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Abstract

Non-coherent on-off keying (OOK) receivers are preferred in ultra low
power (ULP) wireless devices as they consume less power when com-
pared to receivers based on other modulation schemes. However, these
devices are highly susceptible to co-channel interference (CCI). There-
fore, interference cancellation (IC) techniques for ULP non-coherent
OOK receivers are investigated in this thesis.

Various IC techniques are discussed in literature. However, the
non-coherent OOK receiver architecture calls for the design of new
low complexity IC techniques. The main constraint of the system
is imposed by the analog front end that uses a simple square law
detector to down-convert the RF signals to baseband and there is also
only single radio frequency (RF) chain. The challenge is to mitigate
CCI under these constraints and improve the detection performance.

The non-coherent detection of OOK signals requires the knowl-
edge of the signal to noise ratio (SNR) of the incoming signal. There-
fore, SNR estimation plays an important role in non-coherent OOK
receivers. Thus the scope of this thesis is twofold. Firstly, the SNR
estimation and non-coherent detection techniques are proposed for
OOK signals. Secondly, the interference mitigation techniques are
proposed for the case of continuous wave (CW) CCI and OOK mod-
ulated interferers. The problems of the proposed techniques for the
case of M-ary phase shift keying (MPSK) modulated interferers are
also investigated. Finally, the implementation of the SNR estimation
techniques on real time hardware platform is discussed.
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Introduction 1
1.1 Introduction to wakeup radio

In recent years, there has been a growing interest in the development of energy ef-
ficient ultra low power (ULP) wireless devices for various applications, for instance,
wireless sensor networks, active RFID, short range communications and body area net-
works (BAN) for healthcare. The main feature of the wireless devices used in these
applications is long life time through energy efficient operation.

Figure 1.1: Operation of the dual radio system equipped with a wakeup radio and main radio.

Recently, the concept of a wakeup radio is introduced to improve the energy effi-
ciency of low power radio, e.g., [1,2], and the references therein. The wakeup radio is an
ULP wireless receiver which is used in conjunction with a high performance main radio
as shown in figure 1.1. The design of this dual radio system is motivated by the fact
that the main radio need not be always on. The main radio is assigned a specific address
and it follows a sleep/active mode cycle. More specifically, the low power wakeup radio
is always in the listening mode and triggers the main radio if the packet is addressed to
the main radio. The main radio returns to sleep mode after the communication ends.
Thus the wakeup radio assists the main radio in low power channel monitoring and to
operate in a near zero standby power when the main radio is in the sleep state. Figure
1.2 depicts the sleep mode/active mode cycle of the main radio. It is evident that, the
power consumption is reduced as the main radio is not always on. Though the ULP
wakeup radio improves the energy efficiency, it is highly susceptible to interference.

1



Figure 1.2: Operation cycle of the main radio and wakeup radio.

Hence, interference mitigation in the wakeup radio is an important aspect of research.
In this chapter, we define the interference mitigation problem and explain the need for
novel interference mitigation techniques for the wakeup radio.

The rest of this chapter is organized as follows. Section 1.2 gives an overview on the
types of interference. Section 1.3 briefly describes the existing interference cancellation
techniques. The interference issues in the wakeup radio and the problem formulation
of the thesis are described in section 1.4. Section 1.5 gives a brief outline on the
contributions of rest of the chapters of this thesis.

1.2 Types of interference

Interference can be broadly classified into the following types based on the relation of
the interfering signal to the desired signal.

• Inter symbol interference

• Co-channel interference

• Multiple access interference

These types of interference are described in the following subsections.

1.2.1 Inter symbol interference (ISI)

ISI occurs due to the non flat frequency response of the channel which results in time
dispersion of the signals. The transmitted pulse is spread and has a greater duration
when it is distorted due to time dispersion. This causes the overlap of the stream of
pulses at the receiver. The ISI is usually mitigated by employing appropriate pulse
shaping. The spectral characteristic (G(f)) of the pulse should follow the Nyquist
criterion for zero ISI which is given by, [4]

∞∑
m=−∞

G(f +
m

T
) = T. (1.1)

2



where, f is the frequency and T is the time duration of the pulse. The widely used
pulse shape in practice is the raised cosine pulse shape which satisfies the Nyquist
criterion for zero ISI. Usually, the raised cosine frequency response is split between the
transmitter and receiver. A root raised cosine pulse is used in the transmitter side
and a similar root raised cosine pulse is used as a matched filter in the receiver to give
the overall raised cosine frequency response. The pulse shape (g(t)) of the root raised
cosine pulse is given by,

g(t) =


1√
T

4λt/T cos
[
(1+λ)πt/T

]
+sin
[
(1−λ)πt/T

]
(πt/T )(1−(4λt/T )2)

, if t ̸= 0, t ̸= ± T
4λ
,

1√
T
(1− λ+ (4λ/π)) if t = 0,

λ√
2T

[
(1 + 2/π) sin(π/4λ) + (1− 2/π) cos(π/4λ)

]
if t = ± T

4λ
.

(1.2)

where, λ is the roll off factor (0 ≤ λ ≤ 1). Figure 1.3 shows a root raised cosine pulse
shape with roll off factor λ = 0.5
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Figure 1.3: Root raised cosine pulse shape.

1.2.2 Co-channel interference (CCI)

CCI occurs when two or more signals overlap in frequency domain. CCI is detrimental
to the receiver detection performance and this thesis primarily deals with the CCI
interference mitigation techniques for the wakeup radio receiver. CCI can be broadly
subdivided into the following types.

Continuous wave (CW) interferer
Continuous wave interferer is one whose bandwidth is less than the desired signal
bandwidth. It is a continuous sinusoid around the center frequency of the desired signal.

Modulated interferer

3



The interference due to the modulated interferer is caused when the bandwidth of
the desired signal overlaps with the bandwidth of the modulated signal from another
source. The modulated interferer can occupy the entire spectrum of desired signal or
occupy a part of it depending on the center frequency and data rate of the interfering
source.

Figure 1.4: Spectrum of the different types of co-channel interferers and the desired signal.

Figure 1.4 shows the spectrum (S(f)) of different kind of CCI signals along with
the desired signal. The modulated interferer in the figure is shown to be overlapping
the entire spectrum of the desired signal just for illustration purpose. It can overlap
only with a part of the desired signal’s spectrum as well.

1.2.3 Multiple access interference (MAI)

MAI occurs usually in cellular communication systems when two or more signals share
the same bandwidth. MAI can be eliminated if the signals are orthogonal. The or-
thogonality can be achieved by time division multiple access (TDMA), frequency di-
vision multiple access (FDMA) or code division multiple access (CDMA) techniques.
In TDMA systems, each user is assigned different time slots for transmission and re-
ception. In FDMA systems, each user is assigned a specific band of non overlapping
frequencies. In case of CDMA systems, the signals of each user are spread by a specific
code sequence and the codes are orthogonal to each other. Thus the receiver is able
to decode each user’s signal after correlating the multiplexed incoming signal with the
appropriate code sequence. MAI can still occur in CDMA systems since ideal time
synchronisation is not present between the users which leads to non-orthogonal signals.
Multipath also contributes to MAI.

In the following section, we present a brief overview on some of the existing inter-
ference cancellation techniques discussed in the literature.

1.3 Types of interference cancellation techniques

There are number of interference cancellation techniques discussed in the literature.
Most of these techniques fall under the following categories.

4



• Filter based approach

• Spatial processing

• Joint/multiuser detection

1.3.1 Filter based methods

Filter based techniques generate the frequency response function such that it maximizes
the signal to interference plus noise ratio (SINR) at the output of the filter. The optimal
filter that maximizes the SINR is the Wiener filter, [5]. The weight matrix (W) of the
Wiener filter is given by,

W = R−1
x Rxs,

Rx =
1

N
XXH ,

Rxs =
1

N
XSH . (1.3)

where, Rx, is the M x M data covariance matrix and Rxs is M x 1 correlation matrix
between the data and source symbols, X is the M x N received sample data matrix
and S is the 1 x N vector of corresponding source symbols, M and Nare the number of
antennas and data samples, respectively. W can be obtained through a set of training
sequences. To avoid the computation of the inverse of the covariance matrix, adaptive
algorithms such as least mean square (LMS) and recursive least square (RLS) shall
be used, [6]. Generally, the filter based techniques are suitable to remove narrowband
interference.

1.3.2 Spatial processing

The spatial processing techniques require multiple antennas at the receiver. Interference
cancellation can be performed by multiple antenna techniques such as beamforming.
In case of beamforming, the spatial diversity is exploited. If the interfering signals
are spatially separated, then the receiving antenna array can be steered towards the
direction of source signal. Various spatial processing techniques have been proposed in
literature to cancel interference by source separation [7].

1.3.3 Joint/multiuser detection

Joint or multiuser detection is required if there are multiple signals with the same
characteristics. In that case, a signature is added to each signal such that it can be
detected in the presence of other signals. For example, in the case of CDMA, the signals
of each user are spread by a specific code sequence and the codes are orthogonal to each
other. Thus the receiver is able to decode each user’s signal after correlating the mul-
tiplexed incoming signal with the appropriate code sequence. When the orthogonality
of the codes are disturbed, cross correlation exists between the multiple signals. In
that case, advanced techniques such as successive interference cancellation (SIC) and
parallel interference cancellation (PIC) are used, [8, 9].
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In the case of wakeup radio, there are system constraints. Due to the constraints,
the above techniques cannot be used in the wakeup radio receiver. These are explained
in detail in chapter 3. In the following section, the problem formulation of this thesis
is described in detail.

1.4 Problem formulation

The wakeup radio employs a non-coherent on-off keying (OOK) receiver architecture.
OOK is used as the modulation scheme as it helps to reduce the power consumption.
The non-coherent receiver uses a square law detector and a low pass filter to downcon-
vert the radio frequency (RF) signal to baseband and does not require a local oscillator
which further helps to reduce power consumption. Though the architecture of the
wakeup radio is advantageous in terms of the reduced power consumption, it is highly
susceptible to CCI. CCI mitigation is important to have an agreeable detection per-
formance in the wakeup radio receiver. In this thesis, the following types of CCI are
considered.

• Continuous wave interferer

• OOK modulated interferer

• M -ary phase shift keying (MPSK) modulated interferer

It is also important to know that the detection threshold is a function of received
signal to noise ratio (SNR) in the case of non-coherent OOK receiver, [3]. Hence, SNR
estimation has to be done in the receiver for non-coherent detection of OOK signals.
Therefore, in this thesis, SNR estimation and interference mitigation techniques for
non-coherent OOK receivers are investigated in detail.

The main contributions of the rest of the chapters of this thesis are highlighted in
the following section.

1.5 Thesis contributions

Chapter 2: SNR estimation and non-coherent detection techniques for
OOK signals
At first, we propose a novel normalized max-zero likelihood (NML) technique for
non-coherent detection of OOK signals. Then, moments based M1V estimator and
maximum likelihood (ML) estimator are proposed for data aided (DA) SNR estimation.
Then, expectation maximization (EM), M1M2 and M2M3 estimators are proposed
for non data aided (NDA) SNR estimation. The normalized mean square error
(NMSE) performance of each estimator is evaluated over a wide range of SNR and the
limitations of the estimators are discussed. Hybrid M1M2 − EM and M2M3 − EM
estimators are proposed to overcome the limitations. Finally, the bit error rate (BER)
performance of the DA and hybrid NDA estimators is simulated and is found to be in
good agreement with the analytically evaluated BER.
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Chapter 3: Interference mitigation techniques for wakeup radio
DA and NDA estimation techniques proposed in chapter 2 are extended to estimate
the interference power along with the desired signal and noise power. Based on these
estimates, threshold based and maximum-a-posteriori (MAP) detector based inter-
ference mitigation techniques are proposed for the case of CW and OOK modulated
interferers. BER performance of these techniques is evaluated and compared against
the theoretical BER. Finally, the limitations of these techniques are discussed.

