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SUMMARY 

 

In mining, modelling of the deposit geology is the basis for many actions to be 
taken in the future, such as predictions of quality attributes, mineral resources and 
ore reserves, as well as mine design and long-term production planning. The 
essential knowledge about the raw material product is based on this model-based 
prediction, which comes with a certain degree of uncertainty. This uncertainty 
causes one of the most common problems in the mining industry, predictions on a 
small scale such as a train load or daily production are exhibiting strong 
deviations from reality. Some of the most important challenges faced by the lignite 
mining industry are impurities located in the lignite deposit. Most of the times, 
these high ash values cannot be captured completely by exploration data and in 
the predicted deposit models. This lack of information affects the operational 
process. 

The current way of predicting coal quality attributes is using geostatistical 
interpolation or simulation methods to create resource models based on 
exploration data, which are very precise but separated by large distances and 
represent extremely small volumes. Mining companies have lately started to 
benefit from the recent developments in information technology, including online-
sensor technologies for the characterization of materials, measuring the equipment 
efficiencies or defining the location of the equipment. KOLA (an abbreviation for 
Kohle OnLine Analytics) and RGI (radiometric measuring system) online-sensor 
measurements provide two different measurement systems that have recently 
been introduced to assess the components of the produced lignite. The precision of 
the data is lower than exploration data, which are analyzed in laboratories. 
However, these data are much more dense than exploration data and provide 
additional information about the coal attributes. 

To benefit from this available dense data, a closed-loop concept for mining has 
recently been introduced. To enable fast online interpretation of online sensor data 
combined with an automated near-real time updating of the resource model, a 
new algorithmic approach was developed. This extends current practice in lignite 
mining, where data are analyzed off-line in a laboratory. Reconciliation exercises 
to integrate these data are done regularly, however the current practice is still 
intermittent involving time laps often exceeding weeks or months.  

The proposed new concept offers to continuously fuse the online-sensor data 
measured from the production line into the resource or grade/quality control 
model and continuously provides locally more accurate estimates. The concept has 
been applied in two industrial coal mines with the aim of identifying local 
impurities in a coal seam and to improve the prediction of coal quality attributes in 
neighbouring blocks. This dissertation focuses on the development, validation and 
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application of the real-time resource model updating framework in a real mining 
environment. 

In Chapter 2, a detailed problem specification is provided for each case study, 
which will be presented in the following chapters in order to prove the developed 
concept. The problem specification provided in this chapter includes the following 
information: case description (problems in coal quality control, mining operations 
overview etc.), geological formation of the lignite seams and the available sensor 
data. 

In Chapter 3, the theory behind the real-time resource model updating 
framework is presented. The framework is derived from the Ensemble Kalman 
Filter approach for applications in coal production. 

In Chapter 4, a 2D case study is performed in a fully controllable environment 
for validation purposes. Further, the approach is benchmarked against a proven 
alternative approach. 

In Chapter 5, a demonstration in lignite production is given in order to identify 
the impurities (marine and fluvial sands) in the coal seams which should lead to 
better coal quality management. In this dissertation, this is done by mainly 
focusing on the ash content in the deposit. High ash values in coal seams, which 
are caused by the impurities, are greatly affecting the operational process. In this 
chapter, the application in coal mining is limited to a case where online 
measurements were unambiguously trackable due to a single extraction face being 
the point of origin for the produced material. A significant improvement is 
demonstrated which leads to better coal quality management. Furthermore, the 
sensitivity of the real-time resource model updating framework’s performance 
with respect to different parameters for optimal application is investigated. Main 
parameters include the ensemble size, localization and neighbourhood strategies 
and the sensor precision. 

In Chapter 6, another demonstration in lignite production, this time in a 
different mine, is presented. The challenge tackled in this chapter is the updating 
of local coal quality estimates in different production benches, based on 
measurements of a blended material stream. Moreover, for a practical application 
of the updating framework, a simple method for generating prior ensemble 
members, based on block geometries defined in the short-term model and the 
variogram, is presented. This method allows for a fast, semi-automated and rather 
simple generation of prior models instead of generating a fully simulated deposit 
model using conditional simulation in geostatistics. Finally, in order to prove that 
the developed framework continuously improves the future predictions with any 
kind of prior model, one last validation case study is illustrated in this mine by 
applying hypothesis testing. 

In Chapter 7, the added value of the real-time resource model updating concept 
is demonstrated by using a value of information (VOI) analysis. The expected 
economical and environmental benefits of additional information (due to the 
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integration of the online-sensor measurements into the resource model) are 
compared to a case where there is no additional information integrated into the 
process.  

In Chapter 8, the technological readiness level and industrial applicability of 
the real-time resource model updating framework is discussed. 

Finally, in Chapter 9, main concluding remarks are provided, as well as 
recommendations for future research. 
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SAMENVATTING 

 

In mijnbouw is het modelleren van de afzettingsgeologie de basis voor vele 
handelingen die in de toekomst plaats zullen vinden, zoals het voorspellen van 
kwaliteitskenmerken, minerale grondstofvoorkomens en ertsreserves, alsook het 
creëren van een mijn-ontwerp en lange-termijn productieplanning. De essentiële 
kennis van het grondstoffenproduct is gebaseerd op deze modelgebaseerde 
voorspelling, die een zekere mate van onzekerheid kent. Deze onzekerheid 
veroorzaakt een van de meest voorkomende problemen in de mijnbouwindustrie: 
voorspellingen op kleine schaal zoals een treinlading of dagelijkse productie 
vertonen sterke afwijkingen van de realiteit. Een van de meest belangrijke 
uitdagingen waarmee de bruinkool-mijnbouwindustrie wordt geconfronteerd zijn 
onzuiverheden die aanwezig zijn in de bruinkoolafzetting. Meestal kunnen deze 
hoge as-waarden niet volledig gevat worden door exploratiedata en in de 
voorspelde afzettingsmodellen. Dit gemis aan informatie heeft belangrijke 
weerslag op de operationele processen. 

De huidige wijze van het voorspellen van kwaliteitskenmerken van bruinkool 
is het gebruiken van geostatistische interpolatie- of simulatiemethoden om 
modellen van de afzetting te creëren die gebaseerd zijn op exploratiedata, welke 
heel nauwkeurig zijn, maar gescheiden door grote afstanden, en welke extreem 
kleine volumes representeren. Mijnbouwmaatschappijen zijn pas geleden gaan 
profiteren van de recente ontwikkelingen in informatietechnologie, met inbegrip 
van online-sensor technologieën voor de karakterisatie van materialen, welke de 
instrumentariumefficiëntie meten of de locatie van de instrumenten definiëren. 
KOLA (een afkorting van Kohle OnLine Analytics) en RGI (een radiometrisch 
meetsysteem) online sensor metingen voorzien in twee verschillende 
meetsystemen, die recentelijk geïntroduceerd zijn om de componenten van de 
geproduceerde bruinkool te beoordelen. De nauwkeurigheid van de data is lager 
dan de exploratiedata, welke zijn geanalyseerd in laboratoria. Daarentegen hebben 
deze data een veel grotere dichtheid dan exploratiedata en leveren deze 
additionele informatie over de kolenkenmerken. Om voordeel te halen uit deze 
beschikbare dichte data, is onlangs een gesloten-kringloop concept voor mijnbouw 
geïntroduceerd. Om snelle online interpretatie van online-sensordata mogelijk te 
maken in combinatie met een geautomatiseerde near-real time bijwerking van het 
model van de bruinkoolafzetting, is er een nieuwe algoritmische aanpak 
ontwikkeld. Dit breidt de huidige praktijk in bruinkoolmijnbouw, waar data 
offline geanalyseerd worden in een laboratorium, uit. Harmonisatie-exercities om 
deze data te integreren worden regelmatig uitgevoerd. Echter, in de huidige 
praktijk gebeurt dit nog altijd met tussenpozen, in tijdspannes welke vaak langer 
zijn dan weken of maanden.  
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Het voorgestelde nieuwe concept biedt continue samensmelting van de online-
sensordata, gemeten in de productie, en het grondstoffen- of gehalte-
/kwaliteitscontrole-model en voorziet continue in lokaal nauwkeurigere 
schattingen. Het concept is toegepast in twee industriële kolenmijnen met als doel 
plaatselijke onzuiverheden in de koollaag te identificeren, evenals het verbeteren 
van de voorspelling van de kwaliteitskenmerken van de bruinkool in naburige 
blokken. Deze dissertatie focust op de ontwikkeling, validering en toepassing van 
het real-time actualisatiekader van het grondstoffenmodel van de 
bruinkoolafzetting in een werkelijke mijnbouwomgeving. 

In Hoofdstuk 2 wordt een gedetailleerde specificatie gegeven voor elke case 
study, welke gepresenteerd zal worden in de volgende hoofdstukken, ten einde 
het ontwikkelde concept te bewijzen. De probleembeschrijving, welke wordt 
gegeven in dit hoofdstuk, bevat de volgende informatie: vraagstukbeschrijving 
(problemen in de kwaliteitscontrole van bruinkool, overzicht van de 
mijnbouwactiviteiten enz.), geologische informatie van de bruinkoollagen en de 
beschikbare sensordata. 

In Hoofdstuk 3 wordt de theorie van een real-time actualisatiekader van een 
grondstoffenmodel gepresenteerd. Het kader is afgeleid van de Ensemble Kalman 
Filter-benadering voor toepassingen in de kolenproductie.  

In Hoofdstuk 4 wordt omwille van validering een 2D case study uitgevoerd in 
een volledig controleerbare omgeving. Verder wordt de aanpak geijkt tegen een 
bewezen alternatieve aanpak.  

   In Hoofdstuk 5 wordt een demonstratie in bruinkoolproduktie gegeven om 
de onzuiverheden (mariene en fluviatiele zanden) in de koollagen te identificeren, 
hetgeen zou moeten leiden naar verbeterde koolkwaliteitsbeheersing. In deze 
dissertatie wordt dit gedaan door in hoofdzaak te focussen op het as-gehalte in de 
afzetting. Hoge as-waarden in kolenlagen, welke worden veroorzaakt door 
onzuiverheden, zijn van grote invloed op het operationele proces. In dit hoofdstuk 
is de toepassing in kolenmijnbouw beperkt tot één geval waarbij online metingen 
ondubbelzinnig traceerbaar waren, vanwege één enkel productiefront dat de 
oorsprong was van het geproduceerde materiaal. Een belangrijke verbetering 
wordt getoond, welke leidt naar betere kwaliteitsbeheersing van de kool. Voorts 
wordt de gevoeligheid van de prestatie van het real-time actualiseringskader van 
het grondstoffenmodel onderzocht met betrekking tot de verschillende parameters 
voor optimale toepassing. De belangrijkste parameters zijn de ensemblegrootte, 
lokalisatie en ‘neighbourhood strategies’ (omgevingsstrategieën) en de sensor 
precisie.  

   In Hoofdstuk 6, wordt weer een andere demonstratie in de 
bruinkoolproductie gepresenteerd, ditmaal in een andere mijn. De uitdaging die in 
dit hoofdstuk wordt aangegaan is de actualisering van lokale kwaliteitsschattingen 
van kool in verschillende ‘production benches’ (productiebanken), gebaseerd op 
metingen aan een gemengde materiaalstroom. Bovendien wordt een eenvoudige 
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methode gepresenteerd voor een praktische toepassing van het 
actualiseringskader, voor het genereren van vorige ensemble-members, gebaseerd 
op blokgeometrieën welke zijn gedefinieerd in het korte- termijn model en het 
variogram. Deze methode staat een snelle, semiautomatische en tamelijk 
eenvoudige generering toe van vorige modellen, in plaats van de generering van 
een volledig gesimuleerd afzettingsmodel met gebruikmaking van 
voorwaardelijke simulatie in geostatistiek. Uiteindelijk, om te bewijzen dat het 
ontwikkelde kader continue de toekomstige voorspellingen verbeterd met wat dan 
ook voor een voorafgaand model, wordt in deze mijn een laatste validatie-case 
study geïllustreerd door het testen van de hypothese.  

   In Hoofdstuk 7, wordt de toegevoegde waarde van het real-time 
grondstoffenmodel-actualisatieconcept gedemonstreerd door het gebruiken van 
“value of information” (VOI) analyse. De verwachte economische en 
milieukundige voordelen van additionele informatie (als gevolg van de integratie 
van de online-sensor metingen in het grondstoffenmodel) worden vergeleken met 
een geval waar er geen additionele, in het proces geïntegreerde, informatie is.  

In hoofdstuk 8 wordt het ‘technological readiness level’ (niveau van 
technologische praatheid) en de industriële toepassing van het real-time 
actualisatiekader van het grondstoffenmodel besproken. 

Ten slotte worden in Hoofdstuk 9 de belangrijkste conclusies gepresenteerd, 
evenals aanbevelingen voor toekomstig werk. 
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1.1. BACKGROUND INFORMATION 

In mining, modelling of the deposit geology is the basis for many actions to be 
taken in the future, such as predictions of quality attributes (e.g. in coal or iron 
ore), mineral resources and ore reserves, as well as mine design and long-term 
production planning. The essential knowledge about the raw material product is 
based on this model based prediction, which comes with some degree of 
uncertainty. This uncertainty causes one of the most common problems in the 
mining industry, predictions on a small scale such as a train load or daily 
production exhibit strong deviations from reality. 

Some of the most important challenges faced by the lignite mining industry are 
impurities (such as marine and fluvial sand intrusions) located in the lignite 
deposit. These impurities are indicated in the coal seams as high ash1 values (e.g. 
more than 15% wet ash). Most of the times, these high ash values cannot be 
captured completely by exploration data and in the predicted deposit models. This 
lack of information affects the operational process significantly. 

The current method of predicting coal quality attributes is using geostatistical 
interpolation or simulation methods to create resource models based on 
exploration data. These are very precise but separated by large distances and 
represent extremely small volumes. Mining companies have recently started to 
benefit from the recent developments in information technology, including online-
sensor technologies for the characterization of materials, measuring the equipment 
efficiencies or defining the location of the equipment. KOLA (an abbreviation for 
Kohle OnLine Analytics) and RGI (radiometric measuring system) online-sensor 
measurements [1] provide two different measurement systems that have recently 
been introduced to assess the components of the produced lignite. The precision of 
the data are lower than exploration data, which are analyzed in laboratories. 
However, these data are much more dense than exploration data and provide 
additional information about the coal attributes. 

To benefit from this available dense data, a closed-loop concept for mining has 
recently been introduced [2]. To enable fast online interpretation of online sensor 
data combined with an automated near-real time updating of the resource model, 
a new algorithmic approach was developed. This extends current practice in 
lignite mining, where data are analyzed off-line in a laboratory. Reconciliation 
exercises to integrate these data are done regularly, however the current practice is 
still intermittent involving time laps often exceeding weeks or months. The 
proposed new concept offers to continuously fuse the measured sensor data with 

                                                           
1 The ash content of coal is one of the quality parameters of coal along with calorific value, mois-

ture, sulphur content and etc. The ash content directly affects the heating value of the coal therefore coal 

with higher ash percentages is of lower quality than coal with lower ash percentages. 
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the resource model by using sequential resource model updating methods that 
originate from data assimilation. 

A simple geostatiscal re-modelling may not be sufficient for sensor-based 
updating for several reasons. The first reason is that the online sensors might 
measure blended material originating from different benches/blocks. To 
unambiguously track back and update, a filter solution is required. The second 
reason is that the quality of the online sensor data differs from exploration data 
and may require co-simulation procedures including models of co-regionalization, 
which adds complexity. The third reason is the change of support, which has to be 
taken into account due to the different reference volumes of resource blocks and 
sensor measurements. The fourth and most important reason is that linking the 
measurement with the resource block location to be updated is not 
straightforward. Sensors are installed at several locations along the extraction 
chain. To link measurements with blocks, a forward predictor is needed. This can 
be, for example, a material tracking system. The reasons mentioned above provide 
the motivation to explore alternative approaches instead of simple re-estimation.  

Data assimilation methods offer the tools for fast incorporation of observations 
in order to improve predictions. The definition of data assimilation translates in 
mining as the process of combining the sensor measurement data with a prior 
estimate of the resource model, in order to produce a more accurate posterior 
estimate. Methods of data assimilation have found many successful applications in 
various fields. [3-8] examined and applied different data assimilation methods on 
dynamic atmospheric models with the aim of improved numerical weather 
forecasting. Applications to oceanographic problems, such as estimation and 
prediction of ocean eddy fields, wave propagation etc., [9-16] deepened and 
broadened the understanding of ocean circulation on regional, basin and global 
scales. Similar to this research, [17] successfully combined geostatistics and data 
assimilation methods and applied it in a estuarine system. More recently in 
reservoir engineering [18-21] applied a similar framework of resource model 
updating approach. The mentioned applications are all performed on 
nonstationary, dynamical models due the nature of their research fields. The initial 
difference in application of the resource model updating concept among others 
comes from the requirement of the stationary, non-dynamic models. 

The first investigation [22] proved that the approach works well within a 
synthetic case study under a variation of several control parameters (number of 
excavators, precision of the sensor, update interval, measurement interval, 
extraction mode/production rate). Wambeke and Benndorf [23] extended the 
framework for practical application, including the handling of attributes and 
measurements showing a non-Gaussian distribution, dealing with localization and 
inbreeding issues, avoiding spurious correlations and increasing the 
computational efficiency. Yet, so far, the amount of literature is small, particularly 
when considering the industrial application of the developed concept. 
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1.2. MOTIVATION AND SCOPE 

One of the initial aims of this dissertation is to provide a tailored method. This 
tailored method is adapted to update coal quality attributes in a continuous 
mining environment and should improve the resource model accuracy. Providing 
more accurate deposit models will lead to an improvement in the detection of 
impurities (high ash contents) in future production areas. As a result, this 
approach will allow quicker reactions to gained knowledge, which in turn allows 
for quick changes in mine planning and operational decisions.  

Moreover, further studies are required to understand the effects of the used 
parameters during the full scale application, to identify the sensitivity of the 
results and to explore the performance in depth. For this reason, an investigation 
on the performance of the resource model updating framework with respect to the 
main parameters, which are the ensemble size, localization and neighborhood 
strategies and the sensor precision is required. Findings of this research are 
expected to assist in future applications of the resource model updating concept by 
making it easier to achieve optimum performance.  

In many mining operations material quality control measurements are taken at 
central locations in the downstream process, such as, on a central conveyor belt or 
from the trains that are loaded after the coal blending yard. In this case the 
measurements represent a blend or a combination of material originating from 
multiple extraction faces. The measurement of one sample cannot be tracked back 
to the origin of the material. However, a collection of multiple measurements over 
time would have the potential solve this unambiguity. In this contribution the 
updating framework is applied while multiple excavators are producing at 
different benches. This is done in order to understand the updating performance 
when feeding the blended coal observations back to multiple excavator locations 
from where the production originates. 

A fourth aspect discussed in this dissertation is an implementation of the 
resource model updating framework in an operational environment with a focus 
on practicality. The resource model updating concept is based on EnKF, which 
requires ensemble members (realizations). These can be obtained by conditional 
simulation [24-27], which can be a time consuming effort, requiring expert 
knowledge. For operational implementations, the process should be rather simple 
and robust. Therefore, the aim is to investigate whether realizations of a prior 
model can be obtained rather simple and without loss of updating performance. 

Thus, this dissertation aims to present a new application of the framework in a 
full scale lignite production, where the initial resource model generation is 
automated based on a short-term model. This would immediately increase the 
production efficiency in a real mining environment, by simply giving the 
opportunity to react on the changes of the resource model with newly gained 
information. Moreover, using the real-time resource model updating framework 
would also decrease the frequency of material misallocation. An improved 
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resource model reduces the amount of actual lignite being incorrectly allocated to 
the waste dump and similarly, a smaller amount of actual waste send to the 
stockpile. 

This dissertation uses two case studies from actual lignite mining environments 
in order to achieve this aim. 

In summary this research has the following objectives: 

1. Providing a tailored method, which was adapted to update coal quality 
attributes in a continuous mining environment, in order to improve the 
resource model accuracy.  

2. Applying the real-time resource model updating framework for a full 
scale lignite production environment. 

3. Investigating the resource model updating framework performance with 
respect to main parameters. 

4. Applying the real-time resource model updating framework while the 
sensor is observing a blend of coal resulting from multiple excavators. 

