price (λ), which is defined by the merit
order curve f MO : yDP 7→ λ. After connecting the two
functions, the relationship between the price formation of the
electricity market (EM) and its inputs may be captured as:
f EM : x 7→ λ. This mapping is represented in most models
via an economic dispatch (ED) or a unit commitment (UC)
problem, as presented in the stylized examples of Section
IV-A3 and Section IV-B2. This paper, however, proposes a
neural network NN(x , θ) as a surrogate LL model, which may
better capture the underlying dynamics by exploiting past real-
life market realizations.

The effectiveness of the proposed MPNNC model is illus-
trated for a load agent that has the potential to shed a small
fragment of the Belgian system’s load. Therefore, the decision
is to determine how to distribute the available load shedding
potential (LS) over 24 hours.

In the bi-level setting, a hierarchy exists between the market
participants’ decision problem and the market clearing prob-
lem, i.e., the decision vector of the UL agent Dt , parametrizes
the decision space y ∈ Y of the LL problem. Below the
optimal bidding problem of the strategic agent is formulated.

A. Upper-level problem: Cost minimization of the load agent

The objective function (1a) represents the electricity cost
summed over the optimization horizon of the load agent for

procuring its desired amount of electricity, which is the market
price λt multiplied by the requested electricity demand Dt :

UL : min
Dt

C(Dt ,λt(x)) = λt(x) · Dt (1a)

subject to

0 ≤ Dt ≤ Dt (1b)∑
t∈T

(Dt − Dt) ≤ LS (1c)

Note that the market price depends on the inputs (x), including
the decided quantity bids (Dt) of the UL agent, which is why
the bidding strategy of the load agent and the market clearing
are inherently inter-related. Equation (1b) is a box constraint
that enforces that the demand bid does not exceed a predefined
maximum (Dt) or takes negative values. Equation (1c) is the
inter-temporal constraint that enforces a maximum budget on
the aggregated load shedding over the optimization horizon
(here over the day).

B. The ED problem describing the stylized LL

Although the NN used in the LL part of the MPNNC model
has the capability to capture the complex, often nonlinear and
non-convex dynamics of the real market environment [24], in
the first numerical analysis (Section IV), a stylized economic
dispatch (ED) model (Problem (2) below) is used to simulate
the market environment. This allows an ideal benchmark,
namely the classical bi-level model (MPEC), which can be
solved to global optimality for the stylized environment. This
ideal benchmark can then be used to assess the performance
of the presented data-driven MPNNC model.

Objective function (2a) includes the generation cost along
with emission costs of operating the system and the social cost
of the curtailed load, i.e., the energy that is not served:

ED : min
gi ,t ,enst

C(gi ,t , enst) = (2a)∑
i∈ID

∑
t∈T

(cgeni · gi ,t + pCO2 · emi · gi ,t)

+
∑
t∈T

enst · VOLL

subject to∑
i∈I

gi ,t + enst = Dt (λt) ∀t ∈ T (2b)

0 ≤ gi ,t ≤ AFi ,t · G i ∀i ∈ I,∀t ∈ T (2c)

0 ≤ enst ≤ Dt ∀t ∈ T (2d)

Constraint (2b) enforces the energy balance for each time
step t, while Eq. (2c) represents the technical limits of the
generation units, and Constraint (2d) imposes bounds on the
energy not served enst . λt shown on the RHS of Eq. (2b)
is the corresponding dual variable that, by definition, is the
market price resulting from the ED model [25].

Problem (2) represents an electricity market clearing in its
simplest form. Firstly, the solution space of the above ED
problem, defined by Eq. (2b-2c) is fully convex, while in
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reality, due to the technical constraints (e.g., minimum gener-
ation levels and up/down times in US markets) and economic
considerations (e.g., complex cost structures or constraints on
the surplus by each accepted bid in the European day-ahead
market), it is non-convex.

C. Extending the LL with unit commitment decisions

We incorporate binary unit commitment decisions zi ,t , start-
up vi ,t and shut-down wi ,t decisions, as well as the correspond-
ing ramping limits (3f - 3g) and minimum up- and down-times
(3i-3h) in Problem (2). The extended objective minimizes the
aggregation of (i) the fuel cost (3b), (ii) the emission cost
(3c), (iii) the start-up cost (3d), and (iv) the cost of energy not
served:

UC : min
gi ,t ,enst

C(gi ,t , enst) = (3a)∑
i∈I,t∈T

(
fcdi ,t + ccdi ,t + scui ,t

)
+

∑
t∈T

VOLL · enst

subject to

fcdi ,t =

αi · zi ,t + βi · (gi ,t − zi ,t · Gi ) ∀i ∈ ID , t ∈ T (3b)

ccdi ,t =

pCO2 ·
(
γi · zi ,t + emi · (gi ,t − zi ,t · Gi )

)
∀i ∈ ID , t ∈ T

(3c)

scui ,t = STCi · vi ,t ∀i ∈ ID , t ∈ T (3d)

