
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Decomposition methods and rolling horizon
approach for the yard crane scheduling problem

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Sander van Dijk

Delft, The Netherlands
May 2015

Copyright c© 2015 by Sander van Dijk. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Decomposition methods and rolling horizon approach for the yard crane
scheduling problem”

SANDER VAN DIJK

Delft University of Technology

Daily supervisor Responsible professor

Dr.ir. M. Burger Prof.dr.ir. K.I. Aardal

Other thesis committee members

Dr.ir. R.J. Fokkink

May 2015 Delft, The Netherlands

Abstract

Yard crane scheduling is one of the operational optimization problems that arise in a
port container terminal. Multiple cranes have to store containers in the yard or retrieve
containers from the yard. The scheduling of these cranes is complex and it is difficult to
find an optimal schedule within limited computation time.

In this thesis multiple mixed integer programming formulations are introduced that can
be used to model the yard crane scheduling problem. The first formulation fixes zones
for a certain planning window. Yard cranes are assigned an individual zone and these
zones are non-overlapping. The second model uses a time discretization. We assume
that yard cranes can handle 1 job in each time interval of 3 minutes. Working zones for
the yard cranes can overlap, but not in the same or subsequent time intervals.

Decomposition methods are used to reduce the problem complexity and reduce com-
putation times. A logic-based Benders decomposition is used for the first model were
the assignment of cranes to jobs is done separately from finding an optimal path for
the yard cranes individually. Iterating between those problems can reduce computation
times when the number of iterations is small. After decomposition, the size of these par-
tial problems is much smaller than the size of the problem before decomposition. Some
additional lower bound procedures are introduced to further speed up computation. A
lower bound procedure can identify and exclude an assignment that will lead to a bad
schedule in an early stage. When the problem instances are large enough, logic-based
Benders decomposition showed a reduction in computation times.

The problem is modeled in a rolling horizon fashion and time decomposition is introduced
to again reduce computation times. Instead of trying to solve the problem for one long
time period, this time period is split into two or more small time intervals. These
intervals are solved separately where connection between them is solved by iterating
between those individual time intervals. The rolling horizon reflects the practice in
container terminals better since business goes on the entire day and operational decisions
are made continuously, over a limited time horizon. By scheduling for a certain time
period ahead, schedules can be made online without using all data available in the future.
This keeps the computation times limited since scheduling a whole day at once would
be too computationally expensive.

The arrival times of jobs at the yard are not deterministic. Exact arrival times of trucks
at the yard are hard to predict. Therefore some stochastic models are desirable. In this
thesis we introduce uncertain arrival times of trucks at the gate of the terminal. Exact
arrival times are only known a few minutes ahead while other arrival times follow an
exponential distribution. We solve this model using expected values of the arrival times
as well as by simulating possible scenarios.

v

Acknowledgements

This thesis describes my research done at TBA regarding yard crane scheduling. This
research is the final step to obtain my master’s degree in Applied Mathematics at Delft
University of Technology. I came in contact with TBA at a business diner organised
by my rowing club D.S.R. Proteus-Eretes. I have spent many hours for training and
other activities at my rowing club during my entire period as a student, which makes
it a very important part of my student life. At this business diner, Martijn Coeveld of
TBA introduced me to container terminals and their operational challenges. I would
like to thank Martijn for getting me interested in yard crane scheduling and offering this
research opportunity to me.

In addition, I would like to thank my supervisors Mernout Burger and Karen Aardal for
providing guidance during the entire thesis project. Their feedback helped me to realize
in what direction my research should continue and also their comments on how to write
a thesis have been very useful for me. Writing has never been one of my stronger points,
so their feedback on structure, spelling and grammar was very valuable. Furthermore I
would like to thank Robbert Fokkink, for taking seat in my thesis committee and Liselot
Arkesteijn for reading many parts of my thesis and giving extensive feedback on spelling
and grammar.

Finally, I would like to thank some groups of people. First of all, my colleagues from
TBA for sharing their knowledge on yard crane scheduling and container terminals.
And secondly, a number of friends for showing interest in my research. This helped me
structure my conclusions and prepare my final presentation.

vii

Contents

Abstract . v

Acknowledgements . vii

1 Introduction 1

1.1 Problem definition . 2

1.2 Research goals . 3

1.3 Solution methods . 4

1.4 Research contribution . 4

1.5 Outline . 5

2 Container terminal 7

2.1 Layout of a container terminal . 7

2.2 Operational problems in the container terminal 9

2.3 Container terminal type . 12

3 Optimization problems 13

3.1 Optimization problem . 13

3.2 Complexity . 15

3.3 Branch and bound . 20

3.4 Stochastic programming . 22

4 Literature review 25

4.1 Terminal operations . 26

4.2 Yard crane scheduling . 27

5 Models 35

5.1 Model assumptions . 35

5.2 Model1 . 37

5.3 Model2 . 41

5.4 Model3 . 45

5.5 Analytical comparison . 47

6 Benders decomposition 51

6.1 The Benders decomposition method . 52

ix

CONTENTS

6.2 Logic-based Benders decomposition . 53
6.3 Logic-based Benders for Model1 . 55

7 Rolling horizon 63
7.1 Rolling horizon algorithm . 64
7.2 Time decomposition . 69

8 Stochastic input 73
8.1 Stochastic model . 74
8.2 Distributions . 75
8.3 Simulating . 76

9 Results 79
9.1 Static problems . 79
9.2 Rolling horizon problems . 87
9.3 Stochastic results . 95

10 Conclusion 99

11 Discussion 101
11.1 Validation . 101
11.2 Future research . 102

Bibliography 105

A Additional binary variables 111

B Benders decomposition methods 113
B.1 Classical Benders decomposition . 113
B.2 Classical Benders decomposition for Model1 116
B.3 Classical Benders decomposition for Model3 120
B.4 Combinatorial Benders cuts for Model1 125
B.5 Double Benders decomposition . 129

C Lower bound procedures for Benders decomposition 137
C.1 Lower bound procedure of Ng and Mak 137
C.2 Performance . 137

x

Chapter 1

Introduction

Nowadays transport of cargo over sea is mostly done via container transport. Containers
are transported on large vessels overseas and these vessels are loaded and unloaded at
container terminals. At the quayside of a terminal, large quay cranes move the containers
from vessel to quay or vice versa. In the storage yard, large yard cranes stack containers
upon each other. These containers are stored until they have to be transported further.
The transportation between storage yard and quay cranes is done via internal trucks.
These trucks are either driven by employees of the terminal, or they are automated
guided vehicles. Transportation between the storage yard and the gate on the landside
is done via external trucks and/or internal trucks. External trucks are trucks that are
driven by chauffeurs who are not employed at the terminal. They take containers for
further transport over roads. Internal trucks can be used for containers that need to be
transported to a railway or to inland vessels.

Many operational problems arise in the container terminals. Good schedules are needed
for the quay cranes, the yard cranes and the internal trucks. Many obstacles arise
in avoiding collision and minimizing delay or downtime of these equipments. Most
operational aspects are complex by themselves, such as the scheduling of yard cranes
and quay cranes. Those operational problems (among others) are known to be NP-hard.
The notion of NP-hard will be explained in Chapter 3 but suggests that it is not possible
to find an algorithm that solves this scheduling problem efficiently. As a result, the size
of the problem (number of jobs and yard cranes) is very important for the solution time.
Combining all operations in a container terminal to a total model including container
flow, truck dispatching and crane scheduling is very complex.

This research was conducted at TBA, a consultancy company founded in the Netherlands
in 1996. TBA specializes in terminal operations and develops software for automated
guided vehicles in terminals. Part of their business is simulating container terminal
performance under different circumstances, to consult on daily operations or long term
decisions. Long term decisions are , for example, the choice of equipment in the terminal,
size of the terminal, layout of the terminal or other strategic decisions. They use opti-

1

1.1. PROBLEM DEFINITION

mization approaches for different operations. This is done to advise container terminal
operators on how to improve their performance. Some of these approaches contain an
advanced yard crane scheduler which can be implemented in the existing terminal soft-
ware or their emulation models. Their emulation models are (part of) virtual terminals
that simulates real time container terminal operations.

1.1 Problem definition

This thesis will focus on the scheduling of yard cranes. At the container yard, containers
are moved from trucks to the stack and vice versa. These actions are defined as jobs or
moves. Sometimes reshuffling is needed before the right container can be reached. Jobs
arrive at different times, at different places and in some cases with different expected
handling time. There can be different type of jobs with different priority. The input for
the problem consists of the number of cranes, number of bays and a list of jobs containing:
ready time, handling time, bay number (location) and type of job (see Figure 1.1 (left)).
Each job needs to be assigned to a yard crane. Therefore a schedule for the yard cranes
needs to be made up such that every job is handled by a yard crane. With this input
a schedule has to be made for the yard cranes. Each yard crane is assigned a subset of
the jobs such that the sum of delays for the jobs is minimized (see Figure 1.1 (right)).
The delay of a job is defined as the difference between the completion time of a job in
the found schedule and its originally planned completion time. Its originally planned
completion time is the time the job becomes available (because a vehicle arrived at the
yard) plus its handling time (processing time). This objective (minimizing delay) results
in a minimal waiting time for vehicles at the yard. Other possible objectives for the
yard crane scheduling problem are minimizing the traveling distance of yard cranes or
minimizing the makespan. Since yard cranes share the same lane along the stack, they
cannot cross each other. An important constraint for scheduling the yard cranes is this
non-crossing constraint. Furthermore, jobs cannot be handled before a truck arrives
at the right location (the job ready time). This problem is an NP-hard problem (see
Chapter 4) and therefore not efficiently solvable unless P = NP . To deal with this NP-
hardness issue, input cannot be too large. The theoretical worst-case runtime of exact
algorithms will grow exponentially with the problem size. In practice, it is sometimes
possible to solve for medium sized problems in a reasonable amount of time.

Because of many interacting activities in container terminals, the expected arrival time
of jobs is rather uncertain except for the very near future. Truck arrival times are only
assumed to be reasonably stable for the upcoming hour. This makes it impossible to
plan all operations far ahead, so schedules need to be made online for the near future.
As a consequence, algorithms used for the scheduling need to be fast and find good
schedules in a limited amount of time.

This problem shows similarities to the well known combinatorial optimization problems:
vehicle routing problem, multiple traveling salesman problem and assignment problem.

2

1.2. RESEARCH GOALS

Figure 1.1: Input (left), Output schedule (right)

A route for the yard cranes must be found where all jobs (cities) are performed (vis-
ited) once. There are time constraints for the jobs on the route and additional spatial
constraints concerned with the non-crossing of the cranes. This last part is the main
difference between the yard crane scheduling problem and the vehicle routing problem
or multiple traveling salesman problem. In view of the assignment problem, the jobs
need to be assigned to the different yard cranes. Again, some extra spatial constraints
are added for the non-crossing of the yard cranes.

1.2 Research goals

The main purpose of this research is to identify important modeling factors and solution
algorithms to construct a good yard crane scheduler. A good yard crane scheduler can
construct schedules fast such that with a limited number of yard cranes the waiting time
of vehicles at the yard is minimized. A minimal vehicle waiting time of trucks at the
yard is necessary for a good quay crane performance rate, which is the most important
performance measure for container terminals.

We will use mixed integer linear programming (MILP) formulations for modeling the
problem. The class of MILP problems belongs to the class of NP-hard problems. This
means that it is impossible (assuming P6=NP) that an algorithm can be found that solves
an arbitrary MILP formulation in polynomial time. However, this does not mean that all
MILP problems are difficult to solve. Since the yard crane scheduling problem is NP-hard,
the corresponding MILP formulations are unlikely to be solved efficiently. For very large
problems it is therefore ambitious to solve the problem to optimality. On the other hand,
NP-hardness is a classification for the complete class of yard crane scheduling problems.
This does not mean that every problem instance is difficult to solve. Small problem
instances can be solved in a limited amount of time. Using some special structure,
sometimes larger problem instances are also solved easily. Recent research in this area

3

1.3. SOLUTION METHODS

is mainly focused on finding heuristic solutions. We want to investigate whether it is
possible to come up with good MILP formulations that can be solved to optimality in a
reasonable amount of time. Specific problem characteristics and good MILP formulations
might make solving in reasonable time possible in practice. Reasonable time would be
two minutes to solve problem instances with around 30 jobs.

First we assume that the truck arrival times at the yard are deterministic. However, as a
result of traffic jams or vehicle failure, the truck arrival times are uncertain. Stochastic
programming can be used to model this uncertainty. We will investigate, to what extent
we can incorporate this within the yard crane scheduler.

1.3 Solution methods

To solve the MILP problems we formulate in this thesis, we make use of the software
packages Gurobi and Matlab. Matlab is used as an interface for creating the problem
instances (matrices) and returning and evaluating the results. Matlab is a programming
language with interactive environment that can be used for a wide variety of mathemati-
cal activities. We use Matlab for defining the MILP problems, call on Gurobi for solving,
iterating between different MILP problems, read and write data files and analyzing re-
sults. Gurobi is used as solver for the MILP formulations. It is a commercial software
package originally designed for solving LP problems. Gurobi solves MILP problems using
branch and bound and LP relaxations.

1.4 Research contribution

The main research contribution of this thesis is the introduction of MILP formulations for
the yard crane scheduling problem. We introduce two new MILP formulations and adjust
one other MILP formulation. We tested the different formulations for their applicability.
These formulations are compared on computation times and their found objective values.
Furthermore, Benders decomposition is introduced for the different MILP formulations.
Logic-based Benders decomposition will further reduce computation times for the first
model.

A rolling horizon approach is introduced to deal with long planning periods (more than
15 minutes) or online planning problems. The rolling horizon approach is a way to solve
only a part of the problem, without creating “bad” boundaries between the different
parts. At a specific point in time the problem is solved for a short time window (for
example the next 15 minutes). After a short time (for example 5 minutes) the problem
is solved again. We also introduce a time decomposition that can be used to solve long
planning periods. Instead of solving the whole planning period at once, the planning
period is divided into two or more pieces that are solved separately. The separate
problems are solved iteratively to optimize over global delay instead of delay per time

4

1.5. OUTLINE

interval. Different parameters and different MILP formulations are tested within this
rolling horizon approach.

At the end of this thesis also stochastic input is introduced. Two algorithms are intro-
duced to deal with uncertain arrival times. For these algorithms the aforementioned time
decomposition is used. The performance of these algorithms is tested using exponential
distributions for the arrival times.

1.5 Outline

The first four chapters give an introduction to the yard crane scheduling problem. In
Chapter 2, some introduction to container terminals is given. The different parts of
a container terminal are described as well as the operational problems that arise. In
Chapter 3 an introduction to some mathematical concepts is given. The concept “op-
timization problem” and the concept of an algorithm are described. Furthermore, we
define an MILP problem and describe the “branch and bound” solution method. In
addition, we give a framework for a probability space which is used in Chapter 8 for
stochastic input. Chapter 4 contains the literature review. Here we summarize briefly
the research that is done in container terminals and in more detail for the yard crane
scheduling problem. Some models that use similar approaches as the approach in this
thesis are described in more detail.

Chapters 5 to 8 describe several formulations and solution methods for the yard crane
scheduling problem. In Chapter 5 we introduce the models we use for the yard crane
scheduling problem. Three different models (MILP formulations) are given and com-
pared on their number of variables and constraints. In Chapter 6 we introduce Benders
decomposition. Benders decomposition is used to alter the MILP formulations to reduce
the computation time for solving the problem. Because new containers (and therefore
storage or retrieval jobs at the yard) keep on arriving during the day, we need a rolling
horizon approach to solve this scheduling problem. This rolling horizon approach is
given in Chapter 7. In Chapter 8 we shift from deterministic to stochastic input. Some
initial ideas on how stochastic input can be integrated in the deterministic models are
presented. It can be used as a starting point of a more advanced study to integrate
stochastic input into the models.

Results on delay and computation times for the different models are presented in Chapter
9. These results are presented both for the static case as well as the rolling horizon. In the
last section of Chapter 9, also some results on stochastic input are presented. Chapter
10 gives the conclusion of this thesis. In Chapter 11 some validation as well as further
recommendations are presented.

5

1.5. OUTLINE

6

Chapter 2

Container terminal

In this chapter the lay-out of a typical container terminal is described in more detail.
In Section 2.1 we describe the different parts of the container terminal. After that,
Section 2.2 describe the operational problems concerned with the different parts of the
container terminal. In Section 2.3 we briefly discuss different kind of port container
terminals and their influence on operational decisions. This chapter is focused on the
container terminal as a whole. Operations in the yard are very dependent on the rest
of the terminal operations. A more detailed study of the yard crane scheduling problem
has been incorporated into Chapter 4.

2.1 Layout of a container terminal

Transport of commodities over sea is mostly done in cargo containers. In a container
terminal, the containers are transshipped between different transport vehicles, such as
ships, trains and trucks. Most containers have standardized sizes and are 20 or 40 feet
long. The throughput of containers in a terminal, also known as vessel capacity, is
measured in TEU (Twenty-feet Equivalent Unit). A container of 40-feet or larger is
accounted for as 2 TEU.

Container terminals contain one or multiple berths (places where vessels can dock).
These berths are located lengthwise a quay. At the quay, huge quay cranes are posi-
tioned to load or unload the vessels (see Figure 2.1). These quay cranes can be moved
along the quay to change position, but they are fixed on a rail so they cannot cross
each other. Multiple quay cranes can be assigned to one vessel in order to speed up the
unloading and loading. A vessel consists of multiple holds lengthwise and only one quay
crane can work at a hold.

Sometimes unloading and loading are separate activities and the loading starts only

7

2.1. LAYOUT OF A CONTAINER TERMINAL

Figure 2.1: Quay cranes (from TBA) Figure 2.2: Terminal layout (from TBA)

when unloading is finished. The operation can be accelerated by using dual cycling. In
this case loading activities are embedded in the unloading activities to reduce empty
horizontal movements of the quay crane. A container is picked up from the ship and
moved to an internal truck at the quay. Another container from another internal truck
is picked up and moved to the ship. In this way the spreader of the quay crane does not
need to move empty from quay to ship after every move.

Figure 2.3: Terminal layout schematic (Ng and Mak (2005))

When unloading a ship, the quay crane transfers the containers to internal trucks. These
trucks drive the containers to the storage yard where the containers are stored for later
activities by yard cranes (see Figure 2.2 and Figure 2.3). In some terminals automated
guided vehicles (AGVs) are used for internal transport. From the storage yard containers
are transferred to the gate for further transport over land by external trucks, trains or
inland shipping. For loading a ship the flow of events is reversed. This process is
illustrated in Figure 2.4.

Some ports are used as transshipment ports. In transshipment ports containers are
unloaded from a vessel, stored in the yard and later loaded onto another vessel. The
ratio between export and import varies for different ports. Import or export influences
the type of operations in the terminal.

8

2.2. OPERATIONAL PROBLEMS IN THE CONTAINER TERMINAL

Figure 2.4: Flow of containers through the terminal (Zhang et al. (2002))

Yard cranes are used to store or retrieve containers from the storage yard. There are
two main types of yard cranes, the RTG (Rubber Tyred Gantry) crane and the RMG
(Rail Mounted Gantry) crane. Note that this research is focused on the RTG crane. The
problem for the RMG crane is closely related but different on some essential parts. The
models developped later are only applicable for RTG cranes. A similar approach might
work for the RMG crane but this is not included in this research. The RTG crane has
the ability to turn 90 degrees and is not restricted by rail. It can gantry (move in its
entirety along a lane to another bay), but can also switch lanes by turning 90 degrees
twice. An RMG crane cannot leave a lane since it is fixed on straight rails. For both
cranes a different yard layout is used. For an RTG crane, container lanes are orientated
parallel to the quay (see Figure 2.2). A container is transferred from a pile to the side
of the bay (see Figure 2.5 perpendicular to the quay. Therefore the RTG crane does
not have to gantry during a job. A lane typically consists of a number of blocks of
about 45 bays. The space between blocks is used by trucks to get to the gate or quay
crane and by the RTG crane to turn to switch to a block in another lane (see Figure
2.6. For RMG cranes the yard layout is different. The lanes are perpendicular to the
quay and each block has at both ends a spot where containers are brought or picked
up by yard trucks. So when the RMG crane picks up a container from a slot, it has
to gantry to the end of the block to deliver the container to the truck. This is why
the scheduling has to be done differently. Typically two RMG cranes work together in
a block, both serving one end of the block. Systems other than RMG cranes or RTG
cranes for retrieving containers from the yard are known, but these have less similarities
with our RTG scheduling problem.

2.2 Operational problems in the container terminal

Operations in a container terminal can be modeled using a mathematical problem de-
scription. This problem can be split into different subproblems (see Figure 2.7). Usually
these problems are solved separately and then combined in a service plan for the com-
plete terminal. Integrated approaches are desirable, but difficult to solve. At the quay

9

2.2. OPERATIONAL PROBLEMS IN THE CONTAINER TERMINAL

Figure 2.5: RTG crane Figure 2.6: RTG terminal block

two problems can be identified which are sometimes combined. First of all there is
the berth allocation problem (BAP), in which it has to be decided which ship moors
at which berth. Next, the quay cranes have to be distributed over the quay and as-
signed loading and unloading jobs for the ships. This is called the quay crane scheduling
problem (QCSP). From the quay crane, containers have to be transported to the yard.
This is called the vehicle routing problem (VRP) or internal truck scheduling problem
(ITSP). It should not be confused with the combinatorial optimization problem that is
also called the vehicle routing problem. Both problems share some properties, but are
not similar.

In general, a group of internal trucks is assigned to a specific quay crane. This is called
pooling. Those internal trucks have to bring containers to the yard or pick up containers
from the yard for that quay crane. Next to the assignment of containers to trucks, also
the route of the internal trucks has to be decided to avoid possible traffic crowding.

To know the destination of the internal trucks in the yard, a storage plan is needed. This
is sometimes called the storage allocation problem (SAP) or stacking problem. It is used
to determine which container has to come at which position (block, row, bay, pile, tire).
A good storage plan has to minimize the reshuffles needed when retrieving a container
from the yard, but should also spread workload through the yard to prevent very high
workload in one block.

When a storage allocation plan and the internal trucks are assigned, the yard crane
scheduling problem (YCSP) is to be solved. The yard cranes have to perform several
jobs in the yard during a time period. A job can be retrieval, storage or reshuffle and has
a position, a ready time and an expected handle time. Yard cranes have to divide work
such that the waiting time of the internal trucks is minimized. They are restricted from
crossing each other within a lane and the number of yard cranes available is limited.

10

2.2. OPERATIONAL PROBLEMS IN THE CONTAINER TERMINAL

Figure 2.7: Operational problems in the container terminal

2.2.1 Objectives

The main objective of a container terminal is the turn around time of vessels. This is
widely accepted as the main performance measure for container terminals. The turn
around time for a vessel is the time a vessel spends in the terminal. Unloading and
loading of the vessel needs to be as fast as possible. Mathematically this means that the
makespan of loading and unloading activities for a vessel is minimized. The makespan
is the time needed to complete a group of activities or jobs. For the berth allocation
problem this means that the average turn around time per vessel is minimized. Each
vessel is assigned to a berth that will result in a short makespan for that vessel, but
should consider other vessels. Allocating a small ship to a berth with much equipment
(quay cranes) might result in a short makespan for that vessel, but results in a very long
makespan for a larger vessel that needs to dock at a berth with fewer equipment.

Once a ship is allocated to a berth, the objective for the quay crane scheduling problem
is to minimize the makespan. This is the part where loading and unloading activities are
completed as soon as possible. For the activities on the landside of the quay, this means
that the quay crane is supported as good as possible. Once the quay cranes are assigned
to the containers on the vessel, it is important that the containers are picked up at the
quay crane on time (or arrive at the quay crane on time in case of loading). This means
that the delay per jobs is minimized instead of the makespan (total completion time).
For the vehicle routing problem this means that there should be enough vehicles available
and the probability that a vehicle arrives to late at the quay crane is minimized. For
the yard crane scheduling problem this results in minimizing the delay for the vehicles.
A vehicle arriving at the yard needs to be served with minimal delay.

Although the above are the main objectives, sometimes other objectives are important

11

2.3. CONTAINER TERMINAL TYPE

too. For example, if slightly reducing the turn around time of a vessel would result in the
use of much more expensive equipment, then this is not desirable. Reducing the travel
distances of equipment or other cost reducing operations can be a side objective.

2.3 Container terminal type

There are three different kind of container terminals with respect to their function. Some
terminals are mainly focused on export. This is for example the case for many Asian
container terminals. Commodities arrive from the landside of the terminal and leave on
the seaside. On the contrary, there are terminals that are mainly focused on import.
Containers arrive via the seaside and are further transported into the hinterland. The
third category for a container terminal is transshipment terminals. These terminals
are used to redistribute containers from one ship to another. Containers are unloaded
from a vessel to the yard of the container terminal. After a short period (five days on
average) the containers are loaded onto another vessel. Transshipment terminals are
becoming more common nowadays. These different kind of container terminals result
in different kind of operational issues and objectives. For export container terminals,
loading activities have a high priority. This results in different strategies for container
stacking and yard crane dispatching. Containers intended for the same vessel are stored
close together such that they can be loaded onto the vessel easily. For transshipment
terminals the focus lies on storage allocation. Because vessels need to be loaded and
unloaded at the same time, it is difficult to store containers at a convenient bay or
block. This might lead to a lot of undesired reshuffling. Minimizing the reshuffling and
dwell time (time that a container spends in the yard) is very important for transshipment
terminals.

12

Chapter 3

Optimization problems

In this chapter some mathematical terminology and concepts are introduced. A few
important concepts will be discussed in detail, while for other concepts a high-level in-
troduction is given. Furthermore, references to the relevant literature are provided.

3.1 Optimization problem

An optimization problem is a problem of finding a best solution within a certain solution
space. There is a set of variables which can attain different values. We call the variables
of an optimization problem decision variables since their value in general correspond to
a decision in practice. The decision variables of an optimization problem can be brought
together in a vector. Let x denote the vector of decision variables. The best values
for the decision variables are determined by minimizing (or maximizing) an objective
function. This corresponds to choosing the best decision. The combined values that
the decision variables can attain is limited by a set of constraints. So not all values of
the variables are feasible. Optimization is about finding the best values for the decision
variables that are feasible under these constraints.

Minimize Objective
subject to Constraints

Let x̄ be a realization of x. If x̄ does not conflict any of the constraints, then x̄
is called a feasible solution. The feasible set of an optimization problem is the set
F = {x : x is a feasible solution}. The optimal solution (usually denoted by x∗) is the
feasible solution that results in the smallest value (outcome of objective function) in case
of minimization. For maximization the feasible solution resulting in the largest objective
value is referred to as the optimal solution. There is a wide variety of optimization prob-
lems, but in this thesis we will consider linear and mixed integer linear programming
problems.

13

3.1. OPTIMIZATION PROBLEM

3.1.1 Linear programming

In linear programming (LP) the objective function is a linear function and also the
constraints are linear inequalities (or equalities). Assume x is an n-dimensional vector
of decision variables. We assume all vectors are defined as column vectors unless stated
otherwise. Let c be an n-dimensional vector of constants, A be an m by n-dimensional
matrix and b be an m-dimensional vector. We define the following linear programming
problem:

minimize cTx
subject to Ax = b

In this LP problem, A is called the constraints matrix. Together with the vector b it
sets constraints on the decision variables x. The vector c is called the objective vector,
with cT we denote the transpose of c. Instead of the equality constraints we could also
have inequality constraints. We could also have additional non-negativity constraints on
the x-variables. The problem would for example look like this:

minimize cTx
subject to Ax ≤ b

x ≥ 0

Many other variations are possible. If the reader is interested in more possible variations
or a standard form, he/she is referred to Bertsimas and Tsitsiklis (1997).

LP problems are usually solved via the simplex method. This method is described
in Bertsimas and Tsitsiklis (1997) Chapter 3. With the simplex method, an optimal
solution can be found fast in many cases. In this thesis we focus on the formulation of the
linear programming problems. Solving the formulations is done via advanced software
packages. A clear understanding of the simplex method or other solving methods is
therefore not necessary for the understanding of this thesis.

3.1.2 Mixed integer linear programming

For linear programming problems only continuous decision variables are used. A possible
extension is to also include binary or integer variables. Integer variables take only integer
values while binary variables only attain the value 0 or 1. When including integer
variables, we lose the property of LP that makes solutions easy to find. The restriction
to integer values makes the problems much more difficult to solve. On the other hand,
the restriction to integer or binary variables gives a lot of modeling possibilities.

Many decisions in operational problems are binary. Deciding to do something or not is
easily modeled by a binary variable, e.g. the binary variable takes the value 1 when the
activity is done and the value 0 when it is not. Often binary and continuous decision
variables are combined. Let x again denote a vector of continuous decision variables

14

3.2. COMPLEXITY

and let y denote a vector of binary decision variables. The following is an example of a
mixed integer linear programming (MILP) problem.

minimize cTx + dTy
subject to Ax + By ≤ b

x ≥ 0
y ∈ {0, 1}

In this example, A and B are constraints matrices, the vectors c and d are objective
vectors and the vector b a constraint vector. MILP problems are usually solved using
a branch and bound method. This is a search tree method. A short description of this
method is given in Section 3.3. In Chapter 5 we will formulate the yard crane scheduling
problem as an MILP problem.

3.1.3 LP-relaxation

To solve an MILP problem often an LP-relaxation is used. In an LP-relaxation, the
binary or integer restrictions on the decision variables are discarded. The solution space
of the MILP problem is a subset of the solution space of the LP-relaxation. This means
that every solution to an MILP problem is also a solution for its LP-relaxation. The
converse is not true in general. Let Z∗LP denote the optimal value of the LP-relaxation
and Z∗MILP the optimal value of the MILP problem. We must thus have Z∗LP ≤ Z∗MILP .
If the input for an optimization problem is fixed, we speak of a problem instance. In
the case of linear programming, this means that the constraint matrix A, the right-hand
side vector b and the objective vector c are specified. The integrality gap is defined as
follows (I denotes a problem instance):

Integrality gap := sup
I

Z∗MILP (I)

Z∗LP (I)

This is an important measure for the quality of an LP-relaxation. If the integrality gap
is small, we speak of a strong LP-relaxation. When solving an MILP, often lower bounds
using such an LP-relaxation are used (see Section 3.3). If the integrality gap is small, the
lower bound becomes more useful. We define the relative integrality gap for a specific

problem instance I as:
Z∗
MILP (I)−Z∗

LP (I)

Z∗
MILP (I) .

3.2 Complexity

Complexity analysis is an important part of optimization problems. It tells us something
about the difficulty to solve a class of optimization problems. Complexity is a large topic
in computer science, so we will describe only the most important elements used in this
thesis. For formal definitions the reader is referred to Savage (1998) or another source
for complexity analysis.

15

3.2. COMPLEXITY

3.2.1 Decision problems

For complexity classes we need the notion of a decision problem. A decision problem
has a simple “yes” or “no” solution. Every optimization problem has a corresponding
decision problem. Instead of minimizing an objective we ask if there exists a feasible
solution such that the objective is smaller than a constant K. This constant K is part of
the input for a problem instance. The question whether a feasible solution with objective
smaller than K exists can be answered by “yes” or “no”.

3.2.2 Algorithms

Algorithms are used to solve optimization problems. In the case of LP problems this is
commonly done using the simplex method. In the case of MILP problems this is done via
branch and bound. Advanced computer software packages are available that can be used
to solve these problems. For linear programming (and mixed integer linear programming)
Gurobi and CPLEX are the most used solvers. In this thesis we use Gurobi (and its
built-in algorithms) to solve our MILP problems. An algorithm systematically searches
for the optimal value of the optimization problem. It is a set of instructions that needs
to be followed and executed.

3.2.3 Runtime

An important concept for analysing decision problems (or optimization problems) is their
worst-case runtime. The worst-case runtime to solve a decision problem is dependent
on the algorithm that is used. It is a performance measure for the algorithm that is
used to solve a decision problem and not directly a complexity measure for the decision
problem.

This worst-case runtime bound for an algorithm is a function of the input size. Assume
the input size of an optimization problem is measured by n. If there exists an n0 such
that for every n > n0 the runtime will not increase more with respect to n than a
function c · f(n) (where c is a constant), we say that the runtime is bounded by f(n).
For this, the “Big O” notation is used. For example, O(n2) means that the runtime
will not increase more than quadratically with respect to the input size (provided that
the input size is large enough). If the worst-case runtime is bounded by a polynomial
function we say that the runtime is polynomially bounded. If the runtime is not bounded
by a polynomial function it is usually bounded by an exponential function. Exponential
functions increase much faster than polynomial functions when n becomes large (see
Figure 3.1).

