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Traffic state estimation is an important task that has attracted a lot of research effort in recent decades. 

The main goal of traffic state estimation is to turn measured data, which is normally noisy and 

incomplete, into meaningful information for further investigation, either offline or online (e.g. traffic 

management and control). 

Traffic state estimation is mainly encompassed of three ingredients: raw data from sensors; 

relationships between observed data and the underlying desired state variables; and data assimilation 

techniques to combine the former two. Classic approaches use full-fletched traffic flow models in 

combination with recursive Bayesian data assimilation methods such as Kalman filters (Wang Y. et 

al., 2006, van Hinsbergen et al., 2012) and particle filters (Chen et al., 2011, Hegyi et al., 2006) to fuse 

and assimilate any sensor data related to the underlying state variables. The advantages of these 

approaches are tractability and the fact that such methods are very suitable to support “what-if” 

analysis and prediction on entire networks. On the downside, they contain many parameters and inputs 

that often require prediction themselves with data that is in many cases not available. More recently, 

predominantly statistical approaches are proposed estimate link speeds based on correlations between 

link conditions (speed or flow) over a network (Yang et al., 2016, Lv et al., 2015). The data-driven 

nature of these approaches make them flexible and more easily maintainable, however, there are also 

disadvantages. Without observation equations relating observed data to underlying state variables (e.g. 

density), such latent variables cannot be reconstructed. Moreover, it is not always easy to relate 

outcomes of data-driven processes to the actual traffic processes that led to these outcomes. Therefore, 

combining these two approaches to take advantages of them is highly motivated. 

The proposed method constitutes two main phases, namely offline learning and online estimation. In 

the offline learning phase, congested traffic patterns are classified into different congestion states 

(Krishnakumari et al., 2017). Research has revealed several noticeable states, such as wide moving 

jams; heterogeneous traffic states with oscillations, which result in the emergence of moving jams of 

different amplitude; and homogeneous congestion, which expands over time and space. From these 

congestion patterns, shockwaves can be extracted and labelled as traffic states upstream, downstream 

and inside congested areas. Moreover, speeds of these shockwaves can be calculated directly 

according to their vectors in spatiotemporal data. On the other hand, according to shockwave theory, 

there is an indirect method to compute these speeds given traffic flow and density values. A data-

driven framework is implemented to investigate the consistency of these speeds derived from the two 

methods. 

Given traffic congestion, the online estimation phase is responsible for quickly estimating current 

traffic states and predicting how the congestion area grows for short time horizon. This phase consists 

of four steps: (i) current traffic classification, (ii) space-time region separation, (iii) region state 

estimation and (iv) prediction. The main drawback of most theory-based estimation techniques is the 

high number of degrees of freedom. The proposed hybrid method aims at using data pattern 

recognition from historical data as a solution for this situation. Traffic state information can be 

inferred from historical traffic patterns when physical sensor data is insufficient. Deriving on-ramp 
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and off-ramp flow data is a typical example of this. As a result, it can alleviate the number of 

parameters required by estimation models, while maintaining model precision. 

In addition, quickly determining likely current congestion states can also improve the accuracy of data 

fusion in estimating future traffic states. Needless to say, similar congestion patterns can be expected 

to occur under similar circumstances, e.g. for similar infrastructure design or similar incident events. 

Therefore, accurate classification of current traffic congestion assists the use of embedded data-driven 

method to derive most related historical patterns. For ongoing congestion, this method proposes using 

a (partial) pattern recognition approach to match current traffic with a corresponding congestion state.  

In the second step, traffic congestion will be separated into different space-time regions for analysis. 

Similarly to what is described in the offline learning phase, this is performed using basic first order 

traffic flow theory. Figure 1 gives an example describing the idea of separation of congested traffic 

flow states. The currently observed shockwaves are shown by two red lines. They are formed by 

changes in traffic states between downstream and upstream in congested areas, which are denoted by 

number 1, 2 and 3 respectively. For computing efficiency, these areas are discretized in time, which is 

denoted by two dotted vertical lines. The third step is for estimating the states of those separated 

space-time regions. The state of each region is defined as an average value of states of all “points” 

(e.g. any space - time moment in the region). Accurately estimated results are extremely important as 

they are underlying features for traffic prediction. 

 

Figure 1: An example of congestion and separation of space-time area 

The final step is the prediction step, in which the future states of different regions (upstream, 

downstream and congested area) are forecasted. At this moment, there are different reasonable 

solutions to resolve this requirement. Firstly, the classifying step using pattern recognition, which was 

mentioned previously, provides a number of similar traffic situations. They can be considered as rough 

representations for the forecast of the traffic states in the next time period. Another possible solution is 

applying traffic flow theory to future traffic states to infer the speeds of shockwaves between those 

estimated regions. This determines how the congestion propagates over the prediction horizon. 

In determining the performance of the proposed method, two validating systems are implemented for 

testing the data model and the prediction results. The data model in the offline learning phase is 

examined based on its qualification of representing relationships between traffic states and shockwave 

speeds on a test dataset. With regard to the traffic prediction scheme, forecasted shockwave speeds are 

compared with ground truths of shockwaves from data to validate its forecasting accuracy.  

  



hEART 2017: 6th Symposium of the European Association for Research in Transportation 

References 

KRISHNAKUMARI, P., NGUYEN, T., HEYDENRIJK-OTTENS, L., L. VU, H., LINT, H. VAN. 

Traffic Congestion Pattern Classification using Multiclass Active Shape Models. (to be 

published) Transportation Research Record: Journal of the Transportation Research Board 

2017. 

CHEN, H., RAKHA, H. A. & SADEK, S. Real-time freeway traffic state prediction: A particle filter 

approach.  IEEE Conference on Intelligent Transportation Systems, 2011 Washington D.C., pp 

626-631. 

HEGYI, A., GIRIMONTE, D., BABUSKA, R. & DE SCHUTTER, B. A comparison of filter 

configurations for freeway traffic state estimation.  Intelligent Transportation Systems 

Conference, 2006. ITSC '06. IEEE, 17-20 Sept. 2006 2006. 1029-1034. 

LV, Y., DUAN, Y., KANG, W., LI, Z. & WANG, F. Y. 2015. Traffic Flow Prediction with Big Data: 

A Deep Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 16, 

865-873. 

VAN HINSBERGEN, C. P. I. J., SCHREITER, T., ZUURBIER, F. S., VAN LINT, J. W. C. & VAN 

ZUYLEN, H. J. 2012. Localized Extended Kalman Filter for Scalable Real-Time Traffic State 

Estimation. Ieee Transactions on Intelligent Transportation Systems, 13, 385-394. 

WANG Y., PAPAGEORGIOU M. & MESSMER A. 2006. A real time freeway network traffic 

surveillance tool. IEEE Transactions on control systems technology, 14. 

YANG, H., DILLON, T. S. & CHEN, Y. P. 2016. Optimized Structure of the Traffic Flow Forecasting 

Model With a Deep Learning Approach. IEEE Transactions on Neural Networks and 

Learning Systems. 

 