Gi · zi ,t ≤ gi ,t ≤ Gi · zi ,t ∀i ∈ ID , t ∈ T (3e)

gi ,t − gi ,j−1 ≤ ∆G↑
i · zi ,t+

+ (Gi −∆G↑
i ) · vi ,t ∀i ∈ ID , t ∈ T (3f)

gi ,j−1 − gi ,t ≤ ∆G↓
i · zi ,t + Gi · wi ,t ∀i ∈ ID , t ∈ T

(3g)

zi ,t ≥
t∑

t′=t+1−MUTi

vi ,t′ ∀i ∈ ID , t ∈ T (3h)

1− zi ,t ≥
t∑

t′=t+1−MDTi

wi ,t′ ∀i ∈ ID , t ∈ T (3i)

zi ,j−1 − zi ,t + vi ,t − wi ,t = 0 ∀i ∈ ID , t ∈ T (3j)

zi ,t , vi ,t , wi ,t ∈ {0, 1} ∀i ∈ ID , t ∈ T (3k)∑
i∈I

gi ,t + enst = Dt (λt) ∀t ∈ T (3l)

0 ≤ gi ,t ≤ AFi ,t · G i ∀i ∈ IV ,∀t ∈ T

For sake of brevity, we do not further discuss this standard
UC problem here but refer the interested reader to [26].

D. Bi-level formulation of the optimal bidding problem as-
suming a convex LL

In order to maximize its own objective, the UL agent
recognizes the dependency between its actions and the LL
market clearing’s outcome f EM : x 7→ λ. This hierarchical

relation is a typical instance of a Stackelberg Game. The
leader anticipates the reaction of the follower y(x),λ(x) to
its decision x in order to maximize its utility or minimize
its cost C(x , y). In the context of optimal load shedding, this
game may be formulated as:

MPEC : min
Dt

C(Dt ,λt(x)) = λt(x) · Dt (4a)

subject to

0 ≤ Dt ≤ Dt (4b)∑
t∈T

(Dt − Dt) ≤
∑
t∈T

LSt (4c)

λt(x) = argmax
y

{
f
(
x , y

)
: y ∈ Y(x)

}
(4d)

The difference of the above formulation from the one in
Section II-A is that the LL’s response is explicitly captured
as the optimum of Eq. (4d), in which, f

(
x , y

)
refers to the

objective function (2a), and Y(x) to the feasible set defined
by Eq. (2b)-(2c).

Standard practice in the literature is to model and solve
such games as Mathematical Programs with Equilibrium Con-
straints (MPECs). The solution procedure’s first step is to
transform the bi-level optimization problem into the single-
level form (as indicated in Fig 1), by reformulating the LL
(the market clearing). This reformulation may be done, e.g.,
by using the Karush-Kuhn-Tucker (KKT) conditions, or by the
primal-dual reformulation combined with strong duality [2].
The KKT conditions of a convex optimization problem subject
to equality (h(y) = 0) and inequality constraints (g(y) ≤ 0)
read:

∆yL(y ,µ, γ) = 0 (5a)
γ · g(y) = 0 (5b)
γ ≥ 0 (5c)
g(y) ≤ 0 (5d)
h(y) = 0 (5e)

Eq. (5a) denotes the Lagrangian stationarity condition, while
Eq. (5b) the complementary slackness conditions. Eq. (5c)
enforces dual feasibility and Eq. (5d)-(5e) the primal feasibility
of the original optimization problem. When all equations of
Problem (5) hold, and that the Hessian of the Lagrangian
(∆yyL(y ,µ, γ)) is positive definite, the KKT conditions are
necessary and sufficient for optimality.

For a convex economic dispatch model as Problem (2), the
KKT conditions are necessary and sufficient for optimality.
However, after including the non-convex constraints of the
participating generators (Problem (3)), or modeling agents’
possibly imperfect bidding behavior as required to accurately
capture real-life markets, the KKT conditions would often
become neither necessary nor sufficient. Assuming that one
can find meaningful KKT conditions for the underlying LL
problem, it still may be numerically difficult to solve the
MPEC (single-level form) to global optimality, because the
complementary slackness conditions and the objective function
consists of nonlinear and non-convex terms. To approximate
the bi-linear terms stemming from the complementarity slack-
ness conditions, a mixed integer reformulation that is often
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referred to as big-M method [27] is used. The resulting
problem is an exact reformulation of the original problem if
the M parameters are appropriately chosen. However, this is
a non-trivial task [28], [29].

In this paper, the nonlinearities in the objective function are
not further linearized as in [2], thanks to the recent advances of
Gurobi’s non-convex solver [30], which can effectively handle
the resulting MINLP, while guaranteeing global optimality
of the solution. On the other hand, if the complementarity
slackness conditions are also kept in the bi-linear format, i.e.,
not reformulated via the big-M method, the problem cannot
be solved in a reasonable time.

