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Abstract

The rise of graph processing has led to an increase in the usage of graph databases
and the availability of various frameworks. Graph databases have become more ac-
cessible and, in specific instances, can compete with relational databases. Testing an
application with a relational database backend has shown limited test coverage, and
current test generators cannot cover every branch condition in graph processing ap-
plications. There is a lack of test methods specifically designed for applications that
utilize graph structures.

This paper presents PGFuzz, a coverage-guided, schema-aware fuzzer for graph
processing applications. PGFuzz utilizes existing graph generators to generate in-
puts and applies graph-specific mutations to alter the graph state. These mutations
are schema-aware, designed to cover the graph model search space and satisfy logi-
cal conditions from real-world applications. The mutations involve adding new graph
elements, removing graph elements, modifying existing elements, altering property
values, and violating graph constraints. When compared against existing graph gen-
erators and a random byte mutation approach on the nine real-world examples in our
benchmark suite, PGFuzz demonstrates an increase in coverage over time and detects
more logic errors than the other methods. PGFuzz can cover all previously uncovered
branching.
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Chapter 1

Introduction

1.1 Introduction

Every year, the amount of data stored is growing, reaching already the Peta- and Zetta bytes
[18]. To process these quantities, frameworks and methods must be tailored to the data char-
acteristics. One of the growing data types is interconnected data, requiring graph processing
methods [47]. The current approaches to processing graph data have shown to solve previ-
ously impossible tasks and provide better performances [37, 48, 61]. Some widely known
adaptations of graph processing are in fraud detection with the analysis of the Panama pa-
pers [52, 53], analyzing tools during the COVID pandemic[40] and Google’s page rank
search engine [7]. Graph processing is also actively applied in other areas like social media
networks, biomedical domain [58], AI [57], and more[41].

With the rise of graph processing, the usage of graph databases has increased, and with
it, the number of available frameworks [51]. These engines are specifically designed for
interconnected data and facilitate a more efficient traversal method between this kind of
data compared to traditional relational databases [56]. Graph databases have become more
accessible and, in specific instances, can compete with relational databases [20]. Applica-
tions using a relational database have shown to have limited test coverage for methods that
interact with the database [62], and similar issues might arise with graph databases.

The development of graph processing applications can benefit from more mature testing
tools. Software testing is generally considered an important step in development, and auto-
mated testing is widely used. The research done in graph processing has primarily focused
on solutions to tasks mentioned earlier and performance evaluations [5, 15, 20, 55, 60].
The work on testing graph databases targets the framework engines rather than the applica-
tions using these frameworks [27, 30, 64]. There currently seem to be no methods designed
specifically for testing applications that use graph structures.

Fuzz testing has already been shown to be an effective automated testing tool that can be
applied to many different areas [34, 66]. Fuzz testing relies on generating lots of input
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1. INTRODUCTION

and running it on an application to traverse as much of the application as possible. As far
as we know, there is not yet a fuzz method for applications using graph structures. This
work presents PGFuzz, a coverage-guided, schema-aware fuzzer for graph processing ap-
plications. PGFuzz increases the application exploration using input from existing graph
generators and graph schema-aware mutations. The mutations are designed to cover the
graph model search space and satisfy logical conditions from real-world applications. We
make the following contributions:

• PGFuzz, a coverage-guided, schema-aware fuzzer for applications using a graph
database backend.

• A benchmark suite collected from real-world applications containing graph structures
and graph processing.

• Comparison with a naive mutation strategy using a random byte mutation approach
for graph structures that reduces the number of corrupted database states.

We have evaluated PGFuzz on a benchmark suite created from applications found in public
repositories and other literature. PGFuzz is compared against existing graph generators to
see the exploration increase (i.e., coverage increase) and the unique error detection over
time. The effectiveness of the PGFuzz mutations is compared against a random mutation
approach. Also, the effectiveness of each mutation strategy is evaluated by tracking indi-
vidual contributions.

The paper is structured as follows: In section 1.2, more information surrounding graph
processing, database testing, and fuzz testing is given. Section 3 presents PGFuzz, con-
taining the framework, graph model, mutation design, and fuzz guidance. In section 4, the
performance of PGFuzz is presented. Section 5 discusses related works like graph genera-
tion, database testing, and fuzz testing. Lastly, in section 6, the conclusion, discussion, and
future works are discussed.

1.2 Background

There are many different approaches to processing the interconnected data. Almost every
programming language has some graph processing library, be it in an object-orientated pro-
gramming language (e.g., GraphQL for Java 1), a functional programming language (multi-
tudes for Python2) or a distributed system (e.g., GraphX for Spark 3). Graph databases are
specifically designed for large interconnected data sets. These databases have similar design
principles as traditional relational DBMSs but store the data differently. As these databases
can provide data guarantees similar to those of traditional systems, they can also be used
for applications to manage their data. There are already many different implementations of

1https://www.graphql-java.com
2https://wiki.python.org/moin/PythonGraphLibraries
3https://spark.apache.org/graphx
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1.3. Motivation

database models, some of the most popular in 2024 being Neo4J, Memgraph, JanusGraph,
and TigerGraph [51].

Multiple works have already explored testing the graph databases, making queries, and
applying differential testing to find bugs [22, 27, 64]. The most important parts of Graph
DB engine testing are making proper graphs following a schema and creating (complex)
queries. Other works further explore the query generation approach by, for example, query
partitioning [30]. Most of these works randomly generate their graph schemas, selecting
an arbitrary amount of vertices, labels, edges, and properties [22, 64]. Another approach
is to use a meta-model of the graph, allowing the generation of specific labels with a pre-
determined distribution [30]. The last example uses an abstract graph summary of the cur-
rent graph to determine the schema and make further modifications to the state [27]. They
do not restrict the generation to additional constraints. Applications using these database
engines might require more complex semantics, following specific structures or implicit de-
pendencies.

Methods to test applications using databases have specialized their approach to account for
these specific structures and constraints, minimizing the amount of invalid database states
[13, 16, 17, 62, 65]. These methods are specifically designed for relational databases as
their approaches vary, from dynamic user input, to schemas, or specialized table mutations.
These methods are specific to relational databases, making them not directly applicable to
graph databases.

1.3 Motivation

As with any kind of automated testing by exploring the application, testing graph processing
applications requires a system that generates inputs. For an application that takes a string
as input, generating inputs is easily achieved by generating random characters. The gener-
ation becomes less trivial when certain semantics are expected (e.g., email addresses like
@domain.com). Graphs have a complex structure, allowing for different nodes, edges, and
properties. Graphs become even more complex when constraints like uniqueness, non-null,
or cardinality are defined. Existing graph generators allow some of these complexities to be
modeled in a schema, only generating graph states that fit the requirements.

Applying graph generators in automatic testing presents two challenges. First, graph gen-
erators only generate valid graphs, which might not cover every branch of an application.
The second challenge is that most graph generators produce independent database states,
not utilizing the coverage information gained from a previously generated state. This might
increase the initial coverage results as the search space is more generally sampled, but more
complex and nested branching would be less likely to be found. The challenges will be fur-
ther discussed in the following three examples. Each example highlights a different graph
component that can determine the branching in an application, the first being cardinality
constraints, the second edge labels, and the last properties and their values.