16

3.2. COMPLEXITY

Figure 3.1: Worst-case runtime growth

3.2.4 Complexity classes

For the complexity measurement of the decision problem we use the best known worst-
case runtime for an algorithm that can be used to solve this class of decision problems.
If two algorithms are known to solve a decision problem and one runs in polynomial
time while the other runs in exponential time, we refer to the complexity of the decision
problem as polynomial.

Note that complexity of decision problems is based on a class of decision problems and
not on one specific instance of this class. A problem instance is a specific realization of
this class. If a class of decision problems is hard to solve, this does not mean that every
instance of this class is hard to solve. A specific instance which is very small or has some
nice characteristics can very well be very easy to solve (short runtime for the algorithm).
When referring to an optimization problem (or decision problem) we actually mean the
whole class of problem instances.

P and NP

Two important complexity classes are P and NP. A decision problem belongs to the
class NP if and only if a yes-instance is verifiable within polynomial time. So if someone
presents a realization of the decision variables that leads to a yes outcome, there exists
an algorithm that checks within polynomial time that this realization is indeed feasible
and leads to an objective smaller than K. In the case of MILP, we only need to check
whether the solution fulfills all the constraints and leads to an objective smaller than
K. The complexity class P contains all decision problems that can be solved by an
algorithm that runs in polynomial time. It is a subclass of the class NP. If a decision
problem belongs to the class NP and we have no proof that it also belongs to P, it is

17

3.2. COMPLEXITY

expected that the runtime of an algorithm will be long for problem instances with a
large input size.

NP-complete

The class NP-complete is a subclass of the class NP. It is the class of decision problems
which are at least as hard as the other decision problems in the class NP. For this class we
need the notion of a reduction between decision problems. We say that decision problem
A reduces to B when there is a polynomial time reduction from A to B. A polynomial
time reduction from A to B means that any problem instance of decision problem A
can be rewritten to a problem instance of optimization problem B by an algorithm in
polynomial time. This must be an “if and only if” connection between a “yes”-instance
for problem A and a “yes”-instance for problem B. So an algorithm for solving decision
problem B can be used as a subroutine for solving decision problem A.

A decision problem B from NP belongs to NP-complete, when there exists a reduction
from all decision problems in NP to B. Therefore, the subclass NP-complete is referred
to as the hardest problems of the class NP. One of the most important open problems
in mathematics is the question whether P = NP . That would mean that all decision
problems that are verifiable in polynomial time, are solvable within polynomial time. If
an algorithm for decision problem B from NP-complete would be polynomially bounded
in runtime, this would mean that all decision problems from NP could be solved in
polynomial time by reduction to B. From this it would follow that P = NP . Since
no-one has found an algorithm that is bounded in polynomial time for any decision
problem in NP-complete, it is widely believed that P 6= NP and hence that no such
algorithm exists. An example of a decision problem that belongs to NP-complete is the
MILP problem. The yard crane scheduling problem can be modeled as a subclass of the
MILP problem with certain characteristics as we will see in Chapter 5. That the MILP
problem is NP-complete does not mean that every subclass with certain characteristics
is NP-complete. There can be subclasses of the MILP problem that are very easy to
solve (meaning they can be solved by an algorithm that runs in polynomial time). An
example of such an MILP problem is the assignment problem (Bertsimas and Tsitsiklis
(1997), Sec. 7.8). This is however not the case for the yard crane scheduling problem as
we will see in Chapter 4. The yard crane scheduling problem itself belongs also to the
class of NP-complete problems.

NP-hard

Another complexity class that is interesting for this thesis is the class NP-hard. It
has similarities with the class NP-complete. A problem C belongs to NP-hard, when
there exists a reduction from all decision problems in NP to C. The difference with
NP-complete is that C does not have to be in NP itself. So NP-complete is a subclass

18

3.2. COMPLEXITY

of NP-hard (see Figure 3.2). MILP problems as defined above are part of the NP-hard
class. Verifying whether a given realization of the variables is the optimal solution is
in general not possible in polynomial time. Therefore, an MILP problem is in general
not NP in contrast to its corresponding decision version. Verifying whether a given
realization of the variables is feasible and has an objective value smaller than K is
possible in polynomial time.

Figure 3.2: Set representation of complexity classes

3.2.5 Approximation

NP-hard optimization problems are often hard to solve in limited computation time.
Large problem instances usually take a long computation time to solve. It would not
be surprising if computation times, just like the worst-case runtime, would increase
exponentially with the input size. For those large problem instances it is sometimes
preferable to approximate the solution to the optimization problem. When an algorithm
is designed to search for a solution within a certain bound of the optimal solution, we call
it an approximation algorithm. If no specific bound for approximation of the algorithm
exists, we call the algorithm a heuristic. It finds a feasible solution, but it usually does
not find the optimal solution (although this is possible). A heuristic solution can be
close to the optimal solution but also very far from it. Approximation algorithms are
bounded in polynomial time to approximate the solution of a optimization problem where
no polynomial time algorithm is known. If such a polynomially bounded (with respect to
the input size) approximation algorithm is guaranteed to find a feasible solution within a
factor 2 of the optimal solution, we speak of a 2-approximation algorithm. More general,
if the approximation algorithm is guaranteed to find a solution within a factor 1+δ of the
optimal solution we speak of a (1 + δ)-approximation algorithm. For some optimization
problems it is possible to construct for any ε > 0 an algorithm (dependent on ε) that
will find a solution within a factor 1 + ε. If the runtime of such an algorithm is bounded
polynomially for the input size we speak of a PTAS (polynomial-time approximation
scheme). The runtime does not have to be polynomial in ε, it might be that the runtime

19

3.3. BRANCH AND BOUND

is bounded by a function n
1
ε . If the runtime of such an approximation algorithm is even

polynomially bounded in 1
ε we speak of an FPTAS (fully polynomial-time approximation

scheme). There exists an FPTAS for the quay crane scheduling problem with a fixed
number of quay cranes (see Section 4.1.1).

The above classification is theoretical and based on worst-case scenarios. The approxi-
mation bound is a worst-case bound for example. This means that the approximation
algorithm can as well find the optimal solution for some (or even a lot) of problem in-
stances. On the other hand, a polynomial bound does not directly mean it is solvable
fast. If ε is very small, in a PTAS the runtime may still be very long. Polynomial
boundedness does not guarantee that algorithms have short computational time.

3.3 Branch and bound

For solving MILP problems to optimality, usually a branch and bound method is used.
Gurobi also uses a branch and bound method, and we will describe this method briefly
in this section (see also www.gurobi.com /resources/getting-started/mip-basics for their
own explanation).

3.3.1 Tree structure

Branch and bound uses a so-called tree structure to find an optimal solution (see Figure
3.3). A tree has a root node that is connected to several other nodes. These nodes
can again be split into more nodes and so on. The node that is split is referred to as a
parent node. The parent node is split to one or several child nodes. If we use branch
and bound for an MILP problem, we usually branch a parent node in two different child
nodes. When nodes are no longer split we arrive at the bottom of the tree. Those nodes
are called leaves. In Figure 3.3 this tree structure is shown.

Figure 3.3: Tree structure

20

3.3. BRANCH AND BOUND

3.3.2 Branch and bound algorithms

We explain how a branch and bound algorithm for an MILP problem with binary vari-
ables works. A branch and bound algorithm starts in the root node of a tree. The root
node contains the set of all feasible solutions to the MILP. We assume for explanatory
reasons that we have a minimization problem, but the method is similar for maximiza-
tion problems. The algorithm will start by using a heuristic to find a good initial feasible
solution that works as an upper bound (Zup). This upper bound will be updated dur-
ing the execution of the remainder of the algorithm. If no feasible solution is found by
the heuristic or such an heuristic is unknown, then the upper bound is set to infinity.
Defining the first initial upper bound is an initialization step for the algorithm.

Next the LP-relaxation of the MILP problem is solved. If the solution of the LP-
relaxation is integral, we can stop because this will also be the optimal solution for the
MILP. Otherwise a binary variable is selected on which we will branch. In this case,
the root node is split into two child nodes. For the first child node, the binary variable
is set to 0 and for the second child node the binary variable is set to 1. The two child
nodes contain a new MILP problem that is slightly smaller (less binary variables) than
the MILP problem of the root node. Thereby, the union of the solution sets of the child
nodes is equal to the solution set of the root node. Next, one of the two child nodes is
selected for further evaluation.

For every node, a branch and bound method uses the the so-called bounding and branch-
ing procedures. When evaluating a node, the first step is the bounding procedure. Every
node consists of an MILP problem (for the root node the original MILP problem). First
the LP-relaxation of this MILP problem is solved. Based on the result of the LP-
relaxation, either the tree is pruned in this node or it is branched into two new child
nodes again. Pruning the tree happens when branching is not necessary anymore. There
are three different cases when pruning is possible:

• The LP-relaxation is infeasible

• All variables are integral for the LP-relaxation

• The LP-relaxation provides a lower bound that is larger than the best found upper
bound for the original MILP problem.

If the LP-relaxation is infeasible, then also the MILP problem is infeasible. The al-
gorithm can stop evaluating this node. Let ZLP denote the optimal value of the LP-
relaxation of the current node when the LP-relaxation is feasible. If the solution to the
LP-relaxation is integral, it is also the optimal solution for the MILP. If ZLP < Zup, we
can update the upper bound with Zup := ZLP . Note that the value Zup is global while
ZLP holds only for the current node. If the solution to the LP-relaxation is not integral,
we have either ZLP ≥ Zup or ZLP < Zup. If ZLP ≥ Zup, we can also prune the tree in
this node. The value ZLP functions as a lower bound. We have ZMILP ≥ ZLP ≥ Zup
and therefore this node will not lead to a better solution.

21

3.4. STOCHASTIC PROGRAMMING

If pruning is not possible, we again choose a binary variable for branching. The node
is branched into two child nodes, each containing less binary variables. This branching
is similar to the branching in the root node. Since the number of variables in an MILP
problem is finite, the branch and bound algorithm will prune the tree at some point and
we arrive at a leaf node. If all nodes are evaluated, the best found upper bound is our
optimal solution.

Because solving LP-relaxations is a fundamental part of this algorithm, LP-relaxations
must be solved very fast. This is usually done by the simplex method. This method is
not guaranteed to run in polynomial time, but experience learns that it is almost always
able to find solutions fast. The worst-case runtime of the simplex method is almost never
attained. The branch and bound algorithm works well when branches can be pruned in
an early stage such that only a limited amount of nodes requires examination. Therefore
it is important that the integrality gap of the LP-relaxation is small. If the integrality
gap is large, it is less likely that ZLP ≥ Zup.

This branch and bound method is used in many algorithms. Different configurations of
the method will lead to different algorithms. For instance, we need to specify in which
sequence nodes are investigated within the branch and bound method. Furthermore,
we need to specify on which binary variable we will branch. An algorithm can search
the tree depth-first, breadth-first or something in between. It is important to find a
good upper bound quickly, such that nodes can be pruned in an early stage. Important
subroutines can identify on which variable the branching should be done and which child
node should be examined first. This can all strongly influence the number of nodes that
needs to be examined by the algorithm.

3.4 Stochastic programming

In Chapter 8 we will introduce stochastic input for the yard crane scheduling problem.
To introduce this stochastic input, we need the notion of a probability space and dis-
tribution functions. We will not present a precise definition/derivation of all elements,
but introduce the various concepts such that the concepts can be understood. We will
first introduce a probability space and a probability measure. The derivation is based
on Shreve (2004) and is analogous to the derivation in the TU Delft course Financial
Mathematics. For the sake of clarity and length some parts are excluded. The reader is
referred to Shreve (2004) or another source on probability spaces.

3.4.1 Construction of a probability space

We will construct a probability space on the extended real line R ∪ {−∞,+∞}. We
consider R = (−∞,+∞) and the intervals (a, b] = {x ∈ R : a < x ≤ b}, with −∞ ≤
a < b < +∞, and (c,+∞), with −∞ ≤ c < +∞. Let A be the class of all subsets in R

22

3.4. STOCHASTIC PROGRAMMING

that are finite unions of disjoint intervals in R. Let A also include the empty set ∅. The
class A is an algebra. A subset C ⊆ 2X (where 2X is the powerset of X) is an algebra
if it is non-empty, closed under complementation and closed under finite unions. If the
notion of finite unions is extended to countable unions, we speak of a σ-algebra. The
smallest σ-algebra that contains A is the Borel σ-algebra of R. We will denote this Borel
σ-algebra by B(R). B(R) is the smallest σ-algebra that contains all open intervals. Note
that any type of interval is included in this Borel σ-algebra since (a, b) = ∪∞n=1(a, b− 1

n]
and countable unions are included in the σ-algebra. We call (R,B(R)) an equipped
space.

Probability measure

To define a probability measure, we first define a repartition function. A repartition
function is a function F : R→ [0, 1] such that:

1. F is non-decreasing, i.e. F (x1) ≤ F (x2) for every x1 < x2 ∈ R

2. limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1

3. F is right-continuous, i.e. ∀x ∈ R, limt→x+ F (t) = F (x).

We define the following probabilities where F is a repartition function:

P0((a, b]) = F (b)− F (a) and P0((c,+∞)) = 1− F (c)

Using the additivity of A we extend P0 on the algebra A:

P1(A) :=
n∑
i=1

P0((ai, bi])

P1 is an extension of P0, we have for (a, b] = A ∈ A: P1(A) = P0(A). The domain of P0

is the class of intervals while the domain of P1 is A. P1 is well-defined in the sense that
for different interval representations of a set A, P1 assigns the same probability. P1 is a
probability on the algebra A. Remember that for P1 to be a probability, we need:

1. P1(R) = 1

2. ∀A ∈ A, P1(A) ≥ 0

3. For A1, A2, . . . , An ∈ A pairwise disjoint, P1(∪ni=1Ai) =
∑n

i=1 P1(Ai)

The first two follow directly from the first two definitions of repartition function F . The
third is a bit more cumbersome to show and is excluded in this thesis. We even need
that P1 is σ-additive on A. This means that point 3 is extended to countable unions.
This follows from continuity from above of P1 but is again further excluded. For the
last extension we need the Carathéodory Extension Theorem. This theorem states: Any
σ-additive measure defined on an algebra E can be uniquely extended to the σ-algebra
σ(E) generated by itself.

23

3.4. STOCHASTIC PROGRAMMING

For our probability P1, this means that it can be uniquely extended to the Borel σ-
algebra B(R). This means that there is a unique probability measure P on the equipped
space (R,B(R)) such that P ((a, b]) = P1((a, b]) = P0((a, b]) = F (b)−F (a). This measure
P is called the Lebesque-Stieltjes probability measure. Our equipped space (R,B(R)) in
combination with the probability measure P forms a probability space (R,B(R), P). This
described method to define a probability space can be extended to multiple dimension
or even countably many via the Kolmogorov extension theorem.

3.4.2 Random variable

We call a random variable any measurable functionX : (Ω,F)→ (R,B(R)). So a random
variable is a function defined on the outcome set Ω (equipped with σ-algebra F), that
takes values in R, such that {ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(R). A random variable is a
function from the abstract outcome space Ω to the much easier to understand observation
space R where we have defined a probability.

3.4.3 Distribution functions

The notion of a random variable allows us to define probability density functions and
distribution functions. A probability density function of a random variable X on B(R)
is defined as:

PX(A) := P ({ω : X(ω) ∈ A}) = P (X−1A), A ∈ B(R).

The distribution function of a random variable X is given by:

FX(x) := PX((∞, x]) = P (X−1(−∞, x]), x ∈ R.

This probability density function and distribution function allow us to describe real
valued variables that reflect some abstract events in the outcome space Ω via the random
variable.

24

Chapter 4

Literature review

The literature review in this chapter is focused on container terminal operations. The
first section discusses solutions to the different operational problems in the container
terminal. It provides a brief overview of what has been studied in container terminal
operations. It also gives some insight in the historical development of research in the con-
tainer terminal. Although different operational problems arise in the container terminal,
similar approaches have been proposed. Many problems have been modeled using MILP
and heuristics are proposed to overcome the NP-hardness. The second section focuses is
on the yard crane scheduling problem. In the context of yard crane scheduling, different
types of problem definitions can be identified. We divide these problem definitions into
3 different groups and describe them in a different subsection.
- The dispatching of yard cranes when a certain number of containers from a specific
group have to be picked up.
- The deployment of RTG cranes to different blocks in a yard (Inter-block crane deploy-
ment problem).
- The dispatching of yard cranes to several jobs within a lane, including interference
constraints. The actual framework differs among researchers and is described separately
in each subsection.

Some examples of heuristic methods are mentioned in this literature review. Methods
as beam search algorithms, genetic algorithms and simulated annealing are mentioned
for the reader that is interested in/ familiar with these approaches. We will not explain
these methods in this thesis since they take no further part in the remainder of this
thesis. It is however important to note the difference between a heuristic approach and
a optimal approach (see Subsection 3.2.5).

25

4.1. TERMINAL OPERATIONS

4.1 Terminal operations

In the past decades a lot of research was conducted on operational activities in container
terminals. As the container terminal business has become more competitive, there is a
need to optimize operations. There are some comprehensive literature reviews on opera-
tions in container terminals, given by Vis and De Koster (2003); Steenken et al. (2004);
Stahlbock and Voß (2008); Vacca et al. (2007); Meersmans and Dekker (2001). Some
research was conducted to describe an integrated approach of a whole container termi-
nal, combining the quay cranes, internal trucks and yard cranes. Chen et al. (2007) give
a mixed integer linear program (MILP) which deploys different machines to different
operation phases of jobs. Many researchers advocate the use of an integrated model,
but they also refer to the complexity of this approach as a downside. The research
that considers the integrated scheduling of machine and material handling systems for
a flexible manufacturing system shows similarities to the integrated container terminal
optimization problem. They differ on the aspect of the freedom/availability of the ma-
chinery after performing a job. For example, the quay crane has to wait for an internal
truck before finishing the job and proceed to the next. Bierwirth and Meisel (2010) give
some examples of studies where the BAP and the QCSP are combined. More research
has been done to berth allocation, quay crane scheduling, internal truck scheduling, yard
crane scheduling and stacking policies separately. Below we describe shortly the quay
crane scheduling problem (which is studied most extensively) and the other operation
problems.

4.1.1 Quay crane scheduling problem

Daganzo (1989) describe one of the first researches on operations inside a container
terminal. He studies quay crane deployment to different holds of a ship. Since then,
much work concerning quay cranes has been performed (for an overview, see Steenken
et al. (2004)). The quay crane scheduling problem has some similarities to the yard crane
scheduling problem. Both problems have multiple cranes sharing one lane and deal with
a non-crossing constraint. The main objective of a container terminal is the turnaround
time of a vessel. This results in different objectives for the quay crane and the yard
crane. While the quay cranes have to minimize the makespan (latest completion time)
of all the jobs/cranes (Kim and Park (2004)), in general the yard cranes have to minimize
the vehicle waiting time in order to let the yard trucks arrive at the quay crane on time.
Another difference is the ready times of jobs. For a quay crane certain containers have to
preceed other containers (Kim and Park (2004)) or the problem is modeled for a whole
hold (Lee et al. (2008)). In both cases, there is no job ready time, every job can be
processed directly from start (if not violating constraints). For yard cranes a job cannot
be handled before the yard truck arrives. Therefore a job has a job specific ready time
given in the input. The quay crane scheduling problem with non-interference constraints
is shown to be NP-complete (Lim et al. (2004); Lee et al. (2008)). However, Lim et al.

26

4.2. YARD CRANE SCHEDULING

(2004) show that a fully polynomial time approximation scheme (FPTAS) is possible
when the number of quay cranes is fixed. The derivation of this algorithm is based on
the FPTAS algorithms in Sahni (1976). In their model (Lim et al. (2007)), they do not
keep track of the exact position and time of jobs. They process each job with a given
process time and gantry time is ignored. To deal with the non-crossing constraint, they
let all the cranes handle their jobs left to right after making sure no conflicting jobs are
scheduled simultaneously.

4.1.2 Other operational problems

The BAP (Lim (1998)) has also been shown to be NP-complete. For the BAP, the
minimum sum of waiting time and handling time for each ship is optimized (Imai et al.
(2001)). The vehicle routing problem is addressed by Kim and Bae (2004), they use a
network based MILP to determine a one-to-one assignment and in addition a heuristic
is proposed. The objective is minimizing the quay crane idle time. Commonly, inter-
nal trucks are pooled and a group of three to seven internal trucks are assigned to a
quay crane. Cao et al. (2010) study the integrated problem of yard crane scheduling
and internal truck scheduling using an MILP. They reduce the LP solution space using
Benders decomposition. Benders decomposition uses row generation to progress to a so-
lution. They do not address ready times for jobs and do not take the order in which the
containers arrive at the quay crane in account. This internal truck scheduling problem is
highly connected with the storage allocation problem (Lee et al. (2009)). In the storage
allocation problem the expected number of reshuffles is minimized by assigning storage
locations to containers (Hwan Kim and Bae Kim (1999)).

4.2 Yard crane scheduling

The yard crane scheduling problem with respect to RTG cranes consist of multiple ap-
proaches. Some researches use a grouped container approach for the yard crane schedul-
ing problem. In the grouped containers approach, containers are divided into different
groups (based on weight and destination). A certain number of containers from a spe-
cific group need to be loaded onto a vessel at a certain time interval. This is described
in Subsection 4.2.1. The other approach is a one to one approach where every specific
container needs to be picked up at a specific moment. Every container is assigned to
a specific RTG crane. This is described in Subsection 4.2.3. The problem of deploying
different yard cranes to different blocks or lanes is described in Subsection 4.2.2. This
inter-block crane deployment is often combined with a crane to container assignment
within each block on a different hierarchical level (see for example the model of Guo and
Huang, 4.2.3).

27

4.2. YARD CRANE SCHEDULING

4.2.1 Grouped containers

Kim and Kim (1999, 2003); Narasimhan and Palekar (2002); Lee et al. (2007) use con-
tainer groups to model the yard crane schedule. They introduce several container groups
which are stored in one or more bays. The job for the yard crane is to pick up a certain
number of containers from every group. The optimization problem is to find a route for
the yard crane passing several bays to pick up enough containers. In Kim and Kim (1999)
they derive an MILP for the problem which is solved using a dynamic programming algo-
rithm. In Kim and Kim (2003) they give heuristic approaches for their problem, resulting
in much faster algorithms. For the interested reader, they use a beam search algorithm
and a genetic algorithm where their beam search algorithm outperformed their genetic
algorithm for large instances (30 bays). This (grouped container) problem is sometimes
referred to as the transtainer (yard crane) routing problem. Jung and Kim (2006) ex-
tend the model to serve multiple quay cranes at the same time. Narasimhan and Palekar
(2002) prove that this transtainer routing problem is NP-Complete. Furthermore, they
prove that there cannot be a polynomial time approximation algorithm with a worst-case
lower bound less than (k2 + 2k−1)/2(2k−1) where k is the number of container groups
(unless P = NP).
Lee et al. (2007) derive a model for two transtainers working in different blocks on the
same load plan. They give a heuristic algorithm in the class of SA (simulated annealing)
to find good feasible solutions to the problem. It performs around 10% above their lower
bound for an optimal solution.

4.2.2 Inter-block crane deployment problem

Linn et al. (2003) were the first to give a model for RTG crane deployment to different
blocks. The work load per block is given and it should be decided how many RTG cranes
have to be deployed to every block. Only two RTG cranes can work in a block so as
to avoid collision. RTG cranes can also move only once per shift. They identify source
blocks and sink blocks. Naturally, RTG crane might switch from a source block to a sink
block to avoid idle time. An MILP is used to solve this problem. The objective is min-
imizing workload overflow to the next period. They identify reasonable improvements
in yard operations, but suggest that true benefit may be derived when the deployment
model is well integrated with the other parts of yard operation control such as grounding
strategy and yard traffic control.
Linn and Zhang (2003) extend this model dividing their 4 hour planning horizon in
smaller deployment periods. This increases the computation time, so they propose a
least cost heuristic. Two conditions are identified which have to be fulfilled to possibly
move an RMG crane to another block. Solutions of 3-6% above optimal are found while
testing of the algorithm. Results where found within 1 second so they claim that their
heuristic is very robust and efficient in producing near optimal solutions.
Murty et al. (2005) add arrival times to this model. They do not assume that all work-
load is ready at the beginning of a time period.

28

4.2. YARD CRANE SCHEDULING

In Zhang et al. (2002) the MILP (with multiple time-zones) is solved via Lagrangian
relaxation. They decompose their MILP into an LP and an MILP similar to a network
flow problem. Both problems are quit easy to solve. Additional constraints are added
to the system to reduce a large duality gap.
Cheung et al. (2002) gives a Lagrangian decomposition to the problem comparable to the
procedure of Zhang et al. (2002). They also rewrite the problem to a non-linear problem
with a piecewise linear objective functions. They give a successive piecewise-linear ap-
proximation method which slightly outperforms their Lagrangian decomposition. Much
faster and better approximations are found than their benchmark for large instances.
For their benchmark they try to find an optimal solution using CPLEX, but stop after
running CPLEX for one hour and return the best feasible solution found. Cheung et al.
(2002) also prove that this problem(inter-block crane deployment problem) is NP-hard
in the strong sense.
Recently Sharif et al. (2012) gave an agent-based solution to this NP-hard problem.
They match cranes to blocks using different preferences based on distance of the blocks
and available workload.

4.2.3 Crane to job assignment

In this problem definition a schedule is to be made, including each container specifically
(in contrast to the grouped containers). Instead of picking up containers of a certain
type, each container must be scheduled individually. The exact problem definition differs
sligthly among researchers. The main simularities are the non-crossing constraints and
the specific visiting of a certain bay to perform a job. Three models stick out and are
presented in more detail. After that some recent research on genetic algorithms with
respect to this problem definition is mentioned shortly.

Model of Ng (and Mak)

Ng and Mak (2005) describe a model for picking up containers in a yard block where
only one yard crane is working. Jobs have a ready time and handling time given by
the operating system. Every job has a location which is used to identify the travel time
between two different jobs. They give an MILP to find the optimal sequence of jobs. As
an objective they use the waiting time of trucks or more precisely: ti−ri−hi. Here, ti is
the completion time while ri and hi are the ready time and handling time respectively.
Since this machine scheduling problem is NP-complete (Lenstra et al. (1977)), they pro-
pose a branch and bound method to solve the problem to optimality. As expected, the
computational time increases exponentially with the input size (number of jobs). This
branch and bound method could find optimal solutions for around 25 jobs in 8 minutes
on a personal computer (Pentium 200 MHz).
Ng (2005) gives an extension of this model. Multiple cranes and non-interference con-
straints are included. This increases the complexity of the problem dramatically. Also

29

4.2. YARD CRANE SCHEDULING

space constraints are needed to describe the position of a crane or job at a specific time
interval. In this model RTG cranes can move between different blocks, but only in one
lane. Again, the objective is to minimize the sum of completion times instead of min-
imizing the makespan. The solution method is via dynamic programming. A zone is
assigned to every RTG crane based on the expected sum of completion times for each
zone. Since determining the sum of completion times for a zone is NP-complete (Lenstra
et al. (1977)), this is approximated via a greedy heuristic. The greedy heuristic takes
the first job that can be completed as the next job. After obtaining a solution, a second
step of the algorithm tries to improve this solution. One job is moved to another zone
and a quick check is made to see if an improvement has been made.

Model of Guo and Huang (et al)

Figure 4.1: Hierarichal scheme of Guo and Huang

Guo et al. (2011); Guo and Huang (2012) have studied the yard crane scheduling problem
thoroughly. Like Ng and Mak, they also try to minimize the sum of completion times.
They propose a hierarchical model for yard crane operations (see Figure 4.1). At the
top hierarchical level, they distribute the RTG cranes to different lanes. In the second
level time partitioning and a space partitioning is done within the lane to create different
planning windows and working zones. At the lowest level, the yard crane dispatching is
done in individual zones. The top level is not included in their research. They assume
this is done in advance and their procedure starts at level 2. Level 3 is a subroutine
of level 2, and therefore has to be solved many times. So especially this dispatching
within zones needs to be found very fast. They propose to use a lower bound function to
bound the sum of completion times for a specific partitioning from below. This is used
for prioritizing the search for partitionings and exclude partitionings that result in bad
solutions. They use a modification of the same subroutine for the lowest level for this.
In the next paragraphs the different levels are discussed.

Dispatching within zones (level 3) In Guo and Huang (2012), a fast simulation routine
is used to find feasible solutions for this dispatching problem. In Guo et al. (2011),the
problem is rewritten to a search tree and a A* search is used to find optimal solutions.
A* search finds paths from a start node to leaf nodes in a search tree and is an extension
of Dijkstra’s shortest path algorithm. If the algorithm arrives at a node x during the
process, it has calculated the shortest path to this node x from start and estimated the

30

4.2. YARD CRANE SCHEDULING

path from x to leaf nodes. If the heuristic used to estimate the path to a leaf node
is guarantied to find a lower bound to the optimal path, then this heuristic is called
admissible. Let d(x, y) denote the shortest path from x to y and h(x) the estimated path
to the leaf node. If h(x) ≤ d(x, y) + h(y) then h is called consistent. If h is admissible
and consistent, then A* search is guaranteed to find an optimal solution. The heuristic
used by Guo et al. (2011) calculates the handling time of all jobs to process plus the
time to go to the first other job available. This is an admissible and consistent heuristic
and therefore their algorithm will find optimal solutions. Generally A* search is used to
find a shortest pad to all nodes from a starting node. The tree Guo et al use is build in
such a way that the depth (nodes from root to leafs) is exactly the number of jobs for
all leaves. Every node (parent) is split into new nodes (children) such that the union
of the children are exactly the jobs that are not on the path from the root node to the
parent node. A* has as disadvantage that it is breath first, so no solution is found in
an early stage. Due to this, it also uses a lot of memory. They propose using Recursive
Backtracking to improve the algorithm. RBA* gives a solution even if the entire search
is not finished. RBA* works best when given a reasonable solution in an early stage.
Prioritized search is used to realize this. This is done via job arrival times and via first
reachable time. Computational results show that both prioritized RBA* and A* are
reasonably fast, they produce results in up to 2s for 20 jobs in one hour for a block
of 37 bays. They use a Pentium Core2 Quad CPU Q9450 and 3 GB RAM for their
experiments. To find lower bounds during the partitioning process, they use A* search
up to a specific number of nodes (% of total dept).

Space partitioning (level 2b) For the space partitioning, the algorithm starts by finding
possible partitioning points. These points are between different blocks or at places where
there are 8 bays adjacent where no jobs are within the planning period. This 8-bays-
separation is used to assure that trucks can enter and leave beneath the RTG crane.
R denotes the number of partitioning points and let m be the number of RTG cranes
available. The partitioning algorithm needs to choose m−1 partitioning points out of R
possible partitioning points. This results in

(
R

m−1

)
possibilities. This number is highly

dependent on R which results from the time partitioning. Since many partitioning points
are necessary to find good schedules, each possible partitioning has to be evaluated very
fast. They use a lower bound search that can be found very fast. A lower bound is
evaluated for each partitioning and the partitionings are sorted based on their potential.
Next full evaluation is used for the most promising partitioning. All partitionings with
a larger lower bound than the optimum found thus far by the algorithm are discarded
for further evaluation. In this way not all partitionings have to be fully evaluated but
optimality can be assured (given the partitioning strategy).

Time partitioning (level 2a) Time partitioning is essential for a good space partitioning.
A small time window results in many partition points which result in long computational
time for the space partitioning. In addition, when the time windows are small there is

31

4.2. YARD CRANE SCHEDULING

less opportunity to optimize the RTG crane dispatching. On the other hand, a large time
window might result in too few partitioning points to find a feasible or balanced enough
solution. Two algorithms are proposed for finding good time window partitioning. The
first algorithm tries to break the time interval in two via two different options: 1) divide
the time length in half, 2) divide the time length such that the number of jobs is equal.
The algorithm keeps on dividing the time window until no better solution is found. The
second algorithm will keep on dividing the time interval in equal time length until there
is one job per crane. After that, the best solution is returned. The main difference is
that algorithm 1 will terminate if a division in two time windows does not improve the
solution while a division in more different time windows might.

Performance Simulation results show that the second time partitioning algorithm per-
forms best in all examples that they have studied. The computation times for both
algorithms are significantly longer than Ng (2005), but still computable within a few
minutes. This is acceptable for them. Just space partitioning without time partitioning
works worse than Ng (2005). Ng’s algorithm is adjusted such that it includes a separa-
tion of 8 bays for the RTG crane. This might significantly decrease the job switching
ability that was proposed as second stage by Ng.

