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Abstract
We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantile-

vers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and

free oscillation amplitude as well as the stiffness of the sample’s surface. The simulations reveal a universal functional dependence

of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in

terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information

from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in

the explored 3–45 N/m force constant range and 2–345 GPa sample’s stiffness range. For force constants around 25 N/m, the

amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young’s

modulus below 20 GPa).
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Introduction
When an AFM cantilever oscillating freely and harmonically at

a given frequency f and amplitude A1 approaches a solid sur-

face, the oscillation becomes anharmonic due to the non-linear

interaction, represented by the force field Fts, between the canti-

lever tip and the surface [1]. Thus, the time dependent trajec-

tory a(t) of the cantilever tip, which can be expressed in the
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harmonic limit by a(t) = A1cos(2πft), is transformed into a

Fourier series with harmonic oscillations of amplitudes An and

frequencies fn = nf [2,3]:

(1)

where a is a constant amplitude value. The An coefficients can

be analytically calculated, in the limit of weak tip–sample inter-

action (A1 >> An for n > 1), by integrating the force field Fts

that is modulated by weighted Chebyshev polynomials of the

first kind, Tn(u) [4,5]. The simplified expression is:

(2)

where kc stands for the cantilever stiffness, z is the distance

between the cantilever base and the sample surface and

Tn(u) = cos(ncos−1(u)). Note that An decreases for increasing

order number (n) and kc values.

The tip–surface interaction Fts can be expressed as a function of

experimental parameters, such as the tip radius (R) and the

Young’s modulus of the sample (E). A list of well-accepted

models can be found in the literature, including the most

widely used Hertz, Derjaguin–Muller–Toporov (DMT) and

Johnson–Kendall–Roberts (JKR) models, describing the analyt-

ical dependence on such parameters [6-10]. The DMT model,

which will be used in this work, has the following expression in

the repulsive regime:

(3)

where H is the Hamaker constant, a0 the intermolecular dis-

tance, d the tip–sample gap (related to z) and E* the reduced

Young modulus, which includes the contribution from the tip.

Thus, by combining Equation 2 and Equation 3 it is possible to

determine the dependence of An as a function of all relevant pa-

rameters. However, An can be hardly solved analytically, so that

numerical simulations are required. On the other hand, the dy-

namics of the oscillating cantilever cannot be oversimplified

and flexural eigenmodes must be considered, in particular when

they are located close to one of the harmonics [11].

Here, we report a combined theoretical and experimental study

on the functional dependence of the amplitudes of higher

harmonics on relevant parameters such as the tip radius, free

oscillation amplitude, cantilever stiffness and sample Young’s

modulus. Because of the low amplitudes of the involved

harmonics (well below 1 nm), we concentrate on the repulsive

regime of the tip–sample interaction and on those harmonics

close to flexural eigenmodes of rectangular cantilevers, hence

the term resonance, so that their intensities can be reliably deter-

mined [11,12]. Previous results have shown that the intensity of

the 6th harmonic is noticeably larger that the intensities of the

neighbouring 5th and 7th harmonics, respectively, using cantile-

vers with 350 kHz resonant frequency and polystyrene samples

[13]. Such study has provided a practical qualitative method to

continuously monitor changes in the shape and radius of a canti-

lever tip in amplitude modulation AFM mode. Here, we will

also focus on the 6th harmonic since it provides the larger

amplitude, but the methodology can now be extended to other

harmonics.

The work presented here provides a tool to help to prepare ex-

periments. Such tool is a mathematical expression describing

the evolution of the 6th harmonic on experimental parameters

such as tip radius, free amplitude, cantilever and sample’s stiff-

ness. For given experiments directed to, e.g., the determination

of the evolution of the tip radius evolution and of sample stiff-

ness, the mathematical tool should help in the selection of the

favourable range of parameter values (including amplitude

setpoint).

