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Abstract—To give paralyzed people hope for a normal life,
Brain Machine Interfaces (BMI) record signals from the motor
cortex and a decoder translates these “thoughts” to action. A high
accuracy decoder is needed for a seamless user experience. At
the same time it needs to be compact and low-power to support
its integration in an implant to enable the compression required
in wireless implantable BMIs. Hence, a model with a good trade-
off between accuracy and resource requirement is desirable. In
the IEEE BioCAS 2024 conference, we organized the first grand
challenge on neural decoding for motor control. The evaluations
were performed using the recently developed Neurobench soft-
ware suite for benchmarking neuromorphic systems. There were
two tracks –one preferring solutions with highest accuracy while
the other gave weightage to the tradeoff between accuracy and
implementation complexity. Out of the 10 teams registered for
this event, the top 3 teams are invited to present their works in
the IEEE BioCAS 2024.

Index Terms—Grand challenge, machine learning, implantable
BMIs, benchmarking, neuromorphic systems

I. ORGANIZATION OF THE GRAND CHALLENGE

A study reported in 2013 pegs the number of people who
have paralysis at approximately 6 million in the US [1]. The
need to restore their ability to perform activities for daily
living has motivated the development of a host of assistive
technologies. The most promising among the reported ones
is the intra-cortical Brain-Machine Interface (iBMI). iBMIs
aim to substantially improve patients’ lives affected by spinal
cord injury or debilitating neurodegenerative disorders such as
tetraplegia, amyotrophic lateral sclerosis etc. These systems
take neural activity as input and drive effectors such as a
computer cursor [2], wheelchair [3], and prosthetic limbs [4]
for communication, locomotion, and artificial hand control,
respectively. Recently, there are also efforts to use similar
technology to address speech disorders by converting imagined
speech to produce a linguistic output [5].

We acknowledge a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No. CityU 11200922).

However, despite compelling advances, barriers to scal-
ability and clinical translation remain. Apart from scaling
the number of sensors [6], two major challenges related to
system usability [7] are highlighted next. First, the decoding
algorithms are currently being implemented on a PC with a
wired connection from the headstage, increasing the bulkiness
of the overall system and reducing patient mobility [2]– [4],
[8]. We refer to this as the ”mobility issue.” Second, the present
systems (we refer to them as wired iBMI or simply iBMI)
involve the use of wires for data transmission from the implant
through a hole in the skull, increasing the risk of infection. We
refer to this as the ”skull opening issue.”

Wireless iBMIs can solve the two issues related to infection
due to a skull hole and mobility due to wiring to a computer.
However, this also raises scalability issues, as wireless iBMIs
are difficult to scale beyond data rates of few tens of Mbps
[9], [10] due to increased bit-error rates, low run-time between
battery charges, as well as power dissipation constraints within
cortical implants of 80 mW/cm2 [11], [12] leading to limiting
the number of recording channels to around 100 ( 150-
200 neurons). It is expected that dexterous prostheses would
require simultaneous recording from 10,000 neurons [13]; a
more refined understanding of the brain also requires recording
an increasing number of neurons and is hence an essential
goal in this field. Therefore, there is an urgent need to explore
solutions to compress neural data to fit the wireless budget
available for implants.

Several solutions have been proposed to compress the neural
data. Compression schemes such as compressive sensing (CS)
[14] or Autoencoder (AE) [15] fall short of the requirements
to meet the available wireless data rates as the number of
channels increases to 10,000. Only the integration of decoders
(Dec) [ [16], [17], [18]] in the implant can solve the problem in
a scalable way. This underlines the importance of developing
new neural decoders with a good tradeoff between accuracy
and resource usage, suitable for deployment in implants.
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Fig. 1: Timeline of Grand Challenge on Neural Decoding

While traditional decoder designs have used signal processing
approaches, recent advances in neural networks (such as model
compression, quantization and new networks like spiking neu-
ral networks) are promising candidates for future iBMIs. This
IEEE BioCAS Grand Challenge is geared in that direction and
aims to push the boundary for neural decoder design toward
next-generation BMI systems. Two tracks were included in the
competition – one preferring solutions with highest accuracy
while the other placed emphasis on the tradeoff between
accuracy and implementation complexity.

10 teams worldwide registered for this competition to ex-
plore neural decoding algorithms and energy-efficient strate-
gies. The registration phase started from from 26 April and
continued to 17 May 2024. Aug 2 was the deadline for
submission of solutions. The timeline of the grand challenge
of neural decoding for motor control of non-human primates
is summarized in Figure 1.

To ensure the high quality of the accepted papers, we
manually checked the code submitted with the results written
in their paper. The final ranking is determined based on the
output results from their code and the quality of their papers.
Finally, the top 3 teams are invited to present their work in
the IEEE BioCAS 2024.

II. SUMMARY OF PARTICIPANTS

The IEEE BioCAS Grand Challenge has drawn in a total of
10 teams from 13 universities/organizations/institutions. The
regional distribution of participants is presented in Table I.
Finally, 5 solutions were found to satisfy all requirements of
the competition. After peer review, 3 teams were selected as
winners, one each in Track 1 and Track 2, and a 3rd team
whose solution came after these two.