5. Simplifying and semi-automating the updating framework for easier 
application in a real mining environment.  

6. Evaluation of the added value by application of the real-time resource 
model updating framework. 

This dissertation presents different applications of the real-time resource 
model updating framework during coal mining operations. However, the 
developed methodology could have a much wider scope of application. The entire 
mining industry could benefit from the application of the real-time resource model 
updating framework in other commodities and ore body styles, since the use of the 
framework leads to a direct increase in cost reductions.  
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1.3. OUTLINE 

This dissertation is divided into 9 chapters and is organized in the following 
way: 

Chapter 2 provides a detailed problem specification for each case study, which 
will be presented in the following chapters in order to prove the developed 
concept. The problem specification provided in this chapter includes the following 
information; case description (problems in coal quality control, mining operations 
overview etc.), geological formation of the lignite seams and the available sensor 
data. 

Chapter 3 presents the principles behind the resource model updating 
framework, which is developed for a specific application in continuous mining 
and the mathematical formulation. 

Chapter 4 illustrates a 2D validation case study in a fully controllable 
environment. Findings of the study are then presented. 

Chapter 5 demonstrates an industrial application in Garzweiler mine, 
Germany. The application in continuous mining test case is illustrated and 
sensitivity analysis experiments are performed. Findings of the study are then 
presented. Key findings of the study are discussed and summarized. 

Chapter 6 demonstrates an industrial application in Profen mine, Germany. 
This chapter discusses three different topics. First, it tests the performance of the 
resource model updating framework while the sensor is observing a blend of coal 
resulting from multiple excavators. The second topic is about simplifying and 
semi-automating the framework for an easier application in a real mining 
environment. The final topic is about applying hypothesis testing on the real case 
to prove that the developed framework continuously improves the future 
predictions. 

Chapter 7 answers the following question: ‘What is the value of integrating 
real-time production measurements into the resource model and executing an 
optimized mine plan, considering economical and environmental aspects?’, by 
performing a case study. 

Chapter 8 provides a discussion on the technological readiness level and 
industrial applicability of the real-time resource model updating framework. 

Finally, in Chapter 9, an overview of the main conclusions, as well as 
recommendations and future research possibilities are described. 
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This chapter provides a detailed problem specification for each case study, which 

will be presented in the following chapters in order to prove the developed concept. The 

problem specification provided in this chapter includes the following information; case 

description (problems in coal quality control, mining operations overview etc.), geological 

formation of the lignite seams and the available sensor data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been adapted from: 

Yüksel, C., Thielemann, T., Wambeke, T., & Benndorf, J. (2016). Real-Time Resource Model Updating 
for Improved Coal Quality Control Using Online Data. International Journal of Coal Geology. doi: 
http://dx.doi.org/10.1016/j.coal.2016.05.014 
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2.1. INTRODUCTION 

This dissertation demonstrates the developed concept in two different case 
studies. In both of the case studies the challenge originates from the complicated 
geology that leads to geological uncertainty associated with the detailed 
knowledge about the coal deposit, in particular with coal quality parameters. This 
uncertainty causes deviations from expected process performance and affects the 
sustainable supply of lignite to the customers. The aim is to improve the 
knowledge over the coal deposit and increase the process performance by appling 
a resource model updating framework.  

The first case study is performed in Garzweiler mine, which is operated by 
RWE Power AG, Germany. In this case study, the most important challenges are 
marine and fluvial sand intrusions located in the lignite deposit. Most of the time, 
these intrusions cannot be captured completely by exploration data and in the 
predicted deposit models. This lack of information affects the operational process 
significantly. In this case study, the KOLA system is being used as the sensor data 
and it measures the material flow reasoning from one excavator. 

The second case study is performed in Profen mine, which is operated by 
MIBRAG mbH, Germany. In this case study, the geology of the field is rather more 
complex, including multiple split seams with strongly varying seam geometry and 
coal quality distribution. Moreover, in this case study, lignite production occurs 
with multiple excavators at different benches. Thus, this case study presents an 
extension to the first case study, where characteristics from blended material, 
originating from two or three simultaneously operating extraction faces, are 
measured. The challenge tackled in this case study is the updating of local coal 
quality estimates in different production benches based on measurements of a 
blended material stream. A second aspect discussed here is the practical 
implementation in an operational environment. The resource model updating 
concept is based on EnKF, which requires ensemble members (realizations). These 
can be obtained by conditional simulation [24-27], which can be a time consuming 
effort, requiring expert knowledge. For operational implementations, the process 
should be rather simple and robust. Therefore, the aim is to investigate whether 
realizations of a prior model can be obtained rather simple and without loss of 
updating performance. 

To summarize, the real time resource model updating concept is demonstrated 
in the Garzweiler Mine, where the KOLA system measures the material flow 
originating from one excavator (presented in Chapter 5) and in the Profen Mine, 
where the RGI sensor measures the blended material originating from multiple 
excavators (presented in Chapter 6). 
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2.2. CASE STUDY – 1: GARZWEILER MINE 

2.2.1.  Case Description 

The defined study area for this case study is the Frimmersdorf lignite seam in 
Garzweiler mine, which is operated by RWE Power AG. The necessary data 
related to this research is provided by RWE Power AG.  

This case study is a benchmark in a historical mined out area of about 1.5 km2, 
where there are about 71 drill holes. The study area focuses on one bench, where 
there is one excavator that executes the mining operations of the area. The 
extraction sequence is reconstructed based on historical production data while 
KOLA data, which are assumed to represent the reality, is used for the evaluation 
of results. 

2.2.2.  Development of Impurities in Garzweiler Mine  

2.2.2.1.  Geological Formation of the Lignite Seams 

In Tertiary (Oligocene) times, the subsidence of the Central Graben in the 
North Sea created the Lower Rhine Embayment (LRE) as southernmost extension 
of the Central Graben [28]. A new sedimentary basin was created. The LRE 
contains up to 1,600 m of these Oligocene to Pleistocene siliciclastic sediments with 
intercalated lignite attaining a thickness of up to 100 m [29]. The lignite is of 
considerable economic importance and has been exploited in open cast mines and 
near-surface operations since the 18th century, at locations where the seams were 
easily accessible [30]. Since then, the exploitation of the coal by RWE Generation 
SE - formerly Rheinbraun AG – is forming a vital basis of German power supply.  

Sedimentation in the LRE was mainly influenced by fault block tectonics and 
variations in sea level. In Upper Oligocene, a 70 Ma long phase of high sea levels 
came to an end. Short term sea level fluctuations became typical [31]. As a 
consequence, sequences of marine sands (representing a sea level high) 
intercalated with terrestrial silts, clays and lignite seams (sea level low) were 
sedimented. 18 Ma ago, in lower Miocene times (Burdigalian) the uplift of the 
surrounding highlands named “Rhenish Schiefergebirge” relative to its foreland 
slowed down. This decreased the sedimentary flows being accumulated in the 
LRE. At the same time, the climate warmed up. The temperature of North Sea 
shallow waters rose to 16 °C [32]. Higher precipitation led to a subtropical climate 
and rising groundwater tables [33]. Vegetation could gain ground extensively and 
left behind peat, which gradually was converted into lignite.  

The place of this research area, the mine Garzweiler, was part of the Venlo 
block. During two marine regressions, 17 and 15 Ma ago, the deposition of the 
later lignite seams Morken (named 6A after [34]) and Frimmersdorf (named 6C) 
took place. They were separated by the marine Frimmersdorf sands (named 6B). 
Additionally, as the area of the mine Garzweiler was close to the shore line during 
that period, the seam Frimmersdorf (6C) faced numerous marine sand intrusions. 
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These irregular sand partings within 6C and their predictability are part of this 
research project described here. On top of the seam 6C, the marine Neurath sands 
(named 6D) were sedimented similar to today’s Wadden Sea sedimentation. On 
top, the seam Garzweiler (6E) was formed during a period of marine regression. In 
upper Miocene times, the climate cooled down gradually and the LRE underwent 
a faster downlift. This enhanced the downward gradient and enforced the 
competence of rivers from the South. Thick fluvial and limnic sediments were 
deposited, named horizons 7 and 8 after [34]. Their clastic burden led to an easy 
consolidation of the peat to form lignite.  

2.2.2.2.  Development of Sand Intrusions in Seam 6C, Mine Garzweiler 

The Garzweiler open cast mine is located west of Grevenbroich and is moving 
westward in the direction of Erkelenz. The mine mainly touches Rhein county 
Neuss, Rhein-Erft county and Heinsberg county. The lignite is deposited in three 
seams which together are 40 m thick on average. The coal lays some 40 to max 
210 m below the earth's surface. 

The Frimmersdorf lignite seam 6C contains multiple sand intrusions (Figure 
2.1). The shape and size of these sand partings are irregular and both 
characteristics are showing a large variability. However, there is not a common 
idea about the origin of the sand partings. Several possible scenarios for their 
origin are shortly described below. The first three scenarios are describing a syn-
sedimentary process, as opposed to the fourth scenario, which describes a post-
sedimentary process:  

 An environment of marine transgression  

 A rising sea level led to relatively homogeneous sand bodies in the peat. 
This marine environment arose slowly. Hence, sand partings developed 
over a longer period of time.  

 Accidental injection of heterogeneous sand bodies 

 Rough weather and wild sea conditions could accidentally inject a volume 
of sand within the peat. These events can happen quickly; a daily or 
hourly event may suffice. Currently, these kinds of events are seen at the 
German coast near Wilhelmshaven.  

 An environment of marine regression and increasing fluvial impact 

 A decreasing sea level could strengthen the impact of fluvial conditions. 
"Crevasse splay" - a situation of a broken embankment causing flooding in 
the adjacent swampy area - could lead to sand partings within the lignite. 

 Coalification 

 The geochemical process of coalification can be simplified by the 
following equation: 

 peat + water + CO2 = lignite  
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 Here, incidental CO2 release could be accompanied by large volume 
relocation. This event could remobilize 6C sand or cause an intrusion of 
6D sand into the 6C lignite. 

To better predict the quality of lignite to be produced, the genesis of sand 
partings is rather of second importance. For an improved coal quality control, 
more important is the combination of data of the existing geological model with 
production data, GPS data of the excavator’s position at one time and data of 
analytical results of the coal composition. The theoretical formulization of the 
mentioned data fusion is provided in Chapter 3. Application of this fusion in the 
Frimmersdorf lignite seam will be provided in Chapter 4. 

 
Figure 2.1: The ‘trappy’ sand of seam Frimmersdorf (Source: RWE) 

2.2.3. Available Sensor Data 

There are two different online-sensor measurement systems available to 
characterize the lignite produced from the Frimmersdorf seam.  

The KOLA - an abbreviation for Kohle OnLine Analytics – system [1] is the first 
data type available for a more extensive modeling of the sand parting in the 6C 
Frimmersdorf lignite seam. It applies X-Ray diffraction in order to accurately 
assess the components of the produced lignite. The analyzed components are inter 
alia iron, sulfur, potassium, calcium and - of importance in the context of this 
research - the ash content of the produced lignite. The Garzweiler opencast mine 
operates multiple KOLA measuring stations, of which two are analyzing the coal 
from the Frimmersdorf lignite seam. 
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The second available source is the radiometric measuring system of RGI data 
(Figure 2.2) [1]. This system allows an online determination of the ash content of 
the mass flow directly on the conveyor belt, without requiring any sampling or 
sample processing. It is installed directly on the excavator that produces lignite 
from the Frimmersdorf seam and, consequently, the ash content of the produced 
lignite can be provided by online values during the process of monitoring and 
controlling the production process. However, calibration of this system is strongly 
dependent on the composition of the coal.  

The presented full case study in Chapter 5 only used the KOLA measurement 
data as the representative measurement of the produced lignite due to the 
calibration problems of the RGI measurements. 

 

Figure 2.2: Radiometric sensor measurement from excavator 285 (Source: RWE)  
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2.3. CASE STUDY – 2: PROFEN MINE 

2.3.1.  Case Description 

The case study is performed on a lignite mining operation in Profen mine, 
Germany, where the geology of the field is complex, including multiple split 
seams with strongly varying seam geometry and coal quality distribution (Figure 
2.3). Profen mine is operated by MIBRAG mbH. 

 
Figure 2.3: Complicated geology in the lignite mine 

For this case study, which aims to demonstrate potential improvement, the 
target area has been defined in an already mined out area of 25 km2, where there 
are about 3000 drill holes. Mining operations are executed by six excavators, each 
working on a different bench. Among these six excavators, only five of them are 
continuously working on a lignite seam. Generally, the maximum number of 
excavators that are working at the same time is three. For this reason, the case 
study will apply cases where either only one excavator is working, or two 
excavators are working or three excavators are working at the same time. 

The produced materials are being transported through conveyor belts. All 
conveyor belts merge at a central conveyor belt leading to the coal stock and 
blending yard, which is further connected to a train load. Figure 2.4 presents the 
mentioned six benches in black lined blocks, conveyor belts in blue lines, drill 
holes as green points. The orange point represents the online measuring system 
(RGI), which was initial described in Chapter 2 (Figure 2.6). 



PROBLEM SPECIFICATION 

14 

 

 
Figure 2.4: Production benches, belt system and drill holes on the study area  

2.3.2.  Development of Impurities in Profen Mine  

2.3.2.1.  Regional Geology, External Form of the Deposit [35] 

In terms of regional geology, the mining areas at Profen and Schleenhain are 
located in the Weiße Elster river basin. The deposit was formed by epirogenic-
subrosive processes. Almost all of the pre-Tertiary subsoil consists of Zechstein 
carbonate and anhydrit rock. Subrosion processes which differed in extension and 
time before and during the Tertiary and Quaternary produced large thickness 
fluctuations and subsidence in all Tertiary beds. The three lignite seams in the 
deposit are: 

 the Saxon-Thuringian underlying split (seam 1), age - 38 million years 

 the Thuringian main seam (seam 23), age - 36 million years 

 the Böhlen overlying split (seam 4), age - 33 million years 
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Figure 2.5: Profen open-cast mine standard section, Schwerzau field (Source: 
MIBRAG) 

Particular at the Schwerzau mining field, seam 1 has been partly reduced or 
completely removed by glacial fluviatil effects. In normal stratification, the seam 1 
is 2 - 5m thick, in depressions about 40 m, the max. being 50 m. Seam 1 is mostly 
split in Seam 1U and Seam 1O. 

Above seam 1 there is an approx. 20 m thick parting of older Zeitz river sand 
and Luckenau clay. 

Seam 23 is unsplit at the mining field Schwerzau with an average thickness of 
about 12 m and characterized mostly by postgenetic subrosion subsidence which 
has formed beds. In this field, the originally deposited seam 23 was almost 
completely removed in its western part by the Döbris channel, resulting in larger 
seamless areas. The average thickness is about 8 m. 

Next are the Domsen sands with thicknesses between 4 m and 20 m. 

Seam 4 in the mining fields was not evenly spread originally and spared from 
erosion only in postgenetic subrosion structures and is mostly split into two layers 
(4O and 4U) by a clayey parting. 
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The superposed marine sediments of the Rupelian series also occur in the a.m. 
subsidence structures. 

The Quaternary sediment sequence starts with early Elster ice period gravel, 
followed by deposits of Leipzig banded clay as a basis for the Elster ground till. 
Except for the Domsen field, the early Saale glacial gravel terrace of the Weiße 
Elster river covers most of the mining field. To the south, the erosion level partly 
extends below seam 1. 

Whereas Böhlen banded clay appears sporadically, the ground till from the 
icing of the Saale river is more widespread. The last sediment is a mantle of 
Weichsel glacial period loess which is up to 10 m thick. 

2.3.3. Available Sensor Data 

Similarly, in the Profen Mine, the RGI online-sensor measurement system is 
available to characterize the produced lignite quality [36]. However, in this mine, it 
is installed on the central conveyor belt just before the coal stock and blending 
yard (Figure 2.6). This system allows an online determination of the ash content of 
the blended mass flow directly on the conveyor belt, without requiring any 
sampling or sample processing.  

For demonstration purposes, the presented full case study in Chapter 6 
assumes the RGI values to be accurate. 
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Figure 2.6: Radiometric sensor measurement device, installed on the conveyor belt, 
measuring blend of coal resulting from multiple excavators, just before the stock 
Pile (Source: MIBRAG) 
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3. METHODOLOGICAL APPROACH  

 

This chapter provides the theoretical background of the adopted algorithmic approach, 
which allows for full utilization of the available online data to improve prediction of 
(impurities related) ash content. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been adapted from: 

Section 3.1 and Section 3.2: Yüksel, C., Thielemann, T., Wambeke, T., & Benndorf, J. (2016). Real-Time 
Resource Model Updating for Improved Coal Quality Control Using Online Data. International Journal 
of Coal Geology. doi: http://dx.doi.org/10.1016/j.coal.2016.05.014 

Section 3.3: Yüksel, C., Benndorf, J., Lindig, M., & Lohsträter, O. (2017) Updating the coal quality 
parameters in multiple production benches based on combined material measurement: A full case 
study. International Journal of Coal Science & Technology. 
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3.1. INTRODUCTION 

In lignite mining, similar to other branches of mining, the initial step, prior to 
mining activities, is creating a resource model based on exploration data, such as 
drill hole data. Traditionally in order to produce a valuable representation of the 
coal seam geometry and quality attributes of the seam, such as ash content, 
geostatistical interpolation methods are used. Based on this resource model, a 
short-term production plan is created and mining activities will be executed 
according to this plan. In case of discovering unexpected waste intrusions in the 
coal seam during production, the short-term model has to be renewed. Currently, 
by using off-line analysis and modelling techniques, this may take days or 
sometimes even weeks. Using online-sensor techniques for coal quality 
characterization in combination with rapid resource model updating, a faster 
reaction to the unexpected deviations can be implemented during operations, 
leading to increased production efficiency. Figure 3.2 illustrates this conceptual 
workflow that basically integrates the online-sensor data into the resource model, 
as soon as they are obtained. This concept was initially proposed by [2] similar to a 
closed-loop framework as introduced in the petroleum industry (Figure 3.1) [37, 
38].  

 
Figure 3.1: Reservoir management represented as a model based closed-loop 
controlled process [37] 

The closed-loop framework continuously compares model-based predictions 
with observations measured during production monitoring, using inverse 
modelling or data assimilation approaches to improve the model forecast for 
subsequent time intervals and combines it with optimization aimed at better 
decisions for production control and medium-term planning [39]. In this 
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dissertation, Chapters 3 to 6 focus on the methodology and the application of the 
data assimilation part of the closed-loop framework in lignite mining. The 7th 
Chapter adds the optimization part of the framework and closes the loop. 

 
Figure 3.2: An overview of the EnKF based resource model updating concept 

Predicting the initial resource model, so-called prior model, is traditionally 
done by Interpolation methods such as Kriging. Kriging provides the best estimate 
which is close to reality, yet it is much smoother and doesn’t represent the in-situ 
variability fully. For this reason, it is essential to model the spatial uncertainty by 
generating multiple realizations of the joint distribution of the ash values in seam 
using stochastic simulation. Sequential Gaussian simulation (SGS) is a very 
efficient method for risk assessment applications in the mining industry. 

The resource model updating concept compares the predicted measurement 
values based on the prior prediction (realizations) and the actual online-sensor 
measurement values per produced block. Once prior models are available, 
predicted measurement values are required to be calculated according to the 
production sequence or using material tracking systems, based on prior 
predictions. The difference between this predicted measurement value and the 
actual online-sensor measured value per produced block will be fed back to the 
resource model, in order to create the updated resource model, the so-called 
posterior model (Figure 3.2). It is important to mention that in general, sensor 
measurements will have an error component. 

For rapid updating of the resource model, sequentially observed data have to 
be integrated with prediction models in an efficient way. In related fields, methods 
of data assimilation found many successful applications. 

Data assimilation can be defined as the fusion of observations into the prior 
knowledge (e.g. estimation, simulations) in order to improve the predictions. 
Thus, this definition translates in mining as the process of combining online-sensor 
measurement data with the prior model to produce a more accurate prediction of 
the resource model, the so-called posterior model.  

