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Abstract
In the context of continual learning, recent work
has identified a significant and recurring perfor-
mance drop, followed by a gradual recovery, upon
the introduction of a new task. This phenomenon
is referred to as the stability gap. Investigating
it and the potential solutions is essential, as such
findings can reduce both the energy consumption
and computational time required to prepare a high-
performing agent. Given the strong influence of
training procedures on model performance and sta-
bility, we analyze how various optimizers –SGD,
NAG, AdaGrad, RMSprop, Adam– and momentum
values affect the stability gap. We expose a deep
neural network to a sequence of digit-identification
tasks with varying rotations, and track several met-
rics to capture the components of the stability gap
and the overall performance. Our results reveal
that increasing momentum amplifies the steepness
and depth of the gap, while shortening its duration.
Within this simplified setup, RMSprop proves most
effective in reducing the magnitude and duration
of the drop while maintaining high overall perfor-
mance.

1 Introduction
The concept of continual learning arises in both natural and
artificial intelligence settings, where an agent undergoes a
knowledge accumulation process that shapes its performance
to solve pattern recognition problems. The adaptation mecha-
nisms that facilitate continual learning are inherently complex
in both settings. They combine information capturing strate-
gies with effective knowledge integration processes that are
designed to reduce interference with existing memory.

In the sphere of deep neural networks, several gradient-
based optimization techniques (Choi et al., 2019) have been
shown to effectively navigate the parameter space and achieve
rapid convergence to high performance (Krizhevsky et al.,
2012). To the best of our knowledge, most studies on the effi-
ciency of these methods in reaching high accuracy are condi-
tioned by a static nature of the input data distribution. In this
sense, continual or lifelong learning changes the paradigm
by introducing a temporal variable that influences the range
and shape of the training data distribution. Consequently, the
model is tasked with adapting to a multitude of scenarios or
tasks, changing its inner configuration according to a joint
objective.

Potential interference with previously learned tasks has
been shown to pose a real challenge when training neural
network models, manifesting as the phenomenon known as
catastrophic forgetting (McCloskey and Cohen, 1989; Rat-
cliff, 1990). By simply introducing new tasks, parameter up-
dates can drastically overwrite valuable past states that per-
form well on previous inputs. To prevent this, several strate-
gies that use the concepts of replay, also called data rehearsal,
(Robins, 1995; Rolnick et al., 2019) and regularization (Kirk-
patrick et al., 2017; Li and Hoiem, 2017) have managed to

substantially mitigate regressive behavior. This is achieved
by reintroducing representatives of past tasks and adjusting
the shape of the loss function, respectively. Replay is based
on retraining the model on buffered input samples or task-
specific data generators that approximate the underlying in-
put distributions. In continual learning, regularization tech-
niques help balance knowledge acquisition and retention by
protecting weights that are relevant to past tasks from chang-
ing, while adapting to new incoming information. Conse-
quently, these techniques require longer training periods and
significantly more resources to improve performance.

A clear contrast emerges from these previous studies. On
the one hand, humans have an innate ability to incremen-
tally and effectively acquire new skills while distinguishing
the scenarios in which they become applicable (Flesch et al.,
2018; Kudithipudi et al., 2022). On the other hand, machine
learning systems face a struggle when it comes to simultane-
ously capturing and retaining knowledge, even with state-of-
the-art techniques (van de Ven et al., 2014). In the realm of ar-
tificial model training, this is known as the stability-plasticity
dilemma (Grossberg, 1982).

1.1 Related Work and Contributions
This ablation study follows from the findings of Lange et al.
(2023), who have set up a series of incremental learning
scenarios (van de Ven et al., 2022) and have observed a
recurring pattern of temporary forgetting. At the time of
transition between training on specific tasks, they could
observe a decreasing trend of performance, followed by
a gradual recovery phase. They have assigned the term
stability gap to this novel observation and highlighted how
the similarity of consecutive tasks shapes its magnitude. The
decision to employ a low evaluation periodicity for proper
performance analysis has proven crucial in uncovering these
subtle events. Such common training occurrences often
go undetected in standard testing settings, as evaluation is
performed at the end of particular stages. Figure 1 gives a
visual representation of the described phenomenon, which
arises when the training focus is switched to a new task.

Figure 1: The Stability Gap phenomenon exhibited by
models at task transitions, as theorized by Lange et al.

(2023).



Building on Lange et al. (2023)’s identification and con-
ceptualization of the stability gap, Hess et al. (2024) have
continued to demonstrate its persistence in incremental-joint
training, also called perfect-replay. In these cases, both the
new and the old data are available, meaning that the ideal joint
loss on them can be effectively minimized. Their results dis-
prove the hypothesis that this gap could be the consequence
of an imprecise approximation of the optimal joint loss shape.
This shifts our focus from what needs to be optimized to how
to optimize our trajectory to the target parameter configura-
tion.

We advocate for the necessity of further investigation in
this scope, as lowering worst-case accuracy of models, tem-
porary as it may be, and with proven recovery potential, can
pose a major and exploitable risk. This is particularly rel-
evant in safety-critical systems and applications that require
high reliability. Furthermore, the stability gap can also be
perceived as a symptom of inefficient resource consumption.

The contributions of our work revolve around the genera-
tion and comparison of several experimental runs that high-
light the influence of various industry-standard optimizers on
the shape of the stability gap. We choose SGD with momen-
tum, NAG with momentum, AdaGrad, RMSprop and Adam
as our subjects. Various pre-established and newly proposed
quantitative metrics are recorded to capture both the stabil-
ity gap and the general stability-plasticity context. These are
complemented by visualizations of the experiments. Our aim
is to study and understand the underlying optimization dy-
namics that shape the stability gap, while contributing to the
growing body of research on training efficiency.

For this purpose, we decide to proceed with a domain-
incremental learning scenario. Domain-incremental learning
refers to a continual learning process in which consecutive
tasks define the same problem but differ in context (van de
Ven et al., 2022). We require a setting that can accommo-
date our study objective. Therefore, our experimental work
is based on a code base that was originally developed to sup-
port previous studies on mitigating catastrophic forgetting in
continual learning (van de Ven and Tolias, 2019; van de Ven
et al., 2022).