Chapter 4: Implementation of non data aided SNR estimation
The implementation of NDA SNR estimation techniques in universal software radio
peripheral 2 (USRP2) platform is described in detail. At first, the transmitter imple-
mentation using a combination of Tektronix function generator and signal generator
is discussed. Then, the USRP2 receiver implementation is described in detail and the
results of the implementation are discussed.

Chapter 5: Conclusions and future scope
The main contributions of this thesis are summarized and the possible directions for
future work are highlighted in this chapter.
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SNR estimation and
non-coherent detection
techniques for OOK signals 2
2.1 Introduction

Non-coherent on-off keying (OOK) receiver architecture is preferred for ultra low power
(ULP) wakeup radio as OOKmodulation and non-coherent detection leads to low power
consumption. The non-coherent detection requires the knowledge of the signal to noise
ratio (SNR) at the receiver. The knowledge of SNR is also important in other radios
for practical applications, e.g, power control, scheduling, etc. Hence, in this chapter we
discuss non-coherent detection and SNR estimation techniques for wakeup radio.

The conventional non-coherent detection of OOK signals is based on the comparison
of the received baseband signal samples against a decision threshold [3]. The decision
threshold is a function of signal-to-noise ratio (SNR) and it is approximated for high
SNR, [3]. The bit error rate (BER) performance of the threshold based technique
comes close to the maximum likelihood (ML) method when SNR increases. In this
letter, we propose a novel normalized max-zero likelihood (NML) detection method for
non-coherent detection of OOK signals which improves the BER performance when
compared against the ML method and a maximum gain of 1 dB is achieved at 2× 10−4

BER. Since, the threshold based, ML and NML techniques require the knowledge of
SNR, SNR estimation techniques are investigated for non-coherent detection of OOK
signals.

SNR estimation techniques can be broadly classified as data aided (DA) and non
data aided (NDA) schemes. DA SNR estimation is carried out when the received data
sequence is known at the receiver and NDA SNR estimation is carried out in the case
of unknown received data sequence. Various SNR estimation techniques have been
discussed in the literature, e.g., [12–16] and the references therein. DA SNR estimation
for M -ary phase shift keying (MPSK ) signals is proposed in [12]. The comparison
of SNR estimation techniques in additive white Gaussian noise (AWGN) channel for
MPSK signal constellations is reported in [13]. NDA envelope detector based SNR
estimators are proposed for M -ary quadrature amplitude modulation (MQAM ) and
PSK constellations in [14]. The expectation-maximization (EM) algorithm based SNR
estimation for MQAM signals is described in [15]. Maximum likelihood (ML) based DA
and NDA SNR estimation techniques for non-coherent M -ary frequency shift keying
(MFSK ) receivers have been described in [16]. However, the existing SNR estimators,
[12–16], are not suitable for non-coherent OOK receivers as they are characterized by the
continuous availability of signal whereas, OOK signals are characterized by the presence
and absence of the signal. Therefore, we propose novel SNR estimation techniques for
non-coherent OOK receivers.

Moments based M1V estimator and ML estimator are proposed for DA estima-
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tion. EM, M1M2 and M2M3 estimators are proposed for NDA SNR estimation. M1,
M2 and M3 are the first, second and third moments of the received baseband signal
samples, respectively. M1M2 and M2M3 estimators are proposed for the condition of
unequiprobable and equiprobable symbols, respectively.

Although the OOK signal is generally assumed to be composed of equiprobable
symbols, it is quite important to consider the case of unequiprobable symbols in the
context of ULP wireless devices. The unequiprobable symbol condition can occur when
the source bits are mapped to codewords such that the codewords have few number
of ones, resulting in reduced power consumption, [17]. It is shown further that, if the
symbols are equiprobable, M1M2 estimator does not yield a solution for SNR estimate.
It is also show that the performances of moments based estimators degrade in the high
SNR region. EM estimator is proposed to overcome this problem. The normalized
mean square error (NMSE) performance of each estimator is evaluated over a wide
range of SNR and the limitations of the estimators are discussed. Hybrid M1M2−EM
and M2M3 − EM estimators are proposed to overcome the limitations. Finally, BER
performance of the DA and hybrid NDA estimators is simulated and is found to be in
good agreement with the analytically evaluated BER.

The rest of this chapter is organized as follows. Section 2.2 describes the system
model. Section 2.3 describes the NML detection. DA SNR estimation is presented in
section 2.4. Section 2.5 describes NDA SNR estimation. Section 2.6 describes the BER
performance of the SNR estimators. Finally we summarize the findings of this chapter
in section 2.7.

2.2 System model

The simplified model of OOK transmitter is shown in figure 2.1. The transmitted OOK

Figure 2.1: Simplified non-coherent OOK transmitter model.

signal (s(t)) is given by,

s(t) =
N−1∑
k=0

Ackg(t− (k − 1)T ) cos(2πfct) (2.1)

where, A is the amplitude of the signal, ck ∈ {0, 1} represent the transmitted OOK
symbols, N is the total number of transmitted bits, g(t) is the pulse shape, T is the bit
duration and fc is the centre frequency.
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Assuming AWGN channel, the received RF signal (r(t)), is given by,

r(t) = s(t) + n(t) (2.2)

where n(t) is the zero mean complex Gaussian noise with noise variance σ2 in each
dimension.

Figure 2.2 shows the simplified model of the non-coherent OOK receiver. r(t) is

Figure 2.2: Simplified non-coherent OOK receiver model.

converted to baseband by a square law device and low pass filter. Assuming perfect
synchronization, the received baseband signal (rk) is given as,

rk = (Ack + xk)
2 + y2k, k = 0...N − 1, (2.3)

where, xk and yk are the real and imaginary parts of the complex Gaussian noise
samples.

Figure 2.3: The data packet structure with K preamble bits and N −K payload bits.

Consider the data packet structure as shown in figure 2.3. The total packet length
is N bits, where the first K bits denote the preamble and the next N−K bits comprise
of the payload. Let CN = [c0 c1 .... cN−1]

T represent the transmitted binary sequence.
Let CK = [c0 c1 .... cK−1]

T represent the transmitted binary sequence corresponding
to the preamble and CK b CN . Let RN = [r0 r1 .... rN−1]

T represent the received
baseband signal sequence. Let RK = [r0 r1 .... rK−1]

T represent the received baseband
signal sequence corresponding to the preamble and RK b RN . The SNR (ρ) that has
to be estimated from the received sequence is defined as,

ρ =
A2

2σ2
. (2.4)

The bits are detected after SNR estimation. The distinction of Mark (transmission of
binary 1) and Space (transmission of binary 0) is based on the comparison of rk against
a threshold (b0). The conditional probability density functions (pdf) of rk are given
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by [3].

p(rk|ck = 1) =
1

2σ2
e−

rk+A2

2σ2 I0

(√rkA

σ2

)
, (2.5)

p(rk|ck = 0) =
1

2σ2
e−

rk
2σ2 , (2.6)

where, I0(x) is the zeroth order modified Bessel function of the first kind. The prob-
ability of Mark error (Pm), Space error (Ps) and the overall probability of error (Pe)
for equiprobale symbol conditions are given in [3] for envelope detector based receivers.
They can be generalized for square law detector based receivers as follows.

Pm = P (rk <= b0),

= 1−
∫ ∞

b0

p(rk|ck = 1) drk,

= 1−
∫ ∞

b0

1

2σ2
e−

rk+A2

2σ2 I0

(√rkA

σ2

)
drk. (2.7)

(2.7) can be simplified by applying the following transformations.

r2n =
rk
σ2

, (2.8)

ρ =
A2

2σ2
, (2.9)

β =

√
b0
σ

. (2.10)

Then,

Pm = 1−
∫ ∞

β

rne
− r2n+(

√
2ρ)2

2 I0

(
rn
√
2ρ) drn,

= 1−Q(
√

2ρ, β),

Ps =

∫ ∞

b0

p(rk|ck = 0) drk,

=

∫ ∞

β

rne
− r2n

2 drn,

= e(−
β2

2
),

Pe = αPm + (1− α)Ps, (2.11)

where, ‘α’ is the probability of ‘ck = 1’, ‘1−α’ is the probability of ‘ck = 0’ and Q(a, b)
is the marcum Q function given by,

Q(a, b) =

∫ ∞

b

xe−(a2+x2)/2I0(ax) dx.

The threshold b0 is given by the intersection of p(rk|ck = 1) and p(rk|ck = 0) as shown
in figure 2.4. Hence, for equiprobable symbol condition, the solution can be obtained
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Figure 2.4: Pdfs for ck = 1 and ck = 0. SNR is assumed to be 10 dB. The optimal threshold
b0 is the intersection point of the pdfs

by equating p(rk|ck = 1) and p(rk|ck = 0) at the point rk = b0. To incorporate all
probable symbol conditions, we have to equate,

α

2σ2
e−

b0+A2

2σ2 I0

(√b0A

σ2

)
=

1− α

2σ2
e−

b0
2σ2 ,

e−ρI0(
√

2ρβ) =
1− α

α
.

I0(x) ≈ ex/
√
2πx for larger values of x. Hence, at high SNR,

e−ρ e(
√
2ρβ)√

2π
√
2ρβ

=
1− α

α
. (2.12)

At high SNR,
√
b0 ≈ A

2
, since the distribution of square root of received signal sam-

ples becomes Gaussian [refer section 2.4.3] and consequently, β ≈
√

ρ
2
. Hence, the

approximate solution for β can be given as [3],

β = (1 + ϵ)

√
ρ

2
, (2.13)

where, ϵ is a correction factor. Substituting (2.13) in (2.12) yields ϵ = ln(2πρ((1−α)/α)2)
2ρ

.

Figure 2.5 shows the BER plots with both the Gaussian threshold (β ≈
√

ρ
2
) and the

optimal threshold given in (2.13). It is clear that at high SNR, the optimal threshold
approaches the Gaussian threshold value. At low SNR, the factor ϵ takes care of the
deviation between both the thresholds. It is evident from (2.13) that the detection
threshold is a function of SNR which has to be estimated. The SNR estimate is given
by,

ρ̂ =
Â2

2σ̂2
(2.14)
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Figure 2.5: BER performance of non-coherent OOK receiver with Gaussian and optimal
threshold.

where, Â2 and σ̂2 are the signal and noise power estimates, respectively. The accuracy
of the estimates is evaluated by normalized mean square error (NMSE) criterion. The
NMSE of the SNR estimate is given by,

NMSE =
(ρ− ρ̂

ρ

)2
. (2.15)

In the following section, the NML detection technique is explained in detail.

2.3 Normalized max-zero likelihood (NML) detection

The detection performance of non coherent OOK receiver can be improved by the
NML detection. The NML approach gives better results when we use matched fil-
ter after the square law detection. The technique is described in detail in 4 steps below.

Step 1 : Find the conditional likelihood p(rk|ck = 0) of all the the received
baseband samples (rk) which is given by,

p(rk|ck = 0) =
1

2σ2
e

−rk
2σ2 , k = 1, 2, ..., N.