3



1. INTRODUCTION

The code fragment shown in Listing 1.1 contains branching logic dependent on a cardi-
nality constraint. In the original application from which it is collected, it can be used to
ensure a patient has exactly one way of contact for a visit. The procedure manageRela-
tionships is called when a value node needs to be updated to a new item, removing any
connections with the previous item. The function manageRelationships collects any exist-
ing relationships which should be maintained and verifies whether the original state is valid.
Different paths are taken if the previous or new state with the new item is invalid. This ex-
ample is a one-to-one constraint, making a relationship unique for two node types. A graph
generator would only generate states where the connected nodes have a single relationship
defined. The branching defined within the if conditions would never be reached, lowering
the overall coverage. If the graph generator did not use the cardinality constraints, passing
the first cardinality check would become less likely, again limiting the overall coverage.

The code fragment in Listing 1.2 is used to identify the travel methods from a location
in a demand-responsive service implementation. The function getTransport takes a graph
containing all locations, transportation methods, and travel times. The edges from a centroid
(i.e., location) are looped over to see which transportation methods are available, assuming
there is always a label with ”DRT” or ”WALK”. shows an implementation where the node
and edge labels determine the branching. The conditions only consider two predefined val-
ues on the edge labels. If there is a node without any edges, the function will fail.

The code fragment in Listing 1.3 is collected from a system that analyses a large number of
genomes. The function preparePhasedGenomeInformation prepares genome information,
touching connected components and collecting the property values. In the fragment, the
property values of the selected node are accessed and used to determine the branching. In
this example, the graph must have specific properties to load the data correctly and access
different branching. These properties need to have the correct key, type, and format. Ad-
ditionally, the value of the property determines which branch path is taken. The chance of
getting in the else branch of the if condition would be determined by the bounds of the prop-
erty phasing chromosome. Re-using and modifying an input that has reached that branch
could increase the search performance compared to generating new independent inputs from
a graph generator.

m a n a g e R e l a t i o n s h i p s ( Node prevI t em , Node newItem , S t r i n g v a l u e ) {
. . .
i f ( ! i s S i n g l e ( PrevI tem , r e l a t i o n s h i p T o M a i n t a i n ) {

. . .
}

i f ( ! i s S i n g l e ( NewItem , r e l a t i o n s h i p T o M a i n t a i n ) {
. . .

}
. . .
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1.3. Motivation

i f ( ! i s S i n g l e ( v a l u e R e l a t i o n s h i p ) {
. . .

}
. . .

}

Listing 1.1: Code example with cardinality constraints

g e t T r a n s p o r t ( Graph g ) {
i n t t r a n s p o r t c o u n t = 0 ;
A r r a y L i s t<S t r i n g > t r s p = new A r r a y L i s t <>() ;

Node n = g . ge tNodes ( ” C e n t r o i d ” ) . g e t ( 0 ) ;
f o r ( Edge e : n . g e t E d g e s ( ) ) {

i f ( e . g e t L a b e l ( ) . e q u a l s ( ”DRT” ) | | e . g e t L a b e l ( ) . e q u a l s ( ”WALK” ) )
{
t r s p . add ( e . g e t L a b e l ( ) ) ;
t r a n s p o r t c o u n t += 1 ;

}
}

S t r i n g t r a n s p o r t ;
i f ( t r a n s p o r t c o u n t == 2) {

t r a n s p o r t = ”DRT/WALK” ;
} e l s e {

t r a n s p o r t = t r s p . g e t ( 0 ) ;
}
r e t u r n t r a n s p o r t ;

}

Listing 1.2: Code example with branching logic depending on edges

p r e p a r e P h a s e d G n o m e I n f o r m a t i o n ( Graph g ) {
. . .

chromosomeNr = ( i n t ) node . g e t P r o p e r t y ( ” p h a s i n g chromosone ” )
phas ing ID = node . g e t P r o p e r t y ( ” p h a s i n g ID ” )
i f ( chromosomeNr ! = 0) {

. . .
}
e l s e {
. . .
}

}

Listing 1.3: Code example with branching logic depending on property values

5





Chapter 2

Fuzz Testing

This chapter introduces fuzz testing and discusses the considerations when applying fuzz
testing to graph processing applications.

2.1 Fuzz Testing Methods

Fuzz testing is a common method to test applications automatically. It does so by repeatedly
running the application on different inputs, as the inputs usually determine the application’s
behavior. Running the application on many different inputs should result in different exe-
cution paths. The challenge in fuzz testing is to generate as many useful inputs as possible.
New inputs are usually created by modifying existing inputs, called mutations. Fuzzers are
effective in discovering many of the internal states of an application and finding vulnerabil-
ities like application halting exceptions [34].

Generally, fuzz testing is easy to deploy, has good extensibility and applicability, and can
be applied with limited knowledge about the application being tested [34]. The fuzzer can
run with no information about the application (black box), some information about the ap-
plication (grey box), or with full knowledge of the inner workings of the application (white
box) [66]. A white box method might know which conditionals have been covered for each
test run, while a black box can only use the output value from the application.

One of the earliest and most widely used fuzzing methods is AFL [44]. It is a black-box
fuzzing approach with often random bit mutations. While the method can be used for graph-
like structures, the mutations are inefficient for complex structures, as further discussed in
section 3.4. For a grey-box fuzzer, the fuzzer needs to be able to mutate inputs to utilize
the feedback. While many different gray-box fuzzers exist, their mutations can not be di-
rectly applied to graphs as they are created for different kinds of data structures [23, 62, 63].

The following sections propose two novel approaches for fuzz testing applications requir-
ing graph structures: a black box approach using graph generators and a grey box approach
using graph-specific mutations.
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2. FUZZ TESTING

2.2 Fuzzing graph structures

In black box fuzzers, there is no information about the internal states of a program and its
functionalities [66]. The application is repeatedly run with different inputs, searching for
different outputs and potential crashes.

We implemented a black-box fuzzing approach using graph generators. A graph genera-
tor is used to provide seed inputs for the application. Whenever the inputs are exhausted,
new inputs are generated. This approach does not require the graphs to be mutated, as new
inputs are generated from scratch. As a result, there is no feedback from the individual runs.
Every input generated by the generator is independent of the others. This method can use
any graph generator, allowing for the most relevant generator to be used for an application.

Figure 2.1 depicts a basic fuzzing framework with a feedback loop, commonly seen in
grey-box fuzzers. The fuzzer starts with initial inputs provided in the seed. After applying
input on the application, some information can be collected about the run, such as which
branches have been covered. Using a fitness metric that determines the quality of the input,
the input is either selected for future iterations or discarded. Inputs are then changed so that
the input might satisfy different branching conditions in a future iteration. The mutations
can either consist of small changes like a bit flip or large changes like changing an integer
to its maximum value [66].

Figure 2.1: Basic grey-box fuzz loop

Fuzzers can have different kinds of mutations, each with a trade-off. More special-
ized mutations might explore the search space better while they are less widely applicable.
Generic mutations might be generally applicable, but the application has not been explored
well.