MILP formulations of Li et al

Li et al. (2009) give different MILP representations for the yard crane scheduling prob-
lem. They use the model as proposed by Ng (2005),but rewrite the MILP formulations
to reduce the number of binary variables. Instead of using tri-index binary variables
they use two bi-index binary variables. They use a slightly different approaches in the
modeling. They do not model the travel time of yard cranes according to the distances
between slots. Cranes process one job in each time interval regardless of how far they
have to travel. They restrict yard cranes to handle jobs that are no more than 8 slots
apart in successive time intervals. This same separation constant is used to model the
distance between two yard cranes during a time interval. When 2 yard cranes, 60 bays,
32 jobs and an 168 minute planning horizon are used, there are 1291 binary variables,
4813 continuous variables 84,212 single equations. The model of Ng (2005) uses 11,094
binary variables and 333,248 equations for a 2 hour planning horizon. Still, approxi-
mately 2 hours are needed to solve the problem to optimality on a Pentium 1.6GHz
computer using ILOG CPLEX 9.0.

To reduce computation times, they develop a heuristic to find near optimal solutions.
They note that in an optimal schedule the actual handling times are close to the due
dates. So they suggest to only search for processing times close to the due dates. This
reduces the search space to 398 binary variables, and 10 minutes of calculating an optimal
solution (within the restricted model). Creating a rolling horizon program reduces the
complexity even more. The approach of the last model is to schedule only the first few

32

4.2. YARD CRANE SCHEDULING

jobs. All jobs in a short time window (eg 5 minutes) are scheduled, but only the jobs
in the first 2 minutes are remembered. Then, two minutes are added to the planning
window and a new schedule is calculate. Again the jobs scheduled in the first 2 minutes
are added to the definite schedule which contains now the first 4 minutes. This procedure
is repeated until all jobs are scheduled.

Genetic algorithms

More recent research is focused on genetic algorithms to find near optimal solutions to
the yard crane scheduling problem with interference constraints. Mak and Sun (2009)
use tabu search to enhance the performance of a genetic algorithm. They minimize
the total makespan of the yard cranes instead of minimizing the waiting time of yard
trucks. Javanshir and Seyedalizadeh Ganji (2010) used a genetic algorithm to minimize
the completion time of all bays. This is the same as minimizing the makespan. He et al.
(2010) use a hybrid genetic algorithm to minimize different weighted objectives. The
first objective is to minimize the total delayed workload and the second objective is to
minimize the number of block changing moves of yard cranes. Chang et al. (2011) use a
genetic algorithm in combination with a rolling-horizon approach.

4.2.4 Other studies

Some other studies have been done in the subject of yard crane scheduling. They use dif-
ferent modeling assumptions than the studies introduced above. Wang and Yang (2013)
give an MILP for the yard crane scheduling with interference constraints, including a
stochastic component. The number of containers arriving at the yard during a shift for
a certain ship is assumed stochastic. Their model assigns yard bits (a bit is part of a
block) for storage and deploys yard cranes to handle the workload in those blocks.

Petering and Murty (2006) introduces an MILP formulation that assigns jobs to a specific
time period without spatial constraints. In a second stage the distribution of jobs to the
RTG cranes is made. This results in a simple MILP with few variables. In the second
stage a dynamic programming procedure is used to divide the jobs into separate yard
cranes zones. The assumption is made that subsequent jobs for a yard crane are not
that far apart. The yard crane has only 4 minutes to perform gantry and job handling.
On average, this should be enough.

Petering et al. (2009) gives a thorough analysis by simulation of yard crane dispatching
decisions. They compare several simple heuristics in yard crane dispatching and analyze
their influence on the performance of the whole terminal. Results strongly indicate that
prioritizing retrieval moves over storage moves gives a superior system. Their main ob-
jective is to minimize vessel turn-around time, so delaying store moves does not directly
influence the quay crane rate. They also conclude that avoiding deadlocks in 100% of the
occasions in a very transparent way is preferable to look-ahead yard crane dispatching

33

4.2. YARD CRANE SCHEDULING

systems. In their model, a yard crane can perform a retrieval job before the time it
is scheduled by the quay crane. This results in a deadlock, since the yard truck might
not be around when the yard crane finishes his job. They suggest such short planning
periods that on average only 1.5 jobs are available for scheduling. Therefore, simple
dispatching rules suffice.

34

Chapter 5

Models

In the previous chapter we have described different ways to model the yard crane schedul-
ing problem as found in the litarture. In this chapter we introduce some modeling as-
sumptions and three new models that will be compared in this thesis. The first one
(Model1) uses the MILP formulation of Ng and Mak (2005), but we extend it to multi-
ple yard cranes working in the same lane in a different way than Ng (2005). The second
MILP formulation is an alteration of the formulation introduced by Li et al. (2009).
Some constraints are adjusted to make it compatible with our model assumptions and
to prevent crossing of cranes. As a third model we introduce a model based on the travel-
ing salesman problem. The traveling salesman problem is studied extensively so it might
be advantageous to use knowledge and MILP solvers of the traveling salesman problem
for the yard crane scheduling problem. In this chapter we formulate the problem in a
static form, i.e. for one fixed time interval, without uncertainty in the job ready times.
In Chapter 7 we extend this in a rolling horizon fashion. In Chapter 6, a decomposition
method is introduced for the first model.

5.1 Model assumptions

To model the yard crane scheduling problem, the following assumptions have been made.
The first four assumptions are needed to define the model correctly, the other assump-
tions are more test case properties.

1. The available yard cranes have the same productivity, handling speed and gantry
speed.

2. A specified number of yard cranes is available to work in the specific lane.

3. Jobs are planned including a ready time, handling time and location (bay number).

35

5.1. MODEL ASSUMPTIONS

4. Yard cranes are numbered from 1 to m (number of cranes available) within a lane.
The yard cranes are numbered increasingly from left to right.

5. A complete layout of the storage yard is known. The number of bays is known
and bays are numbered increasingly from left to right. A block consists of 40 to
60 bays and are separated by a distance of 4 to 8 bays.

6. The distance between two jobs is measured in the number of bays the yard crane
has to travel, so the spatial variable is measured in bays. The time it takes for a
yard crane to gantry one bay is assumed to be constant (4 seconds).

7. The handling of a job is around 150 seconds, this includes the vertical movements
of the spreader and the horizontal movement within the bay. The gantry time of
cranes is not included.

8. The travel time of the yard cranes is linear in the number of bays. Other travel time
functions can be easily inserted (such that they include acceleration for example),
but they have to respect the triangle inequality.

9. Yard cranes are not allowed to cross each other. A separation space of 8 bays
(SEP) is needed between to side by side yard cranes. This space is used by trucks
to move from under the yard crane to the road at the side of the yard crane.

The jobs that are planned come in four different types. Load jobs and discharge jobs
are jobs linked to the vessel. Load jobs are containers that have to be moved from the
yard to the vessel. Regularly a sequence of containers is stored in the yard such that
they can be loaded into the ship in sequence. For the yard this means that the jobs
are planned at the same bay with 150 seconds in between, such that the yard crane can
handle these jobs subsequently. In the case of discharge, a vessel is unloaded and the
containers need to be stored in the yard. The internal trucks handling these jobs need to
be back in time at the quay crane to get the next container. So load jobs and discharge
jobs have high priority for the yard. Receivel and delivery jobs have a lower priority
for the container terminal. These jobs come from external trucks and delay does not
directly affect the throughput of the terminal. The different kind of jobs are illustrated
in Figure 5.1.

Figure 5.1: Different types of moves

Although yard cranes are technically able to process 24 jobs per hour in the same bay,
in practice yard cranes perform around 10 jobs per hour depending on the amount of

36

5.2. MODEL1

work in a lane (experience TBA). The models that we introduce are used to solve the
dispatching of several yard cranes (RTG cranes) within a lane. RTG cranes are able to
change lanes, but this is not included in this model. Another procedure must distribute
the number of cranes to a lane based on expected workload. This assumption is made to
reduce the complexity of the problem. Changing lanes takes a lot of time and it blocks
several roads during the process. Therefore it is preferable to have as few lane changes
as possible. In the remainder of this thesis, an RTG crane will simply be referred to as
“crane”.

5.2 Model1

This first model uses the formulations of Ng and Mak (2005) for the dispatching of
one crane in a zone. The model is extended to include several cranes and non-crossing
constraints in a different manner than in Ng (2005). Instead of using tri-index binary
variables to keep track of time, bi-index variables are used. This is done to significantly
reduce the number of binary variables. To do this, we restrict the model by fixing
zones for a planning period. This means that the lane is divided into m (the number
of yard cranes) non-overlapping zones, one for each crane. This restriction might result
in more delay, but it creates an opportunity for faster algorithms. The same restriction
is imposed by Guo et al. (2011). The restriction to separate the zones is common at
container terminals and is usually referred to as CHE (container-handling equipment)
ranges. Nowadays this is usually done intuitively (without using an algorithm) by an
employee of the container terminal. Calculating an optimal solution mathematically
might enhance the performance.

5.2.1 Definitions

For a problem instance, the following constants are known:

n the number of jobs
m the number of yard cranes
θ the number of bays
ri the ready time (truck arrival time) of job i i = 1, . . . , n
hi the handling time of job i i = 1, . . . , n
bi the bay-number/position of job i i = 1, . . . , n
dij distance of job i to job j (measured in time) i, j = 1, . . . , n
SEP minimum separation space between two yard cranes

37

5.2. MODEL1

The following will be the decision variables for the model:

ti the completion time of job i i = 1, . . . , n

xij =

{
1 if job i precedes job j in a zone;
0 otherwise.

i, j = 1, . . . , n

yik =

{
1 if job i is in zone k (handled by crane k);
0 otherwise.

i
k

= 1, . . . , n
= 1, . . . ,m

Note that the variable xij = 1 even if job i does not come directly for job j. In problems
as the traveling salesman problem, often xij = 1 if and only if job j comes directly after
job i.

5.2.2 MILP formulation

The objective is to minimize the sum of delays of all jobs, i.e. min
∑n

i=1

(
ti − (ri + hi)

)
.

The delay is thus defined as the completion time of a job minus its ready time and
handling time. It is therefore the actual completion time minus the first time the job
could have been completed. In this model, M is a large enough number and is defined as:
M = maxi=1..n (r)+n(maxi,j=1..n (d)+maxi=1..n (h)). The function f describes whether
job j is within a distance SEP of job i (or even at the right side of job i). The function
f is defined as follows:

f(bi, bj) =

{
0 bj ≥ bi − SEP ;
−m otherwise.

i, j = 1, . . . , n

Using the above mentioned variables, the yard crane scheduling problem can be formu-
lated as:

Minimize:

n∑
i=1

(
ti − (ri + hi)

)
(5.1)

m∑
k=1

yik = 1 i = 1, 2, . . . , n (5.2)

m∑
l=1

yjl · l −
m∑
k=1

yik · k ≥ f(bi, bj) i, j = 1, . . . , n; i 6= j (5.3)

ti ≥ ri + hi i = 1, 2, . . . , n (5.4)

yik + yjk − 1 ≤ xij + xji i, j = 1, . . . , n; i 6= j; k = 1, . . . ,m (5.5)

tj − ti −Mxij ≥ dij + hj −M i, j = 1, . . . , n; i 6= j (5.6)

xij , yik ∈ {0, 1} i, j = 1, . . . , n; i 6= j; k = 1, . . . ,m (5.7)

The model uses n(n − 1) + nm binary decision variables and n continuous decision
variables. There are (2 +m)n2−mn constraints. Constraint (5.2) ensures that each job

38

5.2. MODEL1

is assigned to exactly one zone/crane. Constraint (5.3) is the zone overlapping constraint
and ensures that a job in a lower zone cannot be at a higher bay number than a job
in a higher zone. For example, set bj ≥ bi − SEP such that f(bi, bj) = 0. If job j is
handled by crane k, then Constraint (5.3) prohibits cranes l = k + 1, k + 2, . . . ,m to
perform job i. If bj < bi − SEP , then f(bi, bj) = −m and the constraint is always (for
all possible values of yjl and yik) satisfied. For implementation, one can even decide to
leave the constraints where bj < bi − SEP out of the formulation. Note that f is a
non-linear function, but its variables are the bay numbers and not the decision variables
of the MILP problem. Therefore this MILP formulation is still a linear problem since
the (scalar) values can be determined a priori. Constraint (5.4) demands that a job
cannot be completed earlier than its ready time plus handling time. From Constraint
(5.5) it follows that if two jobs are in the same zone, then either job i precedes job j in
the cycle or job j precedes job i. In (5.6) the relationship between the completion time
of two jobs in the same cycle is given. Finally, (5.7) are the binary constraints.

The constraints with i = j are omitted since they do not represent real constraints. It
would also result in infeasibility since xii = 0 conflicts with (5.5) while xii = 1 conflicts
with (5.6). Note that ti > 0 follows directly from Constraint (5.4). Constraint (5.5)
gives us yik = 1 ∧ yjk = 1→ xij = 1 ∨ xji = 1, but not the other way around. This is
not a problem since we minimize tj and in Constraint (5.6), xij will be chosen xij = 0 if
possible and necessary for an improved solution.

5.2.3 LP-relaxation

The runtime of algorithms for an MILP is often very dependent on the quality of the
associated LP relaxation. For a good MILP formulation it is required that the solution
space of its LP relaxation is close to the convex hull of the solution space of the MILP
(Bertsimas and Tsitsiklis (1997)). For our model, the LP relaxation optimum is always
zero and can often be a lot smaller than the optimum of the MILP. Since the optimal
value of the LP-relaxation is zero, the integrality gap is not defined. The difference
between the optimal value of the LP relaxation and the MILP problem itself means
that a large relative integrality gap exists for almost all problem instances. This suggest
that Model1 is a “bad” formulation. The “big-M” constraint (5.6) is a problem for the
LP-relaxation.

Because the x variables are no longer restricted to 0 or 1, Constraint (5.6) becomes
inactive when xij < 1. The x variables are further only restricted by (5.5). Choosing
both xij and xji equal to a half can result in all inactive constraints of type (5.6).
To reduce this problem, M is chosen as small as possible. But since the constraints
must always hold, it is not possible to choose M small enough to be useful for the
LP relaxation. Another problem in the LP relaxation is that it is possible to choose
yi1 = yi2 = 1

2 for all i. This corresponds to letting two cranes perform all jobs half.
This satisfies Constraints (5.2) and (5.3) in any case (provided m ≥ 2), but ensure
that Constraint (5.5) stays non-restrictive. The left hand side becomes zero, so there

39

5.2. MODEL1

is no restriction for the x variables.This is what actually happens when we solve the
LP-relaxation. As a consequence, all constraints of type (5.6) become inactive and
ti = ri + hi. This results in zero delay. Zone dividing and restrictions between jobs are
completely discarded.

Example: Assume we have a problem with 2 cranes and 5 jobs. If we relax the binary con-
straints, we can choose yi1 = yi2 = 1

2 for i = 1, . . . , 5 and xij = 0 for i, j = 1, . . . , n; i 6= j.
These values satisfy constraints (5.2), (5.3), and (5.5). In the right-hand side of (5.6),
the big M ensures that the constraints becomes inactive. The only restriction on the
t-variables (and thus the objective value) is constraint (5.4). Therefore we can choose
ti = ri + hi for i = 1, . . . , 5. This results in

∑5
i=1 ti =

∑5
i=1(ri + hi) which corresponds

to zero delay.

Within this model it is difficult to adjust the constraints such that the LP-relaxation
becomes stronger. A possible adjustment would be to switch to a quadratic constraint
and use quadratic programming (e.g.: xij(tj − ti − dij − hj) ≥ 0). Because quadratic
programming is more difficult to solve than linear programming, we continue to use
linear constraints.

5.2.4 Alternatives

Some alternative formulations for the above proposed model can be constructed by
making a number of small adjustments. These alternatives are described briefly below.
The focus of the adjustments is mainly on reducing the solution space. However, they
usually do not result in a smaller relative integrality gap. In addition, no reduction in
computation times for Gurobi is identified. A possible adjustment that did not result in
longer computation time for Gurobi is an adjustment for the constraints of type (5.3). In
the Constraints (5.3) the non-linear function f forms some sort of a “big M” constraint
when bj < bi − SEP . This can be avoided by replacing (5.3) by (5.8):

k∑
κ=1

(
yiκ − yjκ

)
≥ f ′(bi, bj) i, j = 1, 2, . . . , n k = 1, 2, . . . ,m (5.8)

f ′(bi, bj) =

{
0 bj ≥ bi − SEP ;
−1 otherwise.

i, j = 1, . . . , n

Assume that bi < bj . If job i is in the same zone as job j, the left hand side is 0 for all k.
However, if job i is handled by crane k1 and job j is handled by crane k2 and k1 < k2,
the left hand side becomes +1 for k = k1. This is allowed by the constraint and also by
the physical constraint. If on the other hand k2 < k1, then

∑k2
κ=1 yiκ − yjκ = −1 which

violates the constraint as required. If job i is left of job j (bi < bj), job j cannot be
handled by a crane left of the crane which handels job i.

In the Constraints (5.8) the “big M” is reduced from −m to −1. This comes, however, at
the cost of adding extra constraints. (5.8) consists of n2m constraints, while (5.3) gives

40

5.3. MODEL2

us n2 constraints. It is a trade-off between solution space and number of constraints. The
difference in runtime for Gurobi between using (5.8) and (5.3) was minimal. Although
(5.8) does reduce the solution space, it does not reduce the integrality gap. Therefore
we stick to the smaller number of constraints by using (5.3).

Another possible adjustment is to introduce the extra constraints (5.9).

xij + xji ≤ yik − yjk + 1 i, j = 1, . . . , n; k = 1, . . . ,m (5.9)

These constraints forbid xij and xji to be both 1 when job i and job j are in the same
zone. Additionally, it ensures that xij = xji = 0 when job i and job j are in different
zones. The addition of these constraints result in longer runtime of Gurobi. Therefore
the addition seems inappropriate. The increase in runtime is, however, small and we
will see in Chapter 6 that in combination with a Benders decomposition, it might be
preferable to add these constraints. Finally, we could also introduce new variables z that
describe direct precedents of jobs. This is a more generally used type of binary variable
in other applications. We have found, however, that the addition of these variables
resulted in much longer computation times for Gurobi. The introduction of more binary
variables is worked out in Appendix A.

5.3 Model2

Li et al. (2009) present a model that is also based on the model of Ng and Mak. Their
model uses a time-index to identify the sequence in which jobs need to be performed.
This has the advantage that no “big M” constraint is needed as in Model1. This model
also does not fix zones for the cranes. This has the advantage that yard cranes can work
in the same bay at different times. A disadvantage is that the time is discretized to 3
minutes. Yard cranes can only perform one job per 3 minutes. In two subsequent time
intervals a yard crane can only perform 2 jobs if they are at most 8 bays apart. This
reduces the flexibility of yard cranes, because it takes three time intervals (9 minutes)
for a yard crane to perform 2 jobs that are 10 bays apart, whereas 5 minutes and 40
seconds is possible in reality.

We present the model introduced by Li et al. (2009) with some adjustments. These
adjustments are done to make it compatible with our problem definition. This model
uses time intervals to determine the location of a yard crane at a certain moment. Just
like Model1, this model uses bi-index binary variables. Instead of using variables to
succesive jobs, their variables describe crane to job assignment or job to time interval
assignment. In Model2, a crane can perform 1 move in each time interval. It uses a time
interval (of 3 minutes) to travel to the next location and pick up a container. It can only
perform a job in succeeding time intervals when their location is at most 8 bays apart.
Yard cranes cannot be at the same bay at the same time. However, they can be at the
same bay at different times. Model1 fixes zones for the entire planning period, while
Model2 does not fix zones and allows crane k+1 to be at bay 6 when crane k was at bay

41

5.3. MODEL2

6 in an earlier time interval. As in the model proposed by Li et al. (2009) cranes have to
be at least 8 bays apart in the same time interval. The difference between storage moves
and retrieval moves is omitted. Jobs can only be performed after their ready time. This
corresponds to the notion of storage moves in Li et al. (2009).

5.3.1 Definitions

The following constants are assumed given:

n the number of jobs
m the number of yard cranes
θ the number of bays
ri requested handle interval of job i
bi the bay-number/position of job i
T the number of time intervals
SEP the minimal number of bays between yard cranes

The following will be the binary decision variables for the model:

yik =

{
1 if job i is done by crane k;
0 otherwise.

xit =

{
1 if job i is handled at time t;
0 otherwise.

The model also includes continuous decision variables zikt for i = 1, . . . , n; k = 1, . . . ,m;
t=1. . . ,T. These variables are continuous, but will be 0 or 1 for every feasible solution.
The z-variables are linked to the binary x and y-variables by constraints in the model.
They therefore represent the following decisions.

zikt =

{
1 if job i is handled by crane k at time t;
0 otherwise.

42

5.3. MODEL2

5.3.2 MILP formulation

Minimize
n∑
i=1

T∑
t=1

t · xit (5.10)

T∑
t=1

xit = 1 i = 1, . . . , n (5.11)

m∑
k=1

yik = 1 i = 1, . . . , n (5.12)

T∑
t=1

txit ≥ ri i = 1, . . . , n (5.13)

n∑
i=1

xit ≤ m t = 1, . . . , T (5.14)

zikt + 1 ≥ xit + yik i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T (5.15)

zikt ≤ yik i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T (5.16)

zikt ≤ xit i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T (5.17)∑
j∈B1

i

zj,k+1,t ≤ 1− zikt i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T (5.18)

∑
j∈B2

i

zj,k,t+1 ≤ 1− zikt i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T (5.19)

n∑
i=1

zikt ≤ 1 k = 1, . . . ,m; t = 1, . . . , T (5.20)

xit, yik ∈ {0, 1} i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T (5.21)

B1
i :={j : j ∈ {1, . . . , n}, bj ≤ bi + SEP}

B2
i :={j : j ∈ {1, . . . , n}, |bj − bi| > 8}

The first set of constraints (5.11) ensure that every job is scheduled at exactly one time
interval. Constraints (5.12) make sure that every job is assigned to a crane. Constraints
(5.13) are used to make sure that a job is not performed before it is available. Constraints
(5.14) limit the number of jobs scheduled at a certain time interval to the number of
cranes. Constraints (5.15), (5.16) and (5.17) define the variables z. Constraints (5.18)
functions as non-crossing constraint for the cranes. Crane k + 1 cannot perform a job
with a smaller bay number than the bay number of the job performed by crane k minus
SEP at the same time interval. For example, assume that crane k performs job i at bay
7 at time t. Job j at bay 9 cannot be performed at time t by crane k + 1. Constraints
(5.19) limit the number of bays a crane can gantry to 8 between succeeding jobs. A crane

43

5.3. MODEL2

cannot perform more than one job in each time interval. This is modeled by Constraints
(5.20). The sets B1

i and B2
j are used to describe for which j the decision variables z are

present.

The model as presented by Li et al. (2009) does not prevent cranes from colliding. In their
model, the left-hand side of (5.18) is summed over all j such that bj < bi − SEP . They
restrict cranes from crossing each other only when they perform a job. When they use
a time interval for gantrying, this crossing is not prohibited. This can result in optimal
schedules that are not feasible. For example, let b = [1, 11, 21, 31] and r = [1, 4, 2, 3].
Model2 as presented above will let Crane 1 handle the first and fourth job at t = 1 and
t = 3. Crane 2 will handle the second and the third job at t = 4 and t = 2. Crane 1
must cross Crane 2 while gantrying to job 4 at b = 31. Letting crane 1 perform jobs 1
and 2 and crane 2 jobs 3 and 4, will result in a delay equivalent to one for crane 2 (see
Figure 5.2. However, that is the best solution that is feasible in practice.

Figure 5.2: Crossing of cranes with Constraint (5.18)

We adjust this by changing the left-hand side of (5.18). If the left-hand side sums over
all time intervals instead of just the one considered in the constraint, zones are fixed for
the entire planning period just as in Model1. The cranes lose the ability to perform jobs
at the same bay at different time intervals, but collision is avoided. Instead of summing
over all possible t, we will sum over t − 1, t, t + 1. This is enough to avoid crossing of
cranes. We also sum over all cranes k′ for k′ > k instead of using only k + 1. Otherwise
it might happen that if crane k+ 1 is idle, crane k+ 2 can be scheduled to perform jobs
at the left side of crane k. At the right-hand side of (5.18) we multiply by 3(m − 1)
to ensure that when zikt = 0, the constraint remains inactive. Instead of (5.18) we

44

5.4. MODEL3

obtain:

∑
j∈B1

i

m∑
κ=k+1

t+1∑
τ=t−1

zj,k+1,τ ≤ 3(m− 1)(1− zikt) i = 1, . . . , n; k = 1, . . . ,m; t = 1, . . . , T

(5.22)

As pointed out in Li et al. (2009) we use the “heuristic” constraints that jobs cannot
be scheduled later than Tlim time intervals beyond their planned time interval. This
reduces the number of binary variables and the number of constraints. Tlim is set to
8 as suggested by Li et al. (2009). This means that a lot of binary variables are fixed
to zero and constraints are only present for some t. For example, for the constraints
(5.22) this means that the constraints are only present for t = r(i), . . . , r(i) + 8. The
same holds for constraints (5.15),(5.16),(5.17), and (5.19). The constraint (5.23) is added
to the problem to set some decision variables to zero. Since all decision variables are
either zero or one, Constraint (5.23) sets all variables that are present in the equation
to zero.

n∑
i=1

m∑
k=1

r(i)−1∑
t=1

(xit + zikt) +

T∑
t=r(i)+Tlim+1

(xit + zikt)

 = 0 (5.23)

5.4 Model3

For Model1 we used the model of Ng and Mak (2005) for one crane as a starting point.
The model was extended via assignment constraints to describe multiple cranes. A
different way to model the problem is via a multiple traveling salesman problem (mTSP).
We will extend the model proposed in Burger (2014) for the mTSP by adding non-
crossing constraints and job ready times. Fictive depots are introduced in this model
from where cranes/salesman depart from and will arrive to. We will refer to this model
as Model3. Although this model shows similarities with a traveling salesman problem,
the performance of Gurobi (compared to Model1) is not improved by modeling it in this
manner.

We introduce a fictive depot as start and finish point for each yard crane. This allows
us to model this problem as a fixed-destination multiple traveling salesman problem
(mTSP). In the mTSP there are multiple depots each having one salesman. The problem
contains a set of cities that have to be visited exactly once by exactly one salesman.
A feasible solution consists of routes for each salesman such that every city is visited
exactly once. So the set of cities must be divided into disjoint subsets, one for each
salesman. The objective is to minimize total traveling distance of all salesmen. For our
yard crane scheduling problem, the depots are modeled as dummy jobs. For these jobs
the bay number, ready time and handling time are set to zero. Also the traveling time
from or to bay zero is set to zero for all bays. To model the mTSP we use constraints
as given in Burger (2014). In addition to these constraints, the model includes extra

45

5.4. MODEL3

constraints (5.29) to model the non-crossing of cranes. These constraints are not in the
regular mTSP problem. Also the constraints (5.30), demanding that jobs cannot be
finished before the sum of their ready and handling time is not in the mTSP model.
Therefore we also add these constraints, which are a variation on time-windows for the
mTSP. A TSP with time-windows is a TSP where every city must be visited within a
certain time-interval. For the non-crossing constraints we can make use of the “node
currents”. They give every node in a tour of a specific salesman (yard crane in our case)
a unique number which can be used to model the non-crossing constraints. The subtour
elimination constraints can be omitted, because we can use the completion time of the
jobs for that purpose. Note that there is a strong resemblance between constraints (5.31)
and the subtour elimination constraints MTZ introduced by Miller et al. (1960).

5.4.1 Definitions

The following constants are assumed given:

n the number of jobs
m the number of yard cranes
θ the number of bays
ri the ready time (truck arrival time) of job i i = 1, . . . , n
hi the handling time of job i i = 1, . . . , n
bi the bay-number/position of job i i = 1, . . . , n
wi the weight of job i i = 1, . . . , n
dij distance of job i to job j (measured in time) i, j = 1, . . . , n
SEP minimum separation space between two yard cranes

The following will be the (decision) variables for the model:

zij =

{
1 if job j follows job i directly for a crane;
0 otherwise.

ki depot/crane number of job i
ti completion time of job i

Note that in this case the variable z describes the direct successor in contrast to the
variable x in Model1. In Model1 x was used to denote that i comes before j in a cycle.
We use the same big number M and function f as in Model1.

46

5.5. ANALYTICAL COMPARISON

5.4.2 MILP formulation

Minimize:
n∑
i=1

(
ti − (ri + hi)

)
(5.24)

m+n∑
j=1

zhj = 1 h = 1, . . . ,m+n (5.25)

m+n∑
i=1

zih = 1 h = 1, . . . ,m+n (5.26)

kd = d d = 1, ..,m (5.27)

ki−kj+(m−1)zij ≤ m− 1 i, j = 1, . . . ,m+n (5.28)

kj − ki ≥ f(bi, bj) i, j = m+1, . . . ,m+n (5.29)

ti ≥ ri + hi i, j = 1, . . . ,m+n (5.30)

tj − ti −Mzij ≥ dij + hj −M j = m+1, . . . ,m+n (5.31)

zij ∈ {0, 1} i, j = 1, . . . ,m+n (5.32)

5.5 Analytical comparison

In this section we compare the models on properties as the number of constraints, vari-
ables and the quality of the LP-relaxation. The runtime of an algorithm used to solve
the above models is hard to predict, since it depends on a lot of different properties.
We solve the models using Gurobi which makes use of a branch and bound algorithm to
solve mixed integer linear programming problems. Branching is applied to the binary
variables via different search methods. Therefore the number of binary variables has a
large influence on the number of branching possibilities. The number of constraints is of
influence on the solution space. More constraints may lead to a smaller solution space.
The size and shape of the solution space has influence on the search time of an algorithm.
More constraints restrict the solution space, but also more verification of solutions need
to be done. The LP-space is also important for the performance of algorithms. If the
convex hull of an MILP is close to its LP relaxation, branch and bound algorithms can
typically find an optimal solution faster.

5.5.1 Variables and constraints

All three models use different numbers of variables and constraints. These numbers
are summarized in Table 5.1. We make a distinction between binary variables and

47

5.5. ANALYTICAL COMPARISON

continuous variables. The influence on the runtime of the binary variables is much
larger than that of the continuous variables. In the number of constraints, the binary
constraints are excluded. Model2 Heur denotes the model as presented in Section 5.3
where the heuristic is implemented. Model2 denotes the model without the heuristic on
handling intervals.

Model Binary Continuous Constraints
variables variables

Model1 n(n− 1 +m) n (2 +m)n2 −mn
Model2 nm+ nT nmT 3n+ (m+ 1)T + 5nmT

Model2 Heur nm+ n(Tlim + 1) nm(Tlim+1) 3n+ (m+1)T + 5nm(Tlim+1) + 1

Model3 n(n− 1 + 2m) 2(n+m) 3n2 + 2nm+ 3n+m2 + 4m

Table 5.1: Number of variables dependent on n,m and T

Since these amounts depend differently on the number of jobs, cranes and time inter-
vals, we will fix these parameters. For comparison we look at the problem of scheduling
n = 20 jobs for m = 2 cranes. The planning window is one hour, so T = 20 + 8 = 28
time intervals are used for Model2 (one time interval takes 3 minutes). Tlim (additional
time intervals for delayed jobs) is fixed to 8 as proposed by Li et al. (2009). The number
of variables and constraints for these specific values is given in Table 5.2.

Model Binary variables Continuous variables Constraints

Model1 420 20 1560

Model2 600 1120 5744

Model2 Heur 220 360 1945

Model3 460 44 1352

Table 5.2: Number of variables and constraints for n = 20,m = 2 and T = 28

As is illustrated in Table 5.2, Model2 uses more binary variables than Model1 and
Model3 for small problem instances. It also uses more continuous variables and more
constraints. If we assume that the number of jobs scheduled per crane per hour is
constant, then changing the planning window will not have a large impact on the ratio
of binary variables between Model1 and Model2. If we increase the number of cranes
(and thus the number of jobs), the ratio of binary variables will change in favor of
Model2. The opposite is true for the number of continuous variables. Implementing the
heuristic for Model2 has a strong influence on the number of binary variables and the
number of constraints. Model2 Heur uses clearly less binary variables and constraints
than the other models. Increasing the planning window or number of cranes will have
the most impact on Model2 and the smallest impact on Model1 for continuous variables.
The same holds for the number of constraints. This is illustrated in Table 5.3.

