
 
 

Delft University of Technology

The maximum efficiency of nano heat engines depends on more than temperature

Woods, Mischa P.; Ng, Nelly Huei Ying; Wehner, Stephanie

DOI
10.22331/q-2019-08-19-177
Publication date
2019
Document Version
Final published version
Published in
QUANTUM

Citation (APA)
Woods, M. P., Ng, N. H. Y., & Wehner, S. (2019). The maximum efficiency of nano heat engines depends
on more than temperature. QUANTUM, 3. https://doi.org/10.22331/q-2019-08-19-177

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.22331/q-2019-08-19-177
https://doi.org/10.22331/q-2019-08-19-177


The maximum efficiency of nano heat engines depends on
more than temperature
Mischa P. Woods1,2, Nelly Huei Ying Ng2,3, and Stephanie Wehner2

1Institute for Theoretical Physics, ETH Zurich, Switzerland
2QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft, Netherlands
3Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

Sadi Carnot’s theorem regarding the
maximum efficiency of heat engines is con-
sidered to be of fundamental importance in
thermodynamics. This theorem famously
states that the maximum efficiency de-
pends only on the temperature of the heat
baths used by the engine, but not on the
specific structure of baths. Here, we show
that when the heat baths are finite in size,
and when the engine operates in the quan-
tum nanoregime, a revision to this state-
ment is required. We show that one may
still achieve the Carnot efficiency, when
certain conditions on the bath structure
are satisfied; however if that is not the
case, then the maximum achievable ef-
ficiency can reduce to a value which is
strictly less than Carnot. We derive the
maximum efficiency for the case when one
of the baths is composed of qubits. Fur-
thermore, we show that the maximum ef-
ficiency is determined by either the stan-
dard second law of thermodynamics, anal-
ogously to the macroscopic case, or by
the non increase of the max relative en-
tropy, which is a quantity previously asso-
ciated with the single shot regime in many
quantum protocols. This relative entropic
quantity emerges as a consequence of ad-
ditional constraints, called generalized free
energies, that govern thermodynamical
transitions in the nanoregime. Our find-
ings imply that in order to maximize effi-
ciency, further considerations in choosing
bath Hamiltonians should be made, when
explicitly constructing quantum heat en-
gines in the future. This understanding
of thermodynamics has implications for
nanoscale engineering aiming to construct
small thermal machines.

1 Introduction
Nicolas Léonard Sadi Carnot is often described as
the “father of thermodynamics”. In his only pub-
lication in 1824 [1], Carnot gave the first success-
ful theory in analysing the maximum efficiency of
heat engines. It was later used by Rudolf Clau-
sius and Lord Kelvin to formalize the second law
of thermodynamics and define the concept of en-
tropy [2, 3]. In particular, Carnot studied heat
engines where working fluids undergo heating and
cooling between two heat sources at different tem-
peratures. In 1824, he concluded that the max-
imum efficiency attainable did not depend upon
the exact nature of the working fluids [1]:

The motive power of heat is independent
of the agents employed to realize it; its
quantity is fixed solely by the tempera-
tures of the bodies between which is ef-
fected, finally, the transfer of caloric.

For his “motive power of heat”, we would today
say “the efficiency of a reversible heat engine”,
and “transfer of caloric” we would replace with
“reversible transfer of heat”. Carnot knew intu-
itively that his engine would have maximum ef-
ficiency, but was unable to state what that ef-
ficiency should be. He also defined a hypothet-
ical heat engine (now known as the Carnot en-
gine) which would achieve the maximum effi-
ciency. Later, this efficiency — now known as
the Carnot efficiency — was shown to be

ηC = 1− βHot

βCold
, (1)

where βCold, βHot are the inverse temperatures of
the cold and hot heat baths1; as they are now
more commonly referred to.