Results and Discussion
Simulations
Let us analyse first the dependence of the amplitude of the 6th

harmonic, A6, on the independent parameters R, E and A1, re-

spectively, for a fixed kc value. We will analyse the depen-

dence of A6 on kc at a later stage. Note that A1 can be externally

and continuously varied by selecting the excitation amplitude

and frequency of the cantilever base and that R and E depend

both on the materials used. Figure 1a and Figure 1b show the

calculated approach curves (as a function of z) corresponding to

the amplitude and phase lag φ of the fundamental mode, respec-

tively, for A1 = 30 nm, R =10 nm and E = 3 GPa using a 25 N/m

silicon cantilever with a resonant frequency f0 = 300 kHz and a

Q factor of 400. The threshold of the repulsive region

(φ > 0 degrees) is represented by a vertical discontinuous grey

line. Figure 1c displays the A6 approach curves corresponding

to the parameters used in Figure 1a and Figure 1b (continuous

black line), as well as those obtained by increasing R (continu-

ous red line), E (continuous blue line) and A1 (continuous

magenta line), respectively. The black line shows the shape of

the A6(z) curve, with A6 > 0 above the repulsive regime

threshold, exhibiting a maximum value at z ≈ A1/2 and decreas-

ing back to zero for sufficiently small z values, which corre-
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Figure 1: (color online) Simulated approach curves: (a) amplitude of
the fundamental mode, (b) phase of the fundamental mode and
(c) amplitude of the 6th mode as a function of the normalized z dis-
tance. The calculations have been performed for a silicon rectangular
cantilever with kc = 25 N/m, f0 = 300 kHz and Q = 400. The following
parameters have been used: (a) and (b) A1 = 30 nm, R = 10 nm,
E = 3 GPa, (c) continuous black curve A1 = 30 nm, R = 10 nm,
E = 3 GPa; continuous red curve A1 = 30 nm, R = 30 nm, E = 3 GPa;
continuous blue curve A1 = 30 nm, R = 10 nm, E = 130 GPa; continu-
ous magenta curve A1 = 60 nm, R = 10 nm, E = 3 GPa.

spond to small oscillation amplitudes, as depicted from

Figure 1a.

From Figure 1c we readily observe that A6 increases for increas-

ing R, E and A1 values at a given z value, respectively. When R

increases (continuous black and red curves) we observe, in ad-

dition, that the maximum of the curve shifts towards lower z

values, a behaviour that is also observed for increasing E values

(compare continuous black and blue lines). In fact the weight of

the area under the curves is shifted towards lower z values in

both cases.

The comparison between the continuous black and red curves

indicates that the variation of the radius has an impact in the

value of A6 only for certain values of the amplitude setpoint

(Asp): for example at Asp = 25 nm (z = 24.2 nm) the difference

between the black and red curves is clearly smaller than for

Asp = 15 nm (z = 14.2 nm). The same argument applies for the

case of increasing E values. It means that the previous model-

ling of the system is necessary in order to select the appropriate

experimental conditions.

Let us now explore in detail the dependence of A6 as a function

of R, E and A1. The corresponding curves are shown in

Figure 2, where the filled black points correspond to calculated

values and the continuous lines to least-square fits. The simula-

tions have been performed for silicon with the following param-

eters: kc = 26 N/m, f0 = 300 kHz and Q = 400, with Asp = 0.5A1.

All curves confirm the increase of A6 for increasing values of R,

E and A1 but with different evolutions. In the case of the phase

of the 6th harmonic the behaviour is opposite, i.e., it decreases

for increasing R values (see Supporting Information File 1,

Figure S1).

In all cases the points closely follow a gun-shaped function with

the expression:

(4)

where g1, g2 and g3 are real numbers. This function covers the

limiting cases of G(x) = x/g1 for g1 ≠ 0 and g2 = g3 = 0,

G(x) = 1/g2 for g2 ≠ 0 and g1 = g3 = 0 and G(x) = √x/g3 for

g3 ≠ 0 and g1 = g2 = 0. Figure 2c exemplifies the case where the

dependence is nearly linear, an approximation certainly valid

for smaller intervals around a central amplitude value. In the

case of Figure 2a and Figure 2b we clearly observe two well

defined regions corresponding to lower and higher R and E

values, respectively. At lower values A6 exhibits a strong varia-

tion as a function of R and E (large slope) while at higher values

A6 tends towards an asymptotic limit (small slope). Thus, for

the kc values used in this simulation (26 N/m) A6 is most sensi-

tive for values of tip radius below ca.10 nm (ultrasharp tips)