Sequential data assimilation methods use a probabilistic framework and 
provide estimates of the whole system state sequentially, by propagating 
information only forward in time [40]. The main sequential methods are the 
Kalman Filter (KF) [41] ([42]) and the various filters that have been derived from 
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the basis of the KF, such as; the extended Kalman filter (EKF), the ensemble 
Kalman filter (EnKF) [43-48], the ensemble transform Kalman filter (ETKF) [49] 
and the ensemble square root filter (EnSRF) ([50]).  

The (KF) is an optimal recursive data assimilation method that combines all 
available data, such as prior knowledge about the system and measurements, in 
order to produce an estimate of the desired variables in such a manner that the 
error rate is minimized statistically. The KF works in two stages. The first stage 
solves forecast equations, where the prior knowledge is represented by a model to 
the time of an observation. In our case, these forecast equations represent a mine 
forward simulation. The mine forward simulation applies a mine plan on the 
resource model in order to create the model based predictions. The GPS data and 
material tracking systems are used to estimate the location and the quantity of the 
produced materials. The second stage is the “sequential updating” stage, where 
the online-sensor measurements are assimilated into the prior model. This is done 
according to a ratio of errors in the prior model and in the observations. The 
difference between the sensor measurements and the predicted measurements is 
multiplied by a weighting factor (based on the mentioned ratio of errors) and this 
weighted difference is added to the prior model. An updated resource model is 
then produced. A detailed explanation on Kalman Filter is given in [51], [52] and 
[53], the following will focus on the application of the Kalman filter in geosciences.  

A framework with a similar aim has been recently proposed by [54] to update 
the conditional simulations at minimal cost. The proposed conditional simulation 
update formula is derived by two already well-established approaches called the 
residual kriging algorithm [55] and the kriging update formulae [56, 57]. Their 
conditional simulation update formulae offer significant computational savings 
when the number of conditioning observations is large, and quantify the effect of 
the newly assimilated observations on already simulated sample paths. Yet, the 
application of this method in resource model updating using online data case 
would not be as efficient since the change of support technique is not taken 
account. In coal production, the obtained quality measurements represent only a 
small ratio of the entire production block. For this reason, it is essential to apply 
change of support methods in order to correct the online-sensor measurements in 
a way to represent a whole production block.  
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3.2. A FORMAL DESCRIPTION OF THE UPDATING ALGORITHM  

The developed framework based on KF is initially validated on the estimated 
prior model then it is extended to use the SGS method for creating realizations of 
the prior model. The following formulation is given based on the first 
investigation study, [22]. 

Let 𝐙(𝐱) be the state vector of a stochastic process modelling the spatial 
distribution, where 𝐙 refers the local ash content at excavation locations 𝐱, then the 
updated resource model, 𝐙∗(𝐱), is calculated by the following equation: 

𝐙∗(𝐱) = 𝐙0(𝐱) + 𝐊(𝐥 − 𝐀𝐙0(𝐱)) (3.1) 

where 𝐙0(𝐱) is the prior resource model, 𝐥 is sensor based measurements vector, 𝐀 
represents the production sequence matrix, so the term 𝐀𝐙0(𝐱) represents the 
predicted measurements based on the prior block model. Matrix 𝐀 describes the 
contribution of each of the mining blocks at 𝐱i to the total production at a certain 
time interval 𝐭j, with j = 1, … , m 

𝐀 =  [

a1,1 ⋯ a1,m

⋮ ⋱ ⋮
an,1 ⋯ an,m

] (3.2) 

The elements ai,j can be interpreted as contributions of each mining block i to 

the produced material being on the conveyor belt, which will be eventually 
observed at some sensor station at time j. Matrix 𝐀 is herein called production 
matrix and can be interpreted as an observation model, which links the block 
model 𝐙(𝐱) with sensor observations. 

The Kalman gain, 𝐊, calculates a weighting factor based on the prediction and 
measurement error covariances. The Kalman gain matrix indicates the reliability of 
the measurements, this is done in order to decide “how much to change the prior 
model by a given measurement” and can be derived from a minimum variance 
estimate, which leads to the KF providing an optimal solution by minimizing the 
cost function.  

𝐊 = (𝐀T𝐂zz𝐀 + 𝐂ll)
−1𝐀T𝐂zz (3.3) 

Kalman gain can be calculated as in Equation (3.3). As mentioned above, it 
contains two different error sources, 𝐂zz, the model prediction error and 𝐂ll, the 
measurement error. The model prediction error is basically the covariance matrix 
of the prior resource model, which is propagated through the lignite mining by the 
production sequence matrix 𝐀. The measurement error is the covariance matrix of 

the sensor-based measurement. The term 𝐀T𝐂zz in Equation (3.3) denotes the 
model-based prediction, as previously defined. 
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𝐂zz
∗ = (𝐈 − 𝐊𝐀)𝐂zz (3.4) 

The improvement in model prediction can be determined as the updated 
model error covariance, 𝐂zz

∗, which is provided in Equation (3.4). Clearly, this 
leads to a decrease in the uncertainty of the resource model blocks, not only for the 
currently excavated ones but also for the adjacent blocks which are spatially 
correlated. Figure 3.3 illustrates an overview of the KF based resource model 
updating concept.  

 

Figure 3.3: An overview of the KF based resource model updating concept  

It is obvious that the KF offers large potential in improving resource recovery 
by combining online data with the resource model and consequently decreasing its 
uncertainty. However, there are different challenges to solve in order to 
comprehend the source of the difference between sensor measurement and the 
resource model, and feed the gained knowledge back to the resource model. The 
main challenges to solve are the size of the estimated resource model (in the order 
of multiple millions of grid nodes), non-Gaussian behavior of data, the different 
support of observations and resource model blocks and a possible non-linear 
relationship between the observations and model attributes. 

The (EnKF) provides a comprehensive solution for large-scale applications 
when explicit storage and manipulation of the covariance matrix is impossible or 
not feasible [58]. Moreover, EnKF is able to deal with the non-linear systems. The 
developed framework with ENKF uses SGS in order to create the ensemble of 
realizations, also called prior ensemble 𝐙0(𝐱)e, where e = 1, … , N is the number of 
realizations/ensembles. Next, the algorithm continues recursively, using the 
following recurrence relations; 
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𝐙∗(𝐱)e = 𝐙0(𝐱)e + 𝐊e(𝐥e − 𝐀𝐙0(𝐱)e) (3.5) 

𝐊e = (𝐀T𝐂zz
e𝐀 + 𝐂ll

e)−1𝐀T𝐂zz
e (3.6) 

𝐂zz
∗e

= (𝐙(𝐱)e − 𝐙(𝐱)e̅̅ ̅̅ ̅̅ ̅)(𝐙(𝐱)e − 𝐙(𝐱)e̅̅ ̅̅ ̅̅ ̅)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (3.7) 

where 𝐙(𝐱)e and 𝐥e respectively consist of an ensemble of block models and the 

measurements. In Equation (3.7) 𝐂zz
∗e

 refers to the updated error covariance of the 
resource model, where the overbar denotes the expected values of the ensembles. 
The covariance matrices represent the whole ensemble and the Kalman gain 𝐊e is 
derived from these.  

Two measures are suggested by [59] to reduce computational time of Kalman 
gain calculations. The first measure is related to the neighborhood. The size of the 
𝐂zz matrix is in the order of the number of cells that are in the defined updating 
neighborhood. The second measure is a Cholesky decomposition which is 
implemented to avoid an explicit computation of the inverse in Equation (3.6). 
This results in significant computational speed ups.  

Blended measurements and differences in the scale of support are dealt with by 
the forecast and observation error covariances. These covariances are computed 
empirically from the field and predicted observations [59]. This Monte Carlo based 
approach allows for a convenient/flexible connection between the blended 
measurements and their corresponding source location. 

To deal with the non-gaussianity of the data, a new approach NS-EnKF is 
proposed by Zhou [60] which transforms the original state vector into a new 
vector that is univariate Gaussian at all times. Gaussianity is achieved by applying 
a normal-score transformation to each variable for all locations and all time steps, 
prior to performing the updating step in EnKF.  

The NS-EnKF approach follows the same steps as the standard EnKF, except 
the NS-EnKF has additional pre - and post processing steps. Local grades at grid 
nodes will be normal score transformed before application of the EnKF, and once 
the update is complete, the normal score transformed data will be transformed 
back (Figure 3.4). Readers are referred to [61] for information about the normal 
score transformation.  
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Figure 3.4: Real-time updating algorithm based on NS-EnKF approach, modified 
from [60] 

With the goal of continuously updatable coal quality attributes in a resource 
model, a framework based on the NS-EnKF approach was tailored for large-scale 
mining applications. It is based on an implementation from [62]. Figure 3.5 gives a 
general overview of the operations which are performed to apply the resource 
model updating framework. The concept initially starts with resource modelling, 
by using conditional simulation to generate a prior ensemble. This is the first 
required input consisting of ensemble members to be updated. The input consists 
of the production data and their related actual sensor measurements. The 
production data provides the excavated block information, e.g. names and 
quantities. The actual online-sensor measurement values are collected during the 
lignite production and they represent the excavated material. The third input is a 
data set consisting of a collection of actual and predicted sensor measurements. 
The predicted measurements are obtained by applying the production sequence as 
a forward predictor to prior resource model realizations. Once all of the input data 
are provided, the updated posterior resource model will be obtained. This process 
will continue as long as new online-sensor measurement data is received.  
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Figure 3.5: Configuration of the real-time resource model updating concept, 
modified from [62] 
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3.3. A SIMPLIFIED PRIOR MODEL 

As mentioned earlier, the first input needed to apply the resource model 
updating framework is a collection of resource model realizations, also called the 
prior model. This requires the application of sophisticated geostatistical methods, 
such as conditional simulation (such as the application in Chapter 5). However, 
this requires expert knowledge and adds an additional step prior to using the 
updating framework. Moreover, generating a new resource model might create 
disarray between geology and mine planning departments in the company, since 
they already have a resource model created by their own team. For these reasons, 
in order to apply the updating framework in real mining environment, a more 
practical and simplified application of the framework is required. The proposed 
simplification obtains the required prior model realizations by adding fluctuations 
around the company’s short-term block model. This short-term model is created 
by the mining engineers, based on applying the defined block geometries (Figure 
3.6) on the company’s estimated block model. In this way, each block will have an 
estimated ash value. Figure 3.7 compares both of the prior model generation 
processes. 

 

Figure 3.6: Planned block geometries in the production benches 

In order to create the quality model based on short-term model, the following 
strategy is employed:  

1. Short-term block model values are generally available for each block and 
they deliver the prior estimation of block attributes (E-type estimate). 

2. A conditional simulation is applied to production blocks that were in the 
short-term block model. For this application, the previously calculated 
block scaled variogram model is used. Drill hole locations with zero ash 
content are used as the reference point while running the simulations. 
This creates fluctuations with zero mean capturing variability on a block 
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scale conditioned on data locations. This can be done in “black-box” type 
module. 

3. After this, simulated data on the production blocks refer to the 
uncertainty and they will be added on prior estimations of block 
attributes.  

4. The short-term model based on the simulations is now ready to be 
imported into the algorithm as the first main component (prior model). 

5. The updated resource model (posterior model) will be split in a mean 
part, which will be written back to update the short-term block model, 
and an uncertainty related part which will be written back in the 
ensemble part. 
 

 
Figure 3.7: Flow chart of prior model generation  

As long as new measurement data is obtained, these steps need to be applied 
recursively. The process can easily be automated by using a previously calculated 
variogram model and some interfaces. In this way, there will be no requirement 
for an additional complex process of creating conditional simulations since they 
are not part of the daily work flow. Moreover, there will be no disarray between a 
company’s short-term model and the input prior model of the updating approach; 
the integration will be smooth. Additional to that, no expert knowledge will be 
required when applying the framework due to the automated process, contrary to 
conditional simulation application. All of these simplifications on application are 
very significant since it is important to benefit from the framework in a real 
mining environment. 

This approach will be applied in the case study of Chapter 6. 
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4. METHOD VALIDATION IN A 2D CASE STUDY 

 

In this chapter, a 2D case study has been performed in order to validate the introduced 
concept in a fully controllable environment. This case study validates if performing a real-
time update on a resource model leads to more accurate resource models for future 
processes. This chapter will describe the set-up of the experiments, explain some details 
about performance measures and finally, provide the results of the case studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been adapted from: 

Yüksel, C., Thielemann, T., Wambeke, T., & Benndorf, J. (2016). Real-Time Re-source Model Updating 
for Improved Coal Quality Control Using Online Data. International Journal of Coal Geology. doi: 
http://dx.doi.org/10.1016/j.coal.2016.05.014. 
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4.1. EXPERIMENTAL SET-UP  

All of the experiments presented in this chapter are performed in a completely 
known and fully controllable environment; a well-known geostatistical dataset, 
called Walker Lake dataset [63]. The dataset originally contained digital elevation 
data from the Walker Lake area (California-Nevada border), in our case those will 
be interpreted as the concentration values. An exhaustive dataset is chosen in 
order to benchmark the obtained results against reality. 

The virtual exploration data is created by sampling the dataset in a spacing of 
32m x 32m x20m. Realizations of the block model are created by conditional 
simulation. The blocks were defined with a dimension of 16m x 16m x 10m. The 
density is assumed 2 t/m3 , which leads a tonnage of 5120t for one mining block.  

No availability of real sensor data requires the generation of virtual sensor 
data. In order to mimic real sensor data, the artificial sensor data are composed of 
three components; true block value, dispersion variance and sensor error. 
Component one is the true block grade taken from the exhaustively known data 
set. Component two captures the volume variance relationship and corrects the 
block value support to a smaller measured support by adding the corresponding 
dispersion variance [63-65]. The third component represents the precision of the 
sensor and, for this case study, varies between 1, 5 and 10%.  

It is assumed that the excavated material is discharged on a conveyor belt 
positioned on the benches in the mining area. The conveyor belts then combine the 
material flow at the central mass distribution point. The combined material flow is 
scanned by a sensor positioned above the conveyor belt.  

The mining system is assumed to consist of, either one, two, three or four 
bucket-wheel excavators positioned at different benches with different digging 
rates. In the case of one excavator, the mine design assumes that the excavation 
starts from the south-west corner of the block model and continues through the 
east direction until the entire row is mined (Figure 4.1). When the excavation of the 
first row is completed, the excavator moves to the northern row and continues to 
excavating in a western direction. In case of two excavators, the second excavator 
starts at the south-eastern corner of the northern half of the field. In the case of 
three and four excavators, the field is divided in three and four parts respectively.  
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Figure 4.1: Mining sequence 
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4.2. RESULTS AND DISCUSSION  

A series of experiments is performed in order to analyze the performance of the 
updating concept. This section provides some representative results from the 
performed experiments. In the influence area of updating three different 
performance measures are used in order to present the results of the performed 
experiments.  

The first measure is an empirical error measure so called mean square 
difference, or mean square error (MSE). MSE compares the difference between 
estimated block value 𝐙∗(𝐱) and real block value 𝐙(𝐱) from the exhaustive data set 
and it can be calculated as follows: 

MSE =
1

N
∑(𝐳∗(𝐱i) − z(𝐱i))2

N

i=1

 (4.1) 

The second measure is the theoretical block variance (BV), which can be 
approximated by the EnKF Equation (3.7) or: 

BV ≅
1

N − 1
∑((𝐳(𝐱i) − z(𝐱)̅̅ ̅̅ ̅̅ )(z(𝐱i) − z(𝐱)̅̅ ̅̅ ̅̅ )

T
)

N

i=1

 (4.2) 

Both of the mean square error and block variance bar plots are illustrated 
relative to the prior model in order to make a good comparison. This “relative 
illustration” refers to scaling the MSE and the BV values by the prior model. Each 
plot contains four bars, from left to right; prior model, mined blocks, adjacent 
blocks and indirect blocks (two blocks away).  

 

Table 4.1: MSE and BV plots for 1 excavator case – 2D Case study  

 Mined Blocks Adjacent Blocks Indirect Blocks 

MSE 
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BV 

   

Table 4.1 gives the MSE and BV plots for one excavator case. The graphs are 
obtained under the following conditions: one excavator was operating, 
undergoing measurements every 10 minutes and updating the resource model 
every hour. The following observations can be made based on the graphs given in 
Table 4.1: 

 For mined blocks, the uncertainty almost vanishes while the sensor error 
decreases. This is expected because in case of one excavator the sensor 
measurements can be clearly tracked back to the source block. Residual 
uncertainties can be caused by the sensor precision and also interpreted as 
the limit of the filter for this special application. 

 Adjacent blocks are updated resulting in a significant improvement 
compared to the prior model. This improvement is due to the positive 
covariance between two adjacent blocks. In addition, the sensor precision 
effect can be observed from the results. 

 Blocks in the second next row are still updated. As expected, the error in 
prediction increases when moving further away from the point of 
measurement (from mined block, to adjacent and indirect blocks). 

Finally, the third measure is a representative map of the study area which 
indicates the differences between the real value and updated values of the area 
(Figure 4.2). 

 
Figure 4.2: Difference map between the real data and updated model on 50th 
simulation. 

The experiment was designed to update only the blocks in the first row, by 
integrating their relative measurements. Figure 4.2 indicates almost no difference 
between reality and the updated model. In the second row, it is still possible to 
observe the updates by investigating the small differences between reality and the 
updated models. Once again, the difference maps prove that the developed 
framework is suitable for this specific application. 

In addition to the above results, the MSE and BV plots for the two excavators 
case are given in Table 4.2. The graphs are obtained under the following 
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conditions: two excavators were operating, undergoing measurements every 10 
minutes and updating the resource model every hour. The following observations 
can be made based on the graphs given in Table 4.2. 

 For mined blocks, the uncertainty increases with a trend similar to the 
one excavator case. The observed increase in the uncertainty is expected 
since the sensor measurements cannot be clearly tracked back to the 
source block anymore. Yet, even with this increase in the MSE, the results 
shown significant improvement compared to the prior model. 

 Adjacent blocks are updated which results in a significant improvement 
compared to the prior model. A slight decrease in the uncertainty is 
observed in the results compared to the one excavator case. This can be 
explained due to positive correlation between the increased amount of 
measurement data and the adjacent blocks. Moreover, the sensor precision 
effect can also be observed from the results. 

 Blocks in the second next row are still updated with an increased 
uncertainty (relative to the one excavator case). Again, MSE and BV 
behave similarly and the sensor precision effect can be observed from the 
results. 

Table 4.2: MSE and BV plots for 2 excavators case – 2D Case study  

 Mined Blocks Adjacent Blocks Indirect Blocks 

MSE 

   

BV 

   

 

Results show the validity of the real-time resource model updating concept in a 
2D example. The consistency is reduced when the update moves from mined 
blocks to indirect blocks, as is expected. Moreover, the observed results match and 
show similar behaviors between the theoretical measure (BV) and the empirical 
measure (MSE), which indicates good calibration of the model parameters. 
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4.3. VALIDATION OF THE DEVELOPED FRAMEWORK  

Results in the previous section indicated a significant level of improvement in 
the resource models by incorporating sensor data. A reduction of uncertainty is 
observed after the data assimilation. In order to continue, the method is 
benchmarked against a proven and well-studied, however computationally 
expensive method of rejection sampling. 

The rejection sampling method is chosen for validation purposes due to its 
simplicity. Similar applications of this method can also be found in reservoir 
engineering [66-69]. Rejection sampling is a Monte Carlo method that proposes a 
sample from some relatively simple distribution, after which a test is applied to 
decide whether or not to accept it. It is based on the fact that the posterior is a 
subset of the prior distribution, and therefore it can be evaluated by sub-sampling 
the prior [70]. All accepted samples are truly independent since the accept/reject 
criteria do not depend on the most recent sample. 

To implement this method, 1000 realizations were created by using the 
Sequential Gaussian Simulation method, to generate the prior models. The 
developed updating framework was applied to the 1000 prior models in order to 
generate 1000 updated realizations (updated posterior models). As the rejection 
sampling proposes that the posterior is a subset of the prior distribution, it is 
expected that one can obtain the updated posterior distributions by applying 
rejection sampling to our prior models.  

To generate realizations from the target probability density f(𝐙(𝐱)), we let 
h(𝐙(𝐱)) be a probability density of one single realization and suppose that there is 
some constant c such f(𝐳(𝐱)) ≤ ch(𝐙(𝐱)) for all m. 