1Throughout this manuscript we set the Boltzmann’s
and Planck’s constants, kB and ~ to unity.
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Unlike the large scale heat engines that in-
spired thermodynamics, we are now able to build
nanoscale quantum machines consisting of a mere
handful of particles, and this has prompted many
efforts to understand quantum thermodynam-
ics [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24]. In partic-
ular, given such nanoscale devices, one of the
main issues addressed in quantum thermodynam-
ics is the single-shot analysis of thermodynam-
ical state transitions or work extraction. This
approach addresses the scenario of moving away
from the thermodynamic limit of infinitely many
identical particles: one is increasingly interested
in how a single copy of some small system (such
as one to two atoms), in one instance of its evo-
lution, may exhibit thermodynamical behaviour
(due to interactions with its environment). These
approaches are complementary to previous ap-
proaches of studying the ensemble or time aver-
aged behaviour of the system. Many of the results
in single-shot analysis have shown that the work-
ings of thermodynamics become more intricate in
such regimes [6, 7, 8, 9]. While earlier efforts in
quantum thermodynamics apply methods in sta-
tistical physics to average over time [25], or par-
ticular models of open systems dynamics [26, 27,
28, 29, 30, 31, 32, 33, 34, 35], single-shot thermo-
dynamics adopts tools from quantum information
theory to contribute to answering similar physical
problems in a different light.

Following this approach of single-shot
quantum thermodynamics, we show in this
manuscript that unlike at the macroscopic
scale — where Carnot’s fundamental results
undoubtedly hold — there are new fundamental
limitations to the maximal efficiency at the
nanoscale. Most significantly, we show that
this maximum efficiency 2 depends on the heat
baths. In other words, we find that the Carnot
efficiency can be achieved, but only when certain
conditions on the bath Hamiltonian are satisfied.
Otherwise, a reduced efficiency is obtained,
highlighting the significant difference in the
performance of heat engines in the single-shot
regime.

2We emphasize that by “maximum efficiency”, it is un-
derstood that, for fixed hot and cold bath temperatures,
we are maximising the efficiency over all possible heat en-
gine cycles, in other words any machine that may interact
with the different baths and undergo a cyclic process.

This manuscript is organized as follows: in Sec-
tion 2, we first introduce the setup, and clearly
detail all assumptions made about the heat en-
gine model of our study. Next in Section 2.2 we
introduce different notions of work in the nano
regime, which will be important for understand-
ing our results. Next, in Section 3 we detail our
findings. We start by showing that although a
positive amount of “perfect work” cannot be ex-
tracted, some amount of “near perfect” work is
possible, and we derive the efficiency that can be
achieved while extracting this type of work. Fi-
nally we conclude with a summary of our results
and open questions in Section 5.

2 Setup

2.1 The heat engine model

A heat engine (see Fig. 1) is a procedure for ex-
tracting work from a temperature difference be-
tween two systems. It comprises of four basic
elements: the two thermal baths at distinct in-
verse temperatures βHot and βCold, a machine,
and a system to which work is extracted, often
referred to as a battery. The machine interacts
with these baths in such a way that utilizes the
temperature difference between the two baths to
perform work extraction. The battery is a par-
ticularly useful way of quantifying extracted work
in this model as it allows for the transfer/storage
of energy into the battery ancillary system, while
the machine returns to its original state. Dif-
ferent battery models such as the work qubit or
qubits [6, 7, 10, 36], the weight [37, 29] and the
purity battery [38, 39] have been recently studied
and used to quantify work. Although the con-
cept resembles the notion of a work reservoir such
as in [40], in these recent works, the problem of
extracting work is cast in a strongly operational
perspective: one is not only interested in increas-
ing the average energy of the battery, but is also
interested in the final state such a battery takes,
so that it may be used in the future to enable
other processes [41].