and sample’s Young’s modulus below ca. 20 GPa (typically

polymers).
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Figure 2: Simulated dependence of the amplitude of the 6th harmonic
as a function of: (a) tip radius, (b) sample’s Young’s modulus and
(c) free oscillation amplitude, respectively. The calculated points (filled
black circles) have been performed for kc = 26 N/m, f0 = 300 kHz and
Q = 400 with Asp = 0.5A1 and A1 = 20 nm for (a) and (b) and have
been fitted to the gun-shaped function G described in Equation 4. The
values of the g1, g2 and g3 parameters obtained from the fits are:
(a) g1 = −1.63, g2 = 22.727 nm−1, g3 = 5.007 nm−1/2,
(b) g1 = 4.373 GPa·nm−1, g2 = 22.84 nm−1, g3 = 10.737 GPa1/2·nm−1

and (c) g1 = 338.23, g2 = 0.285 nm−1, g3 = 20.325 nm−1/2.

The dependence of A6 on the cantilever properties is more com-

plex because the cantilever shape, the elastic constant kc, the

resonance frequency f0 and the quality factor Q are interrelated

parameters that all contribute to the dynamics of the oscillation.

For simplicity, we characterize the cantilever by kc. Sader’s

formula, also termed Sader’s method, gives a well-accepted

expression of the dependence of kc on the other parameters

[14]:

(5)

where ρf is the density of the fluid (in our case air), Sc is the

plan view area of the cantilever (width × length) and Γi the

imaginary component of the hydrodynamic function [15]. This

expression is valid for Q >> 1.

In order to obtain an approximate manageable expression of the

functional dependence of A6 on kc we have used the nominal

geometrical and resonance frequency values of different com-

mercial rectangular cantilevers, as provided by the manufac-

turers and Q factor values in the range 200 ≤ Q ≤ 600. The re-

sulting kc values obtained from Equation 4 have been used as

input to the VEDA code [16]. The result from this calculation is

shown in Figure 3. The selected cantilevers with their values are

shown in the caption to the figure.

Figure 3: Simulated dependence of the amplitude of the 6th harmonic
as a function of selected values of cantilever force constants. The
chosen commercial cantilevers are: RTESP-150 (BRUKER)
(f = 150 kHz, L = 125 μm, W = 35 μm), Q = 250, kc = 5.5 N/m; 200AC-
NA (μMASCH) (f = 150 kHz, L = 200 μm, W = 40 μm), Q = 330,
kc = 9.6 N/m; PPP-SEIH (NANOSENSORS) (f = 130 kHz, L = 225 μm,
W = 33 μm), Q = 490, kc = 15.1 N/m; RFESPA 190 (BRUKER)
(f = 190 kHz, L = 225 μm, W = 40 μm), Q = 550, kc = 35.3 N/m;
RTESP-300 (BRUKER) (f = 300 kHz, L = 125 μm, W = 40 μm),
Q = 570, kc = 40.1 N/m; LTESP (BRUKER) (f = 190 kHz, L = 225 μm,
W = 38 μm), Q = 590, kc = 47.8 N/m.

The calculated points in the figure also follow quite closely

Equation 4, with g1 = −63.092 nN·nm−2, g2 = 42.371 nm−1 and

g3 = −42.223 nN1/2·nm−3/2.
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Thus, the simulations provide a functional dependence of A6 on

the relevant R, E, A1 and kc parameters, which can be stated as:

(6)

where Gr, Ge, Ga and Gk represent the decoupled gun-shaped

functions with their corresponding coefficients g. The appar-

ently different behaviours can be described by a single universal

curve, where the magnitudes and signs of the g coefficients de-

termine the final shapes. This expression can substantially

simplify the analysis of partial contributions. In addition, it

paves the way to define a methodology for finding the optimal

experimental conditions to monitor or characterize a specific

magnitude from the acquisition of the amplitude of a higher

harmonic.

Experiments
In the following section we compare the proposed functional

dependence with experimentally derived results to validate the

modelling and simulations described in previous sections.

Dependence of the amplitude of the 6th harmonic
on tip radius
Let us first explore the shape of the experimental approach

curves and compare to the calculations shown in Figure 1.