1.2 Research Questions and Findings
We benchmark the performance of a model undergoing a con-
tinual learning process under various optimization configura-
tions to answer our proposed research question: ”What is the
impact of momentum and different optimizer choices on the
stability gap of deep neural networks in continual learning
problems?”, alongside its sub-questions:

SQ1. How does increasing the momentum of the SGD and
NAG optimizers impact the depth and duration of the stability
gap under optimal hyperparameters?

SQ2. How do adaptive learning rate optimizers (Ada-
Grad, RMSprop, Adam) compare in terms of the stability gap
shape under optimal hyperparameters?

Following the execution of our experimental runs, we
have identified some performance trends that can be linked
to optimization-specific components. In the cases of
momentum-based optimizers (SGD and NAG), the amplitude
of the stability gap tends to increase with momentum. At the

same time, both the decrease and recovery phases become
more sudden, leading to a steeper drop and a reduced dura-
tion. Ultimately, higher momentum values accelerate conver-
gence at higher overall accuracy, but this comes at the cost of
a more pronounced drop during task transitions.

Adam presents a similar stability gap shape as the previ-
ous two optimizers, characterized by a large amplitude and
increased volatility. The purely adaptive nature of both Ada-
Grad and RMSprop attenuates the drop and reduces instabil-
ity when switching tasks. AdaGrad experiences a slower per-
formance recovery and, implicitly, a wider stability gap, com-
pared to Adam and RMSprop.

1.3 Overview
The remainder of this work is structured as follows. Section 2
describes the continual learning scenario, the fundamentals of
each optimizer, and the measurements recorded for our quan-
titative analysis. Section 3 defines the technical aspects of
our experimental process. Section 4 presents a quantitative
and qualitative analysis of our findings, discussing the reg-
istered trends. Section 5 summarizes these and explains the
causal relationship between each optimization strategy and
its observed behavior. Section 6 revisits our main findings,
addresses the questions and hypotheses, and suggests direc-
tions for future related work. Finally, Section 7 discusses the
reproducibility and ethical considerations of our research.

2 Methodology
Subsection 2.1 gives the context of the proposed continual
learning environment. Subsection 2.2 describes the funda-
mentals of the chosen optimizers, while subsection 2.3 de-
fines several hypotheses based on these details. Lastly, Sub-
section 2.4 addresses the measurement methods used to cap-
ture the stability gap and the overall performance.

2.1 Continual Learning Setting
In our domain-incremental learning study, we adopt a prob-
lem in which task switches are induced by applying a fixed
transformation to the input distribution, while the output
space remains constant.

To formulate this, we define a sequence of tasks
T1, T2, . . . , TN , where the first one is given by a base dataset,
and every task instance Ti is generated by rotating the dataset
corresponding to its predecessor Ti−1.

Similarly to the experiments conducted by Lange et al.
(2023), we use the MNIST dataset (LeCun et al., 1998) as
our base. Therefore, the goal consists of identifying hand-
written grayscale digits. This simplified setting allows the
model to reach high performance and exhibit the stability gap
phenomenon. We measure accuracy as the proportion of cor-
rectly classified digits in one evaluation phase, computed per
task from the moment it is introduced to the model. Task-
specific training samples are shown in Figure 2. We opt for
a four-task setup with rotations ϕ ∈ {0◦, 50◦, 100◦, 150◦},
respectively.

To alleviate forgetting, we retrain the model according to
the incremental joint training method. According to it, the
model is continuously exposed to all previously seen contexts
(van de Ven et al., 2022).

https://github.com/GMvandeVen/continual-learning


Figure 2: Task-specific training samples, with rotational
degrees applied. To avoid purely situational misjudgments in

distinguishing 6 from 9, rotations do not exceed 180◦.

We aim to confirm the existence and measure the magni-
tude of the stability gap even in this simplified and universally
optimal setting.

2.2 Optimization Strategies
Our experiments involve five different first-order gradient-
based optimizers. We are going to dive into their specifics
in chronological order of their development. They have all
benefited and improved on the contributions of their prede-
cessors. We refer to Appendix A.1 for the detailed mathe-
matical equations that underlie each optimizer referenced in
this study.

Stochastic Gradient Descent with Momentum. The first
optimizer (Polyak, 1964) of the series pioneered a ”velocity”
component, which is an accumulation of past gradients. This
helps guide the search of the parameter space in directions of
consistent descent and minimized fluctuations, according to
the loss functions. The momentum coefficient µ controls the
impact of historical updates on the next change of weights.
The higher the momentum, the more influence the velocity of
the past has on the next step. An analogy can be made here
with a ball rolling down a hill and accumulating inertia, thus
overcoming small bumps, in our context local minima, more
easily.

Nesterov Accelerated Gradient (NAG). The next opti-
mizer, NAG (Nesterov, 1983), is a close variant of SGD with
momentum that aims to indicate more informed gradient tra-
jectories, by computing them at look-ahead positions. In do-
ing so, it calculates the gradient after the velocity component
is applied. The goal is to indicate the next trajectory after pre-
dicting where the accumulated inertia leads. Figure 3 shows a
side-by-side comparison of how the two optimizers determine
their update step.

Adaptive Gradient Algorithm (AdaGrad). Theorized
by Duchi et al. (2011), AdaGrad was among the first al-
gorithms to introduce the concept of per-parameter adaptive
learning rates. Essentially, it maintains a sum of squared gra-
dients that, inversely proportional to its value, determines the
volatility of each parameter. This results in smaller changes to
parameters with frequent or large gradients, and larger ones
for those with infrequent or smaller gradients. However, a
limitation of this approach is the monotonically decreasing
trend of the learning rates, which can reduce the adaptability
in later stages of the learning process.

Root Mean Square Propagation (RMSprop). Building
upon AdaGrad’s contributions, RMSprop (Tieleman and Hin-
ton, 2012) addresses the irreversibly decreasing learning rate
schedule. It does so by adopting an exponentially decaying

Figure 3: SGD and NAG momentum update comparison.
NAG includes the momentum-based velocity in calculating
the gradient. Visualization inspired from Li et al. (2025).

average approach to accumulating past gradients, rather than
summing them. Ultimately, this leads to positive and negative
oscillations in the step sizes.