48

5.5. ANALYTICAL COMPARISON

Model Binary variables Continuous variables Constraints

Model1 2.700 50 17.250

Model2 1.650 7.000 35.318

Model2 Heur 700 2.250 11.569

Model3 2.950 110 8.195

Table 5.3: Number of variables and constraints for n = 50,m = 5 and T = 28

5.5.2 LP-relaxation

As described in Section 5.2 the LP-relaxation of Model1 leads to large relative integrality
gaps. The optimal value of the LP-relaxation is always zero. This might lead to long
computing times for Gurobi. The same problems occur in Model3. The complicating
“big-M” constraints result in a large LP solution space. Model2 does not have such a
“big-M” constraint. The objective of the LP relaxation of Model2 is not always zero
although it is in general much smaller than the solution of the MILP. Simulating an
experiment with 2 cranes and 20 jobs in 1 hour results in an average delay of 526.7
seconds for the LP relaxation and 1337.4 seconds for the MILP.

5.5.3 Conclusion

Based on the number of binary variables and the LP relaxation, Model2 seems a better
formulation than Model1. Both models reflect different modeling decisions which lead
to different optimal values. In Chapter 9 this is compared in detail. Although the above
analytical results show a clear favor for Model2 for the expected runtime, experimental
results show a less clear distinction. In the next chapter Benders decomposition is
introduced. With the aid of this decomposition method the characteristics (number of
constraints and variables) for Model1 can be improved a lot. By splitting in multiple
subproblems, the overall number of binary variables is greatly reduced for Model1. The
above calculations on variables and constraints are even worse for Model3. On the other
hand, the TSP and mTSP are extensively studied at the moment. It might be possible to
apply these results to construct better algorithms instead of directly solving with Gurobi
for this model. Given the very discouraging results by using Gurobi (see Chapter 9), it
might be hard to construct algorithms with shorter computing times compared to solving
Model1. Advanced solvers for TSP or mTSP are not well suited for time constraints and
cannot include other constraints such as our non-crossing constraints.

49

5.5. ANALYTICAL COMPARISON

50

Chapter 6

Benders decomposition

Inspired by the ideas of Cao et al. (2010), we think that Benders decomposition might
improve the runtime of Gurobi on the presented models. Benders decomposition was
first introduced by Benders (1962). It divides the problem in a master problem and
one or several subproblems, which are sometimes referred to as slave problems. Benders
decomposition may be useful when certain variables are complicated while others are easy
(Castillo et al. (2006), Chapter 3). This is in general the case for mixed integer linear
programs since binary or integer variables are complicating while continuous variables
are relatively easy. This suggests to split the problem in a master problem containing
the binary variables (or generally the integer variables) and a subproblem containing the
continuous variables. While iterating between the master problem and the subproblem,
the algorithm “learns from past mistakes” (Hooker and Ottosson (2003)). This means
that a feasible solution for the master problem is cut out if it results in a bad optimal
value for the subproblem. This cut is usually based on the dual values. Since the
subproblem consists of only continuous variables, it is a linear program and therefore
dual values are easily computed.

In the first section we will present the general idea of the Benders decomposition. Differ-
ent Benders decomposition methods are known. We will introduce a variant (logic-based
Benders decomposition) thereafter. In the third section we will work out this logic-based
Benders decomposition method for our yard scheduling problem. More Benders decompo-
sition methods are described in Appendix B. Classical Benders decomposition methods
as well as Benders decomposition methods designed for MILP problems are used on the
presented models. These methods did not improve the computation times for this yard
crane scheduling problem. We try to identify why these methods did not work well.
Since the logic-based Benders decomposition method did reduce computation times for
some problem instances, this method is presented within this chapter.

51

6.1. THE BENDERS DECOMPOSITION METHOD

6.1 The Benders decomposition method

Benders decomposition exploits a block structure in the linear LP/MILP problem for-
mulation to decompose the problem into several smaller problems. Subproblems need to
be solved fast and lead to new constraints for the master problem. In a typical iteration,
first the master problem is solved. This fixes some values that are used as input for the
subproblems. The subproblems are solved using the values of the variables in the master
problem. These results are translated to a Benders cut (defined later) which should
restrict the MP for the next iteration (delayed row-generation). The objective function
might depend on the variables in the subproblem, the variables in the master problem
or both. Depending on this, different cut-generation methods are needed. Assume we
have the following general problem, where y is a vector of binary variables and x1, . . . , xk
vectors of continuous variables:

minimize cTy + fT1 x1 + fT2 x2 + · · · + fTk xk
subject to Ay = b

B1y + D1x1 = d1

B2y + D2x2 = d2
...

. . .
...

Bky + Dkxk = dk

y ∈ {0, 1} x1,x2, . . . ,xk ≥ 0

In this problem A,B1, . . . ,Bk,D1, . . . ,Dk are constraint matrices, c, f1, . . . , fk cost vec-
tors and b,d1, . . . ,dk right hand side vectors. We define vectors as column vectors and
use the notation cT for the transpose of a vector c. We use boldface lowercase letters
for vectors and bold uppercase letters for matrices. This problem can be decomposed
into a master problem and k different subproblems. The formulation of the subproblems
and the resulting Benders cuts differ slightly in the literature. This formulation follows
(among others) Bertsimas and Tsitsiklis (1997). The Benders cut is based on the dual
objective of the subproblems. The master problem is given as:

minimize cTy + α1 + α2 + · · ·+ αk
subject to Ay = b

Benders cuts
y ∈ {0, 1}

We have for i = 1, . . . , k the following subproblems where ȳ is the current solution of
the master problem.

minimize fTi xi
subject to Dixi = di −Biȳ

xi ≥ 0

52

6.2. LOGIC-BASED BENDERS DECOMPOSITION

This subproblem is a linear problem, since the x-variables are continuous. This allows
us to construct the dual of the above formulated problem:

maximize uTi (di −Biȳ)
subject to uTi Di ≤ fi

ui free

After solving the subproblems, we update the master problem with additional Benders
cuts. These take the following form:

αi ≥ pTi (di −Biy) (6.1)

where pi is the vector of dual values corresponding to an optimal solution of subproblem
i. Since pTi (di −Biy) corresponds to the objective of the dual solution, strong duality
guarantees that αi is chosen at least as large as the optimal value of the subproblem
when y = ȳ. If the subproblem is infeasible, we add the cut:

0 ≥ wT
i (di −Biy) (6.2)

where wi is an unbounded ray for the dual problem. We will not formally define an
unbounded ray because it would also need the notion of other linear algebra concepts.
A formal definition could for example be found in Bertsimas and Tsitsiklis (1997). In-
formally an unbounded ray is a direction in the solution space that will always lead to
more feasible solutions. Multiplying an unbounded ray with a constant will still lead
to another feasible solution, no matter how large this constant is. Proceeding via this
unbounded ray will lead to an improved objective function which makes the optimization
problem unbounded.

Note that the assumption that f ≥ 0 is sufficient for u = 0 to be a feasible solution of
the dual. Therefore the dual has either an optimal solution equal to the primal optimal
solution or the dual has an unbounded ray corresponding to an infeasible primal. If in the
master problem y is chosen such that wT

i (di−Biy) ≥ 0, then the dual of the subproblem
becomes unbounded. This means that the primal of the subproblem is infeasible and
therefore the complete problem is infeasible. This justifies the use of cut (6.2).

It is also possible to use the primal objective for the Benders cut. If the dual has a finite
optimal value, strong duality guaranties that this is essentially the same. If the primal
is unbounded artificial variables are added to construct a Benders cut. This process is
somewhat different compared to the case presented above. Both methods are regular in
literature. See Appendix B for a more detailed description.

6.2 Logic-based Benders decomposition

The classical Benders decomposition as presented above did not lead to good results.
The problem was split between continuous and binary variables to exploit the advantages

53

6.2. LOGIC-BASED BENDERS DECOMPOSITION

of a linear subproblem. However, for our yard crane scheduling problem it is more
advantageous to split between the binary variables. A part of the binary variables
is in the master problem while the other part is in the subproblem (the subproblem
also includes the continuous variables). For a splitting between different binary (or
integer) variables different cuts need to be defined because we cannot use the strong
duality results from LP subproblems. Hooker and Ottosson (2003) introduces logic-based
Benders cuts that can be used for a wide class of constrained programming problems. It
is well applicable for MILP problems where the subproblem is also an MILP. The idea of
the Benders decomposition is the same, but the duals and Benders cuts are constructed
for all kinds of constrained programming problems. The classical Benders decomposition
is a special case of this logic-based Benders decomposition. For an LP subproblem, the
classical dual is the same as the interference dual. Also, the classical Benders cuts are
valid Benders cuts for LP subproblems.

Consider the following general optimization problem:

minimize f(x, y)
subject to (x, y) ∈ S

x ∈ Dx, y ∈ Dy

Dx is the domain of x, Dy is the domain of y and S is the set of feasible solutions. Dx

and Dy could for example be the constraints that fix x, y to be binary and S a set of
linear constraints. As in the previous section we decompose the problem between x and
y variables. We get the following subproblem dependent on the current trial solution
ȳκ.

minimize f(x, ȳκ)
subject to (x, ȳκ) ∈ S

x ∈ Dx

The next step is to identify a dual problem. In this case we cannot use the general notion
of a dual from LP problems. Therefore we use the concept of an interference dual. An
interference dual is defined as follows:

maximize βκ

s.t. (x, ȳκ) ∈ S Dx−−→ f(x, ȳκ) ≥ βκ

We want to find an as large as possible value for βκ such that it bounds the optimal
value for a feasible solution. This notation means that if (x, ȳκ) is a feasible solution and
x belongs to its domain Dx, this implies that the objective value of the subproblem is at
least βκ. We want to infer an as good as possible lower bound for the original problem
such that if y = ȳκ, we have f(x, y) = βκ. We therefore need to construct a function
βκȳ (y) such that if y = ȳκ, then f(x, y) = βκ. This is done with the aid of a variable α in
the objective function of the master problem. The master problem is defined as follows
(in iteration ν):

54

6.3. LOGIC-BASED BENDERS FOR MODEL1

minimize α
subject to y ∈ Dy

α ≥ βκȳ (y) κ = 1, . . . , ν − 1

In this problem, α ≥ βκȳ (y) is the Benders cut from iteration κ. The construction of
βκȳ (y) differs per context, but it should at least hold that βκȳ (ȳκ) = βκ. Beside this, it
should be a valid lower bound. We therefore must have f(x, y) ≥ βκȳ (y) for all feasible
(x, y).

A possible way to define βκȳ (y) is as the so called no-good cut. A no-good cut just cuts out
the solution ȳκ(y). For MILP with binary variables, this cut is defined as follows:

α ≥ βκ
(∑
i:ȳκi =1

(yi − 1)−
∑
i:ȳκi =0

(yi) + 1
)

In combination with α ≥ 0, this is a valid logic-based Benders cut. If y = ȳκ, we have
α ≥ βκ and α ≥ 0 in all other cases. Such a no-good cut is in many cases not very helpful
since it only limits one particular solution for the master problem. It is desirable that
more solutions are cut by each Benders cut, but this needs problem specific construction.
In the case of the yard crane scheduling problem we can limit the number of y variables
in the Benders cut due to decomposition to different subproblems. This is explained in
the next section.

6.3 Logic-based Benders for Model1

In the previous section we described the logic-based Benders decomposition method.
In this section we implement this method for Model1. We split the problem between
the x and the y variables. This leaves us with an assignment problem and the yard
crane scheduling problem for one single crane within a zone. We construct a master
problem which has a lot of similarities to an assignment problem with the y variables.
Once these y variables are fixed we have m (the number of cranes) different subproblems
that are independent of each other. This results in multiple subproblems, but with a
smaller problem size. Since the runtime grows exponentially in the problem size, it
seems advantageous to solve multiple small problems instead of one large problem. The
objective is in the subproblems and not in the master problem. That means the algorithm
just finds a feasible assignment for the y variables, not knowing what the delay of the
subproblems will be. Therefore the master problem might introduce poor assignments
in early stages of the algorithm. The master problem gets only feedback on performance
after solving the subproblems in an iteration. In an early stage the master problem might
suggest unrealistic assignments (many jobs to one crane, few to another), resulting not
only in bad optimal values for the subproblems, but also in a long runtime for the large
subproblems. Later in this section we will introduce a guiding objective for the master
problem and some lower bound procedures that should prevent (in many cases, not all)

55

6.3. LOGIC-BASED BENDERS FOR MODEL1

this from happening. This decomposition method is based on the logic-based Benders
cuts (Hooker and Ottosson (2003)) similar to Sarmad et al. (2013).

6.3.1 Problem definitions

The problem is decomposed into a master problem similar to an assignment problem
and subproblems that represent special cases of a traveling salesman problem with time
windows. In every iteration, and for every subproblem, a logic-based Benders cut is
introduced to the master problem. These logic-based Benders cuts represent the optimal
values of the subproblems already discovered. The cuts teach the master problem that
assigning a specific set of jobs to a crane will result in at least λk delay (where λk is the
optimal value of subproblem k in iteration κ). Define the set Cκk = {i : yκik = 1} including
all variables yik which were equal to 1 in iteration κ. The master problem is defined as
follows:

Minimize

m∑
k=1

αk

m∑
k=1

yik = 1 i = 1, ..., n

m∑
l=1

yjl · l −
m∑
k=1

yik · k ≥ f(bi, bj) i, j = 1, ..., n; i 6= j

αk ≥ λκk
(∑
i∈Cκk

yik − |Cκk |+ 1
)

k = 1, ...,m;κ = 1, ..., ν − 1

yik ∈ {0, 1} i = 1, ..., n; k = 1, ...,m

Note that as in Model1 we have:

f(bi, bj) =

{
0 bj ≥ bi − SEP ;
−m otherwise.

i, j = 1, ..., n

In this formulation, λκk is the optimal value of a subproblem solved in iteration κ. The
Benders cut is defined in those variables yik that were equal to 1 in a specific iteration for
a certain k. Here we exploit the multiple subproblems. There are k different Benders cuts
introduced per iteration. Those Benders cuts involve only a few variables yik which makes
them exclude many feasible solutions. These Benders cuts define a penalty coming from
assigning a certain set of jobs to a certain crane. A different implementation possibility
is to add more cuts also for assigning the same set of jobs to other cranes. That will
lead to k2 constraints per iteration. In some cases this reduces the computation times,
but in other cases it does not.

The subproblems are defined for a single crane and are equal to the formulation of Ng
(2005). Other structures (more similar to a TSP) could be introduced, but we stick to

56

6.3. LOGIC-BASED BENDERS FOR MODEL1

this one because it seems to perform well in experiments. Subproblemk is defined as
follows:

Minimize

nk∑
i=1

ti − (ri + hi) (6.3)

xij + xji = 1 i = 1, ..., nk − 1; j = i+ 1, ..., nk (6.4)

tj − ti −Mxij ≥ dij + hj −M i, j = 1, ..., nk; i 6= j (6.5)

ti ≥ ri + hi i = 1, 2, ..., nk (6.6)

xij ∈ {0, 1} i, j = 1, ..., nk; i 6= j (6.7)

Where M is defined as in Model1 (M = maxi=1..n (r)+n(maxi,j=1..n (d)+maxi=1..n (h))).
Note that the problem size of the subproblem depends on the number of jobs assigned
to a crane by the master problem (nk). Only the variables x corresponding to two jobs
that are assigned to a specific crane are present in the subproblem for this crane. This
significantly reduces the number of binary variables x in the subproblems. Note that we
really need the delay as an objective value instead of just the sum of completion times as
could be used by Model1, Model2 and Model3. We want to direct the master problem to
choose subproblems with small delay which do not necessarily correspond to problems
with a small completion time. In this decomposition the master problem finds a lower
bound for the original problem in every iteration. The sum of the objective values of
the subproblems provide an upper bound for the original problem in all iterations. Note
that the lower bounds produced in subsequent iterations form a monotonically increasing
sequence. The upper bounds found do not have such a structure. The upper bounds
found in subsequent iterations might increase or decrease. If the upper bound is equal
to the lower bound in a certain iteration, an optimal solution is found.

Algorithm 1 Logic-based Benders decomposition

while LB<UB do
Solve MP
Update LB
Create SPs given y
Solve SPs
Update UB
Add lb-cuts to MP

end while

6.3.2 Adjustments

Algorithm 1 performs poorly because some subproblems take longer to solve than the
entire problem at once. This happens when unrealistic subproblems are produced, for
example a subproblem where a yard crane has to perform 30 jobs in one hour instead of
around 10 jobs per hour. If one yard crane has to perform too many jobs, it will result

57

6.3. LOGIC-BASED BENDERS FOR MODEL1

in much delay. As noticed before, the runtime of Gurobi for a problem is very dependent
on the amount of delay that is found. This might be due to the larger LP-relaxation
gap. Gurobi solves an instance with 3 cranes and 30 jobs faster in general than an
instance with 1 crane and 25 jobs. We will make two adjustments to the algorithm to
try to prevent this from happening. First we will introduce a small extra objective in the
master problem that adds a value between zero and one. Rounding down the objective
value afterwards will result in the same optimal solution. The master problem finds the
best assignment currently possible during the algorithm, but when several assignments
lead to the same objective value it is directed to choose the one that distributes the
jobs among the cranes “fairest”. We add a continuous variable β to the problem. The
following constraints for β are added: β ≥

∑n
i=1 yik, for k = 1, . . . ,m. In this way,

β corresponds to the maximum number of jobs assigned to a crane when minimizing
over β. In the objective, β is scaled down by n + 1 to guarantee not to interfere with
logic-based Benders cuts in finding an optimal solution. So we add the term β

n+1 to
the objective function. During the minimization, the part

∑m
k=1 αk is most important

because this minimizes over integral values. Decreasing
∑m

k=1 αk with 1 will be preferred

above reducing β
n+1 . Only when several solution lead to the same value for

∑m
k=1 αk,

the solution with the smallest value for β
n+1 will be chosen.

Although the probability that an unrealistic assignment is calculated by the master
problem is reduced by adding this term to the objective function of the problem, it
is certainly not prevented. We will illustrate this by an example. Assume we have a
problem with three cranes, 30 jobs and the jobs are numbered from left to right. Assume
that in the first iteration the master problem assigns 10 jobs to each of the cranes 1, 2
and 3. The ready times and handling times of jobs are absent in the master problem,
it is only concerned with the delay that assigning certain jobs produces. Assume that
the subproblems find a delay of 100, 13 and 124 for this assignment. During the next
iteration the master problem assigns the leftmost 9 jobs to crane 1 and the rightmost
9 jobs to crane 3. The other 12 jobs are assigned to crane 2 and therefore the master
problem aims to score a total delay of 13. Crane 2 will lead to a delay of at least 13, but
crane 1 and 3 might find 0 delay as a result of having to perform one job less. Assume
that in the second iteration the subproblems find a delay of 60, 34 and 124 for this new
assignment. Again, more jobs are added to the second crane and this can be repeated
several times. In the master problem we do not know the ready times of jobs. While we
find a small delay for a large set of jobs for crane 2, adding two new jobs to the zone
of crane 2 might result in much delay. When the crane falls behind of schedule, delay
might add up. This results in a very difficult and large subproblem.

The second adjustment tries to prevent the algorithm to solve difficult subproblems.
Assuming that a difficult subproblem will result in much delay, we try to find a lower
bound first. We will refer to this lower bound as sublb to avoid confusion with the lower
bound for the objective of the entire problem found by the master problem. If a sublb is
larger than an upper bound found in earlier iterations, this crane assignment will never
result in an optimal solution. In addition, for the master problem it is restrictive enough

58

6.3. LOGIC-BASED BENDERS FOR MODEL1

to add a cut using this sublb instead of the optimal value. With the aid of this sublb,
the master problem knows that assigning this set of jobs to the concerned crane will not
lead to a better solution. Using sublb in this manner will not destroy the optimality
guarantee. To find a sublb we propose several procedures that use relaxations of the
single crane problem. Unfortunately we cannot use an LP-relaxation because this will
result in zero delay. This will not lead to a sublb that is larger than the best upper
bound found by the algorithm. For a good procedure for finding a sublb it is desired
that it has a very small runtime and finds a bound as close as possible to the optimal
value. Below we will introduce three procedures that find a sublb. We will refer to these
procedures as sublb procedures.

6.3.3 Space relaxation heuristic

In this first sublb procedure we use a space relaxation. We discard the spatial parameter
in our model. We also set the handling times of the jobs equal to the minimum handling
time. When all jobs are at the same bay and have the same handling time, a “greedy
algorithm” will find an optimal solution efficiently. We sort the jobs on earliest possible
finish time and handle the jobs in this order. The crane will not be idle when jobs are
available and when delay occurs it minimizes the number of jobs that are delayed at that
moment by finishing a job as soon as possible. This results in the following procedure:

Algorithm 2 Sublb procedure 1

h = mini hi
fi = ri + h,∀i
Sort jobs on fi
t1 = f1
for j = 1 : nk − 1 do

tj+1 = max fj+1, tj + h
end for
Delay =

∑nk
i=1 (ti − (ri + hi))

+

In some cases, this procedure finds a bound close to the optimal value. In other cases
(especially when jobs are far apart in space) it finds very bad bounds. The advantage
of this procedure is that it is guaranteed to have a very small runtime. Since sorting
can be done in O(n log n) and other functions can be done in O(n) this procedure finds
solutions in O(n log n) time.

59

6.3. LOGIC-BASED BENDERS FOR MODEL1

6.3.4 Time relaxations heuristic

In this procedure a sublb is found by halving the problem size. We introduce an artificial
second crane for the problem and split the problem into two new problems. Therefore
we sort the jobs according to increasing ready time and assign the first a = floor(n2)
jobs to the first problem and the other n − a jobs to the second problem. While this
reduces the problem size by a factor of two, two problems have to be solved. Since the
worst-case runtime increases exponentially in n, solving two smaller problems results in
a smaller worst-case runtime. Experiments show that indeed the computation time of
solving the smaller problems is shorter than the computation time of solving the large
problem. Adding the delays of both new problems gives a valid sublb. If the delay adds
up in the large problem around job a, the two small problems will find less delay than
the large problem. The new subproblems together will never find more delay than the
original subproblem. Let t′i denote the completion time of job i in the small problems.
Let λk denote the delay found by the larger problem and λ1

k and λ2
k denote the delay

found by the smaller problems. We have the following inequality since the t′i will result
from optimal schedules for those jobs:

λk =
n∑
i=1

ti − (ri + hi) (6.8)

=

a∑
i=1

ti − (ri + hi) +

n∑
i=a+1

ti − (ri + hi) (6.9)

≥
a∑
i=1

t′i − (ri + hi)
n∑

i=a+1

t′i − (ri + hi) (6.10)

= λ1
k + λ2

k (6.11)

Algorithm 3 Sublb procedure 2

Sort jobs on increasing ri
Set a = floor(n2)
Solve for first a jobs
Solve for last n− a jobs
Add delay found

This procedure finds a strong sublb when delay is not added up around job a in the opti-
mal solution. The runtime is significantly shorter than solving the subproblem, but it is
not efficient like procedure 1. This means the runtime is not polynomial bounded.

To solve the problem when delay is adding up around job a, we introduce a third proce-
dure very similar to the second one. Instead of splitting the jobs into two sets, we split
them into three. The rest of the procedure is the same. It might find a stronger sublb
when delay especially occurs around job a.

60

6.3. LOGIC-BASED BENDERS FOR MODEL1

6.3.5 Algorithm

The algorithm presented next will solve a problem instance using all three procedures
(if necessary) to avoid solving large subproblems. For subproblems larger than n = 15
it will first solve sublb procedure 1. When a valid sublb is found (sublb > UB) this
value is used for the logic-based Benders cut. If the sublb is not valid, the second sublb
procedure is tried. If this again fails to find a valid sublb, procedure 3 is invoked. If
none of the sublb procedures finds a valid sublb, the subproblem is solved to optimality
by Gurobi. This idea is given in pseudo-code for algorithm 4.

Performance might be increased when better sublb procedures are available. It is not
uncommon that all three procedures will find a sublb of a factor 2 below the real optimal
value of he subproblem. It might be advantageous if lower bounds can be derived while
solving the subproblems. If an algorithm can guarantee lower bounds while searching
for an optimal value of the single crane subproblem these can be used if they are larger
than the best found upper bound. The algorithm can terminate its search for an optimal
value since this lower bound suffices.

61

6.3. LOGIC-BASED BENDERS FOR MODEL1

Algorithm 4 Logic-based Benders decomposition

while floor(LB)<UB do
Solve MP
Update LB
for k = 1 : m do

Create SPk given y
if nk > 15 then

Solve sublb procedure 1
if sublb1>UB then

Create cut using sublb1
else

Solve sublb procedure 2
if sublb2>UB then

Create cut using sublb2
else

Solve sublb procedure 3
if sublb3>UB then

Create cut using sublb2
else

Solve SPk
Create cut using SPk

end if
end if

end if
else

Solve SPk
Create cut using SPk

end if
Add cut to MP

end for
if then

∑m
k=1Dk < UB

Update UB
end if

end while

62

Chapter 7

Rolling horizon

In the previous sections, we studied the problem for a short fixed planning window.
Business on the terminal is ongoing and different planning windows need to be well con-
nected. As we have seen, the runtime of the algorithms is very dependent on the length
of the planning window (and as a result the number of jobs). Those two observations
suggest the use of rolling horizon algorithms. In rolling horizon algorithms, decisions
are made based on knowledge of the near future. Using knowledge of the future comes
at a certain cost or information is unreliable. The further ahead one takes information
into account, the higher the costs or the information becomes less reliable. The idea
behind a rolling horizon is to look a certain number of time periods ahead while making
decisions. Those time periods are included in the planning window. Then in the next
time period, another time period is added to the information and new decisions can be
made. The boundary on information to incorporate rolls ahead while advancing in time.
When a long planning window is split into different time periods there arise problems
on the boundary between the different time periods. By saving only part of the solution
and search for a new solution again, this problem is reduced.

Figure 7.1: Time periods that are included in the planning window

From the past we only need the end position of the cranes, completion time of their

63

7.1. ROLLING HORIZON ALGORITHM

latest job and the jobs that where not handled within the time period. Jobs that are
delayed beyond the boundary of the time period are postponed to the next time period.
Otherwise they have to be within the zone of a crane while this might not be desirable
for the next time interval. It might be advantageous to let another crane perform the
job.

In the first section we will give a more formal formulation of the framework. After this
we introduce two different algorithms within this framework. The first algorithm uses
the expected arrival times of the jobs as deterministic input for the coming 2 or more
time periods. It creates a schedule for the coming 2 (or more) time periods where the
schedule is only performed for the current time period. The advantage is that zones
are fixed such that they are better positioned for the next time interval. However,
fixing the intervals for a longer period might be worse for the first time interval. It also
increases the runtime of the algorithm because the problem that needs to be solved is
much larger.

The second algorithm solves the current and the next time interval iteratively. The
current time interval is solved and then the next time interval given the schedule of the
current time interval is solved. The additional delay coming from the start position of
the cranes in the next time interval is used as a penalty in the problem for the current
time interval. This is a decomposition for solving the upcoming two time intervals. This
method can be extended to incorporate more time intervals. Solving the second time
interval is then again done by calling the decomposition algorithm on the second and
the third time interval. This drastically increases the computation times due to nested
loops, but incorporates more information about the future. The method is explained in
detail in Section 7.2.

For solving individual problems we use the static version described before. We can either
choose to use the Benders decomposition method or solve an individual problem with
Model1 directly. A third option is to store solutions found by the algorithm. A schedule
is made for a longer period than is actually executed. The part of the schedule that is
not executed can be used as a starting point in the next iteration. There is a fair chance
that this is still a good solution, so using it as a starting point for the branch and bound
algorithm of Gurobi might improve performance.

7.1 Rolling horizon algorithm

For the rolling horizon algorithm we use two time parameters. Tsave is the length of a
time period. After a full iteration of the algorithm, a schedule is made for the coming
Tsave seconds. The other parameter is Twindow. In an iteration, the algorithm solves
for the coming Twindow seconds. This means that all jobs with ri < Twindow are
included in the planning window. After finding a schedule, the algorithm saves the
schedule for the coming Tsave seconds and a new schedule is made from this starting

64

7.1. ROLLING HORIZON ALGORITHM

point. In the view of Figure 7.1 this means that Tsave corresonds with a time period and
Twindow with a planning window. Note that Twindow does not have to be a multiple
of Tsave as Figure 7.1 suggests. This however is necessary for the time decomposition
algorithms as is presented in the next section.

After an iteration, the ready times of the jobs and finish times of the cranes are shifted
back with Tsave, such that new jobs fall into the interval [−∞, Twindow]. Jobs that
could not be scheduled in time in the previous time interval have negative ready times,
but should be included again in the new problem. As a consequence the number of
jobs in an iteration might increase during to stacked delay. This might result in long
computation times for certain iterations. This is a downside, but if we save the schedule
for all jobs originally in [0, T save] we have some cranes with a schedule in the next
iterations which might interfere with the schedules in that time period. Besides this, it
might be advantageous to perform a job at the beginning of the second time interval
before a job at the end of the first time interval. Twindow can be chosen large such that
many jobs are included into the problem and the algorithm can adjust the schedule well
when workload is not uniformly divided over the bays. This foresight helps with moving
the cranes in time to the proper location. A downside is that the algorithm fixes the
zones for a long time even though they are updated again after Tsave. The zone fixing
might not give the best solution for the [0, T save] time interval. If Twindow is chosen
small (equal to Tsave), then the problems to solve remain small, are solved fast and
zones are not fixed for long periods. On the other hand, the algorithm has no knowledge
about expected workload in the future. If there are many jobs in the first 10 bays, most
cranes will be moved to this area. But if after a few minutes workload shifts to the last
10 bays, the cranes are not positioned in time. The following pseudo-code illustrates
how the algorithm works.

Algorithm 5 Rolling Horizon

for T=1:ceil(planningwindow/Tsave) do
for i=1:n do

if ri < Twindow then
add job i to problem

end if
end for
Solve problem
if job ti is scheduled and ti < Tsave then

save ti
end if

end for

65

7.1. ROLLING HORIZON ALGORITHM

7.1.1 MILP

First we need to introduce some new constraints to deal with the start positions of the
cranes. From the previous problem, we have a location and finish time of each crane.
The schedule for the current time period has to take those times and positions into
account. An easy way to model this is to put the last jobs of the previous schedule in
the new problem and fix their finish times and crane assignment. This would however
limit the zone fixing possibilities for the current time periods. We therefore introduce
two different constraints that are concerned with the start location and the time that
these cranes become available. We will refer to the start location by b0k and the time
the crane is available by t0k for every crane k.

The first additional constraint limits cranes to start with a job before they can reach
them from the current location. If job i is at another bay than b0k, then crane k needs
at least |b0k − bi| time units to move and cannot start job i earlier than t0k + |b0k − bi|.
The finish time of job i is therefore limited to:

ti ≥ (hi + t0k + |bi − b0k|)yik, for i = 1, . . . , n; k = 1, . . . ,m

Note that hi, t0k, bi and b0k are all fixed and known before solving the problem. Therefore
the above constraint is still a linear constraint. The next constraint deals with the non-
crossing of the cranes due to the start positions. If t0k is very small, t0k + |b0k − bi| can
be smaller than zero even though the location of job i is not very near the start position
of crane k. For crane k it might be possible to start with job i at the beginning of the
current time interval, because it can use its idle time at the end of the previous time
interval to move to location bi. However, it might be impossible due to the positioning
of another crane. If crane k + 1 is still working on a job at the end of the previous time
interval between b0k and bi, for crane k is not possible to move during the previous time
interval. This is modeled with the following constraint.

∑
i∈B+

k

k−1∑
l=1

yil +
∑
i∈B−

k

m∑
l=k+1

yil = 0, for k = 1, . . . ,m

B+
k := {i : i ∈ {1, ..., n}, bi +

1

4
min(0, t0k − ri) ≥ b0k − SEP}

B−k := {i : i ∈ {1, ..., n}, bi −
1

4
min(0, t0k − ri) ≤ b0k + SEP}

In this constraint we use the sets B+
k and B−k for every k to give specific conditions.