Step 2 : Find the maximum value of the likelihood, p(rk|ck = 0).

pmax = max(p(rk|ck = 0)), k = 1, 2, ..., N. (2.16)

Step 3 : Find the normalized max-zero likelihood given by,

pn(rk|ck = 0) =
p(rk|ck = 0)

pmax

. (2.17)
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Step 4 : If (pn(rk|ck = 0) >= κ), decide ck = 0, else decide ck = 1. κ is the optimal
soft decision threshold which is found through the Monte-Carlo simulation.

The NML detection technique is different from the maximum likelihood (ML)

detection. In the ML detection, if p(rk|ck=1)
p(rk|ck=0)

> 1, ck = 1, else, ck = 0.

Figures 2.6 and 2.7 show the curve fit plot of the threshold (κ) against SNR.

Figure 2.6: Curve fit plot of NML thresold (κ) against SNR for SNR ≤ 12.

Figure 2.7: Curve fit plot of NML thresold (κ) against SNR for SNR ≥ 8 ≤ 20.

The curve fit equation is given below.

κ =

{
a1ρ

5 + a2ρ
4 + a3ρ

3 + a4ρ
2 + a5ρ+ a6, if ρ <= 12,

b1ρ
4 + b2ρ

3 + b3ρ
2 + b4ρ+ b5, if ρ ≥ 12 ≤ 20.

For the case of ρ > 20, the threshold is approximated as,

κ = 2× 10−(10(
ρ
10 )−8). (2.18)
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The coefficients are given in table 2.1.

Figures 2.8, 2.9 and 2.10 show the BER performance of the NML and ML detection
techniques for symbol probability α = 0.3, α = 0.5 and α = 0.7, respectively. It
is evident that the NML method gives better detection performance when compared
against the ML method. When the zeros are highly probable (α = 0.3), gain of 1 dB
is achieved at 2× 10−4 BER by the NML method. It is also to be noted that the gain
decreases when α increases. Under equiprobable symbol condition (α = 0.5), the gain
reduces to 0.6 dB and it reduces further to 0.3 dB for α = 0.7. The reason for the
reduction in gain with increase in α is straight forward as the NML detection is based
on the zeros. Higher the probability of zero, better the detection performance.
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Figure 2.8: BER versus SNR is shown for NML and ML non-coherent detection of OOK
signals for α = 0.3.
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Figure 2.9: BER versus SNR is shown for NML and ML non-coherent detection of OOK
signals for α = 0.5.

In the following section, DA SNR estimators are explained in detail and their NMSE
performance is analyzed.
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Figure 2.10: BER versus SNR is shown for NML and ML non-coherent detection of OOK
signals for α = 0.7.

Table 2.1: Coefficients: NML detection

Cofficients Value Cofficients Value

a1 -3.597e-6 b1 1.347e-06
a2 0.0001702 b2 -9.049e-05
a3 -0.003244 b3 0.00228
a4 0.03152 b4 -0.02564
a5 -0.1598 b5 0.1091
a6 0.3516 – –

2.4 DA estimation

The DA estimation is carried out in the case of known preamble structure. The DA
estimators considered here are the ML and M1V estimators.

2.4.1 ML estimator

Consider the case of known symbol sequence, CK = [1 . . . 1]T . The pdf of rk is the non
central Chi-square distribution function. The joint pdf of RK is obtained as,

p(RK) =
K−1∏
j=0

1

2σ2
e−

rj+A2

2σ2 I0

(√rjA

σ2

)
. (2.19)

The log likelihood function of (2.19) is given as,

Λ(RK ;A;σ
2) = −Kln(2σ2)− 1

2σ2

[
K−1∑
j=0

rj +KA2

]
+

K−1∑
j=0

ln[I0

(√rjA

σ2

)
]. (2.20)
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To obtain an estimate for the amplitude of the signal, (2.20) is partially differentiated
with respect to A and equated to ‘0′ as shown below.

∂Λ(RK ;A;σ
2)

∂A
=

−KA

σ2
+

K−1∑
j=0

I1

(√
rjA

σ2

)
I0

(√
rjA

σ2

)√rj

σ2
. (2.21)

Considering I1(x)/I0(x) ≈ 1 for larger values of x, i.e., at high SNR and equating (2.21)
to 0 gives,

K−1∑
j=0

√
rj = AK,

The ML amplitude estimate ÂML, is given as,

ÂML =
1

K

K−1∑
j=0

√
rj. (2.22)

Similarly, to obtain an estimate for the noise variance, (2.20) is partially differentiated
with respect to σ2 and equated to ‘0′.

∂Λ(RK ;A;σ
2)

∂σ2
= −K

σ2
+

1

2(σ2)2

[
K−1∑
j=0

rj +KA2

]
− A

(σ2)2

K−1∑
j=0

I1

(√
rjA

σ2

)
I0

(√
rjA

σ2

)√rj. (2.23)

Simplifying with the assumption of high SNR and equating to 0, the noise variance
estimate (2σ̂2

ML) is obtained as,

2σ̂2
ML =

1

K

[
K−1∑
j=0

rj −KÂ2
ML

]
. (2.24)

The SNR estimate is obtained from ÂML and σ̂2
ML using (2.14).

2.4.2 M1V estimator

M1V estimator is based on the first moment (M1) and the first central moment (V ) of
RK , respectively. Consider the known sequence CK = [1 . . . 1]T . The approximate lth

moment and the first central moment of the elements of RK can be computed as, [13],

M̂l =
1

K

K−1∑
j=0

rlj, (2.25)

V̂ = M̂2 − M̂1
2
.

M1 and V for the non central Chi-square distributed random variable rk is given as, [4],

M1 = 2σ2 + A2,

V = 4σ4 + 4σ2A2.
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The estimates are obtained by solving the above equations for σ2
M1V

and Â2
M1V

and are
given as,

2σ̂2
M1V

= M̂1 −
√
M̂1

2
− V , (2.26)

Â2
M1V

= M̂1 − 2σ̂2
M1V

. (2.27)

The M1V SNR estimate is obtained from ÂM1V and σ̂2
M1V

using (2.14).

2.4.3 Cramer-Rao lower bound (CRLB) for DA SNR estimation

The joint pdf of the square root of received baseband signal samples is given by [3],

p(Z) =
K−1∏
j=0

zj
σ2

e−
z2j+A2

2σ2 I0

(zjA
σ2

)
, (2.28)

where Z = [z0 . . . zK−1]
T and zj =

√
rj. I0(x) ≈ ex/

√
2πx for larger values of x and

zj
A
≈ 1 at high SNR. This leads to the simplification of (2.28) as,

p(Z) =
K−1∏
j=0

zj

σ2
√

2πzjA/σ2
e−

z2j+A2

2σ2 ezjA/σ2

,

p(Z) =
K−1∏
j=0

1√
2πσ2

e−
(zj−A)2

2σ2 . (2.29)

The log likelihood function of (2.29) is given by,

ΛCRLB(Z;A; σ
2) = −K

2
ln(2πσ2)− 1

2σ2

K−1∑
j=0

(zj − A)2 (2.30)

Let θ=[A σ2]. The transformation function, g(θ) = A2

2σ2 . CRLBDA is given by [18],

CRLBDA =
∂g(θ)

∂θ
I−1∂g(θ)

T

∂θ
, (2.31)

where, I is the Fisher information matrix for ΛCRLB(Z;A;σ
2) which is given by,

I =


−E
[
∂2ΛCRLB(Z;A;σ2)

∂A2

]
−E
[
∂2ΛCRLB(Z;A;σ2)

∂A∂σ2

]
−E
[
∂2ΛCRLB(Z;A;σ2)

∂σ2∂A

]
−E
[
∂2ΛCRLB(Z;A;σ2)

∂σ22

]
 . (2.32)
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where,

− E
[∂2ΛCRLB(Z;A;σ

2)

∂A2

]
=

K

σ2
,

−E
[∂2ΛCRLB(Z;A;σ

2)

∂A∂σ2

]
= 0,

−E
[∂2ΛCRLB(Z;A;σ

2)

∂σ2∂A

]
= 0,

−E
[∂2ΛCRLB(Z;A;σ

2)

∂σ22

]
=

K

2σ4
. (2.33)

I is given by,

I =

[
K
σ2 0
0 K

2σ4

]
. (2.34)

∂g(θ)
∂θ

is given by,

∂g(θ)

∂θ
=
[

A
σ2 − A2

2σ4

]
. (2.35)

Substituting ρ = A2

2σ2 and combining (2.34), (2.31) and (2.35) gives the expression for
CRLBDA and normalized CRLB (NCRLBDA) as,

CRLBDA =
2

K
[ρ+ ρ2],

NCRLBDA =
CRLBDA

ρ2
=

2

K

[
1 +

1

ρ

]
. (2.36)

(2.36) is similar to the NCRLBNDA of MQAM constellations given in [15] as the
simplification using high SNR assumption has led to similar pdfs for both cases. In the
following section, the NMSE performance of the DA estimators is discussed in detail.

2.4.4 NMSE performance of DA estimators

The NMSE of the SNR estimators is given by (2.15). Figure 2.11 shows the NMSE
performance of the ML and M1V DA estimators. The preamble length (K) is assumed
to be 32 bits and the NMSE performance is determined by 500 Monte-Carlo simulation
runs. The asymptotic NCRLB is also shown which gives the lower bound on the
NMSE performance. It can be seen that the M1V estimator performs better than the
ML estimator at low SNR region. This is because of the high SNR approximation of
the Bessel function in the case of ML estimator. At high SNR, the performance of ML
estimator is equivalent to that of M1V estimator.

Figure 2.12 shows the plot of mean of the SNR estimates of both the estimators
against the true SNR. As it can be seen, the M1V and ML SNR estimates become close
to each other for SNR> 5 dB.
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Figure 2.11: NMSE performance is compared against SNR for ML and M1V DA estimators
for K = 32 bits and the normalized CRLB is plotted against SNR for DA estimation.
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Figure 2.12: Mean SNR estimate [dB] versus true SNR [dB] for ML and M1V DA estimators
for K = 32 bits.

2.5 NDA estimation

NDA estimation is carried out in the case of unknown data sequence. Let CN =
[c0 . . . cN−1]

T be the unknown data sequence. The unconditional pdf of rk can be
expressed as,

p(rk) =
α

2σ2
e−

rk+A2

2σ2 I0

(√rkA

σ2

)
+

1− α

2σ2
e−

rk
2σ2 . (2.37)
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It is difficult to obtain a closed form ML solution for the pdf described in (2.37).
Therefore, M1M2, M2M3 and EM estimators are proposed for NDA estimation to come
close to the ML solution. In the following section moments based NDA SNR estimators
are explained in detail.

2.5.1 Moments based NDA SNR estimators

The lth order true moment of a random variable q with a pdf f(q) is given as,

Ml = E[rl],

=

∫ ∞

−∞
qlf(q) dq (2.38)

M1, M2 and M3 of rk are obtained using (2.38) and (2.37) as given below.