TABLE I: Region Distribution of Participants

Tracks Region Number of Teams

1
America 3

Asia 3
Europe 3

2
America 5

Asia 4
Europe 4

TABLE II: Number of reaches in each file

Filename Number of Reaches
indy 20160622 01 970
indy 20160630 01 1023
indy 20170131 02 635
loco 20170210 02 587
loco 20170215 02 409
loco 20170301 05 472

III. DATASET

The dataset chosen for this challenge consists of recordings
from the “Nonhuman Primate Reaching with Multichannel
Sensorimotor Cortex Electrophysiology” dataset [19]. This
dataset contains the recording of spikes generated by two
Macaque monkeys while they were tasked to make self-paced
reaches to targets placed in an 8×8 grid, without gaps or
pre-movement delay intervals. One monkey reached with the
right arm (recordings made in the left hemisphere of their
brain) while the other reached with their left arm (recordings
made in the right hemisphere of their brain). For most of
the sessions, only the M1 (primary motor cortex) recordings
were made over 96 channels, for the rest both M1 and S1
(somatosensory cortex) were recorded over 192 channels.
The data from monkey 1 (named Indy) contains recording
with 96 channels, while those from monkey 2 (named Loco)
contains recording with 192 channels. The recordings contain
37 sessions recorded over 10 months for monkey 1 and 10
sessions over 1 month for monkey 2. We have carefully
chosen six specific recordings from this dataset comprising
three recordings from two monkeys each, with the recording
dates spanning beginning, middle and end of the time of their
respective total sessions. The details of the chosen files are
listed in Table II.

The recordings are stored in Matlab’s .mat file format, which
contains seven variables in each file. Variables used for this
challenge are cursor pos, t and spikes.

• cursor pos (k*2): The position of the cursor in Cartesian
coordinates (x, y), expressed in millimeters. k refers to
the number of samples in the file.

• t (k*1): The timestamp corresponding to each sample of
the cursor pos, expressed in seconds.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2025 at 10:53:33 UTC from IEEE Xplore.  Restrictions apply. 



1 import torch, snntorch
2 from torch.utils.data import DataLoader, Subset
3 from neurobench.datasets import PrimateReaching # dataset
4 from neurobench.models import TorchModel # model wrapper
5 from neurobench.benchmarks import Benchmark # runtime
6

7 dataset = PrimateReaching(path, file_name, ...)
8 loader = DataLoader(Subset(dataset, dataset.ind_test), ...)
9

10 net = torch.load(...) # trained model
11 model = TorchModel(net)
12 model.add_activation_module(snn.SpikingNeuron) # configure snn neuron
13

14 preprocessors = [] # none for this task
15 postprocessors = [] # none for this task
16 static_metrics = ["footprint"] # model-only measurements (size, connectivity, etc.)
17 workload_metrics = ["r2", "synaptic_operations"] # data-dependent measurements
18

19 benchmark = Benchmark(model, loader, preprocessors, postprocessors, [static_metrics, workload_metrics])
20 results = benchmark.run()

Listing 1: Example user-level interface for benchmarking an SNN with the NeuroBench code harness.

• spikes (n*u): A cell array of spike event vectors. Each
element in the cell array is a vector of spike event times-
tamps, in seconds. The first unit (u1) is the ”unsorted”
unit, meaning it contains the threshold crossings which
remained after the spikes on that channel were sorted into
other units (u2, u3, etc.) For some sessions spikes were
sorted into up to 2 units (i.e. u=3); for others, 4 units
(u=5). n refers to number of recording channels and u
refers to number of sorted units.

Every file is divided into training, validation, and test sets
with a split ratio of 50% for training, 25% for validation, and
25% for testing.

IV. CODE HARNESS

For this challenge, the data download and evaluation metrics
are all encapsulated with the NeuroBench algorithm bench-
marks [20], a community-driven project. Each submission used
this common framework for loading data and benchmarking
algorithms.

The harness features the task for this grand challenge, non-
human primate motor prediction. In addition, it includes a
suite of benchmarks of interest to neuromorphic algorithms, in-
cluding event camera vision, continual learning, and sequence
forecasting.

Given a trained model and an evaluation dataset, the harness
automatically tests the model on the dataset, and calculates
metrics at runtime. The metrics measure not only the correct-
ness of the model, but also its compute costs. Listing 1 shows
an example user-level interface for the code harness.

V. GRAND CHALLENGE

The grand challenge focuses on predicting finger movement
velocities with a two-track competition.

A. Regression Tasks

Track 1: Obtaining highest accuracy as measured by the
R2 metric Track 1 is a regression challenge aiming at finger

motion velocity prediction using the spikes recorded from the
multi-electrode array. The group with the highest accuracy is
considered the winner for track 1.

Track 2: Obtaining the best tradeoff between accuracy
and solution complexity The task of track 2 is similar to track
1, but accuracy is not the single consideration. The winner for
track 2 should be the group with the best trade-off between
prediction accuracy and model complexity.

