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SUMMARY

Flood protection infrastructure requires constant investments to cover the increasing
flood risk. However, due to over-conservatism in (dyke) safety assessments, poorly tar-
geted investments can be made. Over-conservatism can be avoided by understanding
the entire failure process, from the initiation of failure until flooding. Dyke slope insta-
bility is one of the main initiation mechanisms evaluated during a safety assessment.
Following an initial instability, a slope failure occurs, where large deformations may oc-
cur as the failure mass slides along the failure surface. A large initial failure mechanism
may immediately trigger flooding, but in most cases secondary mechanisms, such as
new slope failures, are required to flood the hinterland. The dyke may have enough resis-
tance to prevent secondary mechanisms and thereby prevent flooding. Therefore, dyke
assessments can be optimised by assessing the potential for secondary failures.

The standard methods for dyke slope stability assessment cannot model large defor-
mations. This thesis therefore develops and applies the Material Point Method (MPM), a
large deformation variant of the Finite Element Method, to investigate the residual (re-
maining) resistance of a dyke against flooding after an initial slope instability. The resid-
ual dyke resistance has been assessed within a risk-based framework using the Random
MPM (RMPM), which accounts for the effects of soil heterogeneity on the failure process
by combining random fields with MPM. From the realisations of an RMPM analysis, both
the probability of initial failure as well as the probability of flooding may be determined.
Moreover, with RMPM, the likelihood of failure processes can be evaluated such that the
process between initial failure and flooding can be understood.

To model the external water level in the RMPM analysis, the application of boundary
conditions in MPM has first been investigated. The thesis shows that the boundary con-
ditions should systematically match the MPM discretisation. Improvements of MPM,
such as the Generalized Interpolation Material Point Method (GIMP), often change the
discretisation. Therefore, the accurate application of a boundary condition can there-
fore depend on the version of MPM being used. Consistent boundary conditions are
described in this work for MPM and GIMP. For standard MPM, a consistent boundary
condition is proposed for simple 1D problems. However, it is shown that this solution
is not generally applicable for dyke slope failures or other higher dimensional problems.
For GIMP, two generally applicable algorithms for (almost) consistent boundary con-
ditions are proposed: one algorithm constructs the exact material boundary, while the
other merges the support domains of all material points. The algorithms are shown to
outperform other boundary condition methods presented in literature.

The residual (dyke) resistance has been investigated by modelling both a 2D dyke
failure and 3D slope instability using RMPM. It is shown that secondary failures (required
to trigger flooding) often do not occur or may not be large enough to trigger flooding.
Therefore, the probability of flooding can be significantly lower than the probability of
an initial failure due to residual dyke resistance. In the best case scenario for the prob-
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lem analysed, a reduction of the probability of flooding compared to the probability of
initial failure of more than 90% has been observed, while in the worst case only a 10%
reduction was found. The reduction was high (90%) for a material without layering of
the spatial variability of the strength properties and decreased when the spatial variabil-
ity was more layered. However, note that, to reduce computational costs, the probability
of initial failure was unrealistically high in these examples, i.e. the dyke was relatively
weak. In stronger slopes, secondary failures are less likely and more residual dyke resis-
tance is therefore expected. Additionally, secondary slope failures are less likely in 3D
simulations compared to 2D simulations, generally due to the additional resistance of
the sides of the failure surfaces (the so-called 3D-effect). A 2D simulation can therefore
be seen as a conservative estimate of the residual dyke resistance. In 3D, the failure pro-
cess more often spreads sideways rather than backwards. This is also beneficial for dyke
slope stability assessments, where backward failures are required to trigger flooding.

The degree of anisotropy of the soil heterogeneity changes the expected failure pro-
cess. For smaller horizontal scales of fluctuation, i.e. less layering of the soil, secondary
failures are less likely to occur, since the initial and secondary failures are mostly un-
correlated. Additionally, in the 3D simulation, smaller horizontal scales of fluctuation
triggered small failure blocks, again likely to reduce the risk of flooding. For larger hor-
izontal scales of fluctuation, initial failure in a weaker layer can more easily trigger sec-
ondary failures through the same layer, thereby decreasing residual dyke resistance. A
depth trend, i.e. a linear increase with depth, in the mean resistance of the material,
typical due to compaction processes, also impacts the failure process. For a material
without a depth trend, progressive failure occurs along approximately circular failure
surfaces, whereas for a material with a depth trend, a steady flow like behaviour along
a gentle ’straight’” slope occurs. Moreover, retrogressive failure can flow in any direction
for a material with a depth trend while avoiding local strong zones.

This thesis highlights that RMPM can provide estimates of the residual dyke resis-
tance, thereby more accurately estimating the probability of flooding due to dyke slope
instability in many situations. This leads to more targeted and cost effective dyke rein-
forcements. RMPM also provides insight into the size and shape of the initial and subse-
quent failures. RMPM can therefore be used in future research to develop guidelines for
practice to approximate the probability of flooding, for example based on the probability
and the shape of the initial failure computed with a small deformation model.
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Maatregelen tegen overstromingen vereisen constante investeringen om het toene-
mende overstromingsrisico te beheersen. Door te conservatieve veiligheidsbeoorde-
lingen van dijken worden investeringen soms niet optimaal ingezet. Te conservatieve
beoordelingen kunnen vermeden worden wanneer er beter begrip is van het gehele
faalproces van een dijk, van de start van het faalproces tot aan de overstroming. Een
van de belangrijkste oorzaken voor het falen van een dijk is een dijkafschuiving, welke
geévalueerd wordt tijdens een veiligheidsbeoordeling. Een dijkafschuiving volgt nadat
de belasting op de dijk een instabiele situatie veroorzaakt. Na de instabiliteit kunnen
er grote deformaties optreden, waarbij de grondmoot over een faalvlak glijdt. Wanneer
er een grote dijkafschuiving plaatsvindt, kan dit meteen tot een overstroming leiden.
In de meeste gevallen leiden echter pas secundaire faalmechanismen, zoals nieuwe af-
schuivingen, tot overstroming van het achterland. In sommige gevallen heeft een dijk
dus genoeg reststerkte om secundaire faalmechanismen en daarmee overstromingen
te voorkomen. Daarom kunnen veiligheidsbeoordelingen van dijken geoptimaliseerd
worden door de kans op secundaire faalmechanismen te evalueren.

De meest gebruikte methoden voor beoordelingen van dijkafschuivingen kunnen
grote deformaties niet modelleren. In dit proefschrift wordt de Materiaal Punten Me-
thode (MPM), een variant op de Eindige Elementen Methode (EEM) waarmee grote de-
formaties gemodelleerd kunnen worden, ontwikkeld en toegepast om de reststerkte van
een dijk na de primaire dijkafschuiving te bepalen. De reststerkte wordt onderzocht
binnen een op risico gebaseerde methodiek door gebruik te maken van Random MPM
(RMPM). RMPM is een methode die rekening houdt met het effect van de variabiliteit
van de grond, die met random fields beschreven wordt, op het faalproces. Met de rea-
lisaties van een RMPM analyse kunnen zowel de kans op een primaire dijkafschuiving
als de kans op overstroming te bepaald worden. Bovendien kan het proces tussen de
primaire dijkafschuiving en overstroming begrepen worden.

In dit proefschrift is de toepassing van randvoorwaarden in MPM onderzocht om
daarmee externe waterniveaus te modelleren. Het proefschrift laat zien dat de randvoor-
waarden systematisch overeen moeten komen met de discretisatie die gebruikt wordt in
MPM. Om de nauwkeurigheid en stabiliteit van standaard MPM te verbeteren is in ver-
schillende nieuwe versies van MPM, zoals de Gegeneraliseerde Interpolatie Materiaal
Punten Methode (GIMP), de discretisatie gewijzigd. Daardoor kan de juiste toepassing
van randvoorwaarden afhankelijk zijn van de versie van MPM die gebruikt wordt. Con-
sistente randvoorwaarden worden beschreven in dit proefschrift voor MPM en GIMP.
Voor standaard MPM wordt een consistente randvoorwaarde voorgesteld voor eenvou-
dige ééndimensionale problemen. Echter blijkt deze methode niet generiek toepasbaar
te zijn op dijkafschuivingen of andere 2D en 3D problemen. Voor GIMP worden twee
breed toepasbare algoritmes voor (bijna) consistente randvoorwaarden voorgesteld: één
algoritme bepaalt de exacte rand van het materiaal, terwijl de andere methode de do-
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meinen rondom alle materiaalpunten samenvoegt. De algoritmes werken beter voor het
toepassen van randvoorwaarden dan de methoden die beschreven zijn in literatuur.

De reststerkte van een dijk is met RMPM onderzocht door het modelleren van zowel
een 2D dijkafschuiving en een 3D afschuiving. De modellen laten zien dat een secundair
faalmechanisme (nodig om een overstroming te veroorzaken) vaak niet optreedt of wel
optreedt, maar niet groot genoeg is om een overstroming te veroorzaken. De kans op een
overstroming kan dus significant kleiner zijn dan de kans op een primaire dijkafschui-
ving door de reststerkte van de dijk. In het beste geval vond een vermindering van meer
dan 90% plaats, terwijl in het slechtste geval slechts een reductie van 10% plaats vond.
De afname was groot (90%) voor materiaal zonder gelaagdheid van de variabiliteit van
de sterkte eigenschappen en neemt af wanneer de variabiliteit meer gelaagd is. Belang-
rijk hierbij te noemen is dat, om de tijdsduur van de berekening te verkorten, de kans
op een primaire dijkafschuiving onrealistisch hoog was in deze voorbeelden. De dijk
was hierdoor relatief zwak was. Bij sterkere dijken zijn secundaire faalprocessen min-
der waarschijnlijk en is daarom een hogere reststerkte te verwachten. Bovendien is het
optreden van secundaire faalprocessen minder waarschijnlijk in 3D simulaties vergele-
ken met 2D simulaties, vanwege de extra sterkte aan de randen van de 3-dimensionale
glijvlakken (deze hogere sterkte wordt het “3D-effect” genoemd). Een 2D simulatie kan
daarom gezien worden als een conservatieve schatting van de reststerkte van een dijk.
In 3D, verspreidt het faalproces zich vaker zijwaarts dan achterwaarts. Dit is ook voorde-
lig voor veiligheidsbeoordelingen van dijken, omdat achterwaartse faalprocessen nodig
zijn om een overstroming te veroorzaken.

De mate van anisotropie van de heterogeniteit van de grond veranderd het ver-
wachte faalproces. Voor kleinere horizontale fluctuatie afstanden, dat wil zeggen min-
der gelaagdheid van de bodem, is het minder waarschijnlijk dat secundaire afschui-
vingen optreden, aangezien de primaire en secundaire afschuivingen meestal niet ge-
correleerd zijn. Bovendien veroorzaken kleinere horizontale fluctuatie afstanden in de
3D-simulatie kleine afschuivingen, wat waarschijnlijk ook het risico op overstroming
vermindert. Voor grotere horizontale fluctuatie afstanden kan de primaire afschuiving
in een zwakkere bodemlaag gemakkelijker een secundaire afschuiving tot gevolg heb-
ben, waardoor de reststerkte van de dijk afneemt. Een dieptetrend, dat wil zeggen een
lineaire toename in de gemiddelde sterkte van het materiaal met de diepte (het gevolg
van verdichtingsprocessen), heeft ook invloed op het faalproces. Voor een materiaal
zonder dieptetrend treedt het faalproces op langs circulaire faaloppervlakken, terwijl er
voor een materiaal met dieptetrend, een continue stroming is langs een matige helling.
Bovendien kan retrogressief falen zorgen voor een stroming in elke richting voor een
materiaal met een dieptetrend, waarbij plekken met een hoge sterkte worden ontweken.

Dit proefschrift laat zien dat RMPM een schatting kan geven van de reststerkte van
een dijk, waardoor de kans op een overstroming door een dijkafschuiving in veel situa-
ties nauwkeuriger kan worden ingeschat. Dit leidt tot meer gerichte en kosteneffectieve
dijkverzwaringen. RMPM geeft ook inzicht in de grootte en vorm van de primaire en
daarop volgende dijkafschuivingen. RMPM kan daarom in toekomstig onderzoek wor-
den gebruikt om richtlijnen voor de praktijk te ontwikkelen om de overstromingskans te
bepalen, bijvoorbeeld op basis van de kans en de vorm van de primaire dijkafschuiving,
berekend met een model voor kleine deformaties.
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INTRODUCTION

With standard small deformation methods used in dyke flood risk assessment, it is difficult
to assess the entire failure process. These assessment methods focus on the start of failure,
and often ignore the resistance in the remainder of the process. Therefore, this thesis fur-
ther develops the Material Point Method (MPM), a large deformation variant of the Finite
Element Method (FEM), to investigate the entire failure process. A risk-based framework
for secondary dyke failure mechanisms is presented, which is used to assess the residual
resistance of a dyke against flooding after an initial slope failure. The framework includes
the effect of soil heterogeneity, which is modelled by combining random fields with MPM.
This chapter presents the background to dyke assessments, before introducing the numer-
ical tools used in the thesis and discussing the thesis goals.



2 1. INTRODUCTION

1.1. BACKGROUND

Floods pose an ever-increasing risk to many coastal or riverine villages and cities. Over
40% of the natural disasters during 1995-2014, see Figure 1.1, can be classified as floods,
and these events affected 2.3 billion people in total (CRED and UNISDR, 2015). The
number of floods increased in the decades from 1995-2004 and 2005-2014 to an aver-
age of 127 and 171 floods per year, respectively. While floods have the largest effect in
Asia and Africa, they pose a danger around the world. For example, in a single month in
July 2021, floods occurred in almost 400 different locations around the world. Tragically,
920 people across all continents lost their lives during these events and the resulting
damage affected many more (Davies, 2021). With a rising sea level and more extreme
weather conditions due to climate change, the risk of flooding is likely to increase in fu-
ture decades. Therefore, flood protection systems which can drastically reduce the risk
of flooding are vital for the safety of millions of people. Since effective flood protection
technologies exist, better flood control is a so-called "low-hanging fruit" in disaster risk
reduction (CRED and UNISDR, 2015). Moreover, flood protection systems are cost effec-
tive, i.e. the construction and maintenance costs of flood protection systems are often
only a fraction of the repair cost (Tourment et al., 2018).
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Figure 1.1: Number of occurrences of natural disasters worldwide by disaster type in the period from 1995-
2014. Recreated based upon CRED and UNISDR (2015).

Due to the uncertain nature of (1) the loads acting on a flood protection system, and
(2) the resistance of the structure, it is practically impossible to build a flood protection
system which negates flood risk. The International Levee Handbook (ILH) (van Hemert
et al., 2013) therefore promotes a risk-based approach to designing and maintaining
dykes. According to this approach, the risk of flooding should be assessed based on the
probability of a flood event and the consequence of the flood event to life, property and
economic activity. The risk can be compared against the costs of the dyke to ensure a
cost-effective solution. The costs of the dyke should also include the environmental and
societal impact of the dyke. For example, a dyke construction might negatively influence
a nature reserve, which should be reflected in the total cost of the dyke. The risk-based
approach can also be used to apportion a financial budget for regional or national flood
protection, such that the expected consequence is as low as possible once the budget
has been spent. Many western countries now use such an approach, with details often
varying between countries (Tourment et al., 2016; Tourment et al., 2018).
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Figure 1.2: Examples of the dyke failure process categories according to the ILH (van Hemert et al., 2013); a)
exceeding the hydraulic loads; b) external erosion; c) internal erosion; and d) large instabilities.

1.2. ASSESSMENT OF THE RISK OF FLOODING

To maintain the protection system according to the risk-based approach, continual risk
monitoring is required. For example, the USACE monitors flood risks for dyke segments
together with local entities in order to improve the levee safety decision making process
(USACE, 2018). Unfortunately, continual risk monitoring is complex: flooding may oc-
cur due to many failure processes, and the risk of each process has to be monitored.
Continuously monitoring the probability of all failure processes and their consequences
is (often) impractical (Tourment et al., 2016). The ILH (van Hemert et al., 2013) cate-
gorises these failure processes in four groups, as illustrated in Figure 1.2: 1) exceeding
the design hydraulic loads, 2) external erosion due to waves or overtopping, 3) internal
erosion of soil particles caused by seepage flow, and 4) large instabilities due to a loss of
equilibrium when the load exceeds the resistance.

To reduce the complexity of risk monitoring, the consequence of a dyke failure,
i.e. flooding, can be evaluated independently of which failure process caused flood-
ing, since the consequences of flooding are similar for all dyke failure processes (USACE,
2019). Separately evaluating the consequence of flooding from the failure process (which
caused flooding) is used in, among others, the Czech Republic, Germany, the Nether-
lands, Switzerland and the United Kingdom (Tourment et al., 2018). More specifically, in
the Netherlands the consequences of flooding have been used to define the maximum
allowable probability of flooding for all primary dyke segments (Waterwet, 2009). The
combined probability of the separate processes is compared against the allowed maxi-
mum on a regular basis. In theory, a failure process should therefore be assessed up to a
breach (Klein Breteler et al., 2009). However, due to technical or knowledge limitations
often only a part of the failure process is evaluated - the so-called primary mechanism.
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The later steps in the failure process, which are often ignored, may not occur due to the
remaining resistance of the dyke, thereby preventing flooding (Calle, 2002). Ignoring this
remaining resistance leads to inefficient dyke designs. Note that allowing the possibility
of relatively frequent dyke slope failure is impractical, for example due to the potential
failure of the damaged dyke in a new storm event or frequent large repair costs. Includ-
ing remaining resistance should therefore only be required in extreme events, such that
frequent repairs will not be necessary. During a dyke assessment/design, preventing
flooding could be considered as an ultimate limit state, while preventing initial failure
could be considered as a serviceability limit state, with different probabilities associated
with each limit state.

This research project investigates how the remaining resistance can be included in
dyke safety assessments, thereby assisting in the implementation of the new risk-based
flood protection standards of the Netherlands. The project is part of the All-Risk pro-
gram (Kok et al., 2022), a program consisting of 14 PhD and 4 postdoc research positions,
which aims to support the objectives of the Dutch Flood Protection Program (HWBP)
in implementing the new flood safety norms. The program is subdivided into 5 sub-
projects: A) risk framework; B) dynamics in hydraulic loads; C) subsoil heterogeneity; D)
reliability of flood defenses; and E) law, governance and implementation. This work is
part of sub-project D, and has connections with sub-project C.

1.3. REMAINING RESISTANCE FOR SLOPE INSTABILITIES

In this thesis, the focus is on modelling the remaining dyke resistance after initial slope
instabilities, i.e. a failure process in the large instabilities failure category is considered
(van Hemert et al., 2013). After initial slope instabilities, a significant amount of remain-
ing resistance can still be available, especially for wide dykes or dykes which are signif-
icantly higher than the expected external water level (Calle, 2002). The assessment of
slope (in)stability usually only predicts the moment when a loss of equilibrium occurs
(MIM, 2016), i.e. it predicts the development of the first crack of a slide and ignores the
remainder of the failure process after slope instabilitity, see Figure 1.3.

The loss of equilibrium is typically estimated using the Limit Equilibrium Method
(LEM) or the Finite Element Method (FEM) (MIM, 2016; Salunkhe et al., 2017). In LEM,
the shape of the failure surface is, historically, assumed and the factor of safety (FoS) —
the ratio of resisting to adverse loads or moments — is computed (Bishop, 1955; Huang,
2014). By evaluating multiple potential failure surfaces, the lowest FoS can be found,
which is considered to be the critical FoS of the dyke. In current versions of LEM, prior
assumptions regarding the failure surface are no longer required. In contrast to LEM,
FEM computes the stress-strain behaviour using a spatial discretisation of the dyke ma-
terial using a mesh and a material model (Griffiths and Lane, 2001; Smith et al., 2014;
Zienkiewicz et al., 2014). FEM automatically locates the failure surface without any prior
assumptions regarding its shape, similar to the latest versions of LEM. It does this by
systematically reducing the strength of the material until failure occurs, thereby deter-
mining the FoS (Matsui and San, 1992). However, at failure large deformations typically
occur and, due to the large deformation of the mesh, it may become inappropriate for
further computation.
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Probabilistic methods, such as Monte-Carlo simulation or the First Order Reliability
Method (FORM), are used to compute the probability of initial failure from the full range
of combinations of loads and resistances. These probabilistic methods use LEM or FEM
to determine the load and resistance combinations which lead to a FoS below one. Alter-
natively, a semi-probabilistic assessment can be used, where design values of the loads
and resistances are determined. The design values are used in a single ‘deterministic’
computation with LEM or FEM, which indicates if the dyke meets the design criteria. In
the Netherlands, for consistency between the probabilistic and semi-probabilistic ap-
proaches, an empirical formula is used to compute a probability of initial failure from
the FoS of the semi-probabilistic computation. This formula has been calibrated against
the probabilistic approach (Kanning et al., 2016).

(b)

() (d)

Figure 1.3: Dyke slope failure process from initiation until breach, based on Calle (2002): a) lack of equilibrium
causes a first crack, b) which develops into a first slope failure; ¢) which may be followed by secondary slope
failures; and d) complete failure occurs once the dyke drops below the water level causing a breach.

The probability of initial failure is often used as the probability of flooding due to
slope instability, i.e. the remaining resistance is ignored. However, a new equilibrium
can be reached after only a small failure occurs, and the remaining stable portion of a
dyke can still prevent flooding, i.e. a new equilibrium is reached after Figure 1.3b (Calle,
2002; ENW, 2009). Secondary mechanisms, such as secondary instabilities, erosion due
to overtopping or internal erosion, could then occur and cause flooding. Unfortunately,
while LEM and FEM are accurate methods to calculate the probability of the occurrence
of the initial failure, LEM and FEM cannot be used to predict the process after initial fail-
ure. LEM does not compute deformations, while FEM stops working as a result of large
deformations causing excessive mesh distortions. Therefore, these methods cannot be
directly used to predict ongoing process(es) after an initial failure. As an alternative,
several guidelines exist to determine the remaining dyke resistance based on the ini-
tial failure surface from LEM and/or FEM computations (Blinde et al., 2018; ENW, 2009;



6 1. INTRODUCTION

Figure 1.4: A material point discretisation (black dots) of a dyke on top of a background grid (dashed lines).

Knoeffetal.,, 2021; MIM, 2016). These guidelines construct a remaining dyke profile with
assumptions on the deformation and displacement of the initial failure block, and they
allow a reduction of the probability of flooding if the remaining dyke profile exceeds a
minimum size. However, while several guidelines exist, the assumptions lack an experi-
mental or numerical background and are therefore often over-conservative.

Recently, LEM has been used to compute secondary (slope) failures (van der Krogt et
al.,, 2019). Simple deformation assumptions (similar to the previously mentioned guide-
lines), such as rotational sliding along the most critical slip plane until a crest settlement
of half the dyke height is reached, have been used to manually construct a remaining
dyke profile. The probability of a secondary failure can then be computed using LEM
with the new geometry. The process is repeated until flooding occurs, and the probabil-
ity of flooding is computed as the product of the probabilities of failure of each step (van
der Krogt et al., 2019). While this method is limited to assumptions on the remaining
profile, it can estimate the probabilities of flooding given the formation of the remain-
ing profile. To construct the remaining profile accurately, and verify the assumptions
used in the guidelines and by van der Krogt et al. (2019), a method which can assess the
probability and behaviour of the entire failure process is required.

1.4. THE MATERIAL POINT METHOD

The Material Point Method (MPM) (Sulsky et al., 1994), a recently developed large de-
formation variant of FEM, is capable of modelling the entire failure process, and can
therefore be used to more accurately compute the deformations of the failure block.
MPM uses both (material) point and mesh discretisation schemes. The continuum is
represented by a set of material points, while the mesh is only used as a computational
grid, see Figure 1.4. Each computation step consists of three substeps, as illustrated in
Figure 1.5: 1) the properties of the material points are mapped to the background grid
using shape functions; 2) the displacements of the nodes of the background grid are
computed using standard FEM schemes; and 3) the nodal displacements are used to up-
date the material point positions and properties. At the end of each step the grid can
be reset or a new grid can be created, while the material points remain in their new po-
sitions and maintain the properties of the material. Since the mesh can be reset, mesh
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Figure 1.5: The computational substeps of MPM. Note that the the displacements are exaggerated for illus-
trative purposes. (a) The properties of the material points are mapped to the background grid using shape
functions. The green material points are located within the elements connected to the green node, and there-
fore influence this node. (b) The displacements of the nodes are computed using standard FEM schemes. (c)
The nodal displacements are used to update the material point positions and properties. The green material
points are updated according to the displacements of the green nodes, i.e. the nodes of the element they were
contained within. The grid is then reset for the next step in the computation.

distortion is no longer an issue and large deformations can theoretically be computed.
Thus, MPM can be seen as an extension of FEM, where the Gauss integration points have
been replaced by moving material points. MPM has been proven to successfully model
large deformations for a wide range of geotechnical applications (Andersen and Ander-
sen, 2010; Fern et al., 2019; Gonzdlez Acosta et al., 2021; Phuong et al., 2016; Solowski
and Sloan, 2015; Wang et al., 2016b; Yerro et al., 2016; Zheng et al., 2022), including dyke
slope failure modelling (Coelho et al., 2019; Fern et al., 2017; Martinelli et al., 2017; Za-
bala and Alonso, 2011).

Recent research has focused on reducing stress oscillations occurring when mate-
rial points move within and across background grid elements (Bardenhagen and Kober,
2004; de Koster et al., 2021; Gonzalez Acosta et al., 2020; Sadeghirad et al., 2011; Sadeghi-
rad et al., 2013; Tielen et al., 2017; Zhang et al., 2011; Zheng et al., 2021, 2022). The
application of boundary conditions (BCs) has received less attention, even though their
application is non-trivial in MPM. In FEM, boundary conditions (BCs) can be easily ap-
plied at the edges of the finite element mesh, which correspond with the edges of the
material. However, as material points move within the mesh in MPM, the boundary of
the material will not remain at the edge of the mesh and may not even be initialised at
a mesh edge. Moreover, material points are, by definition, not at the boundary of the
material, since they are at the centre of the material (mass) they represent. Therefore,
applying BCs on either the material points or the background grid directly may not be
appropriate and could lead to inaccuracies. In recent studies, the boundary has been
represented by composite curves, either B-Splines or Bezier curves, and both traction
conditions as well as fixities have been applied successfully when the location of the
boundary is known (Bing et al., 2019; Cortis et al., 2018; Remmerswaal, 2017). However,
in general the location of the boundary is unknown and must instead be detected based
on the location and properties of the material points.
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In order to model dyke failure up to the point of flooding, the external loads of the
water on the outer slope are important and an accurate boundary condition is therefore
required. This boundary may move due to dyke deformations, so that the boundary can-
not be easily aligned with the background grid, and development of an accurate moving
boundary condition is necessary.