PGFuzz is the first grey-box fuzzer that describes mutations for graph-like structures. The
mutations in PGFuzz are schema-aware, meaning the graph’s structure, typing, and con-
straints are considered when a mutation is applied. We also implemented a random muta-
tion approach based on random byte mutations, further discussed in section 3.4. While the
random approach requires less input from the user, it can make fewer kinds of changes to a
graph state.

8



Chapter 3

PGFuzz

This chapter introduces the different components of PGFuzz. First, the workflow containing
the framework’s core processes is shown. Then, the graph model is defined, after which the
mutation design is discussed.

3.1 PGFuzz Workflow

Figure 3.1 shows the workflow of PGFuzz. The flow has three main processes:

• Application Instrumentation - An application is instrumented to provide coverage
feedback. The instrumentation injects markers in the code, which report back to the
fuzz framework when a code path is reached [42]. New coverage is detected by
tracking which markers have been reached and comparing the reached markers per
input cycle. The application can be transformed before the fuzz loop starts and is
re-used every test iteration.

• Input Generation - The input is generated by a graph generator. The generator
passes an initial seed to the fuzz loop, which can be used for new inputs during the
fuzz loop.

• Fuzz Loop - The fuzz loop is a repeating iteration of selecting an input, running
it on the instrumented application, and mutating the used input if new branching is
discovered.

Figure 3.1 highlights the main fuzzing loop components using an orange square. PGFuzz,
highlighted in the blue square, processes the coverage feedback and applies the mutations
defined in Section 3.3. PGFuzz uses the coverage feedback received from the fuzz frame-
work to guide the next iteration. An initial seed or inputs from a graph generator are needed,
as PGFuzz does not generate graph states from scratch. If an input does not provide new
coverage, it is discarded. Whenever there is new coverage, PGFuzz stores the used input
and queues it to be mutated.

9



3. PGFUZZ

Queued inputs are repeatedly mutated until the predefined mutation depth is reached. The
maximum mutation depth prevents the fuzz loop from unlimited mutations on the same
state and allows for new exploration from the graph generator. The inputs from the queue
are randomly selected, meaning PGFuzz has a breadth-first over the available inputs rather
than a depth-first search.

PGFuzz is built on top of a fuzzing framework, JQF. This framework instruments the code
and passes inputs from PGFuzz. PGFuzz uses an internal graph structure, meaning it can
run with any kind of property graph structure. There only needs to be a translation layer
between the application’s inputs undergoing testing and PGFuzz.

1

Graph 
Generator Inputs

Mutate

Test

Yes

New inputs

Run input on 
application

PGFuzz

New 
coverage

?

Coverage 
feedback

Remove
No

Fuzzing loop 

Graph Processing 
Application

Instrumentation

Instrumented Application

Schema

Figure 3.1: PGFuzz workflow

3.2 Graph structure

PGFuzz has an internal graph structure based on a property graph model, formally described
by Bonifati [10]. It is a multi-edged, directed, and labeled graph with property values on
both the nodes and the edges. A graph can have multiple nodes, edges, and properties.
Multiple labels can be defined for each graph element. Nodes and edges can have multiple
properties. Figure 3.2 shows an example of a graph representing two authors, a book, and
the relationship between the elements.

10



3.2. Graph structure

Figure 3.2: Example property graph

Besides these elements, PGFuzz also expects a graph schema. The graph schema de-
scribes the unique node labels, edges, and relationships. Additionally, the graph schema
supports the following constraints:

• Property Type - Each property can have a type assigned. There are five built-in
types (String, Integer, Double, Float, Boolean), which defaults to String when no
type is provided.

• Property Exclusiveness - Each property can be flagged as exclusive. The property’s
value must be unique across all similar nodes and edges.

• Property Mandatory - Each property can be flagged as mandatory. When flagged,
the property needs to have a value.

• Relationship Cardinality - The cardinality of a relationship indicates how many
edges of one type are allowed between any two nodes. A cardinality can describe an
in- and outnumber indicated by NxM or is described by Simple, Multi, OneToMany,
ManyToOne, OneToOne 1.

Figure 3.3 visualizes a graph schema used by PGFuzz. The nodes represent the node labels,
and the edge between two of the nodes represents the relationship between those nodes. A
property is exclusive when it is visualized by bold text, and the italic text properties are not
mandatory. The cardinality constraints are defined on the sides of the edge.

Figure 3.3: Example graph schema

1https://docs.janusgraph.org/v0.3/basics/schema/
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3. PGFUZZ

Figure 3.4 shows a graph schema with node labels for employees and departments, and
a worksAt relationship between those nodes. The ID property on both the employee and
department nodes must be exclusive, and the ’DoB’ property is not mandatory. The relation-
ship ’worksAt’ has a cardinality constraint of manytoOne, meaning a department can have
many employees, but the employee can have only one department it works at. In figure 3.5,
a valid graph state is shown which satisfies each constraint. Figure 3.6 is an example where
the elusiveness constraint is broken, as the ID property in two of the ’Employee’ nodes is
identical. The mandatory constraint is broken in figure 3.7, as one of the ’Employee’ nodes
does not have a name property defined. Lastly, in figure 3.8, the cardinality constraint on
the relationship is broken, as the employee John works at two different departments simul-
taneously.

Figure 3.4: Graph schema with constraints

Figure 3.5: valid graph example

The graph schema PGFuzz implements is inspired by the PG-Schema, which was proposed
in earlier works to provide a concrete schema model for property graphs [3]. The graph
schema has a similar definition as PG-Schema, defining the graph elements with their con-
tents and constraints based on PG-Keys, further discussed in section 3.3.

12
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Figure 3.6: Broken exclusiveness constraint example

Figure 3.7: Broken mandatory constraint example

Figure 3.8: Broken cardinality constraint example

3.3 Schema-aware Mutations

PGFuzz uses graph-specific mutations instead of random bit— or byte mutations. These
mutations preserve the graph structure and target specific graph elements to be changed.
The mutations are schema-aware, meaning PGFuzz knows important characteristics of the
inputs required. By using a graph schema, the mutator knows which graph elements can oc-
cur, what kind of relationships between entities can be made, and any constraints enforced
on the input graph. Schema-aware fuzzers have been applied in other areas [59, 63], but

13
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PGFuzz is the first to define it for graph structures.

Real-world applications have been tested with inputs from existing graph generators to see
which branching could not be reached. The mutations have been designed to change the
graph generator inputs to reach these branches.

Besides using these empirical examples, the mutations have been extended with theoret-
ical constraints discussed in the work on PG-Keys. PGFuzz supports a core fragment of
PG-Keys, which has informed the design of the novel GQL graph query standard [2]. The
constraints used are cardinality and key type constraints. The cardinality constraint de-
scribes the cardinality of a relationship between any two nodes (e.g., One-to-One, Many-to-
One). The key type constraint describes whether a property should be present (Mandatory)
or unique (Exclusive).

The mutations used by PGFuzz are shown in table 3.1. The mutations are categorized
by their effect on the graph as follows:

• Add Graph Element (C1) - Add a node, edge, or property to the graph.

• Remove Graph Element (C2) - Remove a node, edge, or property from the graph.