1: randomly draw realization m ∗ from 1000 prior models pdf h(. ) 

2: randomly draw a decision variable u from U(0, ch(𝐙(𝐱)) ∗)) 

3:  if u ≤ f(𝐙(𝐱) ∗) 

accept proposed model 

else 

      reject proposed model  

4: return to step 1 

5: end 

The conditional probability density f(𝐙(𝐱)) is provided by Bayes rule and can 
be calculated as follows, 

f(𝒁(𝒙)𝑒|𝐥𝑒)(𝐙(𝐱)|𝐥) =  
f(𝐥𝑒|𝒁(𝒙)𝑒)(𝐥|𝐙(𝐱))f𝒁(𝒙)𝑒(𝐙(𝐱))

∫ f(𝐥𝑒|𝒁(𝒙)𝑒)(𝐥|𝐙(𝐱))fM(𝐙(𝐱)) 𝐥𝐙(𝐱)
 (4.3) 
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∝ exp (−
1

2
(𝐀𝐙𝟎(x) − 𝐥)T𝐂ll

−1(𝐀𝐙𝟎(x) − 𝐥)) x exp (−
1

2
(𝐙0(x) − μ)TCzz

−1(𝐙𝟎(x) − 𝛍)) (4.4) 

where 𝐀𝐙𝟎(x) is the predicted observation and 𝐙0(x) is the prior model and μ is 
the mean value of the prior model. 𝐂ll and 𝐂zz are the measurement error 
covariance and the prior model covariance respectively. 

Figure 4.3 illustrates the performed experimental scheme. The given algorithm 
is applied to both 1000 prior models and 1000 updated posterior models. Around 
290 of 1000 prior models were accepted, while 950 of 1000 updated posterior 
models were accepted. The fact that almost all of the updated posterior models are 
accepted shows a significant improvement over the prior models (from 29% to a 
95% acceptance rate). This indicates that the updated posterior models are closer to 
reality than the prior models. 

 

Figure 4.3: Validation experiment scheme 

The 290 accepted posterior models and 1000 updated posterior models are 
compared to each other in order to investigate the similarities. Therefore, the 
average of mean and variance of the distributions are compared. 

Figure 4.4 and Figure 4.5 show the average of mean and variance of the 
posterior models obtained from rejection sampling and updating framework, 
respectively. It can be seen that the average mean and variance of accepted prior 
models (290) and updated prior models (1000) are very similar to each other.  

Figure 4.6 is provided for a better comparison between the accepted posterior 
realizations from rejection sampling (290) and updated posterior realizations from 
the real-time update framework (1000). The deviations between two models are 
very small. One can conclude that the updated posterior realizations from the real-
time update framework are reproduced through rejection sampling.  

In addition, MSE and BV graphs of mined, adjacent and indirect blocks from 
the accepted posterior models by rejection sampling (290) are given to provide the 
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empirical and theoretical measures (Table 4.3). As mentioned in the previous 
section, both of the plots are prepared relative to the prior model in order to 
provide a good comparison. Again, each plot includes four bars, from left to right; 
prior model, mined blocks, adjacent blocks and indirect blocks. 

 

 
Figure 4.4: Average mean (left) and variance (right) maps of 290 posterior 
realizations accepted according to rejection sampling method 

 
Figure 4.5: Average mean (left) and variance (right) maps of 1000 posterior 
realizations updated with real-time update framework 

 



METHOD VALIDATION IN A 2D CASE STUDY 

40 

 

Figure 4.6: Difference map between the accepted posterior realizations from 
rejection sampling and updated posterior realizations from real-time update 
framework 

 

 

Table 4.3: MSE and BV plots – Rejection sampling 

  Mined Blocks Adjacent Blocks Indirect Blocks 

MSE 

   

BV 

   

 

When BV values in Table 4.3 (MSE and BV plots of the accepted posterior 
models from rejection sampling) are compared to the ones in Table 4.1 (MSE and 
BV plots of the updated posterior realizations), similar trends are observed except 
relatively higher values in Table 4.3. The general behavior of both tables is the 
increase of the block variance moving from mined blocks to indirect blocks, and 
the decrease of it when the sensor error is smaller. For the MSE values, an increase 
in the error rate is observable when moving from mined blocks to indirect blocks, 
yet the increase is not very significant. This is because the nature of rejection 
sampling does not take into account the weight of distances.  

The mentioned similarities in the comparison of empirical error and theoretical 
variance of the accepted posterior realizations from rejection sampling and 
updated posterior realizations from real-time updating framework, once again, 
indicate that the accepted models through rejection sampling are truly reflecting 
the updated models. This section concludes that the presented results validate the 
developed real-time updating framework in a simple 2D setting and that it is a 
promising method for reaching the targets aimed for in a more complex 3D 
environment. 
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5. DEMONSTRATION AND PROOF OF CONCEPT 

IN AN INDUSTRIAL ENVIRONMENT – CASE 1 

 

This chapter demonstrates the applicability of the developed framework during an 
industrial application, in Garzweiler mine, Germany. The application in continuous 
mining test case is illustrated and sensitivity analysis experiments are performed. Findings 
of the study are then presented. Key findings of the study are discussed and summarized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been adapted from: 

Section 5.1, 5.2 and 5.3: Yüksel, C., Thielemann, T., Wambeke, T., & Benndorf, J. (2016). Real-Time Re-
source Model Updating for Improved Coal Quality Control Using Online Data. In-ternational Journal of 
Coal Geology. doi: http://dx.doi.org/10.1016/j.coal.2016.05.014.  

Section 5.4: Yüksel, C., Benndorf, J. (2017) Performance analysis of continuous resource model updating 
in lignite production Geostatistics Valencia 2016 (pp. 431-446): Springer. 
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5.1. EXPERIMENTAL SETUP  

First, the geological model (Figure 5.1) of the defined coal seam is created in a 
32x32x1 m block model based on the roof and floor information of the seam. 
Second, a 32x32x1 m quality model that indicates the wet ash content in 
percentages is represented with 24 simulations and an estimation, based on the 
provided drill hole data. The simulated and estimated ash values are imported 
into previously defined coal seam. These are the first input file, the prior quality 
(ash) model. 

 
Figure 5.1: Geological model 

Predicted measurements are obtained by averaging the simulated ash values 
from each simulation set, which falls into the defined production block 
boundaries. The online RGI sensor measurement data and KOLA data are 
provided for the time corresponding to extraction. In order to determine the 
location of the received RGI and KOLA data, in other words to track back where 
the measured material comes from, the GPS data is matched with the 
measurement data based on the given timecodes. The located measurements in 
coal seams are then imported into the previously defined block model. 

The second input file for the algorithm is written to a file containing the 
following information: the block ID, central block location (X, Y, Z coordinates), a 
series of real and predicted measurements.  

A study bench produced for 15 days is defined by considering all the available 
data (topography, RGI, GPS and production data). Later, the study bench is 
divided into so-called “production blocks”. This was necessary to reproduce the 
excavated production blocks. The horizontal divisions (or production slices) are 
based on the movements of the excavator during production, which is based on 
GPS data. The vertical divisions are based on the changes in the Z coordinates in 
the GPS data. In the end, the defined production bench is divided into 28 blocks 
and 5 slices, which gives 140 production blocks. Once the study bench is divided 
both in vertical and horizontal, the production blocks are now ready to be 
updated.  
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The defined study bench is divided into blocks and their respective related 
block ID numbers are given in Figure 5.2. As a start the 2nd slice of block number 1 
is chosen to be updated, based on the KOLA measurements taken from that block. 
The series of updating experiments will continue until the 10th block. The update 
range is defined based on the variogram of the data as 450m in X and Y direction 
and 2.5m in Z direction. The range of expected improvements is marked as the 
circled area. 

 
Figure 5.2: Production blocks 
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5.2. RESULTS AND DISCUSSIONS  

This section presents the results of the previously defined experiment. The 
added value of this application will also be discussed. 

The first experiment uses the KOLA measurement, received from the 1st block’s 
production, in order to update the neighborhood blocks of the 1st block. Figure 5.3 
illustrates the first experiment, where prior, posterior and measurement values are 
given. The averaged ash values from the prior simulation are represented with 
round dots and the related KOLA measurement values are given square marks. 
The light grey cloud of updated simulations covers the model uncertainty, while 
the long dashed line represents the average of the simulations. The vertical red line 
indicates which block’s KOLA data has been used for that experiment. 

Figure 5.4 to Figure 5.6 presents results of similar experiments, except the base 
of the update is moving forward from 1st block till the 9th block, as if the 
production moves. In each graph, the mined out area is indicated with an arrow. 
Among results of 7 experiments, only four of them (1st, 2nd, 4th and 7th) are 
presented here since they adequately represent the rest. 

It is clearly seen from the Figure 5.3 that the average of the prior simulations 
dramatically underestimates the actual KOLA measurements. This happens 
because the prior simulations are created based on the coal samples in the drill 
holes, while the KOLA measurements measure higher ash values due to the sand 
intrusions in the coal seam. Integrating the KOLA measurement of the 1st block 
updates the first nine blocks to some higher values. As expected, the update effect 
decreases while moving away from Block 1.  

Already from the second experiment (updating the ash values based on the 
measurement of the Block 2), the KOLA data is well covered by the range of 
uncertainty in the updated neighborhood. While the integrated measurement 
number increases (experiment 2, 3, …, 7) it is observed that the uncertainty in the 
near neighborhood gets slightly smaller and more of the actual KOLA 
measurements are captured by this uncertainty range.  

The improvements from the very initial averaged prior simulation to the most 
recent updated simulations are clearly observable 
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Figure 5.3: Experiment 1 - Updating: 2nd slice of the 1st block 

 

Figure 5.4: Experiment 2 - Updating: 2nd slice of the 2nd block 

 

Figure 5.5: Experiment 4 - Updating: 2nd slice of the 4th block 
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Figure 5.6: Experiment 7 - Updating: 2nd slice of the 9th block 

The presented experiment demonstrated a resource model updating case study 
in a large open pit mining operation using the actual measurements, the so called 
KOLA data. The results have shown that the developed updating algorithm works 
well in a real-3D case.  

Figure 5.7 gives the calculated MSE values for each performed experiment. 
Since this is a real case, the real block values are unknown. For this reason, the 
MSE compares the difference between estimated block value Z∗(𝐱) and measured 
KOLA value (v). Once more, they are calculated relative to the prior averaged 
simulation. Figure 5.7 clearly indicates the improvements. The biggest 
improvement is observed on the first experiment, where the MSE value drops to 
0.33 from 0.64. For the next experiments, the update is slightly smaller, yet 
observable. MSE values drop from 0.33 to 0.27 during the experiments between 2 
and 7. This indicates in the order of 70% improvement while integrating online 
measurement data into the resource model.  

 

Figure 5.7: MSE Graph for performed experiments 
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5.3. SENSITIVITY ANALYSIS 

The aim of the case study presented in this section, is to analyze the 
performance of the resource model updating framework method by performing 
sensitivity analysis on main parameters, including; the ensemble size, localization 
and neighborhood strategies and the sensor precision.  

5.3.1. Identification of Main Parameters 

5.3.1.1. Number of Ensemble Members 

The first sensitivity analysis focuses on investigating the optimal realization 
number (subsequently used as ensemble size) by performing resource model 
updating experiments with differently sized ensembles. Defining the ensemble 
size that will acceptably represent the orebody is a very delicate problem. A large 
amount of research in literature [6, 71] focuses on the optimum ensemble size 
investigation and usually concludes that the analysis error decreases as the 
number of ensembles (realizations) increases. Contrary, the computational costs 
increase with the ensemble size. Therefor a sensible size of the ensemble is 
required.  

5.3.1.2. Localization 

The second sensitivity analysis focuses on investigating the effects of 
localization strategies and neighborhood size on the given case. As mentioned, one 
of the limiting factors in EnKF based applications is the restrained ensemble size. 
Having an insufficient number of ensemble numbers, the empirical way to 
compute the covariance matrixes needed might cause long range spurious 
correlations. In order to avoid these spurious correlations, a covariance localization 
technique is applied to the updating framework by [59]. The term ‘spurious 
correlations’ refers to the correlations between quality attributes that are at a 
significant distance from one another where there is no spatial relation. Moreover, 
these correlations can lead to inbreeding and filter divergence. Covariance 
localization modifies update equations by replacing the model error covariance by 
its element-wise (Schur) product with some distance-based correlation matrix [72, 
73]. This replacement increases the rank of the modified covariance matrix and 
masks spurious correlations between distant state vector elements [58]. 

5.3.1.3. Sensor Error  

The final sensitivity analysis focus on testing the effect of the sensor precision. 
In most cases errors are involved when taking measurements, due to calibration 
issues of sensor technologies. For each experiment, different amounts of standard 
error is added to the actual measurement values. The standard error can be 
calculated as; 
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SEx̅ =
σ

√n
 (5.1) 

where σ is the standard deviation of the actual measurements and n is the size 
(number of observations) of the actual measurements. For this study, the actual 
measurement data set contains 700 observations, which values correspond to coal 
extracted from 28 mining blocks. This leads to approximately 25 actual 
measurement data per block. Therefore, according to Equation (5.1), where the 
added standard error is 0.1% ash, the absolute standard deviation will be 0.5% ash 
and the variance will be 0.25%2 ash.  

Similarly, when the added standard error is 0.2% ash, the standard deviation 
will be 1% ash and the variance will be 1%2 ash. The variance of the actual 
measurements will be 6.25%2 ash and the standard deviation will be 2.5% ash 
when the added standard error is 0.5% ash. The variance will be 25%2 ash when 
the added standard error is 1% ash. The variance of the averaged prior model for 
48 ensemble members is calculated as 0.99.  

To give a clear view, the mentioned standard deviations are converted to 
relative error of the measurements. The average measurement value is calculated 
as 12% ash. This leads around 4% ash relative error in measurement values when 
the added standard deviation is 0.5% ash. Similarly, when the added standard 
deviation is 1% ash, this indicates around 8% ash relative error in measurement 
values. In the same way, when the added standard deviation is 2.5% ash, this 
indicates around 20% ash relative error in measurement values. Finally, when the 
added standard deviation is 5% ash, this indicates around 40% ash relative error in 
measurement values. 

5.3.2. Experimental Set-Up 

To apply the resource model updating algorithm, the input data needs to be 
prepared. For the experiments performed in this section, multiple sets of block 
model realizations are generated with each having a different number of 
simulations (24, 48, 96, 192 and 384). To apply the double helix approach as 
suggested by [59], the initial simulation number is an even number. Double helix 
approach is used in order to avoid problems of inbreeding, a pair of sequential 
updating cycles is configured by [59] so that the assimilation of data into one set of 
realizations employs the weights calculated from the other one The simulation 
numbers following the initial simulation number are doubled for each set. The 
details of generating the block model (with 24 realizations) for Case 1 are 
explained in Section 5.1. 

Figure 5.8 illustrates the prior model of 48 simulations, the averaged ash values 
of those simulations and related sensor measurement values, per block. A 
significant underestimation of the actual measurement data is observed in the 
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prior model. This is because the prior model is created based on the drill hole data, 
where the local sand intrusions are not fully captured. True variability of the coal 
seam is captured by the online sensor measurements. 

 

Figure 5.8: Prior model and measurement data (before updating) 

The preparation of the predicted measurements, located KOLA measurements, 
second input file and the study bench are done in an exactly identical experimental 
set-up as given in Section 5.1. 

First the 1st block of the 2nd slice is updated, based on the KOLA measurements 
taken from that block. The series of updating experiments included seven 
updating experiments and continued until the 9th block (since there are no KOLA 
data obtained on 6th and 7th block, 7 experiments are performed to update until the 
9th block). In each updating experiment, only one block is updated based on the 
related measured KOLA value. 

As introduced in the Section 4.2., the empirical error measure MSE (Equation 
(4.1)) is also used in this case study in order to present the results of the performed 
experiments. The mean square error graphs are calculated relative to the averaged 
prior model of 384 ensembles, in order to make a good comparison. 

5.3.3. Experiments with Respect to Main Parameters 

Table 5.1 provides a complete overview of the parameters used to perform the 
experiments. The obtained results of these experiments are provided in the next 
chapter. In every experiment performed for every parameter, one parameter is 
varied and the others remain fixed Table 5.1. 
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Table 5.1: Experimental scheme 

 

Experiment 

# 

Ensemble 
Size 

Localization 

Option on/off 

and Size 

(X,Y,Z) (m) 

Neighborhood 
Size 

(X,Y,Z) 

(m) 

Relative 

Sensor 

Error (%) 

Ensemble 

Size 

Experiments 

1 24 on, 125,125,3 225,225,6 0 

2 48 on, 125,125,3 225,225,6 0 

3 96 on, 125,125,3 225,225,6 0 

4 192 on, 125,125,3 225,225,6 0 

5 384 on, 125,125,3 225,225,6 0 

Localization & 

Neighborhood 

Strategies 

Experiments 

6 48 off 225,225,6 0 

7 48 on, 225,225,3 450,450,6 0 

8 48 off 450,450,6 0 

9 48 off 900,900,6 0 

10 48 on, 450,450,3 900,900,6 0 

11 48 on, 450,450,6 900,900,6 0 

Sensor 

Error 

Experiments 

12 48 off 450,450,6 4 

13 48 off 450,450,6 8 

14 48 off 450,450,6 20 

15 48 off 450,450,6 40 

 

5.3.3.1. Number of Ensemble Members 

With a view towards the real-time application of the updating resource model, 
the industrial case presented in the previous sections of this chapter (Section 5.1, 
5.2 and 5.3) focused on small – and moderate – sized ensembles (24). For the 
investigation of the optimum ensemble size, updating experiment series are 
performed with 24, 48, 96, 192 and 384 ensembles. All of the simulations are 
created by using SGS with same seed number and same variogram parameters. 

5.3.3.2. Localization 

The initial neighborhood size is defined as 450m in X and Y direction and 6m in 
Z direction based on the variogram of the drill hole data. For the experiments, 
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three different neighborhood sizes (225, 450 and 900 m) are tested while the 
localization option was not being used. Three more experiment are performed 
while the localization option was being used in order to test the effect of designed 
localization, with varying localization and neighborhood sizes. For the 
experiments where the localization option was used, the localization 
neighborhood was assumed as half of the defined neighborhood size, except for 
the 10th experiment. In the 10th experiment, in the X and Y direction, localization 
sizes were assumed as half of the defined neighborhood size. In the Z direction, 
the localization size remained the same. Reasons of this preference will be 
explained in the discussion section. 

5.3.3.3. Sensor Error 

For each experiment, a different amount of standard error is added to the 
actual KOLA measurement values. In total, five experiments are performed, where 
the relative measurement error varies between 4%, 8%, 20% and 40%.  

5.3.4. Results and Discussion 

5.3.4.1. Results 

5.3.4.1.1. Ensemble Size 

 

Figure 5.9: Experiment 2 – Ensemble size: 48 

      

Figure 5.10: Experiment 5 – Ensemble size: 384 
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Figure 5.11: Comparison graph for different ensemble sized experiments 

5.3.4.1.2. Localization and Neighborhood Strategies 

     

Figure 5.12: Experiment 6 – Localization option off, Neighborhood size: 225,225,6 
m 

 

Figure 5.13: Experiment 7 – Localization option on (225,225,3 m), Neighborhood 
size: 450,450,6 m 
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Figure 5.14: Experiment 8 – Localization option off, Neighborhood size: 450,450,6 
m 

 

Figure 5.15: Experiment 11 – Localization option on (450,450,6 m), Neighborhood 
size: 900,900,6 m 

 

Figure 5.16: Comparison graph for different localization and neighborhood 
strategies experiments 

 



DEMONSTRATION AND PROOF OF CONCEPT IN AN INDUSTRIAL ENVIRONMENT – CASE 1 

54 

 

5.3.4.1.3. Sensor Precision 

 

Figure 5.17: Experiment 12 – Relative sensor error: 4% 

 

Figure 5.18: Experiment 14 – Relative sensor error: 20% 

 

Figure 5.19: Experiment 15 – Relative sensor error: 40% 
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5.3.4.2. Discussion 

The previous section presented sensitivity analysis results for each parameter. 
The following section will be discussing the key findings of the study for each 
parameter.  

5.3.4.2.1. Ensemble Size 

Figure 5.9 and Figure 5.10 present results of the updating process from the 1st 
block until the 9th block, for some of the representative ensemble sizes. For these 
experiment series, the localization strategies were applied, the neighborhood size 
was 225,225,6 m for X,Y,Z directions and no sensor error was assumed.  