1.5. THE RANDOM MATERIAL POINT METHOD

Dykes consist of a wide variety of material compositions, and are often built upon foun-
dations made of several soil layers. Large variations in the soil properties within these
layers exist. In practice, the material composition of the dyke and its foundation is mea-
sured with CPTs and boreholes, from which the probability density distribution of the
properties can be estimated. These distributions can then be used as the input for the
(semi-)probabilistic calculation required to compute the probability of flooding. In most
calculations, a soil layer is assumed to be homogeneous, i.e. the soil layer can be defined
by a single set of property values, and the probability density function of each property
is used as the likelihood that this layer has a specific property value. However, in reality,
the properties of the soil layers are spatially variable, i.e. small variations exist within a
layer. This spatial variability within a soil layer is here called soil heterogeneity. It can
have a large impact on the failure initiation and post-failure process, which is typically
ignored in standard (semi)-probabilistic calculations.

The Random Finite Element Method (RFEM) uses random fields as a representation
of soil heterogeneity in combination with FEM within a Monte Carlo framework (Grif-
fiths and Fenton, 2004; Hicks and Li, 2018; Hicks and Spencer, 2010; van den Eijnden
and Hicks, 2018). Simulations with RFEM have shown that the heterogeneity of the soil
strength has a significant impact on the initial failure surface, due to the failure seeking
the weakest path through the soil skeleton. RFEM allows the calculation of the prob-
ability of dyke failure in a manner similar to a standard probabilistic calculation that
does not consider soil heterogeneity. Comparing this method with a standard proba-
bilistic calculation based only on the point statistics, the mean FoS response in RFEM
is generally lower due to the impact of weaker zones. In RFEM, the failure mechanism
can seek the weakest path (through the weak zones), which is not possible in standard
probabilistic calculations using FEM (with a single strength property for each layer). The
uncertainty in the response of RFEM is generally lower compared to standard probabilis-
tic FEM, due to the averaging of soil properties. This usually results in a higher overall
minimum FoS in RFEM compared to probabilistic FEM with a higher confidence inter-
val. Hence, the calculated probability of failure usually decreases, such that RFEM is less
over-conservative.

It is to be expected that this soil heterogeneity has a similar impact on any secondary
failure mechanisms, and on the development of large deformations. Therefore, hetero-
geneity should be accounted for when assessing residual dyke resistance. MPM can be
combined with random fields in a manner similar to RFEM, to give the Random Mate-
rial Point Method (RMPM), to enable the inclusion of heterogeneity in the assessment of
large deformations (Ma et al., 2022; Wang et al., 2016a). RMPM has yet to be applied in a
dyke assessment setting.
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1.6. AIMS AND OBJECTIVES OF THESIS

This thesis applies RMPM for slope stability modelling. The principal aim is to demon-
strate a framework for quantifying residual dyke resistance in 2D, and a secondary aim is
to perform preliminary investigations into the impact of spatial variability on 3D slope
failure processes in general. The main objectives are as follows:

1. Investigate and improve the methods for the application of boundary conditions
in MPM, such that traction conditions can be applied on moving geometries with
limited errors.

2. Develop a reliability-based framework for quantifying residual dyke resistance af-
ter occurence of the primary failure mechanism, and specifically to implement
that framework here for residual dyke resistance following slope instability. This
naturally leads to the implementation of RMPM.

3. Investigate the effect of spatial variability on the (dyke) slope failure processes in
(a) two and (b) three dimensions, and give insights into the effectiveness of the
existing guidelines for residual dyke resistance. Although this initial study inves-
tigates the potential of 3-dimensional RMPM analyses for the investigation of 3D
failures in a sensitive clay, it will additionally indicate potential failure patterns
applicable for 3-dimensional dyke failures.

1.7. THESIS OUTLINE

The remainder of this thesis is divided into 6 further chapters:

Chapter 2 further details the background of MPM. Firstly, the formulation of FEM is
presented together with the application of boundary conditions in FEM. The required
modifications to move from FEM to MPM are then described, after which some of the
more recent improvements in MPM, such as reducing stress oscillations and volumetric
locking, are discussed.

Chapter 3 proposes an improvement to the traction boundary conditions in MPM
(Objective 1). It extends the literature review on MPM, with a focus on the application
of boundary conditions, and uses this background to design four boundary condition
methods. The methods are evaluated for 1- and 2-dimensional benchmarks to evaluate
the inconsistencies associated with the different methods. Since many stress oscillation
improvement techniques change the material discretisation, the boundary conditions
in the Generalized Interpolation Material Point (GIMP) method, a widely used improve-
ment technique, are also studied. It is demonstrated that there are two viable boundary
condition methods, and algorithms are designed to generate the surfaces required for
these two methods. The algorithms and the associated boundary conditions are tested
by modelling the hydrostatic pressures for a submerged slope failure.

Chapter 4 presents the risk-based framework (Objective 2). This framework first eval-
uates the probability of a primary mechanism using fragility curves, and then computes
the probability of flooding given this primary mechanism. For residual dyke resistance
after initial slope failure, this involves computing the likelihood of all potential subse-
quent slope failures until the dyke height drops below the water level. RMPM automat-
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ically models the entire failure process from initial failure through to flooding, thereby
implementing the risk framework.

In Chapter 5 the residual dyke resistance of a simplified dyke geometry is studied
(Objective 3a). Several degrees of anisotropy, i.e. the degree of layering of the spatial
variability, are used to observe the effect of the spatial variability. The size and deforma-
tion of the initial failure are measured, and correlated against the probability of flooding
and residual dyke resistance. This correlation gives insight into the assumptions used in
the existing guidelines for residual dyke resistance.

Three dimensional failure processes are investigated in Chapter 6 (Objective 3b). A
small 45 degree slope is brought to failure under its own weight or by applying a founda-
tion load when the slope is stable under its own weight. The differences between 2D and
3D failure processes are described. The effect of changes in the point statistics and de-
gree of anisotropy of the material strength spatial variability are studied. Finally, a depth
trend is introduced in the mean material strength to observe its effect on the failure pro-
cess.

Chapter 7 summarises the main conclusions of this thesis, relates the research to
dyke design in the Netherlands and gives recommendation for future research.
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2.1. INTRODUCTION

The Material Point Method (MPM) was originally developed as an extension of the FLuid
Implicit Particle (FLIP) method, to handle history-dependent materials. FLIP, and its pre-
decessor the Particle-In-Cell (PIC) method, use Lagrangian particles to model fluids. In
PIC, the particles are used to store the mass and position of the material, while the other
properties are still stored on element nodes. PIC is therefore only partially a Lagrangian
method. FLIP is fully Lagrangian, as the fluid momentum and energy are also stored at
the particles. Sulsky et al. (1994) used the particles, also called material points, to store
the history dependent variables, thereby forming the method later referred to as MPM.
MPM was also set up using the weak form of the Finite Element Method (FEM), and
is therefore also often called a large deformation extension of FEM. MPM combines two
discretisation schemes: 1) a finite element (FE) mesh discretisation of the computational
domain on which the governing equations are solved, and 2) a material discretisation
into material points (MPs) which store the material properties. The material properties
are mapped (or integrated) from the MPs to the FE mesh. The MPs therefore act like
moving FEM integration points: they are used in the integration process to form the
nodal equations and their properties are updated due to the deformation of the mesh
after solving the nodal equations. In other words, basic MPM can be thought of as FEM
with moving rather than fixed (e.g. Gaussian) integration points.

This chapter presents the background to MPM as well as extensions of standard
MPM. The chapter highlights this by starting with the basic FEM formulation, followed
by a description of how MPM can be derived by extending the FEM formulation. The
final section focuses on some of the improvements of the standard formulation, most of
which reduce the (stress) oscillations occurring when MPs move.

2.2. FORMULATION OF FEM
Consider the conservation of momentum of a body with volume V and surface area T,
as shown in Figure 2.1a. Assuming the body is an isolated system, the conservation of
momentum is given as

V-oc-pa=0 2.1

where o is the Cauchy stress tensor, a is the acceleration and p is the mass density. Ex-
ternal influences on the system may be prescribed displacements u“ on T'y, i.e. Dirichlet
conditions, and/or three types of external loads: (1) body forces b, (2) surface tractions
7, i.e. Neumann conditions, and/or (3) concentrated point loads F¢. Note that con-
centrated point loads are non-physical and can cause numerical issues, such as non-
convergence, but they can be useful for comparisons with analytical solutions. When
applying the external loads b, T and F°¢ on the volume V, surface I'; and points k, re-
spectively, a weak form of Eq. (2.1) can be constructed (Bathe, 2014):

f(é0'+ upu)dV—f(ub)dV—fmdr,—ZuF;=0 2.2)
14 14 Iz k
where @ is an arbitrary virtual displacement and € is an arbitrary virtual strain in accor-

dance with &#. While the external loads are included within Eq. (2.2), # must be con-
strained to 0 at I'y, such that Eq. (2.2) fulfills the prescribed displacement constraints u?
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(@ (b)

Figure 2.1: Body with volume V and surface I', under the influence of prescribed displacements u?, body
forces b, surface tractions T and concentrated point loads F°: (a) general body; (b) FEM discretisation.

on I'; (Bathe, 2014). Free surfaces with zero traction and no predefined displacements
are included in I';, such that boundary conditions are specified on the complete surface,
e I'=T,uly,.

The possibility of choosing an arbitrary virtual displacement allows for a general dis-
cretisation of Eq. (2.2), where each integral is evaluated element by element using the
same set of equations (Bathe, 2014). However, the constraints of & prevent choosing
an arbitrary virtual displacement. Therefore, the prescribed displacements are often re-
placed by their ‘known’ equivalent reactions, i.e. the body is assumed to be a free floating
body with surface loads equivalent to the actual surface loads plus the reaction forces.
Eq. (2.2) can be changed to

f(é0'+ ﬂpa)dV—f(itb)dV—firrdl“—ZiLFC =0 2.3)
v v r k

with'; =0 and I'; =T, i.e. all displacement constraints have been changed to reaction
forces.

Eq. (2.3) can be discretised using standard FEM discretisation into nodes and ele-
ments (see Figure 2.1b) (Gonzélez Acosta et al., 2020) and expressed in matrix form:

t+At 2.4)

M'a+K'Au= (Fbody + Firaction + Fpoint — Fint)
where M is the mass matrix, a is the vector of nodal accelerations, K is the stiffness ma-
trix, Au is the vector of nodal incremental displacements, and Fyody, Firactions Fpoint and
Fin¢ are the nodal body forces, surface tractions, point loads and internal forces, respec-
tively. M and K are formed using an element assembly procedure, after the element mass
and stiffness matrices, Méle and Kéle, respectively, have been integrated:

nel nel
M'= A M.= A [ pPN'NdV,, (2.5)
ele=1 ele=1

Vele
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and
nel nel T
K'= A K= A | B'DBAV, (2.6)
ele=1 ele:IV
ele
nel
where A\ indicates the element assembly procedure over nel elements, p is the mate-
ele=1

rial density, D is the stress-strain matrix, N is the shape function matrix, B is the strain-
displacement matrix constructed from shape function derivatives, and V,;, is the vol-
ume of an element. For details of the matrices involved the reader is referred to Smith
etal. (2014). Méle and Kéle are obtained numerically using Gauss integration:

nip

M/, = Zl pjWjdet|J|;NiN; 2.7)
]:

and )
nip -
r_

K. = ZIWJ- det|J|;B;D;B; (2.8)

J:

where W; is the Gauss integration weight belonging to integration point j, J is the Ja-
cobian matrix relating the global and local element coordinate systems, and nip is the
number of integration points within each element.

Similarly, the body, traction and internal forces are computed per element and as-
sembled into the nodal forces for all equations, such that

nel . nel nip T
Fooay= A fN bdV,.= A Zijngjdeunj (2.9)
ele:lv ele=1j=1
ele
nel T nel nipb T
Firaction = A fN Tdlepe = A Z Wbeiijb (2.10)
ele:lr ele=1 jp=1
ele
nel . A nel nip T A
Fine= A fB oM dVee = A ) B0 Wdet]l]; (2.11)
ele:lvl ele=1j=1

where g is the gravity vector, subscript j, denotes a integration point along the boundary
of an element, and nipb is the total number of boundary integration points per element.
Since point loads may only be applied at the nodes of the finite element mesh, element
assembly is not needed for Fpoint, which is instead given by

nn
Fpoint = Z Flc (2.12)
i=1

The external forces are usually grouped together:

Fext = Fyody + Furaction + Fpoint (2.13)
Eq. (2.4) may then be simplified to

M'a+K'Au = (Fex — Fin) 2! (2.14)
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2.3. TIME INTEGRATION SCHEMES
A quasi-static formulation of Eq. (2.14) can be obtained by ignoring the inertia terms, i.e.
M’a in Eq. (2.14), such that

K'Au = (Fext — Fint) (2.15)

The quasi-static formulation can be used to model processes undergoing slow move-
ments. In this formulation, equilibrium is reached within each load step using a Newton-
Raphson iteration procedure:

K *6u = "1 (Fex; — Finy) (2.16)

where the left superscript k refers to the value at the end of an iteration step, and § u is the
displacement within the iteration step, such that the deformation within one loadstep
(Au) is computed as

kau="1Au+*su 2.17)

This process is iterated until no further displacements are computed.

For the cases where the dynamics cannot be ignored, Eq. (2.14) can also be discre-
tised in time using a scheme which relates the acceleration (a) and velocity (v) in terms
of the displacement. Here a Newmark time integration scheme (Newmark, 1959) is used:

Au vt 1
t+At:W_E_(E_Dat (2.18)
and A
pli+At _?[;Altt - (% Dol - (% -1)Ata’ (2.19)

Time stepping paramters y = 0.5 and 8 = 0.25 have been chosen, such that a constant
average acceleration is used in each time step, which simplifies the relationships to
4Au 40’
t+Ar _ 0% EV ot (2.20)
A2 At
and
e IN TR 2.21)

Substituting Eq. (2.20) into Eq. (2.14), and again using a Newton-Raphson iteration pro-
cedure, leads to
k k-1 t
4 6” 4 Au 4v t t tk k-1
F'PT—E—(I M'+K *6u= (Fext_Fint) (2.22)
Moving all knowns to the right-hand side and simplifying leads to an equation similar to
the quasi-static formulation:

K k81 =" " (Foy + Fian — Fing "™ (2.23)
where

K" =K'+ iM‘ (2.24)
At?
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and

Fyijn=———-——-a' (2.25)

K* represents a modified stiffness matrix (combining K and M) and Fy;, are the addi-
tional kinetic forces which take account of the inertia of the body (see Wang et al. (2016)
for further details).

Finally, as an alternative to the implicit dynamic formulation, an explicit dynamic
formulation can be used by setting 8 = 0. The acceleration can then be used as the pri-
mary variable:

M’a = (Fex — Finy)' (2.26)

where, since the primary variable is solved purely based on quantities known at the start
of the step, K is not required, and the stiffness of the material is accounted for only by
Fin¢. Moreover, when a lumped mass matrix is used the nodal equations can be solved
separately, i.e. solving a system of equations is not needed. This significantly decreases
the computation time of an individual time step. However, the explicit scheme is only
conditionally stable, and therefore much smaller time steps are required for the explicit
formulation compared to the implicit formulation. The total computation cost of an
implicit formulation is, therefore, for many transient problems, lower than that of an
explicit formulation (Zienkiewicz et al., 2014).

2.4. DISPLACEMENT BCS

Egs. (2.16), (2.23) and (2.26) fulfill the external load conditions, but the displacement
(Dirichlet) conditions must still be enforced. To enforce the displacement BCs, the re-
action forces of the displacement BCs are computed and added to the external loads.
However, computing the reaction forces before the system of equations has been solved
can be a difficult procedure. Therefore, to enforce zero displacement BCs, the equations
related to a node can instead be removed from the system of equations (Bathe, 2014;
Smith et al., 2014). The reaction forces do not then have to be computed before the sys-
tem is solved, but can be computed afterwards when desired. Alternatively, the penalty
method can be employed for both non-zero and zero displacement BCs. In this method
a penalty term is added to the diagonal of the stiffness matrix and the external force
vector, thereby fixing the value of u to u; at I';. If an explicit time integration scheme
is employed together with a lumped mass matrix, in a single step there is no coupling
of the primary variable between the boundary and non-boundary nodes, and Dirichlet
conditions can therefore be easily enforced on the boundary nodes without influencing
the other nodes in the step (Zienkiewicz et al., 2014).

2.5. FORMULATION OF MPM

In MPM, a body is no longer discretised into elements and nodes, since material points
are used instead, see Figure 2.2a. Each computation step consists of three parts, see
Figure 1.5. At the start of the computation step all the information is stored at the MPs.
Therefore, in the first part the state variables must be mapped/integrated to the nodes
of the computational grid. The integration of the body force and internal force is similar
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Figure 2.2: Body of Figure 2.1 discretised using (a) MPM with MPs on a background grid, and (b) GIMP with

MPs and support domains on a background grid.

to FEM, but changed from a Gaussian integration per element to a summation over the
MPs:

nmp
Fpoay= ) N,m,g (2.27)
p=1
and
Fint= Z B,o Y, (2.28)

where N, and B, are the shape functlon and shape function derivative matrices evalu-
ated at MP p, m,, is the mass of p,V,, is the volume of p and nmp is the total number of
MPs. The mass matrix and stiffness matrix are still formed using the assembly procedure
(Egs. (2.5) and (2.6)), but the element matrices are modified to

emp
M., = Z NiN;my, (2.29)
and
emp
K., = Z B,D,B,V, (2.30)

where emp is the number of MPs in a spec1ﬁc element. Besides the integration also re-
quired in FEM, additional integration is required to obtain variables which are unknown
at the nodes in MPM, for example a’ and v?, since the mesh has been reset compared to
the previous step. Therefore, the velocity and acceleration at node i are computed as

nmp

T
’E N pMpv p
R (2.31)
mj
and
nmp T
Z N mpa,[J
al=— (2.32)

m;
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where m; is the mass of node i (computed by lumping the mass matrix) and v, and a,
are the MP velocity and acceleration, respectively.

Once all the required variables are mapped to the mesh, in the second step the mo-
mentum or equilibrium equation (Eq. (2.16), (2.23) or (2.26)) is solved at the nodes,
which results in a new nodal displacement, velocity and acceleration. While in the ex-
plicit scheme the equation is solved directly and the MP variables do not have to be up-
dated during the second part of the computation, in the implicit scheme the stress and
strain of the MPs must be updated in each iteration of the Newton-Rahpson procedure
according to

k _r+nr _  _t k
o, —()'p+D,,B,, Au (2.33)

For the case in which non-linear stress-strain behaviour, for example plastic behaviour,
is being modelled, Eq. (2.33) is used to compute a trial stress, after which a constitutive
model is used to correct the stresses and strains. After the MP stress is computed, the
internal forces are recalculated using Eq. (2.28) at the start of the new iteration.

In the third part of the time step the MP variables are updated. In the explicit scheme
this entails

v, = vl +NpaAs (2.34)

t+At _ .t _ 4l t+At
X, =x,tup=x,+v, At (2.35)
o, =0, +D,B,Au’ (2.36)

where Au* is the incremental displacement obtained from a remapping of the updated
MP velocities to the nodes, i.e.

T t+At
nmp +
> ) N,mpv,

Au*=—— At (2.37)
m;

The remapping of the velocity is used for additional stability.
In the implicit scheme, the nodal displacements are used to update the position in-

stead:

t+At t

P =x) =x;,+N,,Au (2.38)

and Eq. (2.33) is reused to compute the stresses at the end of the time step. Finally, the
kinematics of the MPs are updated as

a M =N,a'* (2.39)
and
1
t+Ar _ ot 2t t+At
vh —vp+2(ap+Npa At (2.40)

Once the MP variables are updated, the mesh is reset before the next time step is com-
puted.
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2.6. EXTENSIONS OF MPM

While MPM has been shown to be a useful engineering tool, the accuracy of standard
MPM simulations has been shown to decrease when deformations increase (Barden-
hagen and Kober, 2004; Gonzdlez Acosta et al., 2020). As the MPs move, they no longer
occupy the ideal positions for numerical integration. Moreover, the MPs may even move
into different elements. Due to the fact that the shape function gradients used to com-
pute the nodal internal forces and MP stresses (Egs. (2.28) and (2.33), respectively) are
discontinuous at element boundaries, stress oscillations, i.e. fluctuation of the MP stress
in space, occur when MPs move to a different element. These oscillations may then
cause incorrect displacements, especially when more complex constitutive models are
employed. As a result, MPM has often been constrained to be used with simple consti-
tutive models.

In order to reduce the stress oscillations several improvements have recently been
developed. Most of these improvements focus on creating shape function gradients
which are continuous at element boundaries, while maintaining positive definite shape
functions (as negative shape functions may lead to negative mass at the nodes). In
GIMP, a support domain is assigned to each MP, see Figure 2.2b (Bardenhagen and
Kober, 2004).This support domain can spread the influence of an MP over multiple
elements. This is achieved by interpolating the standard FEM function over the sup-
port domain, which results in continuous shape function gradients even at element
boundaries, as shown in Figure 2.3. The support domain has a fixed rectangular (2D) or
cuboidal (3D) shape in the standard GIMP implementation, which was later renamed
as unchanged/uniform GIMP (uGIMP) (Bardenhagen and Kober, 2004; Wallstedt and
Guilkey, 2008). Several extensions of GIMP have been developed, which allow for vari-
ous deformations of the support domain:

* Contiguous particle GIMP (cpGIMP) was proposed by Bardenhagen and Kober
(2004) together with uGIMP. In cpGIMP, support domains can deform into any
rectangular (2D) or cuboidal (3D) shape according to the normal deformation of
the MP i.e. the support domains are deformed by the normal strains (Bardenhagen
and Kober, 2004; Wallstedt and Guilkey, 2008).

* Convected Particle Domain Interpolation (CPDI) allows the deformation of sup-
port domains into parallelograms (2D) or parallelepipeds (3D), i.e. the support
domains are deformed by the normal strains, deviatoric strains and rotations
(Sadeghirad et al., 2011). The shape functions are constructed as an interpola-
tion of the standard FEM shape functions at the four corners of each particle
domain, with the domains being described using the MP position and two vectors
(Sadeghirad et al., 2011).

* CPDI2 extends the implementation of CPDI, and allows more flexibility over the
shapes of the support domains by using quadrilaterals (Sadeghirad et al., 2013).
The quadrilaterals are described by the corners of the support domains (Sadeghi-
rad et al., 2011).

Hence several GIMP-based solutions focus on more accurately representing the MP do-
mains, but for large strains the extreme distortions of the support domains can again
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Figure 2.3: (a) GIMP shape function (S; p) and regular FE shape function (V;) for node i, and (b) GIMP shape
function gradient (VS;)) and regular FE shape function gradient (VN;) for node i (Bardenhagen and Kober,
2004; Gonzélez Acosta et al., 2020).

suffer from difficulties similar to mesh distortion. Standard GIMP can in these cases be
more stable, since the support domains will not distort. Alternatively, at large strains
a continuum approach, such as MPM, may no longer be appropriate for the entire do-
main. For example, separation of the material may be needed at large tensile or shear
strains. In this thesis, the standard GIMP implementation with constant shape and size
of the support domain (uGIMP) has been used. Whenever the acronym GIMP is used in
the remainder of the thesis, it indicates uGIMP.

As an alternative, B-spline MPM (BSMPM) (Steffen et al., 2008) replaces the standard
FEM shape functions with high-order B-spline functions, which are continuous across
element boundaries, without tracking MP shapes. The high-order B-spline functions
are positive definite such that negative mass contributions cannot occur, which would
be a possibility were higher-order FEM shape functions to be used instead. Similar to
B-spline MPM, the Dual Domain Material Point Method (DDMP) (Zhang et al., 2011)
replaces the shape functions without requiring the tracking of the MP support domain.
In DDMBP the influence domains used for the shape functions and the shape function
gradients are separated. The influence domain for the shape function gradients is ex-
tended to multiple elements, such that the shape function gradients are continuous at
element boundaries, while the influence domain for the shape function is a point, simi-
lar to standard MPM. DDMP can also be applied to unstructured meshes, which tends to
be difficult with the other techniques. However, additional corrections are required for
nodes at the boundary of a material. These nodes can receive a mismatched contribu-
tion from the shape function gradient compared to the shape function, which must be
corrected. Finally, problems with discontinuous shape function gradients may be solved
by mapping the properties which require shape function gradients, usually the stresses,
to non-moving integration points using shape functions. After mapping, standard FEM
integration can be performed. This strategy has been used by mapping properties to the
center of cells (Liang et al., 2019) or the Gauss integration points (Al-Kafaji, 2013).

Besides stress oscillations, the movement of MPs can cause other issues. In implicit
MPM, the integration of the stiffness matrix is affected by oscillations when MPs move
within an element (Gonzdalez Acosta et al., 2020). These stiffness oscillations can be re-
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duced with GIMP, but this complicates the element assembly procedure since multiple
elements are connected together in the stiffness matrix due to the extended support
domain. Local implicit GIMP shape functions can be used to disconnect the elements
(Charlton et al., 2017), but this increases the stiffness oscillations (Gonzélez Acosta et al.,
2020). Gonzélez Acosta et al. (2020) therefore used a double mapping (DM) technique
to map the stiffness of the material to the Gauss integration points. This technique is ef-
fective with both standard MPM (called DM) as well as (implicit) GIMP shape functions
(called DM-G). Movement of MPs within an element can also reduce the accuracy of the
stress update (Eq. (2.33)). The stress update can be improved by using a patch recovery
technique, which, similar to B-spline MPM, constructs continuous shape functions in
multiple elements (Gonzélez Acosta et al., 2020). The low order of the shape functions
also increases the effect of volumetric locking. The locking can be reduced with FEM-
like strategies such as the B-bar or F-bar methods, which have been developed for both
MPM and GIMP (Coombs et al., 2018).