In this section, we describe a general heat
engine setup, where all involved systems and
changes in energy are accounted for explicitly.
Let us begin with the total Hamiltonian

Ĥtot = ĤCold + ĤHot + ĤM + ĤW, (2)
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Figure 1: Illustration of a heat engine that contains four
main components: two baths at different temperatures,
a machine and a system we call a battery.

where the indices Hot, Cold, M, W represent
a hot thermal bath (Hot), a cold thermal bath
(Cold), a machine (M), and a battery (W) respec-
tively. We adopt a resource theoretic approach,
which allows all energy-preserving unitaries U(t)
on the global system, i.e. all unitaries which obey

[U(t), Ĥtot] = 0. (3)

Note that this global, time-independent Hamil-
tonian, is non-interacting; which is an indispens-
able feature of the resource theory framework [6,
5]. This approach allows us to mark a clear sep-
aration of the subsystems, and thus justifies the
use of Gibbs states as thermal reservoirs. This
is because for any given Hamiltonian, the Gibbs
states uniquely satisfy complete passitivity [7,
42], which forbids the extraction of average en-
ergy via unitary operations on the state. Never-
theless, interactions of arbitrary strength between
all the different systems are still allowed, under
the only condition of Eq. (3). Indeed, U(t) can
be of the form

U(t) = eit(Ĥtot+ÎColdHotMW), (4)

with the norm of ÎColdHotMW being arbitrarily
large, so long as [ÎColdHotMW, Ĥtot] = 0 in order to
preserve energy. In order to implement the uni-
tary over the heat engine, one may use an auxil-
iary system. This is an aspect of the model which
is common to all resource theory approaches to
quantum thermodynamics. The optimal way to
achieve this remains an open question. See [43]

for partial results and Section V in [4] for a more
in-depth discussion.

The initial state of our heat engine will be of
the form

ρ0
ColdHotMW = τ0

Cold ⊗ τ0
Hot ⊗ ρ0

M ⊗ ρ0
W. (5)

The state τ0
Hot (τ0

Cold) is the initial thermal
state at inverse temperature βHot (βCold), cor-
responding to the hot (cold) bath Hamiltonians
ĤHot, ĤCold, with βCold > βHot. More gener-
ally, given any Hamiltonian Ĥ and inverse tem-
perature β, the thermal state is defined as τ =

1
tr(e−βĤ)

e−βĤ . The initial machine (ρ0
M, ĤM) can

be chosen arbitrarily, as long as its final state is
preserved, and therefore the machine acts like a
catalyst. Lastly, the initial battery state in our
setup ρ0

W is any energy eigenstate of the battery
— see Section 2.2 for a further description of the
battery model used in this manuscript.

Heat engines in practice tend to have their hot
and cold thermal baths of different relative sizes.
Power stations near the ocean are good examples
of this. Here we allow our baths to play a simi-
lar role. The hot bath may be arbitrarily large,
and acts like a reservoir, while the cold bath is
of some fixed finite size. A reversal of the hot
and cold bath sizes would be possible within our
framework but unnecessary to reach our conclu-
sions.

One cycle of the heat engine process produces
a final reduced state 3

ρ1
ColdMW = trHot

[
U(t)ρ0

ColdHotMWU(t)†
]
, (6)

where the machine should be preserved, i.e. ρ1
M =

ρ0
M, and ρ1

Cold, ρ
1
W are the final local states of the

cold bath and battery. Note that we allow for
arbitrary correlations to exist in the final state
ρ1
ColdMW, as long as the reduced state of the ma-

chine is preserved. Our central quantity of inter-
est is the maximum efficiency of work extraction;
and whether it can be as large as the Carnot ef-
ficiency. One may argue that allowing for arbi-
trary final correlations (quantum or classical) is
not physically well motivated; since the correla-
tions might degrade the functionality of the ma-
chine and potentially reduce the efficiency of the
heat engine in subsequent cycles. Fortunately,

3For any bipartite state ρAB, we use the notation of
reduced states ρA := trB(ρAB), ρB := trA(ρBA).
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this debate can be avoided, since we also show
that if the heat engine setup is such that Carnot
efficiency is achievable, then the final state of the
heat engine must be of product form:

ρ1
ColdMW = ρ1

Cold ⊗ ρ1
M ⊗ ρ1

W. (7)

The fact that correlations in the final state never
allow, in all cases, for a larger amount of work nor
an increased efficiency is proven in Section F.1 of
the Supplementary Material. However, one can
intuitively see why it is so, from the fact that the
non-equilibrium free energy [44, 45, 46] is super-
additive. More precisely, for any system of state
ρ in thermal contact with a bath at inverse tem-
perature β, consider the non-equilibrium free en-
ergy 4

F (ρ) := tr(Ĥρ)− β−1S(ρ), (8)

where S(ρ) = −tr(ρ ln ρ), is the von Neumann
entropy. For our setup, super-additivity is then
the statement that for any bipartite state ρAB,
F (ρAB) ≥ F (ρA) + F (ρB), where equality is
achieved if and only if A and B are uncorre-
lated. This implies that creating a final state
with correlations is at least as hard as creating
one without correlations, and thus allowing the
final components of the heat engine to become
correlated, cannot help one to achieve the Carnot
efficiency; which may be achieved only in the
limit when F (·) is invariant under one cycle of
the heat engine (i.e. the limit in which the heat
engine is macroscopically reversible)5. As such,
since a heat engine process needs to satisfy the
non-increase of the free energy, it turns out that
without loss of generality we can assume ρ1

ColdMW
to be of the form given in Eq. (7) when investi-
gating the achievability of Carnot efficiency in our
setup. We therefore base the rest of our analysis
in the main text on Eq. (7).

Since (τ0
Hot, ĤHot) and (ρ0

M, ĤM) can be arbi-
trarily chosen and since Eq. (7) is assumed, the

4For systems in thermodynamics equilibrium, this free
energy is also known as the Helmholtz free energy. For
simplicity, we will also refer to this quantity as standard
free energy in the text.

5As a side remark for readers familiar with [47], the
reason why correlating catalysts do not boost efficiency
in our set-up, is because the dimension of the catalyst
diverges in the limit approaching the Carnot efficiency.
Furthermore, the techniques developed in this manuscript
might potentially pave way to solving an open problem in
[47], as pointed out by the authors.

setup now corresponds to the set of catalytic ther-
mal operations [7] one can perform on the joint
state ColdW. This implies that the cold bath is
used as a resource state. By catalytic thermal
operations that act on the cold bath, using the
hot bath as a thermal reservoir, and the machine
as a catalyst, one can possibly extract work and
store it in the battery. In the next section, we
see how work is defined and categorized accord-
ing to initial and final states of the battery ρ0

W
and ρ1

W. As for now, to summarize, the following
assumptions are made in our heat engine setup:

1. The initial global state is a product state be-
tween all the systems, as shown in Eq. (5).

2. Cyclicity of the machine, i.e. system M un-
dergoes a cyclic process: ρ0

M = ρ1
M.

3. The heat engine as a whole is isolated from
and does not interact with the world, i.e.
[U(t), Ĥtot] = 0. This assumption ensures
that all possible resources in a work extrac-
tion process has been accounted for.

4. The Hilbert space associated with
ρ0
ColdHotMW is finite dimensional but

can be arbitrarily large.

2.2 Work in the nanoregime

The definition of work when dealing with
nanoscopic quantum systems has seen much at-
tention lately [6, 7, 8, 9, 11, 12]. Performing work
is always understood as changing the energy of a
system, which in this manuscript is called battery.
In the macroregime, one often pictures raising a
weight on a string. In the nanoregime, this corre-
sponds to changing the energy of a quantum sys-
tem by pumping it to an excited state (see Fig. 2).
In particular, a minimalistic battery model can be
demonstrated as a two-level system [7]. Perform-
ing work corresponds to bringing the state from
its ground state to the excited state, where the
energy gap is fine-tuned to the amount of work
Wext to be done.