It can be seen that the average of the prior simulations substantially 
underestimates the actual KOLA measurements. This is caused by the data effect. 
The prior simulations are created based on the coal samples from drill holes 
spaced multiple hundred meters apart, while the KOLA measurements measure 
higher ash values due to the sand intrusions in the coal seam. Integrating the 
KOLA measurement in to the first nine blocks, updates the neighborhood blocks 
to some relatively higher values. As expected, the update effect decreases while 
moving away from the last updated block, Block 9.  

For all different ensemble sizes, a clear improvement is observed towards the 
KOLA data when considering the average of the initial simulations, so called prior 
model. 

Figure 5.11 presents the relative MSE values to the prior model for each 
experiment performed with different ensemble sizes. The biggest reduction of the 
error occurs in the update of the first block. While the skewness behavior of the 
each MSE graphs is similar, the biggest error behavior to the smallest is as follows: 
48 ensemble members, 96 ensemble members, 192 ensemble members, 384 
ensemble members and 24 ensemble members. Except for the results from 24 
ensemble, the rest of the listing supports the literature. It is expected to observe a 
decrease in the MSE values while the ensemble size gets larger since the 
representativeness gets higher. However, to increase the computational efficiency 
and to apply the updating framework in real-time during production, an economic 
ensemble size is required.  

At first glance, the higher initial variance of the 24 ensemble members explains 
the very low MSE values. Nevertheless, a further investigation is performed in 
order to understand the phenomenon better. Five different newly derived sets of 
24 ensemble members are generated with SGS, by using different random seeds 
for each set. New series of updating experiments are performed with the new 
series of 24 ensemble members and the results are compared. The comparison 
shows a high variety among results. MSE values obtained from the 9th block’s 
update varied between 0.52 - 0.69. In addition, the new sets of MSE values were 
equal to, lower or higher than the 48 ensemble members, 96 ensemble members, 
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192 ensemble members and 384 ensemble members. This big variety, which is 
caused by different seed numbers, shows that 24 ensemble members were not 
sufficient to represent a statistical stable estimate of the mentioned lignite seam. 

When considering the 48 ensemble, even though the 48 ensemble has the 
highest MSE values by comparing to the 96 ensemble, 192 ensemble and 384 
ensemble, the MSE dropped from 1.0 to 0.64. In his research Yin, Zhan [74] found 
that improvements while using larger ensemble sizes (after the optimum ensemble 
size) are relatively insignificant. Likewise, the improvements between 48, 96, 192 
and 384 ensembles are obvious, yet not very significant. For this reason, this study 
concludes that the optimal ensemble size for this specific study is 48 ensemble 
members. 

5.3.4.2.2. Localization and Neighborhood Strategies 

Figure 5.12 to Figure 5.15 presents results of the updating process from the 1st 
block until 9th block, for different localization strategies and neighborhood sizes. 
Experiment 2 (Figure 5.9) and 6 (Figure 5.12), Experiment 7 (Figure 5.13) and 8 
(Figure 5.14) are comparable to each other when investigating the localization 
option. Experiment 6 (Figure 5.12), 8 (Figure 5.14) and 9 are comparable to each 
other when investigating the neighborhood size. 

Figure 5.16 compares all of the experiments performed in this section by 
plotting MSE values of each. Higher MSE values are observed when localization 
strategies are applied and the neighborhood size is defined as 225,225,3 m. The 
MSE values become lower when the neighborhood size is increased and 
localization option is not used. This is expected because the neighborhood size was 
initially defined as 450,450,6 m based on the variogram, so performing the 
experiments with 225,225,3 m sized neighborhood was not enough to cover the 
seam continuity. Minor changes are observed between the MSE values of the 
450,450,6 m neighborhood sized experiment and the 900,900,6 m sized experiment 
due to a lack of spatial correlation between the attributes.  

 

Figure 5.20: Localization function illustrations 

The reason that applying the localization strategies did not provide any 
improvement in our case is due to the definition of the localization function.  

Figure 5.20 illustrates the currently used function. Since the production block 
size is varying for each block, sometimes the plateau phase of the used function 
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cannot cover a full block which is in the neighborhood. This creates un-updated 
values in a block and consequently the updating process of the entire block fails. 
For this reason, better results are obtained while the localization strategies were 
not in use. Future study may improve this drawback by developing the 
localization function in a way that it can define the block boundaries and acts 
according to those distances. 

Experiment 10 uses the localization option with the following dimensions: 
450,450,6 m in X,Y,Z directions. The used neighborhood size was 900,900,6 m. As 
mentioned before, the initial intention was to use a localization size half the size of 
the neighborhood size. Yet, since the depth of a production block is 6 m, limiting 
the localization by 3 m decreased the expected improvements. By running the 
same experiment, only changing the Z localization size parameter from 6 m to 3 m, 
the same results as found in Experiment 6 (Figure 5.12) are obtained. This can be 
observed in Figure 5.16, by comparing the related MSE values. 

5.3.4.2.3. Sensor Precision 

Figure 5.17 to Figure 5.19 present the final results of the updating process from 
the 1st block until 9th block, for different relative sensor errors. For all the 
experiments performed in this section, the average prediction quality gets better in 
the sense that they become closer to the KOLA measurement values. 

When the relative sensor error gets higher, the posterior variance appears to 
increase significantly. This is mainly because the KOLA measurement values are 
almost out of the range of the prior model (Figure 5.8) and the variance of the prior 
model significantly underestimates the KOLA measurement values. By integrating 
the KOLA measurements which have lower precision (applied relative error varies 
between 4% to 40% ash), the algorithm opens up the option to decide whether the 
KOLA data can be right or the prior model. Subsequently, this inflates the 
posterior uncertainty. 
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5.4. CONCLUSIONS 

This chapter illustrated significant improvements in predictions, leading to a 
potential increase of coal recovery and process efficiency by controlling the 
decisions continuously in a mining operation. The results from the full scale 
application validated the applicability of the method in a continuous mine 
environment and presented significant prediction improvements in the resource 
model.  

Some limitations might be influencing the results. A first potential limitation 
could be the quality of the provided data from RWE. For example, the accuracy 
and the representativeness of the received measurement data can highly effect the 
improvement of the results.  

In Section 5.4, the performance of the resource model updating framework was 
analyzed by performing sensitivity analysis on main parameters, including the 
ensemble size, the neighborhood size, localization strategies and the sensor 
precision. The results should assist in future applications by determining the 
impact of the different parameters.  

The findings of ensemble size sensitivity analysis supported the results from 
existing literature [6, 71]: more accurate updates are achievable by using a bigger 
ensemble size. Although 24 ensemble members provided the best results in terms 
of MSE, they are not chosen as the optimum ensemble size since they were not 
representative enough of the lignite seam. Instead of an ensemble of 48 members 
was chosen because it was second best and was more representative of the lignite 
seam.  

The sensitivity analysis of the localization and neighborhood strategies 
concluded that the applied localization strategies need to be improved and the 
neighborhood size needs to remain as 450,450,6 m in X,Y,Z directions, as 
previously defined in the variogram modelling. 

Sensitivity analysis for different sensor precision showed that a lower sensor 
precision increases the uncertainty of the posterior model, due to a significant 
difference between prior model and the actual sensor data.  

In general, the KOLA data is well covered by the range of uncertainty in the 
updated neighborhood. It is observed that the uncertainty in the near 
neighborhood gets slightly smaller and more of the actual KOLA measurements 
are captured by this uncertainty range.  

The research presented in this chapter was limited to a case where only one 
excavator is operating. Next chapter applies a case study where two or three 
excavator are operating. This will require updating the coal quality parameters in 
different production benches based on one combined material measurement. 
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6. DEMONSTRATION AND PROOF OF CONCEPT 

IN AN INDUSTRIAL ENVIRONMENT – CASE 2 

 

This chapter demonstrates an industrial application of the developed framework in the 
Profen mine, Germany and discusses two different aspects. First, it tests the performance of 
the resource model updating framework while the sensor is observing a blend of coal 
resulting from multiple excavators. Second, it simplifies and semi-automates the 
framework for easier application in a real mining environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been adapted from: 

Yüksel, C., Benndorf, J., Lindig, M., & Lohsträter, O. (2017) Updating The Coal Quality Parameters in 
Multiple Production Benches Based on Combined Material Measurement: A Full Case Study. 
International Journal of Coal Science & Technology, 2017:p. 1-13. 
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6.1. DATA PREPARATION 

To apply the resource model updating framework, preparation of input data is 
required (Figure 3.5). The first data set is the prior model, which contains a 
collection of the resource model realizations. For the case study, two different 
prior models are prepared based on different approaches. 

6.1.1. Prior Model: Based on Drill Hole Data  

A prior model based on drill hole data refers to generation of prior realizations 
by conditional simulation based on the given drill hole data. First, the geological 
model of the defined coal seam is created on a 25x25x1m dimensioned block 
model based on the roof and floor information of the lignite seam. Second, a 
25x25x1m dimensioned quality model capturing the wet ash content in 
percentages is generated by 25 simulations based on the provided drill hole data. 
The simulated ash values are then merged with the previously defined coal seam. 
After this, the block model realizations are ready to be imported into the algorithm 
as the first input. 

6.1.2. Prior Model: Based on Short-Term Model 

A prior model based on the short-term model refers to generation of prior 
realizations by adding fluctuations on a short-term mining model of the company. 
A detailed explanation of this application was given in Chapter 3.  

The updating experiments are performed both for drill hole based prior model 
realizations and short-term model based prior model realizations. This is done in 
order to compare the performance of the updating framework while updating 
differently generated prior models. The aim of this performance comparison is to 
investigate the question: “If the updating framework uses a non-geostatistical set 
of simulations as a prior model, would the updated models still be improved?” 

The second data set consists of the production data and their related actual 
sensor measurements. The material travelling time from each production location 
(excavator & bench location) to the RGI location is calculated. In order to 
determine the location of the received RGI measurement data, in other words: “to 
track back where the measured material comes from”, the production data is 
linked with the RGI data based on given timecodes (material travel delays are 
taken into account). The second input file for the algorithm is written to a file 
containing the following information: timecode, actual sensor measurement (RGI 
data), excavated block1 id, excavated block1 mass, excavated block2 id, excavated 
block2 mass, …, excavated blockn id, the excavatedn block mass; where b = 1, … , n 
is the excavated block number in the given time span. 

The third data set consists of a collection of actual and predicted sensor 
measurements. An ensemble of predicted values is obtained by the forward 
simulator applying the digging location and the material transport model to each 
realization. The third input file for the algorithm is written to a file containing the 
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following information: the block ID, central block location (X, Y, Z coordinates), a 
series of real measurements and predicted measurements. 
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6.2. EXPERIMENTAL SET-UP 

The experiments that are performed both with drill hole based and short term 
plan based prior model realizations, fall into two different categories. The first 
category involves different time span based experiments, where updating of the 
prior model is performed every 2 hours, 1 hour, 30 minutes, 15 minutes and 10 
minutes. Thus, this category includes either one, two or three excavators 
producing at the same time, depending on the actual production scheme. For these 
experiments, the related RGI and production data are linked to each other (for 
every minute) and averaged for each indicated time span. 

The second category involves experiments that are based on the number of 
excavators producing coal at a given time period. It investigates the capability of 
the updating framework when updating multiple benches based on a blend of 
material measurements. For these experiments, the data set that is prepared for 
every two hours of updating is taken as the base data and divided into three 
different data sets. This division is done based on the number of excavators that 
are producing coal at a given time span such as; 1 excavator, 2 excavators and 3 
excavators.  

For each criterion introduced above, an experiment is performed. Each 
experiment initially updated the prior model for a four day time period. Based on 
this resulting posterior model, forward simulator is used to generate predicted 
posterior model values for the future mining operations (for the next two days). 
These predictions are then compared with the related RGI data. Chosen time spans 
are representative for any time span that might be chosen in the future. 

The updating neighborhood size is chosen as 900m x 900m x 10m in X,Y,Z 
directions based on the variogram model range, which was calculated during 
geological modelling. A 225,225,5m sized localization is applied for each 
experiment to prevent long range spurious correlations.  
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6.3. RESULTS AND DISCUSSION 

6.3.1. Results 

This section presents representative results of the previously defined 
experiments. The following graphs provide representative information where the 
X-axis refers to the mentioned time spans, i = 0,1,2, … , n. Instead of writing the full 
date and time information, it is decided to use time span codes for simplicity. For 
example for the case where the updating is every 2 hours; if i=0 refers to 01.01.2014 
at 00:00, i =10 refers to 20 hours later, which is 01.01.2014 at 20:00. Y-axis refers to 
the ash%. The presented graphs consist of the following information: 

1. Posterior Model Box Plots: Box plot representation of posterior model 
simulations which are updated based on a given criterion (e.g. updating 
every 2 hours, 1 hour, 30 minutes, 15 minutes or 10 minutes; or updating 
while 1 excavator, 2 excavators or 3 excavators are producing). 

2. Posterior Mean: Represents the mean of the updated models in the 
learning period. Essentially, it is the mean of the posterior model that is 
updated based on a given criterion. 

3. Predicted Mean: Represents the mean of the predictions in the prediction 
period. Basically, it is the prediction of future mining blocks, based on 
the four-day-long-updated model. 

4. Prior Mean: Mean of the prior model that is created based on either the 
drill hole data or short-term model. The prior model is “mined” 
according to different operation files based on a given criterion (e.g. 
updating every 2 hours, 1 hour, 30 minutes, 15 minutes or 10 minutes; or 
updating while 1 excavator, 2 excavators or 3 excavators are producing).  

5. RGI: The averaged RGI data for a given time span. 
6. White area: Represents the learning period, where posterior models are 

produced as a result of updating the prior model, by using the RGI data. 
7. Green area: Represents the prediction period, where the mining 

operations are executed on the four-day-long-updated model. 

In these graphs the prior model is updated for four days. Based on this updated 
prior model, the posterior model, further mining operations are performed for the 
next two days. The operation file “mines” through the posterior model and 
highlights the area as green. 
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6.3.1.1. Results: Using a Prior Model that is Based on Conditional Simulation 

 

Figure 6.1: Results based on conditional simulation: Updating every 2 hours for 4 
days. The green area represents the prediction period. The white area represents 
the learning period. 

 

Figure 6.2: Results based on conditional simulation: Updating every 2 hours for 4 
days, 1 excavator producing. The green area represents the prediction period. The 
white area represents the learning period. 
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Figure 6.3: Results based on conditional simulation: Updating every 2 hours for 4 
days, 2 excavators producing. The green area represents the prediction period. The 
white area represents the learning period. 

In this case study, the achieved improvements are numerically evaluated using 
an absolute error measure for an easier interpretation. The absolute error measure 
is used due to the relatively bigger scale of the experiments compared to the case 
studies in the previous chapters. Moreover, the results obtained from the previous 
chapters were directly measuring the MSE of a block, whereas in this case study, 
due to the blended material flow, the absolute error is measured per each iteration 
(timecodes). The absolute error is defined as the absolute difference between the 
measured value of a quantity and its actual value. In our case, absolute error refers 
to the absolute difference between the measured RGI value l of produced coal at a 
given time span and its prior 𝐙0(𝐱) (or posterior 𝐙∗(𝐱)) value, calculated by the 
following equation: 

AE =
1

n
∑ |𝐥i − 𝐙∗(𝐱)i|

n

i=0
 (6.1) 

The absolute error values are calculated for each experiment iteration at a given 
time span i = 0, … , n and eventually averaged when the update of the block model 
is completed for the defined study case.  

 

 

 

 

 



DEMONSTRATION AND PROOF OF CONCEPT IN AN INDUSTRIAL ENVIRONMENT – CASE 2 

66 

 

Table 6.1 provides the calculated absolute errors for prior models and 
predictions that are illustrated in the green area of the graphs. In addition to that, 
it indicates the improvement (IMPROV) in percentages when comparing prior’s 
and predictions’ absolute errors. Improvements indicate the decrease of the 
absolute errors and it can be calculated as; 

IMPROV(%) =
𝑃𝑟𝑖𝑜𝑟 𝑀𝑜𝑑𝑒𝑙𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑜𝑑𝑒𝑙𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟

Prior Model𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟

 (6.2) 

Table 6.1: Calculated absolute errors for predictions- Prior model is based on 
drill hole data 

 Prior Model Predictions originated from Posterior Model 

 Absolute Error Absolute Error IMPROV % 

2 hr 2.25 0.82 64% 

1 hr 2.82 1.03 43% 

30 mins 1.20 1.14 5% 

15 mins 2.59 2.08 20% 

10 mins 2.57 2.39 7% 

1 Exc 2.22 1.87 16% 

2 Exc 1.72 0.96 44% 

3 Exc 1.12 0.92 18% 

 

 

Figure 6.4: Absolute error predictions (for the next 2 days) of after updating every 
2 hours for 4 days 

Moreover, Figure 6.4 presents the calculated absolute error for the following 
two days after updating the prior model every two hours for four days. Red dots 
illustrate the calculated absolute errors for each time span.  
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6.3.1.2. Results: Using a Prior Model that is Based on Short-Term Model 

 

Figure 6.5: Results based on short-term model: Updating every 2 hours for 4 days. 
The green area represents the prediction period. The white area represents the 
learning period. 

 

Figure 6.6: Results based on short-term model: Updating every 2 hours for 4 days, 
1 excavator producing. The green area represents the prediction period. The white 
area represents the learning period. 
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Figure 6.7: Results based on short-term model: Updating every 2 hours for 4 days, 
2 excavators producing. The green area represents the prediction period. The 
white area represents the learning period. 

The achieved improvements are presented using “absolute error” as previously 
introduced. Table 6.2 provides the calculated absolute errors for prior models and 
predictions. The improvement percentages (IMPROV) are calculated by 
comparing the absolute errors of prior and prediction models. 

Table 6.2: Calculated absolute errors for predictions - Prior model is based on 
short-term model 

 Prior Model Predictions originated from Posterior Model 

 Absolute Error Absolute Error IMPROV % 

2 hr 1.09 0.70 36% 

1 hr 0.99 0.84 14% 

30 mins 1.49 1.27 15% 

15 mins 4.37 1.17 73% 

10 mins 4.24 1.59 63% 

1 Exc 2.10 1.36 35% 

2 Exc 1.13 0.91 19% 

3 Exc 1.18 0.89 25% 

 

Moreover, Figure 6.8 presents the calculated absolute error for the following 
two days after updating the prior model every two hours for four days. Red dots 
illustrate the calculated absolute errors for each time span.  
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Figure 6.8: Absolute error predictions (for the next 2 days) after updating every 2 
hours for 4 days 

6.3.2. Discussion 

6.3.2.1. Improvements of Predictions 

Figure 6.1, Figure 6.2 and Figure 6.3 illustrate the improvement of the ash% 
predictions in the posterior model, where updating of the prior model (developed 
from drill hole data) is applied based on RGI data for four days. The ensuing 
posterior model is “mined” according to production data. The predictions of the 
posterior model while mining the neighborhood blocks are then compared with 
the actual ash% (in this case RGI measurements are assumed as reality) and prior 
model. Representative graphs are provided. 

Figure 6.1 presents the case where the prior model (based on drill hole data) is 
being updated for every two hours for four days. The following green area 
represents a period of two days, where orange points represent the averaged 
prediction behavior of the posterior model which is updated for four days. In this 
time period, it can be observed that posterior model predictions are mostly 
following the trend of the RGI data (red lines). Moreover, when comparing the 
posterior model predictions with the prior model (blue square points), significant 
improvements are observed in the posterior predictions. Based on Table 1, the 
averaged absolute error for those predictions is 0.82, while it is 2.25 for prior 
model. This indicates a 64% improvement.  

Figure 6.2 presents the case where the prior model (based on drill hole data) is 
being updated every two hours when only 1 excavator is operating for four days. 
Similarly, in the green area, orange points represent the averaged prediction 
behavior. Between the 50th-52nd and the 55th-58th timecodes, posterior model 
predictions are remaining stable due to production of the same mining block at 
each time. This stable prediction averages around the reality (RGI data). Moreover, 
the uncertainty of predictions (box plot whiskers) covers the reality (RGI data) 
better than the prior model. After the 63rd timecode, posterior model predictions 
follow a similar trend as the prior model due to spatial variability of the lignite 
seam. Furthermore, since this experiment focused on a case with only one 
excavator producing, the application was not limited to only one bench. As a 
result, after updating four days in three benches, using only the times where one 
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excavator is working, could only improve the future predictions for a limited time. 
The authors believe that for this case, the quality and the lifetime of the predictions 
can be improved by extending the learning phase (more than four days). 