In this work, double mapping with standard GIMP shape functions (DM-G) has been
used, except during the investigations of standard MPM boundary conditions in Chap-
ter 3. This technique adequately reduces stress and stiffness oscillations, and has been
shown to be capable of modelling slope failure with a shear strain softening constitutive
model (Gonzdlez Acosta et al., 2020). To improve stability and reduce complexity of the
numerical method, updating of the support domains of GIMP has not been used. Most
material points experience limited strains during dyke slope failure, i.e. translations may
be large, but strains are limited. The effect of the constant support domain size is there-
fore expected to be small.

2.7. CONCLUSION

The background of MPM has been presented. Even though MPM was not originally de-
veloped from FEM, MPM can be seen as a logical extension of FEM for large deforma-
tions, as it can be built from the FE formulation. Several integration schemes have been
presented. The implicit scheme is used within this work as significantly larger time steps
can be used, and the total computation cost is expected to be lower. Standard MPM can
be implemented as a straightforward extension of FEM where the Gauss points move.
However, to increase the accuracy of MPM extensions are required, of which a summary
has been provided. Many of these extensions change the shape functions according to
an influence domain of the material point in order to solve stress oscillations associated
with the movement of the material points.
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NEUMANN BOUNDARY CONDITIONS
FOR MPM AND GIMP

As the Material Point Method (MPM) uses both a mesh and a point discretisation scheme,
the application of boundary conditions is difficult, limiting the flexibility of the method.
While many boundary condition options have been proposed in the literature, the accu-
racy of Neumann boundary condition options has not yet been studied. Four options have
here been evaluated for 1D and 2D benchmarks, although none of the options were found
to be both accurate and generally applicable in MPM. However, for the Generalized Inter-
polation Material Point method (GIMP) the application of surface tractions on support
domain boundaries or on a detected surface are accurate options. The two new methods
provide accurate surface tractions for a submerged slope example when compared to the
application of tractions at surface material points, a method regularly used in literature.

This chapter is based on the following paper (currently under review): Remmerswaal, G., Vardon, P. J., & Hicks,
M. A. (2022). Inhomogeneous Neumann boundary conditions for MPM and GIMP (submitted for journal pub-
lication).
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3.1. INTRODUCTION

Due to decades of development, the Finite Element Method (FEM) has become an accu-
rate and flexible tool. The flexibility of the mesh to discretise arbitrary geometries and
refine locations of interest, as well as the large assortment of (accurate) boundary con-
ditions and constitutive models, have made the method applicable for a wide variety of
problems (Bathe, 2014). In other words, the method is generally applicable. The Mate-
rial Point Method (MPM) on the other hand is (yet) far from being generally applicable.
This is partly caused by the previously mentioned stress inaccuracies, for which many
improvements have been developed in the recent years.

A remaining key challenge for MPM, which is starting to gain attention, is the im-
position of boundary conditions (BCs), especially on complex or moving geometries.
Dirichlet BCs (fixed primary variable) and Neumann BCs (normal derivative of the pri-
mary variable or force in a mechanical governing equation) are most commonly used to
solve the governing equations on the background grid. In FEM, the edge of the elements
closely resembles the domain edge I" and the element nodes typically lie on the domain
edge, see Figure 2.1b. Therefore, boundary conditions can be easily included. In MPM,
since the material, and thus the material boundary, has been decoupled from the grid
neither the MPs nor the background grid align directly with the domain boundary, see
Figure 2.2a. It is therefore not immediately obvious where surface tractions and point
loads should be applied, nor where displacement conditions should be enforced (Cortis
etal., 2018). Compared to meshless methods (MMs), defining BCs in MPM can be con-
sidered easier due to the presence of a background grid, because techniques designed
for FEM may be applied. For example, FEM BCs can be applied directly when a problem
is setup such that a boundary coincides (permanently) with an edge of the background
grid. However, in order to make MPM generally applicable, non-conforming BCs, i.e.
BCs decoupled from the grid, must be developed. Surface tractions on a moving surface
provide an additional complication, as the applied loads may need to be updated when
the geometry evolves under large deformations.

To further complicate boundary conditions in MPM, several of the techniques used
to address the aforementioned stress oscillations alter the point and/or mesh discreti-
sation. For example, in GIMP, an MP is no longer discretised as a single point, but is
assigned a rectangular area instead, see Figure 2.2b, with a size defined as 2Ipy x 21py,.
While, in the initial position, the rectangular support domains of the MPs do not overlap,
the support domains may overlap after movement of the MPs. The changed discretisa-
tion will impact the application of the boundary conditions. Here, BCs in MPM and
GIMP are studied, to investigate the effects of different discretisations on the BCs.

While several strategies for non-conforming BCs have been used during the devel-
opment of MPM, of which a review is presented in Section 3.2, the application of BCs
is not yet fully understood. Therefore, the accuracy of four Neumann BC methods for
MPM and GIMP, which are further explained in Section 3.3, are tested for one and two
dimensional problems in Sections 3.4 and 3.5, respectively. Sections 3.4 and 3.5 highlight
the inconsistencies between Neumann BC methods and the computation of the internal
force. To use consistent methods in practice, algorithms are developed for general appli-
cability (Section 3.6). The algorithms are then tested on a submerged slope failure case
study (Section 3.7).
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A straightforward strategy is to apply BCs on ‘surface’ MPs, i.e. the MPs closest to the
material boundary. Dirichlet conditions can be enforced on surface MPs by fixing the
primary variables of MPs (Moormann and Hamad, 2015; Wang et al., 2018). Neumann
conditions may also be applied as point loads at surface MPs, by integrating the loads to
the background grid (Chen et al., 2002; Fern et al., 2019; Hu and Chen, 2003; Martinelli
et al., 2017). However, since MPs are, by definition, not at the material boundary, the
exact location is not correct and therefore can cause inaccuracies and discretisation de-
pendency of the solution. Moreover, for large distortions (which MPM is designed for),
the surface MPs may change over time and must therefore be identified, which is a non-
trivial task.

Since the governing equations are solved at the nodes, another solution could be to
enforce the BCs directly at ‘surface’ nodes, i.e. those nodes which separate active from
inactive elements. This presented reasonable results for a rainfall boundary condition
in explicit MPM (Martinelli et al., 2021), even though the BC did not coincide exactly
with the material boundary. The results can be further improved when the boundary
is forced to be at the nodes; boundaries with an irregular shape can be applied on the
nodes of an irregular grid (Tjung, 2020; Tjung et al., 2020; Wang et al., 2005), while a
moving mesh can be employed for BCs with known displacements (Beuth, 2012; Fern
etal.,, 2019; Martinelli and Galavi, 2021; Phuong et al., 2016; Wang et al., 2021). However,
while these methods show good results for a subset of problems, the solutions are not
generally applicable. Moreover, the techniques are often developed for structured grids,
and versions for unstructured grids require new developments (de Koster et al., 2021).

MPM boundary conditions may benefit from developments in MMs, which do
not benefit from an FEM mesh. In MMs, FEM techniques, such as Lagrange multi-
pliers, the penalty method and Nitsche’s method can still be employed with adjust-
ments (Ferndndez-Méndez and Huerta, 2004). Moreover, new techniques have been
developed, for example boundary FEM grids coupled to meshless points (Huerta and
Fernandez-Méndez, 2000; Mast et al., 2011), and ghost points to enforce BCs or track the
boundary (Colagrossi and Landrini, 2003; Federico et al., 2012; Mao et al., 2016).

Recent studies have looked at applying BCs within FEM elements instead of on ele-
ment boundaries. Dirichlet BCs can be included into the system of equations of nodes
surrounding the material boundary using the Implicit Boundary Method (IBM) (Bing et
al., 2019; Cortis et al., 2018; Kumar et al., 2008). In IBM, the constraints (z = u® and
u = 0 at I';) are enforced using so-called Dirichlet functions. These functions enforce
the constraint over a narrow band along I' ;, while the constraint only indirectly affects
the rest of the FEM mesh via the system of equations. While in IBM the BCs are in-
cluded in the equations of elements surrounding the boundary, in the Shifted Boundary
Method (SBM) the BCs are mapped onto the elements enclosed by the boundary (Liu
and Sun, 2019; Main and Scovazzi, 2018). In SBM all elements intersecting or outside
the boundary are removed from the mesh, and a surrogate boundary is then created at
the boundary of the remaining mesh. A distance function is employed to map from the
real to the surrogate boundary, such that the BC can be included using Nitche’s method.
Similar to IBM and SBM, Neumann BCs can be integrated to surrounding nodes using
Gauss integration along the boundary (Bing et al., 2019; Remmerswaal, 2017) or mapped
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Figure 3.1: Example of surface traction g applied on the surface of a material I' (red dotted line). The material
is discretised into MPs (circles) with their respective support domains (black dashed lines) located within a
background mesh (grey solid lines).

to the surrogate boundary (Main and Scovazzi, 2018). These FEM-like methods require
the location of the surface, which must be predefined by the user or can be detected
based on the MP location and properties (Remmerswaal, 2017).

Besides Dirichlet and Neumann BCs, inflow and outflow BCs, i.e. introduction and
removal of material, respectively, can be required within MPM. These flux-based condi-
tions are especially useful to reduce the computational cost in (pore-)fluid mechanics.
For example, to model a steady flow through a boundary in space, a velocity (Dirich-
let) condition must be enforced at the boundary. However, the MPs would flow away
from the boundary, leaving the elements on which the condition is enforced empty, pre-
venting the steady flow through the boundary. Therefore, new material (points) must be
introduced through the boundary (Zhao et al., 2019). Additional elements may be used
to introduce the new MPs, and the Dirichlet BC should also be enforced on the new MPs
to create a steady flow. To prevent a build up of MPs at the end of the computational
domain, an outflow condition can be used, i.e. MPs may be removed when they enter
specific elements (Zhao et al., 2019). To ensure a specific solution, a Neumann condition
can be enforced at the outflow elements.

3.3. NEUMANN BOUNDARY CONDITION METHODS IN MPM

Four possible methods to apply Neumann BCs on an MP discretisation are outlined be-
low and investigated in Sections 3.4 and 3.5. The methods are explored using the ex-
ample configuration of Figure 3.1. In this example, the MPs (indicated by black circles)
are evenly spaced and translated horizontally with respect to the background grid. For
simplicity, the MPs and the boundary I" are aligned with the grid in the vertical direction,
but this is not necessary. I' (as indicated by the red dotted line in Figure 3.1) is neither lo-
cated at the edge of a grid cell nor at an MP. The traction is indicated by . MP domains
are also shown via the black dashed lines, but these are only defined in methods with
particle domains such as GIMP.
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3.3.1. EQUIVALENT POINT LOADS APPLIED ON SURFACE MPS

To apply loads on surface MPs, as shown in Figure 3.2a, I' is split into segments Iy, indi-
cated by I'y and I'; in Figure 3.2a, associated with the closest surface MP. q is integrated
along I';, into an equivalent point load which acts at MP p:

F, =fqdrp 3.1)
rl’

In Figure 3.2aT'; and I'» are integrated into MP point loads F; and F», respectively. The
point loads are then integrated to the nodes using shape functions (similar to Eq. (2.10))
by summing over all boundary MPs:

Fypi=) N,F), (3.2)
p

where Fyp are the nodal external loads obtained from the point loads applied at the
boundary MPs. This method is convenient for externally applied loads which move with
the material, as once defined F p does not need to be recalculated - this can even be done
in a pre-processing stage. It is seen that, in contrast to FEM, all nodes of the element
containing the BC have forces associated with the BC, shown as F; to F; in Figure 3.2a.

3.3.2. BOUNDARY MOVED TO THE SURFACE NODES

With the second method, the boundary condition is applied on the boundary T';, sep-
arating the active elements from the inactive elements, see Figure 3.2b. In MPM, an
element is active when it contains at least one MP. In GIMP, an element is active when it
overlaps with a part of the support domain of at least one MP. Eq. (2.10) is then used to
integrate the traction to the surface nodes:

Fnodes = fNqurm 3.3)
Im

where Fpodes are the external nodal loads computed from the surface nodes. This
method is most similar to FEM, but also moves the boundary away from its intended
location unless the material boundary aligns with the mesh. It is straightforward to ap-
ply if the load is fixed in space and not dependent on the movement of the material in
the domain, but it requires a substantial housekeeping algorithm to identify the correct
location to apply the boundary condition if it moves with the material.

3.3.3. BOUNDARY CONDITION APPLIED EXACTLY
The third method (see Figure 3.2¢) integrates q directly from I'. Standard FEM integra-
tion can be used within elements as well, such that

Fsurface = fNquF (3.4)
r

where Fgy;ace 1S the external nodal load integrated directly from I'. This integration be-
comes more complicated in realistic scenarios where the shape of I may be complex.




32 3. NEUMANN BOUNDARY CONDITIONS FOR MPM AND GIMP

F . r F
—l> !] 'Ij"l
F1%POIOI
¥ — + A
F2:—’>§-h0|0|
TR
(@) (b)
Ry F
—>! »I
> ol P |
9k — + - A
o1 p
| 1
CAC i
(c) (d)

Figure 3.2: Four Neumann boundary condition methods to transfer q to Fext: (a) application on surface MPs as
point loads, obtained from integration over two surface segments; (b) application on surface nodes; (c) direct
integration from (detected) surface; (d) application on a surface proportional to the volume of the MPs in the
boundary element (blue hatched volume is equal to the volume of the blue MPs)

In these cases, B-splines or Composite Bezier Curves may be used to represent I', and
Gauss integration along I' can be used to evaluate Eq. (3.4), see Bing et al. (2019) and
Remmerswaal (2017) for further details. This method (as in the first method) results in
nodal forces on all of the nodes in the element, and requires the identification of the ex-
act boundary location. For the case when I' is parallel to the GIMP domain orientation,
this method is equivalent to applying loads on the GIMP support domain.

3.3.4. BOUNDARY CONDITION MOVED PROPORTIONALLY TO VOLUME OF
MPsS IN BACKGROUND GRID ELEMENTS

The fourth method (Figure 3.2d) evaluates the volume of the material points within each
cell. A boundary surface I'y is placed in partially filled cells, such that the volume en-
closed by the surface is equal to the volume of MPs in each cell (the implementation is
explained for standard MPM and GIMP in the remainder of the paragraph). For exam-
ple, the surface is placed in the middle of the surface element in Figure 3.2d, since the
element has only two MPs within it (50% of the original four). q is then integrated along
I'y to obtain Fygume, i-€. the external nodal loads computed from I'y:

Fyolume = f Nlgdry (3.5)
Ty
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Figure 3.3: (a) A 3 m by 1 m bar fixed at one end and compressed from the other end by a surface traction g;
(b) the bar discretised into MPs (dots), representing a square support domain (dashed lines), and the compu-
tational domain discretised as a background grid constructed from square 1 m elements (solid grey lines), in
which the start of the grid is located at a distance xq¢fge¢ from the surface I'.

This method is difficult to practically implement for arrangements where the MPs are
not well aligned with the background grid. In GIMP, the volume of MPs is distributed
according to the support domain of the MPs. Therefore, I'y coincides with the boundary
of the support domain and, for clarity, the name Fygjyme is changed to Fgpvp. In other
words, Fgrvp is the nodal force when a traction is applied to the boundary of the support
domain in GIMP, and is equivalent to Fgyface When I is parallel to the GIMP domain
orientation.

3.4. APPLICATION IN ONE DIMENSION

A simple benchmark is presented to demonstrate the performance and characteristics
of the different BC application methods, and to indicate the inconsistencies of the BC
methods with respect to the internal force calculation. A mismatch between Fey and
Fint can cause (additional) stress oscillations which have been characteristic of many
MPM implementations. A 1D problem is solved using a 2D plane strain discretisation
and background grid. An elastic bar, presented in Figure 3.3, is fixed at one end and
loaded with a surface traction g = 1 kPa at the other end. The bar has a Poisson’s ratio
of 0. The MPs are distributed equally within the bar, with a distance of 0.5 m between
adjacent points. The start of the background grid is placed at a distance xgfger from
the surface I', and consists of 1 m square elements. The MPs are fixed in place, i.e. no
displacements are computed. The initial horizontal stress in all MPs is initialised as g,
such that the bar is in equilibrium. Therefore, for a consistent solution, Fiy; and Fex;
should be equal at each node for every position of the bar in the background grid, i.e. for
all values of xfget-

Figures 3.4a - 3.4c present Fjn; and Fey; at the first three nodes, calculated using stan-
dard MPM, for various distances Xfrset. Due to the constant shape function gradients
within an element (and the constant stress), Fi,: remains constant until MPs cross ele-
ment boundaries, after which a jumps occurs.

All methods show a qualitatively similar behaviour, i.e. as the boundary moves away
from a node Fx decreases, whereas F¢y; increases as the boundary moves closer to a
node. This behaviour is similar to the behaviour of Fj,, and therefore explains the qual-
itative success of boundary conditions in past MPM research.

However, by looking at the results in more detail some differences are observed. Fyp
is inconsistent with Fj,; for most x¢fet, Since too much load is transferred to the inner
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Figure 3.4: Internal force for standard MPM (a-c) and GIMP (d-f) compared with external force computed by
four methods for (a and d) node 1, (b and e) node 2, and (c and f) node 3 of Figure 3.3. Note the change from
Fyolume 10 Fgrmp in the legend of d-f. Due to the symmetry of the problem presented in of Figure 3.3, the
forces at node 1, node 2 and node 3 are equivalent to node 7, node 8 and node 9, respectively.
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nodes. In other words, load is applied inside the material instead of on the material sur-
face. Fnoges is consistent when the boundary element contains 4 MPs, but overestimates
F ey compared to Fiy¢ on the surface nodes after MPs cross element boundaries. Fyodes
may present consistent results for small deformation problems, which are often used
during code development. Fgy;,ce matches F;,; when I' coincides with the background
grid or when I’ lies exactly in the middle of the boundary element. However, Fgy;face and
Fyip change linearly with xgftser, While Fin remains constant due to the shape function
gradients. Due to the mismatch in the linear versus step-wise Fexc and Fiy, the applica-
tion of the boundary condition in this manner will cause stress oscillations which have
been characteristic of many MPM implementations. Finally, Fyyyme iS consistent with
Fint. The position of the surface in this method is dependent on the volume/number of
MPs in the outermost active element, and jumps to a new position whenever MPs leave
this element. The surface corresponds with the end of the material point discretisation,
and therefore distributes Fey in the same manner as the internal load, thereby avoiding
stress oscillations.

Note that Neumann boundary conditions are only theoretically correct when applied
on the exact material surface (i.e. using Fgyface).- However, the discretisation of MPM
causes an incorrect internal force calculation near the boundary, and Fyoume is therefore
a more consistent BC method for MPM. By increasing the number of material points or
by increasing the number of background grid elements, the difference between Fyqjyme
and Fgyyace Will decrease.

Figures 3.4d-3.4f repeat the analysis using GIMP instead of MPM. Fj,; has changed
due to the GIMP shape function gradients (see Figure 2.3), which influence multiple el-
ements and ‘distribute’ the MP stresses according to their support domains. Similar to
Fyolume for MPM, Fgivip computes an Feye consistent with Fi,e. Moreover, due to the
simple problem geometry, the boundary of the support domain of GIMP coincides with
T such that Fgivp = Fsurface- FNodes 1S less consistent in GIMP compared to MPM, since
the internal force changes linearly with xftser, While Fyp is more consistent due to the
linear change. Note that standard MPM shape functions are used to integrate or transfer
loads to the nodes. This agrees with the concept of GIMP, since the GIMP shape function
for a surface should be created from a ‘support domain’ with zero width, which returns
the standard FEM shape functions.

This analysis indicates the importance of developing a (Neumann) BC method which
agrees with the discretisation of the material and the adopted shape functions, i.e. the
BC method should be consistent with the internal force calculation. Moreover, it shows
another advantage of GIMP compared to MPM, since the material surface coincides with
the optimal position for BCs in one dimension. Therefore, GIMP is the focus for the
remainder of this chapter.

3.5. APPLICATION IN TWO DIMENSIONS

A bar with an inclined surface (angle 60) is used to analyse the effect of a surface un-
aligned with the background grid, see Figure 3.5a. A traction g is applied normal to the
bar’s surfaces, i.e. normal to the inclined, horizontal and vertical surfaces. The bar is
discretised using MPs with a 0.5 m square support domain, which are aligned with the
background grid in the vertical direction, and placed in the horizontal direction such
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Figure 3.5: (a) A bar with a surface inclined at an angle 6, compressed from all sides by a surface traction
q. (b) The bar is discretised into MPs (grey filled circles) with a square support domain (dashed lines), and a
background grid (solid lines) constructed from 1 m square elements which is offset by a distance x5 With
respect to the tip of the bar. The surfaces used to compute Fgyf,ce and Fgpvp are highlighted by the solid red
line and dotted blue line, respectively.

that the support domains align with the sloped surface (see Figure 3.5b). The slope cuts
the middle of the left edge of the support domains as shown in Figure 3.5b), for all angles
6. The background grid is offset by a distance X, from the tip of the bar, and consists
of 1 m square elements.

The analytical solution for the internal stress at all positions in the bar is g in both
the vertical and horizontal directions, i.e. the bar is in equilibrium with the applied ex-
ternal force. Once again, the initial stresses are set to this equilibrium condition. The
calculated internal forces at the boundary nodes are compared with the external forces
computed using the methods proposed in the previous sections, and should be equal
for a consistent BC method. The normalised differences in the horizontal and vertical
forces, Er, and EFy, respectively, are defined as:

ext _ pint
;'Fx,i Fx,i |

B, =g (3.6)
iy R

Ep =41—— 3.7

B = 7 34tan0) 8.7

where F]e’l‘ " and F]”l” are the external and internal forces of node i in direction j, respec-
tively. Er, and E| F, €xpress the difference between Fy and Fj,: summed over all nodes,
decomposed in the horizontal and vertical directions. Er, and E F, are normalised with
respect to the theoretical external force acting along the sloped surface in the horizontal
and vertical directions, respectively. Due to the geometry of the problem, the theoretical
horizontal external force is independent of the slope angle, while the theoretical vertical
external force depends on the slope angle. The denominators normalise the differences
for the slope angle.

The computed differences of the four methods for tan(8) = 0.5, i.e. the slope shown
in Figure 3.5b, are shown in Figure 3.6. The figure presents the normalised differences
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Figure 3.6: Error in the total force computed for an inclined bar with tan(0) = 0.5 with various boundary con-
dition methods, (a) Ery, (b) Ey.
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Figure 3.7: Error in the total force computed for an inclined bar for various slope angles using Fgyface and
Fgivp, (@) Efy, (b) Ery

EF, and Ep, for different offsets (xXofset) of the grid. To clarify, Fsurface is computed using
the sloped surface of the actual bar, while Fgpvyp is computed by the boundary of the
GIMP domains constructed from vertical and horizontal segments (see Figure 3.5b). For
clarity, Figure 3.6 and Figure 3.7 are limited between 0 m < Xfser < 1 m, i.e. one grid cell,
since Ef, and EF, are periodic with respect to the offset of the grid with a period of one
grid cell. This period is independent of the slope angle.

Similar to the 1D case, Fyodes presents the largest inconsistencies (oscillating around
a normalised total difference of 100%), due to the fact that loads are applied at large dis-
tances from the domain (in some locations) for all values of Xyftser. Whereas Fyodes ap-
plies loads too far outside of the material, Fyp instead applies loads too far into the ma-
terial. However, the differences for Fyp are smaller then the differences for Fyoqes and
more or less constant: i.e. differences of approximately 50% in the x- and y-directions.
The two methods which demonstrated an exact application of the BC in one dimension,
Fsurtace and Fgrvip, also perform well in two dimensions. Fgyface has an average differ-
ence of 2.1% and 1.3 % in the x- and y-directions respectively, while Fgpyp is consistent.
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Figure 3.7 further investigates the difference between Fgy;ace and Fgpvp, for various
slope angles 6. Fgpvp is an error free solution for all slope angles, while for Fgy;ace the
error grows with a larger slope angle (it would then decrease with further increase in
slope angle above 45°). The larger errors are caused by a growing difference between the
actual surface and the discretisation of GIMP. Moreover, as the slope angle is closer to
45°, the surface is more often partially located in inactive elements, reducing the applied
total load and increasing the error. Note that, even though the error of Fgyyface grows
with the slope angle (up to 8 = 45°), the error is still significantly smaller than for Fyp
and Fnodes-

3.6. BOUNDARY DETECTION

Sections 3.4 and 3.5 show that, in GIMP, Fgface and Fgpvp are (almost) consistent with
the internal force. Sections 3.4 and 3.5 involved a fixed geometry, where the material
surface could be pre-defined. However, in an analysis where MPs move with respect to
the background grid, and also with respect to each other, the material surface should
be detected automatically. Algorithms are therefore required to construct the bound-
ary required for the consistent method. An algorithm for Fyqjyme in MPM has not (yet)
been found. This chapter instead presents two types of boundary detection methods
for Fgyrface and Fgpvp, to be used in GIMP. Remmerswaal (2017) investigated various
approaches to construct the material surface for Fgyface in MPM, and showed that the
Proximity Field Method (PFM), which constructs linear segments within grid cells based
on the level set method, performed well. A brief explanation of PFM is provided. In addi-
tion, this chapter expands a contour algorithm for iso-rectangles to construct the surface
for Fgmvp (Prusinkiewicz and Raghavan, 1985).