E. Bi-level solution method assuming a non-convex LL

Problem (3)’s non-convexity implies that traditional MPEC
solution techniques are not applicable as one cannot attain
meaningful KKT conditions to reformulate the LL problem.
Moreover, the dual variable of the market clearing constraint
in Problem (3) is not available. To overcome these limita-
tions, i.e., formulate an MPEC model with non-convexities
represented in the LL, Ye et al. [5] propose a primal-dual
reformulation-based solution strategy (denoted as MPEC* in
the following), inspired by [31] and summarized below:
1) The binary decision variables of Equation (3k) are first
relaxed, i.e., 0 ≤ zi ,t , vi ,t ,wi ,t ≤ 1, leading to the relaxed
primal UCM form (UCMprimal

rel ).
2) Next, the equivalent dual formulation of UCMprimal

rel is
attained (UCMdual

rel ). Following the primal-dual optimality con-
ditions for the LL reformulation [2], the feasibility set formed
by the constraints of the dual formulation (UCMdual

rel ) and the
original primal formulation (Problem (3)) replace the LL of
the MPEC* model.
3) As strong duality does not hold, the primal and dual
objective values may not be equal at the optimum of the
MPEC* due to the additional binary variables of the primal
problem. The duality gap, defined here as the difference
between the optimal objective of the original, primal Problem
(3) and the dual associated with its relaxed verison UCMdual

rel ,
is penalized in the UL objective.
4) Lastly, the strategic agent’s objective function and con-
straints are included in UL of the MPEC*.
The resulting objective function is composed of two terms
(i) the duality gap and (ii) the strategic agent’s objective.
Therefore, a weighting factor (W ) is introduced (i.e., UL
objective = strategic agent’s objective + W · gap). As noted by
Ye et al. [5], the optimal choice of parameter W in the above
formulation is a challenging task. Furthermore, every change
in the inputs of the LL, including the UL decisions, may
trigger a new optimal choice for parameter W . Consequently,
the optimal range of W is not transferable from one study to
another.

III. SURROGATE NEURAL NETWORK CAPTURING THE
MARKET DYNAMICS

This section introduces the modeling framework that ex-
ploits a surrogate NN model to capture the market dynamics

inside a bi-level setting, i.e., the optimal bid problem of a
strategic demand agent.

Let αi denote the non-linear activation function that enables
capturing complex dependencies for a NN with i = 1, ..., I
number of layers. Then, zi represents the mapping between the
previous layer (zi−1) and the inputs (x) via the corresponding
weights (W z

i ,W
x
i ) and bias term (bi ) in the following way:

zi+1 = αi

(
W z

i · zi +W x
i · x + bi

)
(6)

where W z
1 , z1 = 0, as the first layer is not connected to any

previous hidden layer. The output of the NN(x, θ) is the result
of the last layer (zI ). While various ML models may be used to
approximate the electricity market dynamics [32], NNs have
the known capability to capture arbitrary nonconvex functions
on a compact domain. The obvious difficulty is to choose
the correct hyper-parameter setting of the NN [33]. Neural
networks have consistently shown superior performance in
forecasting the market prices, i.e., capturing the market’s
behavior [24], showcasing their efficiency in capturing the
non-convex operational constraints and economic objectives of
the electricity market actors. On the contrary, one has to keep
in mind that the use of a NN introduces larger complexity
in the training phase due to the larger number of tune-able
hyperparameters.

A. Training of the neural network
In the stylized case study (Section IV), a chained NN

architecture is used to achieve a close match with the explicit
LL representation of the MPEC. The first NN captures the
dispatch of the participating generation units, while the second
one forecasts the market price given the predicted generation
dispatch. The neural networks are denoted as NN(x , θ), where
θ refers to the weights W and biases b parameters, and x to
the vector of input features. The optimal weights and biases
are obtained in the ex-ante training that minimizes the mean-
squared-error (MSE) loss function between the prediction ŷ
and the actual observation y : θ∗ = argminy ||ŷ − y ||22.

The training is split into two parts, (i) fitting the dispatch
forecast y1 = NN1(θ1, x), (ii) fitting the price forecast given
the results of the forecasted dispatch λ = NN2(θ2, y1).
The resulting chained model forecasts the prices (the out-
put of the lower-level model) in the following way: θ∗ =
argminλ ||

(
argminyDP ||ŷDP − yDP ||22

)
− λ̂||22. By decoupling

the forecaster into two sub-models (dispatch and price forma-
tion), the electricity market mechanisms are better reflected,
and thus the behavior of the forecaster NN(x , θ) can be better
interpreted. Moreover, the intermediate dispatch variables can
be constrained by embedding any techno-economic constraint
(e.g., generators’ output limits) into the first NN, in a similar
fashion as in [12], to enhance both computational performance
and accuracy of the NN in capturing Problem (2).