Figure 6.3 presents the case where the prior model (based on drill hole data) is 
being updated every two hours when 2 excavators are operating for four days. By 
using 2 excavators at the same time, already more information becomes available 
about the lignite seams that are being worked on and this leads to a longer time of 
good quality improvements. This can be seen by comparing Figure 6.2 and Figure 
6.3.  

Figure 6.5, Figure 6.6 and Figure 6.7 apply the same experiments as above, 
however in these figures the prior model is based on the short-term model. With 
these experiments similar results as before were achieved. In Figure 6.5, where the 
updating of the prior model is every 2 hours, predicted ash% values are almost 
always aligned with the reality (RGI data). Figure 6.6 presents a case with 1 
excavator and Figure 6.7 presents a case with 2 excavators. As above, when 
looking to those two graphs, better predictions are observed when using 2 
excavators.  

For both cases, Figure 6.4 and Figure 6.8 are provided in order to investigate 
the behavior of the absolute error values obtained from predictions. The absolute 
error values are initially very low (between 0 and 12th timecode), but after 
approximately one day period (12th timecode) they indicate an increase over time. 
When the distance between the mined block and the neighborhood blocks 
increases, it is expected to see less improvement for the neighborhood blocks. This 
occurs due to the lower spatial correlation. Moreover, when predicting the 
neighborhood blocks there might be some blocks that are not updated in the 
learning period. This causes not only an increase in the absolute error over the 
time, but also outliers in the early phases of the prediction period. For example, see 
timecode 55 in Figure 10 or see timecode 51 and 54 in Figure 6.8. These outliers can 
be observed and the reason that they occur can be explained as follows: at each 
individual timestamp there are different blocks being mined from different 
benches. If a block gets mined in the prediction period and it has not been mined 
in the learning period or if it has not been in the neighborhood of any other mined 
blocks, it has never been updated. Thus, it still has the prior model’s value 
assigned to it. This results in a prior biased prediction and an increase of the 
absolute error.  

6.3.2.2. Time Based Experiments 

Different time span based experiments are performed (every 2 hour, 1 hour, 30 
minutes, 15 minutes and 10 minutes) for updating the prior model based on drill 
hole data. In overall, significant improvements (up to 64%) are obtained while 
updating the prior model with measured RGI values and predicting neighborhood 
blocks’ qualities (Table 6.1). A comparison among the performed experiments 
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between the most frequent update (every 10 minutes) and the least frequent 
update (every 2 hours), shows that highest improvements are achieved by the least 
frequent updates of this case (every 1 hour and 2 hours updating cases).  

Similar to the above experiments, different time span based experiments are 
also performed for updating the prior model based on the short-term model. All 
the experiments show satisfactory improvements (up to 73%) (Table 6.2). In this 
case, the highest improvements are achieved by the most frequent updates (every 
15 minutes and 30 minutes).  

However, calculating these absolute errors does not necessarily indicate the 
best parameters to use. It only validates the applicability of the method for the 
given parameters. It should not be forgotten that the calculated absolute errors for 
predictions can vary depending on the quality of the posterior model that is 
chosen as the base of the predictions. For each case this chapter has chosen the 
posterior models that are obtained after four days of updating the prior model. 
Other experiments are also applied to test this issue and they all recorded 
significant but varying amounts of improvements. 

6.3.2.3. Excavator Number Based Experiments 

Experiments based on a different number of working excavators are performed 
in order to investigate the capability of the updating framework. The previous case 
study presented in Chapter 5, in which the study area was limited to one bench 
and one producing excavator, produced successful results. The RGI online-sensor 
was positioned on the producing excavator, so that the measured material was the 
produced material from that excavator. However, in this case study, there are 
three different benches and three different producing excavators (one excavator 
for each bench). The online RGI sensor is positioned on one of the conveyor belts 
just before the stock yard. Therefore, the RGI sensor measures blended material 
produced from different benches. The aim of performing the mentioned 
experiments in this section is to test the performance of the updating algorithm in 
when the observations are measured from a blended flow.  

By looking at Table 6.1, a range of 16-44% improvement is observed when 
using a varying amount of excavators in the updating experiments with a drill 
hole based prior model. This shows that the algorithm can handle a situation 
where the blended measurement data is fed into different benches where the 
material is originally produced. 

By looking at Table 6.2, a range of 19-35% improvement is observed when 
using a varying amount of excavators in the updating experiments with a short-
term model based prior model. The obtained improvements are significant 
considering the benefits of automation while using a short-term model based prior 
model. Once again, the results indicate that the algorithm can handle a situation 
where the blended measurement data is fed into different benches where the 
material is originally produced. 
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6.4. HYPOTHESIS TESTING 

The previous experiments in Chapter 6 tested the performance of the resource 
model updating framework while the sensor is observing a blend of coal 
originating from multiple excavators and concluded that the updating framework 
improves the resource model with the given conditions. These experiments are 
performed for a time period of 15 days. Within these 15 days, the experiments 
focused on periods of 4 days close investigation. However, it is decided that any 
conclusions derived from the 15 days of data might not be sufficient to prove the 
performance of the updating framework. To achieve more definitive results, this 
section applied a hypothesis testing approach. 

A hypothesis test is a statistical test that is used to determine whether there is 
enough evidence in a data sample to infer that a certain condition is true for the 
entire population. Further information on hypothesis testing can be found in [75]. 

When applying hypothesis testing for the presented case study in this chapter, 
the null hypothesis (H0) states that the average improvement in the future 
predictions is equal to zero. This means that the real-time resource model updating 
framework is not working as it is supposed to, which would mean that there is no 
improvement recorded in the predictions of the future. On the contrary, the 
alternative hypothesis (HA) states that the average improvement in the predictions 
is greater than zero. This means that the real-time resource model updating 
framework improves the predictions so that the average improvement percentages 
are greater than zero. Thus, the parameter 𝜇𝐼𝑀𝑃𝑅𝑂𝑉  represents the average number 
of the prediction improvements calculated after updating the prior model by using 
resource model updating. The two hypotheses in question are as follows: 

H0 : 𝜇𝐼𝑀𝑃𝑅𝑂𝑉  = 0 

HA : 𝜇𝐼𝑀𝑃𝑅𝑂𝑉  > 0 (an upper-tailed test). 

A test statistic is a test where the standardized value, which is calculated from 
sample data during a hypothesis test, is used for determining whether or not to 
reject the null hypothesis. The null hypothesis will state that the expected value 𝜇 
has a particular numerical value, the null value, which we will denote by 𝜇𝐼𝑀𝑃𝑅𝑂𝑉 . 
Let 𝑥1, 𝑥2, …, 𝑥𝑛 represent the predicted imrovements of the resource model with 
size n. Then the sample mean �̅� has an expected value 𝜇�̅� = 𝜇 and standard 

deviation 𝜎�̅� = 𝜎/√𝑛. When H0 is true, 𝜇�̅� = 𝜇𝐼𝑀𝑃𝑅𝑂𝑉 . The statistical test, known as 
the t-test, can be calculated as: 

𝑇 =
�̅�  −  𝜇𝐼𝑀𝑃𝑅𝑂𝑉

𝜎

√𝑛

 (6.3) 

When the data shows strong evidence against the assumptions in the null 
hypothesis, the magnitude of the test statistic becomes large and the test value can 
become small enough to reject the null hypothesis. 
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After calculating the T-value, the T-value can be converted to a P-value by 
simply using the table of T, which can be found in any statistics book. The P-value 
is the probability, which calculated with the assumption that the null hypothesis is 
true, of obtaining a value of the test statistic at least as contradictory to H0 as the 
value calculated from the available sample [75]. More generally, the smaller the P-
value, the more evidence there is in the sample data against the null hypothesis 
and for the alternative hypothesis.  

To define if the P-value is sufficiently small or not, a significance level is 
selected. The significance level is the largest acceptable probability of committing a 
false rejection of H0 and is denoted by α, where 0 < α < 1 [76]. The case study 
presented in this section is performed at level 0.05 and this refers to a 95% 
confidence interval. If the P-value is less than or equal to the α, H0 is rejected and 
the claim of HA is supported; if it is greater than the α, this means there is not 
enough support to claim that HA is correct so we keep H0. 

The following results in Section 6.5.1. are obtained while updating the prior 
model until the day that is indicated in the first column of the results tables (Table 
6.3 and Table 6.4). Then, based on this most recent updated model (posterior 
model), the next one, two or three days are predicted. The achieved improvements 
are then presented using “absolute error” as previously introduced in Section 
6.4.1. Table 6.3 and Table 6.4 provide the calculated absolute errors for prior 
models and predictions. The improvement percentages (IMPROV) are calculated 
by comparing the absolute errors of the prior models and prediction models. 
Moreover, Table 6.5 and Table 6.6 present the calculation of the test statistics. 
These results will be evaluated in Section 6.5.2. 
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6.4.1. Results 

Table 6.3: Calculated absolute errors for predictions (for 23 days) - Prior model 
is based on drill hole data 

 
Mining for next 1 day Mining for next 2 days Mining for next 3 days 

 
Prior 

Model 

Predictions  
originated from  
Posterior Model 

Prior 
Model 

Predictions  
originated from  
Posterior Model 

Prior 
Model 

Predictions  
originated from  
Posterior Model 

Day # 
Abs 

Error 
Abs. 
Error 

IMPROV 
% 

Abs. 
Error 

Abs. 
Error 

IMPROV 
% 

Abs. 
Error 

Abs. 
Error 

IMPROV 
% 

Day 1 2.30 1.33 42% 1.51 1.17 22% 1.30 1.08 16% 

Day 2 0.72 0.47 35% 0.77 0.63 18% 0.86 0.83 4% 

Day 3 0.78 0.69 11% 0.91 0.80 12% 0.84 0.77 9% 

Day 4  0.95 0.78 18% 0.87 0.78 10% 1.04 0.98 6% 

Day 5  0.70 0.50 28% 1.15 1.06 8% 1.84 1.62 12% 

Day 6 1.79 1.35 25% 2.46 2.45 1% 2.42 2.36 2% 

Day 7 3.08 2.34 24% 2.67 2.39 11% 2.31 2.24 3% 

Day 8 2.34 1.52 35% 1.95 1.7 15% 1.97 1.95 1% 

Day 9 1.55 0.84 46% 1.72 1.30 25% 1.72 1.35 22% 

Day 10 1.89 1.66 12% 1.82 1.62 11% 1.99 1.37 31% 

Day 11 1.58 1.30 18% 1.98 0.92 54% 1.81 1.30 28% 

Day 12 2.38 0.77 67% 1.92 1.36 29% 1.55 1.48 4% 

Day 13 1.54 0.81 47% 1.17 0.93 20% 1.03 0.96 6% 

Day 14 0.71 0.56 22% 0.70 0.56 20% 0.86 0.72 17% 

Day 15 0.76 0.48 38% 1.00 0.88 12% 1.20 0.96 20% 

Day 16 1.21 0.92 24% 1.40 1.06 24% 1.72 1.16 33% 

Day 17 1.59 0.53 66% 2.03 0.94 54% 1.70 0.78 54% 

Day 18 2.70 0.73 73% 1.77 0.83 53% 1.73 0.97 44% 

Day 19 1.16 0.55 52% 1.42 0.70 51% 1.50 1.08 28% 

Day 20 1.69 0.64 62% 1.68 1.04 38% 1.78 1.06 41% 

Day 21 1.67 0.65 61% 1.77 1.04 41% N/A N/A N/A 

Day 22 1.97 1.13 42% N/A N/A N/A N/A N/A N/A 

Day 23 1.77 0.38 78% N/A N/A N/A N/A N/A N/A 
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Table 6.4: Calculated absolute errors for predictions (for 23 days) - Prior model 
is based on short-term model 

 
Mining for next 1 day Mining for next 2 days Mining for next 3 days 

 
Prior 

Model 

Predictions  
originated from  
Posterior Model 

Prior 
Model 

Predictions  
originated from  
Posterior Model 

Prior 
Model 

Predictions  
originated from  
Posterior Model 

Day # 
Abs. 
Error 

Abs. 
Error 

IMPROV 
% 

Abs. 
Error 

Abs. 
Error 

IMPROV 
% 

Abs. 
Error 

Abs. 
Error 

IMPROV 
% 

Day 1 1.47 1.42 3% 1.30 1.27 2% 1.44 1.32 8% 

Day 2 1.13 0.75 34% 1.42 0.97 32% 1.34 1.32 1% 

Day 3 1.65 0.74 55% 1.41 0.89 37% 1.29 0.88 32% 

Day 4 1.25 1.15 8% 1.18 1.05 11% 1.39 1.33 4% 

Day 5 0.97 0.87 10% 1.50 0.91 39% 1.41 0.88 38% 

Day 6 1.73 0.21 88% 1.65 0.74 55% 1.54 0.97 37% 

Day 7 1.14 1.02 11% 1.22 1.09 10% 1.33 1.28 4% 

Day 8 1.37 1.22 11% 1.42 1.4 2% 1.55 1.53 1% 

Day 9 1.47 1.07 27% 1.59 1.49 6% 1.50 1.50 0% 

Day 10 1.78 1.24 30% 1.52 1.49 2% 1.62 1.61 1% 

Day 11 1.11 0.98 12% 1.49 1.21 19% 1.29 1.01 22% 

Day 12 1.87 1.48 21% 1.37 1.00 27% 1.50 1.18 22% 

Day 13 0.97 0.81 16% 1.34 0.93 30% 1.64 0.96 41% 

Day 14 1.79 0.50 72% 1.92 0.50 74% 2.19 0.58 74% 

Day 15 2.18 1.23 44% 2.50 1.29 49% 2.37 2.10 12% 

Day 16 2.80 2.19 22% 2.46 2.44 1% 2.44 2.24 8% 

Day 17 2.11 0.85 60% 2.23 1.19 46% 2.24 1.58 29% 

Day 18 2.40 0.73 69% 2.32 0.49 79% 2.34 0.73 69% 

Day 19 2.27 0.50 78% 2.31 1.09 53% 2.00 1.42 29% 

Day 20 2.36 0.87 63% 1.86 1.43 23% 2.08 1.87 10% 

Day 21 1.26 1.12 11% 1.80 1.61 11% N/A N/A N/A 

Day 22 2.53 1.89 25% N/A N/A N/A N/A N/A N/A 

Day 23 2.59 0.62 76% N/A N/A N/A N/A N/A N/A 
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Table 6.5: Test statistics calculation - Prior model is based on drill hole data 

 Mining for next 
1 day 

Mining for next 
2 days 

Mining for next 
3 days 

�̅�𝐼𝑀𝑃𝑅𝑂𝑉  40.3% 25.1% 19.1% 

𝜎 0.20 0.17 0.16 

N 23 21 20 

T-value 9.5 6.87 5.47 

P-value 1.48E-09 3.35E-07 0.00 

α 0.05 0.05 0.05 

Decision P-value < α:  
HA is proven 

P-value < α:  
HA is proven 

P-value < α:  
HA is proven 

 

Table 6.6: Test statistics calculation - Prior model is based on short-term model 

 Mining for next 
1 day 

Mining for next 
2 days 

Mining for next 
3 days 

�̅�𝐼𝑀𝑃𝑅𝑂𝑉  36.8% 28.9% 22.1% 

𝜎 0.27 0.24 0.22 

N 23 21 20 

T-value 6.5 5.59 4.55 

P-value 7.67E-07 6.45E-06 0.00 

α 0.05 0.05 0.05 

Decision P-value < α:  
HA is proven 

P-value < α:  
HA is proven 

P-value < α:  
HA is proven 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.4. Hypothesis Testing 

77 

 

6.4.2. Discussion 

Table 6.3 and Table 6.4 provide the calculated absolute errors for the prior 
models and the predictions based on these model, during a updating period of 23 
days, for both of the cases where the prior model is based on drill hole data and 
the short-term model, respectively. To give an example, in Table 6.3, after 
continuously updating the prior model during the first day, a posterior model is 
obtained by the end of the “Day 1”. Based on this resulting posterior model, a 
forward simulator is used to generate predicted posterior model values for the 
future mining operations (for the next one, two or three days). After this, the 
absolute errors (Equation (5.1)) are calculated both for the prior and the mentioned 
posterior model. Later, the improvement percentages (IMPROV) (Equation (6.1)) 
are calculated by comparing the absolute errors of the prior and prediction 
models. Since the absolute error of the prior model was 2.30 and the absolute error 
of the posterior model became 1.29 after updating for an entire day, a 44% 
improvement in the predictions can be calculated from this comparison. A similar 
process is applied for each experiment. For example, while updating the prior 
model for 20 days, the resulting posterior model indicated a 50% improvement for 
the next day’s predictions. This improvement percentage decreased while moving 
to the predictions of the second and third day (35% and 14% respectively). 

In Table 6.5 and Table 6.6 the test statistics for both of the mentioned cases are 
calculated. The calculated parameters are given and in the last row the decision 
making process is illustrated.  

In the case where the prior model is based on drill hole data (Table 6.5), the 
alternative hypothesis is accepted for the predictions of the next three days. This 
means that the real-time resource model updating framework increased the 
average accuracy of the resource model for the mining of the next three days with 
95% confidence. As expected, in general, a decreasing trend is observed among the 
results when moving from the first mining day to third mining day. 

Similarly, in the case where the prior model is based on the short-term model 
(Table 6.6), the alternative hypothesis is accepted for the predictions of the next 
three days. The fact that we can use a the short-term model based prior model 
provides a major operational benefit and allows for increasing the production 
efficiency during mining operations.  

In both Table 6.5 and Table 6.6, it is possible to observe that the average 
improvement percentages are decreasing when moving away from the updated 
area while mining. As discussed in previous chapters this can be expected. 
Moreover, similar results are obtained in similar experiments of which the results 
are presented in Section 6.4.1.  

Overall, for both of the cases where a prediction is made for the next three 
mining days after updating for various time spans, the hypothesis that has been 
tested is accepted with 95% confidence. This indicates more accurate predictions of 
a resource model for the following mining days. 
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6.5. CONCLUSIONS 

This chapter provided a full-scale case study into the application of an 
Ensemble Kalman based resource model updating framework, with the aim of 
simplifying the application process.  

To offer an easy application of the updating framework in a real mining 
environment, a simplified application method is created. This simplified 
application method involves creating the prior realizations based on the 
company’s short-term model. Improvement percentages, on average, were not 
significantly different when the case study results are compared with the results 
obtained from a case study where the prior realizations are generated with 
geostatistical simulations. This paper validates that the automation of the 
developed framework during real applications can be done based on a short-term 
model without any additional process being required in order to prepare the prior 
model.  

Moreover, significant improvements are observed while using blended 
material measurement data in order to update different production locations in 
different benches. This provides great flexibility for future applications.  

Furthermore, the hypothesis testing performed in this case study (which has a 
duration of almost a month) has once again shown that the real-time resource 
model updating framework significantly improves the future predictions. The 
obtained results from the case , where the prior model is based on drill hole data, 
are slightly better than the case where the prior model is based on the short-term 
plan. However, both of the cases behaved similarly and showed an average 
improvement of about 29%. This is valuable for highlighting the practicality of the 
framework. However, in the future, depending on the application location and the 
accuracy of the measurement data used, this might change. Nevertheless, in both 
cases, significant improvement are observed. 

The next chapter will focus on the value of introducing additional information 
in the short-term model during the production phase. 
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7. VALUE OF INFORMATION 

 

In this chapter, the added value of the real-time resource model updating concept is 
evaluated by using a value of information (VOI) analysis. The expected economical and 
environmental benefits of additional information (due to the integration of the online-
sensor measurements into the resource model) are compared to a case where there is no 
additional information integrated into the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been adapted from: 

Yüksel, C., Minnecker, C., Shishvan, M.S., Benndorf, J., & Buxton, M. (2017). Value of Information 
Introduced by a Resource Model Updating Framework. Mathematical Geosciences. (submitted) 
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7.1. INTRODUCTION 

The previous chapters provided a validation and a demonstration of the real-
time updating framework in full scale lignite production. The previous chapters 
presented the improvements in predictions achieved by applying the updating 
framework. However, so far, none of those studies investigated whether the 
improvements in predictions truly have economical and environmental effects. 
This chapter indicates the economical and environmental impacts determined by 
application of the resource model updating framework. 