3.6.1. PROXIMITY FIELD METHOD

The Proximity Field Method (PFM) (Remmerswaal, 2017) is based on the level set
method, where the boundary location is defined as the (zero) level set of an auxiliary
field (Sethian, 1996) and can be used to compute Fgsyf.ce. Epanechnikov kernel func-
tions are used to compute the proximity, i.e. the distance, to nearby MPs. In other words,
the kernel function represents the influence domain of the MP. A local coordinate system
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Figure 3.9: (a) 1D example of constructing a PF using kernel functions; (b) 1D example of boundary detection
by comparing the PF with a threshold.
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Figure 3.10: Computation of boundary points from a proximity field in two dimensions. Proximity field values
displayed at the nodes. Boundary constructed by connecting the boundary points with linear segments.

is used for the kernel function (see Figure 3.8), i.e.
Kij=Cj(1—u; juij) (3.8)

where K; ; is the kernel function of the j th MP evaluated at point i, u; ; is a distance
in local coordinates and C; is a constant used to control the magnitude of the kernel

function.
The local distance is computed as

wi ;=87 (x;i—x)) 3.9
where x; and x; are the global coordinates of point i and MP j, and §; is the shape matrix
given by

s;=|% O ] (3.10)

0 bj
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Figure 3.11: Conversion from real space (a) to slab space (b) for a set of 5 rectangles according to the algorithm
designed by Prusinkiewicz and Raghavan (1985). The contour is marked by the solid line and the internal edges
are marked by the dashed lines. The slab space solves the ambiguity for the connection of rectangles 3 and 4,
and the red right-angle corners mark this connection.

in which a; and b; define the size of the kernel function, see Figure 3.8. The constant C;

has here been defined as )

Ci=———
J mwdet(S;)

This ensures that the volume under each kernel function is equal to 1, i.e. each MP dis-
tributes the same total influence independent of its size. A C; correlated with MP mass
can be used when large differences in MP mass occur within the domain.

Figure 3.9a shows how the proximity field (PF) is constructed (for a 1D example) by
summing up the kernel functions of all MPs. The PF is computed at the nodes and the
boundary points are found by comparing the PF with a user specified threshold (see Fig-
ure 3.9b). In 1 dimension, the boundary points denote the 2 ends of each 1D domain
as illustrated for the 2 1D domains in Figure 3.9b, and connection of the points is there-
fore not required. In 2 dimensions, the complete boundary is created by connecting the
points using Composite Bézier Curves or B-splines as shown in Figure 3.10. Here linear
segments are used. The surface is then used to compute Fgyace (S€€ Section 3.3).

(3.11)

3.6.2. CONTOUR ALGORITHM FOR ISO-RECTANGLES
The boundary can also be constructed by merging all the GIMP support domains, such
that Fgpvp can be computed. This merging is similar to finding the contour of a set of iso-
rectangles (Prusinkiewicz and Raghavan, 1985), i.e. domains aligned in two directions
(the vertical and horizontal directions). For example, 5 domains are shown in Figure
3.11a, although, in practice, any number of domains can be merged.

Prusinkiewicz and Raghavan (1985) designed an algorithm to find the contour of a
set of iso-rectangles, by converting the rectangles from Cartesian space (Figure 3.11a)
to a so-called slab space representing only the topology (Figure 3.11b). In slab space,
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Figure 3.12: Conversion from real space (a) to slab space (b) for a set of 5 rectangles according to new gap
removal algorithm. Grey horizontal dashed-dotted lines mark the extended horizontal edges due to the min-
imum width (W,,;,). The contour is marked by the solid line, the internal edges are marked by the dashed
lines, and the cross hatching highlights the removed gap.

edges with the same horizontal or vertical coordinate are separated. For example, in
Figure 3.11 the bottom edge of rectangle 3 and the top edge of rectangle 4 have the same
vertical Cartesian coordinate, but they have a different slab-space position. Lines with
the same coordinate are separated such that left edges precede right edges and bottom
edges precede top edges. Two edges with the same coordinate which are on the same
side of their rectangles, for example the bottom edges of rectangles 2 and 5 in Figure 3.11,
are separated according to the lowest MP number. Prusinkiewicz and Raghavan (1985)
used the slab space to find the horizontal and vertical edges belonging to the contour.
These edges in slab space also result in the correct contour in real space, as shown in
Figure 3.11.

Due to the movement of MPs, and their support domains, small gaps between do-
mains can appear. As the support domains represent large continuous sections of ma-
terial, instead of individual material particles, the small gaps between the support do-
mains do not represent the behaviour of the material accurately. If external loads are
applied within a small gap, the gap can grow larger causing unrealistic behaviour. It is
therefore preferred to fill any gaps in the boundary that are smaller than a minimum gap
width, i.e. gaps with a width or height smaller than a specified minimum width (W,;;,)
or height (H,,;,), respectively. When a gap is larger than this specified minimum width
itis assumed to be a gap occurring in the material.

In order to fill the small gaps, the algorithm presented by Prusinkiewicz and Ragha-
van (1985) is here extended. Specifically, the horizontal edges of the rectangles are ex-
tended to the left and right by W;,;,,, see Figure 3.12. Then, for each slab i the horizontal
edges belonging to the contour are determined. Each slab i of the slab space is divided
into segments (numbered from bottom to top) by the horizontal edges intersecting i.
For example, slabs 10 and 11 of Figure 3.12b are divided into eleven segments as shown
in Figure 3.13. Prusinkiewicz and Raghavan (1985) counted the number of rectangles
overlapping each segment using a so-called invisibility number. Here multiple invisibil-
ity numbers are used (see Figure 3.13a). Invisibility number J is an integer which counts
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Figure 3.13: (a) Computation of the 3 invisibility numbers (/, J and K) together with the associated edges for
slabs 10 and 11 of Figure 3.12b (I* indicates the invisibility number after vertical gap removal). (b) The required
connection between the contour edges found in slabs 10 and 11.

how many rectangles overlap a specific segment, and can be used to determine if a seg-
ment is inside any rectangles (J > 0) or outside all rectangles (J = 0). J is computed for
segment k in slab i, based on the previous segment k — 1 in slab i and the edge m sepa-
rating the segments k and k —1:

J(k) =

0

ifk=0,

J(k—1)+1 if misareal bottom edge,

(3.12)

J(k—1) -1 if misareal top edge,
J(k-1) otherwise.

Similarly, invisibility number K counts the number of left extensions of rectangles over-
lapping a segment k, and is computed using a similar procedure as for J:

K(k)=

0
Kk-1D+1
Kk-1)-1

K(k-1)

ifk=0,
if m is a left extension of a bottom edge, (3.13)
if m is a left extension of a top edge, )

otherwise.
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Figure 3.14: Submerged slope example problem (dimensions shown in metres).

J and K are combined to form the invisibility number I:

1 if J(K)>0,
I(k)=<1 if K(K)>0and k was inside the contour in slab i — 1, (3.14)
0 otherwise.

A segment k is inside the contour if (k) = 1 and outside when I(k) = 0. In other words,
by combining J and K, I ensures that all rectangles are included in the final contour
and horizontal gaps have been removed. To remove small vertical gaps the total height
(H;ota1) of consecutive segments with I = 0 is computed. I* is increased to 1 in the
segments where H;o:q; <= Hpin-

The horizontal edges belonging to the final contour are those edges which separate
segments with I* = 0 from segments with I* = 1. The vertical edges of the contour can
be determined by comparing the horizontal edges of the contour from two consecutive
slabs (Prusinkiewicz and Raghavan, 1985), see Figure 3.13b. The final contour is out-
put as a sequence of contour edges. The coordinates of the contour polygon can be
back-calculated from this sequence and the MP properties. More details on connecting
relevant edges, the output and the space/time efficiency of the algorithm can be found
in Prusinkiewicz and Raghavan (1985).

3.7. SUBMERGED EMBANKMENT FAILURE EXAMPLE

The applicability of the boundary detection methods for the most consistent Neumann
BC techniques are evaluated for a submerged slope failure problem. The problem is
analysed using implicit GIMP including stiffness double mapping, i.e. the DM-G tech-
nique is used (Gonzalez Acosta et al., 2020). The problem involves a two dimensional
submerged clay slope, shown in Figure 3.14, which is unstable under its own weight.
The material has a unit weight of 20 kN/m3, and the elastic deformation is governed by a
Young’s modulus of 1000 kPa and a Poisson’s ratio of 0.45. The numerical model uses the
Von-Mises softening model presented in Wang et al. (2016). The initial undrained shear
strength (c;) is 5.4 kPa at the ground surface and increases linearly with depth by 3.0 kPa
every meter (giving a maximum of 54 kPa at the base of the domain immediately under
the embankment crest). The residual undrained shear strength (c;) is equal to 0.5 c;, and
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the softening modulus (Hj) is equal to -10 kPa. The background grid uses 0.5 m square
elements, while the slope is discretised using MPs with rectangular support domains of
varying sizes. The sizes vary such that (1) roughly 4 MPs are placed within each filled
element, and (2) the slope is represented accurately, meaning that the sloping surfaces
cut the GIMP support domains in a similar manner to Figure 3.5b. The simulation uses
implicit time integration with a timestep size of 0.01 seconds.

The hydrostatic pressures acting on the slope are converted to nodal loads computed
using either equivalent point loads at the surface MPs, traction applied on a PFM sur-
face, or traction applied on a GIMP domain surface. In other words, the most consistent
methods for GIMP are compared against the application of loads at surface MPs, a tech-
nique often used in literature. The point loads are presented as vectors in Figures 3.15
- 3.17, while the PFM surface and GIMP domain surface are plotted as solid lines. The
pointloads are computed at the start of the simulation based on the initial geometry and
are unchanged during the simulation, while the loads from the PFM and GIMP domain
surfaces are updated based on the new geometries (i.e. the loads are recomputed based
on the orientation and length of the updated boundary).

The initial stresses are computed with a quasi-static load step, in which the MPs are
fixed in place. Oscillations in initial stress, caused by the different external load methods,
appear only locally at the surface. As these differences are difficult to observe, locations
A and B, as shown in Figure 3.14, are investigated in detail. Figure 3.15 shows the vertical
external forces computed with the three techniques at location B. The point loads cause
higher nodal external forces inside the material (see Figure 3.15a) compared to the other
two methods. This results in lower mean stresses, as shown in Figure 3.16, for the surface
MPs, and, to compensate, higher stresses for the second layer of MPs compared to the
other techniques. Similar stress errors are observed at the surface at location A (see Fig-
ure 3.16a). Loading the PFM surface (Figures 3.16b and 3.16¢) reduces the mean stress
error compared to the point loads, but still causes non-smooth stresses at the sloping
faces, as was also observed in Section 3.5. Moreover, oscillations occur at the flat surface
in Figure 3.16e as the detected surface is too close to the MPs. Finally, loading the GIMP
domain surface gives accurate (and smooth) initial stresses (see Figures 3.16c and 3.16f).

The deviatoric stresses, investigated at the same locations, are less clearly affected by
the placement of the loads (Figure 3.17). This might be due to the mean stress nature of a
hydrostatic pressure condition. Small deviations can only be observed along the gentle
slope (Figures 3.17a and 3.17b), while deviatoric stress errors appear negligible for the
45 degree slope (Figures 3.17d and 3.17¢). Similar to the mean stress, loading the GIMP
support domains leads to no observable deviatoric stress errors (Figures 3.17c - 3.171).

In Figure 3.18 the failure process is shown, as computed by the three methods. Soft-
ening can be observed along the failure surface for all three methods. The failure de-
velops much faster when point loads are used compared to the other two approaches,
i.e. the different BC methods can lead to differences in the failure process. Moreover,
the surface MPs at which the point loads are applied can be pushed downwards (Figure
3.18b) and, since the loads applied at the surface MPs are constant and the list of surface
MPs is not updated, the point loads can be pushed into the material. A gap in the soil
appears, as seen at 4.5 seconds (Figure 3.18c), and leads to a simulation crash.

The other two techniques present similar results, both during (Figures 3.18d, 3.18e,
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Figure 3.15: Vertical external nodal loads (kN) coloured on the background grid at location B, computed using
(a) point loads applied at MPs, (b) loads applied on a PFM surface, and (c) loads applied on a surface con-
structed from GIMP domains. Point loads, PFM surface and GIMP support domain surface are indicatively
shown in red.
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Figure 3.16: Mean total stresses at the MPs (kPa) at location A (a-c) and location B (d-f), computed using

(a,d) point loads applied at MPs, (b,e) loads applied on a PFM surface, and (c,f) loads applied on a surface
constructed from GIMP domains. Point loads, PFM surface and GIMP domain surface are indicatively shown.
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Figure 3.17: Deviatoric stresses (kPa) at the MPs at location A (a-c) and location B (d-f), computed using (a,d)

point loads applied at MPs, (b,e) loads applied on a PFM surface, and (c,f) loads applied on a surface con-
structed from GIMP domains. Point loads, PFM surface and GIMP domain surface are indicatively shown.
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Figure 3.18: Displacement of MPs with external loads computed using: (a-c) point loads at MPs, (d-f) loads

applied on the PFM surface, and (g-i) loads applied on the surface constructed from GIMP domains. MPs
coloured according to the deviatoric stress (kPa). PEM and GIMP domain surfaces plotted in black.
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3.18gand 3.18h) and at the end of the simulation (Figures 3.18f and 3.18i). The results are
similar because the constitutive model is based on deviatoric stress, and the differences
in deviatoric stress are small (as shown in Figure 3.17). Moreover, in both techniques the
loads are updated based on the deformed geometry, and since the difference between
the locations of the boundary with the two techniques is small the overall result is similar.
However, minor differences can be observed. For example, the failure after 7.0 seconds
is developed slightly further when the PFM surface is used compared to when the GIMP
domains are used. Moreover, if mean stress dependent constitutive models would be
used, larger differences are expected. Note that the results described here are mainly
dependent on the location of the boundary condition and not on the method used to
determine its location. In other words, should other methods than those presented in
Section 3.6 be used to construct the boundary or the contour of GIMP support domains,
similar results would be expected given that the change in boundary location is small.

3.8. CONCLUSION

It has been shown that the application of traction (Neumann, or external load) bound-
ary conditions should show consistency between the calculation of internal and external
forces. In theory, Neumann boundary conditions should be applied on the exact mate-
rial surface. However, in practice due to the MPM discretisation, the internal force may
not be consistent with a Neumann boundary condition on the exact material surface.
These inconsistencies can lead to an incorrect surface stress distribution and change the
outcome of simulations. In MPM, the volume of material considered to be within a grid
cell directly relates to the number of MPs within that grid cell, and, as such, the internal
force jumps in value when MPs leave the element. Therefore, the BC application should
also have this feature, although it is difficult to practically implement for arrangements
where the material points are not well aligned with the background grid.

Improving the discretisation, for example by using more material points or a different
integration scheme such as GIMP, will reduce the difference between the consistent and
exact boundary conditions. In GIMP, due to the MPs having their own domain, the mate-
rial gradually leaves the grid cell as the MPs move, and the BC application should follow
this behaviour. Therefore, a consistent method involves applying loads on the mate-
rial point support domain. The difference between this consistent method and applying
loads on the exact material surface is small in GIMP. Future research can investigate the
effect of other discretisation improvements, such as material point refinement.

Two Neumann BC methods have been developed for GIMP, together with the re-
quired boundary detection methods. These techniques significantly improve the cal-
culated stresses of material points close to the surface and have been shown to improve
the failure process of a submerged slope. It is shown to be important to correctly update
the location and value of the boundary condition, as loads may otherwise be applied
within the material. The presented simulation with constant loads applied at fixed sur-
face material points caused a simulation crash due to the loads being applied at incor-
rect locations. From the two new Neumann BC methods proposed here, applying loads
at the GIMP support domain surface performed slightly better than applying loads on
the actual surface, since the boundary condition is in agreement with the discretisation.
However, the differences between the two methods are small, because the distance be-
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tween the two boundaries is small. Using either of the two methods removes one cause
of stress oscillations regularly observed in MPM-type methods.
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RISK FRAMEWORK FOR RESIDUAL
DYKE RESISTANCE

A risk-based approach for dyke safety can determine an optimal balance between flood
risk costs and the costs of interventions. The new Dutch safety standards adopt risk-based
decision making and probabilities of flooding are therefore required. To compute proba-
bilities of flooding, a framework which assesses failure processes from their initiation until
flooding is needed. Therefore, a risk framework for dyke failure including secondary fail-
ure mechanisms is presented in this chapter. The framework extends the standard risk
[framework for dykes and accounts for the inherent uncertainty in the hydraulic loads us-
ing fragility curves. Secondary failure processes are split into separate mechanisms to de-
termine the likelihood of the failure process. The framework for macro-instability is pre-
sented and can be used as the basis of dyke assessments using the Random Material Point
Method (RMPM).

This chapter is based on the risk framework presented in the following paper: Remmerswaal, G., Vardon, P.J., &
Hicks, M. A. (2021). Evaluating residual dyke resistance using the Random Material Point Method. Computers
and Geotechnics, 133, 104034. https://doi.org/10.1016/j.compgeo.2021.104034.
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4.1. INTRODUCTION

Historically, levees were built, or strengthened after flooding occurred, to withstand a
water level higher than the highest recorded water level. More recently, levee design has
been based on a return period of flooding, by extrapolating a design water level from the
particular return period. The chosen return period can be converted to a yearly proba-
bility of flooding, when the dyke integrity can be ensured up to the chosen design water
level. However, ensuring this integrity is practically impossible at higher design water
levels, since a (small) probability of failure of the dyke, before the design water level is
reached, is always present. The international levee handbook (van Hemert et al., 2013)
therefore promotes the adoption of a risk-based approach, where the focus is moved
away from withstanding a particular design water level with absolute certainty to eval-
uating the flood risk at a range of operational conditions. The goal is to determine an
optimal balance between flood risk costs and costs of interventions, in order to provide
the most value to users and stakeholders of a levee Jonkman et al., 2018).

In 2017, new dyke safety standards were introduced in the Netherlands (Waterwet,
2009). According to these standards, dyke flood risk should be assessed based on all
relevant uncertainties. Three types of risk indicators are used to derive the new safety
standards (van Alphen, 2016): individual risk, group risk, and a cost-benefit analysis.
Risk-based decision making based on these three criteria ensure that dykes are econom-
ically efficient (Kind, 2014), while limiting the risk to individuals and large groups.

For adequate risk-based decision making, all (known) uncertainties should be quan-
tified and taken into account (Klerk, 2022). The uncertainties are sometimes split into
two types of uncertainty: epistemic (knowledge) and aleatory (inherent) uncertainty.
Knowledge uncertainties are assumed to be reducible, i.e. gaining a better understand-
ing of the problem reduces the uncertainty, while inherent uncertainties are not (van
Gelder, 2022). In reality, most uncertainties are not purely epistemic or aleatory, and the
categories should rather better be seen as the limit along an axis which highlights the ef-
fectiveness of information in reducing a specific uncertainty. Additionally, epistemic un-
certainty is only reducible within the constraints of a model (Klerk, 2022). In other words,
an adequate framework is required to capture and reduce the uncertainty. In regards to
residual dyke resistance after slope instability, a framework (and model) to capture the
uncertainties related to primary and secondary failure mechanisms is needed.

To assess the damage due to the primary failure mechanisms, several (Dutch) guide-
lines have been proposed over the last decades (Blinde et al., 2018; ENW, 2009; Knoeff
et al.,, 2021; MIM, 2016). These simple models approximate the damaged dyke profile
based on the failure surface from LEM and assumptions on the amount of deformation.
Actual displacements during real dyke slope failures or large scale dyke failure tests do
not confirm these assumptions (van Duinen, 2010; van Duinen et al., 2022). Rozing et al.
(2013) extended the simple guidelines to a method which computed the displacement
of a failure block. The method computes the stability of a rotated failure surface using
LEM with the assumption of a reduced strength along the failure surface. By iteratively
increasing the rotation, the rotation (and thereby deformation) at which a new equilib-
rium is obtained could be determined. However, due to the new standards focusing on a
probabilistic approach for macro-instability, this ‘new’ deterministic approach has not
been used in practice.
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Probabilistic frameworks have been designed for residual dyke resistance using event
trees, where the primary slope instability may be followed by several secondary failure
mechanisms (Calle, 2002; van der Krogt et al., 2019; van der Meer, 2021). The probability
of flooding can be approximated by following the event tree of the most critical failure
process, i.e. the sequence of most likely slope failures (van der Krogt et al., 2019). Event
trees were used by van der Meer (2021) to assess secondary slope failure, and in addition
wave overtopping after macro-instability. While promising, these event trees are unable
to capture the wide range of failure processes, as paths within the event trees are often
predefined and limited. This chapter therefore presents a risk framework which deter-
mines the risk of flooding according to a wide range of failure processes.

Section 4.2 summarises the basis of the Dutch risk framework. Section 4.3 explains
how multiple primary failure mechanisms caused by inherently uncertain hydraulic
loads may be assessed within this framework. Each of these mechanisms may be fol-
lowed by a wide range of secondary failure processes. These secondary failure processes
can be captured by the framework, as shown for macro-instability in Section 4.4.

4.2. RISK FRAMEWORK
To design or assess dykes in a risk based framework, both the probability of failure P(F)
of a dyke and the consequence of failure C(F) are required, since the risk of failure is
defined as

Risk(F) = P(F)-C(F) 4.1

Since flooding can be considered as the dominant limit state for dykes, the probabil-
ity of flooding and the consequence of flooding should be considered. The consequence
of flooding is (almost) independent of the failure process before flooding, i.e. it is inde-
pendent of how a dyke failed. This work focuses on the computation of the probability of
flooding, since the consequence of flooding is often included separately in safety stan-
dards. For example, in the Netherlands the maximum allowable probability of flooding
(Ps), based upon a minimisation of the combined cost of dyke reinforcement and the
consequence of flooding, is defined:

P(F) =Ps (4.2)

A limit state function Z can also be defined, by considering the resistance against
failure R and the loads triggering failure L (Schneider, 2006). Hence, for failure to occur,

Z=R-L<0 4.3)
so that the probability of flooding becomes
P(F)=P[R< L] =P[Z<0] (4.4

R and L are modelled and/or measured and both may contain model uncertainty (M),
material (or 'quantity’) uncertainty (Q) and geometric uncertainty (D), i.e. the ran-
dom variables describing R and L are functions containing the uncertainties as an input
(among others):

R =R(ur, MRg,Qgr,Dr) and L= L(ur, M1, Qr, Dr) (4.5)
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where p is the mean of the subscript distribution. The material uncertainty can be fur-
ther split into measurement uncertainty and transformation uncertainty where indirect
measurements are taken. In addition, the resistance and loads may be functions or mod-
els that are dependent on other variables, each of which may have uncertainties. Com-
bining Eq. (4.3) and Eq. (4.5), the random variable describing Z becomes a function of
all the uncertainties (and other input parameters):

Z:Z(I-LZ)MRJQRrDRyMLrQLrDL) (46)

Geometric uncertainties D, and D tend to be limited, due to the relatively high mea-
surement accuracy, and are, from here on, considered to be negligible (see Varkey et al.
(2022) for an investigation of the relative importance of geometric uncertainties). More-
over, model uncertainties are ignored, since they have not yet been established for MPM.
It is here assumed that the model uncertainties are small compared to the other sources
of uncertainties. Hence, this work focuses on uncertainties relating the spatial variability
of material properties and uncertainties relating to the external loading (due to the ex-
ternal water level). Since some of the uncertainties are ignored, the probability estimates
provided in the thesis are lower bounds.

4.3. COMBINATION OF FAILURE CATEGORIES

The major failure categories of a dyke are considered to be overtopping, piping, macro-
instability of the inner slope, damage to the cover of the outer slope and failure of struc-
tures which are part of the dyke (MIM, 2017a). Assuming, conservatively, that all failure
categories are mutually exclusive, a separate limit state function Z; can be defined for
each failure category F;. The probability of flooding P(F) = P[Z < 0] is considered to be
the union of Z;, which can be expressed as

ne
P(F)=P(Z1<0UZ <0U---Z, <0)=P(FHUFRU---Fy.) = ZP(F,') (4.7)
i=1

where P(F;) = P(Z; < 0) and n, is the total number of failure categories. To account for
categories that have not been considered/calculated (semi-)probabilistically, e.g. inter-
nal erosion or damage to cables and ducts, etc., two separate approaches are used in the
Dutch guidelines (MIM, 2017b): 1) P(F;) can be computed for each major failure cat-
egory, while 30% of P; is reserved for categories for which P(F;) cannot be computed,
ie.
e
P(F) =) P(F;) <0.7P, 4.8)
i=1

or 2) P is subdivided into a standard portion for each major failure category, such that
P(F;) =w;Ps (4.9

where w; is the portion of Pg reserved for P(F;). Standard values can be provided for w;;
for example, w; = 0.04 for macro-instability in MIM (2017b). In this framework, the first
approach is followed, but the framework can easily be converted to approach 2. For most
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failure categories F;, only the initiation (or primary) mechanism All. is assessed, i.e.

¢
P(F) =) P(F;i|AhHP(A}) <0.7P; (4.10)

i=1
where P(All.) is the probability of A} and P(F; IA}) is the probability of flooding given A}.
P(All.) can be calculated using semi-probabilistic methods, or more robust (but compu-
tationally more intensive) probabilistic methods. However, P(F; IA%), typically cannot be
calculated with conventional methods, and therefore P(All.) is often assumed to always

lead to flooding, i.e.
P(F;|A}) =1forall i (4.11)

This conservative approximation simplifies Eq. (4.10), by removing the need to calculate
P(F;|A}):
¢
P(F)=) P(A}) =0.7P; 4.12)
i=1
However, where significant remaining dyke resistance is available, computing P(Fl-IA})
leads to a significant reduction in the probability of flooding and it is then beneficial to
use Eq. (4.10) instead of Eq. (4.12).
Considering an uncertain water level &, Eq. (4.10) may be expressed in terms of h
using fragility curves, i.e. probabilities of flooding given a specific water level P(F|h)
(Simm et al., 2009), such that

N
P(F) = f P(FI f(Wdh= | Y P(F;|Al, P(A}|h) f(h)dh (4.13)
i=1

where f(h) is the probability density function of h given the hydraulic conditions im-
posed on the dyke, i.e. all conditions influencing the external water level, such as wind,
upstream conditions, tidal currents, and so on. In addition, P(F; IA%, h) is the probabil-
ity of flooding given the occurrence of a specific primary mechanism at a water level £,
and P(A% |h) is the probability of occurrence of the primary failure mechanism given h.
The integral can be numerically approximated from the calculation of discrete values
and interpolation. Fragility curves can reduce the probability of flooding compared to
an assessment based on a design water level. The reduction is the largest when P(F|h) is
small for the most likely water levels .

4.4, MACRO-INSTABILITY

To demonstrate the framework, macro-instability, i.e. dyke slope instability, is consid-
ered here, although the concepts can be extended to other failure categories. To reduce
the number of subscripts, the symbol S (slope instability) is used for the occurrence of
macro-instability instead of A;.