M1 =

∫ ∞

0

rkp(rk) drk,

= α

∫ ∞

0

rk
2σ2

e−
rk+A2

2σ2 I0

(√rkA

σ2

)
drk + (1− α)

∫ ∞

0

rk
2σ2

e−
rk
2σ2 drk,

= α(2σ2 + A2) + (1− α)2σ2,

= 2σ2 + A2α. (2.39)

M2 =

∫ ∞

0

r2kp(rk) drk,

= α

∫ ∞

0

r2k
2σ2

e−
rk+A2

2σ2 I0

(√rkA

σ2

)
drk + (1− α)

∫ ∞

0

r2k
2σ2

e−
rk
2σ2 drk,

= α(8σ4 + 8σ2A2 + A4) + (1− α)8σ4,

= 8σ4 + 8ασ2A2 + A4. (2.40)

M3 =

∫ ∞

0

r3kp(rk) drk,

= α

∫ ∞

0

r3k
2σ2

e−
rk+A2

2σ2 I0

(√rkA

σ2

)
drk + (1− α)

∫ ∞

0

r3k
2σ2

e−
rk
2σ2 drk,

= α(48σ6 + 72A2σ4 + 18A4σ2 + A6) + (1− α)48σ6,

= 48σ6 + 72αA2σ4 + 18αA4σ2 + αA6. (2.41)

In the following section, M1M2 estimator is explained in detail
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2.5.1.1 M1M2 Estimator

M1M2 estimator is based on the first and second moments of the elements of RN . M̂1

and M̂2 are computed as mentioned in (2.25). M1 and M2 for rk are given in (2.39)

and (2.40), respectively. The estimates Â2
M1M2

and σ̂2
M1M2

can be obtained by solving
(2.39) and (2.40) as,

σ̂2
M1M2

=
M̂1

2
+

√
2αM̂2

1 (2α− 1)− 2M̂2α2 + αM̂2

4α− 2
, (2.42)

Â2
M1M2

=
M̂1 − 2σ̂2

M1M2

α
. (2.43)

Using (2.43), (2.42) and (2.14), SNR estimate can be evaluated.
Let us consider the case of α = 1/2. The moments are given by,

M1 = 2σ2 +
A2

2
,

M2 = 8σ4 + 4σ2A2 +
A4

2
,

= 2M2
1 .

Since, M2 = 2M2
1 for α = 1/2, M1M2 estimator does not yield the solution for SNR

estimate when the symbols are equiprobable. Therefore, it is necessary to look at higher
order moments to account for the equiprobable symbol condition. The following section
describes the higher order M2M3 estimator.

2.5.1.2 M2M3 Estimator

M2M3 estimator is based on the second and third moments of the elements of RN .
This estimator has been developed for the equiprobable case (α = 1/2). M̂2 and M̂3

are computed as mentioned in (2.25). M2 and M3 for rk are given by (2.40) and (2.41),
respectively. Considering equiprobable symbol condition (α = 1/2), (2.40) and (2.41)
can be rewritten as,

M2 = 8σ4 + 4σ2A2 +
A4

2
,

M3 =
1

2
(96σ6 + 72A2σ4 + 18A4σ2 + A6).

The above equations are solved to yield the expressions for the estimates Â2
M2M3

and
σ̂2
M2M3

as given below.

Â2
M2M3

=
3

√
6
√
2M̂

3/2
2 − 4M̂3, (2.44)

σ̂2
M2M3

=

√
2M̂2 − Â2

M2M3

4
. (2.45)
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Using (2.14), (2.44) and (2.45), the SNR estimate can be evaluated. The performance
of M1M2 and M2M3 estimators degrade at high SNR. The degradation is due to the
increased error in noise power estimates at high SNR. The approximate expressions for
the error in the A2 estimates (∆A2) and σ2 estimates (∆σ2) can be expressed in terms
of the error in the moments estimates. Let ∆M2 and ∆M3 be the error in estimates of
M2 and M3 respectively. Now, (2.44) can be rewritten as,

Â2
M2M3

=
(
6
√
2(M2 +∆M2)

3/2 − 4(M3 +∆M3)
)1/3

,

=
(
6
√
2M

3/2
2

(
1 +

M2

∆M2

)3/2
− 4M3 − 4∆M3

)1/3
,

≈
(
6
√
2M

3/2
2

(
1 +

3M2

2∆M2

)
−−4M3 − 4∆M3

)1/3
,

≈
(
6
√
2M2

3/2 − 4M3 +
18
√
2M

3/2
2 ∆M2

2M2

− 4∆M3

)1/3
,

≈ (6
√
2M2

3/2 − 4M3)
1/3
(
1 +

9
√
2M2∆M2 − 4∆M3

6
√
2M2

3/2 − 4M3

)1/3
,

Â2
M2M3

≈ (6
√
2M2

3/2 − 4M3)
1/3 +

9
√
2M2∆M2 − 4∆M3

3(6
√
2M2

3/2 − 4M3)2/3
. (2.46)

Similarly (2.45) can be rewritten as,

σ̂2
M2M3

=

√
2(M2 +∆M2)− (A2

M2M3
+∆A2)

4
,

=

√
2M2

(
1 + ∆M2

M2

)
− A2 −∆A2

4
,

≈
√
2M2 − A2

4
+

∆M2√
2M2

−∆A2

4
,

σ̂2
M2M3

≈
√
2M2 − A2

4
+ ∆σ2, (2.47)

where,

∆A2 =
9
√
2M2∆M2 − 4∆M3

3(6
√
2M2

3/2 − 4M3)2/3
,

∆σ2 =

∆M2√
2M2

−∆A2

4
.

The effects of the error in the moments are reflected in the poor noise estimates at high
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Figure 2.13: NMSE versus SNR [dB] for estimates of A2 and 2σ2 for N = 512 bits and
α = 1/2.

SNR. This is shown in figure 2.13. It is evident from figure 2.13 that the amplitude
estimates are better at high SNR, whereas, the noise estimates degrade at high SNR.
This results in unreliable SNR estimates at high SNR. EM estimator is proposed to
overcome the problem in the high SNR region.

2.5.2 EM estimator

EM estimation is an iterative procedure, [19]. The convergence tolerance shall be set
to a constant value, τ ≪ 1 and let m be the maximum number of iterations. The joint
pdf of the elements of RN conditioned on the elements of CN is given as,

p(RN |CN) =
N−1∏
k=0

1

2σ2
e−

rk+A2c2k
2σ2 I0

(√rkAck
σ2

)
.

The log likelihood of p(RN |CN) is given as,

ΛEM(RN ;A; σ
2) = −Nln(2σ2)− 1

2σ2

[
N−1∑
k=0

rk + A2

N−1∑
k=0

c2k

]

+
N−1∑
k=0

ln

(
I0

(√rkAck
σ2

))
.

The EM algorithm involves four steps.
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Step 1: Calculation of expectation
Find the expectation of ΛEM(RN ;A; σ

2) with respect to ck as,

Ψ(RN ;A; σ
2) = Eck [ΛEM(RN ;A;σ

2)].

= −Nln(2σ2)− 1

2σ2

[
N−1∑
k=0

rk + A2

N−1∑
k=0

Eck [c
2
k]

]

+
N−1∑
k=0

Eck

[
ln

(
I0

(√rkAck
σ2

))]
. (2.48)

At the start of nth iteration,

Eck [c
2
k] =

1∑
i=0

Pik,n−1i
2

= P1k,n−1, (2.49)

Eck

[
ln

(
I0

(√rkAck
σ2

))]
=

1∑
i=0

Pik,n−1ln

(
I0

(√rkAi

σ2

))

= P1k,n−1ln

(
I0

(√rkA

σ2

))
, (2.50)

where, Pik,n−1 is the probability of ‘ck = i’ at the (n− 1)th iteration given by,

Pik,n−1 = P (ck = i|rk;An−1, σn−1)

=
P (rk|ck = i;An−1, σn−1)P (ck = i)

P (rk;An−1, σn−1)
,

where,

P (ck = i) =

{
α, if i = 1,

1− α, if i = 0,

P (rk|ck = i;An−1, σn−1) =
1

2σ2
n−1

e
−

rk+A2
n−1i

2

2σ2
n−1 I0

(√rkAn−1i

σ2
n−1

)
,

P (rk;An−1, σn−1) =
1∑

i=0

P (rk|ck = i;An−1, σn−1)Pi.

Combining (2.48), (2.49) and (2.50),

Ψ(RN ;A;σ
2) = −Nln(2σ2)− 1

2σ2

[
N−1∑
k=0

rk + A2

N−1∑
k=0

P1k,n−1

]

+
N−1∑
k=0

P1k,n−1ln

(
I0

(√rkA

σ2

))
. (2.51)
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Step 2: Maximization of expectation
Maximize Ψ(RN ;A;σ

2) with respect to the arguments A and σ2. Let θn=[An σ2
n] be

the value of the arguments at the end of nth iteration. θn is given by,

θn = argmax
A;σ2

[Ψ(RN ;A; σ
2)].

The values for An and σ2
n at the end of nth iteration are obtained by partially differen-

tiating (2.51) with respect to A and σ2 and equating to 0 as given below.

∂Ψ(RN ;A;σ
2)

∂A
=

−A
∑N−1

k=0 P1k,n−1

σ2
+

N−1∑
k=0

P1k,n−1

I1

(√
rkA

σ2

)
I0

(√
rkA

σ2

)√rk
σ2

. (2.52)

∂Ψ(RN ;A;σ
2)

∂σ2
= −N

σ2
+

1

2(σ2)2

[
N−1∑
k=0

rk + A2

N−1∑
k=0

P1k,n−1

]
,

− A

(σ2)2

N−1∑
k=0

P1k,n−1

I1

(√
rkA

σ2

)
I0

(√
rkA

σ2

)√rk.. (2.53)

After high SNR approximation, equating (2.52) and (2.53) to ‘0’ gives,

An =

∑N−1
k=0 P1k,n−1

√
rk∑N−1

k=0 P1k,n−1

. (2.54)

2σ2
n =

1

N

[
N−1∑
k=0

rk − A2
n

N−1∑
k=0

P1k,n−1

]
. (2.55)

Step 3: Compute the SNR estimate ρn = A2
n

2σ2
n

at the end of nth iteration. If τ

or m is reached, recalibrate the noise estimation. Otherwise, continue with the
iteration procedure.

Step 4: Recalibration of the noise estimation
It is found that the noise estimation after convergence of the EM algorithm is biased.
This is due to the fact that the noise estimate at the end of each iteration is based
on the signal samples which constitute both amplitude and noise. Recalibration
is an additional step employed to remove any significant bias in the noise estima-
tion. After convergence, noise is re-estimated from the knowledge of the vector
P0,n = [P00,nP02,n . . . P0N−1,n]

T . The structure of the elements of P0,n is given below.

P0k,n ≈

{
1, if ck = 0,

0, if ck = 1.
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Due to the above structure, the noise power 2σ2
n shall be recalibrated as shown below.

2σ2
n =

∑N−1
k=0 P0k,nrk∑N−1
k=0 P0k,n

. (2.56)

Using (2.14), (2.54) and (2.56), the SNR estimate can be evaluated.

2.5.3 Hybrid estimators

The high SNR approximation results in a significant bias in the estimates of EM esti-
mator in the low SNR region. The moments based estimators perform better at this
region. Hence, hybrid M1M2−EM and M2M3−EM estimators are proposed to over-
come the limitations. The SNR is estimated by the moments based estimators up to
a certain threshold point, ρ0. EM estimator is used to estimate SNR greater than ρ0.
The performance of hybrid estimators is described in detail in section 2.5.4.

In the following section, the NMSE performance of the NDA estimators is discussed
in detail.
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Figure 2.14: NMSE versus SNR [dB] for EM, M2M3 and M2M3 − EM NDA estimators for
N = 512 bits and α = 1/2.

2.5.4 NMSE performance of NDA estimators

The NMSE performance of the NDA estimators is evaluated through simulation. The
estimators are simulated for packet length, N = 512 bits. Equiprobable symbol con-
dition is assumed during simulation of M2M3 and M2M3 − EM estimators. M1M2

and M1M2 − EM estimators are simulated for the condition of α = 1/3. The EM
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Figure 2.15: Mean SNR estimate [dB] versus true SNR [dB] for M2M3, EM and M2M3−EM
NDA estimators for N = 512 bits and α = 1/2.
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Figure 2.16: NMSE versus SNR [dB] for EM, M1M2 and M1M2 − EM NDA estimators for
N = 512 bits and α = 1/3.

algorithm is initialized with θ0=[100 1]. The convergence tolerence, τ is set to 10−6
and the maximum number of iterations, m is set to 5.