Adaptive Moment Estimation (Adam). The final and
most recently developed among all presented optimizer
choices, Adam (Kingma and Ba, 2015) combines the features
of momentum and dynamically scaled learning rates. It uses
two gradient moments and includes bias correction to account
for initialization at zero.

2.3 Hypotheses
We formulate the following hypotheses and run our experi-
ments to confirm or disprove their validity.

H1. Higher momentum values in SGD and NAG lead to
more instability when the input domain changes, increasing
the steepness and depth of the stability gap.

H2. Higher momentum values in SGD and NAG lead to
faster accumulation of joint knowledge, resulting in a quicker
and earlier recovery.

H3. The adaptive step size of AdaGrad and RMSprop de-
termines a more gradual and limited performance decrease.

H4. We project Adam to outperform the other optimizers
in most stability gap and general metric categories, due to its
hybrid nature.

2.4 Quantifying the Stability Gap
The following section discusses the methods used to analyze
key trends of the accuracy curves under evaluation. There is a
close connection between our experimental starting point and
goal, and those of the domain-incremental learning exercise
presented in the work of Lange et al. (2023). Therefore, the
measurements recorded include a series of approaches first
enunciated by Lange et al. (2023), which give a more general
stability-plasticity context. Several novel ways to capture the
shape of the gap are also proposed.

Pre-established metrics. We report the Average Accu-
racy (ACC), a standard metric in continual learning, as the
average performance of the model across all tasks after the
last training iteration. The Average Forgetting (FORG)
coefficient is defined as the average difference between the
model’s final accuracy on each task and its accuracy immedi-
ately after training on that task was completed. The Average
Minimum Accuracy (min-ACC) is calculated as the average



absolute minimum accuracy achieved by the model across all
tasks after they have been learned. This is a worst-case indi-
cator of knowledge retention.

We refer to the study by Lange et al. (2023) for computa-
tional equations and an in-depth discussion on these prelimi-
nary metrics.

Proposed metrics. In addition to the previous metrics, we
define the following novel ways to capture the components
of the stability gap. All of them operate on the same task-
and window-based averaging principle, where windows cor-
respond to the introduction of a new task. This is based on in-
tuitive and empirical proof that the stability gap occurs when
transitioning between tasks. Therefore, every metric is an
average across the model’s performance on all tasks, where
each task-specific component is the average across all fixed-
size windows post-training on that specific one. Naturally, the
metrics differ in terms of the inner-window measurement. We
will refer to this operation as Window-Task Averaging (WTA)
for simplicity. We include Figure 4 to illustrate these metrics.

Figure 4: Visualization of the proposed metrics, applied to a
stability gap. These are represented by Gap Depth, Time

Below Performance, Decrease Slope and Recovery Slope.
The highlighted segments at the bottom of the drop illustrate

the symmetry used in our calculations for the Recovery
Slope.

Time Below Performance (TBP) quantifies the average
duration, expressed in iterations, that the model’s accuracy re-
mains below the threshold set at the end of the previous train-
ing window. From now on, we will call this the pre-window
value for conciseness. We compute and average the task- and
window-specific recovery times of the model according to the
WTA method.

Equation 1 defines the computation of TBP, where N is
the total number of tasks and Wi is the number of windows
corresponding to task i. ti,jrecovery represents the first iteration
number within a window j at which the model’s performance
on task i recovers to the pre-window value.

TBP =
1

N

N∑
i=1

1

Wi

Wi∑
j=1

ti,jrecovery (1)

We propose the Decrease Slope (DS) to measure the rate
of degradation experienced by the model in response to the

introduction of new tasks. This is an indication of the per-
centages of accuracy lost per iteration during the declining
phase. We incorporate the same WTA method to average the
slopes between the pre-window and minimum performance
points.

Equation 2 applies the computational idea, where ti,jmin
and ti,jpre-window are the iteration numbers corresponding to the
pre-window performance P i,j

pre-window and the minimum inner-
window performance P i,j

min, respectively. The rest of the terms
convey the same information as previously.

DS =
1

N

N∑
i=1

1

Wi

Wi∑
j=1

P i,j
min − P i,j

pre-window

ti,jmin − ti,jpre-window

(2)

We define the Recovery Slope (RS) to capture the initial
sharpness of the ascending trend, mirroring DS. We decide to
calculate this from the inner-window minimum performance
point and the point that occurs x iterations past this minimum.
x represents the inner-window iteration number of the mini-
mum. This symmetry ensures less sensitivity of the metric to
recovery plateaus while being a solid indicator of the immedi-
ate recovery trajectory. The same WTA principle is respected.

In case the model recovers to the pre-window performance
before the fixed recovery range x, the slope is capped at the
actual recovery index. We make this computational choice
to avoid underestimating the speed of recovery. A maximum
iteration range is also set to the length of the window to ensure
robustness.

Equation 3 covers the three potential situations. In the first
case, P i,j

recovery is the model’s performance on task i in window
j at iteration ti,jrecovery, given that the pre-window accuracy is
reached sooner than x iterations away from the minimum. In
the second case, if continuing for x iterations past the mini-
mum point exceeds the window range, P i,j

final gives the perfor-
mance on task i at the final iteration ti,jfinal of window j. In the
third scenario, P i,j

min + x represents the performance recorded
x iterations past the minimum accuracy point. The interpre-
tation of the rest of the terms remains unchanged.

RS =
1

N

N∑
i=1

1

Wi

Wi∑
j=1



P i,j
recovery−P i,j

min

ti,jrecovery−ti,jmin
if recovery is before x iterations

P i,j
final−P i,j

min

ti,jfinal−ti,jmin
if x iterations exceed the window

P i,j
min+x−P i,j

min
x otherwise

(3)
The final measurement reported is the Gap Depth (GD),

which quantifies the magnitude of the accuracy drop during
task switches. This is computed as the WTA of the maximum
accuracy decrease within a window, with the pre-window
value as our reference point. Note that the minimum accu-
racy point is the same as in DS.

The novelty of equation 4 consists of applying the WTA
averaging scheme to the difference between P i,j

pre-window and
P i,j

min. All the pre-discussed terms express the same concepts.