A series of events leading to flooding over a dyke usually ends with a breach event, i.e.
erosion of the dyke by flowing water (Calle, 2002). This occurs once the maximum height
of the dyke drops below the external water level. Therefore, the limit state function Z of
flooding itself can be defined as

Z=H-h (4.14)
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where the dyke height H can be seen as the resistance against flooding and the water
level h as the load. The dyke height H may change due to instabilities or other mecha-
nisms, i.e. H is a dynamic property during the failure process. The probability of flooding
is therefore given by

P(F;))=P(Z<0)=P(H-h<0) (4.15)

After a primary macro-instability failure, flooding may occur directly (see for example
Figure 5.2a) or by way of secondary mechanisms; e.g. retrogressive failure (see for exam-
ple Figure 5.2¢), internal erosion (i.e. micro-instability), or wave-overtopping. For sim-
plicity, in this work the occurrence of wave-overtopping or internal erosion after macro-
instability are not considered, and only retrogressive failure, the secondary mechanism
most closely related to the primary mechanism, is considered.

When fragility curves are used in combination with Eq. (4.15), the probability of
flooding can be computed separately for specific water levels as

P(F;|h) =P(Z <0|lh) =P(H-h <0lh) (4.16)

After evaluating all possible macro instabilities, this leads to
P(F;|h) =fP(H—h<0|S, h)P(SIh)dS (4.17)

where S is one of the possible failure processes, which may or may not lead to flooding.
In RMPM, the possible failure processes are explicitly modelled within a Monte-Carlo
framework, i.e. equation 4.17 is evaluated.

In other evaluation methods, it can be easier to split the failure processes into a se-
quence of separate failure mechanisms, where each failure mechanism causes signifi-
cant damage to the dyke. The probability of each separate failure mechanism can then
be approximated and combined to compute the probability of flooding. This approxi-
mation may even be performed with small deformation models or empirical guidelines
developed based on results from large deformation models (such as RMPM).

To evaluate the sequence of separate failure mechanisms an event tree approach may
be used. Figure 4.1 describes the event tree for the j th failure mechanism in the failure
process, i.e. failure mechanism S;. The event tree for failure mechanism S; starts when
a previous failure mechanism S;_; occurred which did not trigger flooding (event F;_1).
From this state the probability of flooding directly after failure mechanism S; given F;_;
can be computed as

P(Fj|Fj-1) = P(F;IS))P(S| Fj-1) (4.18)

where P(F;|S;) is the probability of flooding directly after S; given the occurrence of S,
and P(S;|F;-1) is the probability of failure mechanism S; given the starting state. This
approach assumes a Markov process, i.e. the next event in the event tree is only (directly)
dependent on the most recent event in the sequence. P(F; |F i-1) only includes the prob-
ability of flooding caused by S; directly, and not the probability of flooding caused by
subsequent failure mechanisms after S;. P(F;|S;) may be evaluated by comparing the
height of the dyke H after S; with the external water level h:

P(Fj|Sj)=P(H-h<0S)) 4.19)
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Figure 4.1: Event tree for failure mechanism S; in the sequence of failure mechanisms potentially leading to
flooding

The event tree (Figure 4.1) may also be used to compute the probability of the next
state, i.e. the probability that flooding does not occur after mechanism S:

P(F;|Fj_1) = (1-P(F;IS)P(S;|Fj-1) (4.20)

F ; can then be used as the initial state of the next event tree, as indicated in Figure 4.1.
The probability of flooding for a failure process which leads to flooding directly after S;
can be evaluated by repeatedly using the event tree in Figure 4.1:

_ oo
P(F}|Fo) = P(Fj|S/)P(S;|Fj_1) [ | P(Fi|Fk-1) (4.21)
k=1

where P(Fy|Fy_1) can be evaluated using Eq. (4.20), and P(F) is the probability that
flooding did not occur with an intact dyke, i.e.

P(Fy) =1-P(Hy - h<0|h) (4.22)

In this work it is assumed that the water level is below the initial height of the dyke, i.e.
P(Fp) =1.

Finally, to compute the total probability of flooding due to all possible processes,
the probability of flooding after any number of separate failure mechanisms must be
combined, i.e.

o] j-1
P(F;|h) = P(F|Fo) = )_ P(FjIS;)P(SjIFj_1) [ | P(Fx|Fr_1) (4.23)
j=1 k=1

Even though the summation in Eq. (4.23) is infinite, in practice the probability of oc-
currence P(S;|F;-1) reduces quickly as j increases, and a conservative estimate can be

found by defining a maximum number of failure mechanisms / and assuming the asso-
ciated probability of flooding P(F|S;) = 1, which limits the summation to

3 ! It
P(Fi|h) =P(F|Fo) = Y_ P(FjIS;)P(S;IFj-1) [ [ P(Fk|Fy-1) (4.24)
j=1 k=1
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where P(F;|S;) is assumed to be 1.

In recent research (van der Krogt et al., 2019), Eq. (4.23) has been evaluated assum-
ing that the probability of flooding can be computed by following the most critical fail-
ure process S¢ i.e. only evaluating the critical failure mechanisms S7. This procedure
starts by computing the probability of the critical primary failure mechanism P(S{) using
LEM. The damaged dyke geometry is approximated based on the critical primary failure
mechanism S{ and assumptions on the post failure behaviour (e.g. that only rotational
sliding occurs and that the slide is stationary after a vertical deformation of 0.5 H), with-
out considering the effect of uncertainty on the geometry of the damaged dyke.

If the damaged dyke geometry prevents flooding, i.e. H > h, the probability of flood-
ing after the primary mechanism P(F;|S;|h) is assumed to be 0. The probability of P(Sg)
is then computed (using LEM) according to an assumed damaged dyke geometry, i.e.
P(Sg) = P(S;ISf)P(Sf), after which the approximated damaged dyke geometry is again
compared to the water level. This procedure, of computing the probability of S; and
comparing the approximated damaged dyke geometry after S; with the water level, is
repeated until the approximated damaged dyke geometry after S; causes flooding. Un-
der these assumptions, Eq. (4.23) simplifies to

j j
P(Fj|h) = P(F}|S%) k]j[lp(sgsgfl) = gp(syszfl) (4.25)

which inherently assumes that flooding always occurs at Sj, i.e. P(F;[S;,h) =1, and
flooding does not occur before S, i.e. PFi|S, h) = 0 for all k # j, and that the sequence
of critical failure mechanisms is a good representation of all possible failure mechanisms
and thereby the probability of flooding. However, sub-critical failure mechanisms might
have a larger probability of flooding, as the failure mechanisms may be larger, reducing
residual dyke resistance (van der Krogt et al., 2019). In some cases, a sub-critical primary
failure mechanism might even lead to flooding directly.

4.5. CONCLUSIONS

A risk framework for dyke failure including secondary failure mechanisms has been pre-
sented. The framework extends the standard Dutch risk framework, such that the entire
failure process until a dyke breach may be included. The framework can include the
inherent uncertainty in hydraulic loads using fragility curves, and evaluates the possi-
ble failure processes which may lead to flooding. The Random Material Point Method
(RMPM) evaluates these failure processes within a Monte-Carlo framework.

It is shown how the failure processes may also be split into separate mechanisms,
such that the probability of the mechanism may be evaluated separately. The probabil-
ity of all potential subsequent mechanisms, until the dyke height drops below the water
level, are determined. Combining the probability of the subsequent mechanisms results
in the probability of the failure process. RMPM can be used to determine the proba-
bility of the separate mechanisms, which can be helpful in assessing methods based on
small deformations which use the framework with separated mechanisms. While the
framework can be used for all primary failure mechanisms, only macro-instability (dyke
slope instability) has been presented here, as it is the basis of the dyke assessment using
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the Random Material Point Method (RMPM) used in the remainder of this thesis. It is
shown how the framework may also be further simplified, such that only critical failure
processes are accounted for.

REFERENCES

Blinde, J., Bisschop, C., de Visser, M., Jongejan, R., & Tigchelaar, J. (2018). Afweging ter
bepaling glijvlak voor faalmechanisme macrostabiliteit binnenwaarts (trans-
lated in English: Consideration for determining failure surface for failure mech-
anism macro-instability) (Factsheet). Kennisplatform Risicobenadering.

Calle, E. O. E (2002). Dijkdoorbraakprocessen (translated in English: Dijk breach pro-
cesses) (tech. rep. CO-720201/39). GeoDelft.

ENW. (2009). Actuele sterkte van dijken (translated in English: Actual strength of dykes)
(tech. rep.). Expertisenetwerk Water Veiligheid.

Jonkman, S. N., Voortman, H. G., Klerk, W.]., & van Vuren, S. (2018). Developments in the
management of flood defences and hydraulic infrastructure in the Netherlands.
Structure and Infrastructure Engineering, 14(7), 895-910. https://doi.org/ 10.
1080/15732479.2018.1441317

Kind, J. (2014). Economically efficient flood protection standards for the Netherlands.
Journal of Flood Risk Management, 7(2), 103-117. https://doi.org/10.1111/jfr3.
12026

Klerk, W. J. (2022). Decisions on life-cycle reliability of flood defence systems (Doctoral
dissertation). Technische Universiteit Delft, Delft. https://doi.org/10.4233/
uuid:877bed45-d775-40bb-bde2-d2322cb334f0

Knoeff, H., Bossenbroek, J.-K., Jongejan, R., Bisschop, C., & de Visser, M. (2021). Werkwi-
jze falen door macrostabiliteit (translated in English: Workflow failure by macro-
instability) (Factsheet). Adviesteam dijkontwerp.

MIM. (2016). Schematiseringshandleiding macrostabiliteit (translated in English: Guide-
lines for schematization of macro-instability) (tech. rep.). Ministerie van Infras-
tructuur en Milieu.

MIM. (2017a). Regeling veiligheid primaire waterkeringen - Bijlage III Sterkte en vei-
ligheid (translated in English: Regulation primary flood defences - Attachment
III Strength and safety).

MIM. (2017b). Regeling veiligheid primaire waterkeringen 2017 - Bijlage I Procedure
(translated in English: Regulation primary flood defences - Attachment I Proce-
dure).

Rozing, A. P. C., Zwanenburg, C., van Duinen, T. A., & Calle, E. O. E (2013). Technisch
rapport macrostabiliteit (translated in English: Technical report macro-stability)
(tech. rep. 1204203-007-GEO-0003). Deltares.

Schneider, J. (2006). Introduction to Safety and Reliability of Structures (2nd ed.). Inter-
national Association for Bridge; Structural Engineerin.

Simm, J., Gouldby, B., Sayers, P, Flikweert, J. J., Wersching, S., & Bramley, M. (2009). Rep-
resenting fragility of flood and coastal defences: Getting into the detail. In P.
Samuels, S. Huntington, W. Allsop, & J. Harrop (Eds.), Proceedings of the Euro-
pean Conference on Flood Risk Management Research into Practice (FLOODRISK
2008) (pp. 621-631). Taylor & Francis Group.



https://adviesteamdijkontwerp.nl/wp-content/uploads/2020/06/190404_KPR_Factsheets_Boekje-gecomprimeerd.pdf
https://puc.overheid.nl/PUC/Handlers/DownloadDocument.ashx?identifier=PUC_102730_31&versienummer=1
https://tl.iplo.nl/publish/pages/144724/trasd_technischrapportactuelesterktevandijken.pdf
https://doi.org/10.1080/15732479.2018.1441317
https://doi.org/10.1080/15732479.2018.1441317
https://doi.org/10.1111/jfr3.12026
https://doi.org/10.1111/jfr3.12026
https://doi.org/10.4233/uuid:877bed45-d775-40bb-bde2-d2322cb334f0
https://doi.org/10.4233/uuid:877bed45-d775-40bb-bde2-d2322cb334f0
https://adviesteamdijkontwerp.nl/rode-draden/rode-draden-nr-3/
https://www.helpdeskwater.nl/onderwerpen/waterveiligheid/primaire/beoordelen/@205756/schematiseringshandleiding-macrostabiliteit/
https://www.helpdeskwater.nl/onderwerpen/waterveiligheid/primaire/beoordelen/@205756/schematiseringshandleiding-macrostabiliteit/

60 REFERENCES

van der Krogt, M. G., Schweckendiek, T., & Kok, M. (2019). Do all dike instabilities cause
flooding? 13th International Conference on Applications of Statistics and Proba-
bility in Civil Engineering, ICASP 2019. https://doi.org/10.22725/1CASP13.461

van der Meer, A. (2021). Het kwantificeren van binnenwaarste stabiliteit inclusief ver-
volgmechanismen (translated in English: Quantification of inner slope stability
including secondary failure mechanisms) (tech. rep. 11205740-002-GEO-0004).
Deltares.

van Alphen, J. (2016). The Delta Programme and updated flood risk management poli-
cies in the Netherlands. Journal of Flood Risk Management, 9(4), 310-319. https:
//doi.org/10.1111/jfr3.12183

van Duinen, A. (2010). SBW Werkelijke sterkte van dijken - validatie WS15 (translated in
English: SBW True strength of dykes - validation WS15) (tech. rep. 1202121-003-
GEO-0022). Deltares.

van Duinen, T. A,, van Esch, J., Martinelli, M., Teixeira, A., & Wojciechowska, K. (2022).
Vervolgprocessen na macro-instabiliteit - Urgente onderzoeksonderwerpen (trans-
lated in English: Secondary processes after macro-instability - Urgent research
subjects) (tech. rep. 11206817-018-GEO-0002). Deltares.

van Gelder, P. H. A.J. M. (2022). Statistical methods for the risk-based design of civil struc-
tures (Doctoral dissertation). Technische Universiteit Delft, Delft.

van Hemert, H., Igigabel, M., Pohl, R., Sharp, M., Simm, J., Tourment, R., & Wallis, M.
(Eds.). (2013). The International Levee Handbook. CIRIA.

Varkey, D., Hicks, M. A., & Vardon, P. J. (2022). Effect of uncertainties in geometry, inter-
layer boundary and shear strength properties on the probabilistic stability of a
3D embankment slope. Georisk: Assessment and Management of Risk for Engi-
neered Systems and Geohazards (published online), 1-15. https://doi.org/ 10.
1080/17499518.2022.2101066

Waterwet. (2009). Waterlaw: BWBR0025458. http://wetten.overheid.nl/BWBR0025458/
2018-01-01#


https://doi.org/10.22725/ICASP13.461
https://doi.org/10.1111/jfr3.12183
https://doi.org/10.1111/jfr3.12183
http://resolver.tudelft.nl/uuid:fa3618fb-02b4-460a-bd7c-21aedcd611cc
https://www.ciria.org/Resources/Free_publications/I_L_H/ILH_resources.aspx
https://doi.org/10.1080/17499518.2022.2101066
https://doi.org/10.1080/17499518.2022.2101066
http://wetten.overheid.nl/BWBR0025458/2018-01-01#
http://wetten.overheid.nl/BWBR0025458/2018-01-01#

EVALUATING RESIDUAL DYKE
RESISTANCE IN TWO DIMENSIONS

The Random Material Point Method (RMPM) is used in this chapter to investigate residual
dyke resistance in two dimensions. An idealised dyke is assessed for slope instability and
the subsequent failure process. An external hydrostatic pressure on the dyke’s outer slope
has been applied on the exact material surface using the Proximity Field Method (PFM).
The residual resistance of an idealised dyke (computed using RMPM) is shown to reduce
the probability of flooding by 25% with respect to the initial failure for a material with
layered spatial variability. A lower degree of anisotropy of the spatial variability (a mate-
rial with less layering) increases the residual dyke resistance and causes a reduction in the
probability of flooding of more then 80%. RMPM simulates, as expected, a lower residual
dyke resistance for larger initial failures and/or a higher water level. A ‘safe’ remaining
geometry has not been found, since even small initial failures can result in an unaccept-
able probability of flooding when the failure process is not modelled. This highlights the
importance of modelling the entire failure process.

This chapter is based on the following paper: Remmerswaal, G., Vardon, P. J., & Hicks, M. A. (2021). Evaluating
residual dyke resistance using the Random Material Point Method. Computers and Geotechnics, 133, 104034.
https://doi.org/10.1016/j.compgeo.2021.104034.
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5.1. INTRODUCTION

This chapter estimates the difference between the probability of initial failure and flood-
ing, accounting for the effect of soil heterogeneity. The analyses include an external wa-
ter load, which is applied using the Proximity Field Method (PFM) described in Chap-
ter 3. Note that the analyses in this chapter were performed before the completion of
the further algorithmic developments reported in Chapter 3. However, Chapter 3 shows
that the differences between using PFM and the consistent load application on GIMP
domains are small, especially when slope angles of 45° and deviatoric stress dependent
constitutive models are used, as is the case in this chapter. Therefore, the expected differ-
ence between using PFM and a consistent load on GIMP domains would be small, and
the analyses reported in this chapter have not been repeated to include more recently
developed application of loads on GIMP domains.

S

Figure 5.1: Dyke geometry, with water level h, original dyke height H;, crest width W, dyke width at water
level W;, outer slope of 1:1 and inner slope of 1:3.

An idealised dyke cross-section, with a simple geometry compared to dykes typi-
cally seen in practice, is used throughout this chapter, to demonstrate the capabilities
of RMPM. The dyke, shown in Figure 5.1, has an initial height H; = 5 m, an inner (right-
hand-side) slope of 1 in 3 and an outer (left-hand-side) slope of 1 in 1. The outer slope
angle is steeper than that of a usual dyke, in order to increase the necessity of an exter-
nal water load on the outer slope for maintaining stability and thereby test the veracity
of the external loading implementation. The water level is assumed to be constant. In
addition, the width of the crest, W, = 10 m, is relatively large in order to more fully ex-
plore the effect of residual dyke resistance. The water level h is varied and the dyke is
underlain by additional soil layers.

Figure 5.2 shows potential failure mechanisms related to macro-instability. A deep
rotational slide is shown in Figure 5.2a, where flooding occurs immediately. Deep slides
usually result in limited residual dyke resistance, due to the size of the failure. Con-
versely, residual dyke resistance is usually seen when the dyke is founded on a stiff layer
(as shown in Figures 5.2b - 5.2e). In this case, a shallow rotational slide (as shown in
Figure 5.2b) causes a reduction of the width of the dyke W (defined at the water level),
while the maximum height of the dyke H remains unchanged. A rotational slide can be
followed by a retrogressive failure, i.e. a secondary rotational failure which is caused by
a strength reduction due to the first failure (Figure 5.2c), which may or may not result in
flooding. Multiple successive retrogressive failures can also lead to flooding.
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(e)

Figure 5.2: Dyke failure process for macro-instability: a) deep rotational slide, which causes flooding (H <
h, W = 0); b) rotational initial failure (H = H;, W < Wj;); c) retrogressive failure, which causes flooding (H <
h, W = 0); d) horizontal sliding failure (H = H;, W = Wj;); e) outward rotational failure (H = H;, W = W1 + W5 <
W; or W = Wy + W, > W;); based on Calle (2002) and 't Hart et al. (2016).

The external water loading can also push the entire dyke section sideways to cause
a horizontal sliding mechanism (Figure 5.2d). The height of the dyke tends to slowly
decrease during such a slide, while the width stays more or less constant. In the lon-
gitudinal direction of the dyke, a horizontal slide may only occur along a small stretch,
so that water may flow through a gap created by the slide. However, since the simula-
tions performed here are 2 dimensional, this 3-dimensional effect is neglected. Finally,
especially for lower water levels, failure of the outer slope may occur, see Figure 5.2¢,
after which retrogressive failure in the opposite direction is possible. Combinations of
the previously mentioned failure mechanisms may also occur; for example, a horizontal
sliding mechanism after inner or outer slope instability.

This chapter continues with the implementation of the framework presented in
Chapter 4 using RMPM (Section 5.2). Sections 5.3 and 5.4 present a parametric investi-
gation into the probability of initial failure and subsequent flooding.
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5.2. MODELLING METHOD (RMPM)

The entire failure process is here modelled using the Material Point Method (MPM). Spa-
tial variability of the material properties is considered by way of random fields, and an
ensemble approach is utilised such that uncertainties are included via use of the Monte
Carlo Method, resulting in the so-called Random MPM (RMPM). In this chapter, a total
stress, i.e. single phase, plane strain MPM is used. The undrained shear strength soften-
ing model described by Wang et al. (2016) is used to represent strength reduction due to
pore pressure build up during failure.

The degradation of the undrained shear strength is governed by the plastic deviatoric
strains according to the shear strain softening Von Mises constitutive model (Wang et al.,
2016). In this constitutive model, there is a linear relationship between the undrained
shear strength (c) and the plastic deviatoric shear strain invariant (€,,) until a minimum
isreached, as shown in Figure 5.3. The undrained shear strength decreases linearly from
the initial undrained shear strength (c;) to the residual undrained shear strength (c,).
The residual strength is reached when €, = €,,. The softening modulus H; determines
the softening rate, and is used to compute €,,. See Wang et al. (2016) for further details
on the constitutive model.

= A

o c (kP

— —
Spr Sp (')

Figure 5.3: Sketch of the plastic deviatoric shear strain softening Von Mises constitutive model (after Wang et
al.,, 2016).

Implicit MPM is used, so that larger time steps can be used to reduce the computa-
tion time (Wang et al., 2016). In the standard MPM formulation, stress oscillations oc-
cur as MPs move through the mesh and especially when they cross element boundaries.
In order to limit such oscillations, the DM-G technique has been used in this chapter
(Gonzélez Acosta et al., 2020). This method uses extended GIMP shape functions (and
shape function gradients) to reduce the cell crossing error, as well as FEM Gauss point
stiffness integration to reduce the error due to movement within the background grid
cells. The Gauss point properties are acquired by the mapping of material point proper-
ties via the background grid nodes.
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5.2.1. RANDOM FIELDS

Random fields are used to model the spatial variability of soil properties, and have herein
been generated using Local Average Subdivision (Fenton and Vanmarcke, 1990). The
random field values are mapped onto the MPs in their initial positions at the start of the
analysis, and the material properties of each MP remain constant throughout a single
realisation, unless strength degradation occurs. Spatial variability has only been con-
sidered for the shear strength properties of the material, with all other material proper-
ties being assumed deterministic. Specifically, the initial and residual undrained shear
strengths, ¢; and c,, respectively, are considered to be spatially variable. They are as-
sumed to be fully correlated, so that the spatial variability of both properties can be con-
structed from a single random field. Partially correlated random fields for different prop-
erties are also possible (e.g. Vardon et al. (2016)), but are not considered here for reasons
of simplicity.

The spatial variability is defined by the point statistics, i.e. the mean p and standard
deviation o, and by the spatial statistics, i.e. the horizontal and vertical scales of fluctu-
ation, 8 and 6,, respectively. The point statistics of the initial and residual undrained
shear strengths, y;, o.; and u.,, o respectively, are different, whereas the same scales
of fluctuation have been assumed for both properties.
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Figure 5.4: 2D example of the detected boundary with PFM, and the application of hydrostatic pressure to one
boundary segment via Gauss integration and the corresponding conversion to nodal loads.

5.2.2. EXTERNAL WATER LOAD

The boundary is detected using the Proximity Field Method (PFM) (see Chapter 3). Hy-
drostatic pressure is applied on the boundary segments from left to right, i.e. from the
outer side towards the inner side of the dyke, until one segment is above (or partially
above) the water level (Figure 5.4). Gauss integration is used along the segments to in-
tegrate the hydrostatic pressure (Bing et al., 2019; Remmerswaal, 2017), as illustrated in
Figure 5.4 for one segment (which extends from y = -2 m to y = -1.2 m). The hydrostatic
pressure and the direction of the applied pressure at the Gauss point are computed using
the depth below the water level and the direction normal to the boundary, respectively.
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Gauss integration along the boundary allows the pressure to be converted to external
nodal loads.

5.2.3. DETECTION OF INITIAL FAILURE AND FLOODING FROM RESIDUAL

DYKE GEOMETRY

In each time step, the external geometry is determined using the boundary detection
method. Two values are extracted; namely, the width W and height H, as shown in Figure
5.2. H is the maximum height of the dyke, whereas W is the width of the dyke at the
water level h. H(t) and W(t) are used to detect the moments when the initial failure
mechanism S; and flooding F occur. After an initial slide, W will be smaller than the
original width of the dyke, i.e. W < W; as shown in Figures 5.2a and 5.2b. Moreover, W
decreases to 0 and H < h when flooding occurs (Figure 5.2b). The residual width W, and
residual height H, are the width and height at the end of the simulation. The probability
of S; with a time of failure (s,) before a time ¢ can be computed from the realisations in
a Monte Carlo simulation, i.e.

Ns, (1) Nw<w;
N N

P(Silh, ts, < 1) = (5.1)
where Ng, (£) = Nw(»<w; is the number of realisations where an initial failure mecha-
nism has occurred before time ¢ and N is the total number of realisations. Similarly, the
probability of flooding with a time of flooding (¢r) before ¢ is computed as

Np(®)  Nup<n

P(Flh,tp<t) =
(Flh,tp<1) N N

(5.2)
where Nr(f) = Nys<p is the number of realisations in which flooding occurred before t.
The total probability of initial failure and flooding within a simulation are then given by

P(81) =P(S1, s, < tmax) (5.3)

and
P(F) =P(F tr < tmax) (5.4)

respectively. The relative difference between the probability of flooding and the prob-
ability of initial failure is the metric considered for residual dyke strength, and is given
by

P(F)

P(FIS1) = Tsl) (5.5)

5.3. ANALYSES

The dyke presented in Section 5.1 has been simulated. A weak strain softening clay, with
a mean initial undrained shear strength p.; of 13 kPa and a sensitivity S; = ¢;/c, = 2.6, is
used as the dyke material. ¢; and c;, are therefore fully correlated. These material proper-
ties were chosen to represent a dyke with a relatively high probability of failure, in order
to enable reasonably quantitative results within a manageable number of realisations for
investigating the deformation processes during dyke failure. For the efficient computa-
tion of smaller, more realistic, probabilities of initial failure and flooding, RMPM can be
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Table 5.1: Model details.

Geometry Discretisation Material Properties

H;=5m At=0.01s Yw=15kN/m® ¢; =N(u; = 13kPa, COV =0.2)
W;=10m tmax=40s E =1000 kPa ¢r=¢;/S; Sc=2.6
Innerslope1:3 Ax=Ay=025m v=045 0,=0.5m

Outer slope 1:1  Njsps = 6400 Hg =-50 kPa 0.5m <60, <48.0m

Table 5.2: Summary of analyses.