• Change Graph Element (C3) - Change a node, edge, or property in the graph.

• Change Data Values (C4) - Change a property value in a node or edge.

• Break Graph Constraint (C5) - Break one of the graph constraints.

More realistic changes can be made to the graph states using a schema. Rather than adding
a random label, the mutator can select a specific label already expected to occur in the
graph. Additionally, the graph schema allows for the mutator to know about constraints that
might not be derived from any arbitrary graph state. Not every mutation requires the graph
schema to make the change, as the information needed can be retrieved from the graph. The
mutations using the schema try to follow the schema where possible but might deviate when
there are no valid candidates to choose from. The mutations defined in C5 actively target
breaking the schema constraints. Below, further explanation of the implementation details
of each mutation are given:

• Add Node (M1) - Select a random node label from the graph schema. Create a new
node with said label and add the required properties and edges to existing nodes.

• Add Edge (M2) - Select a random relationship from the graph schema. Select two
nodes from the candidates’ sources and targets and add a new edge with the required
properties.

• Add Property (M3) - Select a random property from the graph schema and add it to
a node or edge. Otherwise, generate a random property.
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3.3. Schema-aware Mutations

Category Mutation Name Schema
M1 Add Node Y
M2 Add Edge YC1
M3 Add Property Y
M4 Remove Node N
M5 Remove Edge NC2
M6 Remove Property N
M7 Change Node Label N
M8 Change Edge Label NC3
M9 Change Property Key N

C4 M10 Change Property Value Y
M11 Break Cardinality Y
M12 Break Exclusiveness Constraint Y
M13 Break Mandatory Constraint Y
M14 Change Property Type Y
M15 Remove Node Type Y

C5

M16 Remove Edge Type Y

Table 3.1: PGFuzz mutations

• Remove Node (M4) - Select a random node from the graph and remove it with any
of its edges.

• Remove Edge (M5) - Select and remove a random edge from the graph.

• Remove Property (M6) - Select and remove a random property from the graph.

• Change Node Label (M7) - Select and change a random node label.

• Change Edge Label (M8) - Select and change a random edge label.

• Change Property Key (M9) - Select and change a random property key.

• Change Property Value (M10) - Select a random property from the graph schema
and generate a new property value. Apply the generated value to one of the corre-
sponding properties in the graph.

• Break Cardinality (M11) - Select a relationship with a cardinality constraint from
the graph schema. Add new edges to one of the nodes in the graph to break the
specified cardinality.

• Break Exclusiveness (M12) - Select one of the properties with an exclusive con-
straint. Either copy the element or select two random graph elements with the selected
property and copy the value from one element to another.

• Break Mandatory (M13) - Select one of the properties with a mandatory constraint.
Select a random property from the graph and set the value to null.
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• Change Property Type (M14) - Select a random node from the graph and change
the property value and type.

• Remove Node Type (M15) - Select a random node label from the graph schema and
remove all nodes with said label from the graph.

• Remove Edge Type (M16) - Select a random node label from the graph schema and
remove all nodes with said label from the graph.

3.4 Byte Mutations

Working from one or more initial states and applying changes to reach new branching in
the code is the basis for fuzz testing. Fuzz testing has been widely applied on many dif-
ferent kinds of input structures and applications [34, 66]. One of the earliest approaches
to fuzz testing was AFL, which applies random bit mutations. Random mutations remain
an effective way to change the inputs and can, with the right guidance, keep up with more
specialized mutation methods [65]. The method is less effective on larger and semantically
complex data structures, as it either corrupts the data structure or does not have enough ex-
ploration to increase code coverage. This is well shown when mutating relational database
system queries, which results in 70% being semantically invalid [65] and 90% when applied
to big data analytics [63].

Applying random byte mutations to graph structures shows a similar issue. Storing an
empty graph can already take up hundreds of bytes. Single-byte mutations cannot signifi-
cantly change graphs as these require multiple bytes to be changed in different places in the
structure. Adding a new byte, for example, takes around 57 new bytes and changing three
existing bytes. For an edge, it is around 53 bytes, which also produces a shift in the bytes,
changing every following byte after the location of the initial change. With a relatively small
graph consisting of less than 100 nodes, edges, and properties, 87% of the graph structures
are corrupted after a random byte mutation. Of the 13% that could still be interpreted, the
changes made to the graph are primarily on the labels, property keys, and property values.
This shows that the large mutations with multiple bytes are less likely to succeed than the
smaller mutations on properties and label names.

Since the random byte mutations can only change the node labels, edge labels, and proper-
ties, we implemented another mutation method that changes these elements. This approach
has the same mutation power as the random byte mutations but significantly reduces the
number of corrupted states.
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Chapter 4

Evaluation

This section will first discuss how PGFuzz is evaluated and how the results are collected.
Then, the benchmark suite will be explained in detail. The results will be presented and
used to answer the evaluation questions. Lastly, a case study about changing the mutation
power via compound mutations is presented. The implementation of PGFuzz, benchmarks,
and results can be found in the project repository1.

To evaluate the performance of PGFuzz, we will answer the following questions

1. How effective is PGFuzz in increasing branch coverage compared to existing graph
generators?

2. How effective is PGFuzz in finding unique errors?

3. How much does each mutation mechanism contribute to the increased coverage?

4. Which mutations are most effective in finding unique errors?

5. How does the performance of PGFuzz scale with different application complexities?

To answer RQ1, we compare PGFuzz’s coverage over time with existing graph generators.
For RQ2, we count the unique errors found by PGFuzz in a fixed amount of time. RQ3 is
answered by running each mutation category independently and determining the individ-
ual contribution to the overall coverage increase. RQ4 is similarly answered by running
each mutation category independently and counting the unique error occurrences. Finally,
for RQ5, we doubled the branching complexity of one of the benchmarks and tracked the
coverage over time.

4.1 Experimental Setup

We collected nine benchmark programs for the evaluation. Both the branch coverage and
unique errors are used to evaluate the performance, as is common in evaluating fuzzers [38].

1https://github.com/moudemans/GFuzz
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Each benchmark is run for ten minutes as initial experiments have shown the coverage and
error detection stagnate after this time. The performance of PGFuzz and the random fuzzer
are compared to the performance of the graph generators, GMark and PGMark. The cover-
age reports are used to determine which branching is not reached by our proposed methods.
The errors detected are simplified to their stack trace, only including the traces that contain
the application under test. Then, the performance of each mutation is determined by ana-
lyzing the contribution to the increase in coverage and the found errors [62]. Lastly, we run
the methods on a benchmark with more nested branching to see how PGFuzz scales with
increased depth complexity.

JQF is used to run the fuzz loop and apply instrumentation to the benchmark programs
[42]. It is a coverage-guided fuzz testing framework in Java and has been used in many
other works with structure-aware fuzzing [11, 43, 63]. A test function can be annotated to
run an application using this framework, calling the methods undergoing tests. If the graph
format of PGFuzz is not used, the translation function between the two formats must be
defined. Following recommendations from previous work to account for the random nature
of fuzz testing [32], we have repeated experiments five times. The seeds are generated from
the same graph generator, providing new inputs during execution. The generators used are
GMark [4] and its extension PGMark2 for property graphs. We extended PGMark to gener-
ate edge properties besides only node properties.