Figure 2.14 shows the NMSE performance of the M2M3, EM and M2M3 − EM
estimators. The performance of M2M3 estimator degrades for SNR> 8 dB. This is due
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Figure 2.17: Mean SNR estimate [dB] versus true SNR [dB] for M1M2, EM and M1M2−EM
NDA estimators for N = 512 bits and α = 1/3.

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 
Theoretical(alpha=1/2)

M1V

Hybrid(M2M3−EM)

Theoretical(alpha=1/3)

Hybrid(M1M2−EM)

Figure 2.18: BER versus SNR [dB] is shown for M1V DA estimator and M2M3 −EM NDA
estimator for α = 1/2 and M1M2−EM NDA estimator for α = 1/3. N = 512 bits for all the
cases. Theoretical BER versus SNR [dB] for α = 1/3 and α = 1/2 is also shown.

to the error in the approximate moments calculation from the received signal samples
as explained in section 2.5.1.2. It can also be seen that the EM estimator without noise
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Figure 2.19: BER versus SNR [dB] for M1M2−EM NDA estimator for α = 0.1 and α = 0.9.
N = 512 bits for all the cases Theoretical BER versus SNR [dB] for α = 0.1 and α = 0.9 is
also shown.

recalibration has a significant bias. After recalibration, the NMSE of EM estimator has
reduced significantly.

Figure 2.15 shows the mean SNR estimates of M2M3, EM and M2M3−EM hybrid
estimators. It is evident from figure 2.14 and figure 2.15 that the hybrid M2M3 −EM
estimator overcomes the limitations of the individual estimators and gives the optimal
performance.

Figure 2.16 shows the NMSE ofM1M2, EM andM1M2−EM estimators for α = 1/3.
The performance of M1M2 estimator degrades for SNR> 7 dB. The same argument of
M2M3 estimator is valid here. The threshold, ρ0, is set to 7 dB for the M1M2 − EM
hybrid estimator. The mean SNR estimates of the M1M2, EM and M1M2 − EM
estimators are shown in figure 2.17 and it is clear that the estimates of hybrid M1M2−
EM estimator are close to the true SNR.

2.6 BER performance of SNR estimators

The BER performance of the M1V and hybrid NDA estimators is determined by Monte
Carlo simulation of 5000 iterations. The detection threshold is calculated from esti-
mated SNR. The expression for theoretical BER is given in (2.11). Figure 2.18 shows
the BER performance of M1V DA estimator for α = 1/2 and hybrid NDA estimators
for α = 1/2 and α = 1/3. It is evident that the simulation is in good agreement with
the analytically evaluated BER. The BER performance for extreme cases of α = 0.1
and α = 0.9 is shown in figure 2.19 and is found to be in good agreement with the
analytically evaluated BER. Thus the proposed estimators are consistent over a wide
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range of α.

2.7 Summary

The NML method is proposed for non-coherent detection of OOK signals. The BER
performance of NML detection was compared against the ML based non-coherent de-
tection and it is found that the NML detection improves the BER performance and
there is a gain of 1 dB at 2 × 10−4 BER for α = 0.3. It is also shown that the gain
decreases as α increases and there is a gain of 0.6 dB for equiprobable symbol con-
dition and the gain reduces further to 0.3 dB for α = 0.7. As the detection requires
the knowledge of SNR, DA and NDA SNR estimation techniques are investigated for
non-coherent detection of OOK signals. ML estimator, EM estimator and moments
based estimators are proposed for SNR estimation. The NMSE performance of each
estimator is evaluated over a wide range of SNR and the limitations are discussed. It is
shown that M1M2 NDA estimator cannot be used in equiprobable case. Hence, M2M3

estimator is proposed for the equiprobable case. It is shown that the performance of
moments based NDA estimators degrade in the high SNR region. Hence, EM estimator
is proposed to overcome the problem at high SNR. It is also shown that the perfor-
mance of moments based NDA estimators is better than EM estimator in the low SNR
region. Hence, optimal hybrid M1M2 − EM and M2M3 − EM NDA estimators are
also proposed to overcome the limitations. Finally, BER performance of the M1V DA
and hybrid NDA estimators is simulated and found to be in good agreement with the
analytically evaluated BER. As, it will be seen in the subsequent chapters, the proposed
DA and NDA SNR estimation techniques will be used for interference mitigation in the
non-coherent OOK based wakeup radio receiver.
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Interference mitigation
techniques for wakeup radio 3
3.1 Introduction

Interference degrades the performance of wireless communication systems. The effect
is even more profound in low power radios such as the wakeup radio because there
is higher chance for interference power to be greater than the desired signal power.
Therefore, it is necessary to develop interference mitigation techniques to enhance the
detection performance of the wakeup radio in the presence of co-channel interference
(CCI).

Figure 3.1: Illustration of the down conversion of the carrier to baseband and ignores the
signal changes (i.e., amplitude etc.) due to the squaring (nonlinear) operation.

In this chapter, the continuous wave (CW) CCI and interference from on-off keying
(OOK) modulated interferer are considered and mitigation techniques are proposed for
both the cases. The effect of the CW-CCI on the desired signal is illustrated in figure
3.1. As it can be seen in the figure, the baseband signal is corrupted by the CCI and
appropriate interference mitigation techniques have to be implemented in the digital
baseband to enhance detection performance.

Various interference mitigation techniques are proposed in the literature, [5–11].
These techniques are not suitable for the wakeup radio receiver due to the certain
system constraints. The system constraints imposed by the wakeup radio architecture
are listed below.

• Single RF chain
The low power requirements also limit the receiver to have only a single RF
chain. Consequently, the receiver is equipped only with a single antenna. So
the interference mitigation technique can’t take advantage of source separation or
other spatial processing techniques [7].

• Analog front end
The analog front end of the wakeup radio receiver has been designed in accor-
dance with the ultra low power requirement and it uses a square law detector to
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convert RF to baseband. Due to the non-coherent operation, the phases of the
desired and interfering signals are not completely preserved. The existing single
antenna interference cancellation algorithms are suitable in the absence of multi-
ple antennas, [10,11] and the references therein. But, these techniques cannot be
implemented for our case due to the non-coherent OOK reception.

• Lower C/I ratio
As already mentioned, wakeup radio is an ultra low power (ULP) radio. Hence, the
interference mitigation techniques must be suitable for lower carrier to interference
ratio (C/I < 0 dB). The C/I ratio can be mathematically expressed as,

C

I
=

A2

I2
, (3.1)

where, A and I are the amplitudes of desired and interfering signals, respectively.

The above constraints must be taken into account while proposing the appropriate
interference mitigation techniques. These constraints also impose certain limitations on
the efficiency of the mitigation techniques which will be discussed later in the chapter.
Therefore, novel interference mitigation techniques are proposed for non-coherent OOK
based systems in this chapter. At first, the techniques to estimate the interference,
signal and noise power are discussed for the case of both CW and OOK modulated
interferers. In the case of CW interferer, the data aided (DA) estimation techniques
discussed in chapter 2 are extended to estimate the interference power along with the
signal and noise power. The non data aided (NDA) estimation techniques are used
in the case of OOK modulated interferer. Based on the estimates, two techniques are
proposed for interference mitigation. The first one is based on maximum-a-posteriori
(MAP) detection and the second one is based on threshold adjustment. It is to be
noted that the interference is not cancelled in these techniques, but the interference
effect is taken into account in both the threshold based and MAP detection schemes.

Finally, the bit error rate (BER) performance is evaluated after interference miti-
gation and is compared against the analytically evaluated BER of non-coherent OOK
receiver. In the case of CW interferer, both the techniques have similar BER perfor-
mance and are found to successfully mitigate the interference for C/I ≥ 0 dB and
C/I < 0 dB. In the case of OOK modulated interferer, the threshold based technique is
only suitable for C/I ≥ 0 dB whereas, the MAP detection is suitable for both C/I > 0
dB and C/I ≤ 0 dB. It is also shown that the joint detection of interfering and desired
signal is possible using MAP detection for the case of OOK modulated interferer.

The rest of the chapter is organized as follows. Section 3.2 describes the system
model. Section 3.3 describes the signal, interference and noise power estimation for CW
and OOK modulated interference cases. Section 3.4 describes the threshold based CW
and OOK interference mitigation. Section 3.5 describes the MAP detector based CW
and OOK interference mitigation. Section 3.6 describes the problems of the proposed
techniques and the summary is presented in section 3.7.
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3.2 System model

Figure 3.2 shows the simplified model of non-coherent OOK receiver with interference
mitigation. The estimation is divided into two blocks. At first, the noise and inter-
ference power are estimated and then the signal power is estimated. The decision
threshold is based on these estimates. The threshold derivations for CW and OOK
modulated interferers are described in section 3.4.

Figure 3.2: Simplified model of non-coherent OOK receiver with interference mitigation.

Consider the received packet structure shown in figure 3.3. This is similar to the
packet structure mentioned in figure 2.2 except that the preamble has both zeros and
ones. In the presence of CW interference of the form, Icos(ωt), the superposition of

Figure 3.3: The data packet structure with K preamble bits and N −K payload bits.

the interfering signal on the desired signal, Ackcos(ωt), results in the baseband signal,

rk = (Ack + I + xk)
2 + y2k, k = 0...N − 1, (3.2)

where, ck ∈ {0, 1} represents the transmitted binary sequence of the desired signal as
mentioned before. In the presence of OOKmodulated interferer of the form, Idkcos(ωt),
the superposition of the OOK interferer on the desired signal, results in the baseband
signal,

rk = (Ack + Idk + xk)
2 + y2k, k = 0...N − 1, (3.3)

where, dk ∈ {0, 1} represent the transmitted binary sequence of the OOK modulated
interfering source. Let δ be the probability of ’dk = 1’ and 1− δ be the probability of
’dk = 0’. The conditional pdfs of rk in the case of CW interferer are given by,

pcw(rk|ck = 1) =
1

2σ2
e−

rk+(A+I)2

2σ2 I0

(√
rk(A+ I)

σ2

)
, (3.4)

pcw(rk|ck = 0) =
1

2σ2
e−

rk+I2

2σ2 I0

(√
rkI

σ2

)
. (3.5)
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In the case of OOK interferer, the interfering signal may or may not be present condi-
tioned on the parameter dk. This results in the following four conditional pdfs of rk in
the case of OOK interferer.

pook(rk|′ck = 1 and dk = 1′) =
1

2σ2
e−

rk+(A+I)2

2σ2 I0

(√
rk(A+ I)

σ2

)
, (3.6)

pook(rk|′ck = 1 and dk = 0′) =
1

2σ2
e−

rk+A2

2σ2 I0

(√
rkA

σ2

)
, (3.7)

pook(rk|′ck = 0 and dk = 1′) =
1

2σ2
e−

rk+I2

2σ2 I0

(√
rkI

σ2

)
, (3.8)

pook(rk|′ck = 0 and dk = 0′) =
1

2σ2
e−

rk
2σ2 . (3.9)

It is to be noted that we have used the subscripts cw and ook in the pdfs to identify
the source of interference. It is different from the standard mathematical notations of
the pdf where the subscript usually represents the random process corresponding to
the random variable described by the pdfs.

In the following section, the estimation techniques are described in detail for both
CW and OOK modulated interferers.

