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ABSTRACT

The tissue electrical properties of conductivity and permittivity affect the interactions of
electromagnetic fields in the body. These properties vary throughout the different tis-
sues as the tissue structure and composition varies. In this thesis, medical imaging and
diagnosis is used as primary example to motivate exploration of a novel regularization
application to MRI-based electrical properties tomography (EPT) method.

Total variation (TV) regularization has been shown to perform noise reduction in
the iterative Contrast Source Inversion EPT (CSI-EPT) method. An alternative Jacobi
iteration regularization to the known conjugate gradient formulation is elaborated and
applied to an E-polarized MRI fields scenario such that this thesis presents the Jacobi
step regularized CSI-EPT.

The alternative regularization method outperforms the known regularization method
in the reconstruction qualities of noise-suppression and edge-preservation in the simu-
lated MRI experiments using a virtual body model. Further advancements are also de-
scribed, such as multiple inner-iterations Jacobi regularization and an anatomical prior
initialization of the contrast function. Important future research topics are the incorpo-
ration and evaluation of the Jacobi step regularization into more advanced CSI-EPT ver-
sions, which are the three-dimensional and transceive phase based algorithms to correct
realistic MRI data.
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SAMENVATTING

De elektrische eigenschappen geleiding en permittiviteit van weefsel bepalen de inter-
acties van elektromagnetische velden in het lichaam. Deze eigenschappen variëren per
weefsel door de verschillende structuren en stoffen van het weefsel en zijn de focus van
de elektrische eigenschappen tomografie (EPT) technieken. In de thesis wordt medische
beeldvorming en diagnose aangehaald als primair voorbeeld voor het onderzoeken en
toepassen van een nieuwe regularisatie methode op EPT in de context van de tweedi-
mensionale E-gepolariseerde MRI velden.

Totale variatie (TV) regularisatie is een bekende methode voor onderdrukking van
ruis in de EPT-reconstructies van het iteratieve algoritme contrast bronnen inversie EPT
(CSI-EPT). De Jacobi iteratie regularisatie voor CSI-EPT is toegepast en vergeleken als
alternatief voor de reeds bekende gradiëntdaling regularisatie methode.

De resulterende Jacobi stap CSI-EPT methode heeft betere ruisonderdrukking en be-
houd van overgangen in de reconstructies van de virtuele MRI-experimenten vergeleken
met de gradiëntdaling methode. Andere contributies zijn ook beschreven in de thesis,
zoals meerdere Jacobi iteraties per CSI-EPT stap en een contrast functie initialisatie op
basis van voorkennis van de anatomische structuren. Belangrijke onderzoek vooruit-
zichten zijn het uitwerken van de driedimensionale Jacobi stap regularisatie en toepas-
sing van de regularisatie in EPT-algoritmes die de zendontvanger fase van realistische
MRI-data corrigeert.
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1
INTRODUCTION

Despite stable or increasing incidence in cancer rates in America and Europe, the mor-
tality rate in both regions of the world is in decline by 33% from 1990 to 2023 [1] and an
estimated decline of "6.5% among men and 4.3% among women in the EU total cancer
mortality rates between 2018 and 2024" [2]. The studies, respectively, note 3.8 million
averted deaths in the United States since 1990 and predict 6.2 million averted deaths in
Europe for a similar period. Siegel et al. [1] thus highlights that the progress of advances
in treatment are increasingly reflected by these declining cancer mortality rates1, while
[3] notes 5-year survival rates are suggested to increase due to better treatment and ear-
lier detection of cancers.

Supporting that continued decline is the ongoing research in accurate diagnosis and
prognosis of patients tumors. Treatment regarding benign and cancerous tumors is dif-
ferent, whereas benign tumors mostly require more monitoring than medical interven-
tion, cancer treatment involves a multitude of medical interventions such as prolonged
monitoring, surgery, chemotherapy and more. Hence it is pertinent to differentiate be-
tween these types of tumorous tissue.

Simultaneously, advancements in the medical imaging field provide ways to guide
such therapies or create new therapies also due to an advent in quantifiable biomark-
ers. In this thesis, medical imaging and diagnosis of the malignancy of tumours is used
as primary example to motivate exploration of novel regularization for a specific MRI-
based electrical properties tomography (EPT) method. The electrical properties (EP) of
conductivity and relative permittivity are material properties that affect the behaviour
of electromagnetic (EM) fields. These properties vary throughout the different biologi-
cal tissue types and are mostly determined by tissue structure and composition[4], [5].
Differentiation of benign and cancerous tumors is shown in literature [6]–[10]. Hence
EP-based diagnostics, and by proxy the EPT methods, are thus seen as potent in enhanc-
ing diagnosis accuracy.

Other applications of the EP profiles obtained from EPT include radiofrequency hy-
perthermia and the Specific Absorption Rate (SAR) determination; electroencephalo-
gram (EEG) and cardiac related applications (electrocardiogram and pacemakers); tissue

1Absolute mortality rates have risen in this period, however, the age standardized mortality rates (ASR) has
declined, which are the percentages cited here. ASR percentages take into account population growth and
aging effects.
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healing with EM pulses, impedance pneumography and plethysmography [11], [12].
There are multiple ways to measure the EP values, however, this report is on a spe-

cific EP reconstruction method using magnetic resonance imaging (MRI): magnetic res-
onance electrical properties tomography (MR-EPT). Using an MRI system is beneficial
compared to other measurement and reconstruction methods for multiple reasons. Be-
sides the good signal reception from soft tissues, MR-EPT does not require mounting of
electrodes onto the body like Electric impedance tomography (EIT) or its magnetic res-
onance variant MR-EIT[13]. Furthermore, MR-EPT requires only the control of the (ra-
diofrequent) EM field and no additional acoustic or electrical modes compared to other
EPT techniques[13].

Within MR-EPT a distinction can be made between two approaches to reconstruc-
tion of the electrical properties profile. The differential methods generally apply Helmholtz
equations to directly and quickly perform the reconstruction from the magnetic field
data of MRI at a local region of interest. However, these methods are noise prone and
are therefore outperformed by integral methods that are more robust against noise in-
fluences [13]. The integral methods take into account EM fields from throughout the
region of interest in order to find the EP values that can support those fields in an iter-
ative manner. Both the global and the iterative aspects of integral methods make them
computationally expensive compared to the differential methods.

Additionally, the problem of noise is ever-pervasive, even for integral methods, which
is when regularization is introduced. By utilizing the prior knowledge that EPs are in-
variant throughout one tissue type the final reconstruction is constrained by the regu-
larization factor into a reconstruction that resembles such anatomical structure. Total
variation (TV) regularization has been shown to perform noise reduction in the specific
Contrast Source Inversion EPT (CSI-EPT) method [14]. An alternative TV regularization
to that known formulation is described in [15] and this thesis proposes the novel Jacobi
step regularization in the application of CSI-EPT along the lines of that description.

1.1. RESEARCH QUESTION
The application of CSI for MR-EPT can differ depending on the assumed available MRI
field data resulting in different possible CSI implementations. In order to formulate the
research objective while defining the scope of this thesis project the following research
question is posed:

What are the characteristics in terms of performance and options of the Jacobi step
multiplicative regularization for CSI-EPT and the more advanced transceive phase
CSI-EPT?

The following sub-questions are defined to help answer the research question:

• SQ1: What is the alternative formulation of multiplicative TV regularization and
how is it implementable in CSI-EPT?

• SQ2: What is the reconstruction performance of the described implementation for
CSI-EPT?



1.2. CONTRIBUTIONS

1

3

• SQ3: What are the options to process transceive phase field data in multiplicative
regularized CSI-EPT?

1.2. CONTRIBUTIONS
Upon completion of the thesis project the following contributions have been made, for
which the numbering corresponds to the research sub-questions.

• C1: The Jacobi matrix inversion method is a low complexity partial differential
equation solution to the alternative regularization formulation for CSI-EPT.

• C2a: The resulting Jacobi-step CSI-EPT outperforms the known Conjugate Gradi-
ent based multiplicative regularization.

• C2b: Multiple iterations Jacobi step CSI-EPT was explored, yet did not significantly
improve reconstruction quality.

• C2c: A new type of contrast initialization was devised and compatibility with this
initialization method for the Jacobi step CSI-EPT was shown.

• C3: Analysis of the transceive phase CSI-EPT cost function shows increased po-
tential of encountering local minima.

Additionally, the contributions C1 and C2a have been summarized and communicated
to the scientific community in the article titled "Improved Multiplicative Regularization
for CSI-EPT" published in the IEEE Journal of Electromagnetics, RF and Microwaves in
Medicine and Biology. A copy of this article is attached in Appendix C.

1.3. OUTLINE OF THE THESIS
The outline of the thesis is as follows. Chapter 2 provides background information on
the EM field quantities in MRI and the basic contrast source inversion EPT method as
the focus of this thesis. Chapter 3 elaborates in a broad and theoretical sense the various
considerations involved in modeling and performing CSI-EPT and discusses in detail the
alternative Total Variation regularization. The chosen approaches and implementation
of EM field simulation and reconstruction algorithms are presented in Chapter 4 which
were used to create the numerical simulation results that are presented in Chapter 5.
Finally, a summary and discussion of the thesis are provided in the concluding Chapter
6.





2
BACKGROUND

2.1. MAGNETIC RESONANCE EPT
This section serves to explain the interactions of Magnetic Resonance Imaging (MRI) and
the electromagnetic (EM) fields that arise from the presence of material such as typically
a patient body in the MRI scanner. This includes summarizing the electromagnetic fields
in an MRI system and explaining how knowledge of the fields enables retrieval of the
electrical properties (EP) quantitatively.

The Maxwell’s equations describe the interactions of magnetic and electric fields in
the presence of material in a position r ∈ D , where D denotes the domain of the body
inside the MRI. These equations are given by:

−∇× Ĥ(r)+η(r)Ê(r) =−Ĵext (r)
∇× Ê(r)+ jωµ(r)Ĥ(r) = 0

(2.1)

where the circumflex denotes time-harmonic fields for the magnetic field strength Ĥ,
the electric field Ê and the external current density Ĵext ; and wherein η, ω and µ are the
per-unit-length admittance, angular frequency and magnetic permeability, respectively.
Finally the letter j is used to denote the imaginary unit. The admittance contains the EP
terms of conductivity σ and permittivity ε which are of interest to EPT as:

η(r) =σ(r)+ jωε(r) (2.2)

Note that pixel or voxel intensities of an MRI image are the consequence of magnetic
field quantities inside the scanner and therefore allows retrieval of the admittance and
EP values with knowledge of the other quantities in the Maxwell’s equations. The up-
coming sections describe the magnetic fields inside the MRI scanner (Section 2.1.1) and
the three types of mathematical formulations forming the starting point to retrieving the
EPs from these magnetic field quantities (Section 2.1.2).

2.1.1. MEASURED QUANTITIES FROM MRI
Before discussing the EPT formulations, an explanation of the field quantities measured
in MRI is given. At the end, emphasis is placed on a practical complex scalar description
for the relevant transmit and receive fields.

5
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The MRI data involves the bulk transverse magnetization (magnitude) in an object
and is measured as the induced voltage on a coil in response to the changing magnetic
flux through its surface. This transverse magnetization is the result of a radio-frequent
magnetic field, i.e. the RF excitation pulse, acting on the existing longitudinal magneti-
zation due to the main magnetic field referred to as the B0 field. In order to change the
orientation of the magnetization from longitudinal to transversal the RF excitation field
B1 is applied with the Larmor frequency ω which corresponds to the angular frequency
of hydrogen atoms in precession around the axis of the external field B0 (≈ 128MHz for
3T main magnetic field strength).

It is common to refer to two different RF fields during an MRI readout procedure.
The first is the transmit field or excitation field, which is responsible for changing the
bulk magnetization direction from the longitudinal axis into the transverse plane, and
the second is the receive field that is seen as the source of the retrieved MRI data. The
following paragraphs connect these field concepts to the measurable MRI quantities rel-
evant to MR-EPT.

Assuming the main magnetic field is directed in the negative longitudinal direction,
i.e. B0 =−B0iz with B0 > 0, then the total transverse RF field at location r in the MRI bore
and at time t can be represented as a sum of vectors

B1(r, t ) = B+
1 (r, t )+B−

1 (r, t ) (2.3)

where the B+
1 and B−

1 vectors now represent the transmit and receive fields respectively.
To elaborate on this further, the total transverse field is decomposed in its x- and y-axis
components, also referred to as the laboratory frame:

B1(r, t ) = B1x (r, t )ix +B1y (r, t )iy (2.4)

The representation of these x- and y-components is time periodic with the Larmor fre-
quency due to the proportional to the transmission current I cos(ωt ) in the MRI coils
and an amplitude A. Furthermore, attenuation occurs by position and frequency de-
pendent factors (Cx ,Cy ) as well as a phase-shift by position and frequency dependent
factors pertaining to conduction and displacement currents (α,β) [16].

B1x =Cx I A cos(ωt +φ+α)

B1y =Cy I A cos(ωt +φ+β)
(2.5)

In order to arrive at relevant magnetic field quantities, phasor notation and the Argand
complex representation of the transverse plane are applied. The phasor notation is em-
ployed as

B(r, t ) = Re
[
B̂(r, jω)exp( jωt )

]
, (2.6)

with j denoting the imaginary unit and for brevity the dependence of the complex pha-
sor coefficient on location and frequency is further omitted yet implied by the circum-
flex denotation, unless otherwise stated. The derivation starts by rewriting the cosines
as complex exponentials and aggregating terms into the complex phasor coefficients B̂1x
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and B̂1y :
B1x =Cx I A

[
exp( j (ωt +φ+α))+exp( j (−ωt −φ−α))

]
/2

=[
B̂1x exp( jωt )+ B̂∗

1x exp(− jωt )
]

/2

B1y =Cy I A
[
exp( j (ωt +φ+α))+exp( j (−ωt −φ−α))

]
/2

=
[

B̂1y exp( jωt )+ B̂∗
1y exp(− jωt )

]
/2

(2.7)

wherein the asterisk denotes complex conjugation. Note the complex conjugation is
merely a result of the introduction of the complex exponentials.

Next, the transverse plane is expressed using the Argand representation wherein the
real component of a complex quantity describes vector components along the x-axis,
while the imaginary component describes vector components along the y-axis. The re-
sulting complex Argand quantity is denoted with caligraphic letters. This is applied to
equation 2.4 and in the subsequent line the result from equation 2.7 is applied.

B1(r, t ) =B1x (r, t )+ j B1y (r, t )

=
[
B̂1x + j B̂1y

]
2

exp( jωt )+
[

B̂∗
1x + j B̂∗

1y

]
2

exp(− jωt )
(2.8)

Observe the separation of the positive and negative time convention exponentials. The
first term on the right hand side expresses a complex function (a + j b)exp( jωt ) where
an a quantity exists on the rotating x-axis ĩ+x and a b quantity on the rotating y-axis ĩ+y
[16], which is leading the rotating x-axis by π

2 radians. The latter is also observed in the
equation above where j exp( j (ωt ) = exp( j (ωt + π

2 )). Hence, this first term in equation
2.8 describes the positively rotating magnetic field B̃+

1 (the tilde denoting the use of a

rotating frame of reference) in terms of the laboratory frame phasor coefficients B̂1x
2 and

B̂1y

2 analogous to the a + j b quantity. A similar analysis for the field in the negatively
rotating frame of reference can be made and describes B̃−

1 .

B̃+
1 (r, jω) =

[
B̂1x+ j B̂1y

]
2 and B̃−

1 (r, jω) =
[
B̂1x− j B̂1y

]∗
2

(2.9)

Now the transition back from complex transverse plane to the vector representation is
made using the positively rotating x- and y-axis unit vectors ĩ+x and ĩ+y .

B̃+
1 = Re(B̃+

1 )ĩ+x + Im(B̃+
1 )ĩ+y (2.10)

And finally, by projecting the positively rotating frame onto the laboratory frame and re-
membering the orientation of the longitudinal field as pointing into the negative z-axis,
a left handed polarized field is retrieved while a right-handed polarized field is retrieved
from the negatively rotating field:

B+
1 (r, t ) =Re(B̃+

1 )
[
cos(ωt )ix + sin(ωt )iy

]+ Im(B̃+
1 )

[−sin(ωt )ix +cos(ωt )iy
]

B−
1 (r, t ) =Re(B̃−

1 )
[
cos(ωt )ix − sin(ωt )iy

]+ Im(B̃−
1 )

[
sin(ωt )ix +cos(ωt )iy

] (2.11)
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The steps of excitation and decomposition of the rotating magnetization are summa-
rized in Figure 2.1.

Figure 2.1: Excitation and the LH and RH polarized fields. 1) The initial bulk magnetization directed in the
negative longitudinal axis (into the paper), 2) RF excitation puts the magnetization in the transverse plane
and 3) the resulting rotating magnetic fields can be decomposed in left-handed (orange) and right-handed

(blue) polarized fields.

This polarization terminology is commonly used to refer to the left-handed field B+
1 as

the transmit field and the right-handed field B−
1 as the receive field. To finalize the con-

nection with actual MRI imaging, it is noted that the transmit and receive field distinc-
tion is used to express the receive coil induced voltage signal from a voxel at position r.
The following signal model corresponds to small flip angle conditions, yet this is merely
for simplification [16], [17]:

V (r) ≈−2 jωC (r)γτM0B̃
+
1 B̃−∗

1 (2.12)

with C containing attenuation factors in the tissue like the proton density ϱ but also re-
laxation effects [17], γ the gyromagnetic ratio, τ the RF excitation pulse duration and
the amplitude and phase terms come from the polar form of the transmit field as B̃+

1 =∣∣B̃+
1

∣∣exp
(

jφ+)
. The receive field is additionally weighted by the proton density, yet this

is tractable from transmit and receive field symmetry, object symmetry and imaging
setup [13].

Note the recurrence of the complex coefficients from equations 2.9 for which is em-
phasized that they are complex valued descriptions of the transmit and receive fields,
i.e. B̂+

1 and B̂−
1 respectively. To make this explicit the positively and negatively rotating

vectors are introduced [13]

i+ = 1
2 (ix + j iy ) and i− = 1

2 (ix − j iy ) (2.13)

and subsequently used on the vector containing the complex x- and y-axis phasor coef-
ficients of the total RF field, i.e. B̂1 = B̂1x ix + B̂1y iy . For future reference the same LH and
RH field expressions from equations 2.9 are thus retrieved as:
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B̂+
1 = i+ · B̂1 = B̂1x+ j B̂1y

2 and B̂−∗
1 = i− · B̂1 = B̂1x− j B̂1y

2
(2.14)

2.1.2. MR-EPT FUNDAMENTALS
There exist three MR-EPT fundamental mathematical formulations as described by Lei-
jsen et al. [13], that form the starting point(s) for EP reconstruction methods. In this
section the biophysical origins of the EP values are briefly introduced. Thereafter the
Maxwell’s equations as seen in equations 2.1 are reformulated to describe the EPs in
terms of the primary measurement data for MR-EPT: the transmit field B̂+

1 .

BIOPHYSICAL TISSUE PROPERTIES IN MRI
Before discussing the physical quantities, it is worth noting the biophysical origins of
the electrical properties of tissue. MRI systems operate at a limited frequency range (ap-
proximately 107 −108H z) and this range also characterizes the retrieved EP values from
MR-EPT, due to the frequency dependency of EP of various biological tissues. Depending
on the specific tissue, conductivity is increased by about one order of magnitude com-
pared to low frequency EM influences [5] and corresponds with the "ionic conductivities
commensurate with the nature and extent of their ionic content and ionic mobility" as
mentioned by [4]. However, relative permittivity shows a decreasing trend with increas-
ing frequency [4], [5]. The MRI frequency range is in the "β dispersion" (∼ 108H z), where
relative permittivity is caused mainly by polarization of cellular membranes [4].

There are techniques to quantify the magnetic permeability µ using MRI as well,
these are called Quantitative Susceptibility Mapping (QSM) techniques [18] via µrµ0 =
(1+χsus (r))µ0 with χsus the bulk magnetic susceptibility in a sample at position r. How-
ever the presented fundamental equations assume the local susceptibility is negligible
thus µ=µ0.

MAXWELL’S EQUATIONS FOR MR-EPT
Using the Maxwell’s equations (see eq. 2.1) expressions for the complex valued transmit
field (B̂+

1 ) can be found in terms of known EM fields. Such derivation starts with setting
the current density term Ĵext to zero because only outside the object is a current source
present, which produces the EM fields necessary for MRI. Furthermore, the constitutive
relation B̂1 =µ0Ĥ is used to find a modified Maxwell’s equations inside the object:

−∇× B̂1(r)+µ0η(r)Ê(r) = 0 r ∈ D
∇× Ê(r)+ jωB̂1(r) = 0.

(2.15)

These expressions form the basis of many MR-EPT methods. Detailed derivations of
the three different formulations, in differential and integral form, are presented in the
extensive EPT review by Leijsen et al. [13]. Section 2.2.1 presents the integral formulation
of the EM fields that is paramount to the basics of CSI-EPT. A small review of differential
EPT methods is given next.