The results were collected from a machine running Windows 11, which has an Intel(R)
Core(TM) i7-13700KF 3.40 GHz CPU and 32GB of memory available.

4.2 Benchmarks

It is recommended to have similar benchmarks with other works [32], but as far as we know,
no other works have focused on coverage-guided testing of graph processing applications.
Benchmarks from different research in the field of graph processing did not fit the criteria,
as there was little branching that was not already covered by a trivial input.

The benchmarks used for the evaluation are collected through an extensive search in pub-
licly available repositories (i.e., GitHub and GitLab) and academic works. The search con-
sidered repositories with a graph database backend or applications with graph-like structures
in memory. The repositories that fit the criteria had code fragments where branching was
determined by the graph state extracted. Applications written in Java have been prioritized,
as the JQF only supports Java applications, and this requires the least amount of extra steps
to fit it in a benchmark. Code bases written in another language have been copied to Java.

In table 4.1, the benchmarks used in the evaluation are shown. Some of the benchmark
programs are collected from the same repository but are in distinct benchmarks as they
have different functionality and schemas. Most benchmarks in the suite use Neo4J, which

2https://github.com/ThomHurks/pgMark
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4.2. Benchmarks

Code Name Framework Language Characteristics
P1 Medical Neo4J Python Cardinality
P2 Transportation Neo4J Python Properties and node labels
P3 Citation JanusGraph Java Edge properties
P4 Citation Network JanusGraph Java Relationships
P5 Pangenomic Neo4J Python Property values
P6 Pheno4JOut Neo4J Java Property keys and types
P7 Pheno4J Neo4J Java Property types
P8 PanTool1 Neo4J Java Property values
P9 PanTool2 Neo4J Java Unstructured dependencies

Table 4.1: Benchmark details

is one of the most used graph database engines. Table 4.1 also shows the characteristics,
which will be explained later in this section. We tried to minimize the number of overlap-
ping characteristics and maximize the diversity of these characteristics to better represent
the graph search space.

P1 Medical - This benchmark has been collected from Openstudybuilder, which is an
open-source solution for clinical study evaluations 3. The benchmark updates a previous
node’s relationships to a new node, using the node label to make the selection. The selected
nodes require the changing relationships to follow a one-to-one cardinality constraint.

P2 Transportation - This benchmark is collected from academic work to assess the
impact of demand-responsive services on public transit accessibility [21]. The operations
performed on the graph data are filtering, counting, and selection, which assume a specific
graph structure to be followed. The branching logic of this example relies on the number of
edges between two nodes and the properties on these edges.

P3 Citation - Citegraph is an open-source online visualizer that was initially built as a
demo of JanusGraph, an open-source graph database4. The application communicates with
the graph DB backend to load papers, authors, and citations into a model. The code frag-
ment relies on nodes, edges, and properties with specific labels and typing.

P4 Citation Network - This benchmark was collected from the same repository as the
P3 Citation. This segment finds its n-hop references for a given paper. It relies on specific
relationships to be connected with at least n connected components.

3https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/project-description
4https://www.citegraph.io/
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P5 Pangenomic - Pangenomic is an academic work that provides a data-centric pipeline
capable of operating on a unified graph dataset consisting of multiple pangenome graphs5.
It is based on the PPanGGOLiN framework6 and uses Neo4J for complex analysis. The
benchmark loads properties into a model and checks for connected nodes with similar prop-
erty values.

P6 Pheno4JOut - Pheno4J is a repository of published research [39] that can be used
to export and import data to the Pheno4J database using Neo4J. The code fragment in this
benchmark takes a node and uses its labels and types to set up an export schema. The prop-
erty labels on the nodes and the property types determine the branching.

P7 Pheno4J - This benchmark was collected from the same repository as P6 Pheno4JOut.
It loads the graph data into a model. The code fragment used in the benchmark has branch-
ing determined by the edge relationships being present and properties being defined.

P8 PanTool1 - PanTool is an extensive code base7 with thousands of lines of code
and multiple associated publication [1, 28, 29, 49, 50]. It is a Pangenomic toolkit for the
comparative analysis of a large number of genomes. The property values determine the
branching in the benchmark.

P9 PanTool2 - Pantool2 is from the same repository as P8 Pantool1. Similarly to P8, it
has branching, which depends on property values. Additionally, the property values require
an implicit relationship with other property values in other graph elements. A node can have
a property value ’count’, which indicates how many other nodes there should be and which
values should be in the properties.

4.3 Results

This section will present the collected results to answer the questions formulated at the
beginning of Section 4.

4.3.1 Q1. How effective is PGFuzz in increasing branch coverage compared
to existing graph generators?

In Figure 4.1, the average coverage per trial is shown for PGFuzz, Random, and the graph
generator. The performance of a method is measured by the total coverage in the number of
trials, taking both the total coverage and the coverage at each step in the trial into consider-
ation. P4 is not shown in the coverage results, as testing has shown all branches are covered
within the first few trials for every test method.

5https://github.com/jpjarnoux/PanGraph-DB?tab=readme-ov-file
6https://github.com/labgem/PPanGGOLiN
7https://git.wur.nl/bioinformatics/pantools/
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4.3. Results

The results from Figure 4.1 show that the Random approach significantly increases the cov-
erage found over the graph generator baselines in 75% of the benchmarks. PGFuzz shows
even better results, reaching more coverage in less time in each benchmark program. On
average, PGFuzz can increase the coverage by 23%, with a maximum increase of 57%.

Even though outperforming the other methods, PGFuzz cannot consistently get 100% cov-
erage for each benchmark. P1 has an unreachable condition in a private method, as it has
already been checked and filtered in an earlier branch. In P3, PGFuzz has been able to
reach 100% coverage, but it seems it can not cover each branch consistently in the given
amount of trials. The branches not reached consistently require a specific node to exist and
be mutated, making it possible but unlikely to be reached. Lastly, in P9, PGFuzz cannot
reach 100% as it requires sequential IDs in node properties, which is highly improbable in
both the generated and mutated inputs.
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Figure 4.1: Benchmark coverage results
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4.3. Results

4.3.2 Q2. How effective is PGFuzz in finding unique errors?

Table 4.2 shows the total unique errors for Random and PGFuzz. The graph generators are
not included in the table as they only generate graphs that follow the schema and do not
produce errors. There are three types of errors found by the PGFuzz and Random in the
benchmarks:

1. Invalid data types

2. Null pointers

3. Array index out of bounds

The invalid data types occur the most, 23 times, as the benchmark tries to parse integers,
booleans, or other types while the property value is no longer of that type. Null point-
ers have occurred five times and are triggered by certain graph elements no longer being
present. Lastly, the array index out of bounds occurred three times and was caused by re-
moving graph elements or splitting a string that no longer contained a specific character.

PGFuzz can find more unique errors than the Random method in two benchmarks, P1
and P4. These are caused by removed graph elements, which the random method can not
achieve. In two benchmarks, P3 and P7, the Random method finds more unique errors. PG-
Fuzz could have found these errors with more time, but the Random approach finds them in
fewer trials. This difference could be explained by the Random method having a strong bias
towards changing property values with a high chance of making it a string value instead of
a number, boolean, or other expected data type. PGFuzz has many other mutations, making
the change property type mutations less likely to occur.