Analysis 1: Base Case
0, =24.0m Hi—-h=025m

Analysis set 2: Horizontal scale of fluctuation
0,=0.5,1.0,2.0,4.0, 6.0, 8.0, 12.0, 24.0, 48.0 m H;—h=0.25m

Analysis set 3: Water level
0, =24.0m H;—h=0.25,0.5,1.0,1520m

combined with subset simulation, as has already been done successfully with RFEM (van
den Eijnden and Hicks, 2017).

The random fields of ¢; and ¢, are assumed to be normally distributed with a coef-
ficient of variation of COV = o/u = 0.2. The distributions have been cut off to prevent
negative strength properties. This cutoff has limited impact because of the chosen (rela-
tively small) coefficient of variation. The vertical scale of fluctuation is 8, = 0.5 m and is
similar to the range of values reported in de Gast et al. (2017), whereas a horizontal scale
of fluctuation of 65 = 24.0 m has been assumed for the Base Case (Analysis 1). Due to
the uncertainty that is generally associated with determining horizontal scales of fluctu-
ation, the influence of 6, is investigated in Analysis set 2, with 8;, being varied from 0.5
m (the isotropic case) to 48 m, the latter representing a layered system with a 6}, larger
than the width of the dyke.

The unit weight of the dyke clay y,, is 15 kN/m? and the elastic properties have been
chosen in order to increase the efficiency of the MPM calculations, i.e. E = 1000 kPa and
v =0.45, since MPM simulations converge more slowly with less compressible materials.
The softening modulus of the undrained shear strength is Hs = -50 kPa. For Analysis 1
and Analysis set 2, the water level is constant at 2 = 4.75 m (i.e. 0.25 m below the dyke
crest), whereas the effect of lower water levels is investigated in Analysis set 3, for water
levels varying from 0.25 m to 2 m below the crest. A summary of the model details and
the performed analyses are provided in Table 5.1 and Table 5.2, respectively.

A mesh of 4 noded square elements and an element size Ax = Ay of 0.25 m is used,
together with 4 equally spaced MPs per element (giving Nysps = 6400 MPs in total). Along
the sloping faces of the dyke, the number of MPs per element is adjusted and the MPs
redistributed, in order to match the geometry. The nodes along the bottom boundary
are completely fixed, so as to model a dyke resting on a firm foundation (as illustrated
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in Figures 5.2b to 5.2e). The random field is generated with a cell size corresponding
to the material point domain, i.e. Ax/2 by Ay/2, such that the properties of a single
cell correspond to one material point. Hence, as the random field cell size is 4 times
smaller than the smallest scale of fluctuation (i.e. 8,), the spatial variability is adequately
captured (see, for example, Huang and Griffiths (2015)).

The time step Az is 0.01 s, which is significantly larger than would have been required
using explicit MPM (Gonzdlez Acosta et al., 2020). The maximum simulation time ;4
is 40 s. The in-situ stresses are generated quasi-statically using gravity loading, assuming
an elastic material, whereas plasticity and dynamics are considered during the simula-
tion itself. At the start of the simulation, the plasticity generates unbalanced forces at the
nodes, which may lead to an initial failure. To reduce the vibrations caused by suddenly
switching on plasticity at the start of the simulation, damping is used. The unbalanced
forces are artificially reduced (damped) by 100% at the start and then gradually increased
until they have been fully applied after 1 s; thereafter, no damping is used. The realisa-
tion is terminated if (a) flooding occurs, (b) the dyke does not fail at all, or (c) the dyke,
having experienced slope failure, no longer moves and no longer develops plastic strains
(for atleast 1s).

Each RMPM simulation comprises 10 000 realisations, i.e. 10 000 computations with
MPM, which have been performed in parallel on a new grid computing system called
Spider, at SURFsara, a national computing centre in the Netherlands. This number is
higher than for typical RFEM simulations, due to the greater range of possible failure
mechanisms arising from the evolving failure process being modelled in the simulations.

5.4. RESULTS

5.4.1. ANALYSIS 1: BASE CASE
The final dyke geometries for 6 realisations of Analysis 1 are presented in Figure 5.5.
Realisations without any failure are by far the most common type, as illustrated by the
example in Figure 5.5a. In contrast, Figure 5.5b shows an initial failure mechanism, ini-
tiating through a weak layer approximately 1.5 m above the base. Due to the weak layer,
a slip circle is formed, along which the soil reduces in strength due to strain softening as
the failure progresses, as indicated by the dark slip surface. Moreover, due to the large
deformations, the sliding mass breaks up into 2 distinct blocks separated by a secondary
failure surface inclined at approximately 45° to the slip circle. Since the depth through
which the failure surface forms is limited, the initial failure does not develop further and
reaches the stable configuration shown in the figure.

Figure 5.5c presents the most likely initial failure mechanism, which occurs along
a weaker layer close to the base of the dyke and resembles failure in a homogeneous
material. Again, the sliding mass breaks into 2 blocks separated by a secondary failure
surface at approximately 45°. The figure shows some softening in the weak layers directly
behind the slip circle, but enough resistance remains to prevent a second (retrogressive)
failure and the possibility of flooding.
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Figure 5.5: RMPM realisations from Analysis 1 showing the final deformed position, with material points
coloured according to the undrained shear strength (c): a) no initial failure; b) initial failure through weak
zone above the foundation; c) initial failure along foundation layer; d) retrogressive failure without flooding; e)
retrogressive failure with flooding; f) initial (circular) failure mechanism followed by horizontal slide triggering
flooding. The red line is the detected boundary and the black line is the fixed boundary. The water level is
indicatively shown.
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Retrogressive failure does occur in Figures 5.5d and 5.5e. After an initial slide, a sec-
ond slide fully develops in both figures; in addition, a third slide partially develops in Fig-
ure 5.5d and fully develops in Figure 5.5¢. Once again, breaking up of the sliding masses
can be observed. While the height of the dyke is almost unaffected in Figures 5.5b and
5.5¢, the height of the dyke reduces in both Figures 5.5d and 5.5¢e. The final height of the
dyke in Figure 5.5d is slightly higher than the water level and, in reality, the dyke may
flood due to wave-overtopping. However, under the current modelling assumptions,
the dyke remains stable and flooding was prevented. In contrast, a flood is triggered in
Figure 5.5¢e. In reality, a breach would then occur due to erosion, causing further (catas-
trophic) damage to the remainder of the dyke; but, since the model immediately stops
after flooding, the geometry in Figure 5.5¢ is the final configuration.

A different type of mechanism is shown in Figure 5.5f, where an initial rotational slide
triggers a horizontal secondary slide along a very weak layer near the base of the dyke,
eventually resulting in flooding. This highlights that RMPM is capable of approximating
both rotational and horizontal sliding mechanisms.

It is seen that the leading tip of the primary slip surface in Figures 5.5b-5.5f is sus-
pended above the remaining slope or foundation, most likely due to the element dis-
cretisation adopted in MPM,, i.e. the leading tip flows at the top of the first row of ele-
ments above the foundation layer instead of on top of the foundation layer itself. This
error may be removed by including a contact algorithm between the flowing material
and the foundation layer (Gonzélez Acosta et al., 2021). However, in these analyses this
effect only occurs at the tip of the slip surface, where the strength is limited, and it there-
fore has limited impact on the results.

The probability of failure, i.e. the probability of initial failure P(S;) and flooding P(F),
of Analysis 1 over time and the probability of failure before a given time are shown in Fig-
ure 5.6. The probability of flooding is lower than the probability of initial failure (i.e. ~
9% compared to ~ 12%), indicating that residual dyke resistance is present in this anal-
ysis. The metric used to quantify the residual dyke resistance (P(F|S;)) is 0.75 for this
analysis, i.e. a relative reduction in the probability of flooding of 25%. The residual dyke
resistance is small due to the high probability of secondary failures due to the weak lay-
ers which trigger initial failure. Failure occurs faster than would normally be expected
(realistic failures may take minutes or hours), due to the low residual undrained shear
strength, the absence of damping and the instantaneous triggering of failure due to the
loading conditions.

A deterministic MPM simulation based on the mean strength properties (u; = 13
kPa and p., = 5 kPa) did not lead to initial failure, and gave a factor of safety (FoS) =
1.3 (computed using the strength reduction method). In a deterministic homogeneous
MPM simulation with a reduced strength, such that FoS is just below 1 (¢; = 10 kPa and
¢r = 3.85 kPa), failure occurs after 4 s, and flooding occurs 3.5 s later due to retrogressive
failure. By integrating the probability distribution of ¢; until 10 kPa, the probability of
FoS < 1.0 has been determined as 0.13, i.e. P(FoS < 1.0) = P(N(u.;, COV) < 10) = 0.13.
Therefore, the estimated probability of initial failure based only on the point statistics
(13%) is similar to the probability of initial failure found with RMPM for this problem
(12%). However, the difference becomes much larger with smaller values of 8, as will be
demonstrated by Analysis set 2.
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Figure 5.6: Probability of failure over time and before a given time for Analysis 1: a) initial failure mechanism,;
b) flooding.

Indeed, with realistic soil properties, when the probability of failure of the dyke is
much lower than the one computed here, RFEM (or RMPM) generally computes a much
lower probability of initial failure compared to the estimation based only on the point
statistics (Hicks et al., 2019). Moreover, in this case, a reduction in the probability of
flooding compared to the probability of initial failure is not observed in the homoge-
neous MPM simulation, since flooding occurred at the same strength as initial failure.
A further reduction in the probability of flooding is observed using RMPM. Therefore,
RFEM can be used to reduce the conservatism regarding initial dyke failure by account-
ing for spatial variability, while RMPM can further reduce this conservatism by also ac-
counting for residual dyke resistance.

5.4.2. ANALYSIS SET 2: EFFECT OF HORIZONTAL SCALE OF FLUCTUATION
PROBABILITY OF FAILURE

Figure 5.7 presents the probability of an initial failure mechanism and the probability
of flooding for various horizontal scales of fluctuation, i.e. the results of Analysis set 2.
Figure 5.7a shows that, if it occurs, the initial failure mechanism triggers 2 to 5 s after
the start of the simulation. As for the Base Case, flooding occurs later if the residual
resistance is overcome, see Figure 5.7b. The times over which flooding may occur are
more widely spread than the times of initial failure.

Figure 5.7 clearly shows that, as expected, the probability of flooding is lower than
the probability of initial failure for all horizontal scales of fluctuation. Moreover, accord-
ing to Figure 5.8a, the largest absolute decrease in the probability of flooding compared
to the probability of initial failure occurs at an intermediate value of 8. However, more
importantly, Figure 5.8b shows that the residual resistance (P(F|S;)) is highest at small
horizontal scales of fluctuation, since the probability of flooding given the occurrence
of an initial failure is the smallest. For large horizontal scales of fluctuation, the prob-
ability of an initial failure increases, see Figure 5.8. Failures are more likely to occur in
weak layers in the presence of larger horizontal scales of fluctuations and retrogressive
failure has a greater tendency to occur through these same weak layers, thereby reducing
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Figure 5.7: Probability of failure as a function of time for various horizontal scales of fluctuation (0,): a) initial
failure mechanism; b) flooding.
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Figure 5.8: a) Probabilities of initial failure and flooding and b) probability of flooding given initial failure, i.e.
residual dyke resistance, for various horizontal scales of fluctuation (8},).

the residual resistance. P(F|S;) ranges from 0.9 at large horizontal scales of fluctuation
to below 0.2 at small horizontal scales of fluctuation, i.e. a <10% reduction for layered
materials and a >80% reduction for materials with limited layering.

Finally, at small horizontal scales of fluctuation (smaller than 4 m) the probability
of initial failure and flooding are low and additional realisations may be required to im-
prove the accuracy of the predicted probabilities. Subset simulation could alternatively
be used to further investigate residual dyke resistance at lower probabilities of initial fail-
ure (van den Eijnden and Hicks, 2017).

RESIDUAL DYKE GEOMETRY

Figure 5.9 shows histograms of the residual geometry, H, — h and W,, for Analysis set 2.
The histograms in Figures 5.9a and 5.9b exclude completely stable dykes, which all have
W, = 10.5m and H, — h =0.25 m, and flooded dykes, which all have W, = H, —h =0, see
Figure 5.9c. The histograms in Figures 5.9a and 5.9b have been normalised with respect
to the total number of included dykes. Horizontal scales of fluctuation below 8;, =4 m
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Figure 5.9: a) Histograms of the residual geometry for several horizontal scales of fluctuation, expressed as a)
height above the water level (H; — h), b) dyke width at the water level W}, and c) indication of excluded and
included realisations.

are not presented, because the number of included dykes becomes very small due to the
low number of initial failures.

Due to the limited height above the water level of the dyke, most failures with residual
dyke resistance, i.e. do not flood, do not affect the height of the dyke (H, — k = 0.25 m).
Therefore, a peak is visible at H, — h = 0.25 m (Figure 5.9a). The average height above the
water table H, — h is slightly higher for smaller 0y, i.e. 0.22 m for 6, = 4 m against 0.20
m for 8;, = 48 m. The residual width tends to be smaller with larger 8, (Figure 5.9b). The
approximately bi-model nature of the histograms of residual width are the result of the
expected size of the initial and retrogressive failures. Since rotational failures are most
likely and significantly influenced by depth (due to the depth-independent statistics) the
initial failure mechanism is most likely to resultin W, between 4 and 8 m. Secondary (i.e.
retrogressive) failures further reduce W, to roughly 2-3 m. Secondary failures are more
likely for larger horizontal scales of fluctuation, i.e. the peaks for larger horizontal scales
of fluctuation are located slightly more to the left in Figure 5.9b.
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Figure 5.10: Histogram of the probability of flooding given initial failure, i.e. residual dyke resistance, as a
function of the width of the initial failure.

Guidelines (e.g. Blinde et al., 2018; ENW, 2009; MIM, 2016) sometimes positively
correlate the dyke width after initial failure (Ws,) with residual dyke resistance, i.e. the
probability of flooding is reduced (compared to the probability of initial failure) or nul-
lified for large Ws,. The results of all simulations with sufficient results (0}, = 4 m) have
been combined in Figure 5.10 (again, stable dykes have been excluded from this figure),
which shows the distribution of probability of flooding for a given W, i.e. P(F|S1, Ws,).
A negative correlation between the remaining width after initial failure and the proba-
bility of flooding is present, suggesting that the reduction in the probability of flooding
(compared to the probability of initial failure) based on W, according to the guidelines
makes sense. However, even though the positive correlation between Ws, and residual
dyke resistance is clear, flooding can still be possible after initial failure even at high W, .
Therefore, guidelines which specify a ‘safe’ remaining geometry, i.e. P(F|S;, Ws,) = 0 for
Ws, larger than a specified minimum, seem risky, especially when the mechanisms after
initial failure are not yet fully understood. However, note that the likelihood of flooding
after initial failure is heavily influenced by the adopted strength and softening proper-
ties, and by larger horizontal scales of fluctuation (which are more prominent in Figure
5.10), as well as by the geometry of the dyke, and it is probably much lower in practice.
‘Safe’ remaining dyke geometries cannot be justified with simple guidelines, i.e. with-
out modelling the entire failure process the probability of flooding cannot be reduced
to 0. Smaller P(F|S;, Ws,) than computed herein are expected in reality, especially for
small horizontal scales of fluctuation. Further research is needed to develop guidelines
for user practice.

5.4.3. ANALYSIS SET 3: EFFECT OF WATER LEVEL

The effect of different external water levels, i.e. Analysis set 3, is presented in Figures 5.11
- 5.13. At first, the probability of initial failure reduces as the pressure on the dyke de-
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Figure 5.11: Realisation from Analysis set 3 showing the final deformed position, with material points coloured
according to the undrained shear strength (c), with an outer slope failure due to a lower water level (H; — h
=2 m). The red line is the detected boundary and the black line is the fixed boundary. The water level is
indicatively shown.
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Figure 5.12: Probability of failure before a given time for various water levels (H; — h); a) initial failure mecha-
nism; b) flooding.

creases (0.25 < H; — h < 1.0 m, Figure 5.12a). However, once the water level reduces fur-
ther, outward slope failure, as shown in Figure 5.11, becomes more likely and the prob-
ability of initial failure increases. Of course, outward slope failure can be prevented by
using a more gentle slope. The initiation time of the outward slope failure in this study
seems to be faster in most cases than for inward slope failure, probably due to a smaller
failed volume.

The initial width of the dyke W; is larger for lower water levels and, therefore, for
a larger width, more or larger (retrogressive) failures are necessary to trigger flooding.
Moreover, the crest of the dyke needs to settle further to trigger flooding for lower water
levels. Consequently, the probability of flooding is comparatively lower for lower water
levels (Figures 5.12b and 5.13). Fragility curves would therefore be useful for the macro-
instability failure category, as this would inherently take into account the lower proba-
bility of flooding at lower water levels, thereby reducing the over-conservatism.

Analysis set 3 assumes a constant water level for each set of realisations, thereby ig-
noring that an outward slope failure due to a period of low water, followed by a period
of high water, can still be dangerous if the required repair works have not yet been per-
formed.




76 5. EVALUATING RESIDUAL DYKE RESISTANCE IN TWO DIMENSIONS

0.3 1
+P(Sl)
0.257| _¢ ‘P(F) 0.8 1
0.2 O
— =06 1
:0.15 Y
~ 04 1
0.1 N =
0.05 ¢ .. 0.2 1
0 R 0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
H;- h (m) H- h (m)

(@) (b)

Figure 5.13: a) Probability of initial failure and flooding and b) probability of flooding given the probability of
initial failure for various water levels (H; — h).

W/ -h=025m
A -h=10m
[H,-h=15m
[ JH;-h=2.0m

40

oo
o

0.2 0.4 0.6 0.8 1.0 00 02 04 06 O
(Hy= WY(H;= ) () W (-

Distribution (%)
—_— 13 w
=] = =3
Distribution (%)
co v S & 8
L o k=
— =

(@) (b)

Figure 5.14: a) Histograms of the residual geometry for various outer water levels in terms of a) height above
the water level (Hy — h) and b) dyke width at the water level (W;).

RESIDUAL DYKE GEOMETRY

Figure 5.14 shows the distributions of the residual geometry for the various water lev-
els; once again, the histograms exclude completely stable dykes and flooded dykes, and
have been normalised. The horizontal axes show the residual geometry normalised with
respect to the initial geometry. In general, an H; — k of 1.5 m or more offers less initial
resistance than an H; —h of 1.0 m or lower, due to a switch in the dominant failure mech-
anism from inner to outer slope failure. However, Figure 5.14 shows that a decrease in
water level increases the residual resistance, due to the fact that the crest can settle more
without triggering flooding (Figure 5.14a), and the remaining width at the water level is
larger (Figure 5.14b). Moreover, Figure 5.14b shows that the width of the dyke at the wa-

ter level may actually increase, due to outward slope failure, causing a further increase
in the residual resistance.
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5.5. CONCLUSIONS

The probabilistic framework for ultimate limit state (ULS) dyke failure, i.e. flooding,
has been implemented and an example analysis presented. The Random Material Point
Method (RMPM), a numerical method capable of simulating the full failure mechanism
and the effect of spatial variability of the material properties, has been used to investi-
gate the residual resistance of an idealised dyke cross-section. This method accounts
for the influence of weaker zones on dyke stability, and it therefore leads to an increased
probability of initial failure, and consequently to an increased probability of flooding,
compared to standard MPM based on mean strengths.

The residual dyke resistance is relatively small in the illustrated example, i.e. P(F|S;)
= 0.75 or a reduction in the probability of flooding of 25%, due in part to the chosen
softening parameters. This is especially so for materials with layered spatial variability,
where a weak layer which triggers a primary mechanism is also likely to trigger secondary
mechanisms, i.e. retrogressive failure. For materials with limited layering of the spatial
variability (67, < 2 m), the residual dyke resistance increases significantly, resulting in
P(F|S1) < 0.2 (the probability of flooding decreases by more than 80%).

RMPM agrees with existing guidelines which increase residual dyke resistance for
smaller initial failures. However, the RMPM analyses do not present a ‘safe’ remaining
geometry, i.e. without modelling the failure process it is impossible to predict that flood-
ing will not occur for a given remaining geometry. If guidelines predict the probability
of flooding only on the size of the remaining geometry after initial failure, they cannot
reduce the probability of flooding to 0. Flooding may still occur due to secondary mech-
anisms, even if the remaining geometry is large, in part due to the spatial correlation of
material properties. Finally, the analyses (Analysis set 3) demonstrate that the water level
plays a central role in the dyke assessment, especially for the probability of flooding.
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THREE DIMENSIONAL SLOPE
FAILURE PROCESSES

Three dimensional effects on the slope failure processes are investigated. A 45 degree slope
is brought to failure by either its own weight or by a combination of its own weight and
an additional surface load. The ultimate failure load and potential failure processes are
studied for various (heterogeneous) material strength properties. In 3D, failures tend to
spread sideways and backwards. The resistance against initial and secondary failures in
3D simulations tends to be higher than in 2D simulations, probably due to the additional
resistance of the ends of the failure surfaces. The failure behaviour changes when a depth-
trend is introduced in the material strength. A depth trend in the material strength triggers
a flow-like failure process, instead of (roughly) circular failure surfaces which are encoun-
tered in a material without a depth trend in its strength. The flow-like behaviour slowly ex-
pands the failure zone in all directions while avoiding (where possible) local strong zones.
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6.1. INTRODUCTION

Conventional slope stability assessments are generally performed on 2-dimensional
cross-sections. However, it is widely accepted that 2D analyses under predict the safety
of the slope due to the resistance at the ends of the failure surface, the so-called ’3D-
effect’, being ignored. Hence, the results of a 3-dimensional assessment of initial slope
instability with, for example, the 3D Finite Element Method (FEM), may significantly
differ from a 2-dimensional assessment.

3-dimensional models are often too computationally intensive for general practice.
Therefore, various analytical procedures which adjust the results of 2D assessments and
require little additional computational cost have been proposed. These methods involve
an assumed failure surface geometry in the out-of-plane direction to account for the 3D-
effect (Chakraborty and Goswami, 2021; Michalowski, 2010; Vanmarcke, 1980; Vanmar-
cke, 1977). These approaches have, for example, been successful in the back-calculation
of the factor of safety of a full-scale dyke failure test (Lengkeek, 2022). The method pro-
posed by Vanmarcke (1977) has recently been compared against the Random Finite Ele-
ment Method (RFEM) (Hicks and Li, 2018; Li et al., 2015; Varkey et al., 2017). Compared
to RFEM, Vanmarcke’s method overestimates the end resistance and does not account
for the effect of weak zones. Varkey et al. (2019) modified Vanmarcke’s method to im-
prove its performance relative to RFEM.

Similar to an initial slope instability, the results of an assessment of the complete fail-
ure process may change if a 3-dimensional model is used. The analytical procedures for
the 3D-effect of the initial failure process are likely to be not valid for the complete fail-
ure process. Therefore, 3-dimensional failure processes are here investigated with the
3D Random Material Point Method (RMPM). Failure processes in 3D are generally more
complex than those in 2D. For example, 3D failures may be able to avoid local strong
zones more easily compared to 2D failures, thereby reducing the resistance against sec-
ondary failures. Avoiding these strong zones can make the shape of the failure process
more complex. In 3-dimensions, the resistance against secondary failures may also be
increased by the ends of the failure surfaces, similar to the 3D-effect for initial failures.

This chapter provides a first insight into 3-dimensional slope failure processes. A
range of failure processes for an idealised problem are presented, together with distri-
butions of the resisted failure load and the failure size. The effects of spatial variability of
shear strength properties, as well as a depth-trend in the mean shear strength properties,
on the failure process are studied.

6.2. DESCRIPTION OF THE EXAMPLE PROBLEM

Anidealised 1 m high, 45 degree slope, shown in Figure 6.1, is modelled in 3-dimensions
using DM-G, i.e. double-mapping using GIMP shape functions. The effect of volumetric
locking is reduced with the B-bar approach, which has also been applied in FEM (Zheng
et al.,, 2022). The occurrence of an inherent instability, i.e. a slope being unstable un-
der its own weight, is studied. When the slope is stable, a foundation load is applied
until failure is triggered. This ensures that each slope is brought to failure, and thereby
minimises the overhead in computing realisations without failure.
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Roller

1.0m

Figure 6.1: Geometry of the problem, indicating the loaded area (with white material points). The material
points are coloured according to the undrained shear strength and indicate a random field with 8, = 0.25 m,
05, =1.25mand COV =0.25.

The slope is 8 m long (L) and has a crest width of 2.5 m (W,;). Cubic 8-noded finite
elements, with a size 0of 0.125 m in each Cartesian direction, are used as the background
grid. The elements are filled with 2 x 2 x 2 material points evenly distributed within each
element. Along the slope face, two material points have been removed from the x-z
corner of each element, so that the slope surface cuts through the material point support
domain in a manner similar to that for the 2D, 45° slope in Chapter 3. In other words,
when viewing a cross-section of the slope, material has been removed from the top right
of the elements to form the slope geometry. The relatively low number of elements, i.e. 8
elements in the vertical direction, has been used to reduce computational costs to enable
Monte-Carlo simulations with a reasonable number of realisations.

A random field is generated with cubic cells of 0.0625 m, such that each cell corre-
sponds to the initial volume occupied by 1 material point. The same random field is
applied for the peak and residual undrained shear strengths, i.e. these properties are
fully correlated. All other properties are considered to be deterministic. The base and
ends of the problem domain are fixed in all directions, while the y — z face at the back of
the domain prevents movement in the x-direction, see Figure 6.1. The fixity at the end
of the domain does not provide vertical resistance when a failure occurs at or near the
boundary, i.e. the estimated strength is conservative. In the x-direction, the computa-
tional domain extends 2.5 m beyond the toe of the slope, and no fixity is used on the
y — z face at the front of the domain. Material points are removed from the simulation
once they exit the domain. Moreover, the x — z faces are free boundaries beyond the toe
of the slope. Material points can therefore also leave the domain through the x — z faces
beyond the toe. The effect of removing material points is small, since the material loses
most of its strength before it reaches these boundaries.
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Figure 6.2: The loading scheme of four example realisations. The load height as a function of a) maximum
settlement, and b) maximum incremental settlement. Note that the results are plotted every 10 time steps.