Figure 4 shows simultaneously acquired experimental approach

curves, i.e., amplitude (a) and phase (b) of the fundamental

mode and amplitude of the 6th harmonic (c), respectively, as a

function of the piezo displacement in the direction perpendicu-

lar to the surface (z) for a nominally kc ≈ 44 N/m cantilever

with resonance frequency 293 kHz on silicon surfaces and

A1 = 34 nm. The black curve in Figure 4c was taken at the

beginning of the experiment (fresh tip). The rest of the curves

are acquired after the acquisition of several intermediate images

(i.e., several images are taken in between each approach curve).

The order in which the curves are taken was black, green, red

and blue, respectively.

The first conclusion that we can extract is that the simulated

curves (Figure 1a and Figure 1b) reproduce well the shape of

the experimental ones (Figure 4a and Figure 4b). In addition,

Figure 4a and Figure 4b provide evidence that both the ampli-

tude and phase of the fundamental mode remain unchanged

during the experiments, except for a small variation in the phase

at the transition between attractive to repulsive regimes (φ ≈ 0).

Conversely, the value of A6 as a function of the piezoscanner

displacement exhibits an increase over the noise level above the

threshold corresponding to the onset of the repulsive regime.

We clearly observe an increase of the maximum value of A6 as

well as an increase of the position of the maximum, a trend that

Figure 4: (color online) Approach curves taken alternatively with the
acquisition of topographic, phase and amplitude images. (a) Ampli-
tude of the fundamental mode, (b) phase of the fundamental mode and
(c) amplitude of the 6th harmonic. Experiments have been performed
with a nominally kc ≈ 44 N/m rectangular AFM cantilever with
f0 = 293 kHz on silicon surfaces and A1 = 34 nm.

is reproduced by the simulations, as depicted from Figure 1c.

Assuming that both sample’s Young’s modulus and kc remain

constant, then the increase of A6 can be attributed primarily to

an increase in R.

The small variation of the phase (see Figure 4b) occurs at the

transition between attractive to repulsive regimes, where the
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Figure 5: (color online) Evolution of the mean value of the amplitude of
the 6th harmonic extracted from the amplitude image simultaneously
acquired with the topography and phase images. Experiments have
been performed with a nominally 44 N/m rectangular AFM cantilever
with resonance frequency 350 kHz on silicon surfaces under ambient
conditions. The time evolution is expressed in terms of sequentially
acquired images. The free oscillation amplitude was set to 30 nm and
setpoint to Asp = 27 nm, respectively. The missing points 3, 4 and 5
correspond to approach curves taken for amplitude calibration. The
continuous blue lines are guides to the eye.

critical amplitude Ac is defined [17]. It turns out that Ac depends

on R, closely following a power law function (Ac  Rm), where

the parameter m (m < 1) depends on the particular cantilever

used [17-20]. This provides a further evidence that the ob-

served increase of A6 can be attributed to an increase in R. On

the other hand, Ac is evaluated, in those works, at the sharp

attractive–repulsive transition, which implies a rather involved

experimental determination, while using approach curves one

can select the setpoint and thus the A6 intensity in a larger range

(within the repulsive mode). However, larger repulsions may

lead to wear, and thus to damage of the tip [21-25].

Additional information can be obtained from the acquired

images. Figure 5 shows the evolution of the mean A6 value

acquired simultaneously with the topographic and phase

images. As it is observed from the simulations and experiments,

the value of A6 is below 0.1 nm, which implies a very low

signal to noise ratio. To overcome this difficulty, A6 is acquired

at each point of the AFM image (256 × 256 points) and then it

is calculated by averaging all the values obtained at the image.

In this way, the time evolution of the value of A6 is expressed in

terms of sequentially acquired images (each point corresponds

to one image), where the experimental parameters such as A1

and the amplitude setpoint do not change over time. We observe

a rapid increase from image 1 to 10 followed by an increase

with a smaller slope above image number 10. The figure resem-

bles Figure 2a with a higher slope at the beginning and a lower

slope afterwards. Because of the expected tip wear, the evolu-

tion observed in Figure 5 can be again ascribed to an increase in

tip radius. This method has been proposed to monitor the

stability of the tip in a continuous manner [13,26,27].