PGFuzz can find both logical errors and semantic errors. The logical errors are caused
mainly by changing the graph elements, and the semantic errors are caused by changing
graph elements and property types. The Random method finds the type errors by changing
the property value to a string.

4.3.3 Q3. How much does each mutation mechanism contribute to the
increased coverage?

Figure 4.2 shows the relative increase in coverage compared to the overall coverage increase
per each mutation category. Each mutation category has been run independently of the oth-
ers, only allowing one mutation category at a time.

Changing graph elements (C3) impacts the coverage increase most. It has the largest cov-
erage increase contribution in 7 of the 8 benchmarks.

Each mutation contributes to new coverage, as each mutation category appears in at least
one of the benchmarks. A single mutation is responsible for the total coverage increase
in three benchmarks (P3, P5, and P7). In the other other benchmarks, a combination of
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Benchmark Random Error PGFuzz Error
P1 - Medical 0 n.a. 2 Nullpointer

P2 - Transportation 5 Number format exception 5
Number format exception
Array index out of bound

P3 - Citation 13 Number format exception 10 Number format exception
P4 - CitationNetwork 0 n.a. 1 Nullpointer
P5 - PanGenomic 2 Nullpointer 2 Nullpointer
P6 - PhenoOut 0 n.a. 0 n.a.

P7 - Pheno4j 9 Number format exception 4
Index out of bound
Number format exception

P8 - PanTool1 4
Index out of bound
Number format exception 4

Index out of bound
Number format exception

P9 - PanTool2 3
Index out of bound
Number format exception 3

Index out of bound
Number format exception

Table 4.2: Unique errors found per method
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Figure 4.2: Coverage increase contribution per mutation category

mutations is needed to reach the total coverage increase. The mutations appear to overlap,
as for some of the benchmarks, the summation of each mutation category increase exceeds
100%. This is expected, as certain mutations can have similar results depending on bench-
mark logic. An example is Changing graph elements (C3), which can be seen as Removing
a graph element (C2) and adding a new Graph element (C1).

4.3.4 Q4. Which mutations are most effective in finding unique errors?

Figure 4.3 shows how many unique errors of each type have been found per mutation cate-
gory. Similar to the coverage report, the mutation categories have been run independently.
The error codes have been labeled according to how they are presented in Section 4.3.2; E1
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Figure 4.3: Mutation contribution per error type

is an Invalid data type, E2 is a Null pointer, and E3 is an Array index out of bounds.

Breaking graph constraints (C5) appears to be most effective in finding unique errors, de-
tecting the most unique errors in 10 of the 12 benchmarks. Changing data values (C4)
contributes the least, only detecting one error in P8.

Each mutation contributes to detecting unique errors, as each mutation category appears
in at least one of the benchmarks. Similar to the coverage increase, some mutation cate-
gories overlap with others, as the summation of unique errors exceeds the total number of
unique errors detected.

The following conclusions can be made from the contribution of each mutation category
per error type:

• Invalid data type (E1) are caused by Breaking constraint mutations (C5), Removing
graph elements (C2) or Changing graph elements (C3).

• Null pointers (E2) are primarily caused by Removing graph elements (C2), Changing
graph elements (C3), and Breaking constraint mutations (C5). Adding a New graph
element (C1) rarely causes the error, and Changing the property value (C4) does not
trigger the error.

• any of the mutations can cause item Array index out-of-bound error (E3) and is pri-
marily caused by Breaking constraint mutations (C5).
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Figure 4.4: Coverage results for AST depth 4 (left) and AST depth 8 (right)

4.3.5 Q5. How does the performance of PGFuzz scale with different
application complexities?

The number of nested conditionals can quantify the complexity of a benchmark. These con-
ditionals can be modeled in an abstract syntax tree (AST) where each condition is a node
with two edges, one edge for the true path and one for the false path. Each nested branch-
ing condition adds 1 to the depth, making it more complex as the input must meet more
conditions to reach that depth. To assess PGFuzz’s performance under various application
complexities, we expanded the existing P8-PanTool1 benchmark by introducing additional
conditionals. These new conditions were derived from similar ones in the original applica-
tion and other benchmarks. The original AST of P8 had a maximum depth of 4. Adding
four nested conditionals doubled the original depth, reaching a maximum depth of 8.

Figure 4.4 shows the coverage results for P8 and the extended benchmark. The perfor-
mance of a method is measured by the total coverage in the number of trials, similar to the
analysis in 4.3.1.

PGFuzz is able to cover all additional branching in the extended benchmark. It does reach
100% coverage but does not consistently reach it in the given number of trials. The time
it takes PGFuzz to find the additional branching appears to scale with the increased com-
plexity. This is also reflected in the Random method, which requires more trials to cover
all reachable branches. PGMark has similar performances but more variance across the
experiments.
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4.4 Case Study: Cycle detection and Compound Mutations

Cycle detection is a common task within graph processing [6, 31, 46]. It is used across
different fields like fraud detection [26, 54] and is part of another well-studied task, pattern
counting [14].

We ran PGFuzz on a bread-first search cycle detection algorithm. The algorithm starts
from a random node and traverses the neighboring nodes. When an already visited node
is reached, the cycle size is checked, and the cycle is returned. If there is no cycle, the
algorithm finishes after visiting each node. Any cycle-detecting algorithm for a fixed cy-
cle size would work as long as there is an unreached branch that is only executed when a
proper-sized cycle is detected. Initial testing showed that PGFuzz could not make a large
enough change to trigger new coverage. If a new node were added, even though it would be
one step closer to the cycle size, it would be discarded as now new coverage was achieved.

To solve this problem, we extended the set of mutations with a compound mutation, a
mutation that applies existing mutations on a larger scale. The compound mutation is an
extension of Add node (M1), now adding multiple nodes to the graph in a single mutation.
Whether a graph contains a cycle of size S is influenced by the size of the graph and the
density. A graph with more nodes and edges is more likely to have cycles or be close to a
cycle (e.g., a cycle is created by adding a single node or edge). We tested the methods on
five different graph sizes to gauge the scalability of PGFuzz and its extension with support
for compound mutations. The graphs are generated using GMark.

In Figure 4.5, the performance of PGFuzz with the compound mutation can be seen in
generating a graph with a cycle of size 10. The compound mutations give a significant
advantage when the graph is relatively small. Without the compound mutation, PGFuzz
cannot create a cycle and reach new coverage in a graph with size 100. The medium-sized
graphs (|N|=200. |N|=500) PGFuzz with the compound mutation enabled can generate the
graph in fewer trials. PGFuzz can create the cycle with these sizes, though not consistently.
With the larger graphs (|N|=100, |N|=1000), the performance is similar between PGFuzz
with and without compound mutations. The graphs are likely close to a cycle, which PG-
Fuzz can create by a single mutation.

This case study shows compound mutations (i.e., mutation combination or repeating muta-
tions) might be useful for applications where:

• Branching depends on large changes to the graph, not achieved by the single muta-
tions of PGFuzz.