One of the most well-known tools for assessing the value of additional 
information added into the system is the Value of Information (VOI) [77-79]. In the 
last decades, VOI gained high popularity in many different fields. A few 
applications are documented in mining industry. Peck and Gray [80] make no 
explicit reference to VOI, yet they discuss the potential benefits to decision makers 
of gathering information in the mining industry. Barnes [81] applied VOI to 
incorporate a geostatistical estimation into mine planning. More recently, Phillips, 
Newman [82] provided a case study where a VOI decision framework was applied 
to provide guidance for mine managers regarding the purchase of ore grade 
scanners. Contrary to the mining industry, the VOI approach has found more 
applications in related fields, such as the oil and gas industry. Bratvold et al. [83] 
provided an extensive overview on oil and gas industry applications. Bhattacharja 
et al. [84] integrated the decision-analytic notion of VOI with spatial statistical 
models, similar to this paper’s application work. Barros et al. [85] proposed a new 
methodology to perform a VOI analysis within a closed-loop reservoir 
management framework, which is similar to the resource model updating 
framework, except it is applied in reservoir engineering. Further applications in 
the oil and gas industry can be found in: [86], [87], [88], [89], [90] and [91]. 

The essence of the technique is to evaluate the benefits of collecting additional 
information before making a decision [83]. When using the resource model 
updating framework, this decision making process would be changing the short-
term mining plan by using a mine optimizer. If the resource model always 
provides correct coal quality attributes it delivers Perfect Information, otherwise it 
is known as Imperfect Information. The latter is usually the case in geoscience 
applications, since the reality is unknown. The resource model updating 
framework aims to carry forward the current situation from Imperfect Information 
to an “Improved” Imperfect Information state, where the current situation lies 
somewhere between the Perfect Information and previous Imperfect Information 
(Figure 7.1). Every updating iteration brings the previous Imperfect Information 
closer to Perfect Information.  
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Figure 7.1: Aim of the resource model updating framework 

The expected benefit of additional information (integration of the online-sensor 
measurement into the resource model) is compared to a case where there is no 
additional information integrated into the process. These benefits are evaluated in 
two main categories: economical and environmental. Economical aspects include 
the monetary values such as cost per shift. Environmental aspects focus on 
emissions of pollutants. Typical emissions in the coal industry are carbon dioxide 
(CO2), sulphur dioxide (SO2), nitric oxide (NO). This research focuses on CO2. 

This chapter addresses the following question, what is the value of integrating 
real-time production measurements into the resource model and executing an 
optimized mine plan, considering economical and environmental aspects?  
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7.2. ECONOMICAL AND ENVIRONMENTAL ASPECTS IN LIGNITE MINING 

This section discusses the economical and environmental aspects in lignite 
mining and introduces the related Key Performance Indicators (KPIs) for the 
following sections.  

Economical aspects in lignite mining mainly refer to monetary values. This 
dissertation focuses on the costs of deviating from the target quality (ash %) 
during production. Calculation of this KPI is given in the following: Let the costs 
of deviating from the target production quality when executing the mine plan on 
the prior model be Cprior (€), the costs of deviating from the target product quality 

per ton of coal is Dprior (€/ash% x t), the amount of the deviation in quality is dprior 

(ash%) and, finally, the amount of the deviated coal is tprior (ton). Similarly, when 

executing the mine plan on the posterior model, the previously defined 
parameters are; Cposterior, Dposterior, dposterior and tposterior respectively. Then, the 

costs of deviating from the target production is: 

Cprior = Dprior ∗ dprior ∗ tprior (7.1) 

Environmental aspects in lignite mining refer to emissions of pollutants and 
energy consumption. Typical emissions in the coal industry are carbon dioxide 
(CO2), sulphur dioxide (SO2), nitric oxide (NO). However, with modern mining 
methods, the biggest problem remaining is the large amount of CO2 emissions. 
Thus, this dissertation focuses on CO2 emissions. The main two source of CO2 
emissions during coal mining and energy producing from coal are: the emissions 
from the excavators during mining activities and the emissions from the power 
plant. Due to the complexity of the process, defining an approximate KPI measure 
for the environmental aspects is very difficult. Too many assumptions need to be 
made and in the end, these assumptions will not reflect reality. Thus, a verbal 
discussion is made of the environmental aspects.  

Each power plant is designed to work efficiently with a specific quality range 
(ash%) of coal. Having higher ash values than the specified ash% range will cause 
serious efficiency losses due to lower calorific value of the high ash content coal. 
Then, the power plant needs to burn more coal to produce the same amount of 
energy that it could have produced with lower ash content coal. This will cause 
more CO2 emissions.  
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7.3. A STOCHASTIC BASED MINE PROCESS OPTIMIZER 

This research uses a stochastic based mine process optimizer in order to 
calculate the expected benefit of the updating framework. The mentioned mine 
process optimizer is used as a transfer function needed for the VOI concept as 
introduced in Figure 7.1.  

The stochastic based mine process optimizer is created within the RTRO-Coal 
project in work package 1 and 5 by Mollema [92]. It is a form of optimizer where 
the efficiency of a set of decision variables is simulated through a simulation 
model, which in this case represents a complex continuous mining operation [92]. 
The stochastic based mine process optimizer optimizes the task schedule of the 
excavators at a given sequence with a minimal penalty value. 

In this case study, the mine process optimizer finds the best mining schedule 
based on a predefined target daily ash value for a given resource model. Thus, it 
translates the resource model uncertainties into penalty calculations based on an 
optimized mine schedule.  

In this research the optimized variable is the schedule of the six excavators. 
The schedule for each excavator is a list with three shifts per day of the simulated 
period. For each shift the excavator is either scheduled to work or not active. This 
is represented with a one or a zero in the schedule. The input for a single 
simulation is thus a two-dimensional array with six rows and 3*n columns, where 
n is the number of simulated days. An example of a schedule with the ones and 
zeroes being represented by green and red blocks respectively is shown in Figure 
7.2. [92] 

 
Figure 7.2: Visual representation of a series of schedules, with the 10 simulation 
days and the shift for each day in the first two rows. A red block means the 
excavator is not schedules, a green block means the excavator is scheduled to 
work. [92] 

The total activity time of an excavator is never 100% of the time it is scheduled. 
The activity time is simplified to a single percentage per excavator by dividing the 
total active time of the excavators (corrected for downtimes) in the historical data 
by the total time of this data. This gives the following percentages per excavator 
(Table 7.1). The number of active minutes in a shift that is used in the simulation 
model is obtained by multiplying the activity factor with 480, the total number of 
minutes in an eight hour shift. [92] 



VALUE OF INFORMATION 

84 

 

 

Table 7.1: Activity factors for excavators [92] 

 
 

As mentioned earlier, the stochastic based mine process optimizer works with 
a penalty function to calculate the fitness of a solution. A KPI is optimized in this 
research; the daily ash value. Any deviation from the defined target ash value will 
increase the penalty value. The implemented penalty function works with several 
configurable parameters. The parameters are as follows: [92] 

 - Coal quality daily target 𝑇𝑞 

 - Coal quality minimum penalty deviation 𝑃𝑞 𝑚𝑖𝑛  

 - Coal quality penalty factor 𝑃𝑞  

The minimum penalty deviation is the maximum acceptable deviation of the 
target value before a penalty is applied. This gives for the daily penalty calculation 
the following formula, where 𝑆𝑞  is the simulated quality. [92] 

For the daily quality penalty value 𝑃𝑉𝑞𝑢𝑎𝑙𝑖𝑡𝑦: 

𝑃𝑉𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =  {
(|𝑆𝑞 − 𝑇𝑞| − 𝑃𝑞 𝑚𝑖𝑛) 𝑥 𝑃𝑞 , |𝑆𝑞 − 𝑇𝑞| > 𝑃𝑞 𝑚𝑖𝑛

                                              0 , |𝑆𝑞 − 𝑇𝑞| ≤ 𝑃𝑞 𝑚𝑖𝑛 
 (7.2) 

The total penalty value of a solution is the sum of both the quality and tonnage 
penalty value for all the days of simulation. 

In this chapter, the defined decision variables are the resource model and 
mining schedule. The constraints of this optimization problem are; the scheduled 
maintenance, the daily production target and the daily quality target. The 
scheduled maintenance is one of the problem constraints since each excavator 
requires specific amounts of maintenance. These scheduled maintenance are 
defined as the following; for Excavator 1580, none; for Excavator 1511, 4 shifts; for 
Excavator 1553, 3 shifts; for Excavator 351, 6 shifts; for Excavator 1541, 10 shifts 
and for Excavator 309 is 18 shifts. The defined daily coal production is 12,000 ton 
with a 3,000 ton deviation. The defined coal quality target is 9% of ash with a 1% 
ash deviation.  

For a detailed information on the used mine process optimizer, the readers are 
referred to [92]. 
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7.4. VALUE OF INFORMATION 

In the context of this dissertation, the value of information (VOI) concept is 
used to understand what is gained by integrating the online-sensor measurement 
data into the resource model when using the updating framework. In general, VOI 
is calculated as following [83]: 

VOI = [
Expected value with 

additional information
] − [

Expected value without 
additional information

] (7.3) 

The concept analyzes the value of the resource model updating framework’s 
ability to improve the prediction of coal quality parameter, namely the ash 
percentage (ash%). For this, the expected value of the posterior model (Vposterior) is 

compared to the prior model’s expected value (Vprior). Eventually, in our 

application, calculation of VOI translates Equation (7.3) as following: 

VOI = Vposterior − Vprior (7.4) 

A similar calculation can be applied in a case where the mine plan is applied to 
the posterior model. Finally, one can calculate the economical VOI as following: 

VOIeconomical = |Cposterior − Cprior|. (7.5) 

The VOI concept considers the value of perfect and imperfect information. 
Perfect information refers to perfectly reliable information, thus it contains no 
uncertainties. Perfect information rarely exists, but it provides a best-case scenario 
for the value of an information and it defines an upper limit on the value of 
additional information [82]. In the context of this dissertation it would answer the 
question: ‘How much better would the economical and environmental aspects of 
an optimized mine plan be executed after knowing the coal seam geometries and 
coal quality distributions?”. However, since the case study presented here is a real 
case study, the reality remains unknown. Thus for this case study, there can be no  
VOPI defined.  

As indicated in Figure 7.1, the experiments performed within this chapter, will 
compare the calculated VOIs of the Imperfect Value and Updated & Improved 
Value. These values will be calculated after applying the mine optimizer on the 
prior and posterior (updated) models.  

Next section will explain further the experiments that will be performed in 
order to calculate the VOI.  
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7.5. CASE STUDY 

7.5.1. Experimental Set-Up 

This case study is performed in the Profen mine, Germany. The description of 
this mine area, various updating experiments with different parameters (including 
their results) and a hypothesis testing case study are presented in Chapter 6.  

The experiments performed in this chapter calculate the expected values for 
different resource model based experiments (Figure 7.3). One of these resource 
models is without any additional information. This is the base case and the 
resource model in this case is the prior model. The other resource models are with 
additional information. These are the updated cases and the resource model in this 
case is the posterior model. There are five different posterior models which are 
updated within different time periods: 

 The posterior model which resulted from updating the prior model over 
the 19 July – 1 August period.  

 The posterior model which resulted from updating the prior model over 
the 19 July – 4 August period.  

 The posterior model which resulted from updating the prior model over 
the 19 July – 7 August period.  

 The posterior model which resulted from updating the prior model over 
the 19 July – 10 August period.  

 Finally, the posterior model which resulted from updating the prior 
model over the 19 July – 13 August period.  

The latter is assumed as the most precise model since this is the most up-to-
date resource model and it serves as a benchmark. 

 

 
Figure 7.3: Resource models that are used in the experiments 

The mine optimizer, which is introduced in Section 7.3, is applied to all of 
resource models above for the following 5 days after their updating periods. For 
the base case and the benchmark case, the mine optimizer is applied for 5 days 
after the each updating period. These dates will be: 2-6 August, 5-9 August, 8-12 
August and 11-16 August. For these dates there are different best schedules 
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optimized based on the prior model, the updated model and the real model. To be 
precise, in total there are twelve different best schedules for different time spans. 
These best schedules are: 

1. Best schedule for 2-6 August, achieved by applying the optimizer to the 
prior model. 

2. Best schedule for 2-6 August, achieved by applying the optimizer to the 
posterior model (which is updated between 19 July - 1 August). 

3. Best schedule for 2-6 August, achieved by applying the optimizer to the 
real model (which is updated between 19 July - 13 August). 

4. Best schedule for 5-9 August, achieved by applying the optimizer to the 
prior model. 

5. Best schedule for 5-9 August, achieved by applying the optimizer to the 
posterior model (which is updated between 19 July - 4 August). 

6. Best schedule for 5-9 August, achieved by applying the optimizer to the 
real model (which is updated between 19 July - 13 August). 

7. Best schedule for 8-12 August, achieved by applying the optimizer to the 
prior model. 

8. Best schedule for 8-12 August, achieved by applying the optimizer to the 
posterior model (which is updated between 19 July - 7 August). 

9. Best schedule for 8-12 August, achieved by applying the optimizer to the 
real model (which is updated between 19 July - 13 August). 

10. Best schedule for 11-16 August, achieved by applying the optimizer to 
the prior model. 

11. Best schedule for 11-16 August, achieved by applying the optimizer to 
the posterior model (which is updated between 19 July - 10 August). 

12. Best schedule for 11-16 August, achieved by applying the optimizer to 
the real model (which is updated between 19 July - 13 August). 

Next, these obtained best schedules are applied to the benchmark model 
(Figure 7.4). This is done in order to see the improvements during the mining 
operations, when using the prior model, the most current model and the 
benchmark model. As mentioned in the previous section, the case study presented 
here is a real case study and thus, there can be no VOPI defined for this case study. 
For this reason, since the benchmark model is the most up-to-date resource model 
and thus, the most precise model, this case study assumes it is the reality. In this 
way, an approximation of VOPI can be calculated between the benchmark and the 
prior model whereas the VOI is calculated between the posterior model and the 
prior model. A comparison of this would answer the following questions: “What 
would be the result of the mining activities if we didn’t have additional 
information?”, “How did the additional information affect the mining activities?” 
and finally “What would happen if we knew the reality and performed the mining 
activities mine based on that?”. Of course, the latter one is only for comparison 
and in reality we can never have this information beforehand. 
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Once the best schedules are applied to the benchmark model, the expected 
costs of deviating from the target quality (ash %) values will be calculated as 
explained in Section 7.2. The expected values are then compared to each other and 
the VOI is calculated. This comparison and the results are provided in Section 
7.5.2. 

 
Figure 7.4: VOI - Experimental scheme 

This experimental scheme is applied to six different case studies in order to 
investigate the VOI for the resource model updating concept with different prior 
models. These prior models are created based on different information sources in 
order to test different exploration strategies and other replacement options (such 
as using the short-term mining model as the prior model). These case studies are: 

 Case 1: The first case study used a prior model with 25 realizations which 
were created by geostatistical simulations (SGS) on 25x25x1m grid. A 
detailed explanation is provided for this prior model in Section 6.2.1. The 
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posterior model of this case study is created simply by applying the 
resource model updating algorithm on the prior model of this case study. 

 Case 2: The second case study used a prior model with 25 realizations 
which were created by adding fluctuations to a short-term mining model 
of the company. A detailed explanation is provided for this prior model in 
Section 6.2.2. The posterior model of this case study is created simply by 
applying the resource model updating algorithm to the prior model of 
this case study. 

 Case 3: The third case study used a prior model with 25 realizations 
which were created by geostatistical simulations (SGS) on block based. In 
the context of this dissertation, block based simulation indicates 
performing SGS on the central coordinates of the production blocks. In 
this case study, all of the drill holes (100 percent) were used when 
performing the SGS. The posterior model of this case study is created 
simply by applying the resource model updating algorithm to the prior 
model of this case study. 

 Case 4: The fourth case study used a prior model with 25 realizations 
which were created by geostatistical simulations (SGS) on block based. In 
this case study, only 50 percent of the drill holes were used when 
performing the SGS. The posterior model of this case study is created 
simply by applying the resource model updating algorithm to the prior 
model of this case study. 

 Case 5: The fifth case study used a prior model with 25 realizations which 
were created by geostatistical simulations (SGS) on block based. In this 
case study, only 25 percent of the drill holes were used when performing 
the SGS. The posterior model of this case study is created simply by 
applying the resource model updating algorithm to the prior model of this 
case study. 

 Case 6: The sixth case study used a prior model with 25 realizations which 
were created by geostatistical simulations (SGS) on block based. In this 
case study, only 10 percent of the drill holes were used when performing 
the SGS. The posterior model of this case study is created simply by 
applying the resource model updating algorithm to the prior model of this 
case study. 

All of the case studies presented in this chapter are updated every 2 hours 
using the same mining sequence and the same RGI data. Overall, all of the 
updating parameters are kept the same in order to compare the differences caused 
by feeding different prior models as an input. A summary of the case studies is 
given in Table 7.2.  

In this study, penalties are applied for not meeting the coal quality target 
(Equation (7.3)). This target production quality is defined as 9 % ash and the 
penalty is only applied for the realizations above 10.5 ash % and below 7.5 ash %. 
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The costs of deviating from the targets (the penalties) in this study are calculated 
by one unit per ton of coal. Hence, these penalties can be interpreted as percentage 
of deviation from the targets. A penalty of 0.1€/ash % is applied per ton of coal. 

 

Table 7.2: Case summarization for VOI experiments 

 Base Case: Updated Case: 

 Prior Model Posterior Model 

Case 1 100% of the drill holes – 
SGS on grid 

Updated prior model 
using RGI data 

Case 2 Short-Term plan +  
Fluctuations 

Updated prior model 
using RGI data 

Case 3 100% of the drill holes – 
SGS on block based 

Updated prior model 
using RGI data 

Case 4 50% of the drill holes – 
SGS on block based 

Updated prior model 
using RGI data 

Case 5 25% of the drill holes – 
SGS on block based 

Updated prior model 
using RGI data 

Case 6 10% of the drill holes – 
SGS on block based 

Updated prior model 
using RGI data 

 

7.5.2. Results 

This section presents some representative results of the previously defined 
experiments. 

Two graphs are provided for each case study. The first graph presents the 
calculated deviation costs (penalties). This graph calculates the deviations per day 
for exceeding the upper target values in the simulations. Since the deviations from 
the lower target value are, in general, insignificant and negligible, the graphs for 
exceeding the lower target values are not presented. 

The second graph presents the calculated VOI for each case study. The VOPI is 
represented with pink squared lines and the average of those VOPI is represented 
with a red line. The calculated VOI is represented with light green pointed line 
and the trendline fitted on these points is represented with a dark green line. 
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7.5.2.1. Case 1 

 

Figure 7.5: Cost calculations of deviating from the target quality (ash %) - Case 1 

 

Figure 7.6: VOI - Case 1 
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7.5.2.2. Case 2 

 

Figure 7.7: Cost calculations of deviating from the target quality (ash %) - Case 2 

 

Figure 7.8: VOI - Case 2 
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7.5.2.3. Case 3 

 

Figure 7.9: Cost calculations of deviating from the target quality (ash %) - Case 3 

 

Figure 7.10: VOI - Case 3 
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7.5.2.4. Case 4 

 

Figure 7.11: Cost calculations of deviating from the target quality (ash %) - Case 4 

 

Figure 7.12: VOI - Case 4 
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7.5.2.5. Case 5 

 

Figure 7.13: Cost calculations of deviating from the target quality (ash %) - Case 5 

 

Figure 7.14: VOI - Case 5 
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7.5.2.6. Case 6 

 

Figure 7.15: Cost calculations of deviating from the target quality (ash %) - Case 6 

 

Figure 7.16: VOI - Case 6 
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7.5.3. Discussion 

This section discusses the results presented in the previous section. 