The quantitative determination of the actual tip radius at each

image is a rather difficult task, since it depends critically in

several experimental parameters. We have performed a parallel

calibration of the tip radius with reference samples. Supporting

Information File 1, Figure S2 shows the evolution of A6 as a

function of R obtained from commercial gold nanoparticles

(5.5 ± 0.7 nm diameters) dispersed on a thin poly-lysine film

grown on mica. From the figure we can observe the increase of

A6 for increasing R values.

Dependence of the amplitude of the 6th harmonic
on bulk modulus
Figure 6 shows the evolution of A6 for discrete values of

Young’s modulus from different materials, namely PDMS

(E = 0.0025 GPa), LDPE (E = 0.1 GPa), PS (E = 2.7 GPa),

fused silica (E = 72.9 GPa), titanium (E = 110 GPa) and

sapphire (E = 345 GPa), using a 10.9 N/m cantilever, as deter-

mined with the thermal tune method and Sader’s corrections

[28].

Figure 6: Experimental evolution of A6 vs E for PDMS
(E = 0.0025 GPa), LDPE (E = 0.1 GPa), PS (E = 2.7 GPa), fused silica
(E = 72.9 GPa), titanium (E = 110 GPa) and sapphire (E = 345 GPa)
using a 10.9 N/m cantilever.

In spite of the reduced number of experimental points, the curve

can be compared to Figure 2b, with a sharp increase at low E

values and a nearly constant value for larger E values. One has

to take into account that during the experiments, where the tip

has to be retracted and samples have to be changed, a variation

of the tip radius cannot be excluded. The sample with the

highest wear was titanium, because of its higher roughness as

compared to the rest of the samples, and for this reason it was
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Figure 7: (color online) (a) Experimental evolution of A6 as a function
of the free oscillation amplitude using 26 N/m cantilevers. The fit to
Equation 4 leads to g1 = 3,016.794, g2 = 38.23 nm−1 and
g3 = −569.14 nm−1/2. (b) Evolution of the mean value of the amplitude
of the 6th harmonic extracted from the amplitude images simulta-
neously acquired with the topography and phase images. The ampli-
tude has been calibrated using the sensitivity determined from ap-
proach curves. The experiments have been performed with a
kc = 3.1 N/m rectangular AFM cantilever with a resonance frequency of
74.46 kHz and Q = 231, as determined with the thermal tune method,
on silicon surfaces. The time evolution is expressed in terms of
sequentially acquired images. Three different A1 and Asp pairs have
been used: A1 = 46.0 nm, Asp = 10.7 nm (black full dots), A1 = 55.0
nm, Asp = 8.2 nm (red full dots) and A1 = 91.3 nm, Asp = 22.0 nm (blue
full dots).

measured at the end of the cycles. From the figure it can be

clearly observed that A6 for the titanium sample shows the

larger values.

Dependence of the amplitude of the 6th harmonic
on free oscillation amplitude
Figure 7a shows the evolution of A6 as a function of the free

oscillation amplitude as determined experimentally with nomi-

nally 26 N/m cantilevers. The experimental points (full black

circles) correspond to the mean A6 values obtained from the av-

erage of a full image acquisition of the 6th harmonic, in analogy

to the experiments described in Figure 5. The points have been

fitted to the G function from Equation 4. The nearly linear be-

haviour agrees with the predictions shown in Figure 2c and

strongly suggests that the tip radius has not changed during the

measurements, since otherwise the behaviour of A6 would have

been nonlinear, with a slope increasing for increasing A1 values.

In addition, Figure 7b shows the evolution of A6 as a function

of sequentially acquired images using softer cantilevers

(kc ≈ 3 N/m), where both A1 and Asp have been intentionally

varied during the experiment. Note that here A6 increases for in-

creasing A1 values, as observed in Figure 7a, and that for a par-

ticular couple of A1 and Asp values, A6 increases due to tip wear,

and thus to an increase in tip radius.

Note the higher A6 values in Figure 7b, as compared to those in

Figure 7a for similar A1 values. This is essentially due to the

softer cantilevers used in Figure 7b, an effect described in

Figure 3.