This chained NN structure is, however, not strictly required
in the MPNNC approach. We illustrate this for the real market
data in the second case study (Section V), the intermediate step
to forecast the generators’ dispatch profiles, y1 = NN1(θ1, x),
is not exploited. However, it should be noted that our in-
novative implementation of the MPNNC with a chained NN
structure may offer benefits for other real market applications.
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B. NN-based formulation of the optimal bidding problem

In Fig. 2, we show how the pretrained surrogate NN is
used in the demand agent’s optimal bid problem to decide
on the optimal load shedding strategy. Due to the backpropa-
gation step of the training procedure, NNs are formulated as
differentiable programs. Therefore, their inclusion in existing
optimization algorithms, exploiting derivative information, can
be done effectively. The MPNNC formulation contains the

Fig. 2: Scheme showing the generic setting for the NN-based
optimization.

cost minimization problem of the UL agent constrained by the
NN(x , θ) replacing the LL that captures the mapping between
input variables (Dt ⊆ x), and the resulting price (λt):

MPNNC : min
Dt

C(Dt ,λt(x)) = C(Dt ,λt(x)) (7a)

subject to
C(Dt ,λt(x)) = λt(x) · Dt (7b)

0 ≤ Dt ≤ Dt (7c)∑
t∈T

(Dt − Dt) ≤
∑
t∈T

LSt (7d)

λt(x) = NN(x , θ) (7e)

Compared to the training step (detailed in Section IV), in
the MPNNC problem the weights (θ) are fixed in NN(x , θ),
whereas a subset of input variables, i.e., the chosen demand bid
is optimized. Neural Networks using the ReLU activation func-
tions are non-convex from the input to the output, rendering
Problem (7) a nonconvex optimization problem. Given that the
number of variables (x) is significantly reduced when solving
the MPNNC compared to the NN training stage when the
weights θ are optimized, second-order, e.g., Newton or quasi-
Newton, methods can be efficiently applied. They capture
curvature information that can lead to quick convergence and
high robustness [34]. Moreover, second-order methods reduce
the number of manually tuned hyperparameters [35].

IV. MPNNC AND MPEC MODEL COMPARISON IN A
STYLIZED ENVIRONMENT

The proposed MPNNC model is benchmarked against the
MPEC model. A stylized problem setting is used, in which
we first assume that the convex economic dispatch prob-
lem exactly captures the market environment (Section IV-A).
Hence, the optimality conditions of the LL problem are an
exact representation of the environment, which enables the

comparison of the MPNNC’s performance to a theoretical
upper bound. Second, we illustrate how the MPNNC allows
capturing non-convex LL problems (Section IV-B).

The training and test results are generated by altering the
inputs of the ED (Section IV-A) or UC problem (Section
IV-B). The CO2 price (pCO2 ) is set to 25 e /ton , while the
Value of Lost Load (VoLL) is 1000 e /MWh. The load profile
and the availability factors of the wind and solar generation on
the considered day are plotted in Fig 3. We create 500 different
load, wind, and solar profiles by multiplying each time step of
the original profiles by a coefficient sampled from a normal
distribution with a mean of 1.0 and a standard deviation of
0.05. Considering these 500 combinations of load, wind and
solar and the generators’ characteristics summarized in Table
I, 500 altered dispatch profiles and market price profiles are
generated by solving the ED (2) or UC problem (3). The first
400 are used for training the NN and the last 100 as a test set,
which allows comparing the performance of the MPEC and
MPNNC.

Fig. 3: The availability factor of the renewable energy sources, i.e.,
the wind and solar generation (left-axis), and the aggregated demand
in the system (right-axis) throughout an example day.

A. Convex economic dispatch problem as LL

As discussed in Section III-A, since the electricity market
price formation may be seen as a composition of two sub-
problems, the proposed NN model contains two NNs, which
are chained into a single NN after the training procedure.

The NN weights are optimized through a mini-batch gra-
dient descent algorithm using the Adam optimizer [36] with
the goal of obtaining the lowest mean squared error (MSE)
w.r.t. the output of the ED model. Each day is handled as an
independent batch of 24 hourly steps, leading to 400 batches
of size 24. The maximum number of epochs is chosen as 50,
whereas the learning rate is 0.001. Both NNs in the chained
structure (see Fig 2) are trained under the same setting. Each
NN is composed of three layers, from which the first one is
a dense layer and the other two others are custom-made input
convex layers [37]. All hidden layers have 64 neurons. The NN
models are implemented in the Julia programming language
[38] using the Flux package [39].
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TABLE I: Generator data, used as LL as inputs for the convex and non-convex ”ground truth” models.

number of units cgeni emi Gmin Gmax STCi MDTi MUTi ∆G↑
i , ∆G↓

i αi βi γi
CCGT 4 36.36 0.38 0 450 17100 1 2 1620 8139.53 29.9 85.5
Nuclear 3 9.09 0 0 1200 14040 8 8 1800 10000 4.6 0
Coal 2 25.0 0.85 0 800 111200 3 6 960 13513.5 21.6 459.5
OCGT 5 50.0 0.53 0 50 0 1 1 300 1153.85 38.5 12.1

1) Learning the economic dispatch model: The first NN
is trained to best describe the mapping between input time
series and the dispatch profile of the 16 generators, including
14 conventional units (summarized in Table I) and 2 renewable
generators (see Fig 3). The forecasted dispatch for the 100th
test day is shown in Fig 4. In addition, the load profile is
plotted by the dotted black line that needs to be satisfied
in order to maintain system balance. While the error for the
individual generator’s predicted dispatch may differ, especially
for the ones with smaller capacity as their contribution to
the overall MSE is smaller, it is visible that the aggregated
predicted generation follows closely the load profile.