DIFFERENTIAL EPT
MR-EPT approaches that fall in the differential category make use of the first and second-
order differential formulations for the transmit field. To arrive at these equations the



2

10 2. BACKGROUND

Maxwell’s equations are rewritten as such for the first-order differential Maxwell’s equa-
tions

B̂+
1 = 1

ω
(∂+Êz −∂z Ê+

1 ) and B̂−
1 =− 1

ω
(∂−Êz −∂z Ê−

1 ), (2.16)

and for the second-order differential Helmholtz’ equations

∇2B̂+
1 + i+ ·

[∇η
η

× (∇× B̂1)

]
+k2B̂+

1 = 0. (2.17)

The latter formulation takes into account the inhomogeneity of the object as seen in
the middle gradient term. For simplicity this term can be omitted, essentially assuming
homogeneity of the imaged object.

The differential formulations are sensitive to noise in the MR image and thus suffer
from low signal-to-noise ratio (SNR) imaging [13], [19]. A good exemplary differential
approach is the Helmholtz-based EPT (H-EPT) for its simplicity and polar opposite na-
ture compared to CSI-EPT. Helmholtz-based EPT assumes homogeneity of the object
admittance structure and so simply expresses equation 2.17 as

∇2B̂+
1 (r)

B̂+
1 (r)

=−k2(r). (2.18)

Using the connection between the wave number k and admittance at position r, the
electric properties are retrieved using

σ(r) = 1

ωµ0
Im

[
∇2B̂+

1

B̂+
1

]
and ε(r) =− 1

ω2µ0
Re

[
∇2B̂+

1

B̂+
1

]
. (2.19)

The advanced phase-based version named Simplified H-EPT [20] is also still being re-
searched, e.g. [19], [21].

Any noise in the measurement data is amplified by the second-order differential op-
erator and so results in artifacts in the reconstruction. The integral category contains
approaches that use the scattering formalism in the reconstruction of the EP structure
of the tissue. Due to the implicit summation of the integrals working as a low-pass fil-
tering effect, the integral approaches are more robust against noise than the differential
approaches.

2.2. SCALAR FIELD CONTRAST SOURCE INVERSION
The Contrast Source Inversion approach for EPT is a noise robust approach and useful
for reconstructing inhomogeneous structures with the addition of regularization mea-
sures which improves the noise robustness and edge preservation characteristic [22].
CSI is in the integral EPT category in which most methods are generally posed as a hy-
brid inverse problem. Other integral EPT methods are Variational Born Iterative Method
[23], Global Maxwell Tomography [24] and First-Order Induced Current EPT [25]. Hy-
brid inverse problems couple quantities from one physical domain with high resolution
to that of another domain with high contrast [26]. Examples are electrical currents in-
jected at the object domain boundary to use as the local sources to EM measurements



2.2. SCALAR FIELD CONTRAST SOURCE INVERSION

2

11

at the receivers like in MR-EIT or CDI (from electrical to EM) [27], [28]. In the case of
CSI-EPT one set of electric fields generates sources for the receive set of magnetic fields
to be measured (from EM to EM). It is noted here that the data acquisition domain S thus
coincides with the object domain D , where the sources are, due to the imaging physics
of MRI.

In order to explore CSI-EPT and the effects of regularization, the purpose of this sec-
tion is to explain the Scattering Formalism and the basic CSI-EPT theory.

2.2.1. SCATTERING FORMALISM
The scattering formalism achieves integral equations for the transmit and receive fields
from the Maxwell’s equations. The mathematical formulation starts by describing the
involved EM fields as a superposition of the incident fields and the scattered fields due
to the presence of an object: {Ê,Ĥ} = {Êi nc ,Ĥi nc }+ {Êsca ,Ĥsca}. The fields incident from
the source domain S abide the governing equations:

Êi nc = (k2
0 +∇∇·)Âext and Ĥi nc = η0∇× Âext (2.20)

wherein the wave number of the background medium is k0 =ω/c0, c0 is the electromag-
netic wave speed in free-space and η0 is the free-space admittance η0 = jωε0. The vector
potential Âext is the volume integral over S of the product of the Greens function G(r) and
the source external current density Ĵext (r) (i.e. the MRI coil current density):

Âext (r) = 1

η0

∫
r′∈S

G(r− r′)Ĵext (r′)dV (2.21)

G(r) = exp
(− j k0|r|

)
4π|r| (2.22)

The Green’s tensors in GD {w} and G+
S {w} represent the EM fields propagating through

the domain as the fields were effected by the contrast source. This Green’s tensor choice
considers a homogeneous background medium and not the presence of the MRI coils
[29]. Specific Green’s function is dependent on whether the reconstruction is performed
in three or two dimensions and whether coil loading is considered.
Similarly, the governing equations for {Êsca ,Ĥsca} and scattering vector potential Âsca

define the scattered fields, except the volume integral is over the object domain D and
with induced scattering current density distribution Ĵsca(r) = (η(r)−η0)Ê(r) in

Âsca(r) = 1

η0

∫
r′∈D

G(r− r′)Ĵsca(r′)dV. (2.23)

Finally, the transmit field B̂+ can be obtained from the vector potentials using the first
of the governing equations inside Faraday’s law from the modified Maxwell’s equations
2.15:

∇× (
k2

0 +∇∇·) Âu + jωB̂u
1 = 0, (2.24)

wherein the superscript u denotes either the scattered or incident field. The term ∇×
(∇∇· Âu) equals zero, thereby by solving for the magnetic field vector B̂u

1 . Now the inner
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product with the i+ vector obtains an expression for the transmit field terms for both the
incident and scattered fields:

B̂+;tot
1 = B̂+;i nc + B̂+;sca

1
B̂+;i nc

1 = ω
c2

0
∇̃ · Âext

B̂+;sca = ω
c2

0
∇̃ · Âsca

(2.25)

wherein ∇̃ = iz∂
+− i+∂z .

2.2.2. CSI THEORY
Contrast Source Inversion was first introduced by Kleinman and van den Berg [30]. The
algorithm is designed for iterative reconstruction of the complex index of refraction in
an inhomogenous object. In this thesis the use of CSI for EPT is detailed in the context of
MRI, where the contrast function χ is proxy to the index of refraction, which we are after
as it contains the EP values. The contrast function at the three-dimensional position
r ∈ D is

χ(r) = η(r)−η0

η0
= εr (r)−1− j

σ(r)

ε0ω
(2.26)

where domain D is the object domain, e.g. the patient body inside the MRI. This is the
same domain as used in the scattering formalism. It is assumed that loading of the coils
due to the presence of the object does not occur [29].

The object contrast is seen as a source for the scattering EM fields and the relation
between this contrast source and contrast function is

ŵ(r) =χ(r)Ê(r), (2.27)

with Ê the total electric field.
CSI is a two-step updating algorithm, in each step either the contrast function or

contrast sources are iteratively updated while the other is fixed. Given the prevalence
in the method, the circumflex notation of the contrast sources is dropped; despite the
time-harmonic dependence.

The term η−1
0 Ĵsca from the scattered vector potential (eq. 2.23) is expressed in terms

of this contrast source:

w(r) = η(r)−η0

η0
Ê(r) = 1

η0
Ĵsca(r), (2.28)

which allows the definition of the object and data operators using the scattered vector
potential Âsca . The object operator describes the scattered electric field quantity at po-
sition r due to the presence of the contrast sources w:

GD {w}(r) = Êsca(r) = (k2
0 +∇∇·)

∫
r′∈D

G(r− r′)w(r′)dV (2.29)

Similarly, the data operator G+
S {w}(r) is defined as the scattered transmit field that is de-

pendent on the contrast sources:

G+
S {w}(r) = B̂+;sca

1 (r) = ω

c2
0

∇̃ ·
∫

r′∈D
G(r− r′)w(r′)dV (2.30)
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DEFINING THE COST FUNCTION

In the next step the required incident EM field quantities are either estimated from a
reference scan or are simulated [13]. Recalling the superposition of the EM fields in Sec-
tion 2.2.1, the sum of electric fields given a contrast function and sources is shown as
Êi nc +GD {w}(r) = Ê. Multiplying the sum with the contrast function gives the object
residual ρd (r) pertaining to a given contrast function:

ρd (r) =χ(r)
(
Êi nc + Êsca − Ê

)
=χ(r)Êi nc +χ(r)GD {w}(r)−w(r), (2.31)

A low object residual value implies there is agreement in the contrast function and
the total electric field. Simultaneously, the data residual ρs (r) provides the connection
between the MRI acquired transmit field data and the contrast function:

ρs (r) = B̂+;sca
1 (r)−G+

S {w}(r) (2.32)

Finally, the goal is to minimize these residual terms such that the reconstructed contrast
function and sources correspond to the known incident electric field and the scattered
transmit field data. First, the residuals from throughout the imaging domain are col-
lected and normalized to form the object cost FD and data cost FS

FD (w,χ) =
∥∥ρd

∥∥2
D∥∥χÊi nc
∥∥2

D

and FS (w) =
∥∥ρs

∥∥2
D∥∥B̂+;sca

1

∥∥2
D

, (2.33)

where the L2-norm of a function f (r) is defined as
∥∥ f

∥∥2
D = ∫

r∈D | f (r)|2dV .
CSI-EPT can also accept multiple EM measurement data sets, which are also referred

to as the N different EM excitations. Consequently, the total cost function for CSI-EPT is

F (w,χ) =
∑N

q=1

∥∥ρd ,q
∥∥2

D∑N
q=1

∥∥∥χÊi nc
q

∥∥∥2

D

+
∑N

q=1

∥∥ρs,q
∥∥2

D∑N
q=1

∥∥∥B̂+;sca
1,q

∥∥∥2

D

(2.34)

ITERATIVE MINIMIZATION

The minimization is done with a two-step updating process. Each iteration n requires
first to update the contrast source w(n−1) while fixing the contrast function at χ(n−1). This
step is done using a gradient step of the total cost function v and a step sizeα. Hence the
contrast sources update is:

w(n) = w(n−1) +α(n)v(n). (2.35)

With the new contrast sources, forward calculation of the electric field is done according
to

Ẽ = Êi nc +GD {w(n)} (2.36)

wherein the tilde denotes estimation of a field due to the use of an iteratively updated
contrast source. Similarly, equation 2.30 now estimates the new scattered transmit field
from the updated contrast source. The final step in the iteration is the updating of the
contrast function with a similar gradient step used for the contrast source update. The
contrast source w(n) is fixed and the new contrast function is

χ(n) =χ(n−1) +β(n)d (n), (2.37)
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where β is the step size and d (n) the gradient of the total cost function with respect to the
contrast function χ. Calculation of the gradient vectors and step sizes is detailed in [22].

Alternatively, one can update the contrast function using

χ(n) = w(n) · Ẽ∗

|Ẽ|2 , (2.38)

which is the least squares solution to
∥∥χ(n)Ê−w(n)

∥∥2
D , which is also referred to as the CSI

or naive approach. Here, [22] notes that this result is "identical" to using the gradient-
step to update the contrast function. Evidently, the CSI-EPT approach uses a forward
calculation stage and two parameter updating steps.

THE LISTING

The following listing summarizes the CSI-EPT algorithm:

1. Determine the incident EM fields Êi nc and B̂+;i nc
1 and provide B̂+;sca

1

2. Determine an initial contrast source w(0) and from it the contrast χ(0)

3. Initial forward calculation: calculate the resulting EM fields with the appropriate
object and data operators:

B̃+;sca
1 =G+

S {w(0)}

and
Ẽ = Êi nc +GD {w(0)}

4. For each iteration n perform these steps until a convergence criterion has been
met or the maximum number of iterations is reached:

(a) Update 1: Update the contrast source while fixing the contrast functionχ(n−1):

w(n) = w(n−1) +α(n)v(n)

with a gradient step of the total cost function F (w(n−1),χ(n−1)).

(b) Forward calculation n: Recalculate the estimation B̃+;sca
1 and Ẽ fields with

the newly obtained contrast source.

(c) Update 2: Calculate contrast function χ(n) from
∥∥χ(n)Ẽ−w(n)

∥∥2
D

Or, alternatively, find
χ(n) =χ(n−1) +β(n)d (n)

with a fixed contrast source w(n) and a gradient step of the total cost function
F (w(n),χ(n−1)).

(d) Update costs: Update the source and object residuals and normalization fac-
tors to compute the total cost F (w(n),χ(n)).
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CONTRAST SOURCE INVERSION EPT FOR MRI

In order to apply Contrast Source Inversion to the MRI acquired magnetic field data,
knowledge of the complementary EM fields is required. Acquisition of such fields can
be done with different methods. Additionally, there exist considerations for the initial-
ization of contrast. Most importantly to this thesis, this chapter describes multiplicative
regularization (MR) in CSI-EPT and especially the alternative Total Variation regulariza-
tion. The current Chapter thus serves to highlight considerations in a broad and theo-
retical sense. The specific elaborations for the results of the thesis are presented in the
next Chapter 4.

An overview of the considerations is given in Section 3.1. Thereafter, the latter four
sections follow the sequential steps that determine the multiplicative regularized CSI-
EPT starting point.

3.1. CSI-EPT CONSIDERATIONS OVERVIEW
Figure 3.1 graphically presents an overview of the different considerations required for
the starting point of the CSI-EPT application. The four consideration domains are:

1. Input magnetic field data (Section 3.2): the transmit field data model that is the
input to the CSI data cost function (equation 2.33).

2. Complementary EM field simulation (Section 3.3): the factors considered and as-
sumptions made when simulating the EM fields complementary to the transmit
field data.

3. Initialization of contrast sources (Section 3.4): the strategies to generate a starting
contrast profile for the iterative algorithm.

4. Type of multiplicative regularization (Section 3.5): the options that are available in
applying a regularized contrast updating step.

The multiplicative regularized CSI-EPT algorithm starts by determining one of the input
data models to the CSI-EPT algorithm, thereby implicitly altering the presented basic
CSI-EPT algorithm (Section 2.2). This also affects the complementary EM field simu-
lation. Hence the order of discussion in the following sections is clockwise around the
MRCSI-EPT algorithm in Figure 3.1.

15
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MRCSI-EPT
Stopping criterion
   Tolerance
   Maximum iterations

Input magnetic field data

Full 
transmit 

field

Transceive 
field 

(BTRX)

Amplitude 
only field 
(AMPB)

Sec. 3.2

Field simulation:
Incident and scattered fields from multiple 

considerations 

RF 
shielding

Coil 
loading

Low Complexity vs High Fidelity

No RF 
shielding

External 
software

Spatially-
dependent 

Greens

FFT 
Green’s

‘In-house’

Sec. 3.3

Multiplicative regularization

Regularization parameter:
BA, Haffinger or Rob

Conjugate 
Gradient Jacobi-step 

Sec. 3.5

Initialization

Back-
propag

ation
Imaging 

prior

EPT-
based 
prior

Sec. 3.4

Figure 3.1: An overview of the different considerations for the reconstruction of the electrical properties using
CSI-EPT.

3.2. INPUT MAGNETIC FIELD DATA
The forward field propagation of the incident and scattered EM fields can in certain sit-
uations be formulated in terms of E-polarized fields (e.g. in the birdcage MR coil [31],
[32]) such that a two-dimensional version of the scattering formalism can be used for
CSI-EPT. The resulting 2D CSI-EPT version operates on single slices of the object, which
performs faster than the 3D version and is therefore more suited to extensively test the
multiplicative regularization. The 2D formulation of the forward scattering data opera-
tor is presented first in Section 3.2.1.

The non-ideal transceive magnetic field data is discussed next, which requires ad-
justment of the data cost function. The data cost function verifies a given reconstructed
contrast profile and subsequent fields against the measurement data. The latter is essen-
tially retrieved from a spatial-frequency domain representation (the k-space) in MRI and
aside from the effects in the signal model, given in equation 2.12, it is also dependent on
the specific MRI geometry, data transmission and reception sequences; and object imag-
ing region. However, to maintain a simple and ideal data model the initial assumption is
made that the full transmit and receive field are tractable from MRI.

Yet, more realistic implementations will have to do with amplitude and partial phase
information as can be read in Sections 3.2.2 and 3.2.3, wherein Transceive Phase As-
sumption based, Transceive Phase Correcting and Phaseless CSI-EPT versions are ex-
plained.

3.2.1. 2D FORMULATION
The 2D version of CSI-EPT is applicable to situations where a two-dimensional plane in
the MRI system is essentially E-polarized. An E-polarized field structure in the context
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of MRI is characterized by the presence of only longitudinal electric fields and transverse
magnetic fields. Such a field structure occurs in the transverse plane in the center of a
birdcage coil [29], also named the midplane. As is illustrated in the adapted Figure 3.2 the
longitudinally oriented rungs that carry external current densities result in longitudinal
electric fields and a two-dimensional magnetic field configuration [29].

Figure 3.2: E-polarized EM field inside the birdcage coil due to currents running in the longitudinally oriented
rungs. Adapted from [29, Figure 1a].

With the E-polarized field structure assumed, it is possible to present the governing
equations 2.20 as

Êsca
z (x) = k2

0 Âsca
T (x) and B̂sca

1 (x) = j
ω

c2
0

∇T × Âsca
T (x), (3.1)

where x now denotes a position situated in the MRI slice that coincides with the two-
dimensional midplane which is denoted asΩ. Furthermore, the transverse gradient vec-
tor is

∇T =
[
∂

∂x
,
∂

∂y
,0

]T

and lacks the longitudinal component due to the assumed E-polarized field. Important
to note is the lack of the gradient-divergence term in the scattered electric field and the
altered vector potential now defined with

Âsca
T (x) =

∫
x′∈Ω

GT (x−x′)w(x′)dV and GT (x) =− j

4
H (2)

0 (k0|x|), x ∈Ω (3.2)
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where the two-dimensional Green’s function is the Hankel function of the second kind
and order zero: H (2)

0 .
After applying the positive complex vector i+ = (ix + j iy )/2 the 2D scattered transmit

scalar field is obtained as

B̂+;sca
1 (x) = ω

2c2
0

(
∂x + j∂y

)
Âz (x) = ω

c2
0

∂+ Âz (x) (3.3)

The dependence on longitudinal variations in the transverse vector potential compo-
nents is missing compared to the three-dimensional implementation of CSI-EPT (see
equations 2.25) and instead the transmit scalar field is dependent only on transverse
variations in the longitudinal vector potential field.

3.2.2. TRANSCEIVE PHASE FIELD RECONSTRUCTION
The inversion problem posed in Chapter 3 assumes full knowledge on the amplitude
and phase of the transmit field, yet in reality only the amplitude is directly obtainable
from an MRI scan [13], [33]. The phase information is mixed with contributions from
the receive field in such a way that the retrieved magnetic field quantity is referred to as
the transceive phase field:

B̂+;T R X
1 (x) = |B̂+;tot

1 (x)|exp
[

j (φ+(x)+φ−(x))
]

(3.4)

wherein the φ+(x) and φ−(x) are the transmit and receive field phases respectively.
In order to apply CSI-EPT to such more realistic data, adjustments to the algorithm

are required. Either an assumption on the data receive phase is made or there is imple-
mentation of a receive phase reconstruction method.

In the following sections the transceive phase assumption and transceive phase re-
construction method are presented. However, first an analysis of the consequent modi-
fication to the data cost function is warranted.

ANALYSIS OF LOCAL MINIMA FOR MODIFIED DATA COST

An analysis of local minima of the original cost functional (equation 2.34) was presented
in [22], concluding that the likelihood of encountering a local minimum is decreased for
an increased number of EM excitations N . The same analysis is repeated here for the
modified data cost function that follows from the new magnetic field data model. The
new data cost function becomes

FS (w,χ,φ−) = η′S
N∑

q=1

∥∥∥B̂+;T R X
1,q exp(− jφ−

q )− B̂+;i nc
1,q −G+

S {wq }
∥∥∥2

Ω
,

η′S =
(

N∑
q=1

∥∥∥B̂+;T R X
1,q exp(− jφ−

q )− B̂+;i nc
1,q

∥∥∥2

Ω

)−1

,

(3.5)

where the adjustment to the receive phase component is a negative complex exponen-
tial multiplication in the residual as well as in the normalization η′S . Furthermore, the

incident field term compensates for the incident field term inside B̂+;T R X
1,q . The total cost
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function thus becomes

F (w,χ,φ−) = ηD

N∑
q=1

∥∥rD,q
∥∥2 +η′S

N∑
q=1

∥∥∥B̂+;T R X
1,q exp(− jφ−

q )− B̂+;i nc
1,q −G+

S {wq }
∥∥∥2

Ω
(3.6)

where the object cost is unaffected. Here the analysis continues by writing the variables
at the point p ∈Ω as a linear combination of the exact solution and some generic direc-
tion:

[w(p) χ(p)]T = [wex (p) χex (p)]T +β[∆w(p) ∆χ(p)]T (3.7)

wherein w ∈CN consists of N different coil setting excitations

w(p) = [w1(p) w2(p) . . . wN (p)]T (3.8)

β can be seen describing how far away from the exact solution our reconstruction of
point p is. Next the receive phase is defined as consisting of the true receive phase and
an arbitrary receive phase:

φ− =φ−;ex +∆φ (3.9)

And for brevity the fields are rewritten as f and necessary indications:

fq = B̂+;T R X
1,q and f i nc

q = B̂+;i nc
1,q (3.10)

The data cost function therefore becomes:

FS (w,χ,φ−) = η′S
N∑

q=1

∥∥∥ fq exp(− jφ−,ex
q )exp(− j∆φq )− f i nc

q −G+
S {wex

q }−βG+
S {∆wq }

∥∥∥2

Ω

(3.11)
Like in the original analysis, it is pointed out that most of the terms containing the

exact solution vanish in the cost function. As such, the original relation of exact solution
terms that sum to zero are used and shown here:

f tot
q = fq exp(− jφ−,ex

q )

f tot
q = G+

S {wex
q }+ f i nc

q

(3.12)

In words, the total field is the transceive field adjusted for the true transceive phase (line
1) but it is also the sum of the exact solution scattered field and the incident field (line 2).