In the “cost calculations of deviating from the target quality (ash %)” graphs 
(Figure 7.5, Figure 7.7, Figure 7.9, Figure 7.11, Figure 7.13 and Figure 7.15), the 
darkest column represents the calculated penalties for the best schedule which is 
optimized based on the prior model and later this schedule is applied to the 
benchmark model. It is expected to observe a constant penalty value with a slight 
fluctuation for these columns. The reason for that is, the applied best schedule for 
those columns is based on the same prior model and the model, on which the 
mentioned schedule is applied, is the same benchmark model. The only changing 
parameter for these columns is the differentiating application days and this can 
cause slight fluctuations. The lightest column represents the calculated penalties 
for the best schedule which is optimized based on the posterior model of that case 
and later this schedule is applied to the benchmark model. The medium darkest 
column represents the calculated penalties for the best schedule which is 
optimized by using the benchmark model and later this schedule is applied to the 
benchmark model. Similar to the schedule based on prior model cases, a constant 
penalty value with a slight fluctuation for the schedule based on benchmark model 
cases is expected. 

When evaluating the next five days of mining right after updating the resource 
model, the following observation can be made from the comparison of all of the 
experiments that are mentioned above: For all of the case studies, a decrease in the 
uncertainty range and a better fitting of the average ash values into the target ash 
value area is observed in general, when the updating interval is increased and the 
optimized schedule is calculated based on a more accurate/up-to-date resource 
model.  

In overall, each case study indicates penalty reductions for five production 
days. This leads an increasing VOI towards VOPI. These significant benefits of the 
resource model updating framework are achieved while using the stochastic based 
mine process optimizer. It is expected to have higher impacts while using an 
optimizer which changes the block sequencing as the current one changes the 
weekly maintenance schedule. 

7.5.3.1. Case 1 

The prior model of Case 1 was created by geostatistical simulations (SGS) on a 
25x25x1m grid, after creating the geological model of the coal seam. 

The following observations can be made from Figure 7.5:  

 Penalties for the schedule based on the prior model are in average 
€ 47,000, while they vary between € 40,000 to € 52,000.  
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 Penalties for the schedule based on the posterior model gradually 
decrease from € 46,000 to € 31,000. However, the penalty for 5-9 August is 
€ 47,000, this is a slight and negligible increase. 

 Penalties for the schedule based on the benchmark model are in average 
€ 57,000, while they vary between € 31,000 to € 43,000.  

 Thus, for this case study, the calculated VOPI is € 10,000 and the 
calculated VOI moves from € 4,000 to € 8,000 (Figure 7.6). These 
calculations of VOI and VOPI are made for only 5 days after each 
updating period. 

 The above mentioned VOI numbers will lead to approximately a 
€ 300,000 to € 600,000 annual cost reduction or saving. 

In Figure 7.6, the trend line of the VOI illustrates the benefit of using a 
combination of the resource model updating algorithm and the mine optimizer 
(“closed-loop” optimization). With each iteration of updating, the mine schedule 
optimization penalties decrease, thus VOI increases. In this case study, the VOI 
trendline is almost merging with the average of VOPI. This is great, however if we 
had the real VOPI, as expected, our VOI would not have reached it.  

7.5.3.2. Case 2 

The prior model of Case 2 was created by adding fluctuations on a short-term 
mining model of the company. 

The following observations can be made from Figure 7.7:  

 Penalties for the schedule based on the prior model are in average € 7,000, 
while they vary between € 5,000 to € 9,000.  

 Penalties for the schedule based on the posterior model gradually 
decrease from € 5,000 to € 4,000.  

 Penalties for the schedule based on the benchmark model is in average 
€ 4,500, while they vary between € 3,900 to € 5,100.  

 Thus, for this case study, the calculated VOPI is € 3,000 and the calculated 
VOI moves from € 1,000 to € 2,000 (Figure 7.8). These calculations of VOI 
and VOPI are made for only 5 days after each updating period. 

 Above mentioned VOI numbers will lead to approximately € 60,000 to 
€ 250,000 annual cost reduction or saving. 

 This case study has the least calculated penalties for exceeding the upper 
target values in the simulations. The reason for this is that the prior 
model of this case study is underestimated. In this case study, penalties 
for exceeding the lower target values in the simulations would be a better 
graph to evaluate the developments in this case study. However, in order 
to provide a complete comparison, and since other cases mostly don’t 
have penalties for exceeding the lower target values in the simulations, 
these graphs are not provided. 
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Figure 7.8 presents an increasing VOI (while the penalties are decreasing) with 
time. In this case study, the VOI trendline is merging with the average of VOPI. 
Once again, this proves the benefit of using a combination of the resource model 
updating algorithm and the mine optimizer.  

When comparing this case study to Case 1, the calculated VOI is remarkably 
lower. However, this doesn’t indicate a direct correlation between the success of 
the real time resource updating framework. There are two reasons for this. First, 
due to the underestimation of the short-term model based prior model. Second, 
the current optimizer is job scheduling and thus, the effect on the VOI is lower. 
Larger VOI are expected when using an optimizer which changes the block 
sequencing.  

7.5.3.3. Case 3 

The prior model of Case 3 was created by geostatistical simulations (SGS) on 
block based. In this case study, all of the drill holes (100 percent) were used when 
performing the SGS. 

The following observations can be made from Figure 7.9:  

 Penalties for the schedule based on the prior model are in average 
€ 25,000, while they vary between € 24,000 to € 28,000.  

 Penalties for the schedule based on the posterior model gradually 
decrease from € 20,000 to € 26,000.  

 Penalties for the schedule based on the benchmark model is in average 
€ 20,000, while they vary between € 16,000 to € 24,000.  

 Thus, for this case study, the calculated VOPI is € 5,000 and the calculated 
VOI moves from € 1,000 to € 4,400 (Figure 7.10). These calculations of VOI 
and VOPI are made for only 5 days after each updating period. 

 Above mentioned VOI numbers will lead to approximately € 70,000 to 
€ 320,000 annual cost reduction or saving. 

 Relatively lower penalties (comparing to Case 1) are due to the 
underestimation of the prior model of this case. 

Figure 7.10 presents an increasing VOI (while the penalties are decreasing) 
with time. In this case study, the VOI trendline is not merging with the average of 
VOPI. This is not a problem, however, this shows that a few more updating 
iterations are required to reach the same VOPI level as in the previous cases. This 
is expected since in this case the prior model was “quickly” simulated on the 
center points of the blocks. Thus, the accuracy of this prior model is expected to be 
worse than the previous two cases prior models. Yet, the increase in the VOI still 
indicates the benefit of using a combination of the resource model updating 
algorithm and the mine optimizer. It shows that resource models that have 
different accuracy can be improved until some level (VOPI) and if a longer time 
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period of updating is possible, the initial knowledge gap between with the prior 
models can be closed.  

7.5.3.4. Case 4 

The prior model of Case 4 was created by geostatistical simulations (SGS) on 
block based. In this case study, only 50 percent of the drill holes were used when 
performing the SGS. 

The following observations can be made from Figure 7.11:  

 Penalties for the schedule based on the prior model are in average 
€ 46,000, while they vary between € 42,000 to € 50,000.  

 Penalties for the schedule based on the posterior model gradually 
decrease from € 38,000 to € 46,000.  

 Penalties for the schedule based on the benchmark model is in average 
€ 38,000, while they vary between € 36,000 to € 40,000.  

 Thus, for this case study, the calculated VOPI is € 8,000 and the calculated 
VOI moves from € 2,000 to € 7,000 (Figure 7.12). These calculations of VOI 
and VOPI are made for only 5 days after each updating period. 

 Above mentioned VOI numbers will lead to approximately € 150,000 to 
€ 500,000 annual cost reduction or saving.  

Compared to the previous cases, the VOI of Case 4 is higher than Case 2 and 
Case 3. This was explained by Case 2 and Case 3’s underestimations, thus there are 
lower penalties and lower improvement possibilities. This case study shows a 
great increase of VOI. Therefore it can be concluded that, regardless of the quality 
of the resource model, it is possible to update each resource model and bring them 
to a similar accuracy level. Obviously, this accuracy level is closer to the reality 
than the initial accuracy. Since the accuracy level of this case study’s prior model is 
lower than the previously presented cases, this case study has a higher VOI when 
comparing with the previous case studies.  

7.5.3.5. Case 5 

The prior model of Case 5 was created by geostatistical simulations (SGS) on 
block based. In this case study, only 25 percent of the drill holes were used when 
performing the SGS. 

The following observations can be made from Figure 7.13:  

 Penalties for the schedule based on the prior model are in average 
€ 41,000, while they vary between € 37,000 to € 51,000.  

 Penalties for the schedule based on the posterior model gradually 
decrease from € 33,000 to € 44,000.  

 Penalties for the schedule based on the benchmark model is in average 
€ 33,000, while they vary between € 31,000 to € 35,000.  
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 Thus, for this case study, the calculated VOPI is € 8,000 and the calculated 
VOI moves from € 1,000 to € 8,000 (Figure 7.10). These calculations of VOI 
and VOPI are made for only 5 days after each updating period. 

 Above mentioned VOI numbers will lead to approximately € 50,000 to a 
€ 550,000 annual cost reduction or saving. 

Similar to Case 4, Case 5 shows a significant increase of VOI. Even though only 
25% of the drill hole data has been used in this case study’s prior model, after the 
updating iterations, the posterior model manages to catch up with the previously 
calculated VOI. The obtained VOI increased when the accuracy of the prior model 
being used is decreased. Once again this case study’s results show that the 
updating framework, after a few iterations, manages to decrease these penalties to 
a similar penalty level obtained from the previous case studies.  

7.5.3.6. Case 6 

The prior model of Case 6 was created by geostatistical simulations (SGS) on 
block based. In this case study, only 10 percent of the drill holes were used when 
performing the SGS. 

The following observations can be made from Figure 7.15:  

 Penalties for the schedule based on the prior model are in average 
€ 33,000, while they vary between € 29,000 to € 36,000.  

 Penalties for the schedule based on the posterior model gradually 
decrease from € 28,000 to € 34,000.  

 Penalties for the schedule based on the benchmark model are in average 
€ 29,000, while they vary between € 26,000 to € 33,000.  

 Thus, for this case study, the calculated VOPI is € 4,000 and the calculated 
VOI moves from € 2,000 to € 5,000 (Figure 7.16). These calculations of VOI 
and VOPI are made for only 5 days after each updating period. 

 Above mentioned VOI numbers will lead to approximately € 100,000 to 
€ 330,000 annual cost reduction or saving. 

Finally, when comparing the results of this case study with the previous 
results, even though the prior model was created by only using 10% of the drill 
hole data, the VOI trendline is still increasing. However, in this case, the 
unstability of the results indicates that, using only 10% of the drill hole data is not 
representing the spatial variability. Thus, it can be concluded that using only 10% 
of the drill hole data is not enough to have stable results. 
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7.6. CONCLUSIONS 

In this chapter, the added value of the real-time resource model updating 
concept is demonstrated by using a value of information (VOI) analysis. The 
expected economical benefits of additional information (due to the integration of 
the online-sensor measurement into the resource model) is compared to different 
cases where there is no additional information integrated into the process.  

Six different case studies are performed in this chapter. Each case study has a 
prior resource model with a different accuracy level. This is done in order to 
compare the obtained VOI while the accuracy of the prior model was getting 
worse. In general, great improvements were achieved for all case studies. The 
effectiveness of the resource model updating framework is proven due the similar 
VOI increases after the resource model updating framework was used for a few 
iterations. This indicates that even if the resource model is initially worse, it can 
learn from the real-time production data. This shows a great success of real-time 
resource mode updating framework with a combined use of mine optimizer.  

Moreover, by using the resource model updating framework combined with 
the mine optimizer, performed case studies prove that the deviations from the 
defined target quality are reduced. In overall, the calculated VOI for five mining 
days varied between € 2,000 to € 8,000. These numbers will lead to approximately 
a € 100,000 to € 550,000 annual cost reduction or saving. 

This dissertation demonstrates that using the resource model updating 
framework provides more accurate resource models at each iteration. By having 
an accurate up-to-date resource model, the daily planning will always be optimal. 
With the daily planning being optimal, the efficiency of the mining process can be 
increased significantly. Deviations from the prior model can be processed and 
adapted to quickly and efficiently. This would result in reaching the target product 
which needs to be mined more efficiently. Furthermore, if any deviations in the 
target product are noticed and the plan needs to be changed, it can be done swiftly 
and will be based on a more accurate prediction of the mining environment.  

Moreover, for every minute that the excavator needs to work extra because the 
mining plan was not optimal, CO2 will be released unnecessarily. The excavator 
runs on heavy fuels and produces substantial amounts of CO2. This is bad not only 
for environment but also for the cash flow and profits. In modern times, the CO2 
output is taxed with CO2 credits. For example, the European Union gives a limit 
amount of CO2 credits each year. When extra CO2 is used the company needs to 
buy credits from companies that did not use their full amount of CO2 credits. This 
would result into additional costs whenever the mining plan is not optimal. 

Another economical point would be equipment aging. With an optimal mining 
plan the mining equipment would need to be used for less time compared to a 
situation where the mining plan is not optimized.  

Each case study indicated significant benefits of the resource model updating 
framework, while using the stochastic based mine process optimizer. It is expected 
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to have higher impacts while using an optimizer which changes the block 
sequencing as the current one changes the weekly maintenance schedule.  
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8. TECHNOLOGICAL READINESS LEVEL & 

INDUSTRIAL APPLICABILITY 

 

This chapter discusses the technological readiness level and industrial applicability of 
the real-time resource model updating framework. 
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8.1. TECHNOLOGICAL READINESS LEVEL & INDUSTRIAL APPLICABILITY 

The Technology Readiness Level (TRL) scale is a measure for describing the 
maturity of a technology. This scale provides a common understanding of the 
status of a technology and addresses the entire innovation chain. By evaluating a 
technology project against the parameters for each TRL, one can assign a TRL 
rating to the project based on its stage of progress. There are nine technology 
readiness levels; TRL 1 being the lowest and TRL 9 the highest. Although they are 
conceptually similar, different definitions of TRLs are used in different fields. To 
describe the status of developed technologies in this research, the following 
standards, provided in Figure 8.1, as defined by the European Commission in 
HORIZON 2020 [93] are being referred to. 

 
Figure 8.1: Technology readiness levels 

TRL 1 refers to the beginning of scientific research where the basic principles 
are being observed. This is the stage where case specific problems are defined and 
related literature review is done in order to initiate this research. TRL 2 occurs 
once the technology concept is formulated. TRL 2 is achieved in Chapter 3, by 
proving a formal description of the updating algorithm. 

When active research and design begin, a technology is elevated to TRL 3. 
Chapter 4 provided a 2D case study which is performed in a completely known 
and fully controllable environment. In this way, an experimental proof of concept 
is constructed as required in TRL 3. Furthermore, the developed technology is 
benchmarked against a proven and well-studied method in Section 4.3. With this 
validation, the technology advances to TRL 4. 

A full case study is provided in a real lignite mining environment in Chapter 5, 
this validation in real environment refers TRL 5. Similarly, another yet more 
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complicated full case study in real environment is presented in Chapter 6. The TRL 
6 has been reached by this demonstration in the real lignite mining environment. 

Thus, the current resource model updating framework is considered as TRL 6. 
Further study thus requires a system prototype to be demonstrated in an 
operational environment. This will be TRL 7. Next, a complete and qualified 
system is required to reach TRL 8. Once an actual system has been proven in an 
operational environment, it can be called TRL 9. 
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9. CONCLUDING REMARKS 

 

This final chapter summarizes the conclusions drawn in this dissertation in view of the 

scope of the research stated in Chapter 1. Furthermore, suggestions and 
recommendations are given for future research. 
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9.1. CONCLUSIONS 

In line with the scope of this research as stated in Chapter 1 the achieved 
objectives are the following: 

1. A tailored method, which is adapted to update coal quality attributes in 
a continuous mining environment, in order to improve the resource 
model accuracy, is provided.  

2. The real-time resource model updating framework is applied to a full 
scale lignite production environment. The results obtained from the full 
scale application validate the applicability of the method in a continuous 
mining environment and presents significant improvements in 
prediction in the resource model. These improvements are expected to 
lead to an increase of coal recovery and process efficiency by 
continuously controlling the decisions in a mining operation. 

3. The performance of the resource model updating framework with 
respect to the main parameters (the ensemble size, the neighborhood 
size, localization strategies and the sensor precision) was investigated. 
The results should assist in future applications by determining the 
impact of the different parameters. The findings of ensemble size 
sensitivity analysis supported the existing literature [5, 62]; more 
accurate updates are achievable by using a larger ensemble. Although 24 
ensemble members provided the best results in terms of MSE, they are 
not chosen as the optimum ensemble size since they were not 
representative enough of the lignite seam. Instead an ensemble of 48 
members is chosen, because it is second best and is more representative 
of the lignite seam. The sensitivity analysis of the localization and 
neighborhood strategies conclude that the applied localization strategies 
need to be improved and the neighborhood size needs to remain as 
450,450,6 m in X,Y,Z directions, as previously defined in the variogram 
modelling. The sensitivity analysis for different sensor precision shows 
that a lower sensor precision increases the uncertainty of the posterior 
model, due to the significant difference between the prior model and the 
actual sensor data.  

4. The real-time resource model updating framework is applied while the 
sensor is observing a blend of coal resulting from multiple excavators. 
Significant improvements are observed while using blended material 
measurement data in order to update different production locations in 
different benches. This provides great flexibility for future applications 
in terms of assisting the operational decision making in lignite 
production in the future. It is important to point out that this method can 
be applied to any bulk mining operation, without changing the core 
method. It should be noted that improvements are only achievable if a 
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material tracking system, grade or quality control model and online-
sensor measurement system are in place. 

5. The updating framework is simplified and semi-automated for an easier 
application in a real mining environment. This simplified application 
method involves creating the prior realizations based on the company’s 
short-term model. Improvement percentages, on average, were not 
significantly different when the case study results we compared with the 
results obtained from a case study where the prior realizations are 
generated with geostatistical simulations. This dissertation validates that 
the automation of the developed framework during real applications can 
be performed based on a short-term model without any additional 
process being required in order to prepare the prior model. 

6. The added value created by the application of the real-time resource 
model updating framework is evaluated. The expected economical 
benefits of additional information (due to the integration of the online-
sensor measurement into the resource model) is compared to different 
cases where there is no additional information integrated into the 
process. Six different case studies are performed in order to investigate 
the VOI for the resource model updating concept with different prior 
models. These prior models are created based on different information 
sources in order to test different exploration strategies and other 
replacement options (such as using the short-term mining model as the 
prior model). Within the case studies, the calculated VOI continued to 
increase after iterations even when the prior models were getting less 
accurate. This indicates a great success of real-time resource mode 
updating framework. It is expected that, this study will lead to 
approximately € 550,000 annual cost reduction or saving. Moreover, the 
using the presented research in the coal mining will provide 
environmental benefits such as less energy consumption and reduced 
CO2 emissions. 
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9.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

The research described in this dissertation left a few open issues of interest for 
future research. 

The first recommendation for future research would be to solve the drawback 
which is caused by localization strategies mentioned in Section 5.4. A future study 
can develop a case specific localization function in a way that it defines the block 
boundaries and acts according to those distances. 

A second recommendation for future research would be to use the same 
methodology presented in this dissertation including more accurate measurement 
data. As mentioned in Section 2.4, it is already known that the sensor data are not 
very reliable. By using more accurate measurement data, such data acquired by 
laboratory analysis, the predictions of the quality of the future mining blocks 
should improve significantly.  

A third recommendation for future research would be bringing the current 
research’s technological readiness level from TRL 6 to TRL 7, TRL 8 and finally to 
TRL 9. This can be done initially by demonstrating a system prototype in an 
operational environment. This will be TRL 7. Next, a complete and qualified 
system is required to reach TRL 8. Once an actual system has been proven in 
operational environment, it can be referred to as TRL 9. 

A fourth recommendation for future research would be adding more sensors to 
the operational environment. With this additional measurement information, the 
value of the current research can be increased since the additional sensors will 
improve the material tracking. An increase in the value of the current research is 
expected with the increased accuracy of the measurements. As a consequence of 
this, the annual cost reduction/savings can be increased. 

A fifth recommendation for future research would be the application of the 
resource model updating framework into different mines. This dissertation 
presented different applications in coal mining. Future research could focus on 
applications in other commodities and ore body styles in order to increase the cost 
reductions/savings in the overall mining industry.  
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