While an arbitrary energy spacing is difficult
to realize in a two-level system, it can be done by
picking two levels with the desired spacing from a
quasi-continuum battery: this battery comprises
of a large but finite number of discrete levels
which form a quasi-continuum. Such a battery
closely resembles the classical notion of a “weight
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attached to a string” as considered in [37]. The
battery can be charged by bringing it from a par-
ticular state (e.g. the ground state) to any of
the higher energy levels. In this paper, we adopt
the use of such a quasi-continuum battery model.
This batteryW has a Hamiltonian (written in its
diagonal form)

ĤW :=
nW∑
i=1

EW
i |Ei〉〈Ei|W, (9)

where {EW
i }

nW
i=1 is a set which can be arbitrarily

large, but of fixed cardinality; while its elements
EW
i ∈ R may or may not be uniformly bounded.

0

Wext
Ek

Ej

Wext=Ek-Ej

Figure 2: The battery models a work-storage compo-
nent of a heat engine. In our setup, an adaptive quasi-
continuum of energy levels is used.

One aspect of extracting work W is to bring
the battery’s initial state ρ0

W to some final state
ρ1
W such that W = tr(ρ1

WĤW)− tr(ρ0
WĤW) > 0.

However, a change in energy alone, does not yet
correspond to performing work. It is implicit in
our macroscopic understanding of work that the
energy transfer takes place in an ordered form.
When lifting a weight, we know its final position
and can exploit this precise knowledge to transfer
all the work onto a third system without — in
principle — losing any energy in the process.

In the quantum regime, such knowledge cor-
responds to ρ1

W being a pure state. When ρ1
W

is diagonal in the energy eigenbasis of ĤW, then
ρ1
W is an energy eigenstate. We can thus under-

stand work as an energy transfer about which we
have perfect information, while heat, in contrast,
is an energy transfer about which we hold essen-
tially no information, other than average energy
increase. Clearly, there is also an intermediary
regime in which we transfer energy, while having
some, but imperfect information.

To illustrate this, consider the quasi-continuum
battery described above, and starting out from
an arbitrary initial energy eigenstate ρ0

W =
|Ej〉〈Ej |W. Ideally, we want to extract work and

store it in the battery, by inducing a transition
to another energy eigenstate |Ek〉〈Ek|W, where
EW
k > EW

j . Let ε denote the failure probabil-
ity of our doing so, and

Wext = EW
k − EW

j > 0 (10)

the work extracted. In the case where Wext is a
value such that the transition ρ0

ColdW → ρ1
ColdW is

possible via catalytic thermal operations, it cor-
responds to extracting work. We first define the
case in which we always succeed:

Definition 1. The work extracted Wext, is called
perfect work when ρ1

W = |Ek〉〈Ek|W, in other
words, ε = 0.

In general however, there is a non-zero failure
probability of work extraction. This causes us
to lose some information about the battery state:
rather than the final state of the battery being
|Ek〉〈Ek|W, it could be any state which is a dis-
tance ε away, namely

d(ρ1
W, |Ek〉〈Ek|W) = ε, (11)

where we use d(ρ, σ) to denote the trace distance
of two states ρ and σ (see Eq. (44) for a defi-
nition). The usage of trace distance here is mo-
tivated by its strong operational meaning: the
smaller the trace distance between two states, the
harder it is to distinguish them using any quan-
tum measurements. We allow for any value of

ε ∈ [0, l], for any fixed l < 1, (12)

and the smaller ε is, the closer we are to the situ-
ation of perfect work 6. Note that any energy in-
coherent state ρ1

W such that d(ρ1
W , |Ek〉〈Ek|) = ε

can be written in the form

ρ1
W = (1− ε)|Ek〉〈Ek|+ ερjunk, (13)

where ρjunk is any density matrix of the battery
that does not have support on |Ek〉〈Ek|. The pa-
rameter Wext > 0 is defined as an energy differ-
ence in Eq. (10). Our goal is to maximize the
achievable value of Wext, while allowing for all fi-
nal battery states of the form of Eq. (13), such

6In Eq. (12), the constraint of a fixed l < 1, is simply
to rule out the physically irrelevant limit ε→ 1, where the
final state has no overlap at all with |EkW〉〈EkW|. We could
choose l = 0.999 for example.
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that there exists a catalytic thermal operation en-
abling the transition ρ0

ColdW → ρ1
ColdW.