However, when writing out the cost function using these two total field definitions,
the exact solution terms do not quite vanish but remain in the l2−norm as they are
adjusted by the arbitrary receive phase term. This is shown in the derivation below

FS (w,χ,φ−) = η′S
N∑

q=1

∥∥∥ f tot
q exp(− j∆φq )− f tot

q −βG+
S {∆wq }

∥∥∥2

Ω

= η′S
N∑

q=1

∥∥∥ f tot
q

(
exp(− j∆φq )−1

)−βG+
S {∆wq }

∥∥∥2

Ω
(3.13)

= η′S
N∑

q=1

NΩ∑
p=1

[[
f tot

q

(
exp(− j∆φq )−1

)]2 −2β f tot
q

(
exp(− j∆φq )−1

)
G+

S {∆wq }+β2G+
S {∆wq }2

]
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wherein the last line expanded the l2−norm using the NΩ different points p inside the
discretized 2D domainΩ, however, dependencies on location for the data operator, f tot

q
and φ−

q have been left out to prevent clutter.
Now shortly returning to the original total cost function (introduced in equation

2.34), the original analysis in [22] presents a quartic polynomial with respect to β for
the particular excitation q .

F
(
wq ,χ

)= ADβ
4 +2BDβ

3 +CDβ
2 +CSβ

2,

CS = ηS
∑
q

∥∥G+
S {∆wq }

∥∥2
S , (3.14)

where the three parameters AD , BD and CD originate from the unaffected object cost
function (see Appendix A.2 for clarification) and are assumed unchanged. The final pa-
rameter CS is changed as is seen in equation 3.13 and thus the point of focus.

The analysis in [22] continues by mentioning that the derivative of the polynomial
with respect to the β parameter is a cubic polynomial with two minima, the global and
local minima.

The quartic polynomial that is reached using the modified data cost is:

F (w,χ,φ−) =ADβ
4 +2BDβ

3 +CDβ
2

+η′S
N∑

q=1

[[
f tot

q

(
exp(− j∆φq )−1

)]2 −2β f tot
q

(
exp(− j∆φq )−1

)
G+

S {∆wq }+β2G+
S {∆wq }2

]
(3.15)

and when the derivative to β is employed, again a cubic polynomial is retrieved:

dFtot

dβ
= 4ADβ

3 +6BDβ
2 +2CDβ

+η′S
N∑

q=1

[
−2 f tot

q

(
exp(− j∆φq )−1

)
G+

S {∆wq }+2G+
S {∆wq }2β

]
= 4ADβ

3 +6BDβ
2 +2CDβ+E +2C ′

sβ

(3.16)

Finally, it is seen that an introduction of an arbitrary phase term only affects the deriva-
tive with a constant E . This simply denotes an additive and linear term w.r.t. β and is
therefore ineffectual to the conclusions of the original analysis of local minima of the
cubic equation.

However, there is still the question of the effects due to a modified normalization fac-
tor η′S on the now modified parameter C ′

S as compared to the original CS . [22] presents
the condition

CD

CS +CD
< 8

9
(3.17)

that must be satisfied to guarantee absence of local minima. The article then mentions
how violating this condition can occur due to a too large object normalization factor ηD

present inside CD relative to the data normalization factor inside CS .
In the case of the new data normalization factor η′S , the added exponential phase

component can increase or decrease the value η′S and thereby that of C ′
S . In the latter
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situation the condition is at risk of no longer being satisfied, while increasing the C ′
S is

inconsequential to the condition. Therefore it is concluded that phase reconstructing
CSI-EPT is encounters local minima more often than full transmit field CSI-EPT and so
may slow the reconstruction process.

TRANSCEIVE PHASE ASSUMPTION

The Transceive phase assumption (TPA) refers to the assumption where the phases of
the transmit and receive fields are similar and so one considers half of the measured
phase to come from the transmit field while the other half belongs to the receive field
[33]. Implementating the TPA into a transceive phase data based reconstruction, one
would set the compensating phaseφ−

q in equation 3.5 equal to half of the total measured
phase.

However, the TPA has been shown accurate in the case that a low main field strength
is used for symmetric objects with low permittivity, while a simple elliptical object can
already cause the scattered fields to become elliptically polarized and thus the TPA loses
its validity here [34]. The latter effect is also reported by the same article as exacerbated
by higher main field strengths (7T or higher) or high object permittivity. The ability to
perform EPT at higher field strengths and low geometric constraints on the imaged ob-
ject is desirable for the improvements in SNR and larger applicability of EPT, respectively.
For that reason a more involved CSI-EPT version exists which is described next.

TRANSCEIVE PHASE CORRECTION CSI-EPT
Stijnman et al. [33] presented a transceive phase based data CSI-EPT algorithm using re-
ceive field operators to reconstruct the transceive phase term. The so-called Transceive
Phase Corrected (TPC) CSI-EPT method adds a forward calculation of the receive field
after updating of the contrast. The receive phase φ− is found as the phase angles of the
total receive magnetic field. The incident receive field is simulated, while the conjugate
of the receive field in iteration n is reconstructed as

B̃−;sca;∗
1 (x) =G−

S {χ(n)E−
z } =− 1

ω
k2

0∂
−

∫
x′∈Ω

G(x−x′)χ(n)(x′)E−
z (x′)dV (3.18)

Note the transverse variation dependence in the Wirtinger derivative ∂− similar to the
E-polarized transmit field in equation 3.3.

The TPC CSI-EPT iteration can finish by updating the new cost function using the
modified data cost function from equation 3.5 after finding the receive phase from the
updated contrast sources, contrast and total electric fields (see subsection 3.2.2). The fol-
lowing paragraphs elaborate on the practical implementation of the TPC and an overview
of the TPC algorithm in terms of the fields follows. The calculation and implementation
of the scattered receive field (equation 3.18) is discussed in the next chapter.

Receive state TPC Due to the nature of the birdcage coil it is most efficient to transmit
the incident EM fields in quadrature rather than with linear excitation. In quadrature
transmission the receive field contributions are minimal, which means that the transmit
field acquires most of the input energy. However, this receive field is still required in the
reconstruction of the receive phase so a distinction is made between the use of TPC in
combination with quadrature transmission and use of TPC in linear transmission.
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For the purposes of using TPC in quadrature transmitted MRI there are two MRI
scans required. One for measuring the amplitude of the magnetic field (B+;tot

1 ), which
is done while the RF coils are in transmit mode, i.e. positive 90 degree phase shift be-
tween the currents on the two ports on the coil. The second scan measurement is done
in receive mode, when the rung currents experience a phase shift in the opposite direc-
tion, negative 90 degree phase shift between the coil ports. Using this scan the transceive
phase is measured.

Clearly there are two different incident electric fields required to use TPC for quadra-
ture transmitted MRI, one in transmit mode (further referred to as E+

z ) and one in receive
mode (E−

z ). This is not the case for the linearly transmitted MRI measurements, where
there is only one set of EM fields per measurement. Hence it is possible to directly ap-
ply equation 3.18 using the same electric field for the scattered receive field as for the
scattered transmit field, thus E−

z = Ez .

The TPC CSI-EPT algorithm The so-called Transceive Phase Corrected (TPC) CSI-EPT
method adds a forward calculation of the receive field as can be seen in step 4 of the
following 2D TPC CSI-EPT listing. Also note, previously in the data operator of basic
CSI-EPT the contrast source w is used inside this operator instead of the contrast and
electric field product as is done in TPC CSI-EPT in step 4b.

• Determine the EM fields Êi nc
z , B̂+;i nc

1 and B̂+;sca
1 ; and the receive fields Ê−;i nc

z ,

B̂−;i nc
1 and B̂−;sca

1

• Determine the initial (transmit) contrast source w(0) and from it the contrast χ(0)

• Initial forward calculation: calculate the total EM fields with the appropriate ob-
ject and data operators:

B̃+;sca
1 =G+

S {w(0)} and B̃−;sca;∗
1 (x) =G−

S {χ(0)E−
z }

and
Ẽ±

z = Ê±;i nc
z +GD {χ(0)E±

z }

• Determine the initial receive phase φ−

• For each iteration n perform these steps until a convergence criterion has been
met or the maximum number of iterations is reached:

1. Update contrast source with conjugate gradient using F (w(n−1),χ(n−1),φ−;(n−1))

2. Forward calculation of transmit E+
z (x)

3. Update contrast to χ(n)(x) using F (w(n),χ(n−1),φ−;(n−1))

4. Update receive phase (either in quadrature receive state or using linear EM
fields):

(a) compute E−
z during reception with χ(n)

(b) compute total receive field: B̃−
1 (x) = B̂−;i nc

1 (x)+ B̃−;sca
1 (x)

B̃−;sca;∗
1 (x) =G−

S {χ(n)E−
z }
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(c) retrieve receive phase φ−;(n) = angle(B̃−
1 )

5. update total cost with the modified cost functional F (w(n),χ(n),φ−;(n))

3.2.3. PHASELESS DATA RECONSTRUCTION
For a sense of completeness, potential CSI-EPT reconstruction based on phaseless trans-
mit field data is discussed as well. The book titled "Forward and Inverse Scattering Al-
gorithms Based on Contrast Source Integral Equations" by P.M. van den Berg describes
two options for implementation of phaseless input magnetic field data[15, Section 4.8].
There are the intensity and amplitude based residual errors to base the data cost func-
tional around. For a position p inside source domain S the intensity residual error cor-
responding to source q is

rS,q (p) =
∣∣∣B̂+;tot

q (p)
∣∣∣2 −

∣∣∣B̂+;i nc
q (p)+G+

S {wq }(p)
∣∣∣2

, (3.19)

whereas the amplitude residual error is

rS,q (p) =
∣∣∣B̂+;tot

q (p)
∣∣∣− ∣∣∣B̂+;i nc

q (p)+G+
S {wq }(p)

∣∣∣ (3.20)

The data cost functionals are still the same: FS (w,χ) = ηS
∑N

q=1

∥∥rS,q
∥∥2.

Note that both residual errors need the full approximated scattered transmit field,
i.e. its phase and its amplitude, to be reconstructed. The normalization terms ηS are the
same as the residual errors except for leaving out the scattered field terms right of the
negative signs. Updating of the step lengths α are respectively found from the roots of
a cubic equation or from solving a transcendental equation (the latter is generally not
doable algebraically and requires approximation).

Arduino et al. 2018 [35] describes the use of the intensity option (as described above)
and the solving of the step length using the cubic equation solution from [36]. Noisy
experiments were performed with SNR factor that represented 2% and 5% of the average
|B̂+

1 |2 (= SNRdb levels 34dB and 26 dB) and 200 iterations, while noting that stopping
early can be used as a regularization technique against noise.

3.3. ELECTROMAGNETIC FIELD SIMULATION
The complementary fields are the incident electric and magnetic fields and the initial-
ized scattered electric field. As mentioned these can be retrieved with EM simulation
software or from a reference scan. The following subsections detail considerations re-
garding influences on the retrieved EM simulations: RF shielding, coil loading, external
software simulation and the spatially-invariant FFT implementation. It is important to
note that this list is not complete. For example, this thesis discusses the E-polarized EM
simulation case only, therefore considerations for reference scanning and other EM field
configurations have not been documented.

The simulation approaches generally start with modeling the produced incident elec-
tric and magnetic fields as affected by the relevant MRI environment, i.e. methodical
considerations. Secondary are the implementation considerations. In general, taking
into account more realistic methodical considerations or increasing to higher fidelity
implementation can affect the CSI-EPT performance due to general higher complexity
of the algorithm.
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3.3.1. RADIOFREQUENCY SHIELDING
An RF shield component is implemented in the design of an MRI machine. It protects
external devices from the strong EM fields generated. [33] argues the RF shielding be
taken into account for reconstructing EP profiles in the case of realistic MRI measure-
ments "as these fields are only accessible via simulations". There are two documented
approaches for E-polarized field simulation: adjust the Green’s tensors or implement
mirror currents.

RF SHIELD ADJUSTED GREEN’S TENSORS

The first option requires that the imaging domain now contains an RF shield in the form
of a cylindrical perfectly electrically conducting surface which imposes the longitudi-
nal electric field at the boundary of the cylinder to become zero. Such an approach is
presented in [37], where the partial differential equation problem of equations 2.15 is
modified to become {−∆E tot

z −k2
bE tot

z = k2
b wz , inΩ

E tot
z = 0, on ∂Ω

(3.21)

wherein Ω and ∂Ω are the imaging domain and the RF shielding domain, respectively,
and the wz are the RF field sources. By solving for this particular PDE, Green’s tensors
can be obtained that apply to the propagation behaviour of the fields in the shielded
environment.

MIRROR SOURCES FOR RF SHIELD SIMULATION

However, due to the rigid nature of having to define the RF shield location and the loss
of spatial invariance of the Green’s tensors, Stijnman et al. [33] argues that using mir-
ror sources is better suitable to enforce a net-zero longitudinal electric field at the PEC
boundary than the previous method.

The shield implemented in such simulation of the incident electric fields, therefore
also the magnetic fields, is described in [33] and is based on placing mirroring currents
to simulate a PEC material cylinder just around the coils of the MRI machine. Mirrored
sources are placed at distance

d +Rs =
R2

s

R
(3.22)

radially from the central axis of the bore, wherein Rs is the radius of the shield, R is the
radius of the RF field electric sources and d is the distance between the shield and the
mirror sources [38].

3.3.2. COIL LOADING
Introducing an object into the imaging domain not only affects the scattered fieldsbut
also the incident electric fields due to loading of the MRI coils. The coil-object inter-
actions at high fields (>3T ) influence the incident fields [39] due to the altered current
distribution on the coil surface [40]. Furthermore, the birdcage coil reconstructions in
particular suffer from unloaded incident fields [40].

Hence reconstruction errors due to incident field simulations with coil loading ob-
jects has been investigated [39]. The study loaded and tuned the coils with various sub-
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stitute models the Ella Virtual Family model1, homogeneous dielectric sphere and the
empty coil. Subsequently, the incident fields were simulated and used for reconstruc-
tion of the Duke Virtual Family head model. The resulting reconstruction errors were
deemed not severe when a comparable reference object was used for the field simula-
tion, e.g. Ella model for the Duke model reconstruction, but otherwise blurring artifacts
occur [39].

Alternatively, [40] proposes a modified conjugate gradient method based on "hybrid"
sources operators instead of contrast sources based operators. The hybrid sources con-
sider the coil currents, occuring in the source domain S, and the contrast sources oc-
curing in the object domain D . Thereby this modified method iteratively updates the
incident fields as well as the scattered fields, whereas only the latter is updated in basic
CSI-EPT.

3.3.3. EXTERNAL SOFTWARE AND THE FFT
The previously discussed considerations for modeling the imaging domain are to be im-
plemented in either external simulation software or simulation is performed "in-house",
i.e. where the CSI-EPT algorithm is performed. This distinction roughly marks the trade-
off between high fidelity simulation and the complexity of implementation. For exam-
ple, the generation of explicit Green’s tensors using RF shield modeling and accurate coil
loading objects using external simulation software can be expected to achieve accurate
results.

Alternatively, the convolutions in the forward modeling operators GD {w} and G+
S {w}

can be formulated using the Fast Fourier Transform. However, this requires spatially-
invariant modeling of the object dependent EM influences (e.g. RF shielding) as the FFT
implementation requires spatial-invariance of the Green’s tensors [33]. Such implemen-
tation is lower in complexity and thus faster than the explicit Green’s tensor convolu-
tions.

3.4. INITIALIZATION OF CONTRAST SOURCES
Despite optimizing two variables in their respective solution spaces, i.e. the contrast and
contrast sources, Contrast Source Inversion in principle requires only one variable to be
initialized. Using the relation w =χE and its least squares minimizer

χ=
∑

i wi E∗
i∑

i |Ei |2

the other variable can be initialized accordingly. Hence the following initialization strate-
gies discuss either contrast or contrast source initialization.

Broadly speaking three strategies of initialization methods have been identified and
summarized here. The first is minimization of the data cost function. The second strat-
egy is based on prior anatomical knowledge of the imaged region or entire object. There-
fore this requires availability of such knowledge to initialize based on an (imperfect) con-
trast distribution. Finally, there is initialization based on other MR-EPT methods.

1The Virtual Family is a set of simulated body models based on the database of the IT’IS Foundation (see
https://itis.swiss/virtual-population/).

https://itis.swiss/virtual-population/
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Figure 3.3: Anatomical prior initialization example from MRI image to contrast contrast initialization.
Adapted from [41, Figure 12].

3.4.1. MINIMIZATION OF DATA RESIDUAL

Initialization of contrast source from excitation j is done using back propagation [22] for
which the following contrast source is initialized based on the imaging data and simula-
tion of the incident magnetic field B̂+;tot :

w(0)
j ,bp =

∥∥∥G+∗
S {B̂+;tot ;(0)

j }
∥∥∥2

D∥∥∥G+
S

{
G+∗

S {B̂+;tot ;(0)
j }

}∥∥∥2

S

G+∗
S {B̂+;tot ;(0)

j }, (3.23)

with G+
S and G+∗

S the data operator and its adjoint, which map the contrast sources to
scattered transmit fields while the adjoint operator does the opposite. This initialization
minimizes the starting data cost for the scattered and incident fields.

3.4.2. ANATOMICAL PRIOR KNOWLEDGE

When executing MR imaging for CSI-EPT it is thought within practical limits to per-
form simultaneous or sequential MRI or CT imaging, even in clinical setting, to acquire
anatomical prior information. Such prior information based on (other) imaging modal-
ities can give insight into the object characteristics of general tissue boundary locations
and potential dielectric volume distribution. Therefore, the anatomical prior may aid
in initializing a contrast distribution that brings the first iteration of the CSI-EPT algo-
rithm close to the optimal solution. Figure 3.3 illustrates this theoretical transformation
from an MRI image to a contrast initialization. A secondary option is the use of known
distributions from for example a Virtual Family object.
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3.4.3. EPT INITIALIZATION
The final initialization approach is to utilize other EPT methods based on either the same
MRI data or other modalities. The rationale is to potentially skip passed the initial CSI-
EPT iterations. As additional consideration one can focus on computationally inexpen-
sive EPT methods to reduce the total time to diagnosis further. A final method of stream-
lining the medical process is to make minimal use of different modalities and resources
by considering only MR-EPT methods and not from other modalities.

Three different MR-EPT initialization methods for three-dimensional CSI-EPT has
been investigated in [42]. The differential H-EPT method for initialization of CSI-EPT
reconstruction of the head still is susceptible to the noise according to the results. Fur-
thermore, initialization with a trained deep learning based model [43] has been shown to
yield considerably better results than performing CSI-EPT with a homogeneous contrast
profile as initialization.

3.5. MULTIPLICATIVE REGULARIZATION
Regularization is incorporating a priori information into the reconstruction process in
order to improve the reconstruction quality. In the current context, anatomical prior
information is mathematically formulated such that the final result is steered towards a
reconstruction with the wanted physical properties. This is done with a punishing term
that increases the cost of contrast profiles without these properties.

The Tikhonov regularization term, i.e. l2-norm regularization, is commonly used to
create smooth reconstructions thereby reducing noise influence, however, it is unsuit-
able for modeling discontinuities [15]. The property that is of interest to EPT is minimal
total variation, i.e. reconstructions with piece-wise constant structures. Thus applica-
tion of total variation (TV) regularization has two benefits: reduction of noise (the con-
stant value structures) and edge-preservation (the piece-wise characteristic) [15].

Usually the regularization term FR (χ) is additive to the cost functional,

Ftot (w,χ) = FS (w)+FD (w,χ)+λFR (χ),

however, this introduces a regularization parameter λ that defines the influence of the a
priori knowledge during the reconstruction process. The choice of the parameter value
is commonly found through iterative methods. However, this is cumbersome and com-
putationally expensive.

CONJUGATE GRADIENT REGULARIZATION

Through numerical experimentation the idea of multiplicative regularization (MR) orig-
inated and emerged into the form [15], [44]

Ftot (w,χ) = [
FS (w)+FD (w,χ)

]
FR (χ), (3.24)

wherein the multiplicative regularization term becomes the weighted-integral total vari-
ation FR (χ) = F (n)

T V (χ):

F (n)
T V (χ) = 1

V

∫
x∈Ω

|∇χ(x)|2 +δ(n)

|∇χ(n−1)(x)|2 +δ(n)
dV (x), (3.25)
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which is also elaborated in [22], [45]. Note the new δ(n) regularization parameter. The
purpose of this regularization parameter, instead of the additive regularization parame-
ter, is to have the influence of the regularization be dependent on the errors in the data
and object costs. Instead of determination of an arbitrary value λ, the MR regularization
parameter ’evolves’ with the reconstruction as it is a function based on the previous and
current contrast reconstructions.

The regularization factor punishes a large amount of variation in the reconstructions
due to the gradient factor in the numerator. Therefore it has a noise suppression effect
on the reconstruction. Furthermore, the multiplicative regularization equals one when
the input contrast function is χ(n−1), i.e. FT V (χ(n−1)) = 1. This occurs in the first update
step when the contrast function is fixed and therefore will not affect the contrast source
updates.