The analyses use the same constitutive model as presented in Chapter 5 to represent
the clay slope, with a mean peak cohesion (i) of 3.6 kPa, a mean residual cohesion of
0.36 kPa, i.e. giving a sensistivity S; = 10, and a softening modulus of 2 kPa. The unit
weight of the material is 20 kN/m?, and the elastic behaviour is governed by a Young’s
modulus of 1000 kPa and a Poisson’s ratio of 0.45.

For the base case, i.e. Analysis 1, the random fields of peak and undrained shear
strength are generated with a COV of 0.25, together with vertical and horizontal scales of
fluctuation of 6, = 0.25 m and 6}, = 1.25 m, respectively. The probability distributions of
undrained shear strength have (similar to Chapter 5) been truncated to prevent negative
strengths. One realisation of this base case is illustrated in Figure 6.1. The effects of
variations in the COV and horizontal scale of fluctuation, studied after the base case, are
explained in Section 6.2.2. Each Monte Carlo analysis comprises 300 realisations, and
failure is triggered in all realisations, either under the slope’s self weight (i.e. the slope is
inherently unstable), or due to the application of a foundation load as described below.

6.2.1. LOADING SCHEME

Implicit dynamic MPM is used with 0.01 second time steps. Gravity loading is applied
in an elastic implicit quasi-static MPM step to generate 99% of the initial (i.e. in situ)
stresses. In this step, movement of the material points and plasticity are prevented. The
remaining 1% is applied at the start of the simulation, where movement and plasticity
of the material points are allowed, which may trigger an inherent instability. For cases
in which the slope is stable under its own weight, an increasing load is applied to the
foundation by increasing the weight of the material points representing the foundation.
This load represents the build-up of material on top of a 1 m long by 0.5 m wide area,
located 0.5 m from the slope crest.

In each time step, an additional load equivalent to 0.005 m depth of soil is applied,
unless the incremental settlement in the previous time step exceeded a threshold of
0.0005 m (in which case, no increment of load is applied). The incremental settlement
threshold is used to prevent overloading of the slope beyond its actual failure capacity.
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The incremental settlement of material points is comparable to the velocity of the ma-
terial points; hence the load is only increased when the velocity is low. An incremental
settlement threshold is used instead of a total settlement threshold, since the total set-
tlement can vary significantly when the failure load is reached (see Figure 6.2a).

The load scheme is further explained by the examples shown in Figure 6.2. The slope
in Example 1 is inherently unstable and the maximum incremental settlement exceeds
the threshold without the application of a foundation load. During the analysis, the dis-
placement increased far beyond the 0.1 m limit of Figure 6.2a. In Example 2, the load is
increased from point A until the failure capacity is reached at point B. From point B the
maximum incremental settlement continuously exceeds the threshold.

In Example 3, the load is increased from points A to C. Loading is paused at C because
the maximum incremental settlement in the previous step exceeded the threshold. In
other words, the velocity of the slope was too high. However, the failure capacity has not
yet been reached at point C, i.e. the incremental settlement decreases with time under
the same load and, without a further load increase, the slope becomes stable before large
deformations can occur. Between C and D, the foundation load is increased whenever
the incremental settlement in the previous step is below the threshold. So, whenever the
material points slow down enough, additional load is applied, until the failure capacity
is reached after which material points continuously accelerate up to large deformations
(point D of Example 3).

A similar behaviour is observed in Example 4, where the load is increased continu-
ously until point E. At this load, the incremental settlement increased significantly be-
yond the threshold. However, the incremental settlement decreased again in later time
steps, i.e. the failure capacity was not yet reached at point E. The load is then increased
whenever the material points slow down to below the threshold until reaching the failure
capacity at point E

When the sliding mass slows down during the failure process, the incremental set-
tlement decreases again. Figure 6.2b has been cut off once the initial failure has fully
developed, and the decrease of incremental settlement is not shown. To prevent further
loading after an initial failure has occurred, loading is no longer increased once the max-
imum total settlement exceeds 0.1 m. Secondary failures can still occur after the initial
failure without further loading.

Table 6.1: Model details.

Geometry Discretisation Material Properties

H=1m At=0.01s y=20kN/m® ¢; =N(uc;, COV)
W=25m tmax=15s E =1000 kPa ¢ =¢;/S;
L=8.0m Ax=0.125m v =0.45 Sc=10

Slope 1:1 Ay=0.125m Hg=-2kPa 0,=025m

Az=0.125m 0.25m <6, <10.0m
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Table 6.2: Summary of analyses. Note that Analyses 2A, 3B and 4A match Analysis 1: Base case).

Analysis  Comments k., (kPa) COvV (-) 0y (m) k (kPa/m)
1 Base case 3.6 0.25 1.25 0
2A 3.6 0.25 1.25 0
2B Point statistics 3.4 0.25 1.25 0
2B 3.6 0.1 1.25 0
3A 3.6 0.25 0.25 0
3B Horizontal scale 3.6 0.25 125 0
3C of fluctuation 3.6 0.25 2.5 0
3D 3.6 0.25 5.0 0
3E 3.6 0.25 10.0 0
4A Depth trend 3.6 0.25 1.25 0
4B in mean 3.6 0.25 1.25 1.5
4C shear strength 3.6 0.25 1.25 3.0

6.2.2. OVERVIEW OF ANALYSES

The failure process for select realisations are highlighted in Section 6.3 for the base case,
for which the properties have been described in the previous sections and are sum-
marised in Table 6.1 and Table 6.2. In Analysis sets 2 to 4, the point statistics, horizontal
scale of fluctuation and depth trend of the mean undrained shear strength have been
varied, see Table 6.2. The failure processes for the base case are compared against re-
sults obtained for the other analysis sets. In addition, for the base case, the failure ca-
pacity and size of the failure are compared against a 2D simulation of the cross-section
along the centre line using the same random field.

Analysis set 2 compares histograms of failure capacity and failure size between the
base case and analyses with a change in the point statistics, i.e. with a) a lower mean
undrained shear strength (u.;), and b) a lower coefficient of variation (COV). Analysis
set 3 describes the failure process for extreme values of the horizontal scale of fluctua-
tion. The histograms of failure capacity and failure size are then used to interpret the
results for intermediate values of the horizontal scale of fluctuation, i.e. varying the de-
gree of anisotropy in the range ¢ = 1, 5, 10, 20 and 40. Finally, in Analysis set 4, a linear
depth-trend k in the mean undrained shear strength is introduced, i.e. in this case the
mean undrained shear strength increases linearly with depth. The results of the base
case without a depth trend, i.e. k = 0kPa/m, are compared against k = 1.5 kPa/m and 3.0
kPa/m. The depth average of the undrained shear strength is the same in all analyses as
shown in Figure 6.3.

6.2.3. QUANTIFYING THE FAILURE VOLUME

In the post-processing of their RFEM analyses, van den Eijnden and Hicks (2017) sepa-
rated the stable material from the unstable material using the K-means cluster method
(KMCM) to estimate slide volumes. This approach has here been modified for RMPM. In
RFEM, two clusters are enough to separate the sliding mass from the stable mass (i.e. the
sliding mass is one cluster and the stable mass is the other cluster). However, in MPM,
the large difference in deformations between the initial and secondary failures causes



6.2. DESCRIPTION OF THE EXAMPLE PROBLEM 85

0.1 =k =0.0 (kPa/m)
el ——k=3.0 (kPa/m)]|
021L k= 6.0 (kPa/m)||

-0.3 ¢+
-0.4+
-0.5+
-0.6 ¢
-0.7 -
-0.8 -
-0.9 -

z (m)

4 5 6 71 8
Hei (kPa)

Figure 6.3: Mean undrained shear strength at a given depth as a function of the depth trend k.

the clustering with two clusters to become unstable, as secondary failures may be clus-
tered with the stable material instead of with the sliding mass.

KMCM is, therefore, not used during post processing at the end of the simulation,
but instead used during the simulation whenever an initial or subsequent failure occurs.
At the start of the simulation one stable cluster exists. When a failure occurs, KMCM
separates the failure mass from the stable mass (i.e. the cluster containing the stable
mass is split into two new clusters: a new sliding mass and a new stable mass). When
KMCM is used again later in the analyses, only the remaining stable mass is splitinto new
clusters. So, during the analyses the size of the stable cluster reduces as more unstable
clusters are detected. Meanwhile, the number of unstable clusters gradually increases.
The unstable clusters, i.e. clusters with sliding masses, remain unchanged once formed.

To detect if a failure has occurred, i.e. to detect when KMCM should be used to cre-
ate a new sliding mass, the maximum euclidean displacement of the remaining stable
material points (#s;4p1e,max) is computed. Failure is deemed to have occurred when-
ever Ugssaple,max €Xceeds a (user-defined) threshold, here set to be 0.2 m. The threshold
Ustable,max > 0.2 M ensures an accurate division of each failure for this problem, and has
been established based on visual inspection of several realisations.

By the end of the simulation, the material may have been divided into any number of
clusters. Each cluster contains either the stable mass, the sliding mass of the initial fail-
ure, or the sliding mass of a subsequent failure. The clusters are used to estimate 1) the
stable volume, 2) the failure volumes, 3) the retrogression distance (in the x-direction),
and 4) the damaged crest width (in the y-direction). The retrogression distance is de-
fined as the largest distance from the crest until a stable material point, whereas the
damaged crest width is defined as the total width (in the y-direction) of all failed crest
material points. The modified KMCM procedure can also be used to compute the failure
volumes of individual slides, but these results are not discussed here.
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Figure 6.4: An inherently unstable slope failure: a and b) small initial failure; ¢ and d) sidewards spreading of
the failure; e and f) large retrogression backwards; g and h) end of the simulation.
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Figure 6.5: A large inherently unstable slope failure without retrogressive failures.

6.3. ANALYSIS 1: BASE CASE

6.3.1. FAILURE PROCESSES OF INHERENTLY UNSTABLE SLOPES

Some of the slopes are inherently unstable due to a weak zone within the slope (10.4%
of the slopes in Analysis 1). In these cases, the response of the inherently unstable slope
is studied instead of the response to a foundation load. An example of this behaviour
is shown in Figure 6.4, where the material points are presented in their displaced po-
sitions and are coloured according to the undrained shear strength of the material, i.e.
strong zones are lighter and weak zones are darker. The outline of the undeformed slope
is highlighted in red and the centrally located surface load at the slope crest, which is
not applied in this simulation, is highlighted in black. Ridge lines are indicatively drawn
as white dashed lines to highlight the location of each failure surface wth respect to the
original slope crest. For each (selected) time step, 3-dimensional and top views are pre-
sented.

Figures 6.4a and 6.4b show the same small initial failure of roughly 2 meters in width
near the far end of the slope, i.e. the centre line of the failure is located around 6.5 m
from the left-hand boundary. In Figure 6.4a a 3D view of the slope and failure is shown,
whereas in Figure 6.4b the top view is shown. In Chapter 5, two-dimensional retrogres-
sive behaviour was shown after the initial dyke failure, and a similar behaviour can be
observed in 3D. The initial failure triggers a large instability along the remainder of the
slope, as seen in Figures 6.4c and 6.4d. This second instability is limited by the pres-
ence of a strong zone at the toe of the slope between 1.0 m and 2.0 m from the left-hand
boundary. The initial failure also triggers retrogressive behaviour towards the back of the
slope. First, a third slide with a size roughly equal to the initial failure occurs, as shown
in Figures 6.4e and 6.4f. Then, a smaller fourth slide can be observed in Figures 6.4g and
6.4h. The fixed end point of the simulation after 15 seconds has been reached in Figures
6.4g and 6.4h. By this end point the deformations have slowed down and it is therefore
unlikely that additional failures would occur if the simulation was continued beyond 15
seconds.
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Figure 6.6: a) Cross-section through the centre line of the failure in Figure 6.4 and b) cross-section through the
centre line of the failure in Figure 6.5.

Figure 6.4 highlights the importance of modelling the failure process in 3D, in that
the failure process is clearly 3-dimensional. The importance of 3D modelling becomes
clearer when comparing Figure 6.4 against Figure 6.5. Both figures show a bowl-shaped
failure mechanism, but Figure 6.5 shows a wider initial failure (3.5 m in Figure 6.5 against
2.0 m in Figure 6.4). Moreover, the failure occurs at a different location along the slope,
such that the centre lines of the slope failures in Figures 6.4 and 6.5 are located at 6.5 and
5.0 m from the left-hand boundary, respectively. The failure in Figure 6.4a may also be
influenced by the fixity at the side of the domain reducing the size of the initial failure
mechanism. The differences between Figures 6.4 and 6.5 are caused by different loca-
tions of weak zones affecting the resistance to slope failure.

Based on the size of the initial failure one would assign the largest consequence to
the failure in Figure 6.5. However, due to the fact that secondary failures are triggered
in Figure 6.4 and not in Figure 6.5, the consequence of the failure in Figure 6.4 is signif-
icantly larger. This highlights the importance of modelling the failure process when the
failure consequence is to be determined, i.e. 3-dimensional small deformation models
(such as RFEM) may not be sufficient.

For cross-sections at the centre lines of the 3D failures (Figure 6.6), a nearly identical
circular failure through the base of the slope is observed, which exits the ground surface
at around 0.7 m from the slope crest. This 2D failure surface is expected due to the cho-
sen slope geometry and undrained shear strength statistics being constant with depth,
which favour an approximately circular failure mechanism through or near the slope
toe. So, a 2D simulation could incorrectly suggest similar behaviour when 3D-effects are
ignored, especially when the failure process is modelled.

6.3.2. FAILURE PROCESSES TRIGGERED BY A FOUNDATION LOAD

Most of the slope simulations are stable under their own weight (89.6% of the slopes in
Analysis 1). The surface load is then applied to trigger slope failure, with an example
illustrated in Figure 6.7. The fixed location of the surface load at the centre of the slope
fixes the location of the failure initiation along the slope, i.e. failure must initiate near the
load. However, the size of failure may vary. Figures 6.7a and 6.7b show that in this case
a 6-meter-wide initial failure occurred, which has a bowl-shape similar to the inherently
unstable failures shown in Figures 6.4 and 6.5.
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Figure 6.7: A slope failure due to the applied foundation load: a and b) large slightly asymmetric initial failure;
c and d) backwards retrogressive failure; e and f) retrogressive failure fully developed and a third deformation
zone initiates at the back of the slope before the end of the simulation.
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Figure 6.8: Slope failure during bearing capacity failure: a and c) 3D views of the failure process; b and d)
cross section along the centre line of the slope; a and b) local deformation under the load while slope failure
develops; b and c) bearing capacity and slope failure both further develop.

The initial slide is followed by a slightly smaller secondary slide, see Figures 6.7c and
6.7d. The first slide initiated below the surface load and triggered an asymmetric failure
(i.e. alarger failure to the right of the load than to the left). The second slide initiates 1
m to the right of the location of the load, i.e. it follows the asymmetric geometry of the
first failure. By the end of the simulation (Figures 6.7¢ and 6.7f) the second failure has
spread to become roughly the same width as the initial failure, and a small third failure
has initiated in the remainder of the slope towards the fixed boundary, i.e. the slope
height at the fixed boundary has fallen, as is evident in Figure 6.7¢.

The use of a surface load as the trigger reduces the variation in the location of failure
initiation. However, more variation in the subsequent failure process can be observed.
For example, local deformations around the load, similar to bearing capacity failure may
occur, see Figures 6.8a and 6.8b. Here, complete slope failure is prevented until a high
foundation load is reached, resulting in local deformation under the loaded area. A fur-
ther increase in load triggers slope failure before a full bearing capacity failure as shown
in Figures 6.8c and 6.8d. The cross-section in Figure 6.8d shows that the slope failure
surface tends to cut the crest at the edge of the surface load, i.e. approximately 1 m from
the slope crest. After Figures 6.8c and 6.8d, the slope failure further develops (not shown
in the figure), although no retrogressive behaviour occurs.

A large variation in the failure width is possible even when a surface load is applied,
as shown in Figure 6.9. The surface load can trigger failure along the entire width of
the slope when the slope is barely stable under its own weight and the strength of the
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Figure 6.9: Various possible initial failures due to a foundation load: a and b) failure width roughly the slope
width; ¢ and d) failure width roughly half the slope width; e and f) failure width roughly equal to surface load
width; d and h) asymmetric failure surfaces bounded by strong zone on 1 side of the surface load.
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Figure 6.10: A failure process predominantly parallel to the slope after the initial failure shown in Figure 6.9c:
a and b) initial failure; c and d) lateral extension of the initial failure; e and f) smaller retrogressive slide can be
observed at the end of the simulation.
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material is roughly constant along the entire slope (Figures 6.9a and 6.9b). However,
stronger zones usually occur along the slope width. The failure surface extent can then
be reduced significantly, to, for example, half the width of the slope (Figures 6.9c and
6.9d) or even the width of the surface load (Figures 6.9¢ and 6.9f). When strong zones are
only present on one side of the surface load, an asymmetric failure as shown in Figures
6.9g and 6.9h can be triggered.

Although Figure 6.7 showed retrogressive behaviour mainly towards the back of the
domain, retrogressive behaviour can move in many directions in 3D simulations. For
example, Figure 6.10 shows the failure process after the initial failure shown in Figures
6.9c and 6.9d. During the initial failure, the sides of the initial failure are pulled with
the moving material, thereby widening the failure. The locations where these widening
failures cut the crest are usually slightly closer to the slope compared to the initial failure,
since these failures are no longer triggered by the surface load. Figure 6.7 shows large
retrogressive failures, with a size similar to the original width. However, it is more usual
for smaller blocks on the sides or back walls of the failed area to become unstable, as
can be seen in Figures 6.10e and 6.10f. They slide into the failure zone, and flow out of
the gap created by the initial failure in the case when further deformation occurs. In this
specific case, the inertia of the block is not large enough for it to flow out of the domain,
and it instead remains in the failure zone. Secondary failures in the corners of the failure
zone are often small, while secondary failures in the middle of the failure zone tend to
be larger as observed in Figure 6.7.

After an initial failure with a smaller width, such as the asymmetric failure shown in
Figure 6.9g, a third and less likely failure process may occur: retrogressive failures may
form a small tunnel from the gap created by the initial failure away from the slope face.
The tunnel shown in Figure 6.11 tends to get smaller with each subsequent failure. Not
all of the material can flow out of the tunnel, as the material still has some undrained
shear strength and rests on a horizontal fixed boundary. This remaining material has a
stabilising effect, which causes the tunnel to narrow. However, one may expect instabil-
ities in the sides of the tunnel when 1) the material is capable of flowing out, or 2) when
the sides of the tunnel have a weak zone. The chance of encountering a weak zone would
increase were the tunnel able to progress further beyond the back boundary included in
this model.

6.3.3. ULTIMATE FOUNDATION LOAD

While the previous sections give an overview of the range of behaviours observed in
Analysis 1, Figure 6.12 shows the distribution of foundation loads for all the realisations
of Analysis 1. The load heights are placed into bins of 0.2 m in height, where the label in
the figure indicates the average value. The first bin contains load heights from 0.0 to 0.1
m in height, but is centered on 0.0 as it mainly contains the realisations with zero load
height, i.e. 10.4% of the 3D slopes are inherently unstable. A wide spread around the de-
terministic results (i.e. based on mean property values) is observed, where some slopes
are unable to resist their own self-weight (foundation load of 0 m) while others can resist
a foundation load equivalent to more than the slope height.
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Figure 6.11: Mostly backwards failure process after the initial failure shown in Figure 6.9g: a and b) initial
failure; c and d) retrogressive failure in a tunnel like shape; e and f) end of the simulation. The progression of
the retrogression distance is indicated.
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Figure 6.12: Distribution of the ultimate foundation load, represented as the height of soil built up on the
foundation for Analysis 1. Comparative 2D simulations using the same statistics are also presented.

For comparison, 2D simulations were performed for the cross-section through the
middle of the slope. The 2D simulations use the same random fields, i.e. from each 3D
random field the centre cross-section was selected and used to perform the 2D analy-
sis. In 2D, more slopes are inherently unstable (20.1% in 2D compared to 10.4% in 3D)
and the resisted load is significantly lower on average. So, the fact that a failure in 3D
can occur at more potential weak locations is more than compensated for by the stabil-
ising effect of the sides of a failure surface in 3D for the considered slope geometry and
material properties.
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Figure 6.13: Distribution of the retrogression distance, the largest distance from the initial slope crest to the

failure surface (measured along the crest) for Analysis 1. Comparative 2D simulations using the same statistics
are also presented.
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6.3.4. FAILURE PROCESS

Figure 6.13 shows the final retrogressive distance, measured from the crest in the x-
direction as indicated in Figure 6.11, in Analysis 1. It shows that retrogressive behaviour
in the x-direction, i.e. away from the crest, is unlikely, since in most simulations the ret-
rogressive distance is limited to the location at which the load is applied, i.e. is the result
of a single failure. Moreover, in some cases an inherently unstable slope failure does not
even reach this distance. This local peak at roughly 0.8 m caused by inherently unstable
slopes is especially visible in the 2D simulations, as more inherently unstable slopes are
present (see Figure 6.12). Even though retrogressive behaviour is unlikely, when it occurs
it can significantly increase the damage to the slope, potentially even reaching the end of
the domain at 2.5 m. When retrogressive behaviour occurs in 2D, it is more severe com-
pared to 3D. This indicates that the stabilising 3-dimensional effects also significantly
affect retrogressive behaviour. The stabilising effect also compensates for more poten-
tial failure paths in 3D. Even though a 2D simulation may miss 3-dimensional processes,
it is likely to be a conservative estimate of retrogression distance.
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Figure 6.14: a) Damaged crest width for Analysis 1 and b) relative failure volume for Analysis 1.

Figure 6.14a shows that much more variation is present in the failure process in the
y-direction (parallel to the slope). A deterministic analysis computes a failure width of
roughly 4.2 m, i.e. roughly 4 times the slope height and width of the foundation load.
Moreover, the deterministic analysis often under predicts the failure width. As shown in
Figure 6.10, slope failures can spread in the direction parallel to the slope, and this can in
some cases cause the entire width of the crest to be damaged (see Figure 6.14a). Figure
6.14b shows that a 3D deterministic outcome can incorrectly underestimate the failure
volume of a specific realisation by a factor 2 to 3. The failure volume of the 2D simula-
tions has also been computed, where failure is assumed to occur along the entire width
of the 3D domain. This is a conservative assumption, given the fact that in reality, the
failures modelled in 2D would have a limited width in the 3rd dimension. The 2D anal-
ysis significantly over predicts the failure volume under this assumption, with a higher
peak at around the deterministic solution. For visibility, the figure is limited to a relative
failure volume of 50% (of the domain volume), although 20% of the 2D simulations have
a relative failure volume above 50%, with a more or less uniform distribution from 50%
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to 100% relative failure volume. This again indicates that retrogressive behaviour is more
extensive in 2D analyses.

6.4. ANALYSIS SET 2: VARIATIONS IN POINT STATISTICS

6.4.1. LOWER MEAN UNDRAINED SHEAR STRENGTH

Figures 6.15 and 6.16 present the behaviour of Analysis 2A and Analysis 2B, i.e. the same
slope, loaded under the same conditions, with a lower mean undrained shear strength
(fe; = 3.4 kPa) and the same COV of 0.25. The lower strength resists, as expected, a
lower load while experiencing increased damage due to the failure process. As for the
base case, the average resisted load is lower than the deterministic simulation based
upon the mean. The small decrease in mean undrained shear strength has tripled the
number of inherent instabilities, which highlights that, due to soil heterogeneity, the
slope presented in Section 6.3 is close to inherent failure. In both deterministic solu-
tions retrogressive behaviour does not occur. However, a lower mean undrained shear
strength triggers more retrogressive failures when soil heterogeneity is considered, see
Figure 6.15b. Additionally, as shown in Figure 6.16 the damaged crest width, and thereby
the failure volume, tend to increase significantly for a lower mean strength, resulting in
many more simulations where the entire crest width is damaged.

6.4.2. LOWER COEFFICIENT OF VARIATION

A reduction of COV from 0.25 to 0.1 (Analysis 2C) reduces the variation around the de-
terministic outcome for both the onset and process of failure, as shown in Figure 6.17. A
lower variation increases the strength of the material in the weak zones, while decreasing
the strength in the stronger zones. Since the average strength along the failure surface is
mainly governed by the strength of the weaker zones, the average strength along the fail-
ure surface increases with a decreasing coefficient of variation. This causes an increase
in the expected load height to trigger failure, as indicated in Figure 6.17a. Additionally, as
the weaker zones are stronger, the failure volume tends to be smaller (see Figure 6.17b).

6.5. ANALYSIS SET 3: HORIZONTAL SCALE OF FLUCTUATION

Figure 6.18 shows a realisation with a degree of anisotropy equal to 1 (such that 8;, =

» =0.25 m), i.e. a realisation from Analysis 3A. The failure initiation is quite similar to
Figure 6.11, where the width of failure at the load is roughly equal to the 1 m width of the
loaded area and expands to 2 to 3 meters wide at the base of the slope. The initial failure
in Figures 6.18a and 6.18b is slightly asymmetric with the right-hand side failing before
the left-hand side. While Figure 6.11 shows an example which occurs infrequently in the
base case, failures with a small width such as the one in Figure 6.18 occur with a higher
frequency for low degrees of anisotropy, as the outcomes approach the deterministic
solution. After the initial failure, due to the high variation within the soil the material
breaks into smaller blocks compared to the examples of the base case shown in Section
6.3. This results in a more chaotic remaining profile, see Figures 6.18e and 6.18f, while
smoother profiles are observed in the base case.
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Figure 6.15: a) Load height and b) retrogression distance for Analysis 2A and 2B: Two cases with different mean
undrained shear strengths (u¢; = 3.6 kPa and 3.4 kPa).
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Figure 6.16: a) Damaged crest width and b) relative failure volume for Analysis 2A and Analysis 2B: Two cases
with different mean undrained shear strengths (u¢; = 3.6 kPa and 3.4 kPa).
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Figure 6.17: a) The load height and b) the damaged crest width for a reduction in coefficient of variation (Anal-
ysis 2A and Analysis 2C). Note that the deterministic damaged crest width is 4.25 m.
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Figure 6.18: Example of a failure with degree of anisotropy ({) = 1, i.e. no layering: a and b) small initial failure;
c and d) chaotic breaking of the initial failure block; e and f) sidewards secondary failure which breaks into
small blocks before the end of the simulation.
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Figure 6.19: Example of a failure with degree of anisotropy (¢) = 40, i.e. layers more extensive than the length
of the slope: a and b) initial failure through a weak layer above the base of the slope; c and d) fully developed
initial failure with settlements in a large area around the failure; e and f) lateral and retrogressive secondary
failures; g and h) subsequent failures cause an almost complete collapse before the end of the simulation



6.5. ANALYSIS SET 3: HORIZONTAL SCALE OF FLUCTUATION 101

A realisation with a degree of anisotropy of 40 (from Analysis 3E) can trigger failure
above the base of the slope as shown in Figure 6.19. Due to a large weak layer, this kind
of failure often triggers the almost complete collapse of the slope once failure occurs (as
shown in Figures 6.19g and 6.19h). Figures 6.19c and 6.19d show that the initial failure
causes settlement in a large area surrounding the foundation, which is quickly followed
by a large secondary failure where both the sides and back of the failed area are pulled in
with the initial failure. Compared to Figure 6.18, large intact blocks remain in the failure
zone, as failure blocks slide down in Figure 6.19. These blocks are usually larger in the
y-direction than in the x-directions, as the failure surface perpendicular to the slope still
tends to be circular in the x-direction limiting the failure size.