• The graph input size needs to be kept as small as possible. For example, for perfor-
mance or complexity considerations.

• For applications requiring specific patterns (e.g., cycle, triangle).
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Figure 4.5: Coverage results detecting cycles with node count |N|

We also ran the compound variant on the benchmark suite used in the previous section. The
results are added in Appendix A and show no performance difference. Compound mutations
do not affect performance for large graphs in cycle detection and applications with fewer
changes needed to satisfy new branching.
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4.5 Evaluation Summary

This section will summarize the answers to the questions used to evaluate PGFuzz.

Q1. How effective is PGFuzz in increasing branch coverage compared to existing
graph generators?
PGFuzz shows an increase in the branch coverage in each of the benchmarks. On average,
PGFuzz increases the absolute coverage by 23%, with a maximum increase of 57%.

Q2. How effective is PGFuzz in finding unique errors?
PGFuzz can detect both semantic and logical errors. The types of errors found are invalid
data types, null pointers, and array index out-of-bounds.

Q3. How much does each mutation mechanism contribute to the increased cover-
age?
Changing graph elements (C3) impacts the coverage increase most. It has the most signifi-
cant coverage increase contribution in 7 of the 8 benchmarks

Q3. Which mutations are most effective in finding unique errors?
Breaking graph constraints (C5) appears to be most effective in finding unique errors, de-
tecting the most unique errors in 10 of the 12 benchmarks. Invalid data types are caused
by Breaking constraint mutations (C5), Removing graph elements (C2), or Changing graph
elements (C3). The Null pointers are primarily caused by Removing graph elements (C2),
Changing graph elements (C3), and Breaking constraint mutations (C5). The Array index
out-of-bound error has been primarily caused by Breaking constraint mutations (C5)

Q4. How does the performance of PGFuzz scale with different application com-
plexities? The time it takes PGFuzz to cover branching scales with the application’s nested
branching depth. Even with increasing branching depth, PGFuzz can still cover all branch-
ing.
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Chapter 5

Related Work

This chapter discusses existing work related to the main components PGFuzz uses. It is
divided into four sections: first, generating (valid) states relevant to seed inputs and new
inputs for PGFuzz; second, testing applications with a non-graph database backend; third,
fuzz testing; and finally, testing graph database engines.

5.1 Graph generation

Generating graph states can be achieved by using a graph generator. Existing graph gener-
ators can be categorized into five different groups [36]: traditional, community structures,
community structure and node attribute, large scale, and neural network-based. The tradi-
tional graph generators focus on edge density and node distributions. Generators for com-
munity services have a similar approach to the traditional but also consider the topological
structures within communities. The generators for community structures and node attributes
can generate node attributes in the graph and generate edges between nodes based on sim-
ilarities. The neural network-based graph generators try to produce real-world graphs for
neural networks, following either a sample input or a graph characteristic. As the name
suggests, large-scale graph generators can efficiently generate large graphs using schemas
that support node labels and edge predicates.

GenCat [36] is a graph generator that stands out for its capability to generate graphs with
user-specified node degrees, relationship control proportion for each node to classes, and at-
tribute distributions. The generator can produce these complex graphs in linear time, scaling
with the number of edges. Gencat also solves both core/border and homophily/heterophily
phenomena with this approach (i.e., certain node groups are highly interconnected or very
sparse). GenCat has been further developed and is used in more specialized research for
GNN’s [35]. Both works show that their attribute generation is focused on creating at-
tributes useful for neural networks and other language models. However, the generator
cannot handle different property types or cardinality constraints.

GMark is a generator that generates both graph instances as query workloads from a schema
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[4]. It is a platform-independent tool where the user can define the schema node, edges,
overall graph properties, cardinality constraints, and distributions. GMark has shown to be
a novel generation tool that allows for quality graphs to be generated. While the approach
performs well for generating graphs, it does not provide the full functionality of a property
graph, as node and edge property values can not be generated. PGMark is an extension of
GMark and is used in other work [19]. PGMark has similar functionality but also provides
functionality to generate node property values with specific ranges or constraints.

It shows that the kind of graph generator used depends highly on the domain. Most gen-
erators utilize some form of graph schema, highlighting the complexity of each structure.
PGFuzz can be used alongside any of these graph generators, taking advantage of their
diversity and functionality.

5.2 Testing invalid database states

Multiple works have shown testing methods that avoid or at least minimize the number of
invalid database states [12, 16, 17, 45]. Their approaches vary, from having user input to
predefined schemas or specialized mutations.

For a relational database, for example, you can use the conceptual model of the database to
generate states to test all ER model constructs and the database constraints [12]. AGENDA
uses sample value data for attributes that can be written to the database[16]. Instead of an
automatic mutation or guidance, the user specifies the behavior of test cases interactively.
The approach does not consider invalid database states, which might be less of a problem
since mutations are heavily user-guided and mutation values are pre-defined. Having data
outside the allowed schema is for future consideration [13]. An extension of AGENDA has
been proposed, which translates constraints that the DBMS does not enforce into simpler
constraints [17]. They acknowledge that schema-breaking states could be interesting, but
they filter those by following a static analysis to determine which queries return valid results.

SynDB is a method to test database applications where the original code is rewritten to a
synthesized database where they can apply Pex [45]. This engine uses a constraint solver to
generate new inputs. The database constraints are also transformed to validate the database
state. The first check is done within the synthesized database, and the second filtering is
done by Pex, which filters out invalid inputs. Invalid database states are, therefore, not con-
sidered and not evaluated.

Unlike the other examples, DBGriller stands out as it tries to increase coverage and find
unique bugs, similar to PGFuzz [62]. The challenge is to generate valid database states
effectively [62] to pass validation checks but still target exploration and logic bugs in the
application. DBGriller has been specifically designed for relational databases and has in-
spired the work for PGFuzz.
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5.3 Fuzz Testing

Fuzz testing is a popular and effective automated testing method across multiple fields
[34, 66]. The challenge is often to have a good input generator and mutator. The most
straightforward method is to use random bit- or byte mutation, but often, specific mutations
are designed for more complex domains. For example, multiple works proposed specialized
methods for big data analytics. DepFuzz keeps track of data dependencies from the input
[24]. It tracks which code segments operate on which datasets, rows, and columns. Dep-
Fuzz generates test data that should reach hard-to-reach regions of the application code by
tracking dataflow operators and semantics using taint analysis. NaturalFuzz aims to create
as ”natural” or ”realistic” inputs as possible [25]. The natural mutations are generated by
selecting which columns to mutate on and combining similar data points across different
rows and columns to construct new realistic synthetic data.

Applying fuzz testing with coverage feedback to test relational database management sys-
tems has been covered by Squirrel[65]. They provide type-based mutations that generate
syntactically correct queries. They analyze their custom query representation for dependen-
cies between arguments to avoid semantic errors. The mutations are specifically designed
for SQL queries and, thus, not applicable to graph structures.