Remember that the constant SEP denotes the number of bays that need to be empty
between two yard cranes. The set B+

k contains all bi that are larger than the initial
position of crane k minus the separation constant SEP. Note that crane k can move
away 1

4 such that the ”blocked area” moves with yard crane k. So B+
k denotes the set of

bays that are blocked by yard crane k for yard cranes at the left of yard crane k (yard
cranes with a number smaller than k). This set is defined on the initial time of yard

66

7.1. ROLLING HORIZON ALGORITHM

crane k and the ready times of the jobs. There are no time variables in the set, so the
constraint stays a linear constraint. The set B−k is defined similarly and denotes the set
of bays that is blocked by crane k for cranes with a higher crane number. Only the fixed
ready time of job i is used. This is a downside because there are situations possible
that it is advantageous to let crane k − 1 perform job i although it has to wait until
crane k has moved away to an even higher bay number. But using the ready time keeps
the constraint linear and already generates much more flexibility than fixing the zones
around the last job of the previous time interval. This leads to the following MILP that
needs to be solved for every time interval. For definition of the variables and constants,
see Section 5.2.

Minimize:

n∑
i=1

(
ti − (ri + hi)

)
(7.1)

m∑
k=1

yik = 1 i = 1, 2, ..., n (7.2)

m∑
l=1

yjl · l −
m∑
k=1

yik · k ≥ f(bi, bj) i, j = 1, ..., n; i 6=j (7.3)

ti ≥ ri + hi i = 1, 2, ..., n (7.4)

yik + yjk − 1 ≤ xij + xji i, j=1, ..., n; i 6=j; k=1, ...,m
(7.5)

tj − ti ≥ dij + hj − (1− xij)M i, j = 1, ..., n; i 6=j (7.6)

ti ≥ (hi + |bi − b0k|+ t0k)yik i = 1, ..., n; k = 1, ...,m (7.7)∑
i∈B+

k

k−1∑
l=1

yil +
∑
i∈B−

k

m∑
l=k+1

yil = 0 k = 1, ...,m (7.8)

xij , yik ∈ {0, 1} i, j=1, ..., n; i 6=j; k=1, ...,m
(7.9)

7.1.2 Delay

It seems natural to expect that less overall delay is found, when Twindow is large. A
large planning window makes sure the algorithm can adjust well to changes in the job
distribution among the bays through time. However, it is not always true that a larger
Twindow leads to less delay. Sometimes fixing the zones for this longer period creates
worse solutions for the first part [0, T save]. Zones for jobs after Tsave are determined
again in the next iteration, but during the current iteration the algorithm does not know
that this is possible. This issue can be reduced by giving different weights based on the
ready times of jobs. Jobs that are in the near future can be given higher weights than
jobs with a large ready time.

67

7.1. ROLLING HORIZON ALGORITHM

It is also interesting to note that the algorithm used to solve the problem in an iteration
can generate different overall solutions. For instance, the Benders decomposition algo-
rithm and direct solving both find an optimal solution for Model1. However, they might
find a different solution with the same optimal value. This can lead in a next iteration
to different start position of the cranes and therefore different overall delay found by the
algorithms.

68

7.2. TIME DECOMPOSITION

7.2 Time decomposition

A second way to divide the planning window into multiple time periods is via a time
decomposition. This idea has some similarities to the Benders decomposition. It can be
implemented in a rolling horizon fashion. First, the current time period is solved (for
instance the next 5 minutes). Then, the next time period is solved (for instance from
5 to 10 minutes) given the solution of the current time period. The end positions of
the cranes in the current time period influence the result of the next time period. The
difference in delay for the next time period given the current solution of the current time
period and the delay of the next time period without start position constraints is used
for a cut for the current time period. This cut ”teaches” the problem of the current time
period that choosing this crane to job assignment results in a certain amount of extra
delay. More feasible solutions are tried for the current time period to try to minimize
the total delay over the current and the next time period. As cut we have to use a so
called “no good” cut including all binary variables of the current time period to ensure
optimality. It might be advantageous for the next time period to switch a job from one
crane to another or to switch two jobs within one yard crane zone.

Because such a “no good” cut will result in many iterations we use a cut only based on the
y variables determining the job to crane assignment. This reduces the possibilities for the
current time period and therefore the number of iteration needed in the decomposition
algorithm. In this way optimality for the two investigated time periods is not guaranteed,
but much less delay is found compared to solving the coming two periods together
at once. In 6, the pseudo-code of the algorithm used for the Time Decomposition is
given.

7.2.1 Cut-generation

The time-cut is generated in each iteration of the while loop. As described above, we
only cut for the y-variables to avoid too many iterations. The cut will put a penalty
on the currently found job to crane assignment. This penalty (P) equals the difference
between the objective value of solving the second problem with start constraints and
without start constraints. This keeps the penalty low, but valid. If we did not subtract
the delay without start constraints, the number of iterations would increase. The penalty
is only available for job to crane assignments that are tried before. If the penalty is large,
the algorithm will try many suboptimal solutions for the first problem to minimize the
delay over the first and second problem combined. This is unnecessary because the
second problem will always encounter at least the delay of the problem without start
constraints. Let ȳik be the job to crane assignment for problem1 in the current iteration.
Then we generate the following time-cut:

n∑
i=1

m∑
k=1

P · ȳik · yik − α ≤ (n− 1) · P (7.10)

69

7.2. TIME DECOMPOSITION

Algorithm 6 Time decomposition

for T=1:ceil(planningwindow/Tsave) do
for i=1:n do

if ri < Tsave then
add job i to problem1

end if
end for
for i=1:n do

if Tsave < ri ≤ 2 · Tsave then
add job i to problem2

end if
end for
Solve problem2 without start constraints
MinObj2=Obj2
while LB < UB do

Solve problem 1
LB = Obj1 +MinObj2
Calculate start postions cranes problem 2
Solve problem 2
UB = Obj1− α+Obj2
Create time-cut based on P = Obj2−MinObj2
Add time-cut to problem1

end while
if job ti is scheduled and ti < Tsave then

save ti
end if

end for

If ȳ = y in the next iteration, the left-hand side becomes n · P and the right-hand side
(n − 1) · P . Therefore α needs to be at least P to ensure feasibility. The variable α is
introduced into the objective with weight 1.

7.2.2 Multiple decomposition

It is also possible to do a decomposition twice or even more times. This idea is worked
out in pseudo-code in Algorithm 8. During an iteration the second time period is solved.
First as a benchmark and later to determine the extra delay coming from the schedule
for the first time period. Instead of just solving the second time period (ignoring the
future beyond 2 · Tsave), we can solve the second time period by again calling the time
decomposition algorithm. By doing this iteratively we can increase the depth of the time
decomposition algorithm. We need to give the algorithm a maximal depth (Mdepth)
such that if it reaches this depth it stops calling for the decomposition algorithm and

70

7.2. TIME DECOMPOSITION

just solves the last time interval on its own. The algorithms consists of an outer loop
(7) with the rolling horizon approach, calling on an algorithm (8) including the time
decomposition until a certain depth.

Algorithm 7 Rolling Time Decomposition

for T=1:ceil(planningwindow/Tsave) do
Do TimeDecomposition{depth = 0} return t,y
for i=1:n do

if ti ≤ Tsave then
Save ti, yik

end if
end for
Calculate start positions cranes for next interval

end for
Calculate objective using t,y

Note that the depth variable is important for the tasks that the sub-algorithm TimeDe-
composition needs to perform. The jobs that come into a specific time period are based
on their ready times. The jobs under consideration in the time period are the jobs with
ri ∈ [depth ·Tsave, (depth+1) ·Tsave]. The exception is for depth equal to zero, because
in this case all jobs with ri ∈ [−∞, T save] need to be in the time period (also those
with negative ready times). If the depth equals Mdepth, the problem needs to be solved
directly without calling for the TimeDecomposition function again. The solution that
is saved is again all jobs completed before Tsave. So, jobs scheduled in the first time
period that are finished after Tsave are scheduled again in the next time interval. This
is to guarantee that cranes do not cross each other. In suggested solution for more time
intervals this is not the case. All jobs are scheduled and the completion time is taken to
the next time interval. This might result in wrong solutions and therefore less or more
delay. However, for the final schedule this is avoided.

In the above description, the algorithm assigns the same value to the time periods under
consideration. It can be advantageous to give a higher weight to jobs arriving in the
first time period and decrease this weight factor along with further time periods. In
the end, the algorithm saves only the solution for the coming time period. It is most
important that few delay is found for this time period because the other time periods
will be including in the next iteration of the rolling horizon. Schedules for later time
periods might very well be adjusted later. This weight can be implemented with use of
the bounds found by the algorithm. For example, we can multiply MinObj2, Obj2 and
P by w = 1

3 in the above algorithm.

71

7.2. TIME DECOMPOSITION

Algorithm 8 Multiple time decomposition

if depth=0 then
for i=1:n do

if ri < Tsave then
add job i to problem

end if
end for

else
for i=1:n do

if depth · Tsave ≤ ri < (depth+ 1) · Tsave then
add job i to problem

end if
end for

end if
if depth = Mdepth then

Solve Problem return t, y, Obj1
else

Do TimeDecomposition{depth = depth+ 1, t0, b0} (without start constraints) re-
turn t, y, Obj2

MinObj2← Obj2
while LB < UB do

Solve problem return t, Y,Obj1
LB = Obj1 +MinObj2
Calculate t′0 and b′0 (start positions cranes next problem)
Do TimeDecomposition{depth = depth+ 1, t′0, b

′
0} return t, y, Obj2

UB = Obj1− α+Obj2
Create time-cut based on P = Obj2−MinObj2
Add time-cut to problem

end while
Ojb1← LB

end if
return t, y, Obj1

72

Chapter 8

Stochastic input

In the previous sections all input was assumed deterministic, meaning that we assumed
that everything was known beforehand without any uncertainty. The introduction of
the rolling horizon algorithms create a good framework for a stochastic model. We
can incorporate uncertainty about the job arrival times in the model without creating
many complications for practical use. It is undesirable that a yard crane goes to a bay
expecting a job that will not be there. With the aid of the rolling horizon principle, we
can differentiate between jobs in the coming minutes and jobs further ahead in time.
We will use this for introducing stochastic arrival times of jobs. In practice, it can be
difficult to determine exact arrival times of jobs. Especially when they are dependent on
external factors it is hard to predict their actual arrival. We will not take uncertainty
into account due to terminal operations (for example, a traffic congestion of internal
trucks). Uncertainty coming from outside the terminal has a less direct influence on
operations and is more manageable to include. We will introduce uncertainty for the
arrival of trucks at the gate. Trucks have a certain planned arrival time, but often they
are delayed due to traffic jams or other external factors. Seaside operations are less
sensitive to unexpected lateness. Communication between the vessel and the terminal is
easier to manage compared to communication between trucks and terminal. The loading
and unloading activities are controlled by terminal operations and therefore the arrival
times of jobs are easier to predict.

Since the structure of the time decomposition algorithm is useful for modeling uncertain
variables, we use this in our stochastic model. The structure makes it possible to plan
for a short time interval where the actual ready times of jobs are reasonably certain,
and use uncertain ready times in the other time intervals. This way schedules can be
formulated that anticipate well on the uncertainty.

73

8.1. STOCHASTIC MODEL

8.1 Stochastic model

To model the uncertainty of the job ready times we use the planned arrival time of the
jobs with a lateness (not to be confused with delay of jobs due to scheduling of yard
cranes) that is distributed as an exponential distribution with parameter λ to be specified
later. Because the largest uncertainty comes from outside the container terminal, we
assume that the job ready time is deterministic once they are within the boundaries of
the container terminal. For receivel and delivery moves this means that trucks have a
specified planned arrival time at the gate. Their arrival at the gate can be later than
planned but once at the gate, their arrival time at the yard will be quite certain. Let
āi denote the planned arrival time of job i at the gate and ai = āi + li be the actual
arrival time of job i at the gate. The value li denotes the time that the truck arrives
too late due to external factors. The quantity li is uncertain and we assume it comes
from a probability distribution. We will first introduce a probability space to define the
random variable Li. Let (Ω,F , P) denote a probability space where Ω is the sample
space, F a sigma algebra and P a probability measure. It is natural to assume that the
truck arrival times at the gate are real valued. The observation space is therefore the
real numbers (R) equipped with the Borel σ-algebra B(R). Let Li : (Ω,F)→ (R,B(R))
for i = 1, . . . , n be i.i.d. random variable and denote by li ∈ R their outcome. We denote
with PLi(A) = P (ω : Li(ω) ∈ A) the probability of the event {ω : Li(ω) ∈ A} and let
FLi(t) = P (Li ≤ t). Once the event Li(ω) = li has taken place, ai = āi + li becomes
known. Otherwise we have ai = āi + Li and treat ai as an uncertain quantity.

For scheduling it is important to identify which ready times are deterministic and which
are uncertain. First we partition the coming planning window in different time periods.
Let Ij = [Tj−1, Tj] for j = 1, . . . , N denote N non-overlapping time periods, such that
∪Nj=1Lj = [0, Tend]. Let Atime denote the time it takes algorithm A to find a schedule
for the coming time period. Assume we are at time Tj−1 − Atime so we need to find a
schedule for time period j. Jobs that are already past the gate are deterministic and
their ready time is given by: ri = ai + τi where τi denotes the time it takes for a truck
to reach its yard location from the gate. If job i is not completed yet, its ready time ri
will be in problem j. If at time Tj−1 − Atime we have not yet observed ai (so job i has
not arrived at the gate yet), we have an uncertain ready time for job i. We have the
following definition for the arrival time at the gate at time T :

ai =


āi + li if āi + li < T
āi + Li(ω) if āi > T
āi + {Li(ω)|Li(ω) > T − āi} else

The time it takes for a truck to get from the gate to the yard might depend on the
position of job i at the yard. The distance between gate and yard block can be different
of each yard block. For simplicity we will assume constant travel time between yard and
gate and define τ = τi = 300s ∀i. We define r̄i = āi + τ and ri = ai + τ as the planned
job ready time and the actual job ready time. Since the latter is dependent on ω, we

74

8.2. DISTRIBUTIONS

assume an exponential distribution for Li. We use the expected value of ri at time T
for scheduling purposes. If we have observed that āi + Li < T , we have:

E[ri|āi + Li < T] = āi + li

If on the other hand the truck has not arrived at the gate at time T we have:

E[ri|āi+Li > T] = E[āi+Li+τ |āi+Li > T] = āi+τ+E[Li|Li > T − āi] = T +τ+E[Li]

due to the memoryless property of the exponential distribution.

E[Li|Li > T − āi] =

∫ ∞
0

lifLi(li|Li > T − āi)dli

=

∫ ∞
0

lifLi(li − T + āi)dli

=

∫ ∞
0

(u+ T − āi)fLi(u)du

= T − āi + E[Li]

This leaves us with the following definition of ri which we will use for our algorithms.

ri =


r̄i + li if ai < T
r̄i + E[Li(ω)] if āi > T
T + τ + E[Li(ω)] else

There are many different ways to take uncertainty into account in mathematical models.
Some possibilities are using: distributions, simulation and oracles. When using distri-
butions, we assume that the uncertainty is structured in a specific way. We can use
knowledge about the expectation and variance to use in algorithms. Simulation is used
when the expectation of a random variable is not a desirable input for the algorithm or
when it is unknown (or highly dependent on different factors). Simulating different out-
comes lead to different scenarios. The algorithm can find a solution under one of these
scenarios. There are different choices that can be made with respect to the scenarios.
One can choose the solution that finds the lowest delay as an average over all scenarios.
Another choice would be to choose the solution that is optimal in most scenarios. In
this way, the chance is largest that the chosen solution is indeed optimal for the actual
realization. Oracles are used when there is a possibility to gain more information about
uncertain values. Many times, this possibility comes at a certain price due to costs
of further research or increased runtime of an algorithm. For our problem this oracle
structure does not seem applicable.

8.2 Distributions

A straightforward way to deal with the uncertainty of ready times is to split between the
certain ready times and the uncertain ready times. This can be done by choosing the

75

8.3. SIMULATING

time periods such that time boundary (Tsave) of a planning period is between those two
groups. We must at least have Tsave ≤ T to ensure that no uncertain jobs are saved to
the final schedule. That might lead to yard cranes moving to bays while the job is not
ready yet. A practical way to define time periods for scheduling is to use time periods
of length tr−Atime. At time Tj−1−Atime we have the following job ready times:

ri =


ai + tr if ai < Tj−1 −Atime
āi + tr + E[Li(ω)] if āi > Tj−1 −Atime
Tj−1 −Atime + tr + E[Li(ω)] else

Note that if ai < Tj−1−Atime, ri is deterministic and its ready time is in the coming time
period. On the other hand, if ai > T we have P (ri < Tj) = 0 and therefore job j is not
in the coming time period. This gives us the possibility to schedule for the coming time
period as before in a deterministic way. If we incorporate time periods in the future, the
ready times are uncertain. We can use the expectation of Li to estimate delay of formed
schedules for those time periods.

8.3 Simulating

Instead of using the expected ready time for later time periods, we can use simulation
to find a schedule for the current time period. Even if we have a clear idea about
the distribution of the ready times, simulation might be more advantageous than using
individual expectation of the ready times. When many simulations can be used, the
schedule based on the combination of expectations can be made. A schedule based on
expectations can be very good if the ready times are close to their expectation but very
bad if one particular job is very late. When we use simulations, the algorithm will
detect that a certain solution has the risk to be very bad under certain realizations. A
solution that is not optimal if jobs arrive according their expectation can be a better
choice because it is more flexible to deal with some unwanted realizations. Simulation
will make a more risk reduced choice.

We create N different realizations of the random variables in the uncertain time periods.
In every realization an outcome is randomly generated from the exponential distribution
for every job i. This can be implemented in the TimeDecomposition algorithm (see
Algorithm 9). The current time period under consideration is again deterministic. The
jobs that need to be handled are already beyond the gate, so their arrival time is assumed
deterministic. The next time period consists of uncertain job arrival times. The same
distributions as above are assumed but instead of scheduling on the expected value we
create different scenarios. The algorithm will search for the best job to crane assignment
based on the average of all different scenarios. So for a solution of the first time period,
the extra delay coming from the start position of the cranes in the next time period is
approximated by the mean under all scenarios. The best choice for the current time
period is chosen based on this mean value.

76

8.3. SIMULATING

Algorithm 9 Simulation

for T=1:ceil(planningwindow/Tsave) do
for i=1:n do

if ri < Tsave then
add job i to problem1

end if
end for
for j=1:N do

clear problem2
Simulate rj

for i=1:n do
if Tsave < rji ≤ 2 · Tsave then

add job i to problem2
end if

end for
Solve problem2 without start constraints

end for
MinObj2=min(Obj2)
while α 6= mean(Obj2)−MinObj2 do

Solve problem 1
LB = Obj1 +MinObj2
Calculate start postions cranes problem 2
for j=1:N do

clear problem2
for i=1:n do

if Tsave < rji ≤ 2 · Tsave then
add job i to problem2

end if
end for
Solve problem 2
UB = Obj1− α+Obj2

end for
Create time-cut based on mean(Obj2)−MinObj2
Add time-cut to problem1

end while
if job ti is scheduled and ti < Tsave then

save ti
end if

end for

In the time decomposition algorithm we can find the delay for the first two time intervals
under every scenario. We can choose the schedule for the first time interval that lead to
the smallest average delay over both time intervals. After a schedule for the first time

77

8.3. SIMULATING

interval is found, the true realizations become known for the next time interval. Jobs
that still have not arrived at the gate will not arrive this time interval and are scheduled
in the next time interval (again under uncertainty).

78

Chapter 9

Results

In this chapter we discuss results of the testing of the algorithms for the different models.
First we will discuss results for the static case (without the rolling horizon). After that,
we discuss the results with the rolling horizon algorithms. The algorithms are tested on
randomly generated problem sets as will be described in the different sections. In the
last section we test the performance of the algorithms for stochastic input.

9.1 Static problems

In this section we give an experimental comparison between Model1 en Model2 for the
static case (without rolling horizon). We will compare their performance with and with-
out the logic-based Benders decomposition for different parameters (number of cranes,
jobs and time interval length). We will compare both on delay and runtime. Model2
results in general in a different optimal value than Model1 due to different modeling
assumptions. Model1 fixes zones for the yard cranes, while Model2 does not. On the
other hand, Model2 uses a time discretization while Model1 does not. We will try to
identify problem characteristics that lead to differences for the different models.

Model2 leads to a delay of a certain number of time intervals. To compare Model1 with
Model2 we calculate the delay that would result from using the solution from Model2
within Model1. This is excluded in the computation times that are presented.

9.1.1 Testing settings and assumptions

The average performance of a yard crane is about 10 moves per hour. This will be our
initial input for the problems under consideration. The input consists of 10 jobs per
crane per hour. Half of the jobs are modeled as storage jobs and the other half of the
jobs are scheduled as retrieval jobs. The input for the retrieval jobs is generated via a

79

9.1. STATIC PROBLEMS

uniformly random distribution among all bays. The ready times of the jobs come from
a uniform integer distribution over the interval [0,Planningwindow]. Storage jobs are
planned in sequences at the same bay. The number of jobs in a sequence is determined
by again a uniform integer distribution. One to five jobs are scheduled in sequence with
their ready times the handling time apart. In this way, a yard crane can stay at one bay
and perform job after job without delay (unless the first one is delayed).

If for example a sequence consists of three jobs and the first is planned at time 200s and
bay 36, the next job is planned at time 200s+ 150s = 350s also at bay 36 (the handling
time is 150s). The third job is also planned at bay 36 with ready time r = 500s. For
the first set of problem instances, we use a block of 40 bays per crane. The blocks are
separated by 8 empty bays to enable transport of internal trucks or lane changing of the
yard cranes. The yard cranes are of course not limited to their block and can move to
other blocks when the workload there is high.

We test our three algorithms under different problem characteristics. To identify the
influence of the length of the planning window, we create problems for four different
planning windows. The longest planning period under consideration is one hour. Because
a planning window of one hour will lead to large problems with many jobs (about 10
times the number of yard cranes), we only construct problems for 3 yard cranes in the
lane. Planning for one hour (and fixing zones for one hour) is not preferable in practice.
It is merely meant to enhance differences in the results for the different algorithms.
For a planning period of half an hour, we create problems for 3 and for 6 yard cranes.
More yard cranes will lead in more difficult to solve problems and as a result in long
computation time. The problems with a planning window of 15 minutes or 5 minutes are
more applicable as a shorter planning period will lead to better performance on objective
value as well as runtime. For these planning periods we create problems for 3, 6 and 12
yard cranes. The influence of job density (number of jobs per crane per hour) and space
density (number of cranes per block consisting of 40 bays) will be investigated next. We
will do the same comparison for 20 bays per crane instead of 40 bays per crane. We will
also investigate the effect of increasing the job density from 10 jobs per crane per hour
to 15 jobs per crane per hour. For every problem characteristic, 100 different problem
instances are generated.

9.1.2 Normal workload

In this subsection we will discus the results under normal workload. In Table 9.1 and
Tabel 9.2 the average runtime and delay is shown for the case that jobs are distributed
over 40 bays per crane and with 10 jobs per crane per hour. The results are presented for
Model1 (directly solved using Gurobi), Benders (logic-based Benders decomposition for
Model1) and Model2. For Model2 the heuristic restriction that jobs cannot be scheduled
more than 6 time intervals (18 minutes) later than their ready time is implemented. This
restriction does almost never result in different solutions, but decreases the amount of
binary variables. In all tables with results presented in this section, T denotes the

80

9.1. STATIC PROBLEMS

planning window in minutes and m the number of cranes that are available in the
lane.

Characteristics # jobs Model1 Benders Model2

T=60 m=3 30 47.5068 [25] 12.6262 [5] 47.7402 [17]

T=30 m=3 15 0.3440 0.2073 2.3967

T=30 m=6 30 41.6978 [26] 2.0317 102.5571 [72]

T=15 m=3 8 0.0164 0.0398 0.1140

T=15 m=6 15 0.3619 0.2873 7.7128

T=15 m=12 30 11.2786 11.1816 118.4461 [96]

T=5 m=3 3 0.0031 0.0062 0.0087

T=5 m=6 5 0.0663 0.0755 0.0401

T=5 m=12 10 0.0961 0.2201 1.5704

Table 9.1: Computation times in seconds of Gurobi (10 jobs per crane per hour)

Characteristics # jobs Model1 Benders Model2

T=60 m=3 30 2850.9 2936.0 2993.6

T=30 m=3 15 822.9 822.9 1219.5

T=30 m=6 30 1659.4 1659.4 2882.1

T=15 m=3 8 285.8 285.8 529.0

T=15 m=6 15 542.4 542.4 1136.0

T=15 m=12 30 894.8 894.8 2858.8

T=5 m=3 3 27.0 27.0 39.0

T=5 m=6 5 52.4 52.4 314.1

T=5 m=12 10 131.3 131.3 1648.2

Table 9.2: Delay in seconds (10 jobs per crane per hour)

For some problem instances, one (or more) of the algorithms ran out of time (longer
than 120s). In this case we have set the runtime to 120s and used the best found feasible
solution as result for calculating the delay. This explains the difference in average delay
found for the Benders decomposition and direct solving of Model1. Within brackets
after the runtime we present the number of problem instances for which the algorithm
ran out of time (out of 100 problem instances).

As can be seen, solving Model2 using Gurobi takes more time than solving Model1 via
Benders decomposition or directly. Only in the case of a planning window of 5 minutes
and scheduling 6 cranes, Model2 was solved faster. The amount of delay resulting from
the found schedules was on average always in the favor of Model1. This suggest that
fixing zones for the planning window leads to less delay than discretization in time.
For some problem instances, for Model2 a solution with less delay was found. This
is only in a few cases and on average Model1 seems to perform better. From this we
can conclude that the performance of the different models is dependent on the specific

81

9.1. STATIC PROBLEMS

problem instance. If the planning window is large, Model2 finds delay closer to Model1.
This is as expected since the zone fixing for the entire planning window is an increasing
restriction for longer planning windows. The time discretization does not become worse
for longer planning windows.

As we compare solving Model1 via the Benders decomposition method and directly, these
experiments are not really conclusive. For the “easy” problems with very short runtime,
direct solving seems to perform better on average. If the runtime increases, the Benders
decomposition method seems favorable. This is in coherence with the idea that Benders
decomposition is developed for large problem instances. Benders decomposition seems
to work well when scheduling around 6 yard cranes. For these problem instances the
Benders decomposition is solved faster with respect to solving directly than for problems
with 3 or 12 yard cranes. It is not directly clear why the Benders decomposition works
better for 6 cranes than for 3 or 12 cranes. In Table 9.3 we give the computation time
split to different subroutines of the algorithm. We measure the mean computation times
per iteration and the number of iterations that the Benders decomposition needed. We
also present the amount of time spent in the master problem or in the subproblems
(including heuristic lower bound procedures). Mastertime denotes the time used by
Gurobi to solve the master problem. It is summed over all iterations needed, so the
total time used for solving the master problem for a specific problem instance. The
same holds for the quantity subtime (the computation time Gurobi uses to solve the
subproblems). Only the time used by Gurobi solving the model is included in those
times. The computation times for building the model in Matlab is excluded in these
values.

Characteristics iteration time iterations mastertime subtime

T=15 m=3 0.0115 3.51 0.0065 0.0058

T=15 m=6 0.0440 5.74 0.1362 0.0265

T=15 m=9 0.3211 7.57 1.8628 0.0522

T=15 m=12 1.3208 7.66 9.8028 0.0844

Table 9.3: Computation times (in seconds) per iteration (Benders)

From Table 9.3 it becomes clear that the increase in runtime comes from an increase in
time spent in the master problem. Apparently the master problem becomes more difficult
to solve for Gurobi if the number of cranes increases. The single crane subproblems are
still solved fast. It would not be surprising if the master problem computation times
increase exponentially since also its worst-case runtime increases exponentially. The
number of subproblems increases one to one with the number of cranes. The size of
the subproblems does not increase since the number of jobs per crane remains constant.
It is unknown why the computation times for the master problem are relatively short
for 6 to 9 cranes compared to solving directly. The increased computation time for
the very simple problems can come from building the models in Matlab or unnecessary
interchanging between master problem and subproblems. The increased computation

82

9.1. STATIC PROBLEMS

time for many yard cranes is not easy to explain. For T = 5 minutes we can construct
problems for even more cranes. As can be seen in Tabel 9.4 the ratio of computation
times between solving directly and using the Benders decomposition does not further
increase.

Characteristics Model1 Benders iterations

T=5 m=3 0.0031 0.0062 1.25

T=5 m=6 0.0663 0.0755 1.53

T=5 m=9 0.0322 0.0728 2.81

T=5 m=12 0.0961 0.2201 3.45

T=5 m=15 0.4031 0.7366 4.24

T=5 m=20 3.6870 4.2399 4.87

T=5 m=25 12.0393 19.8152 5.85

Table 9.4: Computation times (in seconds) for different number of cranes

The Benders decomposition results in shorter computation times when the time windows
increase. For short time windows, the Benders decomposition does not seem favorable
compared to solving directly. For long time intervals it is favorable based on these
computation times. When the planning window increases, the subproblems concerning
one single crane become harder to solve because the number of jobs per crane increases.
Benders decomposition seems to profit more from solving these subproblems individually
when the problem size increases. This is partly due to the lower bound procedures
(although Gurobi also uses lower bound procedures in solving MILP problems), but also
because the single crane problems are solved individually in a structured way. Branching
on the y-variables (crane to job assignment) seems more important for this increased
planning window.

9.1.3 High space density

The delay found by Model2 is dependent on the number of bays between two subsequent
jobs. If jobs are close together, Model2 can perform a job in every time interval. If jobs
are far apart (more than 8 bays), then Model2 needs a whole time interval to travel.
This might lead to a yard crane spending 6 minutes (2 time intervals) per job. This is
expected to lead to much delay because if the yard crane spends 3 minutes per job it
becomes more flexible and can perform more jobs during the planning period. We do
the same experiments for a planning window of 5 and 15 minutes but plan jobs over 20
bays per crane instead of 40 bays per crane. The results can be found in Table 9.5 and
Table 9.6.

Compared to the case were 40 bays were used per crane, the delay found by Model2 is
much closer to the delay found by Model1. The distance of 8 between to subsequent jobs
is less common. Therefore, Model2 is less likely to need 2 time intervals per job instead

83

9.1. STATIC PROBLEMS

Characteristics # jobs Model1 Benders Model2

T=15 m=3 8 0.0223 0.0328 0.1301

T=15 m=6 15 1.0340 0.2444 7.2816

T=15 m=12 30 52.0226 [31] 20.2505 [9] 120.00 [100]

T=5 m=3 3 0.0037 0.0084 0.0112

T=5 m=6 5 0.0094 0.0172 0.0622

T=5 m=12 10 0.1667 0.2434 2.9238

Table 9.5: Computation times in seconds for Gurobi (high space density)

Characteristics # jobs Model1 Benders Model2

T=15 m=3 8 443.4 443.4 507.5

T=15 m=6 15 914.1 914.1 973.3

T=15 m=12 30 2484.7 2523.7 2675.5

T=5 m=3 3 63.6 63.6 72.0

T=5 m=6 5 123.0 123.0 178.0

T=5 m=12 10 222.3 222.3 727.1

Table 9.6: Delay in seconds(high space density)

of one. If subsequent jobs are in the same bay (load jobs), then Model2 schedules as if
it needs 3 minutes per job instead of 2.5 minutes. In a few cases this leads to a decision
that results in more delay when performing the jobs according to Model1. Although
schedules are made within Model2, only the sequence of jobs per crane is used. The
actual schedule is based on the assumptions of Model1 to compare results. Otherwise
Model2 would have trouble with the 2.5 minutes separated load jobs. This enforces the
hypothesis that Model2 performs better when workload is close together. The overall
delay found on average is also smaller compared to the case where jobs are far apart.
So 1 crane working on 20 bays instead of 40 bays seems preferable for Model2. The
separation of 8 bays does not seem to limit the schedules too much. For Model1 the
opposite seems true. The delay is on average larger for the case that jobs are planned in
20 bays per crane. For Model1 the separation space seems to become a problem if jobs
are scheduled too close to each other. Although the average travel distance is decreased,
the amount of delay is increased due to the difficulty of dividing the lane into different
zones. A separation of 8 bays is needed during the whole planning period to separate
two zones. Also for a short planning window (5 minutes) the delay is increased. This
means that often two jobs are too close together to be handled by different cranes.