Conclusion
Based on numerical simulations using the VEDA code we have

proposed a functional dependence of the amplitude of the 6th

harmonic of rectangular cantilevers on the tip radius, sample’s

Young’s modulus, free oscillation amplitude and cantilever

force constant. The 6th harmonic has been chosen because it is

in close resonance with the 2nd flexural mode, leading

to observable signals, and because its frequency is within the

reach of the control electronics used in the experiments. The

outcome of the simulations is that the 6th harmonic can be ana-

lytically expressed by the product of four identical decoupled

gun-shaped functions, each one associated with a specific pa-

rameter and with its own coefficients. Thus, the partial evolu-

tion for a particular parameter can be traced using this universal

behaviour.

The simulations have been validated with AFM experiments

using rectangular cantilevers in the 3–45 N/m range and differ-

ent samples in the 2–345 GPa range. The predicted trends are

well reproduced by the experiments. As we can notice from the

different trends, the 6th harmonic is most sensitive to changes

in tip radius for values of tip radius below ca. 10 nm and Young

modulus below ca. 20 GPa. If we consider the method for

implementing tip radius real time monitoring, this will be more

effective when sharp (new) tips are imaging stiff samples.

Instead, in order to measure the surface Young modulus the

modelling shows that the best results will be obtained using

larger tip radius (10–15 nm) in order to have an almost constant

radius-dependent contribution.

So far the results are only qualitative. In order to obtain trust-

worthy predictions, a more precise and more accurate calibra-
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tion of the cantilever is still necessary. The performed simula-

tions might also be improved including parameters which could

be varied and measured experimentally in order to refine the

method and make the results of the simulations more compa-

rable to the experimental ones. The mathematical tool that we

present here based on gun-shaped functions allows to identify

the optimal conditions to obtain information about the proper-

ties of materials from the harmonic response in non-contact

dynamic modes.

Simulations and Experimental Details
Simulations
Simulations have been performed using the Virtual Environ-

ment for Dynamic AFM (VEDA) open code, which takes into

account the dynamics of oscillating rectangular cantilevers with

multiple eigenmodes [16]. The frequencies, stiffness and quality

factors of the 2nd flexural eigenmode have been approximated

by the known relationships 6.27f, 6.272kc and 6.27Q, respec-

tively, corresponding to a massless tip [29]. As mentioned

above, we have used the DMT model to describe the tip–sur-

face interaction and the tip has been approximated by a hemi-

sphere with a well-defined radius R. For simplicity neither

viscoelastic nor capillary forces have been considered. The

negligible contribution of viscoelastic forces in PS with 25 N/m

cantilevers is discussed in the Supporting Information File 1

(see Figure S3).

Experimental
AFM experiments have been performed with a Bruker DIMEN-

SION ICON instrument hosted in a homemade controlled

humidity environment with Nanoscope V control electronics.

Commercial rectangular microfabricated silicon cantilevers with

ultrasharp silicon tips (R < 10 nm) have been used with the

following nominal values: OTESPA (Bruker) with kc ≈ 44 N/m

and 300 ≤ f0 ≤ 400 kHz, OTESPA-R3 (Bruker) with

kc ≈ 25 N/m and 200 ≤ f0 ≤ 400 kHz, and PPP-FMR (Nanosen-

sors) with kc ≈ 3 N/m and 70 ≤ f0 ≤ 80 kHz, where f0 stands for

the resonance frequency. The amplitudes of the higher

harmonics were registered using an internal lock-in amplifier.

In general, such amplitudes will depend on the selected working

frequency. The effect of working slightly off-resonance is dis-

cussed in Supporting Information File 1, Figure S4. The estima-

tion of the An magnitudes (in nm) has been obtained by calibra-

tion of the laser-detector sensitivity, which is about 100 nm/V,

as determined from force curves. Humidity was kept below

20%. The z motion of the piezoscanner has been calibrated

using virtual standards [30]. Due to the value of the funda-

mental resonance frequency of the employed cantilevers, we

have focused in the resonance of the 2nd flexural mode and the

6th harmonic, which frequencies are below 2.5 MHz, since the

control electronics is limited to 5 MHz.

Supporting Information
Supporting Information File 1
Simulated evolution of the phase of the 6th harmonic as a

function of tip radius. Correlation between the amplitude of

the 6th harmonic and the tip radius obtained from gold

nanoparticles dispersed on mica. Simulated evolution of the

amplitude of the 6th harmonic as a function of the z

distance. Off-resonance experimental approach curves.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-8-90-S1.pdf]
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