In this manuscript, we propose a characteri-
zation of the quality of extracted energy by the
entropy difference

∆S := S(ρ1
W)− S(ρ0

W), (14)

where S(ρ) = −tr(ρ ln ρ), is the von Neumann
entropy. For perfect work, ∆S = 0. Another
type of example one sometimes comes across, is
when ρ1

W becomes a thermal state [29, 31]. In
such cases, although the average energy of the
battery may still increase, the corresponding en-
tropy increase is maximal [48]. Moreover, when
∆S > 0, what is relevant is not its value as an
absolute, but relative to the energy Wext that is
extracted. We are thus interested in the quantity
∆S/Wext, in particular the limit ∆S/Wext → 0
7, which motivates the following definition:

Definition 2. (Near perfect work) We say that a
partially ordered set of heat engine protocols char-
acterized by the extracted amount of work and
and corresponding failure parameters SH.E. =
{(Wext, ε)}, leads to near perfect work extraction
if

1) For all values of ε, 0 < ε ≤ l, for some fixed
l < 1 and

2) For all 1 > p > 0, there exists a non-trivial
subset of protocols SH.E.

p ⊂ SH.E. such that
when (Wext, ε) ∈ Sp , then

∆S
Wext

< p. (15)

We shall see in Section 3 that the maximum
efficiency of a heat engine cycle can only be
achieved in the limit where Wext → 0. In such
cases, condition 2) in Def. 2 also corresponds to
the limit ∆S/Wext → 0. In Section A of the Sup-
plementary Material, we show that the restriction
of near perfect work can be re-cast in terms of an
equivalent condition involving the probability of
failure ε, namely: the two conditions of Definition
2 above are satisfied iff

lim
ε→0+

∆S
Wext

= 0. (16)

7Note that ∆S and Wext have different units. If one
prefers to work with a unitless measure, one can instead
work with c · ∆S/Wext for any constant c with units of
inverse temperature w.l.o.g., since the limit c·∆S/Wext →
0 holds iff ∆S/Wext → 0 holds.

Perfect and near perfect work are the two types
of energy investigated in this paper, due to their
strong operational significance in capturing both
the essence of energy increase and knowledge
about the final battery state. Other types of
energy increase, which we refer to as imperfect
work, are studied in a separate paper, due to the
large qualitative differences in the extracted en-
ergy [49]. For example, it is worth noting that
for both perfect and near perfect work, one may
recover Carnot’s results about the efficiency of
heat engines by invoking the non-increase of free
energy (see Section 3.3); this is not the case for
imperfect work, where one can surpass the Carnot
efficiency, since ∆S is non-negligible compared
to Wext; thus heat contributions are not sepa-
rated from the extracted energy. From another
perspective, this means that imperfect work is
a more debatable way of quantifying energy as
work, nevertheless, this is addressed in [49] due
to the extensive literature on quantum thermody-
namics that uses mean energy increase as a quan-
tifier of work.