GD =
1

N

N∑
i=1

1

Wi

Wi∑
j=1

(
P i,j

pre-window − P i,j
min

)
(4)

Additional practices. Even with a high number of test
samples, which generally improves accuracy estimates, we
have to take into account anomalous data points. These could
significantly distort the accurate detection of real minimum
and recovery points. To ensure robustness, we consider using
a smoothed version of the accuracy curves. Both authentic
and noise-induced values are hereby replaced by windowed
averages. Following the arguments of Lange et al. (2023), we
compute the inspired metrics using the original data, as we
are particularly interested in the worst-case behavior.

3 Experimental Setup
This section details the environment set up to facilitate exper-
imentation with different optimization configurations, visual-
izing performance, and quantifying trends. We address the
general model architecture, training regime, optimizer, and
evaluation details. The experimental scripts use the PyTorch
v2.7.0 framework (Paszke et al., 2019) with Python v3.10.4
and executed on a 2024 MacBook Air equipped with an Ap-
ple M3 chip, as our computational hardware. Moreover, a
forked version of the original repository2 from van de Ven
et al. (2022) has been adapted to suit our experimental needs.

Model Architecture. A fully connected neural network
with 3 hidden layers, each consisting of 400 ReLU-activated
neurons, is utilized as our model across all experiments. The
input layer processes flattened 28x28 (784-dimensional in-
put) images sampled from the Rotated-MNIST dataset (Le-
Cun et al., 1998), while the output layer is composed of 10
units corresponding to the classification labels (0-9). The ini-
tial weights are randomly assigned using the Kaiming uni-
form distribution scheme, as described by He et al. (2015),
which is the default of PyTorch for layers using ReLU.

Training Regime. The model is trained according to
the mini-batch learning approach, while an incremental joint
training scheme is used for retraining on previous data. Con-
sequently, introducing a new task implies training on a shuf-
fled concatenation of the sets corresponding to all the contexts
seen so far. To account for a growing and more diverse train-
ing set, we are scaling the size of the mini-batches at every
moment a new task is introduced, starting with and increas-
ing it by 128. A task-specific training phase runs for a fixed
number of 500 iterations. The model is trained using the stan-
dard cross-entropy loss function.

Optimizers and Hyperparameters. A gridsearch proce-
dure, detailed in Appendix A.3, is run over different hyper-
parameters for every optimizer choice (SGD and NAG with
multiple momentum values, AdaGrad, RMSprop, Adam) to
identify optimal experimental configurations.

Table 1 reports the optimal values found that will be used
in our benchmarks. For completeness, we also include the
momentum values under evaluation in the cases of SGD and
NAG.

2https://github.com/GMvandeVen/continual-learning

Optimizer Learning Rate Additional Parameters
SGD 0.1 µ ∈ {0, 0.3, 0.5, 0.7, 0.9}
NAG 0.1 µ ∈ {0.3, 0.5, 0.7, 0.9}
AdaGrad 0.01 –
RMSprop 0.001 α = 0.9
Adam 0.001 β1 = 0.9, β2 = 0.99

Table 1: Gridsearch hyperparameter results, according to Ap-
pendix A.3. Maintaining a fixed learning rate across the ex-
periments of a momentum-based optimizer helps isolate the
effect of momentum. The unspecified hyperparameters take
PyTorch’s default values.

Evaluation. As argued by Lange et al. (2023), we employ
an evaluation periodicity ρeval of 1 to understand the full pic-
ture of performance. At the end of every iteration, the model
is evaluated on a number of 2000 test samples per previously
encountered evaluation task, recording the accuracy.

To enhance statistical reliability, we study each optimiza-
tion configuration in 10 randomly seeded experimental runs.
The ACC, FORG, min-ACC, TBP, GD, DS, and RS coeffi-
cients are computed for each run. Following this, a new ag-
gregated entry is reported, which contains the sample mean,
accompanied by the standard error calculated across the 10
simulations. We use a uniform filter with a window length of
5 to smoothen the accuracy curves used for TBP, GD, SD and
SR. In building our qualitative analysis of the stability gap
shape and its context, we plot the mean performance curves
and shade the uncertainty region described by the standard
error.

4 Experimental Results
The following section is divided into two parts, each dealing
with different aspects of the experimental results. Both parts
are based on the unified Table 6 of Appendix A.2, with opti-
mizers grouped accordingly. The first part presents the mea-
surement changes recorded as a result of different momentum
values in the cases of SGD and NAG. The second part com-
pares the results obtained using the more recently developed
first-order optimization algorithms.

Momentum-based results. In terms of stability gap com-
ponents, the results in Table 2 reveal consistent patterns
linked to changes in momentum. Progressively increasing
momentum in both SGD and NAG results in a monotonically
decreasing TBP and DS, while RS increases. For example,
TBP decreases from 208.8 to 166.2 for SGD and from 206.5
to 180.3 for NAG, indicating a narrow stability gap. At the
same time, RS grows from 0.029 to 0.231 for SGD and from
0.044 to 0.168 for NAG, signaling an accelerated recovery.
Similarly, a reduction in DS indicates a sharper performance
drop. In both cases, GD remains stable for the lower momen-
tum values, but presents a record high 5.02 for SGD and 3.56
for NAG when µ is set to 0.9, suggesting greater instability.
Both optimizers present similar performances, though NAG
manages to produce lower oscillations at higher momentum.

As shown in Table 3, momentum-based trends can also
be observed for the general quantification of stability and



Metric Trend µ ↑ SGD (0.3µ → 0.9µ) NAG (0.3µ → 0.9µ)

TBP (it.) ↓ 208.8 → 166.2 206.5 → 180.3
GD (%) Peaks at 0.9µ 2.33 → 5.02 2.49 → 3.56
DS ↓ −0.092→−0.384 −0.068→−0.309
RS ↑ 0.029 → 0.231 0.044 → 0.168

Table 2: Stability gap trends as momentum increases in SGD
and NAG. We report the sample mean across 10 independent
runs. TBP and DS decrease, while RS increases. GD spikes
at higher momentum. These indicate that the duration of the

stability gap becomes shorter, the decrease and recovery
phases are accelerated, while the performance drop also

increases. NAG presents higher stability compared to SGD
with higher momentum. We consider the same momentum

interval for a reasonable comparison.