Fig. 4: Stacked plot of a single day’s predicted dispatch for all con-
ventional generators (blue) and for all renewable generators (green).
The aggregated load is indicated by the black dotted line.

2) Learning the price formation process: The resulting
market prices are predicted from the dispatch prediction gen-
erated by the first NN. After training the second network, it is
chained with the first one to capture the relation between the
input series (load, RES generation), and the resulting prices
(Fig 2). While achieving the best forecasting performance is
not the main focus of this paper, a certain accuracy is desired
for a well-performing MPNNC model as the dynamics of the
underlying price formation are based on the trained NN.

Fig. 5: The scaled price forecast of the 50th and 100th day of the test
set. The scaling was done by dividing all values by the maximum
observed price (the VoLL).

Figure 5 shows that the price profile of the 50th test day is
very closely captured. Both the peak and the off-peak prices
are well-represented by the prediction, suggesting that price
fluctuations are efficiently captured by the trained NN. On the
contrary, the predictions made for the 100th test day show
larger errors, by overestimating the first peak and creating
another price spike that did not occur. Overall, the average
daily RMSE was 0.048 e /MWh with a standard deviation of
0.020 e /MWh, while day 50 had a RMSE of 0.02 e /MWh,
and day 100 had a RMSE of 0.048 e /MWh.

3) Optimal bidding in case of convex LL: In this section,
the results of the proposed MPNNC model are investigated in
a stylized environment through the lens of a strategic demand
agent’s optimal bidding strategy (as presented in Section II
and Section III). The maximum load shedding over the day is
limited to 5% of the total load:

∑
t∈T

(Dt −Dt) ≤ 0.05 ·
∑
t∈T

Dt .

The MPNNC results are benchmarked against the naive price-
taker (PT) and against the MPEC outcomes. The former
strategy involves first forecasting the price profile, and then
subsequently shedding the load at the most expensive time-
step(s). The latter is an ideal case for the fully continuous
and convex ED environment, where the agent has access to
all necessary information. The MPEC’s lower-level problem
representation is thus exact, and the KKT conditions are
necessary and sufficient for optimality. The MINLP is solved
by the Gurobi solver [30], using the non-convex optimization
method that guarantees global optimality. However, due to the
optimistic LL response assumed in the MPEC, the MINLP
model still may not capture the best bidding strategy. The
MPNNC model is solved using the optimizer of the scypy
library [40], selecting the SLSQP algorithm, introduced in
[22]. The tolerance in the MPNNC models is set to the
optimality gap (MIPGap) of Gurobi (0.0001). To inter-operate
with the scypy Python library, the PyCall julia package is used.

The final price profiles are obtained by integrating the load’s
quantity bids (i.e., decisions of the optimization) in Problem
(2). This process eliminates the inherent biases of the models,
e.g., the optimistic LL response in the MPEC model, or the
NN’s approximation error in the MPNNC model.

Table II summarizes the median and maximum solution
times to solve the MPNNC and MPEC models and the mean
daily cost attained by the three models (MPNNC, MPEC,
PT) over the 100 test days. The costs of procuring the de-
mand are substantially reduced by both MPEC and MPNNCS
models compared to the PT case, showing their efficiency.
The MPNNC reduced the daily procurement cost by 18.5%,
while the MPEC achieved a 24.6% reduction, leading to a
6.1 percentage point difference between the theoretically ideal
(MPEC) and proposed MPNNC model. It should be empha-
sized that the MPEC can achieve this performance only in the
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Fig. 6: Comparing the daily cost reductions of both models (MPEC, MPNNC) to the original costs (right figure). For better illustration, the
left figure, only depicts the results of the two optimized costs.

stylized setting. In addition, the MPNNC leads to significantly
lower simulation times, suggesting better scalability.

TABLE II: The median and maximum solution times and mean
daily procurement costs of the MPNNC, MPEC and PT models. The
original average cost of load procurement, without load shedding, is
1.09e7 e .