In contrast to the delay, the runtime does not show a clear difference. Problem instances
do not seem to become easier or more difficult to solve on average when changing the
number of bays per crane. For T = 5,m = 6 the problems were actually solved in
much less computation times than for the previous settings. On the other hand, for
T = 15,m = 12 solving via Benders decomposition took twice as long as before. Solving

84

9.1. STATIC PROBLEMS

Model1 directly took even 5 times as long on average. For the Benders decomposition, the
average number of iterations was only 3.45 (for T = 15,m = 12). This average number
of iterations (3.45) is also relatively small compared to the previous experiment (7.66).
When jobs are closer together, less separation points (8 free bays) are available. This
explains the decreased number of iterations because there are less possible solutions for
the master problem to try. However, the computation time used for solving the master
problem was relatively long. The low number of iterations explains why the Benders
decomposition works well in this case compared to direct solving. The long computation
times for the master problem suggest that the assignment of cranes to jobs is quite
difficult under these settings. This can also be seen from the increased amount of delay.
In the previous experiment (1 crane per 40 bays) the average delay was 894.8 seconds.
In this experiment the average delay is 2484.7 seconds (for solving directly). Also if we
leave out the problems were no optimal solution was found in time, this delay (2021.3
seconds) is still much larger than 894.8 seconds. This also suggest that it is difficult to
find a good crane to job assignment. There is a strong correlation between the optimal
value (amount of delay) and the computation time used by Gurobi. Since Gurobi uses
LP relaxations as lower bounds, this is probably due to the increased relative integrality
gap.

9.1.4 High workload

When the workload in a certain lane of the container yard is high, yard cranes can
perform more than 10 jobs per hour. In Table 9.7 and Table 9.8, the results are shown
when we schedule 15 jobs per crane per hour instead of 10 jobs per crane per hour. We
plan jobs in 40 bays per crane as in Table 9.1 and Table 9.2. For a planning window
of 15 minutes and scheduling 12 cranes both the Benders decomposition method and
Model2 were sometimes unable to return a feasible solution. Therefore we present NA
(not available) instead of the average delay found.

Characteristics # jobs Model1 Benders Model2

T=15 m=3 11 0.0911 0.0835 0.6732

T=15 m=6 23 44.1153 [21] 1.4562 112.7348 [85]

T=15 m=12 45 119.3479 [97] 112.4897 [80] 120.00 [100]

T=5 m=3 4 0.0047 0.0145 0.0175

T=5 m=6 8 0.0256 0.0611 0.3540

T=5 m=12 15 0.6835 0.9083 27.1740 [6]

Table 9.7: Computation times in seconds for Gurobi (high workload)

The average runtime significantly increases for both models. The number of jobs (input)
is increased by a factor 1.5 and the runtime is on average increased a lot more for the
difficult problems. For T = 15,m = 6 and T = 15,m = 12 the computation times were
almost 10 times as long as before for the Benders decomposition. For T = 5,m = 12

85

9.1. STATIC PROBLEMS

Characteristics # jobs Model1 Benders Model2

T=15 m=3 11 844.0 844.0 1100.3

T=15 m=6 23 1899.4 1899.4 2972.3

T=15 m=12 45 3746.9 NA NA

T=5 m=3 4 90.2 90.2 147.4

T=5 m=6 8 177.5 177.5 404.7

T=5 m=12 15 302.4 302.4 1283.4

Table 9.8: Delay in seconds (high workload)

the computation times were around 5 times as long. The main increase in runtime can
be seen for T = 15 for all algorithms. For T = 5, the increase in computation times was
less. When, as a result of the increased number of jobs per crane per hour, problems
become more challenging for the algorithms, we see a more clear distinction between
the different models. Model2 becomes too difficult to solve within 2 minutes for Gurobi
in almost every case when scheduling for 6 jobs and a planning window of 15 minutes.
If the planning window is limited to 5 minutes, both models are solved within the 2
minutes limit. There is however a clear distinction between Model1 and Model2. The
Benders decomposition works well for the planning period of 15 minutes. It is much
better capable of solving these large problems. For the case of a planning window of 5
minutes, direct solving seems faster than using Benders decomposition for Model1. In
both cases Gurobi finds solutions well within the time limit for 12 yard cranes.

Although solving with Gurobi directly runs out of time for 22 out of 100 problem in-
stances when planning 15 minutes ahead (6 yard cranes), it finds the same optimal value
as using Benders decomposition (which was never out of time) for all except 2 problem
instances. Apparently Gurobi had detected the optimal solution as being feasible but
was still busy confirming it was indeed optimal. When direct solving runs out of time
(for Model1 as well as Model2), in many cases it already had found the optimal solution.
In other cases it had at least found a feasible solution with an objective value close to the
optimal value. For the Benders decomposition this was not the case. When no optimal
solution was found within the time limit, often the objective value of the best feasible
solution was much worse than the optimal solution.

9.1.5 Conclusion of static case

The above experiments show that the delay coming from Model1 is on average much
smaller than the delay when using Model2. Although there are cases where the opposite
is true, this is far less common. On average via Model1 much less delay was found.
Besides the delay found, also the computation times were in favor of Model1. Between
solving Model1 directly and via the Benders decomposition, less difference was found.
Both models find the same optimal value when solved within the time limit. In some cases

86

9.2. ROLLING HORIZON PROBLEMS

the Benders decomposition was solved in less computation time than solving directly,
but in other cases it was the opposite. Benders decomposition seemed to produce better
results for 6 to 9 cranes and a relatively long planning period (15 minutes or more).

9.2 Rolling horizon problems

In the rolling horizon approach we solve for a longer period than that we actually adopt
for the definitive solution. We can remember the whole solution and use it as a starting
vector for the next iteration. This can be a starting point for an optimal solution,
however this need not be the case. When giving an initial solution to Gurobi, it will
first try to find an optimal solution close to this starting vector. In some cases this
speeds up calculations, while in other situations more computations are needed. This is
the case when Gurobi tries to prove that the solution is optimal but finds out it is not.
Using starting vectors as initial solution can be implemented both in the rolling horizon
algorithm and the time decomposition algorithm. For the rolling horizon algorithm
and the time decomposition algorithm, we have a lot of implementation options and
parameter possibilities. For implementation options, there are 4 possibilities for the
rolling horizon algorithm as well as the time decomposition algorithm.

1. Solve Model1 directly

2. Solve Model1 via Benders decomposition

3. Solve Model1 and remember solution as starting vector for next iteration

4. Solve Model2

In the first subsection we will focus on the first and last option for the rolling horizon and
just the first for the time decomposition algorithm. After that, we will investigate the
influence of using the Benders decomposition or an initial solution on the performance
of the algorithms.

9.2.1 Comparison rolling horizon and time decomposition

The most important parameters for the algorithms are the time we look ahead and the
time that we save per iteration. In case of the time decomposition, the time we look
ahead is a multiple of the time that we save. In Section 9.1 we investigated the influence
of different problem characteristics as the number of cranes, the average number of cranes
per block and the number of jobs per crane per hour. In this section we use 10 jobs per
crane per hour, but over a longer time window. We create problems of one hour, that
are solved in parts (via rolling horizon or time decomposition). Due to this increased
time, there is more fluctuation in the number of jobs available. Some time intervals will
be relatively quiet while other time intervals are busy. When jobs cannot be handled on
time, they will be pushed forward to the next time interval. This postponed work results

87

9.2. ROLLING HORIZON PROBLEMS

in a busy time interval for the lane. This increased amount of work can be reduced when
only a few new jobs arrive over time.

The time decomposition algorithm solves the current and the next time interval several
times. For this reason, solving a time interval once must be done very fast. In some
cases up to 40 iterations are needed so the computation time for solving one time interval
should be within a few seconds. If we want to increase the depth in the time decomposi-
tion algorithm to more than one, even shorter computation times are required. We will
create problems for 3 and 6 yard cranes to investigate the capabilities of the different
algorithms. In Table 9.9 we present the average results of 100 problem instances for 3
cranes. In the tables below, itermax is the maximum over the computation time per
iteration. So itermax is the longest iteration time for a problem instance.

Characteristics mean mean mean max
runtime delay itermax itermax

Model1-RH
Tahead=5, Tsave=5

0.1266 2285.5 0.0527 1.0515

Model1-RH
Tahead=10, Tsave=5

0.9319 2063.1 0.6119 14.0986

Model1-RH
Tahead=15, Tsave=5

2.6062 2116.2 2.7977 120 [1]

Model1-RH
Tahead=15, Tsave=10

1.3401 2195.2 2.4330 120 [1]

Model1-TD
Tahead=5, depth=0

0.1276 2290.8 0.0539 1.2491

Model1-TD
Tahead=5, depth=1

1.9952 2117.3 1.3920 120 [1]

Model1-TD
Tahead=5, depth=2

2.6944 2090.6 1.6278 120 [1]

Model1-TD
Tahead=10, depth=0

0.5277 2258.3 0.4279 14.1379

Model1-TD
Tahead=10, depth=1

8.3680 2180.6 7.5000 120 [1]

Model1-TD
Tahead=15, depth=0

2.8897 2439.9 2.8375 120 [1]

Model1-TD
Tahead=15, depth=1

15.6043 2310.6 13.6310 120 [3]

Model2-RH
Tahead=2, Tsave=2

0.8777 4183.0 0.5019 8.3828

Model2-RH
Tahead=4, Tsave=2

8.7414 3285.4 6.6659 120 [3]

Table 9.9: Results over 100 problem instances of 1 hour (3 cranes, 30 jobs)

88

9.2. ROLLING HORIZON PROBLEMS

Problem instance 83 resulted in many difficulties. Because jobs were planned to close to
each other, it was not possible to find a good partitioning of the jobs for the yard cranes.
In a certain time interval, there must be at least 8 bays between two jobs to assign them
to different zones (in the case of Model1). If these separation points do not exist for
a large set of bays, the problem becomes infeasible or too hard to solve. Infeasibility
occurs when 2 cranes are in a block without separation points in the next time interval.
To avoid this infeasibility, we increase all ready times for the coming time period. In
this case, one of the cranes has time to move away from the block and the other crane
can be assigned to the jobs. This will result in much delay, but infeasibility is avoided.
In the case of problem 83, it resulted still in very difficult to solve time intervals. As
a result, even looking only 5 minutes ahead already resulted in an out of time report.
It is possible that this specific problem instance was not representative and does not
occur in practice. To get a better comparison of the algorithms for the other instances
we present in Table 9.10 the results where problem instance 83 is left out. As to be
expected, Model2 is less disturbed by problem instance 83. Model2 does not fix zones
for an entire planning window and therefore can schedule jobs that are close together to
different cranes (just not in the same time interval).

The average runtime is merely meant as an indication to the computation times used by
the algorithm. It is the total computation time over all time intervals. It gives a good
indication on the computational complexity, but is not directly a good measure for the
applicability of the algorithm. One time interval should be solved within 2 minutes, not
necessarily the whole problem instance. Therefore it is more interesting to determine the
maximum computation time for one time interval (itermax). The maximum computation
time per time interval is calculated for every problem instance. In Table 9.9 and Table
9.10 the average maximum computation time over all problem instances is presented.
In the last column the maximum over the maximum computation times is presented.
Within the brackets, the number of problem instances where the algorithm ran out of
time at least once is presented.

For the rolling horizon algorithm, a longer look ahead window seems to result in better
performance. At the cost of increased computation times, less delay occurs when using a
larger time window. Increasing the save window results in less overall computation time,
but this is mainly due to fewer time intervals. The computation time per time interval
is not significantly influenced by the Tsave. For the time decomposition algorithm, it
becomes clear that increased depth leads to less delay. In a similar way as with the rolling
horizon, increasing the depth results in more computation time. So for m = 3 we can
see a clear trade-off between runtime and delay. For these relatively small problems, the
computations can be in general fast enough to solve two or three different time intervals
on time. Model2 clearly finds more delay than Model1. Also the computation time of
Model2 is much longer than for Model1. However, for some specific difficult problems
Model2 performs better than Model1.

We did the same experiment as for 6 yard cranes instead of 3. This significantly increases
the problem complexity. The computation times are much longer when scheduling 6 yard

89

9.2. ROLLING HORIZON PROBLEMS

Characteristics mean mean mean max
runtime delay itermax itermax

Model1-RH
Tahead=5, Tsave=5

0.1117 2207.9 0.0469 1.0515

Model1-RH
Tahead=10, Tsave=5

0.7365 1888.1 0.4757 13.4364

Model1-RH
Tahead=15, Tsave=5

2.7569 1949.4 1.6031 43.3896

Model1-RH
Tahead=15, Tsave=10

1.5482 2000.8 1.2432 30.5453

Model1-TD
Tahead=5, depth=0

0.1138 2244.4 0.0483 1.2491

Model1-TD
Tahead=5, depth=1

0.4545 2042.8 0.1910 2.1546

Model1-TD
Tahead=5, depth=2

1.1037 2015.9 0.4269 4.4716

Model1-TD
Tahead=10, depth=0

0.3632 2211.7 0.2895 7.3701

Model1-TD
Tahead=10, depth=1

3.3975 2106.4 2.6806 96.3125

Model1-TD
Tahead=15, depth=0

1.6962 2368.4 1.6453 85.8136

Model1-TD
Tahead=15, depth=1

12.0458 2237.7 10.1089 120 [2]

Model2-RH
Tahead=2, Tsave=2

0.8620 4164.2 0.4959 8.3828

Model2-RH
Tahead=4, Tsave=2

8.5467 3249.1 6.5742 120 [3]

Table 9.10: Results over 99 problem instances of 1 hour (3 cranes, 30 jobs)

cranes instead of 3 (increasing the problem size accordingly). In Table 9.11 the results
are presented. Again 10 jobs per crane are scheduled over a planning window of one
hour. Jobs are again distributed over 40 bays per crane.

The difference in performance for the 100 different problem instances was quite large.
Some problems where solved in short computation times (and leading to small delay)
while other problems resulted in many difficulties. It is difficult to determine whether
these difficult problem instances reflect situation as they occur in practice. In practice
schedulers can limit the number of jobs in the problem since yard cranes will not be
able to perform too many jobs. To identify the differences between the algorithms for
problems that can be solved well, we left out 10 problem instances that resulted in a
maximum iteration time significantly larger than the average maximum iteration time.

90

9.2. ROLLING HORIZON PROBLEMS

Characteristics mean mean mean max
runtime delay itermax itermax

Model1-RH
Tahead=5, Tsave=5

3.6898 4153.6 3.1687 120 [1]

Model1-RH
Tahead=10, Tsave=5

36.7235 3775.1 21.9166 120 [11]

Model1-RH
Tahead=15, Tsave=5

84.0676 3678.8 39.1404 120 [21]

Model1-RH
Tahead=15, Tsave=10

45.2682 3676.9 32.1426 120 [15]

Model1-TD
Tahead=5, depth=0

4.0952 4092.9 3.5226 120 [1]

Model1-TD
Tahead=5, depth=1

51.6208 3842.8 31.4875 120 [14]

Model1-TD
Tahead=5, depth=2

89.8027 3778.9 40.7716 120 [16]

Model1-TD
Tahead=10, depth=0

22.5980 4205.0 15.9049 120 [9]

Model1-TD
Tahead=10, depth=1

126.3224 4074.4 75.4305 120 [39]

Model1-TD
Tahead=15, depth=0

37.9899 4245.5 33.3229 120 [19]

Model1-TD
Tahead=15, depth=1

181.9953 3984.8 111.3206 120 [54]

ModelLI-RH
Tahead=6, Tsave=6

53.9542 11345.5 27.7851 120 [12]

ModelLI-RH
Tahead=12, Tsave=6

214.1108 7555.3 86.1372 120 [56]

Table 9.11: Results over 100 problem instances of 1 hour (6 cranes, 60 jobs)

The average of the other 90 problem instances is presented in Table 9.12.

As can be seen in Table 9.12, there is still a clear trade off between computation time
and delay for both the rolling horizon algorithm and the time decomposition algorithm.
Increasing the depth of the time decomposition algorithm results in less delay but much
longer computation times. Increasing the window of one planning period from 5 to 15
minutes result in much harder partial problems for the time decomposition algorithm.
Because in many cases no optimal solution was found in time this results in worse
solutions with respect to the delay. Based on these results, for the time decomposition
algorithm it is best to keep the length of the intervals small. For the rolling horizon this
is not the case. Looking further ahead results in less delay than looking only 5 minutes
ahead. Shifting of the workload over the bays is spotted more often if Tahead is larger.

91

9.2. ROLLING HORIZON PROBLEMS

Characteristics mean mean mean max
runtime delay itermax itermax

Model1-RH
Tahead=5, Tsave=5

0.6771 3869.4 0.4230 8.4524

Model1-RH
Tahead=10, Tsave=5

15.1228 3560.3 11.8518 120 [3]

Model1-RH
Tahead=15, Tsave=5

54.9853 3380.6 32.2385 120 [14]

Model1-RH
Tahead=15, Tsave=10

30.4159 3571.0 23.9869 120 [7]

Model1-TD
Tahead=5, depth=0

0.5901 3745.5 0.3419 2.9234

Model1-TD
Tahead=5, depth=1

26.6132 3518.4 19.7704 120 [7]

Model1-TD
Tahead=5, depth=2

55.6281 3422.8 28.5838 120 [8]

Model1-TD
Tahead=10, depth=0

8.4624 3913.0 7.5368 120 [2]

Model1-TD
Tahead=10, depth=1

98.3795 3641.9 63.2697 120 [31]

Model1-TD
Tahead=15, depth=0

26.8043 3902.5 25.0432 120 [12]

Model1-TD
Tahead=15, depth=1

157.2799 3667.7 99.7298 120 [44]

ModelLI-RH
Tahead=6, Tsave=6

36.8658 11082.1 20.8716 120 [5]

ModelLI-RH
Tahead=12, Tsave=6

196.3058 7261.7 82.4968 120 [46]

Table 9.12: Results over 90 problem instances of 1 hour (6 cranes, 60 jobs)

For these problem instances it is more valuable to look far ahead in spite of fixing the
zones for a longer period. Updating the zones after 5 minutes instead of 10 minutes
results in slightly less delay for these problem instances.

The time decomposition algorithm works worse when the number of cranes increases.
The time decomposition then needs many iterations instead of only a few. When there
are more cranes, there are more possibilities to alter the solution for the first time
period. There are many variations possible for the first time period that might result
in less delay in the second time period. This increase in iterations seems to grow fast
when increasing the number of cranes. For the problems corresponding with Table 9.9
(3 cranes) the decomposition algorithms needed around 6 iterations on average. For
the problems corresponding to Table 9.11 this was already 30 iterations. This time

92

9.2. ROLLING HORIZON PROBLEMS

decomposition method might therefore not be very applicable for terminals with long
lanes were many yard cranes work simultaneously.

9.2.2 Different implementations

In this section we compare three different algorithms that we can using for solving
Model1 in the rolling horizon framework. The partial problem within the rolling horizon
are solved with three different methods. Direct means we solve the partial problems
directly using Gurobi as in the previous subsection. The memory algorithms solves
the partial problems by using an initial solution from the previous partial problem if
available. The Benders decomposition algorithm solves the partial problems using the
Benders decompostion. We present again the average results over 100 problem instances
of 1 hour. In Table 9.13 we present the results for problems with 3 cranes (and 30 jobs in
one hour). In Table 9.13 the results for 6 cranes (60 jobs) are presented. Itermax is again
the longest iteration runtime of a problem instance. Itermax2 is the maximum over the
number of iterations Benders decomposition needed over the time intervals.

Algorithm Tahead=5 Tahead=10 Tahead=15 Tahead=15
Tsave=5 Tsave=5 Tsave=5 Tsave=15

Runtime direct 0.1352 1.2281 6.8493 2.9573

Runtime memory 0.1524 1.1105 6.9502 2.9332

Runtime Benders 0.4518 1.8197 3.1242 1.7465

Delay direct 2235.7 2004.6 2064.2 2128.1

Delay memory 2235.7 2004.6 2064.2 2128.1

Delay Benders 2238.3 2020.1 2025.5 2124.4

Mean itermax direct 0.0625 0.7162 2.9098 2.4242

Mean itermax memory 0.0708 0.6170 3.0424 2.4500

Mean itermax Benders 0.2586 0.9172 1.5179 1.2039

Max itermax direct 1.4098 19.3374 120.9532 96.8614

Max itermax memory 1.4786 14.3877 120.9557 109.0934

Max itermax Benders 18.2585 33.5971 40.9781 35.5787

Mean itermax2 Benders 4.9600 6.1400 7.6800 7.2700

Table 9.13: Results over 100 problem instances of 1 hour (3 cranes, 30 jobs)

The delay found by the different algorithms is very close together. This is as expected
since the algorithms should find the same optimal value for the same partial problem
within the rolling horizon. The small differences between the algorithms follow from two
different factors. First, for some problem instances one or more of the algorithms ran out
of time (120 seconds or 10 seconds for a subproblem in the Benders decomposition) for a
partial problem. The best found feasible solution is then returned which is not necessarily
the optimal solution. As in the static problems, Benders decomposition often did return

93

9.2. ROLLING HORIZON PROBLEMS

Algorithm Tahead=5 Tahead=10 Tahead=15 Tahead=15
Tsave=5 Tsave=5 Tsave=5 Tsave=15

Runtime direct 3.3348 38.5151 82.3440 47.0435

Runtime memory 3.5855 36.8953 84.8018 47.1374

Runtime Benders 1.5005 5.8288 15.1964 7.1031

Delay direct 4137.0 3877.2 3731.4 3929.7

Delay memory 4137.0 3877.2 3729.2 3929.9

Delay Benders 4068.6 3858.6 3754.6 3998.5

Mean itermax direct 2.8263 21.6719 37.9084 31.9577

Mean itermax memory 2.9475 20.3833 37.5642 33.0503

Mean itermax Benders 0.8970 3.3064 7.0230 4.8958

Max itermax direct 120.2786 120.6164 120.8052 120.4588

Max itermax memory 120.3028 120.8463 121.2336 120.4288

Max itermax Benders 20.1415 50.6021 81.5588 70.9712

Mean itermax2 Benders 8.6500 12.1700 15.1800 13.7700

Table 9.14: Results over 100 problem instances of 1 hour (6 cranes, 60 jobs)

worse solutions than direct solving when Gurobi ran out of time. The second factor that
leads to slightly different results is that in some partial problems the different algorithms
choose a different optimal solution. In many cases the optimal solution is not unique
and the different algorithms can choose a different solution. This influences the next
partial problem since the starting position of the cranes is different.

If we compare the different lengths of time periods, we see the same results as in the
previous section. For 3 cranes, it seems most advantageous to look 10 minutes ahead.
For 6 cranes it is more advantageous to look 15 minutes ahead (based on the delay for
the schedules). In both cases, it is more advantageous to update the schedule every 5
minutes above every 10 minutes.

In the computation times we see a clear difference between using Benders decomposition
and direct solving. The difference in computation time between using an initial solution
and not using an initial solution is not so clear. Remembering part of the previous
schedule does not seem to help much. For some problem instances it helped a little, but
for other problem instances the computation times were even a bit worse. The Benders
decomposition method was for 6 cranes more than 6 times faster than solving Model1
directly or with the aid of the memory algorithm (except for Tahead=5, Tsave=5). For
the problems with only 3 cranes, the difference was less clear. For the longer time
periods (Tahead=15) the Benders decomposition resulted in smaller computation times.
For the small time periods (Tahead=5,10) the Benders decomposition resulted in longer
computation times. This is in comparison with the static results. Also for the static
results, Benders decomposition seemed to work best for 6 cranes and planning windows
of at least 15 minutes. It enforces the idea that Benders decomposition works better for

94

9.3. STOCHASTIC RESULTS

problem instances with a larger input size.

If we look at the maximum computation time needed for one iteration of the rolling
horizon for a problem instance, the results are also in favor of the Benders decomposi-
tion. Especially for the problem instances with 6 cranes, itermax was much smaller for
the Benders decomposition than for the direct or memory algorithm. The number of
iterations needed by the Benders decomposition corresponded to the average computa-
tion times. More iterations resulted in longer computation times. This suggest that the
influence of solving a difficult subproblem (and thus the time needed for one iteration)
was small. This can be a consequence of the time limit of 10 seconds for solving a specific
subproblem.

9.3 Stochastic results

In this section we discus some experimental results for using the stochastic input. We
tested the performance of the algorithm based on expectations as well as the algorithm
based on simulation. A drawback of the simulation algorithm is that it requires more
computation time because it has to solve the second problem in an iteration several times.
Let N denote the number of simulations done in the algorithm. The simulation algorithm
has to solve N + 1 problems in each iteration of the time decomposition algorithm. The
expected value algorithm has to solve only 2 problems in each iteration (as is in the
deterministic case). To test the performance of both algorithms, we compare the delay
that is found by those algorithms with the delay that would be found if the exact ready
times were known. First the algorithms were implemented in a rolling horizon version
as in Section 9.2. The results of 50 problem instances of 1 hour, 3 cranes and λ = 100
seconds are presented in Table 9.15.

Exact Expectation Simulation
(N=5)

mean Runtime 0.7275 0.7254 48.2108

max Runtime 2.0683 2.2664 513.8702

min Runtime 0.3539 0.4290 5.1360

mean Delay 3380.5421 3384.3454 3452.9225

max Delay 4639.4645 4766.3088 4908.6092

min Delay 1969.3200 1969.3200 1969.3200

Table 9.15: Average results of 50 problem instances of 1 hour with 10 jobs. m = 3,
λ = 100s and Tahead= 360s

As in the previous section, results of a certain time period influences the next time
period. Therefore the situation occurred that the expectation algorithm or the simulation
algorithm found a better solution than the exact solution over a whole hour. Therefore

95

9.3. STOCHASTIC RESULTS

we study the effects of the stochastic algorithms also for static problems (without the
rolling horizon). We plan the arrival time at the gate for the coming 20 minutes. The
lateness of these jobs is modeled by an exponential distribution with mean λ = 180s.
In the static case we have less influence of the start position of the cranes and do not
have postponed workload from a previous time period. Therefore problems are rather
easy to solve and solutions might be trivial. This leads to very little to no difference
between the exact solution and the solutions of the stochastic algorithms. To increase the
difficulty of the problems and therefore the effects of the stochastic input, we schedule
10 jobs per crane per hour and over 20 bays per crane. This is equal to the high space
density of Section 9.1. Because we limit our problem instances to 3 cranes, the problem
instances can still be solved reasonable fast, even for 20 minutes. Because we want to
decompose the planning window of 20 minutes into two time periods, we assume the
input is deterministic for the first 13 minutes. So jobs that are ready within 13 minutes
are assumed deterministic and are solved in the first time period, while the others are
stochastic and are solved in the second time period. After determining the solution for
the first time period, the second time period is solved with the exact arrival times. The
results are presented in Table 9.16.

Exact Expectation Simulation
(N=1)

Simulation
(N=10)

Simulation
(N=50)

mean Runtime 0.0651 0.0618 0.0607 0.7752 3.5522

mean Delay 514.9835 528.2001 526.3749 521.8967 521.8967

Optimal 100 91 91 94 94

Table 9.16: Average results of 100 problem instances of 20 minutes with 10 jobs. m = 3,
λ = 180s and Tahead= 780s (10 jobs per crane per hour)

For these problem instances the simulation algorithm gave better results than the ex-
pectation algorithm. This is contrast to the problem instances that were solved using
the rolling horizon. This is probably due to the difference of a static problem instance or
the rolling horizon problem instances. For the rolling horizon instances it is important
that cranes do not all go to one side of the lane since that might result in bad solutions
later on. Using the expected arrival times of jobs gives a more equal distribution of jobs
over time, while simulation (and the real realization) might give a more capricious dis-
tribution of the jobs. Apparently, following the expected arrival times keeps the cranes
more equally distributed over the lane than following simulated arrival times. Doing the
same experiment on the same problem instances gave the same result (using different
simulated values). Also doing the same experiment on different problem instances but
with the same characteristics resulted in similar results (see Table 9.17).

The computation times clearly increase as N increases. This is to be expected because
in a certain iteration, The second problem has to be solved N times instead of once.
The mean delay found for these problem instances decreases for an increasing N . So
the increased number of simulations result in better solutions at the cost of an increase

96

9.3. STOCHASTIC RESULTS

Exact Expectation Simulation
(N=1)

Simulation
(N=10)

Simulation
(N=50)

mean Runtime 0.0962 0.0906 0.0930 0.7959 4.0587

mean Delay 534.9364 564.6926 556.3802 553.4258 541.0444

Optimal 100 88 92 95 96

Table 9.17: Average results of 100 problem instances of 20 minutes with 10 jobs. m = 3,
λ = 180s and Tahead= 780s (10 jobs per crane per hour)

in computation times. The different simulations can be done in parallel to reduce total
computation times if multiple processors are available.

We did another experiment were the job density is increased to 12 jobs per crane per
hour. We also adjusted the parameter of the exponential distribution of the job lateness
to λ = 300s. The results are presented in Table 9.18. The results are not very different to
the results of Table 9.16 and Table 9.17. The algorithm using expected values seems to
perform slightly worse compared to the algorithm using simulation. A larger parameter
λ for the exponential distribution results in a higher variation of the lateness of jobs.
Scheduling on the expected value seems less appropriate.

Exact Expectation Simulation
(N=1)

Simulation
(N=10)

Simulation
(N=50)

mean Runtime 0.1176 0.1515 0.1322 1.1455 5.5844

mean Delay 691.6793 732.6055 717.6559 713.1076 702.0474

Optimal 100 86 87 87 90

Table 9.18: Average results of 100 problem instances of 20 minutes with 12 jobs. m = 3,
λ = 300s and Tahead= 780s (12 jobs per crane per hour)

As we have seen in Section 9.2 the time decomposition did not work well when we
increased the number of cranes. We made 100 problem instances for 6 cranes, and tested
the algorithms also on these problem instances. As expected, the number of iterations
again drastically increased because of many more possible job to crane assignments in
the first time period. In Table 9.19 the results are shown. They are in comparison with
the results above, except for the increase of N for the simulation algorithm. In these
problem instances the simulation algorithm ran out of time many times. This shows
that using many simulations for solving the problem is a serious drawback. The extra
simulations resulted in less iterations for the time decomposition algorithm and therefore
worse solutions. This drawback can be reduced by increasing the computational capacity.

97

9.3. STOCHASTIC RESULTS

Exact Expectation Simulation
(N=1)

Simulation
(N=10)

Simulation
(N=50)

mean Runtime 7.3873 7.6036 6.6581 43.4587 96.2972

mean Delay 1.3081 1.3890 1.3423 1.3483 1.3634

Optimal 100 81 86 86 84

Table 9.19: Average results of 100 problem instances of 20 minutes with 24 jobs. m = 6,
λ = 300s and Tahead= 780s (12 jobs per crane per hour)

98

Chapter 10

Conclusion

The main goal of this research was to find a good MILP formulation for the yard crane
scheduling problem. By a good MILP formulation we mean that the resulting problem
is solvable within a few minutes and returns good schedules. We have tested different
models and algorithms and investigated their applicability using Gurobi for solving the
MILP problems.

Model1 performed best under our testing assumptions. In this model, non-overlapping
zones are assigned to the yard cranes. The completion time of jobs is modeled by
continuous variables. Model2 is based on the best found MILP formulation in literature.
A time discretization is used to model the completion times. In contrast to Model1,
no zones are assigned to the yard cranes. A yard crane is assigned to a job and non-
crossing is enforced per time interval (in contrast to Model1 where it is an entire planning
period). Model1 found schedules with less delay in shorter computation times. Fixing
zones for the yard cranes seems to result in better models than time discretization.
Because the yard crane scheduling problem is NP-hard, the input size should not be to
large. Planning for up to 15 minutes ahead with 6 cranes is in general solvable within 2
minutes. If different lanes are solved in parallel, this means that if lanes are limited to
6 cranes we can schedule 15 minutes ahead. If lanes can contain up to 12 cranes, it is
possible to schedule 5 minutes ahead. If more computational power would be available
(compared to the quad core 3.40 GHz, 8 GB RAM computer we used in our experiments)
slightly larger problems could be solved within 2 minutes.

Logic-based Benders decomposition was introduced as an attempt to further reduce the
computation times of Gurobi for solving Model1. Benders decomposition split the yard
crane scheduling problem in a master problem determining the zones for the yard cranes
and a subproblem for each zone where the exact trajectory of the yard crane via the
different jobs is calculated. Iterating between the master problem and the subproblems
results in more problems to solve, but with a smaller input size each. Since the input
size grows exponentially with the number of jobs, solving multiple smaller problems can
be advantageous to solving one larger problem. It was found that, depending on the

99

input size, solving via Benders decomposition can indeed reduce the computation times.
The reduction in computation time was most significant for a relatively long planning
window (30 minutes). For a short planning window (5 minutes), there was no reduction
in computation time.