B. Evaluation Criteria

The finger velocity prediction accuracy is measured using
the R-Squared score. The equation is defined as Equation (1).

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 (1)

In this contest, R2
X and R2

Y are calculated separately, and
the final result R2 is the mean of the two. In addition, yi and
ŷi are defined as the label and prediction respectively while ȳ
is the mean of labels.

Complexity is defined as the memory footprint and the
synaptic operations (Dense/MACs/ACs). The memory foot-
print shows the model size in bytes. For synaptic operations,
dense includes operations that concerns zeros. MACs denotes
the total number of Multiply-Accumlates operations used for
ANNs with continuous-valued activations. While ACs indicate
the Accumlates operations, used for SNNs with binary activa-
tions.

VI. SUMMARY OF THE TOP 3 WINNING TEAMS

The solutions of the top-3 teams are described here. Apart
from studying the impact of various kinds of artificial neural
networks on iBMI systems, this section will also involve
examining various structures of spiking neural networks, data
augmentation, data preprocessing methods, weight pruning
techniques, efficient loss functions, and gradient propagation
strategies to achieve an energy-efficient implementation. Ta-
ble III reported the statistical results of top-3 team and Figure 2
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TABLE III: Performance comparison of top-3 teams

Track Rank Team Average R2 score Average Footprint (Bytes) Average Dense Average MACs Average ACs
1 BioCircuitBreakers 0.6982 45520 54283.2536 25316.4339 0

Track 1 2 QAAS-ZenkeLab 0.6978 4833360 1206272 0 42003.5272
3 Primate Whisperers 0.6209 174104 4947.2461 627.2461 247.9486
1 QAAS-ZenkeLab 0.6604 27144 13440 0 304.1519

Track 2 2 BioCircuitBreakers 0.6982 45520 54283.2536 25316.4339 0
3 Primate Whisperers 0.6209 174104 4947.2461 627.2461 247.9486

illustrated the performance comparison between top-3 teams
and [20].

A. Team BioCircuitBreakers

[21] from ETH Zurich and University of Zurich (Yuanxi
Wang et al.) won first place in track 1 of this contest. They
proposed an inference network structure called AEGRU: Two
fully connected (FC) layers are positioned before and after the
core, a recurrent neural network with a GRU layer. In addition,
an Auxiliary training branch is used in training, which includes
three FC layers and a firing rate reconstruction. The diverse
network structures during training and inference guarantee a
good trade-off between accuracy and complexity in inference,
also enabling the extraction of latent features during training.
Furthermore, they used the window summation method and the
softplus function with logarithm for data preprocessing. The
mean square error loss and Poisson negative log-likelihood
loss are combined to make more accurate adjustments to model
weights. Eventually, they have achieved a mean R2 score
of 0.6982 with a good trade-off in terms of complexity and
accuracy.

B. Team QAAS-ZenkeLab

[22] from Zhejiang University (Tengjun Liu et al.) won first
place in track 2 of this contest. They introduced two recurrent
SNNs (RSNNs) for regression in motor decoding. One of the
models is the bigRSNN with 1024 in a hidden layer and five
readouts heads, which aims to achieve the highest R2 score,
while the other one is the tinyRSNN with 64 LIF neurons and
small hidden layers, aiming for an energy-efficient implemen-
tation of the BMI application. To achieve an energy efficiency
model, they added an additional regularization term to loss
function to enforce sparse neuronal activity and the smallest
weights in tinyRSNN are pruned. In addition, SMORMS3
optimizer is used and the weight is quantized as float 16 after
training. Eventually, they have achieved a mean R2 score of
0.6978 for bigRSNN and 0.6604 for tinyRSNN.

C. Team Primate Whisperers

[23] from Karlsruhe Institute of Technology (Jann Krausse
et al.) won third place in this contest. Inspired by the video
of cursor movements of primates, they only focused on a few
key points within a reach and applied interpolation to predict
the entire route. They implemented a model with a GRU cell
followed by an FC layer to determine output, and a temporal
convolution layer before it for extracting temporal features.
Even more interestingly, they found that the two monkeys have

fundamental differences in neural encoding schemes, accuracy
decreased when the training data included all three recordings
for each primate. Eventually, they have achieved 0.6209 of R2

score.

Fig. 2: Pareto plot showing the trade-off between accuracy and
computes. The circle makers display the baseline models from
[20], while the others represent the results from three teams: a)
Compute cost vs. accuracy b) Memory footprint vs. accuracy

VII. CONCLUSION

A total of 10 teams from 13 universities/organizations/in-
stitutions participated in the IEEE BioCAS Grand Challenge
to develop algorithms on neural decoding for motor control
of non-human primates using an open-access dataset and
code harness from [20]. This grand challenge provides an
opportunity for the top-3 teams to present their work. We hope
that this grand challenge will increase researchers’ interest
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in developing more energy-efficient models and push the
boundary for neural decoder design toward next-generation
BMI system.
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