Metric Trend µ ↑ SGD (0µ→ 0.9µ) NAG (0.3µ → 0.9µ)

ACC (%) ↑ 93.49 → 96.58 93.44 → 96.82
FORG (%) ↑ −1.47→−0.62 −1.4→−0.67
min-ACC (%) ↑ 89.25 → 90.12∗ 89.1 → 91.92

Table 3: Stability-plasticity trends as momentum increases in
SGD and NAG. Each entry holds the sample mean across 10
independent runs. ACC, FORG and min-ACC all increase
with momentum. This indicates higher overall performance,

slightly more forgetting proneness and an improved
worst-case behavior. An * symbol is placed to signal a

higher value recorded with 0.7µ.

plasticity indicators. Following the same momentum rise in
both scenarios, ACC increases by 3.09% for SGD and 3.38%
for NAG, indicating higher learning potential. Furthermore,
FORG also increases, which can also be interpreted as a
sign of a limited available space for further improvement.
The incremental joint training scheme allows for significant
knowledge gain after each task-specific training is completed,
justifying the negative values recorded. Following the same
trend, the worst-case min-ACC metric reports an improve-
ment from 89.25 to 90.12 for SGD and from 89.1 to 91.92
for NAG. In the case of SGD, there is a dip from 91.14 to
90.12 when the momentum shifts from 0.7 to 0.9, which can
be correlated to the large GD recorded in Table 2 for momen-
tum 0.9. For NAG, this continues to improve.

Qualitatively, Figure 5 displays the performance compar-
isons of the SGD-optimized and NAG-optimized models, re-
spectively, on task 1 with multiple momentum values. We
observe that increasing the momentum in both cases tends
to sharpen the performance drop and accelerate the recovery
phase of the stability gap, narrowing it. The depth of the sta-
bility gap also increases with higher momentum values.
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(a) SGD performance with different momentum values.
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(b) NAG performance with different momentum values.

Figure 5: Performances of (a) SGD and (b) NAG on Task 1
under different momentum values. Each curve represents the
sample mean across 10 randomly seeded runs with a shaded
standard error region. Higher momentum values determine a

steeper, deeper and shorter stability gap. Increasing the
momentum also leads to greater final accuracy and faster

convergence.

AdaGrad, RMSprop and Adam results. The quantification
of the stability gap components for AdaGrad, RMSprop and
Adam is presented in Table 4. This shows that RMSprop and
Adam perform well in terms of TBP, with values of 134.1 and
150.1, respectively, while AdaGrad experiences a longer re-
covery, scoring 208.4. Adam presents a significantly greater
GD compared to both counterparts. Alongside its lowest
−0.296 DS and highest 0.191 RS among the three, these ob-
servations indicate the largest instability when transitioning.
AdaGrad reports the smallest absolute slope values, describ-
ing a gradual and prolonged stability gap.

General metrics are reported in Table 5, with Adam achiev-
ing the highest ACC of 96.82, while RMSprop’s 96.69 com-
ing just short of it. All three score comparably in FORG, with
Adam’s −0.83 slightly coming on top in terms of knowledge
retention and gain. RMSprop scores the highest min-ACC
values, of 93.61, supporting its best overall GD.



Metric AdaGrad RMSprop Adam

TBP (it.) ↓ 208.4 ± 7.9 134.1 ± 8.0 150.1 ± 5.4
GD (%) ↓ 1.68 ± 0.06 1.4 ± 0.08 4.31 ± 0.13
DS -0.084 ± 0.005 -0.141 ± 0.035 -0.296 ± 0.010
RS 0.031 ± 0.002 0.070 ± 0.017 0.191 ± 0.011

Table 4: Stability gap components of AdaGrad, RMSprop and
Adam. The arrows indicate the order of superiority in perfor-
mance. DS and RS are not succeeded by these because they
do not directly reflect improved behavior. RMSprop reduces
both GD and TBP the most, indicating a reduced drop and a
quicker general recovery than its counterparts. Adam presents
the largest absolute DS and RS values, implying increased
abruptness of the gap.

Metric AdaGrad RMSprop Adam

ACC (%) ↑ 95.49 ± 0.03 96.69 ± 0.10 96.82 ± 0.07
FORG (%) ↑ -0.36 ± 0.10 -0.74 ± 0.13 -0.83 ± 0.14
min-ACC (%) ↑ 92.61 ± 0.06 93.61 ± 0.05 90.76 ± 0.17

Table 5: Stability-plasticity indicators for AdaGrad, RM-
Sprop and Adam. Arrows define the performance superiority.
Adam ranks superior in ACC and FORG, showcasing high
learning potential, however the differences to RMSprop are
not major. RMSprop’s highest min-ACC represents the best
worst-case behavior amongst the three.
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Figure 6: Performances of AdaGrad, RMSprop and Adam on
Task 1. Each curve represents the sample mean across 10
randomly seeded runs with a shaded standard error region.
Adam exhibits the largest stability gap. As new tasks are
introduced, AdaGrad struggles the most to recover lost
performance. RMSprop presents the shortest-lasting and

lowest performance decrease.

Figure 6 provides a visual representation of the accuracy
curves corresponding to the performance on task 1 of Ada-
Grad, RMSprop and Adam.

Appendix A.2 includes the individually plotted perfor-
mances of the optimizers on all tasks. These include both
momentum-based and adaptive learning rate strategies.

5 Discussion
The performance trends presented allow us to draw general
conclusions and provide an interpretation of the key findings.
We formulate our discussion by first looking at the stability
gap implications of the strategies employed. Following this,
we place these insights within the ultimate goal of continual
learning: reaching a high overall accuracy while minimizing
inefficient resource consumption.

Based on our previous quantitative and qualitative stability
gap analyses, we can state that our momentum-based results
confirm the following. Increasing the momentum coefficient
in SGD and NAG leads to a more sudden loss of accuracy,
followed by a faster recovery phase. In between these two
stages, the stability gap also becomes progressively narrower
with a rising momentum. According to our gathered data,
after a certain momentum threshold, around 0.5µ, the magni-
tude of the drop also increases. It can also be stated that NAG
manages to better attenuate the drop and reduce the gap’s
depth, in comparison with SGD. Our findings complement
hypotheses H1 and H2. In a broader context, as momentum
increases, the learning curves in Figure 5 shift upward and
leftward, indicating higher accuracy convergence.

The momentum component of both SGD and NAG is
widely considered essential to efficiently train a high-
performance model. We discover that, in our domain-
incremental learning scenario, maximizing the benefits of
this accelerated learning process comes at the expense of a
steeper, deeper, although narrower stability gap.