Inspired by the Benders decomposition, also a time decomposition was presented. In-
stead of creating a schedule for the entire planning window, the planning window was
divided into multiple time periods. These time periods were solved separately, again
with the aim to reduce the input size. The end position of cranes in a time period
influences the next time period. The different time periods are solved iteratively such
that the delay over all time periods is minimized. Compared to solving directly, solving
multiple time periods separately has the advantage that zones can be redefined each
time period and are not fixed for the entire planning window. A drawback is that the
jobs cannot be interchanged in sequence between different time periods. It might be
advantageous to perform the first job of time period 2 before the last job of time period
1 is performed, depending on the job locations. This time decomposition worked well
when only a few cranes were available for a problem instance. When the number of
cranes increased, however, the time decomposition was found to perform poorly. This
is caused by the fact that there are too many opportunities to change the job to crane
assignment, resulting in many iterations. On the other hand, the time decomposition
generally leads to solutions with less delay because the zones are fixed for shorter time
intervals.

The exact arrival time of jobs in the container yard is very uncertain. Only on short
notice, the arrival times are well predictable. The time decomposition creates a nice
framework to include stochastic arrival times. The different time periods allow for dis-
tinction in deterministic or stochastic ready times. We can assume that in the first time
period (for example, 5 minutes) job arrival times are deterministic while the next time
interval job arrival times are uncertain. Here the assumption was made that job arrival
times follow an exponential distribution. We presented two different algorithms that
can be used to solve problems that are modeled in this manner. The first algorithm
uses expected arrival times for the uncertain job arrival times. The second algorithm
uses simulations to determine a good schedule under different realizations of the uncer-
tain job arrival times. For fixed time windows the simulation algorithm was found to
perform better than the algorithm based on expected arrival times. When the number
of simulations is increased, the schedules obtained by the algorithm are better. These
schedules result in less delay for the yard cranes. On the other hand, the computation
times increase with the number of simulations.

In general we can conclude that for planning windows longer than 15 minutes it is
advisable to use the Benders decomposition to solve the yard crane scheduling problem.
For shorter planning windows, direct solving with Gurobi seems more applicable. Time
decomposition shows good results and is advisable when the number of cranes is limited.
If the number of cranes is 6 or more, the time decomposition in its present form does
not lead to good schedules as a consequence of too many iterations.

100

Chapter 11

Discussion

11.1 Validation

For modeling the yard crane scheduling problem, it is necessary to make certain assump-
tions. However, it appears that these assumptions are not straightforward, since both
in literature as well as in practice these assumptions can differ a lot. For example, the
separation space between yard cranes and the time it takes for a yard crane to perform
a job are quite different. Also operational choices can be different. In some terminals
yard cranes need to load containers from a certain group, while for other terminals the
yard cranes are assigned to specific containers. This research was conducted at TBA
and their scheduler is used for specific crane to container assignment. The scheduler
should work for multiple terminals and therefore some parts need to be adjustable. The
assumptions that were made in the thesis are mostly done such that they are compatible
with their yard crane scheduler.

It is difficult to precisely comment on the integration of the research results in the ex-
isting software, as implementation can be done on various levels. The lowest level of
implementation would be to only use the obtained MILP formulations. For the TBA
yard crane scheduler, the MILP could be used to determine the zones assigned to the
yard cranes. Because of this, Model1 is most suited for this, since solutions for this MILP
result in the smallest delay and non-overlapping zones. At the moment, non-overlapping
zones are used in the scheduler. Because fixing zones can lead to worse schedules com-
pared to not fixing zones, zone fixing should be done for short time intervals. For this
reason as well as the computation times, it is advisable to use short planning windows
and update the solution often. As a consequence, this would reduce the applicability of
the Benders decomposition.

The testing and evaluation of the performance of the algorithms is done via problems
that were created randomly. Although those problem instances are created based on
advice of experts from TBA and parameters they provided, they are not real world

101

11.2. FUTURE RESEARCH

problem instances. They reflect real situations, but are usually deterministic while
in real terminals changes in planning occur more frequent. However, the algorithms
performed well on these test cases. Some specific problem instances led to problems,
but some extensions to the algorithm to deal with these unwelcome events might reduce
this problem. The main difference between the problem instances used for testing and
real world application is the uncertainty of job arrival times. When jobs arrive at an
unexpected moment or do not arrive at the expected arrival time, the schedules are less
useful. Last minute changes are not unusual in container terminals. Because of this, the
algorithms need further development to deal with this last minute uncertainty.

The main difficulties for the algorithms were if one crane has to perform much more jobs
than it can technically handle in a short time period or when jobs were scheduled such
that no good separation space was available for the yard cranes. These problems can be
worked around when an alternative heuristic is used for difficult problems. The separa-
tion constraint can be discarded when no good separation space is available. Nowadays
yard cranes (RTG cranes) are manned and they can avoid coming too close to each other
themselves. When RTG cranes become automated, this will not be possible. In that
case a heuristic should be developed to temporarily skip one job such that a separation
space becomes available. Another solution would be to create separation space by the
optimization problem that determines when containers are needed from or to the yard.
A bay can be changed for a storage job or a load job can be postponed or advanced to
create a separation space.

11.2 Future research

There are three main issues that require more research to improve the applicability of the
presented algorithms. First of all more research is needed to further involve uncertainty
in the current models. Not only uncertainty for the arrival of trucks at the gate, but
also uncertainty for the travel time of trucks within the yard. Currently this is the most
important missing element in research for the yard crane scheduling. Good schedules
are not applicable when jobs arrive late or early.

A second improvement would be some additional heuristics that can be used in specific
cases. In some problem instances too many jobs were planned to solve with the current
algorithms. In these cases a heuristic solution can be used or another alternative for
the algorithm is needed. Another possible improvement would be to define an MILP
formulation were no zone fixing and no time interval fixing is done. In this case optimal
solutions without the limitation to separate zones or discrete time intervals could be
found. The MILP formulation should still be solvable fast enough to be applicable.

Although not directly useful for the current yard crane scheduler from TBA, an inte-
grated approach for the storage plan and yard crane scheduling would be useful. From
our experiments it follows that the possibility to find good schedules for the RTG cranes

102

11.2. FUTURE RESEARCH

is very dependent on the position and ready times of the jobs that need to be performed.
A good distribution of these jobs ensures optimal schedules that are easy to find. In this
case, not the delay coming from the yard cranes arriving by the jobs has to be optimized.
The main goal for the yard of a container terminal is to ensure that the quay crane can
perform its jobs on time. Integrating a storage plan for the yard, the yard crane schedul-
ing and even the vehicle routing between yard cranes and quay cranes will make this
objective easier to pursue. Creating such an integrated model that can be solved in
limited time seems challenging. However (or maybe just because it is challenging), more
research to an integrated approach is encouraged.

103

11.2. FUTURE RESEARCH

104

Bibliography

Tolga Bektaş. Formulations and Benders decomposition algorithms for multidepot sales-
men problems with load balancing. European Journal of Operational Research, 216
(1):83–93, 2012.

Jacques F Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1):238–252, 1962.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA, 1997.

Christian Bierwirth and Frank Meisel. A survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational Research,
202(3):615–627, 2010.

Mernout Burger. Exact and compact formulation of the fixed-destination travelling
salesman problem by cycle imposement through node currents. In Operations Research
Proceedings 2013, pages 83–88. Springer, 2014.

Jin Xin Cao, Der-Horng Lee, Jiang Hang Chen, and Qixin Shi. The integrated yard
truck and yard crane scheduling problem: Benders’ decomposition-based methods.
Transportation Research Part E: Logistics and Transportation Review, 46(3):344–353,
2010.

Enrique Castillo, R Minguez, AJ Conejo, and R Garcia-Bertrand. Decomposition tech-
niques in mathematical programming. Springer, 2006.

Daofang Chang, Zuhua Jiang, Wei Yan, and Junliang He. Developing a dynamic rolling-
horizon decision strategy for yard crane scheduling. Advanced Engineering Informatics,
25(3):485–494, 2011.

Lu Chen, Nathalie Bostel, Pierre Dejax, Jianguo Cai, and Lifeng Xi. A tabu search
algorithm for the integrated scheduling problem of container handling systems in a
maritime terminal. European Journal of Operational Research, 181(1):40–58, 2007.

Raymond K Cheung, Chung-Lun Li, and Wuqin Lin. Interblock crane deployment in
container terminals. Transportation Science, 36(1):79–93, 2002.

105

BIBLIOGRAPHY

Yingyi Chu and Quanshi Xia. Generating Benders cuts for a general class of integer
programming problems. In Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, pages 127–141. Springer, 2004.

Gianni Codato and Matteo Fischetti. Combinatorial Benders’ cuts for mixed-integer
linear programming. Operations Research, 54(4):756–766, 2006.

Carlos F Daganzo. The crane scheduling problem. Transportation Research Part B:
Methodological, 23(3):159–175, 1989.

Xi Guo and Shell Ying Huang. Dynamic space and time partitioning for yard crane
workload management in container terminals. Transportation Science, 46(1):134–148,
2012.

Xi Guo, Shell Ying Huang, Wen Jing Hsu, and Malcolm Yoke Hean Low. Dynamic yard
crane dispatching in container terminals with predicted vehicle arrival information.
Advanced Engineering Informatics, 25(3):472–484, 2011.

Junliang He, Daofang Chang, Weijian Mi, and Wei Yan. A hybrid parallel genetic
algorithm for yard crane scheduling. Transportation Research Part E: Logistics and
Transportation Review, 46(1):136–155, 2010.

John N Hooker and Greger Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96(1):33–60, 2003.

Kap Hwan Kim and Hong Bae Kim. Segregating space allocation models for container in-
ventories in port container terminals. International Journal of Production Economics,
59(1):415–423, 1999.

Akio Imai, Etsuko Nishimura, and Stratos Papadimitriou. The dynamic berth allocation
problem for a container port. Transportation Research Part B: Methodological, 35(4):
401–417, 2001.

H Javanshir and SR Seyedalizadeh Ganji. Yard crane scheduling in port container
terminals using genetic algorithm. Journal of Industrial Engineering International,
6(11):39–50, 2010.

Sung Ho Jung and Kap Hwan Kim. Load scheduling for multiple quay cranes in port
container terminals. Journal of Intelligent Manufacturing, 17(4):479–492, 2006.

Kap Hwan Kim and Jong Wook Bae. A look-ahead dispatching method for automated
guided vehicles in automated port container terminals. Transportation Science, 38(2):
224–234, 2004.

Kap Hwan Kim and Ki Young Kim. An optimal routing algorithm for a transfer crane
in port container terminals. Transportation Science, 33(1):17–33, 1999.

Kap Hwan Kim and Young-Man Park. A crane scheduling method for port container
terminals. European Journal of Operational Research, 156(3):752–768, 2004.

106

BIBLIOGRAPHY

Ki Young Kim and Kap Hwan Kim. Heuristic algorithms for routing yard-side equipment
for minimizing loading times in container terminals. Naval Research Logistics (NRL),
50(5):498–514, 2003.

Der-Horng Lee, Zhi Cao, and Qiang Meng. Scheduling of two-transtainer systems for
loading outbound containers in port container terminals with simulated annealing
algorithm. International Journal of Production Economics, 107(1):115–124, 2007.

Der-Horng Lee, Hui Qiu Wang, and Lixin Miao. Quay crane scheduling with non-
interference constraints in port container terminals. Transportation Research Part E:
Logistics and Transportation Review, 44(1):124–135, 2008.

Der-Horng Lee, Jin Xin Cao, Qixin Shi, and Jiang Hang Chen. A heuristic algorithm
for yard truck scheduling and storage allocation problems. Transportation Research
Part E: Logistics and Transportation Review, 45(5):810–820, 2009.

Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

Wenkai Li, Yong Wu, Matthew EH Petering, Mark Goh, and Robert de Souza. Discrete
time model and algorithms for container yard crane scheduling. European Journal of
Operational Research, 198(1):165–172, 2009.

Andrew Lim. The berth planning problem. Operations Research Letters, 22(2):105–110,
1998.

Andrew Lim, Brian Rodrigues, and Zhou Xu. Approximation schemes for the crane
scheduling problem. In Algorithm theory-swat 2004, pages 323–335. Springer, 2004.

Andrew Lim, Brian Rodrigues, and Zhou Xu. A m-parallel crane scheduling problem
with a non-crossing constraint. Naval Research Logistics (NRL), 54(2):115–127, 2007.

Richard Linn, Ji-yin Liu, Yat-wah Wan, Chuqian Zhang, and Katta G Murty. Rubber
tired gantry crane deployment for container yard operation. Computers & Industrial
Engineering, 45(3):429–442, 2003.

Richard J Linn and Chu-Qian Zhang. A heuristic for dynamic yard crane deployment
in a container terminal. IIE Transactions, 35(2):161–174, 2003.

KL Mak and D Sun. Scheduling yard cranes in a container terminal using a new genetic
approach. Engineering Letters, 17(4):274, 2009.

Patrick JM Meersmans and Rommert Dekker. Operations research supports container
handling. Technical report, Econometric Institute Research Papers, 2001.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming formu-
lation of traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329,
1960.

107

BIBLIOGRAPHY

Katta G Murty, Jiyin Liu, Yat-wah Wan, and Richard Linn. A decision support system
for operations in a container terminal. Decision Support Systems, 39(3):309–332, 2005.

Ananthapadmanabhan Narasimhan and Udatta S Palekar. Analysis and algorithms for
the transtainer routing problem in container port operations. Transportation Science,
36(1):63–78, 2002.

WC Ng. Crane scheduling in container yards with inter-crane interference. European
Journal of Operational Research, 164(1):64–78, 2005.

WC Ng and KL Mak. Yard crane scheduling in port container terminals. Applied
Mathematical Modelling, 29(3):263–276, 2005.

Matthew EH Petering and Katta G Murty. Simulation analysis of algorithms for con-
tainer storage and yard crane scheduling at a container terminal. In Proceedings of
the Second International Intelligent Logistics Systems Conference, Brisbane, Australia,
pages 19–1, 2006.

Matthew EH Petering, Yong Wu, Wenkai Li, Mark Goh, and Robert de Souza. Devel-
opment and simulation analysis of real-time yard crane control systems for seaport
container transshipment terminals. OR Spectrum, 31(4):801–835, 2009.

Sartaj K Sahni. Algorithms for scheduling independent tasks. Journal of the ACM
(JACM), 23(1):116–127, 1976.

Riazi Sarmad, Oskar Wigström, Seatzu Carla, and Bengt Lennartson. Benders/gossip
methods for heterogeneous multi-vehicle routing problems. In Proc. 18th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation (ETFA
2013), Cagliari, September, 2013.

John E Savage. Models of computation. Exploring the Power of Computing, 1998.

Omor Sharif, Nathan Huynh, Mashrur Chowdhury, and Jose M Vidal. An agent-based
solution framework for inter-block yard crane scheduling problems. International Jour-
nal of Transportation Science and Technology, 1(2):109–130, 2012.

Steven E Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11.
Springer Science & Business Media, 2004.

Robert Stahlbock and Stefan Voß. Operations research at container terminals: a litera-
ture update. OR Spectrum, 30(1):1–52, 2008.

Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation and
operations research-a classification and literature review. OR Spectrum, 26(1):3–49,
2004.

Ilaria Vacca, Michel Bierlaire, and Matteo Salani. Optimization at container terminals:
status, trends and perspectives. In Proc. of Swiss Transport Research Conference.
Citeseer, 2007.

108

BIBLIOGRAPHY

Iris FA Vis and Rene De Koster. Transshipment of containers at a container terminal:
An overview. European Journal of Operational Research, 147(1):1–16, 2003.

Bin Wang and Tao Yang. Multi-objective and stochastic optimization model of transit
containers storage in a transshipment port yard. Applied Mechanics and Materials,
411:2680–2683, 2013.

Chuqian Zhang, Yat-wah Wan, Jiyin Liu, and Richard J Linn. Dynamic crane deploy-
ment in container storage yards. Transportation Research Part B: Methodological, 36
(6):537–555, 2002.

109

BIBLIOGRAPHY

110

Appendix A

Additional binary variables

We investigated the introduction of additional variables describing the direct preceeder
of a job. The x variables in Model1 describe which jobs preceed job i within its zone. But
they include all jobs that preceed job i, not only the direct preceeder. In some researches
it is advertised that binary variables describing direct preceders result in better models.
Below we introduce extra variables z that describe these direct preceders.

The new binary decision variables zij are defined as follows:

zij =

{
1 if job i precedes job j directly in a zone;
0 otherwise.

These variables are very dependent on the variables xij . To define them well, we also
need some variables for the first and last job in a zone. So we define:

zi0 =

{
1 if job i is the last job in a zone;
0 otherwise.

z0j =

{
1 if job j is the first job in a zone;
0 otherwise.

This means that in total we introduce n(n−1)+2n = n(n+1) new decision variables. We
also add n(n−1)+2n+2 new constraints which makes a total of (3+m)n2 +(1−m)n+2

111

constraints.

zij ≤ xij i, j = 1..n; i 6= j (A.1)
n∑
i=1

zij + z0j = 1 i = 1..n (A.2)

n∑
j=1

z0j ≤ m (A.3)

n∑
j=1

zij + zi0 = 1 i = 1..n (A.4)

n∑
i=1

zi0 ≤ m (A.5)

xij , yik, zij , z0j , zi0 ∈ {0, 1} i, j = 1..n; i 6= j; k = 1..m (A.6)

This addition of variables has a bad effect on the performance. The runtime of Gurobi
on this model is longer than the runtime of Gurobi on Model1. For one out of four
problem instances, it took even a factor 10 longer to find an optimal solution. However,
it might be useful in combination with other adjustments. It is possible to add additional
constraints to create better LP-relaxations with the aid of these new variables. We at
least see some difference in the LP solution. Instead of splitting jobs over two cranes, the
LP-solution assigns all jobs to the rightmost crane. The x-variables are no longer zero,
but consists of numbers around 0.9 beneath the diagonal and 0.1 above the diagonal.
Different values are possible. Constraint (A.2) forces zij > 0 for some entries. Constraint
(A.1) passes this forward to xij . Since xij < 1 in most cases and M is a very big number,
Constraints (A.5) still do not become active.

Example: Assume we have the very simple example with 1 crane and 2 jobs and r1 =
10, r2 = 30, h1 = 10, h2 = 10, b1 = 5 and b2 = 10. We therefore have dij = dji = |bi −
bj | = 5 and M = maxi=1..n (r) +n(maxi,j=1..n (d) + maxi=1..n (h)) = 30 + 2(5 + 10) = 60.
If we discard the binary constraints, z12 = 2

3 , z21 = 1
3 , z10 = 1

3 , z20 = 2
3 , z01 = 2

3 and
z02 = 1

3 is allowed by (A.2), (A.3), (A.4) and (A.5). Constraints (A.1) restricts x12 ≥ 2
3

and x21 ≥ 1
3 . If we fix x12 = 2

3 and x21 = 1
3 we get the following constraints for t:

t2− t1 ≥ d12 +h2− (1− 2
3)M = 5 + 10− 1

3 · 60 = −5 and t1− t2 ≥ d21 +h1− (1− 1
3)M =

5 + 10− 2
3 · 60 = −25. We are allowed to choose t1 = r1 +h1 = 20 and t2 = r2 +h2 = 40,

resulting in zero delay. Something similar happens for larger problem instances.

112

Appendix B

Benders decomposition methods

In this appendix we describe in more detail the Benders decomposition method and
apply it to Model1 and model3. At first we (again) introduce the classical Benders
decomposition method. We give two different classical Benders cuts. One based on the
dual objective and one based on the primal objective of the subproblems. We apply
these methods to Model1 and Model3. Thereafter we introduce a combinatorial Benders
cut and a relaxed CGPr-cut. We apply these on Model1 only.

B.1 Classical Benders decomposition

Benders decomposition exploits a block structure in the linear LP/MILP problem for-
mulation to decompose the problem into several smaller problems. Subproblems need to
be solved fast and lead to new constraints for the master problem. In a typical iteration,
first the master problem is solved. This fixes some values that are used as input for the
subproblems. The subproblems are solved using the values of the variables in the master
problem. These results are translated to a Benders cut (defined later) which should
restrict the MP for the next iteration (delayed row-generation). The objective function
might depend on the variables in the subproblem, the variables in the master problem
or both. Depending on this, different cut-generation methods are needed. Assume we
have the following general problem, where y is a vector of binary variables and x1, . . . , xk
vectors of continuous variables:

minimize cTy + fT1 x1 + fT2 x2 + · · · + fTk xk
subject to Ay = b

B1y + D1x1 = d1

B2y + D2x2 = d2
...

. . .
...

Bky + Dkxk = dk

113

B.1. CLASSICAL BENDERS DECOMPOSITION

y ∈ {0, 1} x1,x2, . . . ,xk ≥ 0

In this problem A,B1, . . . ,Bk,D1, . . . ,Dk are constraint matrices, c, f1, . . . , fk cost vec-
tors and b,d1, . . . ,dk right hand side vectors. We define vectors as column vectors and
use the notation cT for the transpose of a vector c. We use boldface lowercase letters
for vectors and bold uppercase letters for matrices. This problem can be decomposed
into a master problem and k different subproblems. The formulation of the subproblems
and the resulting Benders cuts differ slightly in the literature. This formulation follows
(among others) Bertsimas and Tsitsiklis (1997). The Benders cut is based on the dual
objective of the subproblems. The MP is given as:

minimize cTy + α1 + α2 + · · ·+ αk
subject to Ay = b

Benders cuts
y ∈ {0, 1}

We have for i = 1, . . . , k the following subproblems where ȳ is the current solution of
the master problem.

minimize fTi xi
subject to Dixi = di −Biȳ

xi ≥ 0

This subproblem is a linear problem, because the x-variables are continuous. This allows
us to construct the dual of the above formulated problem:

maximize uTi (di −Biȳ)
subject to uTi Di ≤ fTi

ui free

After solving the subproblems, we update the master problem with additional Benders
cuts. These take the following form:

αi ≥ pTi (di −Biy) (B.1)

where pi is the vector of dual values corresponding to an optimal solution of subproblem
i. Since pTi (di −Biy) corresponds to the objective of the dual solution, strong duality
guarantees that αi is chosen at least as large as the optimal value of the subproblem
when y = ȳ. If the subproblem is infeasible, we add the cut:

0 ≥ wT
i (di −Biy) (B.2)

where wi is an unbounded ray for the dual problem. We will not formally define an
unbounded ray because it would also need the notion of other linear algebra concepts.
A formal definition could for example be found in Bertsimas and Tsitsiklis (1997). In-
formally an unbounded ray is a direction in the solution space that will always lead to

114

B.1. CLASSICAL BENDERS DECOMPOSITION

more feasible solutions. Multiplying an unbounded ray with a constant will still lead
to another feasible solution, no matter how large this constant is. Proceeding via this
unbounded ray will lead to an improved objective function which makes the optimization
problem unbounded.

Note that the assumption that f ≥ 0 is sufficient for u = 0 to be a feasible solution of
the dual. Therefore the dual has either an optimal solution equal to the primal optimal
solution or the dual has an unbounded ray corresponding to an infeasible primal. If in the
master problem y is chosen such that wT

i (di−Biy) ≥ 0, then the dual of the subproblem
becomes unbounded. This means that the primal of the subproblem is infeasible and
therefore the complete problem is infeasible. This justifies the use of cut (B.2).

B.1.1 Primal objective Benders cuts

In Castillo et al. (2006) a different kind of subproblem formulation and a different kind
of cut is used. They take y as variable in the subproblem, but add a constraint that
fixes y = ȳ. Therefore y can be treated as a continuous variable instead of a binary
variable.

minimize fTi xi
subject to Dixi +Biy = di

y = ȳ
xi ≥ 0; y free

Because the y-variables are treated as continuous variables we can construct the dual
for this subproblem.

maximize uTi di + vTi ȳ
subject to uTi Di ≤ fTi

uTi Bi + vTi = 0
ui,vi free

The Benders cut used in Castillo et al. (2006) is different than the one introduced before.
They add the following cut to the master problem, based on the optimal dual variable
values v = λ corresponding to the constraints y = ȳ.

αi ≥ fTi x̄i + λ(y − ȳ) (B.3)

In this cut, λ are the optimal dual values corresponding to y = ȳ. By introducing this
cut to the master problem, it “learns” that choosing y = ȳ will lead to objective value
fTi x̄i for subproblem i. Non-zero dual values correspond to constraints that are active in
the subproblem. Adjusting the right hand side for these constraints in the subproblem
can lead to smaller optimal values. The dual values can tell us if changing some variables
y might lead to better overall solutions.

Instead of using an unbounded ray of the dual problem when the primal is infeasible,
in Castillo et al. (2006) artificial variables are introduced to the primal to create always

115

B.2. CLASSICAL BENDERS DECOMPOSITION FOR MODEL1

feasible subproblems. An artificial variable is added to every constraint. This variable
is zero when a constraint is satisfied, but is nonzero otherwise. It takes the value that
is needed to satisfy this specific constraint. Minimizing over the artificial variables will
lead to “as feasible as possible” solutions. The structure of the Benders cut remains the
same, although this adjustment influences the dual values. This leads to the following
subproblem formulation (where M is a large enough number):

minimize fTi xi +M · 1Tv +M · w
subject to Dixi +v − w = di −Biy

y = ȳ
xi ≥ 0

B.2 Classical Benders decomposition for Model1

In this section classical Benders decomposition is implemented for Model1. We choose
to use Model1 combined with the additional Constraint (5.9) as a basis, because it
further restricts the solution space of the master problem. Every iteration the algorithm
generates new cuts for the master problem. These constraints (5.9) can be seen as first
cuts to the MP. It is useful since in the MP the sub-tour elimination constraints (5.6)
are absent. This drastically increases the feasible region for our x variables. Below we
will give the formulations of the master problem and the subproblem.

B.2.1 Master problem

MP : minimize α (B.4)
m∑
k=1

yik = 1 i = 1..n (B.5)

m∑
l=1

yjl · l −
m∑
k=1

yik · k ≥ f(bi, bj) i, j = 1..n (B.6)

yik + yjk − 1 ≤ xij + xji i, j = 1..n; k = 1..m (B.7)

xij + xji ≤ yik − yjk + 1 i, j = 1..n; k = 1..m (B.8)

α−
n∑
i=1

t
(κ)
i −M2

n∑
i=1

n∑
j=1
j 6=i

v
(κ)
ij ≥

n∑
i=1

n∑
j=1
j 6=i

λ
(κ)
ij (xij − x(κ)

ij) κ = 1..ν − 1 (B.9)

α ≥ 0; xij , yik ∈ {0, 1} i, j = 1..n (B.10)

Constraints (B.9) give the added Benders cuts. Note that we use the “primal objective
Benders cuts” as described above. The left-hand side contains the artificial variable α

116

B.2. CLASSICAL BENDERS DECOMPOSITION FOR MODEL1

and the objective of the subproblem introduced next. The right-hand side contains the
dual values of the optimal solution of the subproblem. In every iteration κ, such a cut
is added to the master problem, so in iteration ν there are ν − 1 cuts available. The
Benders cut is generated at the end of an iteration. It uses the values of x found in the
master problem and the values of λ,v and t found in the subproblem. These values will
be specified after the subproblem formulations.

B.2.2 Subproblems

Subproblem formulation:

SP1: minimize
n∑
i=1

ti (B.11)

ti ≥ ri + hi i = 1, 2, . . . , n (B.12)

tj − ti ≥ dij + hj − (1− x(κ)
ij)M i, j = 1..n; i 6= j (B.13)

For some fixed values x
(κ)
ij , the subproblem might become infeasible. This is the case

when the master problem assigns subtours in x. To overcome this problem, artificial
variables are added to create a feasible subproblem.

SP2: minimize

n∑
i=1

ti +M2

n∑
i=1

n∑
j=1
j 6=i

vij (B.14)

ti ≥ ri + hi i = 1, 2, . . . , n (B.15)

tj − ti + vij ≥ dij + hj − (1− x(κ)
ij)M i, j = 1..n; i 6= j (B.16)

In this second subproblem, M2 is a large enough constant. Large enough means in this
case that M2

∑n
i=1

∑n
j=1
j 6=i

vij is at least larger than the optimal objective value. If SP1

is feasible in an iteration we do not solve SP2. Therefore we choose the values of v(κ)

zero. The values of λ are the dual variables corresponding to constraints (B.13) and
(B.16) multiplied by M . This multiplication with M is needed because the variables
xij are multiplied by M in constraints (B.13) and (B.16). Because of this, we do not
need to add continuous variables xij to the subproblem which shortens the runtime for
solving the subproblem. Note that we do not use the dual variables in the subproblems
corresponding with constraints (B.12) and (B.15).

B.2.3 Algorithm

Either subproblem1 or subproblem2 returns a n-dimensional vector t(ν) and a n(n− 1)-
dimensional vector λ(ν). This provides an upper bound UB for the complete problem,

117

B.2. CLASSICAL BENDERS DECOMPOSITION FOR MODEL1

since both the master problem and the subproblem are feasible. The master problem
provides us with a master problem feasible configuration of x and y. It returns a lower
bound LB for the optimal value of the complete problem. At first LB is zero, but
by adding constraints in each iteration it is pushed towards the optimal value of the
complete problem. Since the master problem is restricted in every iteration, LB is a
monotonically increasing function for the iteration counter.

Algorithm 10 Classical Benders decomposition Model1

while LB<UB do
solve MP
x̄ = x
ȳ = y
Gain LB
solve SP1 given x̄
if infeasible then

solve SP2 given x̄
end if
Gain λ
Gain UB
Add Benders cut

end while

In an iteration of the algorithm, the master problem is solved first. Solving the master
problem returns a lower bound for the optimal value of the complete problem and some
values of x and y are found. These values are used for solving subproblem 1. In case
subproblem 1 is infeasible, subproblem 2 is solved containing the artificial variables. If
subproblem 1 returns an optimal value, this can be used as an upper bound. The vari-
ables x̄ and ȳ are feasible for the master problem and t̄ is feasible for the subproblem.
So x̄,ȳ and t̄ are feasible for the complete problem. In the last step, the benders cut
is added to the master problem. This cut teaches the master problem that choosing
x = x̄ and y = ȳ will lead to an optimal value of α = UB. It also tells the master
problem which variables to change. If λij 6= 0, then changing the corresponding variable
xij might lead to a better solution for subproblem 1.

B.2.4 Experimental results

The runtime of this algorithm is very long. Therefore it is difficult to measure the per-
formance of this algorithm. The decomposition should work better for larger instances.
However, we can only solve problems with 10 jobs in reasonable time. Therefore it
is difficult to predict the growth rate as a function of the number of jobs (n) and
the number of cranes (m). In Table B.1 the runtime is presented for problems with

118

B.2. CLASSICAL BENDERS DECOMPOSITION FOR MODEL1

n = 5,m = 2, θ = 20m and T = 15 minutes. So we schedule 2.5 jobs per crane in a time
interval of 15 minutes. The arrival rate of jobs is thereby equal to the experiments in
Chapter 9. The number of bays considered is equal to 20m which corresponds to a busy
yard lane. In table B.1 Model1 refers to solving Model1 directly. Benders1a refers to
the algorithm presented above and Benders1b refers to the algorithm that follows when
a dual objective based Benders cut is used.

Number Delay Model1 Benders1a Benders1b

1 0 0.0020 0.0130 0.0090

2 9.0000 0.0020 0.0430 0.0490

3 0 0.0010 0.0030 0.0040

4 110.0000 0.0050 0.1080 0.1240

5 0 0.0010 0.0310 0.0290

6 9.0000 0.0040 0.0220 0.0260

7 15.0000 0.0030 0.0290 0.0260

8 2.0000 0.0030 0.0120 0.0160

9 17.0000 0.0010 0.0410 0.0440

10 90.0000 0.0070 0.2580 0.2570

11 28.0000 0.0030 0.0420 0.0610

12 25.0000 0.0040 0.0430 0.0380

13 7.0000 0.0020 0.0040 0.0040

14 37.0000 0.0030 0.0650 0.0520

15 6.0000 0.0020 0.0120 0.0140

16 35.0000 0.0020 0.0190 0.0100

17 0 0.0010 0.0250 0.0040

18 41.0000 0.0020 0.0740 0.0470

19 23.0000 0.0010 0.0210 0.0340

20 0 0.0020 0.0010 0.0020

avg 22.7000 0.0025 0.0433 0.0425

Table B.1: Classical Benders: n = 5,m = 2 and T = 15 minutes

The runtime of the algorithms is within a second for this extremely small problems. The
decomposition methods take more time than solving directly, but that is not surprising.
Decomposition methods are designed for large instances, not for small instances. There
seems to be little difference in runtime between the different Benders cuts. If we increase
the problem size to n = 10 and m = 2 we already have much longer runtime. Especially
the runtime of the Benders decomposition algorithms increases drastically. For this case
we runned only 10 problem instances because the runtime was much larger and the
results were very clear.