3.3 Estimation of parameters

3.3.1 Case 1: CW interference

Consider the data packet structure as shown in figure 3.3. We assume there are equal
number of ones and zeros in the preamble. Let, R1K and R0K represent the vectors
of baseband signal samples corresponding to the ones and zeros in the preamble, re-
spectively. The elements of R0K are affected by the amplitude of the CW interferer
as mentioned in (3.2). The elements of R1K are affected by the superposition of CW
interference on the desired signal. The pdfs of the elements of R0K and R1K are given
by (3.5) and (3.4), respectively. Let, µ1

0 and V0 be the true first moment and variance
of the elements of R0K , respectively. They are given as [refer section 2.4.2],

µ1
0 = 2σ2 + I2, (3.10)

V0 = 4σ4 + 4σ2I2. (3.11)

Let µ1
1 be the true first moment of the elements of R1K .

µ1
1 = 2σ2 + (A+ I)2, (3.12)

The approximate moments are obtained as given in (2.25). At first, the interference
and noise power are estimated from the elements of R0K by solving (3.10) and (3.11).
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The estimates are given by,

Î2 =

√
µ̂1
0

2
− V0, (3.13)

ˆ2σ2 = µ̂1
0 −

√
µ̂1
0

2
− V0. (3.14)

Substituting (3.14) in (3.12) gives,

(Â+ Î)2 = µ̂1
1 − 2σ̂2. (3.15)

3.3.2 Case 2: OOK modulated interference

Consider the data packet structure shown in figure 3.3. The estimation procedure
involves two steps.

• Interference and noise power estimation
The interference and noise power are estimated from the elements of R0K . In the
case of CW interferer, M1V DA estimation technique was used to estimate these
parameters. In the case of OOK modulated interferer, it is not possible to use the
DA estimation technique as the interferer is not always present in the elements
of R0K . Hence, the expectation maximization (EM) NDA estimator is used. The
moments based NDA estimators are not used because they require relatively more
baseband samples whereas, the number of elements in R0K can be only as large
as the preamble length.

• Signal power estimation
Once the interference and noise power are estimated, the signal power can be
estimated either from the elements of R1K or from the baseband samples corre-
sponding to the data payload.

The above steps are explained in detail in the following sections.

3.3.2.1 Interference and noise power estimation

The joint pdf of the elements of R0K conditioned on the vector of OOK interference
symbols, DK , is given by,

p(R0K |DK) =
K−1∏
k=J

1

2σ2
e−

rk+I2d2k
2σ2 I0

(√rkIdk
σ2

)
,

where, J = K/2 is the number of the zeros in the preamble. Since the zeros in the
preamble start from (K/2)th symbol in the preamble, the subscript start from k = J .
The EM estimation is performed based on the above pdf. The expectation is taken
with respect to the parameter dk ∈ DK . Here, we give only the expressions for the

37



estimates [Refer to section 2.5.2 for detailed procedure]. The estimates of interference
power and noise power at the end of nth iteration of the EM algorithm are given by,

In =

∑K−1
k=J P d

1k,n−1

√
rk∑K−1

k=J P d
1k,n−1

, (3.16)

2σ2
n =

1

J

[
K−1∑
k=J

rk − I2n

K−1∑
k=J

P d
1k,n−1

]
, (3.17)

where,

P d
ik,n−1 = P (dk = i|rk; In−1, σn−1), i = 0, 1,

=
P (rk|dk = i; In−1, σn−1)P

d
i

P (rk;An−1, σn−1)
,

where,

P d
i =

{
δ, if i = 1,

1− δ, if i = 0,

P (rk|dk = i; In−1, σn−1) =
1

2σ2
n−1

e
−

rk+I2n−1i
2

2σ2
n−1 I0

(√rkIn−1i

σ2
n−1

)
,

P (rk; In−1, σn−1) =
1∑

i=0

P (rk|dk = i; In−1, σn−1)P
d
i .

After noise recalibration, the noise estimate is given by,

2σ2
n =

∑K−1
k=J P d

0k,nrk∑K−1
k=J P d

0k,n

. (3.18)

where,

P d
0k,n ≈

{
1, if dk = 0,

0, if dk = 1.

3.3.2.2 Signal power estimation

The signal power can be estimated by EM estimation or moments based estimation.
The following sections explain both these techniques.

EM based signal power estimation
EM based signal power estimation is done from the elements of R1K . The joint pdf of
the elements of R1K conditioned on the vector of OOK interference symbols, DK , is
given by,

p(R1K |DK) =
J−1∏
k=0

1

2σ2
e−

rk+(A+Idk)2

2σ2 I0

(√rk(A+ Idk)

σ2

)
,

38



where, J = K/2 is the number of ones in the preamble. The log likelihood of p(R1K |DK)
is given as,

ΛEM(R1K ;A; I;σ
2) = −Jln(2σ2)− 1

2σ2

[
J−1∑
k=0

rk + JA2 + I2
J−1∑
k=0

d2k + 2AI
J−1∑
k=0

dk

]

+
J−1∑
k=0

ln

(
I0

(√rk(A+ Idk)

σ2

))
.

The expectation of ΛEM(R1K ;A; I;σ
2), taken with respect to the parameter dk is given

by,

Ψ(R1K ;A; I;σ
2) = −Jln(2σ2)− 1

2σ2

[
J−1∑
k=0

rk + JA2 + I2
J−1∑
k=0

P d
1k,n−1 + 2AI

J−1∑
k=0

P d
1k,n−1

]

+
J−1∑
k=0

P d
1k,n−1ln

(
I0

(√rk(A+ Idk)

σ2

))

+
J−1∑
k=0

P d
0k,n−1ln

(
I0

(√rkA

σ2

))
. (3.19)

Partially differentiating (3.19) with respect to A,

∂Ψ(R1K ;A; I;σ
2)

∂A
= − 1

σ2
[JA+ I

J−1∑
k=0

P d
1k,n−1] +

J−1∑
k=0

P d
1k,n−1

I1

(√
rk(A+I)

σ2

)
I0

(√
rk(A+I)

σ2

)√rk
σ2

+
J−1∑
k=0

P d
0k,n−1

I1

(√
rkA

σ2

)
I0

(√
rkA

σ2

)√rk
σ2

. (3.20)

The estimate of A at the end of nth iteration (An) is obtained by equating (3.20) to 0.
After high SNR approximation, An is given by,

An =

∑J−1
k=0 (P

d
0k,n−1 + P d

1k,n−1)
√
rk − I

∑J−1
k=0 P

d
1k,n−1

J
. (3.21)

Since, the interference and noise power are estimated before, the estimate An can
be obtained. The other method to obtain the signal power is using moments based
estimators on the data payload. Since the number of samples is more on the data
payload, the moments based estimators give good estimates. The moments based
signal power estimator is explained in the following section.

Moments based signal power estimation
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The pdf of rk corresponding to the data payload is given by,

pook(rk) = pook(rk|′ck = 1 and dk = 1′)δα + pook(rk|′ck = 1 and dk = 0′)(1− δ)α

+ pook(rk|′ck = 0 and dk = 1′)(1− α)δ

+ pook(rk|′ck = 0 and dk = 0′)(1− δ)(1− α). (3.22)

Let, Rdata represent the vector of baseband signal samples corresponding to the data
payload in the packet structure shown in figure 3.3. The true first moment (µ1

data) of
the elements of Rdata corresponding to the pdf described in (3.22) is given by,

µ1
data = δα(2σ2 + (A+ I)2) + α(1− δ)(2σ2 + A2),

+ δ(1− α)(2σ2 + I2) + (1− δ)(1− α)2σ2. (3.23)

Assuming equiprobable symbol conditions for both the desired signal and the interfering
signal (α = δ = 0.5), (3.23) can be simplified as,

2µ1
data = 4σ2 + I2 + AI + A2.

Solving the above equation yields the expression for A as,

A =

√
I2 − 4(4σ2 + I2 − 2µ1

data)− I

2
(3.24)

µ1
data is obtained from the received baseband signal samples as given in (2.25).

Based on the estimates, the threshold and MAP detection based interference mitiga-
tion techniques are proposed. In the following section, the threshold based interference
mitigation is described in detail for both CW and OOK modulated interference.

3.4 Threshold based interference mitigation

3.4.1 Case 1: CW interference

The optimal decision threshold (b0) is chosen such that it minimizes the probability of
error. The probability of Mark error (Pm), Space error (Ps) and the overall probability
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of error (Pe) in the presence of CW interferer are derived as follows.

Pm = 1−
∫ ∞

b0

pcw(rk|ck = 1) drk,

= 1−
∫ ∞

b0

1

2σ2
e−

rk+(A+I)2

2σ2 I0

(√rk(A+ I)

σ2

)
drk,

Ps =

∫ ∞

b0

pcw(rk|ck = 0) drk,

=

∫ ∞

b0

1

2σ2
e−

rk+I2

2σ2 I0

(√rkI

σ2

)
drk.

Similar to section 2.2, the above equations are simplified by the following transforma-
tions.

r2n =
rk
σ2

,

φ =
(A+ I)2

2σ2
,

η =
I2

2σ2
,

β =

√
b0
σ

. (3.25)

Then,

Pm = 1−
∫ ∞

β

rne
− r2n+(

√
2φ)2

2 I0

(
rn
√
2φ) drn,

= 1−Q(
√

2φ, β),

Ps =

∫ ∞

β

rne
− r2n+(

√
2η)2

2 I0

(
rn
√
2η) drn,

= Q(
√
2η, β),

Pe = αPm + (1− α)Ps, (3.26)

β must be chosen such that it minimizes Pe. This is done by partially differentiating
Pe with respect to β and equating to 0 as shown below.

α
∂Pm

∂β
+ (1− α)

∂Ps

∂β
= 0,

−α
∂(Q(

√
2φ, β))

∂β
+ (1− α)

∂(Q(
√
2η, β))

∂β
= 0, (3.27)

where, ∂(Q(a,b))
∂b

= be
−(a2+b2)

2 I0(ab). Upon simplifying,

αβe
−(2φ+β2)

2 I0(
√

2φβ) = (1− α)βe
−(2η+β2)

2 I0(
√

2ηβ).

(3.28)
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Approximating I0(x) ≈ ex/
√
2πx for x >> 1, (3.28) can be rewritten as,

e
−(2φ+β2)

2
e
√
2φβ√

2π
√
2φβ

=
(1− α)e

−(2η+β2)
2 e

√
2ηβ

α
√

2π
√
2ηβ

,

eβ
√
2(
√
φ−√

η) =
(1− α)

α
e(φ−η)

(√φ
√
η

)1/2
. (3.29)

Taking logarithm on both sides of (3.29) gives,

β =
ln
[
(1−α)

α

(√
φ

√
η

)1/2]
+ (φ− η)

√
2(
√
φ−√

η)
. (3.30)

(3.30) gives the solution for the optimum normalized threshold, β, for the case of CW
interferer. φ and η can be estimated from (3.13), (3.14) and (3.15). The CW interfer-
ence can be mitigated once the detection threshold b0 is set to (βσ)2 as mentioned in
(3.25).

In the following section, BER performance of the threshold based CW interference
mitigation technique is explained in detail.