To update the contrast function using the regularized reconstruction method we can

no longer make use of the least-squares (LS) solution
∥∥χ(n)Ẽ−w(n)

∥∥2
D , i.e. the contrast

source error norm, and instead the contrast is updated with Polak-Ribière updating di-
rections d (n) as detailed in [22].

SECTION OUTLINE

The alternative formulation of multiplicative TV regularization is introduced first. Briefly,
the resulting Jacobi step CSI-EPT algorithm is introduced. Finally, Section 3.5.3 discusses
the various multiplicative regularization parameter functions further.

3.5.1. ALTERNATIVE TV REGULARIZATION
P. M. van den Berg [15] details an alternative formulation of the weighted-integral TV
regularization that allows the contrast to be updated and regularized with the numerical
Jacobi algorithm. It is characterized by its regularization strength in part being deter-
mined by the data cost functional and the mean of the LS-solution:

χ(n)
csi = argmin

χ

∥∥χ(n)Ẽ−w(n)∥∥2
D , (3.26)

for which the solution is

χ(n)
csi (r) = w(n)(r) · Ẽ∗(r)

|Ẽ(r)|2 . (3.27)

[15, Section 4.6] introduces an altered objective cost functional FI (w) by posing the mul-
tiplicative regularization to be a minimization of the changes between the regularized
contrast and the LS-solution

χ(n)
c = argmin

χ

[∫
r∈D

|χ(n)(r)−χ(n)
csi (r)|2dV

]
(3.28)

FI (w) =
∫

r∈D

∣∣∣χ−χ(n)
csi

∣∣∣2
dV∫

r∈D

∣∣∣χ(n)
csi

∣∣∣2
dV

. (3.29)

It is known that χ(n)
csi minimizes the objective cost functional FD (w,χ) as was seen in

equation 3.26. As both vector quantities are known to result in χ(n)
csi as optimal solu-

tion during any iteration, calculating FD and its replacement FI is equivalent. Therefore
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the original cost functional of equation 3.24 is reformulated by replacing the object cost
functional with the integral-over-integral version FI (w), hence the complete cost func-
tional becomes:

F (w,χ) =


∫

r∈D

∣∣∣χ−χ(n)
csi

∣∣∣2
dV∫

r∈D

∣∣∣χ(n)
csi

∣∣∣2
dV

+FS (w)

FR (χ), (3.30)

wherein FR (χ) is the new total variation regularization functional discussed next.

DERIVING THE NONLINEAR EULER-LAGRANGE EQUATION ALTERNATIVE

The alternative TV regularization form starts with reformulating the weighted-integral
TV cost functional F (n)

T V (χ) in equation 3.25. The denominator in the integral is now seen
as weights b(n) for the contents of the integral and the mesh size (∆x)2 is multiplied on
the top and bottom to facilitate discretization and gradient calculations later in the im-
plementation.

FR (χ) = (∆x)2

V

∫
D

[
b(n) ∣∣∇χ∣∣2 +b(n)δ(n)

]
dV , (3.31)

with the weights b(n) declared as

b(n)(r) = 1

(∆x)2

1∣∣∣∇χ(n)
csi (r)

∣∣∣2 +δ(n)
. (3.32)

The first integral term on the right-hand side can be decomposed as

b(n) ∣∣∇χ∣∣2 = div(χ∗b(n)∇χ)−χ∗div(b(n)∇χ), (3.33)

where div(f) =∇·f andχ∗ the conjugate of the contrast. Noting that the objective domain
D is a closed and bounded surface, the Divergence theorem is applied with the result:∫

D
div

(
χ∗b(n)∇χ)

dV =
∫
∂D

(
χ∗b(n)∇χ) ·νdA = 0, (3.34)

wherein ν is the normal vector on the surface ∂D . The vanishing conjugate contrastχ∗ at
the boundary of the object domain gives a zero-value for the first term of equation 3.33.
In the context of MRI this represents the assumption that there is no contrast present
close to the MRI coils inside the scanner.

Thus the regularization functional is now

FR (χ) = (∆x)2

V

∫
r∈D

[−χ∗div(b(n)∇χ)+b(n)δ(n)]dV. (3.35)

Applying calculus of variations [46] (specifically the Euler-Lagrange equation for the first
variation functional with respect to the χ∗ function) to the newly formulated cost func-
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tional in equation 3.30 a non-linear Euler-Lagrange equation is retrieved [15]: χ−χ(n)
csi∫

r∈D

∣∣∣χ(n)
csi

∣∣∣2
dV

F (n)
R (χ)

−

FS (w)+
∫

r∈D

∣∣∣χ−χ(n)
csi

∣∣∣2
dV∫

r∈D

∣∣∣χ(n)
csi

∣∣∣2
dV

 (∆x)2

V
div

[
b(n)∇χ]= 0

(3.36)

SOLVING FOR THE LINEARIZED REGULARIZATION EQUATION

Equation 3.36 is linearized with respect to the inner-iteration contrast difference term
χ(r) = χ(n)

csi +δχ(r) by retaining only the first order terms of δχ. After rewriting and using
the fact that FR (χcsi ) = 1, the linear equation for χ is reached such that it provides a
"regularized version of χ(n)

csi " [15, equation 4.76]:

χ(r)−
[

FS (w)
1

V

∫
r∈D

∣∣∣χ(n)
csi (r)

∣∣∣2
dV

]
(∆x)2∇· [b(n)(r)∇χ(r)

]=χ(n)
csi (r) (3.37)

Note, the influence of the weighted Laplacian term (∇ · [b(n)(r)∇χ(r)
]
) is controlled

by the data cost and the mean of the LS-solution contrast.
To find this regularized contrast function the equation 3.37 is represented as a lin-

ear system of equations (LSoE) by applying discretization to the object domain D and
denoting it as Ω. P pixels of the locations x ∈ Ω are arranged in a rectangular grid of
size N1 by N2 such that it enables gradient and divergence operations of equation 3.37
to be replaced with finite difference approximations. The linear system of equations is
represented using the vector quantities χ,χcsi ∈CP×1

Aχ=χ(n)
csi , (3.38)

where A ∈ RP×P represents the Laplacian finite difference operations for the P = N1N2

contrast values of equation 3.37.
A Jacobi iteration is used based on the regular splitting A = D+R to solve this system

of equations for χ. The idea behind this is to confirm that A is strongly or irreducibly
diagonally dominant and consequently the Jacobi iteration converges. Matrices D and R
respectively represent the diagonal and off-diagonal elements arising from the weighted
Laplacian partial differential equation (PDE). Forward and backward finite difference
approximations in the directions x1 and x2, denoted as ∆1,2 and ∇1,2 seen on the left
hand side in equations 3.39, are used to approximate the PDE because a central finite
difference approximation would not take into account the jumps in contrast that may
occur in the center points[15], e.g. contrast jumps from position xi+1, j to position xi , j .

∆1χ
(
xi , j

)=χ(
xi+1, j

)−χ(
xi , j

)
∆2χ

(
xi , j

)=χ(
xi , j+1

)−χ(
xi , j

)
∇1χ

(
xi , j

)=χ(
xi , j

)−χ(
xi−1, j

)
∇2χ

(
xi , j

)=χ(
xi , j

)−χ(
xi , j−1

)
,

(3.39)
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The contrast gradient term is now expressed as:

(∆x)2 ∣∣∇χ(
xi , j

)∣∣2 = 1

2

(∣∣∆1χ
(
xi , j

)∣∣2 + ∣∣∆2χ
(
xi , j

)∣∣2 + ∣∣∇1χ
(
xi , j

)∣∣2 + ∣∣∇2χ
(
xi , j

)∣∣2
)

, (3.40)

which is used in the expression for the weights b(n) of equation 3.32.
Finally, the calculation of weighted Laplacian term of equation 3.37 is presented:

(∆x)2∇· [b(n)∇χ(
xi , j

)]=1

2

{
∆1

[
b(n) (xi , j

)∇1χ
(
xi , j

)]+∆2
[
b(n) (xi , j

)∇2χ
(
xi , j

)]}
+ 1

2

{∇1
[
b(n) (xi , j

)
∆1χ

(
xi , j

)]+∇2
[
b(n) (xi , j

)
∆2χ

(
xi , j

)]}
,

(3.41)
which can be fully expressed

(∆x)2∇· [b(n)∇χ(
xi , j

)]=− 1

2

[
b(n) (xi+1, j

)+2b(n) (xi , j
)+b(n) (xi , j+1

)
+b(n) (xi−1, j

)+2b(n) (xi , j
)+b(n) (xi , j−1

)]
χ

(
xi , j

)
+1

2

[
b(n) (xi+1, j

)+b(n) (xi , j
)]
χ

(
xi+1, j

)
+ 1

2

[
b(n) (xi−1, j

)+b(n) (xi , j
)]
χ

(
xi−1, j

)
+ 1

2

[
b(n) (xi , j+1

)+b(n) (xi , j
)]
χ

(
xi , j+1

)
+ 1

2

[
b(n) (xi , j−1

)+b(n) (xi , j
)]
χ

(
xi , j−1

)
,

(3.42)

where the first term on the right-hand side is the diagonal element of A and the other
four are the off-diagonal elements.

Hence the LSoE for a particular point xi , j in the grid with i ∈ 1,2, . . . , N1 and j ∈
1,2, . . . , N2 becomes

(D +R)χ
(
xi , j

)=χ(n)
csi

(
xi , j

)
, (3.43)

where the relevant elements of the matrix-vector-product Aχ for the particular point are
as follows using a backward and forward finite differences gradient implementation:

Dχ
(
xi , j

)= 1+ 1

2
FS (w)mean

(∣∣∣χ(n)
csi

∣∣∣2
)

×[
b(n) (xi+1, j

)+2b(n) (xi , j
)+b(n) (xi , j+1

)
+b(n) (xi−1, j

)+2b(n) (xi , j
)+b(n) (xi , j−1

)]
χ

(
xi , j

) (3.44)

and

Rχ
(
xi , j

)=− 1

2
FS (w)mean

(∣∣∣χ(n)
csi

∣∣∣2
)

×{[
b(n) (xi+1, j

)+b(n) (xi , j
)]
χ

(
xi+1, j

)
+ [

b(n) (xi−1, j
)+b(n) (xi , j

)]
χ

(
xi−1, j

)
+ [

b(n) (xi , j+1
)+b(n) (xi , j

)]
χ

(
xi , j+1

)
+[

b(n) (xi , j−1
)+b(n) (xi , j

)]
χ

(
xi , j−1

)}
.

(3.45)
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Note how any row of A contains at most five non-zero values, one from the diagonal
matrix and four from the off-diagonals due to the neighbouring points of xi , j . This is
characteristic to the implementation of the 2-point finite difference approximation.

JACOBI METHOD AND CONVERGENCE

The regular splitting of A is of the form A = D − (−R) with D non-singular and both (−R)
and the inverse of D non-negative. As such, the updating rule for the Jacobi iteration of
a general LSoE Ay = b is described using the iteration matrix G = D−1(−R) [47, Chapter
4]:

yk+1 =Gyk +D−1b, (3.46)

wherein the k’th iteration vectorized quantity of the tissue contrast function is yk = χk

and b = χcsi . In addition, the best initial guess available is χ0 = χcsi and for brevity
f = D−1b moving forward.

In order to verify the validity of using (multiple) Jacobi iterations we set out to proof
that applying G an amount k times to any starting vector f and initial guessχcsi converges
the error between each successive χk to zero:

χk+1 −χk =Gk (f− (I −G)χ0) (3.47)

The requirements for guaranteed convergence of Jacobi (and Gauss-Seidel) iterations
retrieved from such a regular splitting contains the following points[47, Chapter 4]:

Requirements 1

• D, (-R) is a regular splitting of A, i.e. A = D − (−R) with D non-singular and both
(−R) and the inverse of D non-negative

• A is either strongly diag. dominant or irreducibly diag. dominant → proving non-
singularity of A (through Gershgorin’s theorem of disc contained eigenvalues [47])

• A is either positive monomial (for all elements of A the statement: ai j ≥ 0 is true)
and therefore A−1 is non-negative

A secondary set of requirements can be found using the spectral radius:

Requirements 2

• D, (-R) is a regular splitting of A, i.e. A = D − (−R) with D non-singular and both
(−R) and the inverse of D non-negative

• For a square matrix G with spectral radius ρ(G) < 1, I −G is non-singular and the
Jacobi iteration converges[47, Chapter 4]. Because the spectral radius of G ρ(G)
satisfies ρ(G) ≤ ∥G∥ for any matrix-norm of G, either the 1- or ∞-norm (absolute
column and row norms) of G can be evaluated and it can be verified that the upper
bound on the spectral norm ∥G∥ < 1 exists
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This second set is most general to proof and so these points are discussed in detail. The
proof starts with touching on the parameters in each of the elements of D and (−R) and
the regular splitting is verified. Finally it is shown that the spectral radius of G is bounded
between 0 and 1.

The matrices D and R contain the non-zero positive factorα= FS (w)mean

(∣∣∣χ(n)
csi

∣∣∣2
)
. Ad-

ditionally, it is noted that each row p of R represents the FD relations of the particular
point xi , j with its neighbouring four points and that the row contains the same Laplacian
weights present in the corresponding diagonal element in D , this sum factor is:

β(p) = [
b(n) (xi+1, j

)+b(n) (xi , j
)]+ [

b(n) (xi−1, j
)+b(n) (xi , j

)]
+ [

b(n) (xi , j+1
)+b(n) (xi , j

)]+ [
b(n) (xi , j−1

)+b(n) (xi , j
)]

,
(3.48)

and all these Laplacian weights are positive when choosing the regularization parameter
δ(n) positive.

SPECTRAL STABILITY ANALYSIS

Returning to the discretization of the 2D object domain Ω, the matrix D ∈ RP×P is a di-
agonal matrix of non-zero entries

dpp = 1+ α

2
β(p) (3.49)

Its determinant, as the product of these diagonal entries, is non-zero and therefore D is
non-singular. The inverse of D thus exists and is also non-negative due to the inverse
diagonal form: D−1 = diag(1/d11,1/d22, ...,1/dPP ) for all p = 1,2, ...,P .

Matrix (−R) is also non-negative: each row of the P ×P matrix (−R) contains the four
non-zero values that are a product of the positive values α

2 and now one of the terms in
β(p).

Therefore (D,−R) is thus a regular splitting of A and an upper bound on the spectral
radius of G is to be found using any matrix norm to prove convergence regardless of f
and χ0. The matrix ∞-norm is used since this reduces the calculation of the bound to
finding the maximum row 1-norm of G. The p’th row and m’th column element of G is
denoted as [G]p,m where p,m = 1,2, ...,P .

∥G∥∞ = max
p

P∑
m=1

| [G]p,m | = max
p

P∑
m=1

|[D−1(−R)
]

p,m | = max
p

d−1
pp

P∑
m=1

[−R]p,m (3.50)

where it is seen that each row of (-R) is scaled by the corresponding D−1 element and the
absolute notation can be dropped due to non-negativity of D and (-R). Now using that
the sum of the elements in row p of (-R) is the same as equation 3.48 (up to a scaling with
α/2), it can be substituted and the matrix norm of G is found from

∥G∥∞ = max
p

[
1+ α

2
β(p)

]−1 α

2
β(p). (3.51)

Now noting that the result of equation 3.51 has the form z
1+z and evaluating it with limits

for z on the interval [0,∞):

lim
z→0

z

1+ z
< ∥G∥∞ < lim

z→∞
z

1+ z
0 < ∥G∥∞ < 1

(3.52)
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the resulting absolute row norm has upper bound 1. Therefore the spectral radius of G
satisfies ρ(G) < 1 and the Jacobi iteration converges for the discretized screened Lapla-
cian PDE of equation 3.37. Furthermore, due to non-negativity of the problem (β(p) > 0
andα> 0) z is positive non-zero and therefore ρ(G) > 0. Finally, the result means that for
any iteration, the specified regular splitting (D, -R) confirms that A is non-singular and
its inverse non-negative [47, Theorem 4.4].

Therefore the Jacobi-step regularization can feature any number of inner-iterations
to perform the regularization using any initial estimate x0 while converging to a final
form of the first-order regularized contrast at that outer-iteration. To start the regular-
ized update in the vicinity of a contrast that is considered as optimal as is known the
initial estimate is the LS-solution contrast, i.e. x0 = χ(n)

csi . A single Jacobi iteration regu-

larized contrast χ(n) for iteration n is thus achieved using

χ(n) = D−1
(
χ(n)

csi −Rχ(n)
csi

)
(3.53)

STRENGTH OF THE REGULARIZATION

The global asymptotic convergence factor φc = limk→∞
∥∥Gk

∥∥ 1
k = ρ(G) is bounded by the

same limits seen in inequality 3.52. The lower the convergence rate the stronger the total
variation regularization for that outer-iteration n in the sense that each Jacobi iteration
produces a contrast function which is (geometrically) further away from the initial LS-
solution χ(n)

csi : ∥∥∥χK −χ(n)
csi

∥∥∥=
∥∥∥χK −χK−1 +χK−1 −χK−2 + ...+χ1 −χ(n)

csi

∥∥∥
=

∥∥∥(GK−1 +GK−2 + ...+G + I )(G +D−1 − I )χ(n)
csi

∥∥∥ (3.54)

where the difference between each Jacobi iteration result is found using equation
3.47 and the initial estimate f = D−1χcsi .

The factors α and β in equation 3.51 thus regulate the strength of the regularization
through iteration matrix G as well as the number of inner-iterations K . Embedded in
first two factors are the data cost Fs (w(n)), mean intensity of χ(n)

csi and the regularization

parameter δ(n).

Other solution methods
The Gauss-Seidel method (GS) is also valid using a similar matrix splitting to find a reg-
ularized version of equation 3.37. After some initial testing it was concluded that the de-
pendence of neighbouring pixels was too large, thereby strong contrasts were smeared
across the entire object domain. Thereby GS is deemed not suitable for this problem in
addition to the unfavourable sequential computation needed for GS, which is slow when
compared to the Jacobi’s parallel computation. Successive-over-Relaxation (SOR) and
its variants are reliant on a similar algorithm as Gauss-Seidel. Therefore these methods
were also disregarded.

Other methods suitable for solving the linear system of equations of equation 3.38
consist of other finite difference methods for sparse linear systems such as: poisson fast
solver, sparse direct solution, descent algorithms (other than the CG) and Krylov sub-
space methods. Furthermore, implementation based on Finite Element Methods and
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spectral methods may be suitable for solving the more general regularization equation
3.37 or higher order approximations of the non-linear Euler-Lagrange equation 3.36.

3.5.2. JACOBI STEP CSI-EPT
Regularization of the least squares contrast can thus also be performed by a Jacobi it-
eration instead of a conjugate gradient step (CG). Consequently, the two-step updating
process of CSI-EPT then features two differently-natured updating rules, one CG and
one Jacobi iteration based. To summarize, the Jacobi-step contrast updating for CSI-
EPT involves reformulation of the original weighted-integral TV multiplicative regular-
ization term (equation 3.25) into a weighted Laplacian PDE (equation 3.37). Each outer-
iteration of the Jacobi-step CSI-EPT performs finite difference approximation of the PDE
by applying one or more Jacobi iterations (i.e. inner-iterations).

The following is a listing summarizing the Jacobi-step CSI-EPT algorithm. The only
difference compared to basic CSI-EPT is the updating of the contrast in Update 2.

• Determine the incident EM fields Êi nc and B̂+;i nc
1 and provide B̂+;sca

1

• Determine the initial contrast source w(0) (see Section 3.4) and from it the contrast
χ(0)

• Initial forward calculation: calculate the resulting EM fields with the appropriate
object and data operators:

B̃+;sca
1 =G+

S {w(0)}

and

Ẽ = Êi nc +GD {w(0)}

• For each outer-iteration n perform these steps until a convergence criterion has
been met or the maximum number of iterations is reached:

1. Update 1: Update the contrast source while fixing the contrast functionχ(n−1):

w(n) = w(n−1) +α(n)v(n)

with a gradient step of the total cost function F (w(n−1),χ(n−1)).

2. Forward calculation: Recalculate the estimation B̃+;sca
1 and Ẽ fields with the

newly obtained contrast source.

3. Update 2: Calculate the intermediary CSI contrast functionχ(n)
csi from

∥∥χ(n)Ẽ−w(n)
∥∥2

D
and perform K inner-iterations by applying the Jacobi-step contrast update
based on the linear PDE approximation (D +R)χ(n) =χ(n)

csi :

χ(n)
K = D−1

(
χ(n)

K−1 −Rχ(n)
K−1

)
,

with χ(n)
0 =χ(n)

csi .