We can reason that increasing momentum causes the pa-
rameters to pick up a joint update trajectory more quickly af-
ter a new task is introduced. This rapid performance change
accelerates both the decrease and recovery stages. The model
thus undergoes a temporary destabilization followed by a
faster adaptation. The increased depth of the stability gap
may result from overshooting optimal parameter configura-
tions due to aggressive updates. At the same time, the ability
to escape shallow local minima encountered is also improved,
reflected in a higher and accelerated final convergence.

In terms of the behavior of adaptive learning rate optimiz-
ers, both AdaGrad and RMSprop report minor stability gap
depths, confirming hypothesis H3. However, we can attribute
AdaGrad’s longer-lasting performance recovery to its irre-
versibly decreasing learning rates. The same limitation of
AdaGrad inhibts adaptation to new tasks, reflected in lower
joint and worst-case accuracy scores. The flexibility of RM-
Sprop’s exponentially decaying learning rates provides both
long-term plasticity and efficient adaptation, scoring better
than its counterpart in all aforementioned categories. On the
other hand, Adam’s momentum-driven updates follow the be-
havior of the previous high-momentum optimizers, increas-
ing the abruptness and amplitude of the gap. Similarly, this
fast-paced update dynamic enables quick recovery and results
in a high average accuracy across all tasks.

Considering all previous observations, we can declare RM-
Sprop to be the superior choice in reducing the magnitude
and duration of the stability gap in this simplified experimen-
tal setup, thereby disproving hypothesis H4. However, con-
trolling the gap comes at the cost of a slightly lower final



accuracy than Adam and NAG.
Interestingly, Wilson et al. (2017) demonstrate that despite

converging faster, adaptive methods (AdaGrad, RMSprop and
Adam) generalize worse than SGD and its variants as training
progresses. An explanation could be that they favor rare fea-
tures, relevant in sparse contexts, but steer away from flatter
minima, which are associated with better generalization. We
therefore hypothesize that extending our continual learning
context with new tasks can result in SGD and NAG with high
momentum outperforming the other optimizers in terms of
joint accuracy, worst-case, and stability gap behavior.

Limitations. Our ablation study aims to draw a sugges-
tive picture of a forgetting-prone scenario, within reasonable
experimental time and space complexity constraints. How-
ever, previous research on the topic of catastrophic forgetting
confirms that increasing the capacity of the model tends to
discourage general forgetting (Goodfellow et al., 2014). Al-
though the insights gained are promising, they come as a
result of a simplified experimental setup based on a single
dataset that might not completely capture the complexity of
real-world tasks.

6 Conclusions
The purpose of this research was to provide an analysis of
the influence that various optimizers have on shaping a tem-
porary forgetting trend that Lange et al. (2023) first identi-
fied and termed the stability gap. We developed and adopted
a series of metrics to capture the slopes, size, and duration
of the gap, as well as the general performance of the model.
We highlighted the inevitability of the stability gap across all
optimization strategies and closely observed the performance
trends sparked by task switching.

Answering the questions. Following the experiments con-
ducted, we can conclude that a higher momentum implies a
steeper and more drastic drop, succeeded by a faster recov-
ery phase. This pattern holds for both SGD and NAG, with
NAG’s predictive updates making it more resilient in mini-
mizing the loss. Our results confirm AdaGrad’s controlled
drop and limited plasticity potential, while Adam presents the
same volatile behavior as high-momentum SGD and NAG.
RMSprop ranks first overall in mitigating the magnitude and
duration of the drop while achieving a high joint accuracy.

Future exploration. While our comparative study pro-
vides key insights into how optimizers model the stability
gap, the scalability and generalizability of the results require
further exploration. In this regard, applying the strategies to
more complex, real-world datasets, increasing the number of
tasks, and switching the learning paradigm could strengthen
our understanding of optimizers’ behavior. Future work
can also expand the comparison to upcoming optimization
schemes. Additionally, whether the same optimizer-induced
stability gap dynamics hold when the capacity and architec-
ture of the model change represents a future research avenue.

In conclusion, our comparative research on the effect of
optimizers on the stability gap contributes to the continual
learning goal of acquiring information without forgetting. By
understanding and optimizing the stability gap, we can sig-
nificantly improve efficiency and robustness while minimiz-

ing training costs. These achievements could greatly bene-
fit adaptive machine learning systems, such as autonomous
robotics and personalized recommendation systems, which
are becoming increasingly more prevalent today.

7 Responsible Research
This section aims to justify the adherence of our study to ethi-
cal standards and academic principles. This is done by exclu-
sively using and crediting publicly available accredited mate-
rials, while transparently and integrally reporting the experi-
mental methodology and the results obtained. We argue that
these are in compliance with the Netherlands Code of Con-
duct for Research Integrity from 2018, and that our data han-
dling respects the FAIR principles (Wilkinson et al., 2016).

Reproducibility. We ensure that the materials, data, and
codebase underlying our research are findable and accessi-
ble. We base our training and testing processes on rotational
variants of the MNIST dataset (LeCun et al., 1998), which
is freely available for academic use. We upload the code to
a public GitHub repository3, an open-source environment, to
ensure the reproducibility and verifiability of the entire pro-
cessing pipeline. Our discussions also detail the provenance
of the stability gap, the sources of optimization algorithms,
and measurement procedures.

We argue that the presented dataset, tools, and numerical
findings can be integrated with different analysis and pro-
cessing systems, as well as replicated and combined in future
work. This categorizes them as interoperable and reusable.
Our codebase is accompanied by relevant documentation and
guidelines for experimental replication. We wish to facilitate
verification and future exploration into the stability gap phe-
nomenon with upcoming optimization choices. In the context
of replicability, it is worth pointing out that machine learning
experiments inherently involve a randomness factor. This de-
termines that replicating our calculations will naturally lead
to results that are close to the values reported in this study,
rather than identical ones.