2.3 Definition of efficiency and maximum effi-
ciency

The efficiency of a heat engine is defined as

η := Wext
∆H , (17)

where ∆H is the amount of heat drawn from
the hot bath, namely ∆H = tr(ĤHotρ

0
Hot) −

tr(ĤHotρ
1
Hot). Since the machine’s final and ini-

tial states are the same after one cycle, and the
initial state of the cold bath is fixed; due to total
mean energy conservation, ∆H can be expressed
solely as a function of ρ1

Cold and Wext. From Eq.
(17), we can define the maximum achievable ef-
ficiency in the nanoregime ηnano as a function of
the final state of the cold bath ρ1

Cold. More pre-
cisely,

ηnano(ρ1
Cold) := sup

Wext>0
η(ρ1

Cold) subject to

(18)
Fα(ρ0

W ⊗ τ0
Cold) ≥ Fα(ρ1

W ⊗ ρ1
Cold) ∀α ≥ 0,

(19)

where Fα are the generalized free energies (see
Eq. (30) in Section 4 for definition). Note that by
fulfilling Eq. (19), we are already maximizing over
all possible heat engine cycles for a given value of
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Wext. Eq. (18) further maximizes efficiency over
achievable values of Wext. Recall that βCold, βHot
are fixed, and ρ0

W is an energy eigenstate. In the
resource theoretic framework for thermodynam-
ics, the generalized free energies provide condi-
tions for the possibility of catalytic thermal op-
erations between the initial and final states to
take place. In other words, Eq. (19) is an ap-
plication of the so-called generalized second laws
of quantum thermodynamics, to our heat engine
setup; as shown in detail in Section 4. They can
be seen as a generalization of the second law of
thermodynamics (see Section 3.3), in single-shot
quantum thermodynamics. From Eq. (30), we
see that the constraint of Eq. (19) is equivalent to
Dα(ρ0

W⊗τ0
Cold‖τhColdW) ≥ Dα(ρ1

W⊗ρ1
Cold‖τhColdW)

for all α ≥ 0, where τhColdW is the Gibbs state of
the cold bath and battery at inverse temperature
βh, and Dα are called α-Rényi divergences. The
family of α-Rényi divergences (which the max rel-
ative entropy discussed later is a member of) have
been a powerful tool in single-shot quantum in-
formation theory, when it comes to tasks such as
randomness extraction [50, 51, 52], source coding
[50, 53], or hypothesis testing [54, 55] for finite
number of trials.

With Eqns. (18) and (19) at hand, one can
now define the maximum efficiency across all final
states in the cold bath Hilbert space S(HCold),
when demanding near perfect work. Specifically,

ηmax = sup
ρ1
Cold∈S(HCold)

ηnano(ρ1
Cold), (20)

where the supremum is also over all partially or-
dered heat engine protocols corresponding to near
perfect work. In our analysis, a particular notion
of efficiency emerges as the quantity of interest,
which we refer to as the quasi-static limit. This
corresponds to the maximum efficiency when the
final state of the cold bath is thermal and its
temperature only increases by an infinitesimal
amount, namely

ηstat
max = lim

g→0+
ηnano(τ(g)) (21)

where τ(g) is the Gibbs state on S(HCold) at in-
verse temperature βf = βCold − g. The reason
why this limit emerges as a relevant scenario is
as follows: first of all, we show that ηnano(ρ1

Cold)
depends on two quantities, namely the average
energy change in the cold bath (denoted as ∆C
throughout this manuscript), and the extractable

work Wext. Given any fixed amount of ∆C > 0,
maximizing the efficiency over ρ1

Cold corresponds
to further maximizing Wext according to the F1
constraint in Eq. (19). Moreover, F1 is precisely
the non-equilibrium free energy in Eq. (8). We
show that this maximum Wext occurs precisely
when ρ1

Cold = τ(g) for the particular value of
g that corresponds to the fixed ∆C. Further-
more, we also prove that the efficiency is mono-
tonically decreasing with this parameter g, which
means that the maximum efficiency occurs at the
quasi-static limit described in Eq. (20). Indeed,
if one evaluates the efficiency taking the quasi-
static limit when assuming that only the condi-
tion on F1 needs to be satisfied, one obtains the
Carnot efficiency ηC in the limit g → 0+. Since
this is a necessary condition for the possibility
of a heat engine process, we will thus frequently
work in the quasi-static limit in the rest of this
manuscript.