3.4.1.1 BER performance of threshold based CW interference mitigation

Figure 3.4 shows the BER performance of the threshold based CW interference mitiga-
tion technique for different C/I values based on the true values of signal, interference
and noise power respectively. The preamble length, K = 32 bits and packet length
N = 512 bits for all cases. The BER performance is plotted after 500 Monte Carlo
simulation runs. It is evident that that the threshold based technique is effective in
mitigating the interference. Moreover, the performance is improved in the presence of
interference as the relative spacing between zero and one increases in the presence of
CW interference and there is a gain of 1 dB at 2.5× 10−2 BER. This can be explained
from figure 3.6 and figure 3.7. Figure 3.6 shows the pdfs p(rk|ck = 1) and p(rk|ck = 0)
in the absence of CW interference signal for SNR = 10 dB. Figure 3.7 shows the pdfs
p(rk|ck = 1) and p(rk|ck = 0) in the presence of CW interference for SNR = 10 dB and
C/I = 0 dB. The region of error of the pdfs is more in the absence of interference when
compared to the presence of interference. Thus the decision region is more pronounced
in the presence of interference, leading to improved performance.

The BER performance without interference mitigation is also shown in figure 3.4.
It is evident that without interference mitigation, it is not possible to have reliable
detection performance. Figure 3.5 shows the BER performance of the threshold based
CW interference mitigation technique for different C/I values based on the estimated
values of signal, interference and noise power respectively and it is in close agreement
with figure 3.4.

In the following section, threshold based interference mitigation technique for OOK
modulated interferer is discussed in detail.
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Figure 3.4: Comparison of BER performance of threshold based CW interference mitigation
based on the true values of signal, interference and noise power against the theoretical BER
performance of non-coherent OOK receiver for different C/I values. The BER performance
without mitigation is also shown. Preamble length, K = 32 bits and total packet length,
N = 512 bits.

3.4.2 Case 2: OOK modulated interference

Consider the OOK modulated interferer as described in section 3.2. The received
baseband signal is given by (3.3). The detection criterion is based on the following four
hypotheses.

H0(ck = 1, dk = 1) : rk = (A+ I + xk)
2 + y2k,

H1(ck = 1, dk = 0) : rk = (A+ xk)
2 + y2k,

H2(ck = 0, dk = 1) : rk = (I + xk)
2 + y2k,

H3(ck = 0, dk = 0) : rk = x2
k + y2k.

The threshold based OOK interference mitigation technique can be used to detect the
desired signal when the interferer is less than the desired signal, i.e, for the case of
C/I > 0 dB. In this case, it is enough to find a single threshold between the received
baseband signal amplitude levels of H1 and H2. The procedure is similar to the one
followed in CW interferer case. The expression for the OOK threshold is also similar
to the CW threshold (3.30), except a slight modification. φ is replaced by ρ = A2

2σ2 and
the prior probabilities are replaced correspondingly. The threshold, (βook) is given by,

βook =
ln
[
δ(1−α)
α(1−δ)

(√
ρ

√
η

)1/2]
+ (ρ− η)

√
2(
√
ρ−√

η)
. (3.31)
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Figure 3.5: Comparison of BER performance of threshold based CW interference mitigation
based on the estimated values of signal, interference and noise power against the theoretical
BER performance of non-coherent OOK receiver for different C/I values. The BER perfor-
mance without mitigation is also shown. Preamble length, K = 32 bits and total packet
length, N = 512 bits.

Figure 3.6: Plots of the pdf of rk corresponding to ‘ck = 1’ and ‘ck = 0’ in the absence of
interference.
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Figure 3.7: Plots of the pdf of rk corresponding to ‘ck = 1’ and ‘ck = 0’ in the presence of
interference for SNR = 10 dB and C/I = 0 dB.

In the following section, BER performance of threshold based interference mitigation
of OOK modulated interferer is discussed in detail.

3.4.2.1 BER performance of threshold based OOK modulated interference mit-
igation

Figure 3.8 shows the BER performance of the threshold based OOK modulated interfer-
ence mitigation method using the true signal, interference and noise power for different
C/I > 0 dB. The BER performance without interference mitigation is also shown. It
is evident that the threshold based method is able to mitigate the interference, though
the performance is not as good as the CW interference mitigation. The limiting case
is C/I = 0 dB where we would not be able to differentiate the hypothesis H2 and
H1. Thus when C/I values moves away from 0 dB, the performance improves. Figure
3.9 shows the BER performance of the threshold based OOK interference mitigation
method using the estimated signal, interference and noise power for different C/I > 0
dB and it is in close agreement with the figure 3.8.

In the following section, the MAP detector based interference mitigation is described
in detail for CW and OOK modulated interference.

3.5 MAP detector based interference mitigation

Let Hd represent the output hypothesis after MAP detection. The MAP decision rule
is given by,

Hd = argmax
Hi

[p(rk|Hi;A, I, σ
2)p(Hi)]. for i=0,1,2,3. (3.32)
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Figure 3.8: BER performance of threshold based OOK interference mitigation for different
C/I values based on the true values of signal, interference and noise power. The packet length
N = 512 bits and the preamble length K = 32 bits.
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Figure 3.9: BER performance of threshold based OOK interference mitigation for different
C/I values based on the estimated values of signal, interference and noise power. The packet
length N = 512 bits and the preamble length K = 32 bits.
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In the case of CW interferer, it is a binary hypotheses problem. So, p(rk|Hi) is given
by (3.4) and (3.5) for CW interference. In the case of OOK modulated interference,
we have four different hypotheses as described in section 3.4.2. So, p(rk|Hi) is given by
(3.6), (3.7), (3.8) and (3.9) for OOK modulated interference.
Considering CW interference,

p(H0) = α,

p(H1) = (1− α).

Considering OOK modulated interference,

p(H0) = αδ,

p(H1) = α(1− δ),

p(H2) = (1− α)δ,

p(H3) = (1− α)(1− δ).

It is seen that the MAP detector requires the calculation of p(rk|Hi). Hence, the signal,
interference and noise power has to be estimated as explained in section 3.3 for CW and
OOK modulated interference. Once the estimates are obtained, the MAP detection is
done using (3.32). In the presence of OOK modulated interference, the MAP detection
performs the joint detection of both interfering and desired signals as explained below.

3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

Theoretical BER without interference

C/I=−10 dB (With mitigation)

C/I=−6 dB (With mitigation)

C/I=−2 dB (With mitigation)

C/I=−10 dB (Without mitigation)

C/I=−6 dB (Without mitigation)

C/I=−2 dB (Without mitigation)

0.5 dB

Figure 3.10: BER performance for MAP detection based OOK modulated interference mit-
igation using the true signal, interference and noise power for different C/I <= 0 dB. The
packet length N = 512 bits and the preamble length K = 32 bits.
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Figure 3.11: BER performance for MAP detection based OOK modulated interference mit-
igation using the estimated signal, interference and noise power for different C/I <= 0 dB.
The packet length N = 512 bits and the preamble length K = 32 bits.
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Figure 3.12: BER performance for MAP detection based OOK modulated interference mit-
igation using the true signal, interference and noise power for different C/I ≥ 0 dB. The
packet length N = 512 bits and the preamble length K = 32 bits.
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Figure 3.13: BER performance for MAP detection based OOK modulated interference miti-
gation using the estimated signal, interference and noise power for different C/I ≥ 0 dB. The
packet length N = 512 bits and the preamble length K = 32 bits,
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Figure 3.14: BER performance for MAP detection based CW interference mitigation for
different C/I values. The packet length N = 512 bits and the preamble length K = 32 bits.
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3.5.1 Joint detection

The MAP decision rule (3.32) is used to detect all the four hypotheses levels. Therefore,
based on the detected hypothesis, we can determine the symbols of interfering and
desired signals. The joint detection summary is depicted in table 3.1.

Table 3.1: Joint detection summary

Detected hypothesis Interfering symbol (dk) desired symbol (ck)

H0 1 1
H1 0 1
H2 1 0
H3 0 0

In the following section, the BER performance of MAP detection based interference
mitigation is described in detail.

3.5.2 BER performance of MAP detection

Figure 3.10 show the BER performance of the desired signal by the MAP detection
method for C/I <= 0 dB using the true signal, interference and noise power values.
It can be seen that effective interference mitigation is possible for C/I < 0 dB and
also the performance degrades when the C/I ratio moves towards the 0 dB mark. It
can also be seen that for higher magnitude of C/I (ignoring the sign), the performance
is better than the without interference case. The reason is same as the one described
in CW interference mitigation case in section 3.4.1.1 and the improvement in this
case is less than the CW interference case because the interfering signal is not always
present leading to more ambiguity in the decision criteria. For example, for C/I = −10
dB, there is a gain of 0.5 dB at 3.7 × 10−2 BER. Figure 3.11 shows the same BER
performance using the estimated signal, interference and noise power. It is clear that
the BER performance using the estimates is close to that of using the true values.

Figure 3.12 shows the BER performance of the desired signal by the MAP detection
method for C/I >= 0 dB using the true signal, interference and noise power values. It
is shown that reliable detection is not possible at C/I = 0 dB. Similar to the previous
case, the performance improves when the C/I values move away from the 0 dB mark.
Figure 3.13 shows the same BER performance using the estimated signal, interference
and noise power and is close to that of using the true values.

Figure 3.14 shows the BER performance of CW interference mitigation by MAP
detection. The performance is same as the threshold based detection.

In the following section, the problems of the proposed techniques are explained
briefly.

3.6 Problems of the proposed techniques

In the previous sections, the interference mitigation techniques for CW and OOK mod-
ulated interference were discussed in detail. In the case ofMPSK modulated interferes,
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the MAP detection will be complex as the phase of the interferer can change from one
symbol to the next resulting in more hypothesis levels for MAP detection. The thresh-
old based detection is also not possible as we would not be able to find a single optimal
threshold. Hence, the proposed techniques are not suitable for MPSK modulated in-
terferers. During this thesis work, we have also proposed another technique for the case
of MPSK modulated interferers that can also be used for the case of CW interferers.
Due to confidentiality reasons, that technique is not described in this report.

3.7 Summary

In this chapter, the interference mitigation techniques for CW and OOK modulated
interferers are discussed in detail. Threshold based and MAP detection based interfer-
ence mitigation is proposed for CW and OOK modulated interference. DA moments
based method is proposed to estimate the interference, desired signal and noise power
in the case of CW interference. NDA EM and moments based methods are proposed
to estimate the interference, desired signal and noise power in the presence of OOK
modulated interferer. The extension of MAP detection to the joint detection of inter-
fering and desired signal for the OOK modulated interference case is also discussed.
The BER performance of each of the proposed techniques is simulated and compared
against the analytically evaluated BER. The limitations and the effectiveness of each
of the proposed techniques are discussed in terms of the BER performance. It is shown
that there is a gain of 1 dB at 2.5× 10−2 BER after CW interference mitigation. It is
shown for the case of OOK modulated interferer that the threshold based technique is
suitable for C/I > 0 dB and the MAP detection is suitable for both C/I ≥ 0 dB and
C/I < 0 dB. It is also shown that the proposed techniques are not suitable to mitigate
MPSK modulated interferers. In the forthcoming chapter, the implementation of the
NDA estimation techniques in the real time hardware platform is discussed in detail.
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Implementation of non data
aided SNR estimation 4
4.1 Introduction

The main contributions of this thesis are signal to noise ratio (SNR) estimation and
interference mitigation techniques. In previous chapters, the results from MATLAB
simulations of the proposed techniques were presented. In the given time frame of this
thesis work, we implemented the non data aided (NDA) SNR estimation techniques
in the real time hardware platform. In this chapter, the implementation of NDA SNR
estimation techniques in a real time hardware platform is discussed. The chosen hard-
ware platform for receiver is the universal software radio peripheral 2 (USRP2). In
the transmitter side, a Tektronix arbitrary/function generator (AFG3252) and Agilent
E8257D signal generator is used to generate the on-off keying signal. Since the pro-
posed estimation techniques considered only AWGN channel, we wanted to prevent any
channel anomalies such as fading and multipath during implementation. Hence, the
whole implementation is carried out in a RF cable environment.