Ethical considerations. Our choice of dataset, consist-
ing of rotated grayscale digits, ensures that our study is free
of sensitive or private information. To mitigate potential bi-
ases in the datasets, such as underrepresented digits, and ar-
rive at reliable results, we randomly seed the shuffling of our
training and testing samples. We also rerun each configura-
tion an equal number of times before reporting an aggregated
figure. This grants a robust evaluation of the model that ac-
counts for possible fluctuations. We acknowledge that our re-
search is niche, specifically focusing on task-based, domain-
incremental learning scenarios, with a narrow set of classifi-
cation targets. This requires broader exploration to establish
universal applicability in the realm of continual learning.

3https://github.com/chrisobis28/stability-gap-optimization
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A Appendix
A.1 Mathematical Formulations of Optimizers
The following formulas define the first-order optimization
strategies under analysis and are in accordance with Py-
Torch’s default methods. We decide to include and detail
these for completeness.

Stochastic Gradient Descent with Momentum.
The following equations are derived from the work of
Sutskever et al. (2013).

gt ← ∇θft(θt−1;Xbatch, ybatch) (5)

vt ← µvt−1 + gt (6)

θt ← θt−1 − γvt (7)

Equation 5 defines the gradient gt of the loss function∇θf
at timestamp t, with respect to the model parameters θ at it-
eration t− 1. This is computed on a mini-batch Xbatch of the
training data, with the corresponding target labels ybatch. Al-
though the formula also covers the case of a time-dependent
loss function, this is time invariant in our case. Equation 6
refers to the velocity buffer v at iteration t, shaped by the mo-
mentum coefficient µ, the accumulation of gradients vt−1 and
the previously calculated one gt. The initial velocity buffer is
given the value of the gradient in the first step, compared to
other instances of the algorithm where this is initialized to
zero. Equation 7 gives the update of parameters θ at iteration
t, by subtracting the velocity term vt, scaled by the learning
rate γ, from their previous values of θt−1.

Nesterov Accelerated Gradient (NAG).
Similarly to the previous optimizer, the formulas are inspired
by Sutskever et al. (2013).

gt ← ∇θft(θt + µvt−1;Xbatch, ybatch) (8)

vt ← µvt−1 + gt (9)

θt ← θt−1 − γvt (10)

Equation 8 reflects the integration of the momentum-scaled
velocity component µvt−1 in computing the current gradient
gt. Intuitively, equations 9 and 10 mirror 6 and 7, respec-
tively. As in mini-batch SGD, the same principle of initializ-
ing the momentum buffer is applied.

Adaptive Gradient Algorithm (AdaGrad).
The following implementation of AdaGrad corresponds to
the algorithm proposed by Duchi et al. (2011).

gt ← ∇θft(θt−1;Xbatch, ybatch) (11)

Gt ← Gt−1 + g2t (12)

θt ← θt−1 −
γ√

Gt + ϵ
gt (13)

Equation 11 defines the standard loss function gradient for-
mula, as previously described. Equation 12 calculates the
buffer G of summed square gradients g2, at iteration t, scal-
ing down the learning rate γ for all future parameter θ updates
(equation 13). A small constant ϵ is added to the denominator
to exclude the possibility of dividing by zero. The meaning
of the other terms does not change.

Root Mean Square Propagation (RMSprop).
The works of Graves (2014) and Tieleman and Hinton (2012)
gave rise to the following formulas that correspond to our ap-
plication of RMSprop.

gt ← ∇θft(θt−1;Xbatch, ybatch) (14)

vt ← αvt−1 + (1− α)g2t (15)

θt ← θt−1 −
γ

√
vt + ϵ

gt (16)

The update of the gradient memory buffer v in equation
15 uses a smoothing constant α to dynamically adjust the
weights of old and recent gradient components. Equations
14 and 16 naturally follow from their correspondents in Ada-
Grad, preserving the meaning of the parameters.

Adaptive Moment Estimation (Adam).
Finally, Adam is applied according to its introduction by
Kingma and Ba (2015).

gt ← ∇θft(θt−1;Xbatch, ybatch) (17)

mt ← β1mt−1 + (1− β1)gt (18)

vt ← β2vt−1 + (1− β2)g
2
t (19)

m̂t ←
mt

1− βt
1

(20)

v̂t ←
vt

1− βt
2

(21)

θt ← θt−1 −
γm̂t√
v̂t + ϵ

(22)

Equation 17 represents the standard computation of the
loss function gradient, given a mini-batch training approach.
Both equations 18 and 19 produce exponentially averaged
results, with the former used as momentum-like behavior
(called the first moment estimation), and the latter allowing
for an informed adaptation of the learning rates, as in the case
of RMSprop. Equations 20 and 21 define bias correction for
both moment estimates to ensure stable updates in early it-
erations, as limt→∞ m̂t = mt and limt→∞ v̂t = vt with
0 < β1, β2 < 1. The update of parameters in equation 22
follows naturally from all the components mentioned above.



A.2 Optimizers performance

Optimizer ACC (%) ↑ FORG (%) ↑ min-ACC (%) ↑ TBP (it.) ↓ GD (%) ↓ DS RS

SGD 0µ 91.78 ± 0.12 -1.61 ± 0.15 87.35 ± 0.08 220.6 ± 4.3 2.30 ± 0.11 -0.054 ± 0.003 0.022 ± 0.001
SGD 0.3µ 93.49 ± 0.09 -1.47 ± 0.16 89.25 ± 0.09 208.8 ± 10.1 2.33 ± 0.12 -0.092 ± 0.005 0.029 ± 0.002
SGD 0.5µ 94.47 ± 0.06 -1.36 ± 0.13 90.54 ± 0.05 196.2 ± 8 2.24 ± 0.09 -0.145 ± 0.012 0.041 ± 0.003
SGD 0.7µ 95.63 ± 0.11 -0.95 ± 0.16 91.14 ± 0.08 194.8 ± 9.1 3.06 ± 0.11 -0.283 ± 0.015 0.118 ± 0.008
SGD 0.9µ 96.58 ± 0.04 -0.62 ± 0.10 90.12 ± 0.14 166.2 ± 15.1 5.02 ± 0.15 -0.384 ± 0.011 0.231 ± 0.008