MPNNC MPEC PT
Median Time (s) 0.53 8.2 -
Max Time (s) 1.3 50.1 -
Avg. Cost (Me ) 6.09 5.64 7.48

Figure 6 shows the evolution of the daily costs over the test
set (100 days). The right-hand side shows the optimized costs
(by both MPNNC and MPEC models) in comparison with the
original outcomes. The improvement attained by both models
is significant and their differences are not substantial compared
to the overall decrease of the procurement cost. Despite the
improved solutions of the MPEC model, the MPNNC attains
lower costs 15% of the time. As shown below, this may be due
to the LL’s optimistic response in the MPEC model [41] that
translates to a great discrepancy between the estimated market
price (by the MPEC) and the one produced by Problem (2).1

The best performance of the MPNNC model is achieved on
day 4, with an improvement of 1.22 Me w.r.t. the MPEC, and
the worst outcome occurred on day 67, with total costs 1.39
Me higher than the MPEC.

For these extreme days, the optimized bids and resulting
market price profiles are plotted in Fig 7. In day 4, when the
MPNNC model has the best performance, it is visible that the
MPNNC model deviates more significantly from the original
profile in a limited number of time steps, while the MPEC
deviates significantly in multiple time steps, e.g., between 8:00
and 11:00. The resulting price profiles (bottom of Fig. 7) show
that the MPNNC model reduces the price to below 10 e per
MWh from 45 e per MWh for a longer period, between 11:00
and 20:00, while the MPEC achieves the same reduction in

1Furthermore, the choice of the ’M’ parameter in the reformulation of
the complementary slackness constraint impacts the exactness of the LL.
Optimally choosing this parameter, however, is an NP-hard task.

Fig. 7: The best (right two sub-figures) and worst performing days
of the MPNNC model compared to the MPEC’s performance.

a shorter time window (13:00-20:00). The main cause of the
MPEC’s inferior performance is that in many steps the large
load deviation does not result in a stronger price reduction.
As the stylized case study involves a low number of market
participants, the offer curve exhibits pronounced discrete steps.
Therefore, the MPEC’s inherent optimistic response assump-
tion may lead to amplified differences between the assumed
and actual response of the market.

Looking at the opposite case (day 67), in which the MPNNC
achieved the worst performance, it can be noted that prices
are no longer equal to the price cap (1000 e /MWh) in both
results. In the second half of the day, however, the MPEC
model manages to keep the prices low for a longer time
horizon (9:00-23:00), resulting in superior performance. The
fact that the MPNNC model did not manage to exploit the
same price reduction opportunity in the second half of the
day is due to utilizing more flexibility than needed in other
time steps, inheriting from the NN’s imperfect approximation
of the market.
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B. Non-convex unit commitment problem as LL

Generating the required training and test data when the
market clearing problem is represented as a non-convex
unit commitment problem (3) is not straightforward, as dual
variables, thus market prices, are not readily available. To
circumvent this issue, we leverage the MPEC* formulation
(Section II-E), from which we remove the UL objective to
attain market prices for the 500 problem instances as above.

1) Learning the price formation process: The average daily
RMSE, in case of the non-convex ”ground-truth” model,
changed to 0.094 (e /MWh) with a standard deviation of 0.027
(e /MWh), which is around twice as much as in the convex
”ground-truth” model case. Figure 8 shows the forecasted and
actual daily prices for the same days (50, 100) as in the
previous section. Contrary to the previous results, it can be
observed that the prediction of day 50 does not capture well
the peaks and valleys of the price profile, indicated by the
higher than average RMSE 0.129(e /MWh). For day 100, on
the other hand, the prediction closely follows the actual profile,
leading to an RMSE of 0.082 (e /MWh).

Fig. 8: The scaled price forecast of the 50th and 100th day of the
test set, in case of non-convex ”ground-truth” model. The scaling
was done by dividing all values by the maximum observed price (the
VoLL).

2) Optimal bidding in case of non-convex LL: We compare
the optimal strategic bids attained by the proposed MPNNC
model and the MPEC* alternative. To evaluate the quality of
the attained bids, we enforce these bids in the MPEC* formu-
lation, from which the strategic agent’s objective function and
constraints are removed. Note that this approach may lead to
overestimating the performance of the MPEC*.

As highlighted in Section II-E and in [5], choosing the ’W’
parameter of the MPEC* model is not trivial and may have a
significant impact on the ex-post reward of the strategic agent.
Therefore, in this case study, the outcomes of two different
strategies are presented. The first one uses the value suggested
in [5] (W=1000), while the second one runs the optimization
with three different values (W ∈ [100, 500, 1000]), and retains
the outcome that produces the best ex-post reward for the load
shedding agent. Note that in real-life applications, one would
have to determine this ’W’ parameter ex-ante, challenging the
use of this approach.

Table III summarizes the load procurement cost (in the ex-
post evaluation) of the strategic load shedding agent if using
the proposed MPNNC model or the MPEC* with the two
above-described strategies. The MPECbest model performs 6%

better than the MPNNC. However, the MPNNC outperforms
the MPEC1000 model by 4%, indicating the MPEC*’s sensi-
tivity w.r.t. the ’W’ parameter.

TABLE III: The mean daily procurement costs of the MPNNC,
and the MPEC in case of a fixed weighting factor (MPEC 1000), and
the best chosen from the list of [100, 500, 1000] (MPEC best ). The
original average cost of load procurement, without load shedding, is
9.34 Me .