There is little work on mutating graph structures. GraphFuzz, coming close, represents
every test case as a dataflow graph where vertices are functions and edges are object de-
pendencies (hence GraphFuzz). GraphFuzz models sequences of executed functions as a
dataflow graph, thus enabling it to perform graph-based mutations at the data and execu-
tion trace level. The mutations are specifically designed to change the order of the function
calls. The re-ordered graphs are then completed so that dependencies are met, like having
the correct final function call at the end of the graph. This mutation would be less effective
on property graphs as certain elements are not changed, and the mutations do not consider
any semantic constraints.

5.4 Testing Graph Database Engines

Grand is an approach for finding logic bugs in graph databases that adopt Gremlin in
the query language [64]. It creates semantically equivalent databases for multiple graph
database management systems and compares the results from the engines. The main contri-
bution is generating syntactically correct and valid Gremlin queries with a high probability
of returning non-empty results. It does so by using a model-based query generation ap-
proach, which is specifically designed for Gremlin. The second problem being tackled is
uniforming the query results across different graph database engines.

GDsmith ensures that each randomly generated query satisfies the semantic requirements
[22]. it is a graph-guided generation of complex pattern combinations, the graph being
generated from the database. They mutate the extracted patterns and use them for query
generation, data-guided generation of complex conditions, and static query analysis during
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the query generation process. The work is applied to Cypher and touches upon Neo4J, with
the goal of finding the wrong results and bugs. GDSmith generates random property graph
schemas from which random graph databases are made.

GDBMeter tests graph database systems by partitioning queries [30]. Multiple queries are
derived from a query whose results can be combined to reconstruct the given query result.
It demonstrates how the Query Partitioning test oracle, particularly Ternary Logic Partition-
ing, can be applied to graph database systems to find logic bugs.

Dinkel proposes a technique for generating complicated and valid Cypher queries with com-
plicated dataflow and data dependencies [27]. They do this by using the query context and
the abstract graph summary. Apply state manipulation to modify the information. It is a
novel approach to Cypher query generation, enabling fuzzing of graph database engines
using complex queries containing intertwined, data-dependent clauses.

The above works primarily focus on testing graph database engines by custom queries
and applying differential testing to find bugs. For the applications to be tested with PG-
Fuzz, there is usually no other application against which the results can be compared, which
makes it less useful. Additionally, the queries generated by their methods do not capture
any application constraints and miss any semantics many applications require.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this paper, we have presented PGFuzz, a coverage-guided, schema-aware fuzzer for graph
processing applications. To our knowledge, PGFuzz is the first method to automatically test
applications with a graph database backend. PGFuzz has been specifically designed for
property graphs and can be used on top of any graph generator. The application is tested
using a fuzz loop to pass inputs to the instrumented application, process the coverage feed-
back, and mutate graph states to produce new inputs. The mutations of PGFuzz can add,
remove, or change graph elements and change property values. Additionally, specific mu-
tations target the graph constraints like cardinality, key types, and property types.

We implemented a Random mutator to compare the performance of PGFuzz to a random
mutation approach. The Random mutator only mutates element labels and property values,
providing the same mutation power as the random byte mutations and significantly reducing
the number of corrupted states.

The evaluation shows that PGFuzz achieves more coverage and unique errors in less time
than the graph generators in each benchmark we tested. The graph generators already
achieved high coverage but could not reach every branch. The Random method reaches
a higher coverage but cannot reach every branch due to the limited mutation power. PG-
Fuzz shows an increase in the branch coverage in each of the benchmarks. On average,
PGFuzz increases the absolute coverage by 23%, with a maximum increase of 57%.

Both PGFuzz as the Random method to detect three types of errors: Invalid data types,
Null pointers, and Array index out of bounds. These errors are primarily caused by Remov-
ing graph elements, changing graph elements, or breaking constraint mutations.

Even with more complex branching, PGFuzz can still reach every branch. The number
of trials it takes to cover extra branching appears to scale with the program’s branching
depth, as expected.
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6.2 Discussion

In our evaluation, we used graph schemas that were either collected from the benchmark
source or derived from the logic found in the code. We did not consider invalid schemas or
seeds to be passed to PGFuzz. No validation checks are built for either the seed or schema,
and PGFuzz is not designed to validate graph states. We can assume the performance of
PGFuzz might change significantly if one of these is incorrect, as is recognized in other
work [8].

We used two recent works to design the mutations for PGFuzz. PG-Key and PG-Schema
describe constraints and schemas that should be available for any future standardized graph
querying language [2, 3]. We tried to use similar constraints in this work but could not get
a similar expressiveness of the scope of a key constraint. In PG-Key, a key type can be
defined on any unary result from a graph query. PGFuzz only allows for the key types to be
defined per property.

6.3 Future work

PGFuzz and its mutations can be useful in the field of graph pattern generation and detec-
tion. During development, we experimented with putting patterns in the graph schema and
implementing mutations, but we abandoned it due to time restrictions and a lack of useful
applications to test. Our case study shows that PGFuzz with compound mutations is inter-
esting for cycles, and thus, it might also be useful for other kinds of pattern tasks.

Not all mutations require the graph schema to work. Additionally, some information cur-
rently collected from the schema could be derived from the graph metadata, and other works
describe how to infer a schema from a graph [9, 33]. Future work might examine whether
such an automated schema can achieve similar performances as with the manually created
schemas in this work. Requiring the schema would reduce possible points of failure and
manual work from developers.

Lastly, further extending the mutations of PGFuzz and testing the fuzzer on a more exten-
sive set of benchmarks could be interesting. Finding example programs was challenging as
the criteria for useful programs did not occur often in the applications we found. Eventually,
the most applicable applications had implicit constraints on the graph structures and where
the data was modeled in memory. The graph community is working towards a standardized
query language that might introduce new kinds of constraints, which can be modeled into
mutations.
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Appendix A

Compound Mutations Coverage
Results

In figure A.1 the coverage results with compound mutations enabled can be seen. We see
that enabling Compound mutations for PGFuzz does not provide a performance difference.

43



A. COMPOUND MUTATIONS COVERAGE RESULTS

0 5000 10000 15000 20000 25000
Trials

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P1 - Coverage Results

PGFuzz
Random
GMark
Compound

0 5000 10000 15000 20000 25000 30000 35000
Trials

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P2 - Coverage Results

PGFuzz
Random
PGMark
Compound

0 1000 2000 3000 4000 5000 6000
Trials

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P3 - Coverage Results

PGFuzz
Random
PGMark
Compound

0 250 500 750 1000 1250 1500 1750
Trials

80

90

100
Co

ve
ra

ge
 (%

)

P5 - Coverage Results

PGFuzz
Random
PGMark
Compound

0 10000 20000 30000 40000 50000 60000 70000 80000
Trials

30

40

50

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P6 - Coverage Results

PGFuzz
Random
PGMark
Compound

0 1000 2000 3000 4000
Trials

40

50

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P7 - Coverage Results

PGFuzz
Random
PGMark
Compound

0 5000 10000 15000 20000
Trials

50

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P8 - Coverage Results

PGFuzz
Random
PGMark
Compound

0 5000 10000 15000 20000 25000
Trials

0

10

20

30

40

50

60

70

80

90

100

Co
ve

ra
ge

 (%
)

P9 - Coverage Results

PGFuzz
Random
PGMark
Compound

Figure A.1: Coverage results with Compound mutations
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