NAG 0.3µ 93.44 ± 0.12 -1.40 ± 0.18 89.1 ± 0.09 206.5 ± 6.1 2.49 ± 0.14 -0.068 ± 0.004 0.044 ± 0.007
NAG 0.5µ 94.5 ± 0.07 -1.21 ± 0.11 90.16 ± 0.12 195.6 ± 8.2 2.38 ± 0.25 -0.194 ± 0.051 0.067 ± 0.018
NAG 0.7µ 95.61 ± 0.09 -0.88 ± 0.10 91.62 ± 0.08 191.5 ± 10.8 2.47 ± 0.09 -0.252 ± 0.014 0.087 ± 0.008
NAG 0.9µ 96.82 ± 0.04 -0.67 ± 0.09 91.92 ± 0.10 180.3 ± 10.1 3.56 ± 0.09 -0.309 ± 0.01 0.168 ± 0.011

AdaGrad 95.49 ± 0.03 -0.36 ± 0.10 92.61 ± 0.06 208.4 ± 7.9 1.68 ± 0.06 -0.084 ± 0.005 0.031 ± 0.002
RMSprop 96.69 ± 0.10 -0.74 ± 0.13 93.61 ± 0.05 134.1 ± 7.2 1.4 ± 0.08 -0.141 ± 0.035 0.070 ± 0.017
Adam 96.82 ± 0.07 -0.83 ± 0.14 90.76 ± 0.17 150.1 ± 5.4 4.31 ± 0.13 -0.296 ± 0.010 0.191 ± 0.011

Table 6: Stability gap and general stability-plasticity evaluation of optimizers. Metrics include average accuracy (ACC),
average forgetting (FORG), minimum accuracy (min-ACC), time below performance (TBP), gap depth (GD), decrease slope
(DS), and recovery slope (RS). We report each metric figure as the sample mean and standard error across 10 randomly seeded
experiments. The arrows indicate performance superiority, while highlighted scores represent the best performances recorded
within specific optimization contexts. DS and RS are not included as comparison means because they do not directly reflect
performance. These are given by horizontally dividing the table in 3 parts: SGD with momentum, NAG with momentum, and
adaptive methods.
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(a) AdaGrad
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(b) RMSprop
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(c) Adam

Figure 7: Performances of the (a) AdaGrad, (b) RMSprop, and (c) Adam optimizers on four sequentially introduced tasks. We
plot the sample mean of 10 randomly seeded experimental runs and shade the surrounding area given by the standard error
across them. AdaGrad and RMSprop both present a minor stability gap depth and decrease slope, while the former struggles
more to integrate new tasks and recover from accuracy loss. Adam experiences a sudden, deep and short-lasting stability gap.
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(a) SGD with Momentum 0
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(b) SGD with Momentum 0.3
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(c) SGD with Momentum 0.5
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(d) SGD with Momentum 0.7
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(e) SGD with Momentum 0.9

Figure 8: Performance of SGD on four progressively introduced tasks, using momentum (µ) values (a) 0, (b) 0.3, (c) 0.5,
(d) 0.7, and (e) 0.9. Each plot shows the sample mean across 10 randomly seeded experiments, with an uncertainty region
defined by the standard error, highlighted in red. Increasing the momentum coefficient narrows the stability gap and increases
its magnitude, while improving convergence accuracy.
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(a) NAG with Momentum 0.3
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(b) NAG with Momentum 0.5
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(c) NAG with Momentum 0.7
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(d) NAG with Momentum 0.9

Figure 9: Performance of NAG on the four tasks under analysis, using different momentum (µ) values (a) 0.3, (b) 0.5, (c) 0.7,
and (d) 0.9. Each plot contains the sample mean of 10 randomly seeded experiments and highlight the region of the standard
error computed across these runs in red. The accuracies reported reflect the behavior of SGD, where a higher momentum implies
a higher amplitude of the gap and a shorter duration. Similarly, higher momentum values accelerate convergence. However,
NAG shows improved performance in minimizing the stability gap, given high momentum values.



A.3 Gridsearch Procedure

Optimizer Additional Parameters γ = 0.0001 γ = 0.001 γ = 0.01 γ = 0.1

SGD

µ = 0 – 15.26 ± 0.06 67.18 ± 0.27 92.19 ± 0.20
µ = 0.3 – 26.58 ± 0.24 70.96 ± 0.15 93.48 ± 0.18
µ = 0.5 – 39.23 ± 0.13 75.64 ± 0.21 94.52 ± 0.10
µ = 0.7 – 51.68 ± 0.19 82.87 ± 0.14 95.72 ± 0.08
µ = 0.9 – 66.97 ± 0.17 91.74 ± 0.12 96.66 ± 0.08

NAG

µ = 0.3 – 25.51 ± 0.17 71.17 ± 0.18 93.38 ± 0.18
µ = 0.5 – 34.15 ± 0.05 75.78 ± 0.16 94.63 ± 0.12
µ = 0.7 – 50.63 ± 0.22 82.98 ± 0.17 95.70 ± 0.10
µ = 0.9 – 67.34 ± 0.11 91.97 ± 0.08 96.85 ± 0.08

AdaGrad – 54.40 ± 0.28 79.54 ± 0.10 95.36 ± 0.05 93.8 ± 0.14

RMSprop α = 0.99 90.05 ± 0.23 96.83 ± 0.09 94.22 ± 0.23 –
α = 0.9 89.50 ± 0.14 96.89 ± 0.09 94.64 ± 0.29 –

Adam

β1 = 0.99, β2 = 0.999 86.64 ± 0.11 95.41 ± 0.11 94.41 ± 0.12 –
β1 = 0.99, β2 = 0.99 86.55 ± 0.17 95.99 ± 0.05 94.08 ± 0.15 –
β1 = 0.9, β2 = 0.999 89.66 ± 0.13 96.63 ± 0.09 95.95 ± 0.08 –
β1 = 0.9, β2 = 0.99 89.76 ± 0.14 96.79 ± 0.05 95.93 ± 0.13 –

Table 7: Unified table of the hyperparameter gridsearch conducted over all optimizers. The table entries contain the average
accuracy ACC as the sample mean of 5 independent runs, accompanied by the standard error across these. For SGD and
NAG, µ denotes momentum, AdaGrad’s decay rate is represented by α, while Adam uses β1 and β2 to calculate moment
estimates. Tuning the hyperparameters is essential to ensure a fair comparison of the methods. We make our selection based
on the stability-plasticity ACC metric scored to prioritize performance. We bold the highest scoring configuration for each
optimization setting. This corresponds to the hyperparameters used to benchmark the optimizer in our final experiments.
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