MPNNC MPECbest MPEC1000

Avg. Cost (Me ) 7.05 6.61 7.36

Figure 9 further illustrates the daily load procurement costs
of the 100 simulated days. Similar to the case with a convex
lower level, the MPEC best benchmark achieves lower load
procurement cost than the MPNNC in most instances.

Fig. 9: Comparing the daily procurement costs of both models of the
MPNNC and the MPECbest models.

V. STRATEGIC LOAD SHEDDING IN THE BELGIAN POWER
EXCHANGE

In this section, the MPNNC model’s bidding strategy is
assessed on the Belgian day-ahead power exchange to prove
the viability of the proposed approach in a real market envi-
ronment. The results are contrasted to a price-taker strategy,
in which the same trained NN is used to forecast the market
prices, informing the optimal load shedding problem.

A. Experimental data and forecasting methodology

Similarly to Section IV, a feed-forward NN model is used
to forecast day-ahead prices, with one hidden layer and 32
neurons. The hidden layer has leaky ReLU activation function,
while the other two layers use ReLU functions. The following
exogenous features are inputs to the NN model:

1) Belgian electricity load forecast (available from the web-
site of ELIA [42] at the moment of bidding);

2) The last 12 and 24 hourly moving average values of the
load;

3) The last 12 and 24 hourly moving average values of the
price (the to-be-forecasted forecasted variable);
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4) Temporal information, such as the: day-of-the-week, day-
of-the-month, hour-of-the-day.

The model is trained on the period of 01/01/2019-14/10/2021.
The learning rate is set to 0.0005, the number of epochs to
100, and the batch size to 50. The test period spans 15/10/2021
to 14/02/2022.

Figure 10 shows the observed and predicted prices for 10
days starting from 15/10/2021 (the beginning of the test pe-
riod). It can be observed that the prices and their predictability
vary significantly over the test period. This may be the con-
sequence of the turbulent market environment of the modeled
time period. Table IV summarizes the mean and median errors

Fig. 10: Forecasted and actual prices of the Belgian spot exchange
between 15/10/2021 and 24/10/2021. The grey filling is used to
indicate the error.

of the predictions made during the test period, using the
common root mean squared error (RMSE) and the symmetric
mean absolute percentage error (sMAPE) advocated, e.g., in
[32]. The mean and median sMAPE values are comparable
(but slightly worse) to the performance reported in the elabo-
rate study of Lago et al. [32]. Note that attaining a state-of-
the-art forecasting performance is not the aim of this paper,
yet a better forecaster can enhance the consequent bidding
strategy. The MPNNC model optimizes the bidding strategy
based on two criteria: (i) the predicted day-ahead prices (here,
capturing the ratio of price peaks and valleys is crucial), (ii) the
price elasticity, i.e., the predicted resilience of the price w.r.t.
the optimized input variable (the load profile in our case).
Note that assessing the former criterium is straightforward,
while judging whether the forecaster accurately captures the
resilience is more difficult.

TABLE IV: Mean and median calculated errors measured on the test
period (15/10/202- 14/02/2022).

sMAPE RMSE
Mean error (%) 27.1 56.3
Median error (%) 24.4 49.8

B. Ex-post price approximation model

In order to reconstruct the actual (ex-post) price resulting
from the altered actions of the UL agent, the true price
elasticity of the wholesale market needs to be captured,
e.g., by using the aggregated supply curves. The aggregated
supply and demand curves of the Belgian power exchange
are available to purchase in the European Power Exchange
[43] (the product is named as All-Certified Exchanges’ Day-
Ahead Auction aggregated curves). They incorporate executed
block volumes and net positions since 15/10/2021, leading
to roughly 4 months available for testing. While this data
allows constructing a realistic ex-post assessment tool, several
discrepancies compared to the actual spot market remain
present: (i) only the accepted block bids are incorporated in the
aggregated curves, which prevents to fully capture the price
resilience, (ii) similarly for the cross-border trades, net posi-
tions are fixed to their historically cleared values such that the
dependence between net cross-border positions and domestic
loads is neglected and (iii) at the intersection of the supply and
demand curves there may exist multiple acceptable prices. Due
to the first two limitations, the price responsiveness, captured
by the aggregated curves, is limited to the Belgian market’s
sensitivity, which may be more sensitive to changes, i.e., less
liquid, than the coupled European market. The multiplicity
of prices at the supply and demand intersection may lead to
differences between the constructed and true market clearing
prices. For a complete representation, all connected countries
and the market clearing and pricing algorithm of Euphemia
[44] needs to be implemented, which is beyond the scope of
this paper.

To construct the ex-post approximation model, two piece-
wise linear curves are fitted to the supply and demand bids
using special order set (type-II) variables [45]. The intersection
of the curves is calculated in a root-finding problem, which
results in the cleared price-quantity pair. As Fig. 11 illustrates,
the resulting price approximation closely follows the real
prices on the presented day.