3

36 3. CONTRAST SOURCE INVERSION EPT FOR MRI

4. Update costs: Update the source and object cost as in the basic CSI-EPT and
use

F (n)
R (χ(n)

K ) = 1

V

∫
x∈Ω

|∇χ(n)
K (x)|2 +δ(n)

|∇χ(n−1)(x)|2 +δ(n)
dV (x),

to update the multiplicative regularization cost. Finally, update the total cost
function: F (w(n),χ(n)

K ) = (FD +FS )FR

3.5.3. TV DELTA PARAMETER

The δ(n) regularization parameter was originally required for differentiability [22], but
also regulates influence of the regularization factor and is originally chosen to increase
this influence as the iteration number increases [45]. As the δ(n) term decreases, the
weight of the total variation of the contrast function (i.e. the ratio of gradient terms)
increases within the regularization factor. A naturally decreasing term in the CSI method
is the object error term and thus the original regularization parameter is a product of the
objective functional and the reciprocal of the mesh size ∆ (resulting from discretization
of the imaging domainΩ) [22]:

δ(n) = FD,n∆
2, (3.55)

with ∆2 = 1/(dx dy ) using the mesh sizes dx and dy .
With the use of the object and data objectives on the object domain Ω the known regu-
larization parameters are:

• Chosen to decrease in value and named "Berg-Abubakar" as presented in [22]

δ(n)
B A = FD,n∆

2 (3.56)

• Experimentally found yet unpublished: "Remis"

δ(n)
Remi s =

FS,n

FD,n
∆2 (3.57)

• "Haffinger" regularization parameter was presented in the doctoral thesis [48, Sec-

tion 2.3.3.] as the mean of the variation of
∣∣∇χ(n−1)

∣∣2

δ(n)
H a f f =

1

V

∫
x∈Ω

|∇χ(x)|2dV = 1

NΩ

∑
i

(|∇χ(xi )|2) , (3.58)

wherein NΩ is the number of pixels in the masking that covers the object domain
and xi denotes the i’th 2D location inside that mask.



4
METHODS AND IMPLEMENTATION

This chapter serves to explain the implementation of methods that put the contributions
of Section 1.2 into full context. This is done along the lines of the considerations and
choices that were presented in Chapter 3.

Despite the primary focus of this thesis being the application and performance of the
Jacobi step regularization, the algorithmic order of CSI-EPT as presented in the previous
chapter is followed. Therefore, this chapter starts by presenting the simulation of the
field data, be it full or transceive fields. Thereafter, Section 4.2 elaborates on the CT
and MRI-based contrast initialization method. Finally, the specific implementations of
the two multiplicative regularization versions are described in Section 4.3. Other CSI-
EPT related parameters are mentioned when relevant at the results (Chapter 5). The
simulations, mappings and algorithm execution is all performed using Matlab (version
2022b).

4.1. EM FIELDS SIMULATION
The following sections are dedicated to the simulation of the EM data. The simulation of
all incident and scattered EM fields is elaborated first and adapted for calculation of the
receive fields for the Transceive Phase Correction CSI-EPT later in this section. The sim-
ulations start with one of the various 2D contrast objects which are to be reconstructed.
The field simulation implementations are explained along the lines of incident fields, RF
shielding influence, scattered field operators and the addition of noise to the field data.

4.1.1. CONTRAST OBJECTS
Various 2D objects were used to simulate illumination of a patient with EM fields to act as
the experimentation transmit field data and generate the complementary EM fields. For
most experiments the Ella model from the Virtual Family published by the IT’IS founda-
tion [49] was used. It is modeled to be anatomically representative of a 26 year old female
in terms of tissue values. In this thesis the conductivity and relative permittivity mapping
data are used to generate a contrast mapping of a 2D transverse slice of the Ella model.
From this model three different axial slices were picked to perform reconstruction with.

First, the pelvis model was picked for its ease of reference to to the article using the
same region [14], wherein the CG updating step is evaluated. The pelvis model addition-
ally features different levels of detail in the 2D tissue profile as seen in Figures 4.1 and 4.2.

37
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MRI is suitable for imaging the soft tissue differences in the brain. This makes the brain
region a prevalent subject for MRI research and is therefore also added to the regions to
evaluate EP reconstruction on.

In the abdomen slice the contrast object is convoluted by asymmetry. Especially in
the transceive phase field case this invalidates the Transceive Phase Assumption further
[33], [34]. Therefore, the abdomen region is the third slice from the Ella model to be used
in the reconstructions. The conductivity and relative permittivity profiles of the three
slices are shown in the Figures 4.1 - 4.6.

All contrast objects are discretized using a square meshing grid with mesh size 2.5
mm. Discretization of the imaging domainΩmakes the norm and convolution integrals
into summations over the P different pixels. Here P = N M refers to the discretization
in N rows and M columns. A binary mask which denotes the pixels inside the actual
virtual object is applied to simulate the true reception domain of an MRI, i.e. the air
surrounding the object or body does not transmit a signal and is excluded from such a
mask.

Figure 4.1: Original conductivity profile of slice
168 in the Ella Virtual Family model.

Figure 4.2: Original relative permittivity profile of
slice 168 in the Ella Virtual Family model.

Figure 4.3: Original conductivity
profile of head model (slice 319)
of the Ella Virtual Family model.

Figure 4.4: Original relative
permittivity profile of head
model (slice 319) of the Ella

Virtual Family model.
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Figure 4.5: Original conductivity
profile of abdomen model (slice 216)

of the Ella Virtual Family model.

Figure 4.6: Original relative
permittivity profile of abdomen

model (slice 216) of the Ella Virtual
Family model.

4.1.2. INCIDENT ELECTRIC FIELDS

The incident fields in the discretized imaging domainΩ are simulated by a summation of
the individual fields from 16 line sources. These are oriented in the longitudinal direction
and extend into infinity such that they only propagate longitudinally-oriented incident
electric fields. The sources are located uniformly at a radial distance R as is shown in the
Figure 4.7 by the red dots. In the results R is 0.352 m. The radiated fields from the line
sources at yi into the positions x ∈Ω are summed to achieve the incident electric field:

E i nc
z (x) =

16∑
i=1

−p(θi )
ωµ0

4
H (2)

0 (k0|x−yi|), (4.1)

wherein |x−yi| is the Euclidean distance and p(θi ) is a factor which determines the cur-
rent density of line source number i at the time of transmission. Employing a sinusoidal
current density factor like

p(θi ) = cos(θi ) θi = (i −1)
2π

16

simulates linear excitations, while the complex exponential factor exp( jθi ) simulates
quadrature excitation.

In similar fashion, the contributions from each of the line sources to the initial trans-
mit fields at position x is summed:

B̂sca
1 (x) =

16∑
i=1

p(θi )
ω

2c2
0

(
∂x + j∂y

)
GT (x−yi )J ext (yi ) (4.2)

Implementation of the RF shielding is done with the 16 mirror sources such that the
shield is at distance Rs = 0.3715 m. The mirror sources shown in Figure 4.7 (in blue) carry
the same current density as their red line source counterpart but with opposite sign. At
the dotted line a net-zero electric field is the result. The field contributions of these RF
line sources are also added to form the shielded incident EM fields.
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Figure 4.7: Transversal view of the line sources configurations that transmit the longitudinal electric fields
(red) and simulate the RF shield (the dotted circle) at a radius Rs by transmitting an opposing current (blue

line sources).

4.1.3. SCATTERED EM FIELDS

For simulating the scattered electric fields the ground truth contrast, object operators
and incident electric field are employed inside a Generalized Minimum Residual (GM-
RES) scheme to retrieve the total electric fields. GMRES is an iterative projection based
method [47]. It is used for simulation of the total electric field Ez as its vectorized equiv-
alent e is found from

Ez −GD {χEz } = E i nc
z

De = ei nc
(4.3)

The resulting contrast sources, i.e. the product χEz , are then used to simulate the scat-
tered magnetic fields with the data operators G+

S and its receive field equivalent G−
S (for

TPC CSI-EPT). In general the data and object operators used to update the scattered
magnetic fields are implemented with spatially-relative Green’s functions and the use of
the Fast Fourier Transform. These are detailed next.

FOURIER OPERATORS AND THE WEAK GREENS FUNCTION

The forward field calculations are performed using the Fast Fourier Transform (FFT) and,
due to the discretization of theΩ, the scattered EM field operators require the use of the
Weak Green’s function.

Throughout the CSI-EPT algorithms, the FFT is employed to find the inherent con-
volutions of contrast sources and (derivatives of) the Greens functions, i.e. the operators
are implemented as:

GD {w} = FFT−1 {
FFT{gE (x−x′)} ·FFT{w(x′)}

}
, x,x′ ∈Ω (4.4)
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G+
S {w} = 1

ω
FFT−1 {

FFT{g+(x−x′)} ·FFT{w(x′)}
}

, x,x′ ∈Ω (4.5)

wherein the gE and g+ functions are contractions of the wave-related constants, the
derivatives and the Green’s function for the scattered electric field and transmit fields,
respectively. Note that the Green’s functions are implemented using relative distances
x−x′ which warrants use of the FFT. This would not be the case when the RF shielding
or coil loading effects are also taken into account into the construction of the Green’s
functions. Spatial-invariance is then lost [33].

A weakened form of the Green’s function is required for the implementation of the
transverse Green’s function (equation 3.3) in a discretized domain. Otherwise poles at
GT (0) invalidate differentiation. The 2D weak Green’s function Gw (x) is described in [50]
and is of the form:

Gw (x) = − j

2k0a
J1(k0a)H (2)

0 (k0|x|) (4.6)

wherein J1 is the Bessel function of the first kind, a half the mesh size and k0 the free-
space wavenumber.

Using the Weak Greens function and longitudinal E fields designated in the E-polarized
field case, the 2D scattered electric field and transverse magnetic field operators are re-
peated as they were introduced in Section 3.2.1:

GD {w}(x) = k2
0

∫
x′∈Ω

Gw (x−x′)w(x′)dV (4.7)

G+
S {w}(x) = ω

2c2
0

(
∂x + j∂y

)
Âz (x) = ω

c2
0

∂+
∫

x′∈Ω
Gw (x−x′)w(x′)dV (4.8)

The partial derivatives used to define the g+ involve the first order Hankel function
H (2)

1 (u) and the vector distance r = x−x′ ∈R2 between location x and a particular contrast
source at x′:

∂x H (2)
0 (k0|r|) = ∂(k0|r|)

∂x

∂H (2)
0 (k0|r|)
∂(k0|r|)

= 2k0rx

2
√

r 2
x + r 2

y

H (2)
−1 (k0|r|) (using

d

d x
H (2)

0 (u) = du

d x
H (2)

−1 (u) )

=−k0rx

|r| H (2)
1 (k0|r|) (simplifying H (2)

−1 (u) =−H (2)
1 (u) )

(4.9)

Using this result and the similar partial derivative w.r.t. the distances in the y-direction in
the Greens term, one arrives at the Wirtinger partial derivative defining the propagation
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of the transverse receive fields:

g+ = k2
0∂

+Gw (x−x′)

= k2
0

2

[ − j

2k0a
J1(k0a)

][
∂x H (2)

0 (k0|r|)+ j∂y H (2)
0 (k0|r|)

]
= k2

0

2

[
j

k0rx

2k0a|r| J1(k0a)H (2)
1 (k0|r|)+ j 2 k0ry

2k0a|r| J1(k0a)H (2)
1 (k0|r|)

]
= k2

0

(rx + j ry )

2

[
j

2a|r| J1(k0a)H (2)
1 (k0|r|)

]
(4.10)

4.1.4. MEASURED FIELD NOISE
Implementation of noise is done similarly to [29], where it is described how separate
amplitude and phase noise must be applied due to the nature of acquiring transmit field
amplitude and phase data separately. The final resulting MRI SNR factor that can be
expected was simulated and reported in [51] to be approximately 55 (≈ 36dB) at main
field strength of 3T . Moving forward the SNR or noise levels are expressed in decibels
(dB). To test noise robustness or to compare to similar EPT methods the noise levels
used are either 30, 40 or 50 dB .

The superimposed noise models for the amplitude and phase noise are only applied
on the B̂+

1 transmit field data. The additive noise of the amplitude and phase are Gaus-
sian distributed with zero mean and variance of m|B | and var(∠B) normalized by the
chosen noise level, respectively, wherein m|B | is the median amplitude value of the gen-
erated transmit field and var(∠B) the variance of the transmit field complex phase.

4.2. IMAGING-BASED CONTRAST INITIALIZATION
The default contrast source initialization is the backpropagation presented in Equation
3.23. Unless mentioned otherwise, backpropagation is the initialization method used in
this thesis. In the transceive field data case, this method requires adjustment to compen-
sate the lack of transmit phase knowledge. Therefore, before the measured transceive
field is used in the adjoint data operator, it is multiplied with a complex exponential
containing an initial receive phase guess. For this the TPA is used due to its simplicity.

The remaining two initialization strategies are anatomical prior information based
and EPT based. Numerical results in the past were said to exhibit counterintuitive re-
construction behaviour when initialized with methods other than back propagation.
Hence in order to test robustness and in the ambition of finding further reconstruction
improvements from the initial experiments concerning the Jacobi-step regularization ;
investigating these other initialization methods was deemed interesting as secondary
experiments to the alternative MR CSI-EPT algorithm.

IMAGING MODALITY RESCALING

The biophysical and structural information that numerous imaging modalities can pro-
vide is well-documented. Due to the authors theoretical familiarity with CT and MRI, ini-
tialization based on these imaging modalities was developed. The motivation for testing
this initialization strategy is twofold: investigate whether the structural a priori infor-
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mation is beneficial to reconstruction times and determine what artifacts (if any) are
introduced due to the multiplicative regularization types.

The idea behind the imaging modality rescaling (IMR) method is to (hand)pick tis-
sue regions, e.g. bone, that are known to be prominent in either CT imaging or MRI and
rescale the Virtual Family contrast values to reflect the same prominence as the origi-
nal imaging modality. This rescaled contrast profile is then used as the initialization of
the contrast sources using the initially simulated E-fields. After all, in CT one can find
good contrast between bone structures and soft tissue, hence it is deemed interesting to
introduce such structural a priori information to the CSI-EPT algorithm.

Available were the EPs of the virtual family model at each slice. The admittance at
3T MRI images is dominated by the conductivity, which is the reason for the subsequent
discrimination of tissue regions based on the conductivity and prominance in the ap-
propriate imaging modality. These regions were grouped according to the conductivity
thresholds shown in Table 4.1 and the regions are shown in Figure 4.8.

Tissue type conductivity σ [S/m] σ in CT σ in MRI
blood vessels 1.249 0.05 1.2
rectum 0.705214 - 0.719235 0.1 0.5
muscle tissue (muscle; tendons) 0.719235; 0.498727 0.3 0.45; 0.7
skin 0.522704 0.15 0.15
bladder 0.298014 0.05 1
femoral bone and cartillage 0.0673524 - 0.162021 1 0.1
pectineal and pubic bones 0.0673524 1 0.1
other (fat, distal skin layers, etc.) 0.0697299 0.2 0.25

Table 4.1: Anatomical regions and their conductivity values in the Ella pelvis model, the CT and MRI modality
profiles have adjusted conductivity according to arbitrary assignment.

Figure 4.8: The division of anatomical regions in the conductivity profile of the pelvis model

The latter two columns in Table 4.1 show the new conductivity initialization values
for the CT and MRI based initialization profiles. Note that these values have been as-
signed based on the author’s understanding of the respective imaging modalities. Addi-
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tionally, for the goals of the experiment the use of anatomically accurate rescaling values
is not crucial. The prominance of bone in CT imaging is highlighted in the table with
borders and similarly the good contrast in soft tissue is highlighted in the MRI column.

After rescaling the conductivity, it is assumed that the relative permittivity has mostly
the same structure as the conductivity yet higher absolute value at the 128M H z fre-
quency of 3T imaging. Therefore the average ratio of relative permittivity and conduc-
tivity is taken from the original pelvis region and applied to the rescaled CT and MRI
conductivity values. This average ratio is 99.71 for the EPs of the pelvis region shown
in Figures 4.1 and 4.2. The initial conductivity profiles become as is shown in Figure
4.9. Imperfect structural information can also be tested by entering an offset slice just
above or below the intended slice. The resulting four anatomical prior initializations are
depicted in the appendix Figures B.8 - B.11.

Figure 4.9: Applying the imaging modality rescaling to the original conductivity profile (on the left) to obtain
the CT-based and MRI-based conductivity profiles (on the right).

4.3. MULTIPLICATIVE TV REGULARIZATION
The mix of forward and backward finite differences is part of the implementation to
achieve a PDE solvable with the Jacobi regular splitting method. The following para-
graphs describe further choices in the implementation of the Jacobi-step regularization.
In addition motivation and experiments for choice of regularization parameter and the
testing of multiple Jacobi inner-iterations are elaborated in this section.

The Conjugate Gradient (CG) and Jacobi-step total variation multiplicative regular-
izations (TVMR) are to be compared in terms of visual quality and post-reconstruction
noise. The starting point to both regularized contrast updating steps is the least-squares
update from contrast sources to a contrast profile as in equation 3.27. The implementa-
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tion of the CG contrast updating step is as documented in [22, Section 3].

4.3.1. IMPLEMENTATION OF JACOBI-STEP
The implementation of the Jacobi-step update does not require large sparse matrices as
was presented in the previous Chapter. The D and R matrices are calculated using the
equations 3.44 and 3.45 for each of the N × M points in the pelvis region. The Jacobi-step
is then applied according to Equation 3.53.

The original book section [15, Section 4.6] mentions to use a max{Fs ,0.01} function to
maintain the effect of the regularization, even when Fs is small, instead of simple weight-
ing of the Laplacian with the Fs value. However, use of such a function was regarded
arbitrary. Therefore, in favour of eliminating as much arbitrary parameters from the to-
tal regularized reconstruction, in this thesis the Fs value weighting, as seen in equations
3.44 and 3.45, is reinstated. There are adverse effects to using the maximum function in
more complicated structures as shown in Figure 4.10. Maintaining a high TV strength
causes the loss of detail in the reconstruction as can best be seen in the over-smoothing
of the blood vessels.

Figure 4.10: Demonstration of the adverse effects of using the arbitrary max function using two
reconstructions (absolute value of contrast function |χ|) both at 50 SNRdB noise level and 500 iterations.

4.3.2. REGULARIZATION PARAMETER STUDY

Though there are different δ(n) functions possible, there was no prior indication which
performs best under which conditions. The goal is to find what impacts the regulariza-
tion parameter choice has on the final reconstruction in terms of the visual image simi-
larity to the original, using the SSIM metric, and in terms of the residual noise, which is
measurable with a mean-square-error metric such as the RRE.

The Structural Similarity Index (SSIM) is a metric developed to measure image qual-
ity based on the degradation of structures in a processed image and the original [52].
The metric scores a 1 when comparing two pictures with exact similarity but a -1 when
comparing a processed image with reversed contrasts of the original. The three main
components of SSIM are image contrast, luminance and structure, which are based on
the mean image intensity and standard deviation. The components can be weighted
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with exponents to emphasize importance but in this thesis that was not done. Hence
the SSIM value of an original conductivity profile x and a reconstructed profile y is cal-
culated as [52]

SSIM(x,y) =
(
2µxµy +C1

)(
2σx y +C2

)(
µ2

x +µ2
y +C1

)(
σ2

x +σ2
y +C2

) −1 ≤ SSIM(x,y) ≤ 1, (4.11)

wherein µ and σ are the mean and standard deviations and C1 and C2 constants (pro-
portional to the image dynamic range) that prevent instability for zero-mean or zero-
variance signals.

The relative residual error (RRE) metric is and error-based metric. The square of the
error with the original image pixel value is normalized with the absolute of the same
pixel value. The sum of these individual RRE values is then summed into the final re-
sult. The RRE is used separately on the conductivity and relative permittivity parts of the
reconstructed contrast[39]:

RRE =
√√√√∑N

i=1

∣∣yi −xi
∣∣2∑N

i=1 |xi |2
, (4.12)

with x the original conductivity (or relative permittivity) profile and y the reconstructed
conductivity.

4.3.3. MULTIPLE JACOBI STEP

Throughout initial testing of the Jacobi-step contrast update it was noted that increasing
the number of inner-iterations K increases the strength with which the total variation
regularization is applied in each outer-iteration. Strong regularization thus refers to a
high cost from the regularization cost function relative to the object and data cost func-
tions.

The regularization strength ρT V of a particular Jacobi step regularized solution χK

is expressed using the norm distance that the regularized solution has "travelled away"
from the initial guess χ(n)

csi :

ρT V (χK ) =

∥∥∥χK −χ(n)
csi

∥∥∥∥∥∥χ(n)
csi

∥∥∥ , (4.13)

wherein
∥∥∥χK −χ(n)

csi

∥∥∥ is as described in equation 3.54. Through initial experimentation it

was found that a too strong regularization erases all detail in favour of producing a few
piece-wise constant contrast regions, while a weak regularization is unable to effectively
remove noise. This is further elaborated in Section 5.2.1.

Two methods were thought of to take advantage of this increase in regularization
strength:

1. Increasing inner-iterations may require less outer-iterations for similar performance

2. Varying the number of inner-iterations may lead to improved performance
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The first point could increase reconstruction speed due to a lowered number of cal-
culations performed in total. Especially gradient calculations and algorithmic exten-
sions into 3D or high fidelity implementations of the Green’s functions are computa-
tional bottlenecks that are then reduced. Such expensive calculation could be spared by
decreasing the number of outer-iterations yet increasing the number of inner-iterations.
This type of Jacobi-step CSI-EPT is referred to as static-K .

The idea to vary K throughout the different outer-iterations came from observing
relatively fast convergence (within 100 outer-iterations) to reconstructions with a strong
edge-preservation characteristic when using multiple Jacobi-steps (K ≥ 3). Similar to the
one exhibited on the left in Figure 4.10, these reconstructions were thought to serve as
fast and easy to achieve structural priors for the later stages of the reconstruction process
to refine. Hence potentially increasing the reconstruction performance. This type of
Jacobi-step CSI-EPT is referred to as dynamic-K .

Figure 4.11: The dynamic-K modes shown with a period T = L/5 for the maximum outer-iterations L = 500 as
described in Section 4.3.3.