6.5.1. ULTIMATE FOUNDATION LOAD

Figure 6.20 shows the effect of the horizontal scale of fluctuation on the distribution of
the ultimate limit load. For a degree of anisotropy of ¢ = 1, i.e. no layering of the soil
heterogeneity, limited variation around the deterministic solution with mean strength
properties is observed. The outcome for ¢ = 1 approaches the results with a lower co-
efficient of variation shown in Figure 6.17a. This is because significant averaging of the
material properties along the failure surface can be expected for this degree of anisotropy
for the adopted value of 8,,. Moreover, inherent failures cannot be triggered because the
weak zones in the material are too small to promote formation of failure without avoid-
ing the stronger zones.
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Figure 6.20: Effect of degree of anisotropy (¢) of the soil heterogeneity on the ultimate foundation load.

At the other end of the spectrum, a degree of anisotropy of ¢ = 40 shows a large vari-
ability in the failure load. In some cases, strong zones are present at the base of the slope
where the loads due to gravity loading are the highest, thereby providing the ability to
resist a larger failure load. A strong zone can even force failure initiation through a weak
layer above the base of the slope, as shown in Figure 6.19. Conversely, a weak zone along
the base often triggers an inherent instability.

Intermediate degrees of anisotropy confirm that the influence of strong and weak
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Figure 6.21: Effect of degree of anisotropy (¢) of the soil heterogeneity on the retrogression distance.

zones increases with an increase in the degree of anisotropy. In other words, larger strong
zones can more often increase the resisted load than smaller strong zones, while larger
weak zones are more likely to trigger inherent instabilities than smaller weak zones.

6.5.2. FAILURE PROCESS

The variation in the retrogression distance increases with an increase in the degree of
anisotropy, as shown in Figure 6.21. As, in many cases, no retrogressive behaviour in the
direction away from the slope is observed, the retrogression distance is often governed
by the initial failure caused by the surface load. Therefore, a large peak is present be-
tween 1 and 1.5 mretrogression distance. A high degree of anisotropy causes more inher-
ent instabilities compared to a low degree of anisotropy. Moreover, retrogressive failure
tend to be more likely for higher degrees of anisotropy. Therefore, almost no cases with
a retrogression distance below 1 m are observed for large degrees of anisotropy. When
retrogressive behaviour occurs with significant layering, the complete slope is likely to
collapse, while for lower degrees of anisotropy retrogressive failure often does not reach
the back face of the domain.

Finally, Figure 6.22 shows the variation in the damaged crest width and failure vol-
ume for the various degrees of anisotropy. Figure 6.22a indicates that strong zones in
a layered material can have a limiting effect on the width of the initial failure surface,
while retrogressive behaviour through weak zones can trigger full collapse of the slope.
The responses for a small amount of layering (¢ = 5) and a large amount of layering (¢ =
40) are similar, while no layering clearly shows less variation. In the case of no layering
(¢ = 1), failures tend to have a size much closer to the deterministic solution.

Figure 6.22b shows that the failure volume tends to increase with ¢, since in more
cases retrogressive failure occurs and the width of the failures are often larger. Figure
6.22b is limited to 50% relative failure volume, which captures most of the responses.
However, for degrees of anisotropy of ¢ = 20 and ¢ = 40, approximately 8% and 12% of the
results, respectively, lie above 50% relative failure volume.
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Figure 6.22: a) Damaged crest width for Analysis set 3 and b) relative failure volume for Analysis set 3

6.6. ANALYSIS SET 4: DEPTH TREND IN THE MEAN SHEAR

STRENGTH

One example of a failure process with a large depth trend (k = 6.0 (kPa/m)) is shown in
Figure 6.23. Figures 6.23a and 6.23b show that the initial failure due to the foundation
load occurs through a layer roughly halfway up the slope. Due to the fact that the failure
occurs through a higher layer, the size of the failure is small in both the vertical direc-
tion and the horizontal direction along the slope (see Figures 6.23c and 6.23e). Com-
pared to a material without a depth trend, retrogressive behaviour does not occur along
clear slip planes. Instead, as shown in Figures 6.23e-6.23h, the material appears to flow
steadily along a gentle slope into the failure zone. Instabilities at the sides of the initial
failure, which tend to occur frequently in materials without a depth trend, are much less
frequent in a material with a depth trend, i.e. retrogressive failure occurs more in the
direction away from the slope and less along the slope.

Figure 6.24a presents the effect of a depth trend in the mean undrained shear
strength on the resisted load. As the strength at the base of the slope, where the loads
are the highest, tends to increase with an increase in k to 3.0 kPa/m, the resistance of
the slope against inherent instabilities and foundation load increases. However, as k
increases further to 6.0 kPa/m, failures along weak zones above the base become in-
creasingly likely, which can reduce the resistance of the slope compared to a smaller k.
The likelihood of an inherent instability for a large k can even be higher than the case
without a depth trend. In other words, a limited depth trend can raise the resistance,
since the higher strengths at greater depths can resist the higher loads, i.e. is beneficial
for slope in this step, while a larger depth trend increases the possibility of failures along
planes at different depths, thereby reducing the overall resistance.

A similar effect can be observed in the failure process, as shown in Figure 6.24b: a
small depth trend reduces retrogressive behaviour, whereas a large depth trend increases
retrogressive behaviour.
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Figure 6.23: Example of a failure with a depth trend k = 6.0 kPa/m in the mean undrained shear strength: a
and b) initial failure after loading through a weak zone halfway up the slope; ¢ and d) small fully developed
initial failure, where the base of the slope remains stable; e and f) flow like retrogressive behaviour of the weak
material at the top of the slope; g and h) end of the simulation after more flow like retrogressive behaviour.
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Figure 6.24: a) Load height and b) retrogression distance for Analysis set 4 with and without a depth trend in
the mean undrained shear strength.
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Figure 6.25: a) Damaged crest width and b) relative failure volume for Analysis set 4 with and without a depth
trend in the mean undrained shear strength.
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Figure 6.26: Final geometry of a foundation failure on a slope with a depth trend k = 6.0 kPa/m in the mean
undrained shear strength.
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Figure 6.25 confirms that slides with a depth trend are smaller on average, as the
slides can occur through layers above the base and tend to spread less in the direction
along the slope. While, in the analyses discussed previously, foundation failure only oc-
curred at the same time as the slope failure, with a significant depth trend a founda-
tion failure can sometimes occur even though the slope remains stable (see Figure 6.26).
This can occur due to significantly weaker material at the crest of the slope. Figure 6.25
shows that the crest can remain almost intact with this failure mechanism, with the fail-
ure volume then tending to be small in comparison to volumes involved in a slope failure
mechanism.

6.7. CONCLUSION

3D RMPM has been shown to be capable of producing an overview of many potential
failure processes, and quantifying the failure consequences of these processes. It can
provide insight into the effect of spatially varying shear strength properties on the failure
onset and consequence.

The so-called 3D-effect increases the safety against the onset of failure and reduces
the likelihood and size of secondary failures compared to 2D RMPM analyses. The num-
ber of inherent instabilities reduces from 20% to 10% for 2D and 3D, respectively. The
loaded height on an inherently stable slope increases from a range of 0-0.6 m for 2D sim-
ulations to a range of 0.4 to 1.2 m for 3D simulations. In 2D, a relative failure volume of
30% to 100% has been observed, which decreases to a range of 10% to 35% for 3D. This
indicates that 2D plane strain investigations of the failure process are conservative with
respect to the probability of initial and retrogressive failure.

For the example problem considered, secondary failures on the sides of the original
failure were more likely than retrogressive failure away from the crest. This failure pat-
tern is beneficial for dykes with a large crest width, since lateral spreading of the failure
will not (directly) trigger flooding. An increase in the degree of anisotropy increases the
likelihood of retrogressive failures and tends to increase the width of the failures, while a
smaller degree of anisotropy results in a more chaotic failure process where many small
zones can become unstable. For isotropic spatial variability the results approximate to
the deterministic outcome. The results for degrees of anisotropy larger than 5 are simi-
lar. A small depth trend increases the resistance against initial and retrogressive failure as
the strength at the bottom of the slope increases. However, a larger depth trend causes a
decrease of the ultimate foundation load and more retrogressive behaviour as failures at
multiple depths become more likely. For a large depth trend, secondary failures become
less likely; instead, weak material tends to flow into an expanding failure zone.

The chapter presents an initial investigation of 3-dimensional failure processes. Fu-
ture investigations are required to improve the numerical accuracy of the simulations,
mainly by increasing the number of material points, which would be possible once par-
allel computing is also used for individual realisations. The method can then be used to
investigate other (more complex) slope geometries and 3D dyke failures.
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7.1. INTRODUCTION

The complexity of building and maintaining flood protection structures grows with the
continuously increasing risk of flooding. To meet the stringent design criteria for these
structures, engineers can take the remaining (i.e. residual) resistance of a dyke after ini-
tial slope failure into account. For this purpose, simplified guidelines for the remaining
dyke resistance are used. These guidelines are over-conservative since they are based on
a limited understanding of the failure process after slope instability. Recent studies sug-
gest using standard, small deformation slope failure models, such as the Limit Equilib-
rium Method (LEM) or the Finite Element Method (FEM), to model the remaining dyke
resistance. However, LEM and FEM cannot model large deformations during the fail-
ure process, and therefore require significant assumptions to reconstruct the remaining
dyke geometry after the initial failure to assess the probability of secondary failures.

The Material Point Method (MPM) had been shown to successfully model large de-
formations and been used to model dyke slope failure. In this thesis, MPM was for the
first time applied within a risk-based framework for dyke assessments to compute the
probability of flooding. Additionally, the effect of spatial variability of soil properties on
dyke slope failure processes was for the first time studied, although extensive research
using the Random FEM (RFEM) has highlighted the importance of this variability on the
initial slope failure. The work presented in this thesis further developed MPM for the
assessment of probability of flooding, and accounted for the effect of spatial variability
on dyke slope failure processes by using the Random MPM (RMPM), the natural exten-
sion of RFEM to MPM. This chapter summarises the main conclusions from the four
main chapters of the thesis, and gives an overview of the recommendations for future
research regarding (R)YMPM and residual dyke resistance.

7.2. NEUMANN BOUNDARY CONDITIONS

To account for the load applied by the external water level on the outer dyke slope, the
application of a hydrostatic boundary condition was investigated in Chapter 3. The ap-
plication of boundary conditions is difficult in MPM, since the conditions must be com-
patible with the two discretisations used in MPM: i.e. the material points and the FEM
background grid. It is especially difficult to apply boundary conditions at moving ma-
terial boundaries. In dyke slope failure, movement of the external slope is expected and
moving boundary conditions are therefore required. Chapter 3 studied the performance
of five boundary condition methods in MPM and GIMP:

1. Equivalent point loads applied on surface material points.
2. Boundary moved to the surface nodes.
3. Boundary condition applied exactly.

4. Boundary condition moved proportionally to the volume of material points in the
background grid elements (only in MPM).

5. Boundary condition applied on the support domains of GIMP.
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Table 7.1: The performance of various boundary condition methods for different cases

MPM GIMP
Boundary condition method 1D 1D 2D Submerged slope
1 Surface material points - - - -
2 Surface nodes - —— —— N/A
3 Exact material surface - ++ + +
4 Volume of MPs ++ N/A N/A N/A
5 Support domain N/A ++ ++ ++

Key: — — unacceptable errors; —large errors; + minor errors; ++ exact

The performance of these methods is summarised in Table 7.1 for four test cases. The
table indicates that the best performance is achieved by a boundary condition method
compatible with the discretisation: i.e. a boundary condition based on the volume of
material points in MPM or a boundary condition applied on the edge of the support
domain in GIMP. Also, applying a boundary condition on the exact material surface per-
forms well when using GIMB, since the material surface is usually close to the edge of the
support domain.

For complex problems the location of the boundary is unknown. Therefore, two al-
gorithms were proposed to construct the location of the boundary condition:

* The Proximity Field Method (PFM) can construct the segments of the exact mate-
rial surface within each element based on the proximity to all material points.

* A contour algorithm for iso-rectangles can merge the edge of the support domains,
and removes the overlap and small gaps between support domains. Where these
gaps are not removed, they could lead to a boundary condition being incorrectly
applied within the material after small movements of the material points.

The detected boundaries follow the deformations correctly and lead to comparable de-
formations and stresses. Applying the boundary conditions at the material points in-
stead results in different deformations and stresses, and leads to a simulation crash when
the material points originally located at the surface move into the material due to the de-
formations.

To summarise:

* In MPM, the correct boundary location can be far from the exact material location.

* In GIMB the correct boundary location coincides with the support domains, which
are usually close to the exact material surface.

* Applying loads at material points can lead to incorrect stresses in both MPM and
GIMP. The errors grow significantly, potentially leading to a simulation crash,
when the list of boundary material points is not updated during movement or a
low number of material points per element is used.

° PFM can reconstruct the exact material boundary, while a contour algorithm for
iso-rectangles can reconstruct the contour of the GIMP domains.
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7.3. RISK FRAMEWORK FOR RESIDUAL DYKE RESISTANCE

RMPM is compatible with commonly used risk frameworks, and can be used to compute
the probability of flooding by evaluating the probability of the dyke height (H) being
lower than the external water level (Z = H — h). This limit state function Z is evaluated
for separate water levels 1, which can later be combined using fragility curves. The dyke
slope failure processes can consist of many subsequent slope failures. Each slope failure
may lead to flooding (H < h), a subsequent failure, or a stable situation. To compute the
probability of flooding, the probability of all possible processes leading to flooding or a
stable situation must be evaluated.

To reduce the complexity, previous research evaluated the sequence of most critical,
i.e. most likely, failures, i.e. the failures with the highest probability of occurrence. How-
ever, this approach ignores the possibility that larger, apparently less critical failures,
i.e. larger failures with a lower probability of failure, may lead to a higher probability of
flooding. Therefore, RMPM assesses all possible failures processes using Monte Carlo
simulation to compute the probability of flooding. In Chapters 5 and 6, RMPM is shown
to be capable of evaluating the failure process without prior assumptions on the likeli-
hood, shape and/or size of the individual failures.

7.4. DYKE SLOPE FAILURE PROCESSES

In Chapter 5 RMPM was applied to the slope failure of a simplified clay dike. The anal-
yses show that including residual dyke resistance with RMPM can lead to a significant
reduction in the probability of flooding compared to the probability of initial failure, a
reduction of over 80% in some cases. To reduce computational costs, the analysed dyke
had a high probability of initial failure. Therefore, the resistance of the dyke was unre-
alistically low, and the computed residual dyke resistance was likely to be conservative,
as secondary failures in dykes with a higher (more realistic) mean strength would be less
frequent.

The analyses of Chapter 5 indicate that spatial variability has a significant impact on
the entire failure process, causing a large variety of failure processes, even for the simple
dyke geometry considered. Initial failure did not occur in many simulations. Simula-
tions with an initial failure could lead to a stable situation or flooding after one or more
additional failures, and they could be classified as follows:

¢ Initial failure without secondary failures.
¢ Initial failure followed by (a) rotational secondary failure(s).
¢ Initial failure followed by a horizontal secondary failure.

These classes indicate that guidelines for remaining dyke resistance should consider the
possibility of rotational and horizontal secondary failures.

A higher degree of anisotropy of the spatial variability increases the probability of
initial failure, due to the increased possibility of semi-continuous weaker layers near the
slope face. These semi-continuous weaker layers also promote the subsequent propaga-
tion of failure, thereby increasing the probability of flooding and reducing the remaining
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dyke resistance. The reduction in the probability of flooding is lower than 25% for ma-
terials with layered spatial variability. Moreover, a higher degree of anisotropy increases
the size of the overall failure, even in cases where flooding does not occur, i.e. the con-
sequence of failure besides flooding is larger. With a lower degree of anisotropy, the
residual dyke resistance increases significantly, leading to a reduction in the probability
of flooding of 80% for materials with limited layering (6, <2 m).

Chapter 5 indicates that a smaller initial failure reduces the probability of flooding,
as more remaining resistance is available. Further investigation can provide guidelines
for computing the probability of flooding based on the likelihood, size and shape of the
initial failure. Chapter 5 also shows that, due to retrogressive failure, flooding can still
occur after very small failures, and modelling of the failure process is required to ensure
the prevention of flooding. Hence, since flooding can occur even for large remaining
geometries, guidelines using a "safe" remaining geometry (without modelling the failure
process) seem unconservative.

The probability of flooding decreases with a lower water level, due to the larger dyke
width at the lower water level which increases the remaining resistance. Since the prob-
ability of flooding significantly reduces with a lower water level, using fragility curves to
assess the probability of flooding due to macro-instability can be beneficial compared
to an assessment with a single design water level. Note that the external water level is
not constant in a real storm, which is something that has not been accounted for in this
work. Therefore, flooding may still occur if the water level rises after a slope failure at a
lower water level.

To summarise:

° RMPM can lead to a significant reduction in the computed probability of flooding
due to dyke slope failure.

* Ahigher degree of anisotropy increases the probability of initial failure and flood-
ing due to the presence of large semi-continous weak zones, which reduces the
remaining dyke resistance.

* A smaller initial failure reduces the probability of flooding.

» The water level has a significant effect on the probability of flooding. Designing a
dyke based on a single design water level may be unconservative, especially when
the remaining dyke resistance is being accounted for.

Chapter 6 shows the potential of 3D RMPM. It indicates that, while slope failures
may be approximated by 2D models when deterministic analyses are performed, with
the introduction of spatial variability slope failures become complex 3D processes even
for simple problem geometries. Retrogressive failures can occur in multiple directions,
increasing the likelihood of a secondary failure occurring. For a material with a mean
undrained shear strength constant with depth, the retrogressive failures can be classified
into three groups:

e Slope failure on the sides of the original failure triggered by the movement of the
initial failure.
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* A second failure behind the initial failure (in the direction perpendicular to the
slope) centered at the same location along the slope as the initial failure. These
failures have a similar size to the initial failure.

* A second failure behind the initial failure (in the direction perpendicular to the
slope) not centered at the same location along the slope as the initial failure. These
failures are smaller than the initial failure.

Of these three groups, slope failures on the sides of the initial failure are most frequent.
This is due to the fact that, in the remaining geometry, the steep original slope face is less
stable than the roughly circular face left behind by the slope failure. This slope face can
become unstable by pulling forces due to the movement of the initial failure.

In 3D, inherent slope instabilities may occur at any location along the embankment
slope. This so-called length effect increases the likelihood of initial failure, and thereby
the probability of flooding, compared to the probability of a single 2D segment. Sec-
ondary failures generally occur close to the original location of the failure, and are un-
affected by the length effect, i.e. the length effect only affects the probability of an ini-
tial failure. Chapter 6 shows that the increased resistance of a 3D failure compared to a
2D failure (the "3D-effect") can compensate for the length effect, thereby reducing the
probability of an initial failure in 3D compared to 2D (for slopes of moderate length in
the third dimension). Moreover, the 3D-effect also reduces the likelihood (and size) of
secondary failures. Chapter 6 highlights that a 2D analysis (without correction of the 3D
effects) is conservative compared to a 3D analysis, for both the initial failure as well as
for the failure process.

A lower coefficient of variation of the soil shear strength, or a lower degree of
anisotropy of the heterogeneity, reduces the variation of the stochastic response so that
the solution moves towards the deterministic solution based on mean properties. This
tends to increase the resistance against secondary failures, and the failure process may
tend to consist of many small chaotic failures. A large degree of anisotropy, on the other
hand, increases the likelihood and size of retrogressive failures. The failure process for
a large degree of anisotropy is more structured, with large failures spreading both along
and perpendicular to the slope.

A depth trend in the mean undrained shear strength tends to increase the resistance
along the base of the slope, reducing the likelihood of deep failures along the base. How-
ever, it also decreases the resistance higher up the slope, thereby increasing the likeli-
hood of shallower failures. For a small depth trend the total probability of deep and shal-
low failures decreases compared to a slope without a depth trend, whereas for a larger
depth trend the total probability of failure increases with respect to a slope without a
depth trend. The depth trend has the same effect on potential secondary failures, i.e. the
likelihood decreases for a small depth trend, but increases for alarger depth trend. More-
over, for a larger depth trend, the retrogressive failure process changes: weak material
constantly flows into the failure zone, gradually extending the failure zone in multiple
directions.

To summarise:

* 3D RMPM provides insight into the wide range of 3D slope failure processes.
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» The "3D-effect" increases the resistance against initial and retrogressive failures.
2D simulations of dyke failure processes are therefore conservative in comparison
to 3D simulations.

Secondary failures on the sides of the initial failure are more likely than retrogres-
sive failures perpendicular to the slope face.

Alarger degree of anisotropy increases the probability of secondary failures.

A small or large depth trend may increase or decrease the slope resistance, respec-
tively. A depth trend can change the failure process from discrete failure blocks to
a flow-like failure.

7.5. RECOMMENDATIONS FOR FUTURE RESEARCH

The work presented in this thesis contains certain limitations. Recommendation to
negate these in future research are as follows:

* Find consistent boundary conditions for non-Neumann boundary conditions and
other MPM (stress) improvement techniques. Accurate boundary conditions are
vital for the general applicability of MPM in user-practice.

° Random MPM is computationally too intensive for general practice. To reduce
computational costs, probabilistic tools such as subset simulation (van den Eijn-
den and Hicks, 2017) could be combined with RMPM, so that investigations at
lower (more realistic) probabilities of initial failure can be considered.

e The size of the domain and the number of material points have been limited in
this work. To investigate more complex (3D) geometries and improve the numer-
ical accuracy, reducing the computational cost of MPM is vital. Parallel compu-
tations have in this work been used to simultaneously evaluate multiple Monte
Carlo realisations. For complex problems, the individual realisations should also
be executed in parallel.

* Double-mapping with GIMP shape functions (DM-G) has been used in this thesis
to reduce the effect of cell crossing errors and incorrect positions of the integration
points. Further research is required to validate this technique, and to highlight its
numerical accuracy and convergence when modelling large scale deformations.

* The computational cost may be reduced by combining RMPM with RFEM such
that only those realisations with an initial failure are analysed using RMPM.

* Combining MPM and/or FEM with LEM can make both methods more appropri-
ate for industrial use. The fast, and industry standard, LEM can be used to com-
pute the probability of initial failure. FEM and/or MPM can then be used to com-
pute the deformations of slope failure. For example, MPM can be used to con-
struct the remaining geometry after initial failure, which may then be evaluated
with LEM (Voorn, 2021).
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* Apply RMPM on various dyke geometries to provide conservative estimates of the
probability of flooding given the size of the initial failure or the shape and size of
the residual dyke geometry. These estimates should consider the effect of spatial
variability, since both the initial and secondary failures will be drawn to (poten-
tially the same) weak zones. The guidelines should consider both rotational and
horizontal secondary failures. Guidelines for the reconstruction of the remaining
dyke geometry after initial failure could also be developed.

* Extend RMPM (and RFEM) to more complex constitutive models to extend the
applicability to (inter)national dyke assessments. The work in this thesis focused
on clay dikes founded on a stiff bed. It is to be expected that slope failure processes
for other dyke geometries, for example a sand dyke covered with a clay layer on
soft foundation layers, are significantly different. Other constitutive models are
required to extend RMPM to these soil types.

° An investigation into the constitutive model used in (Dutch) dyke assessments is
required. The assessments use a so-called ’critical state’ strength model to assess
the initial failure. This strength tends to be lower than the peak strength, which in
this work is used as the initial undrained shear strength, and therefore tends to be
closer to the residual undrained shear strength. However, the residual undrained
shear strength, i.e. the strength after large deformations, may be lower than the
critical state strength. Further investigations are required to understand the mate-
rial behaviour after large deformations.

* Use (R)YMPM to model centrifuge and/or large scale dyke failure tests to confirm
our understanding of dyke failure processes. Centrifuge tests can also be used to
investigate which properties affect the shape of the remaining profile.

* This work has used a constant external water level, and assumed a fully saturated
dyke. To study the effect of (excess) pore-pressures in the failure zone on the fail-
ure process, a phreatic surface dependent on the external water level should be
used. Moreover, RMPM should be extended from a total stress analysis to an ef-
fective stress (two-phase) analysis MPM (e.g. Zheng et al., 2022). The effect of the
duration of a storm on the probability of flooding may then also be studied.

° MPM may be combined with erosion models to account for other secondary fail-
ure mechanisms after macro-instability, such as wave overtopping or internal ero-
sion (van Bergeijk et al., 2021). It may also be used for investigating the interaction
between primary failure mechanisms.

* To improve the applicability of the results of RFEM and/or RMPM, standardised
techniques to evaluate and present random slope failure (processes) are required.
Analysing and describing the results of RFEM and/or RMPM is a time consum-
ing process, and RFEM/RMPM are therefore not often applicable for user practice.
Histograms of the failure load and failure size can give insight into the failure pro-
cess, but it is difficult to grasp all possibilities based on histograms which only
address one variable. Analysing a subset of realisations, by for example plotting
the deformations in a realisation, helps to fully understand the failure process in
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these realisations, but it can be difficult to extrapolate this information to the com-
plete set of realisations. High-order data processing techniques may be a good
candidate for better and faster quantification and/or classification of slope failure
processes.
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