Fig. 11: Constructed and true price profiles at the beginning of the
test horizon (15/10/2021).
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C. Cost reductions via MPNNC-based bidding strategy

This section presents the attained cost reductions of the
MPNNC model relative to a price-taker (PT) decision maker,
which uses the forecasted price profile to shed the load at the
most expensive hour. The daily cost of load procurement is
calculated by the ex-post price approximation model (Section
V-B). This model first calculates the original daily load profile2

from the Belgian aggregated supply and demand curves. Then,
the amount of load shed by both PT and MPNNC models is
deducted from the original load. Lastly, the gain is defined as
the difference in the daily load procurement cost between the
PT and the MPNNC strategy and divided by the amount of
load shedding. The resulting gain thus reflects the saving on
the total load procurement cost per shed MWh (denoted as
e /sMWh). For each day of the test period, the following load
shedding capacities are tested: {1, 5, 10, 20, 30, 50, 100, 200}
(MWh).

Table V summarizes the gains over the test period (origi-
nal column). The median cost reduction (2417.2 e /sMWh)
is complemented with a large standard deviation (25950.3
e /sMWh) suggesting extreme outlier values. Some extreme
gains may arise from the large price sensitivity as the ag-
gregated supply and demand curves ignore the available (not
accepted) block bids and possible changes in cross-border
net positions. Therefore, different levels of outlier gains are
removed to decrease the influence of such distorting outcomes.
In the subsequent columns of Table V, the top and bottom n-th
(5th, 10th, 20th) percentiles of the results are eliminated and
the corresponding gains are summarized. When the top and
bottom 20th percentile is cut-off (illustrated in detail in Fig
12), the mean gain significantly reduces as well as its standard
deviation. While the mean gain is much reduced compared
to the original case, even such conservative estimation means
that the same amount of load shedding leads to 125.3 e cost
reduction per shed MWh. From the detailed results of Fig 12
it is also visible that the losses are smaller and they occur
less frequently than the gains. From the spread of results, one
can observe that the gains and losses both remain in the same
range, confirming the lower variance. Also note that in all
cases the median gain is 0, meaning that the MPNNC model
selects the PT strategy more than 50% of the time.

TABLE V: Mean, median gains, and their standard deviations of the
aggregated results (original column). The upper and lower 5th, 10th
and 20th percentile of the results are eliminated, shown in columns
95-5, 90-10, 80-20.

original 95-5 90-10 80-20
mean gain (e /sMWh) 2417.2 489.4 239.9 125.3
median gain (e /sMWh) 0.0 0.0 0.0 0.0
std. gain (e /sMWh) 25950.3 2749.9 1210.3 382.2

While the forecasting error on its own is not sufficient
to assess the foreseeable model performance, the attained
gains in the test cases are strongly correlated with the errors
of the considered results. Fig 13 illustrates this relationship
by showing the increase in main gains as a function of
the maximum allowed forecast error level (i.e., by excluding

2The demand cleared on the spot market differs significantly from the
overall demand in the country.

Fig. 12: The gains of the remaining results (y-axis) after removing
the top and bottom 20th percentiles (80th, 20th) of outcomes.

results above a user-defined sMAPE limit). The results suggest
that if the MPNNC model incorporates an improved forecaster,
the attainable gains can increase, providing motivation for
using more complex NN architectures in future research.

Fig. 13: Main gains (left y-axis) and accepted results (right y-axis)
plotted against the maximum sMAPE limit allowed in the considered
set of results.

VI. CONCLUSION

Existing model-based (MPECs) and model-free (RL for-
mulations) approaches cannot sufficiently address the various
challenges (model and parameter ambiguity, incorporating
non-convexities) associated with modeling strategic market
participation. In this paper, a learning-based MPNNC model
was presented to formulate the optimal bidding problem of
a strategic load agent. Compared to the classical MPEC for-
mulation, the presented approach has the flexibility to capture
real electricity market behavior in the lower level, while the
upper level allows including various types of constraints and
objective functions.

In a stylized, hypothetical market environment, the MPNNC
model exhibits similar performances to the theoretical MPEC
benchmark, and their difference is limited compared to the
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overall gains associated with behaving strategically. These
observations hold also when the lower-level becomes non-
convex, which challenges the application of state-of-the-art
MPEC approaches. To prove efficiency in a real market setting,
the MPNNC’s performance is tested on the Belgian power
exchange, for which a realistic ex-post assessment model is
constructed that uses the aggregated supply curves of Belgium.
Findings indicate the effectiveness of the MPNNC model and
potential improvements (e.g., if the underlying NN has more
accurate forecasting capabilities).

In future research, using alternative NN architectures to
achieve state-of-the-art price forecasting results, holds sig-
nificant potential to enhance the MPNNC performance. As
an example, probabilistic neural network-based forecasting
models (e.g., the temporal fusion transformer used in [46])
can be implemented to provide the inputs to a stochastic
UL optimization problem, in forms of, e.g., scenarios or
probability distributions.
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