The rest of this chapter is organized as follows. Section 4.2 describes the transmit-
ter and receiver setup. Section 4.3 describes the implementation procedure and the
summary is presented in section 4.4.

4.2 Implementation setup

The hardware setup is shown in figure 4.1. The following section explain the transmitter
part of the setup.

Figure 4.1: Implementation setup consisting of Tektronix function generator, Agilent signal
generator, mixer, USRP2 receiver and the MATLAB interface

53



4.2.1 Transmitter setup

The transmitter part includes the Tektronix arbitrary/function generator, mixer and
the Agilent signal generator. The functions of each of the modules are described below.

4.2.1.1 Tektronix arbitrary/function generator

Any arbitrary waveform can be generated by the Tektronix arbitrary/function genera-
tor. The software ArbExpress from Tektronix is used for this purpose. The procedure
for OOK pulse generation is explained below.

• The OOK pulse is generated in MATLAB and saved as a *.tex file.

• The tex file can be loaded to the ArbExpress software which converts the data into
the pulse form as shown in figure 4.2 that can be used in the function generator.

Figure 4.2: The OOK pulse waveform output from the ArbExpress tool

• The properties of the OOK signal such as the data rate can be adjusted in the
function generator. We have set the data rate to be 50 kbps.

• The output of the function generator is given to one of the inputs of the mixer.

4.2.1.2 Agilent signal generator

The signal generator is used to generate the RF waveform at the centre frequency of
2.4 GHz. The spectrum of the generated signal is obtained from the spectrum analyzer
and it is shown in figure 4.3. The RF output of the signal generator is given to the
other input of the mixer.
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Figure 4.3: The power spectrum of the RF output of the signal generator at a centre frequency
of 2.4 GHz is shown.

4.2.1.3 Mixer

The mixer is used to convert the transmitted baseband OOK pulse from the function
generator to RF. It combines the two inputs from the signal generator and the function
generator and gives the required RF signal at its output terminal. The output of the
mixer is connected to the RF input of the USRP2 receiver.

In the following section, the receiver setup is discussed in detail.

4.2.2 Receiver setup

The USRP2 hardware and MATLAB interface are the components of the receiver setup.
The functions of each of the components is described below.

4.2.2.1 USRP2 hardware

The USRP2 is a software defined radio platform developed by Ettus research, [20]. The
USRP2 hardware used in this implementation has a RFX2400 daughter board which can
operate in the range of 2.3-2.9 GHz. The USRP2 acts as a direct conversion receiver
and the baseband processing is done in MATLAB. Figure 4.4 shows the simplified
block diagram of USRP2. The received RF signal is down converted to baseband by
the RFX2400 daughter boards. The analog signal is digitized by two 14 bit ADCs’
operating at 100 mega samples per second (MS/s). The digitized complex baseband
samples from the output of the ADCs’ are then passed through a digital down converter
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(DDC). The DDC acts as a decimating low pass filter. These samples are fed through
a gigabit ethernet port to the MATLAB interface and the baseband processing is done
in MATLAB. If the decimation is not done, the samples reach the gigabit ethernet port
at the rate of 2800 MS/s, which the interface cannot handle. Therefore, a minimum
decimation factor of 4 is assigned to the USRP2 device. Consequently, the USRP2 can
support a maximum data rate of 25 Mbps. There are certain steps that have to be
done to configure the USRP2 hardware. The detailed information can be found in [21].

Figure 4.4: Block diagram of USRP2 device.

4.2.2.2 MATLAB interface

The baseband processing can be done in various platforms such as GNU Radio, MAT-
LAB etc. In our case, the USRP2 is interfaced with MATLAB via the gigabit ethernet
port interface. The tool box for interfacing MATLAB with the USRP2 must be in-
stalled and it is available in the MATLAB website, [22]. The simulink model is shown
in figure 4.5. The sdru receiver block interface the USRP2 hardware with MATLAB.

Figure 4.5: Simulink model of the USRP2 interface with the square law detection.

The parameters of the sdru receiver block are shown in figure 4.6. The centre frequency
should be set to the desired frequency of interest. The LO offset can be adjusted if
there is any inherent frequency offset in the local oscillator. The gain can be adjusted
depending on the received signal level. The decimation factor is the most important
parameter. The minimum value is 4 as described in section 4.2.2.1. The maximum
value is 512. The decimation factor (Fd) is set based on the following formula.

Fd =
Sr

Tr × Uf

, (4.1)
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Figure 4.6: Parameters of the sdru receiver block.

where, Sr is the ADC sampling rate (100 MS/s), Tr is the transmitted bit rate and Uf

is the required number of samples per bit duration,i.e., the oversampling factor. The
sampling time is given by Fd/Sr. Output data type can be set to double if floating
point precision is required. Frame length can be varied depending on requirements.

The complex baseband samples from the sdru block is fed to the square law detector.
The square of the envelope of the complex baseband signal samples from the square law
detector is stored and SNR estimation is done on the stored real time data samples.
The real time data samples for SNR= 10 dB and SNR= 15 dB are shown in figure 4.7
and figure 4.8, respectively.

In the following section, the implementation procedure is discussed briefly.

4.3 Implementation procedure

The moments based M2M3 and expectation maximization (EM) NDA estimators are
validated during the implementation. The implementation procedure is described be-
low.

• At first, reference SNR is estimated at a specified transmit (Tx) power level.
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Figure 4.7: The real time data samples for SNR = 10 dB
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Figure 4.8: The real time data samples for SNR = 15 dB

• The Tx power is varied using the signal generator and the SNR is estimated again.

• The relative difference between the reference SNR and estimated SNR is found to
be in accordance with the variation in the Tx power level.

• It is also verified that the EM estimates are larger than the moments based esti-
mates at low SNR and the moments based estimates are not reliable at high SNR
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Figure 4.9: Estimated SNR against Tx power.

which is in accordance with the simulation results.

Figure 4.9 shows the plot of SNR estimates of M2M3and EM estimators plotted against
the Tx power. It is evident that the EM estimates show a bias at low SNR region
(SNR< 10 dB). The EM and M2M3 estimates are close to each other in the region
10 ≤ SNR ≤ 18 dB and the moments based estimates are not reliable for SNR> 18
dB.

4.4 Summary

In this chapter, the implementation of the proposed NDA M2M3 and EM SNR esti-
mators in the USRP2 platform is described in detail. The transmitter and receiver
blocks are explained in detail and the procedure to setup the hardware is also clearly
explained. The implementation procedure is described and the results of the SNR es-
timates with the real time data are shown. It is found that the EM estimates show a
bias at low SNR region (SNR< 10 dB). The EM and M2M3 estimates are close to each
other in the region 10 ≤ SNR ≤ 18 dB and the M2M3 estimates are not reliable for
SNR> 18 dB.
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Conclusions and future scope 5
5.1 Conclusions

In this thesis, we addressed the problem of interference mitigation in the low power non-
coherent on-off keying (OOK) receiver based wakeup radio. The main contributions of
this thesis are,

• Normalized max-zero likelihood (NML) method for non-coherent detection of
OOK signals.

• Data aided (DA) and non data aided (NDA) signal to noise ratio (SNR) estimation
techniques for non-coherent OOK receivers.

• Threshold based and maximum-a-posteriori (MAP) detector based interference
mitigation techniques for continuous wave (CW) and OOK modulated interferers.

• Implementation of NDA SNR estimation techniques in the universal software radio
peripheral 2 (USRP2) platform.

5.1.1 NML method

NML method is proposed for non-coherent detection of OOK signals. It is shown that
the NML detection improves the bit error rate (BER) performance and there is a gain
of 1 dB at BER of 2× 10−4 for α = 0.3 when compared to maximum likelihood (ML)
detection method for the wakeup radio architecture. It is also shown that the NML
gain decreases as α increases.

5.1.2 SNR estimation

Non-coherent detection of OOK signals requires the knowledge of SNR. Therefore, DA
and NDA SNR estimation techniques are proposed for non-coherent OOK receivers. ML
and M1V estimators are proposed for DA SNR estimation and the Cramer-Rao lower
bound (CRLB) is derived for DA estimation. It is shown that ML estimator is biased
at low SNR and the performance of both the DA estimators are similar for SNR> 8 dB.
M1M2, M2M3 and expectation maximization (EM) estimators are proposed for NDA
SNR estimation. It is shown that M1M2 estimator is not suitable for equiprobable
symbol conditions and M2M3 estimator overcomes this problem. It is also shown that
the moments based NDA estimators are unreliable at high SNR and EM estimator
is biased at low SNR. Hence, hybrid M2M3 − EM and M1M2 − EM estimators are
proposed to overcome the limitations. The bit error rate (BER) performance for each of
these estimators is simulated and found to be in agreement with the theoretical BER.
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5.1.3 Interference mitigation

The SNR estimation techniques are extended for interference mitigation. CW and
OOK modulated interferers are considered in this thesis. DA estimation techniques are
used to estimate the interference, signal and noise power in the case of CW interferers.
NDA estimation techniques can be used in the case of OOK modulated interferers. The
decision threshold and MAP detector based techniques are proposed for interference
mitigation. In the case of CW interferer, it is shown that both the techniques perform
similarly and there is a gain of 1 dB at 2.5× 10−2 BER when compared to the without
interference case. It is shown for OOK modulated interferer that the threshold based
technique is suitable for C/I > 0 dB and the MAP detector based technique is suitable
for both C/I ≥ 0 dB and C/I < 0 dB. It is also shown the both the techniques perform
similarly for C/I > 0 dB. The extension of MAP detection to joint detection of both
the desired and interfering signal is proposed in the case of OOK modulated interferer.
Though the proposed interference mitigation techniques are not fool proof, they are
suitable to mitigate the interference in the specified C/I ranges and also effectively
mitigate the interference which are much greater than the desired signal level (C/I ≪ 0
dB). This is an important result in the case of low power wakeup radio, as the chance
of interfering signal to be much greater than the desired signal is high.

5.1.4 Implementation of NDA SNR estimation

The implementation of the proposed NDA M2M3 and EM SNR estimators in the
USRP2 platform is discussed in detail. Important issues in the configuration of the
setup are also discussed. The implementation procedure is described and the results
of the SNR estimates with the real time data are shown. It is found that the EM
estimates show a bias at low SNR region (SNR< 10 dB). It is also shown that the EM
and M2M3 estimates are close to each other in the region 10 ≤ SNR ≤ 18 dB and the
M2M3 estimates are not reliable for SNR> 18 dB.

In the following section, we give a few suggestions for future research.

5.2 Suggestions for future research

• The NML detection method can be extended to M-ary frequency shift keying
(MFSK) receivers as they are similar to OOK but operate at multiple tones.

• It is difficult to obtain a closed form expression for the CRLB in the case of NDA
SNR estimation. Hence, theoretical study on the numerical evaluation of CRLB
for NDA SNR estimation can be carried out in future.

• The interference mitigation techniques are proposed for the case of OOK modu-
lated, CW and modulated interferers with constant modulus. The extension of
these techniques for the case of non constant modulus interferes such as MQAM
and MPAM can be studied in future.

• We had considered only AWGN channel in this thesis. Extension of the proposed
techniques for the case of fading channels provides a huge scope of further research.
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• In this thesis, we implemented NDA SNR estimation techniques in the USRP2
platform. In future, the implementation of the proposed interference mitigation
techniques can be done in the USRP2 platform.
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