Different modes have been tested. To test the frequency with which the inner-iterations
could be varied the period of change is defined based on the maximum number of outer-
iterations L: T = L/2,L/5,L/10,L/25. In other words, the period parameter determines
how quickly a high number of inner-iterations follows an outer-iteration with a low num-
ber of inner-iterations.

The functions used to define these modes are shown below and are rounded to cre-
ate an integer number of K inner-iterations for the outer-iteration n. The shapes of the
resulting dynamic-K modes at period T = L/5 is show in the Figure 4.11. It must be
noted that the introduction and implementation of such modes however introduces the
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arbitrary regularization parameter being the period T .

Upscaling (mode U) : K (n) = 1+ n

T

Downscaling (mode D) : K (n) = (1+ L

T
)− n

T

Oscillating (mode O) : K (n) = 1+|2sin(
nπ

T
)|

Sawtooth (mode S) : K (n) = 1+ 2mod(n,T )

T

Damped oscillation (mode A) : K (n) = 1+exp

(−2n

L

)(
1+ sin(

2nπ

T
)

)



5
NUMERICAL SIMULATION RESULTS

The hypotheses of interest are mostly related to the performance of the alternative Ja-
cobi step multiplicative regularization in comparison with the Conjugate Gradient vari-
ant. The outline of this chapter follows the rationale of adding more algorithmic com-
ponents in the form of field excitations and RF shielding. In the first Section 5.1, the Ja-
cobi step regularization performance is observed by varying the reconstruction regions,
noise level and regularization parameter. Adding multiple inner-iterations to the Jacobi
step CSI-EPT is discussed later, as well as applying the anatomical a priori initialization.
These presented are presented in Section 5.2.

The pelvis electrical properties profiles have been presented in Section 4.1. However,
the majority of the results will be presenting the contrast functions instead, for which the
ground truth (of the pelvis model) is seen in Figure 5.1. The line profiles that occasionally
present a 1D view of the reconstructed EPs are taken from line 41 as highlighted by the
red dotted line.

Figure 5.1: Contrast profile (in absolute value) of slice 168 in the Ella Virtual Family model. The red striped
line denotes the location of the line profiles for the pelvis (line 41).

All reconstructions were performed using a 2GHz Intel Core i7–8565U CPU, 8GB RAM
and Matlab version 2022b. On average the reconstruction times per 100 iterations of Ja-

49
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cobi step reconstructions for the abdomen, pelvis and head models were respectively
7.06, 21.43 and 24.57 seconds. The same regions reconstructed with the conjugate gra-
dient regularization took 6.70, 20.76 and 24.52 seconds per 100 iterations.

5.1. SINGLE JACOBI STEP UPDATING
In first instance, the reconstructions are made without RF shielding affecting the inci-
dent fields and with the default regularization parameter being the ’Berg-Abubakar’ reg-
ularization parameter. For this section the initialization is back-propagation. Unless
mentioned otherwise, the reconstructions are made using 500 iterations. Final results
have shown that extending the reconstructions past this point did not yield additional
significant results while quality improvement has generally slowed.

The following sections present general qualities of the single Jacobi step regularized
CSI-EPT reconstruction. Influences of applying multiple EM field excitations, the RF
shielding, transmit field noise level and the regularization parameter are analyzed.

MULTIPLE EM FIELD EXCITATIONS

Figure 5.2 shows that increasing the amount of EM excitations and using regularization
are both beneficial to the reconstruction due to noise reduction. The weak electric field
on the diagonal of the imaging domain creates artefacts in the reconstructions based on
only a single quadrature or linear excitation similar to the 2D reconstructions in Balide-
maj et al. [14, Figures 4(a), (b)]. There is less information available in these regions to
accurately reconstruct the electrical properties [14] and so the reconstruction is prone
to noise in these areas.

Furthermore, it is noted that the Jacobi step CSI-EPT reconstruction has improved
noise reduction and edge preservation characteristics compared to the unregularized
and CG regularized reconstructions. There are clearly flat regions of invariant contrast in
the muscle and skin layers of the Jacobi reconstructions, whereas these regions are still
noisy in the unregularized and even in the CG regularized reconstructions. The same
conclusions are drawn from the line profile comparisons in Figures 5.3 and 5.4.

Throughout the rest of this chapter reconstructions presented are made with the 3
different excitations, i.e. quadrature, horizontally linear and vertically linear excitation.
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Figure 5.3: Conductivity profile as reconstructed
by CG and Jacobi step CSI-EPT using 3 EM field
excitations and compared to the original profile.

Figure 5.4: Permittivity profile as reconstructed
by CG and Jacobi step CSI-EPT using 3 EM field
excitations and compared to the original profile.

RF SHIELDING

The RF shielding influence on the pelvis reconstructions is shown in Figure 5.5. Initially
no changes are noticed when compared to the unshielded reconstruction in Figure 5.6.
However, after comparing the RRE and SSIM metrics for all three reconstruction regions
in Table 5.1, a reconstruction quality improvement is observed when implementing the
RF shielding using the mirror sources. Judging from the 9.59% and 11.27% decrease in
RRE there is less residual noise left in the reconstructions due to the introduction of the
RF shielding. In addition, incorporation of the RF shielding benefits the reconstruction
of the relative permittivity as seen by the change in that particular SSIM metric.

Figure 5.5: Reconstruction of the pelvis when
using the incident fields originating from a

shielded MRI setup.

Figure 5.6: Reconstruction of the pelvis without
RF shielded MRI setup.

However, when the two reconstructions are compared using line profiles as pre-
sented in Figures 5.7 (a) and (b), it is seen that the differences between the two recon-
structions, shielded and unshielded, resides mainly in the center of the contrast profile
(see the red line). Since this is generally the most noisy part of the reconstructions due
to the consequence of the 2D formulation of the E-polarized assumption, this perceived
improvement in quality remains to be proven for three-dimensional implementation of
the RF shielded single Jacobi step regularization.
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Reconstruction Shield RRE σ RRE ε SSIM |χ| SSIM σ SSIM ε

Pelvis on 0.2470 0.2843 0.5029 0.8300 0.4870
off 0.2732 0.3204 0.4581 0.7874 0.4502
% change -9.59 -11.27 9.78 5.41 8.17

Head on 0.3719 0.2537 0.2771 0.6828 0.2797
off 0.3832 0.2779 0.2682 0.6742 0.2640
% change -2.94 -8.71 3.32 1.28 5.95

Abdomen on 0.1649 0.2425 0.3642 0.9233 0.2895
off 0.1880 0.2806 0.3343 0.8990 0.2715
% change -12.29 -13.58 8.94 2.70 6.63

Table 5.1: The effect of shielding on the reconstruction is observed in the improved metrics across all
reconstruction regions for the 40 dB noise level; the relative residual errors are 3 to 14% lower while the SSIM

improved with 1 to 10%.

NOISE INFLUENCE

The improved noise-robustness for the pelvis model is again exhibited in Figure 5.8. At
an increased input noise level of 30 dB the conjugate gradient reconstruction is heavily
corrupted by noise, while the Jacobi step counterpart produces a crude yet less noise
afflicted reconstruction.

At 40 and 50 dB input SNR the quality of both regularized reconstructions improve,
but the Jacobi step CSI-EPT remains better at producing noise-free reconstructions. Re-
construction of the center is tough at all noise levels; the center remains corrupted by
noise due to the small electric field strength. A similar analysis applies to the abdomen
region reconstructions as is presented in Appendix B.5.

When comparing the reconstructions of the head model in Figure 5.9 reveals a differ-
ent pattern however. The CG CSI-EPT arguably acquires a reconstruction of the head
model more faithfully than the Jacobi-step reconstruction does, despite the usual and
significant residual noise error in the former. Looking at Figure 5.9, the Jacobi step ver-
sion applies a stronger TV regularization; the different Jacobi step reconstructions at the
different noise levels feature piecewise constant regions but at the cost of details.

The difficulty in this particular reconstruction for the Jacobi step CSI-EPT may lay in
the increased contrast amplitude of the ground truth model (see the increased scale at
the bottom of Figure 5.9). Consequently, the mean value of the LS contrast χcsi is higher
than in the pelvis and abdomen models which results in a larger contribution from the
weighted Laplacian term in the original linearized regularization equation 3.37. There-
fore, this increase TV regularization strength in combination with the finite difference
dependencies of the Jacobi regularization and insufficient resolution of the discretiza-
tion lead to the lack of detail in the reconstruction. The separation of white and grey
matter in the brain is only discernible in the CG reconstruction at 50dB SNR.

The RRE and SSIM of the various reconstructions and noise levels are presented in
Table 5.2. The conductivity is better reconstructed across all regions and noise levels
than the permittivity. This is expected to be caused by the amount of information that is
available from a large contrast or admittance. At 3T MRI fields the conductivity portion
of the admittance is higher than that of the relative permittivity. Hence error in conduc-
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Figure 5.7: Differences in reconstructed EP’s with and without shielding (red lines) and the original
conductivity and relative permittivity profile (black lines). Reconstructions of the pelvis made with 40 dB SNR

transmit field noise and 500 outer-iterations.

Figure 5.8: Input transmit field noise of different levels affects the reconstruction quality in the comparison
between the two multiplicative regularized CSI-EPT algorithms. Using 500 outer-iterations and the

Berg-Abubakar regularization parameter.
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Noise comparison

Figure 5.9: Noise comparison of head model reconstructions using 500 outer-iterations and the
Berg-Abubakar regularization parameter.

tivity reconstruction is more costly to the total cost function than similar size errors in
the relative permittivity reconstructed values.

The RRE values achieved are compared to the three dimensional reconstructions of
a similar Virtual Family model named Duke in [39] (7T main magnetic field, quadrature
driven head-sized birdcage coil with SNR factor 50 ≈ 34dB SNR). The black lines in Fig-
ure 4b of the article presents RRE values for the conductivity profiles between 0.5 and 0.6
and approximately 0.4 for the relative permittivity profiles at 1000 iterations for the CG
regularized reconstruction using the Haffinger parameter. The RRE values of the Jacobi
step reconstructed conductivity and relative permittivity profiles are lower than those
values which is highlighted in bold in the Table 5.2 at approximately 0.4 and 0.3 RRE for
conductivity and permittivity respectively.

REGULARIZATION PARAMETER

In order to understand the influence of the TV regularization parameter δ(n), the differ-
ent options of Section 3.5.3 were used to reconstruct the pelvis at different noise levels. In
Figure 5.10 these reconstructions are presented. The reconstructions of the pelvis model
at 40 and 50 dB SNR in the left and right columns, respectively, while the rows depict re-
constructions using the Berg-Abubakar, Haffinger and Remis regularization parameter
δ(n).
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Reconstruction Noise level [dB ] RRE σ RRE ε SSIM |χ| SSIM σ SSIM ε

Pelvis 30 0.3868 0.5035 0.3779 0.7077 0.3714
40 0.2470 0.2843 0.5029 0.8300 0.4870
50 0.2157 0.2237 0.5455 0.8710 0.5240

Head 30 0.4123 0.2920 0.2381 0.6413 0.2401
40 0.3719 0.2771 0.2682 0.6828 0.2797
50 0.3647 0.2406 0.2916 0.6974 0.3036

Abdomen 30 0.2588 0.3858 0.2842 0.8522 0.2409
40 0.1649 0.2425 0.3642 0.9233 0.2895
50 0.1483 0.2081 0.3838 0.9391 0.3160

Table 5.2: Metrics from the single Jacobi step reconstructions at different noise levels produced from 500
outer-iterations, Berg-Abubakar regularization parameter and RF shielded incident field simulation.
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Figure 5.11: Progression of the different regularization parameter δ(n) settings ’Berg-Abubakar’ (BA, blue),
’Haffinger’ (Haff, purple) and ’Remis’ (green) during reconstruction of the pelvis model with 40dB SNR.

Notably, the improved edge-preserving and noise reduction characteristics that were
observed earlier are no longer observed when using the Haffinger and Remis regulariza-
tion parameters. By visualizing the progression of these parameter values throughout
the reconstructions a pattern emerged that is presented in Figure 5.11. During recon-
struction the BA parameter is several orders of magnitude smaller than the other two
regardless of the multiplicative regularization type.

When the regularization parameter is small the gradient and Laplacian terms1 gain
influence in the respective CG and Jacobi step regularization, thus increasing the regu-
larization strength that is applied to the reconstruction.

Applying the Haffinger or Remis regularization parameter to the Jacobi step CSI-EPT
head model reconstruction, a similar reconstruction is retrieved as the CG reconstruc-
tions in Figure 5.9 at 40 dB SNR. The regularized reconstructions of the head and ab-
domen using the different regularization parameters are seen in the appendix Figure B.3
and B.4. Table 5.3 shows that the Haffinger and Remis reconstructions of the head are
better in quality than using the stronger TV regularization from the Berg-Abubakar pa-
rameter for Jacobi CSI-EPT. Hence it shows the Jacobi step regularization can perform
similar to the CG regularization in situations when the higher regularization strength is
excessive for the head model.

5.2. ADDITIONAL CSI-EPT VARIANTS
From the multiple Jacobi step CSI-EPT the static inner-iterations variant is evaluated
first. The reconstruction quality is to be compared with the single Jacobi version in order
to conclude whether reconstruction speed-up occurs or not. Hereafter, in Section 5.2.1,
the amount of inner-iterations is varied throughout the reconstruction in an attempt to

1See equation 3.25 for the CG gradient terms and equation 3.32 for the Laplacian weights of the Jacobi step.
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Reconstruction δ(n) RRE σ RRE ε SSIM |χ| SSIM σ SSIM ε

Head CG Berg-Abubakar 0.3275 0.2310 0.4374 0.8388 0.3814
Haffinger 0.3363 0.2680 0.4337 0.8355 0.3797
Remis 0.3325 0.2352 0.4324 0.8344 0.3837

Head Jacobi Berg-Abubakar 0.3719 0.2771 0.2682 0.6828 0.2797
Haffinger 0.3318 0.2770 0.4336 0.8357 0.3889
Remis 0.3286 0.2292 0.4378 0.8392 0.3879

Table 5.3: The RRE and SSIM metrics are improved when using the Haffinger and Remis δ(n) parameters on
the head model. Results from 40dB SNR and 500 outer-iterations Jacobi and CG reconstruction.

improve reconstruction quality by the hypothetical principle of repeatedly applying a
crude structural prior. Finally, the anatomical prior initialization is evaluated in Section
5.2.2.

5.2.1. MULTIPLE ITERATION JACOBI REGULARIZATION

Figure 5.12: TV strength ρT V shown throughout Jacobi step reconstructions of the pelvis with the
Berg-Abubakar and Haffinger δ(n) parameters.

Introducing multiple Jacobi inner-iterations increases the TV regularization strength that
is applied as can be seen in the Figure 5.12. The distance between the regularized χK and
unregularized χ0 contrasts (see Section 4.3.3) is plotted for each outer-iteration during
the reconstruction of the pelvis at 40dB SNR. The higher the amount of inner-iterations
the more the TV regularization is applied. In addition Figure 5.12 also shows again that
the Haffinger δ(n) enacts lower regularization strength.

It is hypothesized that such increase in regularization can improve the reconstruc-
tion performance in either reconstruction time or visual quality by utilizing multiple
Jacobi iterations. Either a static increase or preset pattern of increased and lowered
amount of inner-iteration Jacobi steps is applied to achieve this and the results are de-
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Static-K reconstructions

Figure 5.13: Pelvis reconstructions using one, three and five Jacobi iterations for performing the regularization
at 40dB noise level and 500 outer-iterations.

scribed in the following two sections.

STATIC-K JACOBI

Figure 5.13 presents the reconstructions from applying either a single, three or five Jacobi
steps as the regularized contrast update. The increased TV strength is clearly reducing
the amount of detail in fine structures such as the blood vessels and lower contrast mus-
cle tissue at the final reconstruction iteration (500 outer-iterations).

From Figures 5.14, 5.15 and 5.16 it is noted that the static increase in inner-iterations
also does not result in early structural quality improvements over the single Jacobi regu-
larization.

DYNAMIC-K JACOBI

With the knowledge that high inner-iteration counts reduce reconstruction detail cer-
tain dynamic-K modes presented in Section 4.3.3 were expected to show similar low
detail reconstructions due to ending the reconstruction process on a high number of
inner-iterations. These are the Upscaling and Sawtooth modes. However, the resulting
reconstructions in Figure 5.17 show that the dynamic-K modes produce similar recon-
structions as the original single Jacobi reconstruction (highlighted in the box top left).
Still there is loss of detail in most of these reconstructions, mostly around the bladder
area where the faint muscle and bladder tissues seem merged with the surrounding tis-
sues.

At 30dB again the reconstructions become more crude and lose details. Figures 5.18
and 5.19 present the RRE throughout the reconstruction process of the pelvis model at
30dB SNR. The figures show that it can be beneficial to the reconstruction to limit the
reconstruction process to approximately 200 iterations. Reconstructions that result from
early-stopping at 200 outer-iterations are seen in Figure 5.20 and are noted as smooth
versions of the otherwise crude but longer running reconstructions from Figure 5.17.
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Figure 5.14: Relative residual error in the conductivity
reconstructions comparing the single and multiple Jacobi

step regularization CSI-EPT versions.

Figure 5.15: Relative residual error in the conductivity
reconstructions comparing the single and multiple Jacobi

step regularization CSI-EPT versions.

Figure 5.16: Sufficient SSIM of the contrast does not occur
earlier for the multiple Jacobi step versions than the regular

single Jacobi step regularization.
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Figure 5.18: RRE of reconstructed conductivity profile of the
pelvis model for 30dB SNR transmit field noise.

Figure 5.19: RRE of reconstructed permittivity profile of the
pelvis model for 30dB SNR transmit field noise.

Early stopping

Figure 5.20: Early stopping reconstructions of the Conjugate Gradient, single Jacobi step and dynamic-K
mode A regularized contrast updating using the Berg-Abubakar regularization parameter for 200

outer-iterations.

The increase in inner-iterations also does not result in early structural quality improve-
ments over the single Jacobi regularization as is seen in Figures 5.21 and 5.22. The hy-
pothesized mechanism of a priori knowledge improving reconstruction quality while the
subsequent iterations refine the details is concluded not to be present in these CSI-EPT
reconstructions.

5.2.2. CONTRAST SOURCE INITIALIZATION TESTING
The modality rescaling method from Section 4.2 was applied to initialize contrast for the
Jacobi step and conjugate gradient reconstructions of the pelvis, respectively seen in Fig-
ures 5.23 and 5.24. These figures compare the reconstruction results from the different
initialization methods back propagation (highlighted with a black border), the a priori
knowledge based initialization from CT and MRI imaging; and initializing the contrast
to be the ground truth contrast (the bottom left reconstruction).

Edge preservation of the Jacobi step regularization is present in areas where both the
initialization and the true contrast have strong edges. Examples are the bone structures
for CT initialization and bladder and blood vessels for MRI initialization. This results in
clearly defined bone tissue boundaries for the "CT no offset" initialized reconstruction
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Figure 5.21: SSIM of the absolute contrast reconstruction of
the pelvis model for 40dB SNR transmit field noise.

Figure 5.22: SSIM of the absolute contrast reconstruction of
the pelvis model for 30dB SNR transmit field noise.

and similar for the distinct muscle tissue boundaries and vessels in the MRI initialized
counterpart. However, when the initialization contains a similar strong edge but at the
wrong location, as is seen in CT initialization with a slice offset, this strong edge is seen
to persist throughout the reconstruction process. Hence between the right pelvic and
femoral bones in the "CT offset 1" reconstruction there is a small region of strong con-
trast remaining.

Finally, initializing with the ground truth contrast this strong edge preservation leads
to the retention of the intricate structures in the hands and the thin muscle tissue in front
of the bladder. These structures are usually smoothed during reconstruction.

In general, these reconstructions show that the Jacobi step regularized CSI-EPT is
mostly robust against slight structural errors in its initialization and at best can retain
sharp tissue boundaries when the initialization and ground truth agree in these areas.
Similar edge-preservation from a priori structural knowledge is not exhibited in the con-
jugate gradient regularized CSI-EPT counterpart. This is highlighted in the metric Ta-
bles 5.4 and 5.5. Here the RRE and SSIM scores of CG reconstructions are worse than
the Jacobi equivalents; hence the red coloring of these rows. On the contrary, utilizing
the back propagation initialization method for CG CSI-EPT still achieves relatively good
reconstructions compared to initializations from slightly offset structural priors.
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Initialization Reg. RRE σ RRE ε
SNR = 40 dB 50 dB 40 dB 50 dB

CG 0.2585 0.2178 0.4419 0.3864
CT 0

Jacobi 0.2394 0.2102 0.3138 0.3052
CG 0.3023 0.2807 0.3485 0.2981

MRI 0
Jacobi 0.2385 0.2176 0.2718 0.2238
CG 0.2953 0.2618 0.4140 0.3552

CT 1
Jacobi 0.2570 0.2425 0.3046 0.2818
CG 0.2804 0.2572 0.4007 0.3603

MRI 1
Jacobi 0.2495 0.2204 0.2906 0.2560
CG 0.2499 0.2124 0.3014 0.2246

BP
Jacobi 0.2470 0.2108 0.2843 0.2207

CG 0.3250 0.2960 0.3600 0.2990
GT

Jacobi 0.2120 0.2140 0.2330 0.1530

Table 5.4: RRE metrics from the CG and Jacobi step regularized reconstructions initialized with CT, MRI
modality rescaling or ground truth (GT) contrasts or back propagation (BP) at 40 and 50 dB transmit field
SNR. The red to green coloring scale highlights the results from bad to good quality compared to the other

values in the column.