The long runtime of the decomposition algorithms is due to a huge number of itera-
tions (more than 1000 iterations for n = 10). The Benders cuts fail to exclude many

119

B.3. CLASSICAL BENDERS DECOMPOSITION FOR MODEL3

Number Delay Model1 Benders1a Benders1b

1 44 0.0070 40.3563 21.4902

2 109 0.0170 54.5481 26.2985

3 209 0.0220 26.9276 20.4672

4 6 0.0040 25.1044 7.9334

5 50 0.0080 7.5404 20.8182

6 38 0.0060 37.6891 21.5702

7 48 0.0080 24.9604 19.0841

8 96 0.0120 81.0167 39.8023

9 6 0.0040 22.6463 18.7541

10 55 0.0100 41.6173 35.2590

Avg 66.1 0.0098 36.2407 23.1477

Table B.2: Classical Benders: n = 10,m = 2 and T = 30 minutes

solutions for the master problem. Therefore many cuts are needed to find an optimal
solution. This required number of iterations seems to grow exponentially with respect
to the problem size. The difference in runtime between the different decomposition al-
gorithms seems to come from the amount of time it takes to solve the master problem.
The primal objective based Benders cuts are apparently more difficult than the dual
objective based Benders cut. For both algorithms the number of iterations needed is
similar, but the time per iteration grows for the primal objective based decomposition.
For the dual objective based Benders decomposition method the time it takes Gurobi
to solve the master problem grows less than for the primal objective based Benders
decomposition.

B.3 Classical Benders decomposition for Model3

Benders decomposition is proposed for the mTSP problem by Bektaş (2012). It might
therefore also gain significant runtime reduction for our Model3 since it shows a lot
of similarities. In Bektaş (2012) the best performance was found when the subtour
elimination constraints were in the subproblems, so we will do the same for this decom-
position.

B.3.1 Problem formulations

As is done in Bektaş (2012) we will add the constraints xij + xji ≤ 1 to the master
problem to eliminate subtours of size 2. This results in two new subproblems, one with
constraints (5.27), (5.28) and (5.29) and one with constraints (5.30) and (5.31). This
will give us the following problem definitions:

120

B.3. CLASSICAL BENDERS DECOMPOSITION FOR MODEL3

Master problem

minimize α (B.17)

m+n∑
j=1

xhj = 1 h = 1, . . . ,m+ n (B.18)

m+n∑
i=1

xih = 1 h = 1, . . . ,m+ n (B.19)

xij + xji ≤ 1 i, j = m+ 1, . . . ,m+ n (B.20)

Benders Cuts (B.21)

xij ∈ {0, 1} i, j = 1, . . . ,m+ n (B.22)

The Benders cuts are defined later, because they depend on the solution of the subprob-
lems.

Subproblem1

minimize 0 (B.23)

kd = d d = 1, . . . ,m (B.24)

ki − kj ≤ m− 1− (m− 1)x̄ij i, j = 1, . . . ,m+ n (B.25)

kj − ki ≥ f(bi, bj) i, j = m+ 1, . . . ,m+ n (B.26)

Subproblem2

minimize
∑
i∈C

ti (B.27)

ti ≥ ri + hi i, j = 1, . . . ,m+ n (B.28)

tj − ti ≥ dij + hj −M +Mx̄ij i = m+ 1, . . . ,m+ n (B.29)

For this second model the dual objective Benders cuts are used. This method is chosen
because we encounter many infeasible subproblems while solving via Benders decom-
position. The dual objective Benders cuts give us the opportunity to directly use an
unbounded ray for a Benders cut. In addition, it gives the opportunity to demonstrate
this dual objective method. Note that both subproblems are LP, so they can be efficiently
solved.

121

B.3. CLASSICAL BENDERS DECOMPOSITION FOR MODEL3

B.3.2 Algorithm

After solving the master problem we first check if this solution is feasible for subproblem
1. If this is not the case, a Benders cut can be constructed directly. When subproblem
1 is feasible, we check whether subproblem 2 is feasible. Depending on this outcome we
generate two different Benders cuts. Note that we cannot construct a good Benders cut
based on subproblem 1 when it is feasible. In the master problem as wel as subproblem
1 an objective is absent. An objective is needed to construct Benders cuts. We use
algorithm 11 to solve the problem (BC1, BC2 and BC3 will be specified later).

Algorithm 11 Classical Benders decomposition Model3

while LB<UB do
solve MP
x̄ = x
Update LB
solve SP1 given x̄
if infeasible then

Add BC1 to MP
else

solve SP2 given x̄
if infeasible then

Add BC2 to MP
else

Add BC3 to MP
Update UB

end if
end if

end while

This algorithm will break down when an optimal solution is found (LB = UB). When
both subproblems are feasible, we have a feasible solution to the complete problem and
therefore an upper bound can be calculated. BC3 will ensures that the LB increases
during the algorithm. The current solution remains feasible for the MP with optimal
value α = UB. Since α is minimized, the MP will never find an optimal x with α > UB.
When we add a Benders cut to the Master Problem, we reduce its feasible set. BC1
and BC2 ensure that at least the current solution is excluded, while BC3 either corre-
sponds to an optimal solution or it excludes other solutions. Since the feasible set for the
Master problem is finite in X, the algorithm will terminate in a finit number of iterations.

122

B.3. CLASSICAL BENDERS DECOMPOSITION FOR MODEL3

B.3.3 Benders cuts

We will give the definition of the Benders cuts. BC1 involves an unbounded ray w1

for the dual problem of subproblem1 since subproblem1 is infeasible. If subproblem2
is infeasible, we get an unbounded ray w2 for the dual problem. Existence of such an
unbounded ray follows for both problems from a non-negative objective vector and non-
negative variables. If subproblem2 is feasible, we get the optimal dual vector p2.

wT1 (d1 −B1x) ≤ 0 (BC1)

wT2 (d2 −B2x) ≤ 0 (BC2)

pT2 (d2 −B2x) ≤ α (BC3)

where

d1 = [1, 2, . . . ,m,m− 1,m− 1, . . . ,m− 1,
m− 1

2

(
sign(xi − xj + ε)− 1

)
, . . .]T

d2 = [r1 + h1, . . . , rn + hn, dij + hj −M, . . .]T

and

B1 =



0 · · · 0
...

. . .
...

0 · · · 0
m− 1 0 0

0
. . . 0

0 0 m− 1
0 · · · 0
...

. . .
...

0 · · · 0



, B2 =



0 · · · 0
...

. . .
...

0 · · · 0
−M 0 0

0
. . . 0

0 0 −M


.

B.3.4 Experimental results

The computation times for solving Model3 directly was quite long. As for Model1 the
classical Benders decomposition method did not speed up the calculations for small
problem instances. Since we want to solve instances within two minutes, algorithm 11
runs out of time for instances of size n ≥ 10. To illustrate the long runtime and the
growth of this runtime as function of n, we present some results for n = 5 in table B.3.
The average time it took for algorithm 11 to solve problems of size n = 5 was 1.44
seconds. For n = 10 it usually runs out of time.

This decomposition decomposes the problem in two different subproblems in contrast to
Model1. This can be an advantage, because two cuts can be introduced per iteration.
On the contrary, there is less information in the master problem. Besides the sub tour

123

B.3. CLASSICAL BENDERS DECOMPOSITION FOR MODEL3

Number Delay Model1 Model3 Model3 Benders

1 0 0.0020 0.0040 0.1030

2 0 0.0010 0.0050 0.1410

3 42 0.0030 0.0070 3.0732

4 7 0.0020 0.0060 1.9131

5 43 0.0020 0.0090 3.4312

6 12 0.0020 0.0050 0.7250

7 13 0.0040 0.0090 1.2061

8 17 0.0010 0.0050 0.3570

9 51 0.0040 0.0140 2.7192

10 40 0.0030 0.0100 0.7730

Avg 22.5 0.0024 0.0074 1.4442

Table B.3: Standard Benders for Model3: n = 5,m = 2 and T = 15 minutes

elimination constraints, also the non-crossing constraints are in a subproblem. Therefore
the master problem finds often solutions that lead to infeasible subproblems. This results
in many iterations. It is found that the first subproblem is infeasible in about half of
the instances. If the first subproblem is feasible, on average one third of the times
subproblem 2 is infeasible. This decomposition algorithm finds in about one third of the
iterations a feasible solution that provides an upper bound.

124

B.4. COMBINATORIAL BENDERS CUTS FOR MODEL1

B.4 Combinatorial Benders cuts for Model1

As suggested by Codato and Fischetti (2006) a combinatorial Benders cut (CB cut) might
work well for the “big-M” constraint. Model1 uses such a “big-M” constraint, so it seems
applicable for a combinatorial Benders decomposition. The same idea as for the classical
Benders decomposition holds, only the cut introduced to the master problem is different.
Instead of using the dual variables, it just forms a minimal combination of conflicting
constraints for infeasible subproblems. Since our objective is in the subproblem, the
master problem just has to search for feasible solutions. If in an iteration the subproblem
is infeasible, a procedure “MISsearch” is used to find a minimal infeasible subsystem of
the subproblem. This procedure finds constraints that are conflicting for the subproblem
such that as few constraints are used as possible. Since constraints of type (B.40)
correspond to x variables in the master problem, using as few constraints as possible
result in using few variables in the Benders cut. The advantage of less variables in the cut,
is that more solutions are cut out. The cut is stronger and therefore less iterations will be
needed. The variables x that are concerned with these constraints are used to construct
the cut. This CB cut simply prevents the master problem from choosing these values
for x. Let C = {i, j | The constraint of type (B.40) containing xij is in the MIS}

∑
i,j∈C:x̄ij=0

xij +
∑

i,j∈C;x̄ij=1

(1− xij) ≥ 1 (B.30)

This results in the following problem formulations:

Master problem:

minimize 0 (B.31)
m∑
k=1

yik = 1 i = 1..n (B.32)

m∑
l=1

yjl · l −
m∑
k=1

yik · k ≥ f(bi, bj) i, j = 1..n (B.33)

yik + yjk − 1 ≤ xij + xji i, j = 1..n; k = 1..m (B.34)

xij + xji ≤ yik − yjk + 1 i, j = 1..n; k = 1..m (B.35)∑
(i,j)∈Cκ
xij=0

xij +
∑

(i,j)∈Cκ
xij=1

(1− xij) ≥ 1 κ = 1, .., ν − 1 (B.36)

xij , yik ∈ {0, 1} i, j = 1..n (B.37)

125

B.4. COMBINATORIAL BENDERS CUTS FOR MODEL1

Subproblem:

minimize

n∑
i=1

ti (B.38)

ti ≥ ri + hi i = 1, 2, . . . , n (B.39)

tj − ti ≥ dij + hj − (1− x(ν)
ij)M i, j = 1..n; i 6= j (B.40)

n∑
i=1

ti ≤ UB − ε (B.41)

tj ≥ 0 i = 1..n (B.42)

B.4.1 MIS search

Since a CB cut is generated in every iteration, the feasible solution space of the master
problem decreases in every iteration. At least one combination of x values is excluded.
Note that it is usefull to find a small infeasible set of constraints because if the set has few
elements, a large number of possible combinations are excluded. To find a infeasible set
of constraints, we use the “MISsearch” procedure as suggested by Codato and Fischetti
(2006). In the subproblem, we set the objective function to zero. Next we construct the
dual.

Subproblem*

minimize 0 (B.43)

ti ≥ ri + hi i = 1, 2, . . . , n (B.44)

tj − ti ≥ dij + hj − (1− x
(ν)
ij)M i, j = 1..n; i 6= j (B.45)

n∑
i=1

ti ≤ UB − ε (B.46)

Dual*

maximize

n∑
i=1

µi(ri + hi) +

n∑
i,j=1

λij

(
dij + hj − (1− x

(ν)
ij)M

)
+ ρ(UB − ε) (B.47)

n∑
j=1

µj +

n∑
j=1,j 6=i

λij +
n∑

j=1,j 6=i
λji + ρ = 0 i = 1, 2, . . . , n (B.48)

µi ≥ 0 (B.49)

λij ≥ 0 (B.50)

ρ ≤ 0 (B.51)

126

B.4. COMBINATORIAL BENDERS CUTS FOR MODEL1

Since the subproblem is infeasible, the dual must be unbounded or also infeasible. Since
µ = 0, λ = 0 and ρ = 0 is a feasible solution to the dual problem, this means that the
dual is unbounded. If the dual is unbounded, this must mean that there is an unbounded
ray and that the dual objective can take any value by multiplying this unbounded ray
by a constant. In particular, there exists an feasible solution with objective equal to 1.
It is therefore guarantied that the following “extended dual” is feasible.

Dual

maximize 0 (B.52)
n∑
i=1

µi(ri + hi) +

n∑
i,j=1

λij
(
dij + hj − (1− x

(ν)
ij)M

)
+ ρ(UB − ε) = 1 (B.53)

n∑
j=1

µj +

n∑
j=1,j 6=i

λij +

n∑
j=1,j 6=i

λji + ρ = 0 i = 1, 2, . . . , n (B.54)

µi ≥ 0 (B.55)

λij ≥ 0 (B.56)

ρ ≤ 0 (B.57)

Now we can introduce an objective function for the dual problem to find dual variables
with the desired characteristics. We are interested in finding a minimal set of positive
dual values for the linking constraints. So we minimize over λ and introduce the objective
function: min

∑n
i,j=1,i 6=j λij . Note that MIS search is a heuristic procedure and is not

guaranteed to find a MIS, but always finds an infeasible subset. If this infeasible subset
of constraints contains a constraint of type (B.40), the master problem is restricted. If
no constraint of type (B.40) is in the infeasible subset, an optimal solution has been
found. It means that only the constraints of type (B.39) fail to find a solution better
than the current upper bound. Therefore, a solution with zero delay can be found which
is always optimal. Because MIS search finds an optimal solution or introduces a cut
restricting the master problem, the algorithm converges to an optimal solution.

B.4.2 Algorithm

We use Algorithm 12 to solve Model1 using combinatorial Benders decomposition. This
Algorithm breaks down when the master problem becomes infeasible. This means that
there are no values of x, y left that might lead to better solution. The best solution
found thus far is the optimal solution. Since the solution space of the master problem
is reduced in every iteration and the solution space of the master problem is finite, the
algorithm is guarantied to terminate. The CB cuts only cuts out solutions with a worse
or equal objective value than the current best. Therefore optimality is guarantied.

127

B.4. COMBINATORIAL BENDERS CUTS FOR MODEL1

Algorithm 12 Combinatorial Benders decomposition Model1

UB=∞
while do

solve MP
if infeasible then

break
end if
x̄ = x
ȳ = y
solve SP given x̄
if feasible then

update UB and solve SP again
end if
Solve dual
uptain λ
Create new CB cut for the MP
Add CB cut to the MP

end while

B.4.3 Experimental results

Number Delay Model1 Combinatorial Benders

1 93 0.0160 91.2492

2 94 0.0170 11.3216

3 60 0.0110 6.6544

4 90 0.0170 1.1671

5 145 0.0190 13.6938

6 91 0.0170 10.5246

7 62 0.0080 2.1621

8 31 0.0050 6.0644

9 29 0.0060 4.3302

10 38 0.0070 2.9272

avg 73.3 0.0123 15.0095

Table B.4: Combinatorial Benders: n = 10,m = 2 and T = 30 minutes

The runtime of this decomposition method is better than for the classical Benders de-
composition. Compared to the classical decomposition method this method finds the
optimal solution faster due to less iterations. However, the runtime is much longer than
direct solving. The number of iterations is still too high to gain better performance.
The master problem is solved faster than directly solving the complete problem, but the
number of iterations needed increases with the problem size. In Table B.4 we show the

128

B.5. DOUBLE BENDERS DECOMPOSITION

results of problems with size n = 10, similar to the experiments described in subsection
B.2. If the problem size increases, the time to solve the master problem becomes small
compared to solving directly. For n = 20, initially the master problem is solved a factor
7 faster than solving the complete problem. This factor is likely to increase for larger
instances. However, the number of iterations needed increases. The reduced runtime
for the master problem seems not significant compared to the growth in the number of
iterations.

The master problem is not directed to prefer xij = 0 above xij = 1. If both are feasible
it can very well choose xij = 1. This will never lead to a better solution, so must
be discouraged. This can be done by adding an objective to the master problem that
minimizes the sum of all xij . However, this resulted in much longer runtime for the
master problem since it has to optimize above finding just a feasible solution. Often the
master problem takes longer to solve once than solving the complete problem directly.
Runtime might also be reduced by introducing multiple cuts in each iteration. This
is suggested in Codato and Fischetti (2006) but research must be done to decide how
many cuts should be introduced. A smart way needs to be developed to choose cuts that
exclude different “bad” solutions for the master problem without increasing the runtime
for the master problem by too much.

B.5 Double Benders decomposition

In the previous examples, we tried to split the problem between binary and continuous
variables. It is also possible to split the problem between the y and the x variables. This
creates an easier master problem, but more difficult subproblems. In Chu and Xia (2004)
the authors introduce an integer Benders cut. This cut can be used to decompose in
two integer problems. Because we cannot have continuous variables in our subproblem,
we need to decompose twice. The integer Benders cuts (CGPr-cuts) are explained later.
The problem in y becomes the master problem (MP) and becomes an assignment prob-
lem. The problem in x is the intermediate problem (IP) and the problem in t becomes
the subproblem (SP). We start with finding a feasible instance for the y variables. Then,
the intermediate problem in x is solved to optimality (given y). To solve for x we solve
the continuous problem for t given specific values of x. Repeatedly solving for t gives
us an optimal x given y. This results in a new cut for the master problem. While the
master problem remains feasible (new feasible instances of y can be found) this proce-
dure is repeated. Once the master problem becomes infeasible we can stop and the last
solution found is the optimal one.
While solving an intermediate problem in x, we add CB-cuts to our intermediate prob-
lem. These cuts are independent of y and therefore valid for all instances of y. The
advantage of this, is that we can keep the CB-cuts in our intermediate problem for all
iterations to come. When we arrive in the intermediate problem again, some cuts are
already available which might speed up the process. Violating these cuts has already

129

B.5. DOUBLE BENDERS DECOMPOSITION

proven to generate worse or infeasible solutions. Experimental results show that indeed
the number of iterations in the x, t loop decreases for subsequent y, x iterations.

Master problem (MP)

minimize 0 (B.58)
m∑
k=1

yik = 1 i = 1..n (B.59)

m∑
l=1

yjl · l −
m∑
k=1

yik · k ≥ f(bi, bj) i, j = 1..n (B.60)

CGPR− cuts (B.61)

xij , yik ∈ {0, 1} i, j = 1..n (B.62)

Intermediate problem (IP)

minimize 0 (B.63)

xij + xji ≥ ȳik + ȳjk − 1 i, j = 1..n; k = 1..m (B.64)

xij + xji ≤ ȳik − ȳjk + 1 i, j = 1..n; k = 1..m (B.65)∑
(i,j)∈Cκ
xij=0

xij +
∑

(i,j)∈Cκ
xij=1

(1− xij) ≥ 1 κ = 1, .., ν − 1 (B.66)

xij , yik ∈ {0, 1} i, j = 1..n (B.67)

Subproblem (SP)

minimize
n∑
i=1

ti (B.68)

ti ≥ ri + hi i = 1, 2, . . . , n (B.69)

tj − ti ≥ dij + hj − (1− x(ν)
ij)M i, j = 1..n; i 6= j (B.70)

n∑
i=1

ti ≤ UB − ε (B.71)

tj ≥ 0 i = 1..n (B.72)

B.5.1 Algorithm

Algorithm 13 is used to solve Model1 using this double Benders decomposition. It
follows the structure that is visualized in Figure B.1. The CB cuts are similar to the
cuts presented in the previous subsection. The CGP-cuts are based on Chu and Xia
(2004) which are presented next.

130

B.5. DOUBLE BENDERS DECOMPOSITION

Figure B.1: Double Benders

B.5.2 CGP-cuts

When the intermediate problem given y is solved to optimality, we need to introduce a
cut for the master problem. This is done via a CGPR-cut, introduced in Chu and Xia
(2004). This cut generations method is quit technical and involves solving an MILP. A
detailed description of the procedure can be found in Chu and Xia (2004), so only the
general idea is sketched here. Let us rewrite our intermediate problem to a generic vector
formulation where A,B and b are chosen such that they correspond to our intermediate
problem in a certain iteration (some constraints have to be multiplied by −1 to obtain
≤ in the formulation). Note that this formulation includes the generated combinatorial
Benders cuts by the subproblem. Furthermore, we introduce the notation IP(ȳ) to show
the dependence of our intermediate problem on ȳ.

IP’(ȳ)
minimize 0
subject to Bx ≤ b−Aȳ

x ∈ {0, 1}n(n−1)

131

B.5. DOUBLE BENDERS DECOMPOSITION

Algorithm 13 Double Benders decomposition

while MP feasible do
Solve MP
Update IP with y
while IP feasible do

Solve IP
Update SP
Solve SP
if feasible then

update UB and solve SP again
end if
Solve dual
Obtain λ
Create new CB cut for the IP
Add CB cut to the IP

end while
Create CGPr-cut for MP
Add CGPr-cut for MP

end while

Note that this problem is infeasible due to the added combinatorial Benders cuts. We
therefore introduce artificial variables to make it feasible. We minimize over these ar-
tificial variables and therefore these artificial variables will represent “the amount of
violation” for each constraint. This gives us the following always feasible intermediate
problem.

IP(ȳ)
minimize 1T r
subject to Bx− r ≤ b−Aȳ

x ∈ {0, 1}n(n−1), r ≥ 0

Because IP(ȳ) is an integer program we cannot directly construct a dual problem. We
therefore look at a fixed version of IP(ȳ). We fix the values of x to x̄ and gain 2n(n−1)

(there are n(n− 1) x variables) different fixed subproblems:

IP(ȳ,x̄)
minimize 0
subject to Bx̄ ≤ b−Aȳ

x = x̄

x : free, r ≥ 0

132

B.5. DOUBLE BENDERS DECOMPOSITION

For these fixed subproblems, we can construct a dual problem:

DIP(ȳ,x̄)

maximize (Aȳ − b)T u + x̄Tv
subject to −BTu + v = 0

u ≤ 1
u ≥ 0 v : free

Next, a set of constraints is given for an optimal solution to a problem IP(ȳ,x̄). For
an optimal solution (ȳ∗, x̄∗) the primal, dual and complementary slackness constraints
must be satisfied:

Bx̄ ≤ b−Aȳ (B.73)

x = x̄ (B.74)

−BTu + v = 0 (B.75)

u ≤ 1 (B.76)

ui (−Bx−Aȳ + b)i = 0 ∀i (B.77)

ri (u− 1)i = 0 ∀i (B.78)

Let ū and v̄ be the optimal solution for u and v corresponding to x̄. In Chu and Xia
(2004) it is shown in Theorem 1 that x̄T v̄ ≤ xT v̄ for all feasible x is a sufficient condition
for (Aȳ − b)T ū + x̄T v̄ ≤ 0 to be a valid integer Benders cut. This sufficient condition
is shown to be equivalent with:

x̄iv̄i ≤ 0 ∀i (B.79)

(1− x̄)i v̄i ≥ 0 ∀i (B.80)

The adventage of this formulation is absense of x in these constraints. We can define
a new problem CGP(ȳ) to find a valid integer Benders cut, where we combine the
above constraints. The set of constraints are simplified using x = x̄ and v̄ = BT ū.
Furthermore, constraint (B.78) is shown to be redundant in the article.

CGP(ȳ) (B.81)

minimize 0 (B.82)

Bx̄ ≤ b−Aȳ (B.83)

ui (−Bx)i = ui (Aȳ + b)i ∀i (B.84)

x̄i
(
BTu

)
i
≤ 0 ∀i (B.85)

(1− x̄)i
(
BTu

)
i
≥ 0 ∀i (B.86)

x̄ ∈ {0, 1}n(n−1), 0 ≤ u ≤ 1 (B.87)

133

B.5. DOUBLE BENDERS DECOMPOSITION

Note that x̄ is a variable in this problem. The aim of this problem is to find a x̄ that
generates a valid integer Benders cut.This formulation of CGP is not a linear program,
but this can be fixed by introducing more continuous variables. Define wij = x̄iuj by
the following constraints:

wij ≤ x̄i ∀i, j (B.88)

wij ≤ uj ∀i, j (B.89)

wij ≥ x̄i + uj ∀i, j (B.90)

B.5.3 Relaxed CGPr-cut

The above problem is not always feasible due to constraints (B.79) and (B.80). A possible
cut (Aȳ − b)T ū + x̄T v̄ ≤ 0 can be relaxed by inverting some values of x̄ that violate
the sign constraints (B.79) and (B.80). Define

x̄′i =

{
x̄i if (B.79) and (B.80) are satisfied for the ith element,
1− x̄i otherwise.

In this case (Aȳ − b)T ū + (x̄′)T v̄ ≤ 0 is an integer Benders cut that does satisfy
the sign constraints. By this alternative cut a relaxation gap exists and is defined
by
∑n

i=1(x̄ − x̄′)iv̄i. We want this gap to be as small as possible and therefore we use
the CGP problem to find a cut which is minimally relaxed. We therefore introduce
the problem CGPr which is a relaxed version of CGP and finds the cut for which the
relaxation gap is minimal. Introducing also the constraint to make CGP a linear problem,
we get the following definition for CGPr which we will use to find CGPr cuts for the
MP:

CGPr(ȳ) (B.91)

minimize 1Tp + 1Tq (B.92)

Bx̄ ≤ b−Aȳ (B.93)

−
∑
j

Bijwji = ui (Aȳ + b)i ∀i (B.94)

∑
j

Bjiwij − pi ≤ 0 ∀i (B.95)

(
BTu

)
i
−
∑
j

Bjiwij + qi ≥ 0 ∀i (B.96)

wij ≤ x̄i ∀i, j (B.97)

wij ≤ uj ∀i, j (B.98)

wij ≥ x̄i + uj ∀i, j (B.99)

x̄ ∈ {0, 1}(n(n−1), 0 ≤ u ≤ 1, p ≥ 0, q ≥ 0 (B.100)

134

B.5. DOUBLE BENDERS DECOMPOSITION

When this problem is solved, we have found a minimally relaxed integer Benders cut for
the Master problem. The solution x̄ can be used to define x̄′ using v̄ = BT ū. This will
result in the CGPr-cut:

(Aȳ − b)T ū + (x̄′)T v̄ ≤ 0 (B.101)

If the relaxation of this cut equals zero, we have a valid Benders cut that will cut out
the current feasible solution ȳ. If this is not the case, (B.101) might or might not cut
out the current feasible solution ȳ. If it does not cut out ȳ additionally a no-good cut
(B.102) is added to the master problem to guaranty convergence.

m∑
k=1

n∑
i=1

ȳik(1− yik) +
m∑
k=1

n∑
i=1

yik(1− ȳik) ≥ 1 (B.102)

B.5.4 Experimental results

It was not possible to test this double Benders decomposition on large problem instances.
This is mainly due to the CGPr sub-routine. This sub-routine takes a lot of time and
memory to find good cuts. For problem sizes of n = 10, CGPr already runs out of
memory. It is therefore not useful for our problem. This cut generation makes it possible
to decompose the problem twice, but has only theoretical value to this problem. It might
be preferable to not split the problem between x and t. However, the cuts as presented
above do not take an objective for the intermediate problem into account. Therefore we
cannot directly use the CGPr cuts for a decomposition with x and t in the subproblem.
It would be better to decompose the Master problem into different subproblems. This is
visualized in figure B.2. In chapter 6 the logic-based Benders decomposition method is
explained which worked well for our problem. These cuts can be defined by subproblems
containing both x and t. Therefore we do not need the double Benders decomposition.
The decomposition between the x variables and the continuous t variables has showed
to result in longer runtime.

135

B.5. DOUBLE BENDERS DECOMPOSITION

Figure B.2: Double Benders split problems

136

Appendix C

Lower bound procedures for Benders
decomposition

In Chapter 6 we presented different sublb procedures (lower bound procedures for the
single crane subproblem) that could be used as a lower bound for a single crane sub-
problem. Sometimes unrealistic subproblems are constructed by the master problem that
not only will lead to very bad solution, but also very long computation times for the
subproblems. These sublb procedures are fast procedures that find a lower bound fast
that can be used instead of solving the subproblem. We presented three different sublb
procedures that we used in the decomposition algorithm. In this chapter we present the
results of testing these procedures. It is important that those sublb procedures find a
strong lower bound (a lower bound close to the actual optimal solution) and have short
computation time. We also present a fourth sublb procedure as is introduced in Ng and
Mak (2005). In the first section this sublb procedure is introduced. In the next section
we compare the four different sublb procedures on performance.

C.1 Lower bound procedure of Ng and Mak

For their single crane yard crane scheduling problem as presented in Ng and Mak (2005)
they provide a lower bound procedure.

C.2 Performance

To measure the performance of the sublb procedures, we create 100 problems where
a single yard crane has to perform 25 jobs in a range of 40 bays. We use the same
construction op problems as in Chapter 9. The results are presented in Table C.1.
Finding an optimal solution within 120 seconds was not possible for 6 problem instances.

137

C.2. PERFORMANCE

In those cases we presented the best found solution by the algorithm solving the single
crane problem.

Characteristics Runtime (s) Objective (s) #out of time

Exact 13.0826 4.4360 6

sublb1 0.0001 3.2311 0

sublb2 0.0196 2.4055 0

sublb3 0.0134 1.6296 0

sublb4 0.0571 3.4441 0

Table C.1: Runtime and objective for sublb procedures

The sublb procedures found in 100% of the problem instances a lower bound within 50%
of the solution found by the single crane algorithm. In 66% of the problem instances,
they found a solution within 25% and in 19% of the problem instances wihtin 10%. From
Table C.1 it becomes clear that sublb4 performs best with respect to the strength of the
lower bound (a strong lower bound is close to the acual value). Based on computation
times, sublb1 performs best. Sublb1 finds a decent lower bound in many cases which
makes it very suitable for the Benders decomposition algorithm. Calling for sublb1 to
find a lower bound does cost much compuation time and in 43% of the problem instances,
sublb1 found a lower bound witin 25% of the exact solution. In 93% of the cases, sublb1
finds a lower bound within 50% of the solution found by the single crane algorithm.
Assuming these single crane problems created by the Benders decomposition will lead
to much delay and will therefore be discarded as a solution, a solution within 50% is
already likely to be discarded.

In 22 out of 57 cases that sublb1 did not find a lower bound within 25%, sublb2 found
a stronger lower bound than sublb1. In 9 of these 22 problem instances, sublb2 did find
a lower bound within 25% of the exact solution. This justifies the use of the sublb2
in the decomposition algorithm. The computation times for sublb2 are relatively short
compared to solving the single crane problem so if can be avoided to solve the single
crane problem, it is almost always worth it. In 5 out of 57 cases, sublb3 found a lower
bound that was stronger than sublb1. However, in all those cases, sublb2 was stronger
than sublb3.

In 23 out of 100 cases, it took Gurobi longer than 10 seconds to solve the singel crane
problem. In 13 out of 23 of those cases, sublb1 did find a lower bound within 25% of
the exact solution. In 16 out of 23 cases, sublb4 did find a lower bound within 25% of
the optimal solution. The runtime of sublb4 was always between 0.05 and 0.07 seconds.
Sublb 4 always finds a stronger lower bound than sublb1. Instead of ignoring the travel
time of the yard cranes, sublb4 includes a lower bound on those travel times. Therefore,
the completion times of the jobs is always larger in sublb4 than in sublb1. This will lead
to a stronger lower bound. In 12 out of the 57 cases that sublb1 did not find a lower
bound within 25% of the exact solution, sublb4 did find a lower bound within 25% of
the exact solution.

138

C.2. PERFORMANCE

Comparing sublb2 with sublb4, sublb2 finds in 21 out of 100 problem instances a stronger
lower bound than sublb4. While sublb4 finds lower bounds that are stronger but always
close to the lower bounds of sublb1, sublb2 can find much stronger lower bounds or much
weaker lower bounds. If we use two sublb procedures, it is more advantageous to use
sublb procedures that produce very different results above sublb procedures that find
similar results.

139