Initialization Reg. SSIM |χ| SSIM σ SSIM ε

SNR = 40 dB 50 40 50 40 50

CG 0.4845 0.5307 0.8008 0.8658 0.3289 0.3963
CT 0

Jacobi 0.4910 0.5292 0.8256 0.8649 0.4415 0.4590
CG 0.4770 0.5091 0.7635 0.8086 0.3783 0.4212

MRI 0
Jacobi 0.5152 0.5619 0.8371 0.8751 0.5023 0.5416
CG 0.4709 0.5118 0.7734 0.8342 0.3444 0.4098

CT 1
Jacobi 0.4935 0.5149 0.8200 0.8419 0.4656 0.4796
CG 0.4737 0.4999 0.7709 0.8134 0.3431 0.3808

MRI 1
Jacobi 0.4879 0.5425 0.8175 0.8669 0.4703 0.5108
CG 0.5021 0.5467 0.8028 0.8680 0.4244 0.5020

BP
Jacobi 0.5029 0.5537 0.8300 0.8779 0.4870 0.5300

CG 0.5430 0.5890 0.7360 0.7920 0.4780 0.5420
GT

Jacobi 0.5930 0.6200 0.8960 0.8870 0.5780 0.6290

Table 5.5: SSIM metrics from the CG and Jacobi step regularized reconstructions initialized with CT, MRI
modality rescaling or ground truth (GT) contrasts or back propagation (BP) at 40 and 50 dB transmit field
SNR. The red to green coloring scale highlights the results from bad to good quality compared to the other

values in the column.



5

66 5. NUMERICAL SIMULATION RESULTS

F
igu

re
5.23:C

o
m

p
ariso

n
o

fJaco
b

istep
reco

n
stru

ctio
n

u
sin

g
th

e
in

itializatio
n

m
eth

o
d

s:b
ack

p
ro

p
agatio

n
(as

seen
in

earlier
co

m
p

ariso
n

s),C
T

an
d

M
R

I
im

agin
g

m
o

d
alities

w
ith

an
d

w
ith

o
u

tslice
o

ffsetan
d

u
sin

g
th

e
gro

u
n

d
tru

th
as

co
n

trastin
itializatio

n
.



5.2. ADDITIONAL CSI-EPT VARIANTS

5

67

F
ig

u
re

5.
24

:
C

o
m

p
ar

is
o

n
o

fc
o

n
ju

ga
te

gr
ad

ie
n

tr
ec

o
n

st
ru

ct
io

n
u

si
n

g
th

e
in

it
ia

liz
at

io
n

m
et

h
o

d
s:

b
ac

k
p

ro
p

ag
at

io
n

,C
T

an
d

M
R

I
im

ag
in

g
m

o
d

al
it

ie
s

w
it

h
an

d
w

it
h

o
u

t
sl

ic
e

o
ff

se
ta

n
d

u
si

n
g

th
e

gr
o

u
n

d
tr

u
th

as
co

n
tr

as
ti

n
it

ia
liz

at
io

n
.





6
CONCLUSION

This thesis has presented a novel regularization method in the electrical properties re-
construction problem that is Contrast Source Inversion Electrical Properties Tomogra-
phy (CSI-EPT). Reconstruction of the conductivity and relative permittivity of tissue based
on simulated MRI tractable data is shown to improve for the CSI-EPT method compared
to other method variants. Total Variation regularization was applied to perform noise
suppression while maintaining the edges of the piece-wise electrical properties profile.
The multiplicative nature of the regularization meanwhile limits regularization param-
eter optimization that is otherwise common to additive forms of regularization. The
Jacobi method is employed to enact the regularized contrast updating step in CSI-EPT,
hence named the Jacobi step CSI-EPT.

This proved to be a robust regularization method for noise suppression and edge-
preservation of the reconstructed tissue electrical properties, while the reconstruction
process is unchanged in computation time complexity compared to the already existing
Conjugate Gradient regularization.

The Jacobi step CSI-EPT is a more flexible regularization method than the CG regu-
larization method. The Jacobi step CSI-EPT responds strongly to the change of the regu-
larization parameter δ(n) which is noted in the applied regularization strength through-
out the reconstruction process. By changing the regularization parameter the recon-
structions of the head model changed from crude to more detailed yet also more noisy
reconstructions in similar fashion to the CG regularized reconstructions.

Furthermore, the option to apply multiple Jacobi inner-iterations within one CSI-
EPT iteration was explored. By increasing that amount of inner-iterations benefits in
terms of reconstruction quality or reduction of reconstruction time were hypothesized.
However, such benefits were not observed as a result of increased TV regularization
strength associated with each additional Jacobi inner-iteration. The general conclusion
on TV regularization strength reads: too strong regularization leads to crude or oversim-
plified reconstructions while too weak regularization is unable to suppress noise.

Additionally, unconventional initialization based on anatomical a priori informa-
tion, which is presumably known prior to the execution of the CSI-EPT methods, was
performed. Acquisition of the required transmit field data and conventional imaging of
the anatomical structure can theoretically be combined in the medical context of MR-
EPT. Hence utilizing the structural prior knowledge for initialization of the contrast was

69
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theorized as a potential improvement to the practical application of CSI-EPT. The results
for this anatomical prior initialization indicate that edge preservation of the Jacobi step
CSI-EPT is enhanced at areas where the initialization and ground truth contrast agree.
However, slight tissue boundary errors from the initialization contrast may persist and
then degrade the reconstruction quality in comparison to reconstructions from the com-
mon back propagation initialization method.

The Jacobi step regularization method is thus recommended for future implementa-
tions of CSI-EPT in order to further advancements in medical diagnostics or providing
more complete insight into the EM interactions inside MRI or other EM systems.

6.1. DISCUSSION AND FUTURE RECOMMENDATIONS
Given the proposed methods and resulting contributions presented in this thesis there
are some points warranting further discussion leading into future recommendations for
the Jacobi step regularization and general CSI-EPT method.

The results presented were made using field simulations for a 3T MRI machine. Know-
ing that the contribution to admittance shifts from the conductivity to the permittivity
when the main magnetic field strength increases, it is important to test the reconstruc-
tion quality at different main magnetic field strengths. Reconstruction accuracy of the
conductivity profile at 3T was better than that of the permittivity profile. This was ex-
plained by the higher share in admittance that the conductivity forms at 3T imaging
compared to the permittivity. This is reversed when the angular frequency increases in
higher main magnetic field strength MRI imaging.

Furthermore, the contrast initialization method in the current form is not extensively
tested and developed for application to entire regions of the body. The implementation
currently does not take into account the noise that is usually present in CT and MRI
imaging. As a consequence the initialization results only represent an ideal situation.

An obvious recommendation is to extend the Jacobi step regularization to the three-
dimensional CSI-EPT method presented in Leijsen et al. [53]. In three dimensions the
2-point finite difference approach to the weighted Laplacian operator ∇·(b(n)∇χ) should
result in an additional two points per voxel in the calculation of the Jacobi regularized
contrast.

This thesis presented the factors that influence the strength of the regularization.
Section 5.1 highlighted the situation where the strength was adjusted by changing the
regularization parameter when the region of interest changed from the pelvis to the head
model. However, ideally one would apply the Jacobi step regularization without having
to switch the parameter. For a potential full body 3D CSI-EPT reconstruction the ques-
tion arises whether it is appropriate to use the regularization parameter that guarantees
reconstruction quality in the pelvis or in the head region. Hence, it is recommended that
the strength of the Jacobi step regularization is better understood in terms of the input
noise level, the reconstruction regions of interest and the regularization parameter. Po-
tentially, a regularization parameter can then be found that maintains a balance in the
trade-off between noise-suppression and detail of the final reconstruction. Otherwise
there is the alternative of increasing resolution, e.g. using interpolation techniques or
during acquisition of the data, such that the finer structures in the EP profiles are less af-
fected by the stronger TV regularization. However, this not only increases computation
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times but also complicates either pre-processing or acquisition processes.
In the elaboration of the non-linear Euler-Lagrange equation of Section 3.5.1, the

first-order linearization with respect to the contrast difference term δχ leads to the Ja-
cobi step implementation. Van den Berg [15] states that such a first-order linearization
suffices for the purposes of finding a regularization method. Yet when allowing the sec-
ond order terms or an elaboration of the nonlinear Euler-Lagrange equation is employed
it could be argued that the minimization of the total regularized cost is better approxi-
mated. However, when such an elaboration was experimented with the resulting recon-
structions exhibited stronger regularization and thus again more crude reconstructions.
This was therefore abandoned quickly in the final days of working on the thesis.

The results in this thesis and the majority of the research on CSI-EPT are based on
simulations of the MRI data and fields, however, to evaluate practical applicability of the
algorithm a few general recommendations are mentioned.

Improving fidelity of the simulations allows for a more faithful evaluation of CSI-EPT
and the performance of the Jacobi step regularization. Such an improvement was shown
in [39] through taking into account the coil loading effect on the basis of contrast profiles
that are non-ideal yet available a priori in practical contexts. A specific improvement for
this thesis is the use of external EM simulation software to incorporate effects that influ-
ence the fidelity of the simulated field data such as coil loading effects and effects from a
fully modelled bird cage and RF shielding instead of the line sources approximation. Yet,
increasing the fidelity does not mean better results or more practical application. There-
fore, such modeling steps must be critically evaluated in terms of the practical complex-
ity versus the benefits in reconstruction accuracy that they may provide.

Finally, there is the issue of the non-ideal transceive phase field measurements. The
application of the Jacobi step regularization has been shown for the basic CSI-EPT algo-
rithm, however, the regularization has not been tested on the TPC CSI-EPT algorithm or
a similar transmit field amplitude only CSI-EPT algorithm. Neither has it been shown
whether the increased likelihood of running into local minima (due to the modified
cost function) is significant to the performance of the TPC CSI-EPT algorithm. Some
reconstructions have been performed but lacked conclusive elaboration and are there-
fore placed in the appendix Section A.3.

Adopting algorithms that are able to handle the non-ideal transceive field measure-
ment data finally allows evaluation of performance based on actual MRI measurements
such as in [33]. Furthermore, the regularization can then be tested on the recently pub-
lished ADEPT dataset [54] for the further promotion of standardized testing in the re-
search field and further comparison with the other MR-EPT methods.
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APPENDIX A: SUPPLEMENTARY MATERIAL

A.1. SYMMETRY OF THE (-R) MATRIX
The (-R) matrix of the regular splitting presented in the Section 3.5.1 is symmetric. To
show this, one can take the Laplacian weights b(n) of the contrast χ at point (i , j ) and the
corresponding row p and column p from the total P = N1N2 discretized locations of the
N1 by N2 imaging domainΩ that are rearranged into the diagonalized matrix represent-
ing matrix A ∈ RP×P . The scaled entry of (-R) that relates this point to its neighbour at
(i −1, j ) is positioned N1 columns to the left in the column and has value

(α/2)−1 [(−R)](p−N1),p = b(n)(xi−1, j )+b(n)(xi , j ) (A.1)

Yet similarly, the point (i − 1, j ) has the corresponding row and column p − N1 of the
scaled entry of (-R) that relates this point to its neighbour at discretized object domain
point (i , j ), is positioned in the matrix N1 columns to the right and has value

(α/2)−1 [(−R)]p,(p−N1) = b(n)(xi−1+1, j )+b(n)(xi−1, j )

= b(n)(xi , j )+b(n)(xi−1, j ),
(A.2)

which is the same value of the point (i , j ). Idem for the relations between neighbours in
the other directions (denoted with j’s) of the discretized imaging domain. This makes it
so that the sum of row p is equivalent to summing over column p in the spectral conver-
gence analysis of the Jacobi method application.

Corollary to this is the statement that A = D +R is also symmetric with D being a
diagonal matrix ∈RP×P .

A.2. ORIGINAL ANALYSIS OF LOCAL MINIMA COST FUNCTION
This section serves to elucidate the AD , BD and CD coefficients of Section 3.2.2. The
original local minima analysis for CSI-EPT was presented in [22, Section 3.1]. Instead of
arriving at the polynomial in β of equation 3.15, the original quartic polynomial is:

F (w,χ,φ−) = ADβ
4 +2BDβ

3 + (CD +CS )β2, (A.3)
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wherein the coefficients are

AD = ηD
∑
q

∥∥∆χGD {∆wq }
∥∥2

D ,

BD = ηD Re

[∑
q

〈
∆χGD {∆wq },∆χuex

q −∆wq +χex GD {∆wq }
〉

D

]

CD = ηD
∑
q

∥∥∥∆χuex
q −∆wq +χex GD {∆wq }

∥∥∥2

D

CS = ηS
∑
q

∥∥GS {∆wq }
∥∥2

S

(A.4)

with uex
q the exact electric field being the sum of the incident electric field and the scat-

tered electric field GD {wex
q }, while domains D and S are the object and source domains

of a general inverse scattering problem.

A.3. TRANSCEIVE PHASE CSI-EPT: DISCUSSIONS ON CALCU-
LATION AND COST

The transceive phase CSI-EPT has been performed using TPC CSI-EPT as described in
[33] and in this thesis in Section 3.2.2. During various experiments the following points
arose that warrant presentation and some description, despite a lack of conclusive ex-
planation.

The first section is on the calculation of the receive fields required for implemen-
tation of the transceive phase correction for transceive field based CSI-EPT. Thereafter
a discussion on the visualization of the modified transceive field cost function is pre-
sented.

A.3.1. TPC CSI-EPT AND THE RECEIVE FIELD
The Transceive Phase Correction CSI-EPT has been implemented according to [33] and
performed on the head and pelvis slices. Such reconstructions are presented in Figures
A.1 and A.2. The reconstruction of the head is blurry compared to full information trans-
mit field reconstructions. Reconstruction of the pelvis shows similar blurring and two
high contrast peaks placed symmetrically on either side of the diagonal of the weak elec-
tric field region from the quadrature excitation field. Due to the anti-quadrature excita-
tion of the receive field that enables retrieval of the transceive phase field, it is possible
that the contrast peaks originate from the weak electric fields in anti-quadrature excita-
tion.
The original article [33] presents the receive field operator G−

S as

G−∗
S {χ(n)E (n)

z }(x) =−k2
0

ω
∂−

∫
x′∈Ω

Gw (x−x′)χ(n)(x′)E (n)
z (x′)dV (A.5)

Note again the use of the conjugation for calculation of the receive field Fourier coeffi-
cients as prescribed by equation 2.14.

When implementing the operator using the FFT method for processing the convo-
lution (see equation 4.5) the receive field Wirtinger partial derivative factor g−∗ is found
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Figure A.1: TPC
reconstruction of the head

Figure A.2: TPC reconstruction of the pelvis

in similar fashion to g+ using equation 4.9. The Wirtinger partial derivative defining the
propagation of the transverse receive fields is thus:

g−∗(x−x′) =−k2
0∂

−Gw (x−x′)

=−k2
0

(rx − j ry )

2

[
j

2a|r| J1(k0a)H (2)
1 (k0|r|)

] (A.6)

Hence throughout the TPC CSI-EPT algorithm this is used to perform the receive
field data operator:

G−∗
S {χ(n)E (n)

z } =− 1

ω
FFT−1 {

FFT{g−∗(x−x′)} ·FFT{χ(n)(x′)E (n)
z (x′)}

}
, x,x′ ∈Ω

=−k2
0

ω
∂−

∫
x′∈Ω

Gw (x−x′)χ(n)(x′)E (n)
z (x′)dV ,

(A.7)

which is in agreement with the Stijnman’s receive field operator as implemented with
negative sign. However, through an error in derivation a positive sign was implemented
which creates the following reconstructions in the Figures A.3 and A.4. The TPC recon-
struction of the head has become further blurred, while the pelvis reconstruction is fur-
ther distorted by a "rippling" artefact; like an envelope attenuating the reconstruction
like a ripple in water at the edges of the reconstruction.

A.3.2. TPC COST FUNCTION
In pursuit of finding an explanation for the contrast peaks and rippling artefacts in the
TPC pelvis reconstructions, the local minima analysis had been performed that is pre-
sented in Section 3.2.2. To further confirm that local minima may be encountered, as
possible culprit of the artefacts, the following two parameter CSI-EPT experiment has
been devised to visualize the cost function.

In order to visualize local minima in the cost function, we limit ourselves to plotting
cost values using only two parameters: uniform conductivity and permittivity. These are
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Figure A.3: TPC
reconstruction using

positively signed scaling for
the head from Stijnmans code

Figure A.4: TPC reconstruction using positively signed scaling for
the pelvis from Stijnmans code

the parameters of a circular disc contrast. The unregularized TPC CSI-EPT algorithm
is then instructed to reconstruct that disc to provide the next step with EM fields and
phases. During every 100 iterations, circular contrast discs are generated with conduc-
tivity and relative permittivity values in the respective ranges [0,3] and [0,100]; and the
EM fields and receive phase are used to produce the total cost function value for each
of the electrical properties combinations. Finally, these cost values are plotted in a three
dimensional view as can be seen in Figure A.5.

This experiment shows that for this specific, simplified case of TPC CSI-EPT there
are no local minima present in the vicinity of the ground truth contrast (denoted with
red lines). Hence it lead to good reconstruction of the original circular contrast profile.
Unfortunately, the experiment in this form is not able to visualize the cost function shape
while reconstructing more elaborate structures such as the pelvis and head models. In-
troducing a method that is able to provide insight into the convexity of such complex
structures for the CSI-EPT problem is recommended to dispel the worry of local min-
ima.

As a side note, at the 3T main magnetic field strength the permittivity reconstruc-
tion is expected to be less accurate as can be reasoned from Figure A.5. The slopes in
the direction of the conductivity are steeper than in the direction of the relative permit-
tivity. Therefore, a correction in the conductivity will bring about a larger cost function
improvement than a similar correction in the relative permittivity.
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Figure A.5: The cost function values of the round dummie TPC reconstruction at iteration 500 plotted for
various combinations of conductivity and relative permittivity. The true EP combination is shown by the red

lines.
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APPENDIX B: ADDITIONAL FIGURES

B.1. QUADRATURE EXCITATION RECONSTRUCTION HEAD AND

ABDOMEN

Figure B.1: Regularized reconstructions of the absolute contrast (|χ|) of the head using only the quadrature
excitation, 40 dB SNR noise on the transmit field measurement, Berg-Abubakar regularization parameter and

500 iterations.

Figure B.2: Regularized reconstructions of the absolute contrast (|χ|) of the abdomen using only the
quadrature excitation, 40 dB SNR noise on the transmit field measurement, Berg-Abubakar regularization

parameter and 500 iterations.
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B.2. REGULARIZATION PARAMETER INFLUENCE

Figure B.3: Jacobi step regularized reconstructions of the absolute contrast (|χ|) of the head using the
quadrature and two linear excitations, 40 dB SNR noise on the transmit field measurement and 500 iterations.

Figure B.4: Jacobi step regularized reconstructions of the absolute contrast (|χ|) of the abdomen using the
quadrature and two linear excitations, 40 dB SNR noise on the transmit field measurement and 500 iterations.
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B.3. NOISE COMPARISON OF THE ABDOMEN MODEL

Figure B.5: Input noise of different levels affects the reconstruction of the abdomen in similar fashion as in the
pelvis model (see Section 5.1). 500 outer-iterations and the Berg-Abubakar regularization parameter are used.
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B.4. MULTIPLE ITERATIONS JACOBI
STATIC-K JACOBI RECONSTRUCTIONS HEAD AND ABDOMEN

Figure B.6: Multiple inner-iterations reconstructions of the head model at 40dB SNR and 500 outer-iterations.

Figure B.7: Multiple inner-iterations reconstructions of the abdomen model at 40dB SNR and 500
outer-iterations.
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B.5. CONTRAST INITIALIZATION GUESS

Figure B.8: Absolute contrast of CT anatomical prior
contrast initialization of the pelvis model.

Figure B.9: Absolute contrast of CT anatomical prior
contrast initialization of the slice above that of the original

pelvis model.

Figure B.10: Absolute contrast of MRI anatomical prior
contrast initialization of the pelvis model.

Figure B.11: Absolute contrast of MRI anatomical prior
contrast initialization of the slice above that of the original

pelvis model.
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The article "Improved Multiplicative Regularization for CSI-EPT" published in the IEEE
Journal of Electromagnetics, RF and Microwaves in Medicine and Biology describes the
findings of this thesis on the Jacobi step regularized CSI-EPT using full transmit field
phase information. The article attached (starting on the next page) is the author’s latest
version of the manuscript and not the published version of the paper. The published ver-
sion is available at the IEEE Explore page https://ieeexplore.ieee.org/document/10438521
or found using the DOI: 10.1109/JERM.2024.3363428.
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Improved Multiplicative Regularization for CSI-EPT
Florens Helfferich, Peter M. van den Berg, and Rob F. Remis

Abstract—We present an improved multiplicative Contrast Source Inversion (CSI) approach for Electrical Properties Tomography
(EPT). In EPT, the conductivity and permittivity profiles of a body part are reconstructed based on a known circularly polarized
part of the magnetic field (the B+

1 -field) that has its support inside the body part of interest. The CSI method attempts to reconstruct
these profiles in an iterative and alternating manner by first fixing the contrast and updating the contrast source (product of tissue
contrast and electric field) and subsequently fixing the contrast source and updating the contrast. In this paper, regularization is
included in a multiplicative way similar to the standard multiplicative CSI-EPT method. However, the regularized objective function
is different and an update for the contrast is obtained through one-step Jacobi filtering of a least-squares reconstruction that is
based on the updated contrast source. Two-dimensional numerical experiments for conductivity and permittivity tissue profiles of a
female body model show that, for data with various noise levels, the proposed regularization approach generally provides improved
tissue reconstructions compared with standard multiplicative CSI-EPT.

Keywords—Magnetic resonance imaging, electrical properties tomography, multiplicative contrast source inversion, B+
1 field.

I. INTRODUCTION

ELECTRICAL Properties Tomography or EPT is a hybrid
inverse scattering problem in Magnetic Resonance Imag-

ing (MRI) in which the objective is to reconstruct the conduc-
tivity and permittivity profiles of a body part of interest [1],
[2]. Based on the left-handed circularly polarized part of the
magnetic field that is known at the Larmor frequency inside the
body part of interest (EPT is a so-called hybrid inverse prob-
lem with data supported inside the reconstruction domain),
reconstruction methods attempt to retrieve the dielectric tissue
profiles. Knowledge about the conductivity and permittivity
of tissue is of great importance in MR safety [3], [4], [5],
hyperthermia treatment planning [6], and stroke imaging [7],
for example.

A wide variety of EPT reconstruction approaches have been
developed each with its own advantages and disadvantages. We
refer to [8] for an overview of these methods and to [9] and
[10] as examples of recent learning-based EPT reconstruction
methods. In this paper, we focus on the Contrast Source
Inversion (CSI) method, which was proposed in [11] for
remote sensing problems, applied to various inverse scattering
problems in [12], [13], and [14] for example, and applied
to the EPT problem in [15]. In particular, we consider a
specific one-step Jacobi multiplicative regularization approach
for CSI, which was originally proposed for remote sensing
problems in [16]. We apply this approach to the EPT problem
and demonstrate that it generally provides improved EPT
reconstructions of a body part of interest compared with
standard multiplicative CSI as obtained in [17], for example,
where the effects of various modeling errors in CSI-EPT
are discussed as well. The regularization step is noniterative
and consists of a simple one-step Jacobi correction of the
inverted least-squares contrast. Furthermore, similar to the
original multiplicative regularization scheme, no regularization
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parameter needs to be determined for each new data set and,
finally, the computational costs are similar to the costs of the
original multiplicative CSI method.

This paper is organized as follows. In Section II we briefly
review the basic equations for CSI-EPT. The standard CSI-
EPT method and the standard multiplicative CSI-EPT scheme
are reviewed in Section III, while the one-step Jacobi regular-
ization approach is presented in Section IV. In Section V we
present numerical experiments that demonstrate the effective-
ness of the new regularization approach and the conclusions
can be found in Section VI.

II. BASIC EQUATIONS

Let us first briefly present the basic equations that govern
our 2D EPT problem. We consider an E-polarized RF field in a
configuration that is invariant in the z-direction. A penetrable
body part of interest, characterized by a conductivity σ and
a permittivity ε, occupies a bounded domain D in the xy-
plane and is embedded in free space. In EPT, the problem
is to reconstruct the conductivity and permittivity profiles
of the body from a known circularly polarized part of the
magnetic field inside the body. This part of the magnetic field
is called the B+

1 -field and since the B+
1 -field is known inside

the reconstruction domain D, the EPT reconstruction problem
is what is called a hybrid inverse problem.

A set of line sources (representing the rungs of a birdcage
coil) surrounds the object under test (see also Fig. 1 below).
The electric field generated by these sources when the object
is absent is denoted as the incident field uinc, while the field
that is present when the object is present is denoted as the
total field u. The scattered field usc = u − uinc is introduced
as the difference between the total and incident field and for
this scattered field we have the integral representation

usc(x) = k20

∫

x′∈D
G(x− x′)χ(x′)u(x′) dV, (1)

which holds for x ∈ R2. In the above equation, k0 = ω/c0
is the wave number of the background medium, where c0 is
the electromagnetic wave speed of the background, G(x) =

− j
4H

(2)
0 (k0|x|) is the Green’s function with H

(2)
0 the Hankel
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function of the second kind and order zero, and χ is the
contrast function of the object given by

χ(x) = εr(x)− 1− j
σ(x)

ωε0
(2)

with εr the relative permittivity of the object and σ its
conductivity.

The input data of CSI-EPT is the scattered B+
1 -field within

the domain of interest D, which we denote by d(x). From
Maxwell’s equations it follows that for this scattered field data
we have the representation

d(x) =
1

2ω
∂+usc =

ω

2c20
∂+

∫

x′∈D
G(x− x′)χ(x′)u(x′) dV

(3)
for x ∈ D, where ∂+ = ∂x + j∂y . We write the above
expression for the data more compactly as

d = Gdw, (4)

where w = χu is the contrast source and Gd the data operator
given by

Gdw =
ω

2c20
∂+

∫

x′∈D
G(x− x′)w(x′) dV (5)

with x ∈ D. Equation (4) is referred to as the data equation.
Finally, using the definition of the scattered field usc = u −
uinc in (1), restricting the observation vector to the domain of
interest D, and multiplying by the contrast χ, we arrive at the
object or state equation

w − χGow = χuinc, (6)

with x ∈ D, where we have introduced the object operator as

Gow = k20

∫

x′∈D
G(x− x′)w(x′) dV, x ∈ D. (7)

With the introduction of the data and object equations and
operators, we are in a position to discuss the CSI-EPT recon-
struction algorithm.

III. CONTRAST SOURCE INVERSION

Suppose that the body part of interest that occupies the
domain D is illuminated by RF fields due to Nex ≥ 1 different
coil excitations. For the ith excitation, we then have the data
and object equation

di = Gdwi and wi − χGowi = χuinc
i , (8)

for i = 1, 2, ..., Nex, respectively.
To measure the discrepancy in satisfying the data and object

equations for arbitrary contrasts χ and contrast sources wi, we
introduce the data and object residuals as

rd;i = di − Gdwi and ro;i = χuinc
i − wi + χGowi, (9)

for i = 1, 2, ..., Nex, respectively. We note that since the total
field ui inside the object domain is given by ui = uinc

i +Gowi,
the object residual can also be written as

ro;i = χui − wi, (10)

for i = 1, 2, ..., Nex. The magnitude of these residuals is
measured using the Euclidean norm ∥·∥ defined on the re-
construction domain D.

In CSI-EPT, the contrast and contrast sources are updated
in an iterative manner. In particular, at the nth iteration we
assume that we have an approximate contrast χ[n−1] and
contrast sources w

[n−1]
i available and the objective function

F [n](χ,w) = F data(w) + F object(χ,w|χ[n−1]) (11)

is considered, where

F data(w) = ηd

Nex∑

i=1

∥rd;i∥2 (12)

with ηd = 1/
∑Nex

i=1∥di∥2 measures the magnitude of the
data mismatch. Note that F data(w) is shorthand notation for
F data(w1, w2, ..., wNex).

Furthermore, the object objective function is defined as

F object(χ,w|χ[n−1]) = η[n−1]
o

Nex∑

i=1

∥ro;i∥2 (13)

with η
[n−1]
o = 1/

∑Nex
i=1∥χ[n−1]uinc

i ∥2 and measures the mag-
nitude of the object equation mismatch.

The contrast and contrast source are now updated in a two
step procedure. In particular, at the nth iteration, first the
contrast is fixed to the current estimate χ = χ[n−1] and the
contrast sources are updated using the update formula

w
[n]
i = w

[n−1]
i + α

[n]
i p

[n]
i , for i = 1, 2, ..., Nex, (14)

where p
[n]
i are the Polak-Ribière update directions. These

directions are determined in terms of the gradients of
F [n](χ[n−1], w) with respect to w. Explicit expressions for
the update coefficients and update directions can be found in
[16], for example.

Second, the contrast is updated by minimizing F [n](χ,w[n])
with respect to χ. Using the alternate expression for ro;i as
given by (10), this minimum is easily found as

χ[n] =

∑Nex
i=1 w

[n]
i u

[n]∗
i∑Nex

i=1|u
[n]
i |2

, (15)

where u
[n]
i = uinc

i + Gow
[n]
i , i = 1, 2, ..., Nex, and the asterisk

denotes complex conjugation. The contrast and contrast source
now have both been updated and the CSI-EPT algorithm
continues with the next iteration.

A. Contrast Source Inversion with Multiplicative Regulariza-
tion

In the original regularized CSI method, regularization is
included in a multiplicative manner and the objective function

F
[n]
MR(χ,w) = F [n](χ,w)FR(χ|χ[n−1]), (16)

is considered at the nth iteration instead of objective function
(11). In the above expression, FR(χ|χ[n−1]) is the multiplica-
tive regularization function given by

FR(χ|χ[n−1]) =
1

A

∫

x∈D

|∇χ|2+δ[n−1]

|∇χ[n−1]|2+δ[n−1]
dV (17)
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R

imaging domain

Fig. 1. Sixteen line sources (gray dots) representing the rungs of a birdcage
coil. The line sources are equally distributed on a circle with a radius R =
0.352 m.

with A the area of the domain D and

δ[n−1] = (1/∆2)F object
(
χ[n−1], w[n]|χ[n−1]

)
, (18)

where ∆ is the side length of a pixel used when discretizing
the object domain D.

Note that, by construction, FR(χ
[n−1]|χ[n−1]) = 1 and

therefore the presence of FR does not affect the updating
procedure for the contrast sources wi. The update procedure
for the contrast does change, however. Explicitly, we update
the contrast according to the formula

χ[n] = χ
[n]
csi + β[n]q[n], (19)

where χ
[n]
csi is the contrast of (15) and q[n] is the Polak-

Ribière update direction expressed in terms of the gradient
of F

[n]
MR(χ,w

[n]) with respect to χ. Explicit expressions for
the update direction and the gradient can be found in [17],
where it is also shown how to compute the update coefficient
β[n]. The performance of this type of regularization has been
extensively demonstrated for CSI and CSI-EPT in [14] and
[17], respectively.

IV. ONE-STEP JACOBI CONTRAST INVERSION

At the nth iteration of the improved multiplicative regu-
larization approach followed in this paper, we first update the
contrast sources wi just as in standard CSI or the multiplicative
CSI method of the previous section. In other words, updating
the contrast sources is the same as in standard (multiplicative)
CSI. Having updated these contrast sources, the corresponding
total fields u

[n]
i are determined and the contrast χ[n]

csi estimate
of (15) is computed. Subsequently, the objective function

F
[n]
MR(χ,w

[n]) =
[
F data(w[n]) +

∫
x∈D |χ− χ

[n]
csi |

2 dV
∫
x∈D |χ[n]

csi |
2 dV

]
FR(χ|χ[n]

csi ),
(20)

is considered with

FR(χ|χ[n]
csi ) =

1

A

∫

x∈D

|∇χ|2+δ[n]

|∇χ
[n]
csi |2+δ[n]

dV (21)
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Fig. 2. Magnitude plot of the contrast χ at 128 MHz of a slice through
the pelvis region of the Ella model of the ITIS foundation. The dashed line
indicates the position of the line profiles shown in Figures 4 and 6.

and
δ[n] = (1/∆2)F object

(
χ
[n]
csi , w

[n]|χ[n]
csi

)
. (22)

Finally, the updated contrast is obtained as

χ[n] = argmin
χ

FMR(χ,w
[n]). (23)

Minimization of FMR is carried out by calculating the first
variation of this function with respect to χ∗(x) with x ∈ D
(see [16]). We then arrive at the Euler-Lagrange equation that
corresponds to this minimization problem. This is a nonlinear
equation in χ, but to find a regularized contrast it is sufficient
to only consider the linearized Euler-Lagrange equation, which
is given by [16]

χ(x)−
[
F data(w[n])M

(
χ
[n]
csi

)]
∇ ·

[
b[n]∇χ(x)

]
= χ

[n]
csi (x)

(24)
with x ∈ D. In the above equation

b[n] =

(∣∣∣∇χ
[n]
csi

∣∣∣
2

+ δ[n]
)−1

(25)

and M
(
χ
[n]
csi

)
is the mean of

∣∣∣χ[n]
csi

∣∣∣
2

over the domain D given
by

M
(
χ
[n]
csi

)
=

1

A

∫

x∈D

∣∣∣χ[n]
csi

∣∣∣
2

dV (26)

with A =
∫
x∈D dA the area of the domain D.

In practice, equation (24) is discretized on a uniform grid
with pixels having a side length ∆ and using two-point finite-
difference formulas for the gradient and divergence operators.
After this discretization procedure (for details, see [16]), we
arrive at a system of equations Ac = c

[n]
csi , where c and

c
[n]
csi are the discretized and vectorized counterparts of χ and
χ
[n]
csi , respectively. Moreover, it can be shown that matrix A is

diagonally dominant and therefore a new contrast is computed
by carrying out a single Jacobi iteration with c

[n]
csi as initial

guess. Explicitly, the new contrast is computed from c
[n]
csi as

c[n] = D−1(I− R)c
[n]
csi , (27)

where D is the diagonal of matrix A and R = A − D the
remainder. The new contrast has now been determined and
CSI proceeds to the next iteration.
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Fig. 3. Magnitude of the reconstructed contrast after 1000 iterations of the
standard multiplicative CSI-EPT method (top) and Jacobi multiplicative CSI-
EPT method (bottom) for B+

1 - amplitude and phase data with an SNR of
50 dB.
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Fig. 4. The conductivity and relative permittivity profiles on the line illustrated
in Fig. 2. The exact conductivity and permittivity profiles are shown (black
lines) along with the reconstructed profiles for standard CSI-EPT (red line)
and Jacobi CSI-EPT (blue line). Reconstructions were obtained for 50 dB
noisy B+

1 -data.
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Fig. 5. Magnitude of the reconstructed contrast after 1000 iterations of the
standard multiplicative CSI-EPT method (top) and Jacobi multiplicative CSI-
EPT method (bottom) for B+

1 - amplitude and phase data with an SNR of
40 dB.
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Fig. 6. The conductivity and relative permittivity profiles on the line illustrated
in Fig. 2. The exact conductivity and permittivity profiles are shown (black
lines) along with the reconstructed profiles for standard CSI-EPT (red line)
and Jacobi CSI-EPT (blue line). Reconstructions were obtained for 40 dB
noisy B+

1 -data.
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Fig. 7. Magnitude of the contrast tissue model of the head of the Ella body
model at 128 MHz.

V. NUMERICAL EXPERIMENTS

We demonstrate the performance of the proposed regular-
ization approach by considering tissue profiles through the
pelvis region and head of the Ella body model of the ITIS
foundation [18]. The profiles are located within the imaging
domain, which is surrounded by 16 line sources representing
the rungs of an RF coil,see Fig. 1. The line sources are
uniformly distributed on a circle with a radius of 0.352 m.
Its center coincides with the center of the imaging domain.
The line sources operate at a Larmor frequency of 128 MHz,
which corresponds to an MR background field of 3T. The
conductivity and permittivity values of the various tissue types
within the slice through the pelvis region at 128 MHz are taken
from the ITIS database. A magnitude plot of the corresponding
contrast profile is shown in Fig. 2. Finally, the same three coil
excitations (one quadrature and two linear excitations) as in
[15] are used to illuminate the pelvis region of the body.

Subsequently, for the given coil excitations, the B+
1 field

inside the pelvis region is computed and the magnitudes and
phases of these fields are contaminated by random Gaussian
noise such that the resulting B+

1 amplitudes and phases have a
signal to noise ratio of 40 or 50 dB [19]. These noisy data sets
now serve as input for the multiplicative CSI-EPT algorithms.
The magnitude of the reconstructed contrast profile after 1000
iterations is shown in Fig. 3 (top) and Fig. 3 (bottom) for the
standard and one-step Jacobi multiplicative CSI-EPT method
and 50 dB noisy B+

1 -data, respectively. The Structural Simi-
larity Index Measure (SSIM) for the reconstructed magnitude
of the contrast is 0.3587 for standard multiplicative CSI-EPT
and 0.3742 for the proposed Jacobi variant.

We observe that noise is much better suppressed by Jacobi
CSI-EPT than standard CSI-EPT. Also note that for both
approaches, the reconstructions in the middle of the profile
are the least accurate. This is due to a small electric field
that is present around the center of the profile (see also [15]).
Furthermore, in Fig. 4 the reconstructed conductivity (top)
and permittivity (bottom) profiles on the dashed line of Fig. 2
are shown. Reconstruction results for standard (red line) and
one-step Jacobi (blue line) are shown. Clearly, improved
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Fig. 8. Magnitude of the reconstructed contrast after 1000 iterations of the
standard multiplicative CSI-EPT method (left) and Jacobi multiplicative CSI-
EPT method (right) for B+

1 - amplitude and phase data with an SNR of 40 dB.

reconstructions are obtained with one-step Jacobi CSI-EPT.
The large jumps in the conductivity and permittivity profiles
are also essentially captured by the CSI-EPT reconstructions.

In Fig. 5 reconstruction results after 1000 iterations of
standard (top, SSIM = 0.3172) and Jacobi CSI-EPT (bottom,
SSIM = 0.3452) are shown for 40 dB B+

1 -data. Again, noise
is much better suppressed by the Jacobi CSI-EPT method and
the difference between the original multiplicative approach
and the Jacobi approach is even more dramatic. The line
profiles of Fig. 6 also illustrate this, where in the top figure
the reconstructed conductivity on the dashed line of Fig. 2
is shown, while the reconstructed permittivity is shown in
the bottom figure. Also note that since the magnitude of
the electric field is small at the center of the slice, the
effects due to noise are much more severe at this location
for 40 dB data than for 50 dB data. Finally, we mention
that the computational complexity of a single iteration of each
method is of approximately the same order and one-step Jacobi
regularization therefore provides improved reconstructions of
noisy data for the pelvis region at approximately the same
computational costs. Specifically, for the pelvis region the
reconstruction time of standard and Jacobi regularization is
approximately four minutes on a standard laptop with a 2 GHz
Intel Core i7-8565U CPU, 8 GB RAM, and running Matlab
2022b.

As a last example, we consider the contrast profile of a
slice through the head of the Ella body model as illustrated
in Fig. 7. Such a profile is also considered in [20] and [21].
The reconstructions obtained for noisy 40 dB B+

1 data with
standard and Jacobi multiplicative regularization are shown in
Fig. 8 (left) and Fig. 8 (right), respectively. In this case, magni-
tude reconstructions using standard and Jacobi regularization
take about one minute on the same computer as mentioned
above and both reconstructions have an SSIM of about 0.45.
Visual inspection of the reconstructions shown in Fig. 8 also
confirms that both reconstructions are indeed very similar. In
this case, Jacobi regularization provides a reconstruction of a
similar quality as standard regularization. Further experiments
indicate that for the EPT problem considered here, Jacobi
regularization generally provides reconstructions that are of at
least the same quality as standard multiplicative regularization.
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VI. CONCLUSIONS

In this paper, we have presented a multiplicative CSI-
EPT method to suppress the effects of noise on CSI-EPT
reconstructions. The method considers the contrast source and
contrast as fundamental unknowns and updates these quantities
in an alternating manner. Specifically, at each iteration, first the
contrast is fixed and the contrast source is updated (step 1)
and subsequently the contrast source is fixed and the contrast
is updated (step 2). In the first step, the contrast source is
updated in the same manner as in standard CSI-EPT and
this updated contrast source provides us with a least-squares
reconstruction of the contrast. The second step, however, is
different and filters the least-squares reconstruction of the
first step by carrying out a single Jacobi iteration on an
equation that follows from approximately minimizing a mul-
tiplicative objective function for the contrast. By construction,
this objective function suppresses noise in the contrast (tissue)
reconstructions.

For noisy 40 dB or 50 dB B+
1 data, we have illustrated the

performance of the one-step Jacobi approach and compared
the reconstruction results with reconstructions obtained with
standard multiplicative CSI-EPT. A strongly inhomogeneous
slice through the pelvis region and the head of a female
body model were used for the comparison. Reconstruction
results were presented that show that one-step Jacobi generally
provides improved noise compression compared with standard
CSI-EPT. Furthermore, the action of the discretized integral
operators in CSI-EPT can be computed using FFTs, since
the spatial grid is uniform. Moreover, differentiation in the
regularization operator is implemented using two-point finite
differences and consequently the computational costs of a CSI-
EPT iteration is dominated by FFTs. For the head and pelvis
region it typically takes around 500 (head) to 1000 (pelvis) it-
erations to match the data to noise level and computation times
in Matlab are in the order of minutes on a standard laptop.
Finally, no regularization parameters need to be determined
(computed) in multiplicative CSI-EPT, but its performance
does depend on the noise level, the choice for δ[n], and how the
finite-differences are implemented. Different implementations
may also require a different number of CSI-EPT iterations to
reach a satisfactory reconstruction.

Nevertheless, given the promising reconstruction results for
2D tissue profiles, we intend to extend Jacobi regularization
to 3D CSI-EPT [22]. Moreover, the presence of the RF shield
in the background should be taken into account. Finally, we
have assumed that the phase of the B+

1 field is known. In
practice, however, this phase is not directly measurable and
only approximately known [23]. Using the technique presented
in [23], it may be possible to reconstruct the phase during the
iteration process and it is our objective to incorporate one-step
Jacobi noise suppression in this technique as well.
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