3 Main results

3.1 No perfect work
Before establishing our main result, we first show
that in the nanoscopic regime, no heat engine can
output perfect work (Def. 1). That is, the effi-
ciency of any such heat engine,

sup
ρ1
Cold∈S(HCold)

ηnano(ρ1
Cold) = 0. (22)

In other words, there exists no global energy pre-
serving unitary U(t) obeying Eq. (3) for which
Wext > 0 can be achieved. The proof of this state-
ment can be found in Section E.1 of the Supple-
mentary Material. In fact, it is interesting to note
that the impossibility of drawing perfect work is
a direct consequence of needing to satisfy one in-
stance of the generalized second laws, in particu-
lar Fα(ρ) in Eq. (19) when α = 0.

While this might appear puzzling at first
glance, it has a very nice analog in information
theory; namely zero-error data compression. The
scenario is as follows: suppose one desires to send
a message across a particular channel. Depend-
ing on the redundancy of your data, you might
not need to send the full file over: you can send
a compressed version of the data, that only sends
a fraction of symbols. But if your data is dis-
tributed over symbols with respect to a proba-
bility distribution of full rank, then theoretically
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you cannot perform compression with precisely
zero error — compression may be possible, how-
ever, if very small errors are allowed.

3.2 Obtainable efficiency

Clearly, however, it is unreasonable to say that
no heat engine could work at all in the quantum
nanoregime, prompting the question how this
might be possible. We show that for any ε > 0,
there exists a heat engine such that Wext > 0 can
be achieved. Therefore, a heat engine is possible
if we ask only for near perfect work. Interestingly,
even in the macroscopic regime, we can envision
a heat engine that only extracts work with prob-
ability 1 − ε, but over many cycles of the engine
we do not notice this feature when looking at the
average work gained in each run.

To study the efficiency in the nanoscale regime
we make crucial use of the second laws of quan-
tum thermodynamics [7]. It is apparent from
these laws that we might only discover further
limitations to the efficiency than we see at the
macroscopic scale. Indeed they do arise, as we
find that the efficiency no longer depends on just
the temperatures of the heat baths. Instead,
the explicit structure of the cold bath Hamilto-
nian ĤCold becomes important (a similar argu-
ment can be made for the hot bath) — even when
choosing the optimal machine.

We conduct the full analysis of the efficiency
according to the second laws of thermodynam-
ics considering a cold bath comprised of n non-
interacting two-level systems (qubits) each with
its own energy gap Ēk,

ĤCold =
n∑
k=1

1
⊗(k−1) ⊗ Ēk|Ēk〉〈Ēk| ⊗ 1⊗(n−k),

(23)
where n can be arbitrarily large, but finite. Let
us denote the spectral gap of the cold bath —
the energy gap between its ground state and first
excited state — by Emin. We can then define the
quantity

Ω = Emin(βCold − βHot)
1 + e−βColdEmin

, (24)

Whenever Ω ≤ 1, consider all qubits on sites k
for which

Ēk(βCold − βHot)
1 + e−βColdĒk

≤ 1, (25)

holds. Since Ω ≤ 1 in this case, there will be a
non-trivial subset C of the cold bath qubits (at
least one qubit) where Eq. (25) holds. We show
that the quasi-static efficiency ηstat

max (for which the
cold bath is taken over C) is indeed the familiar
Carnot efficiency, which can be expressed as

ηmax = ηstat
max =

(
1 + βHot

βCold − βHot

)−1
. (26)

Note that this is true for any n number of qubits,
in particular also when n = 1, which remarkably
tells us that even when the cold bath consists of
only a single qubit, Carnot efficiency can still be
achieved when Ω ≤ 1 is satisfied. Intuitively, al-
though the constrained optimization of Eq. (18)
looks complicated in general, nevertheless only
the constraint imposed by the α = 1 second law
in Eq. (19) is the most stringent one, and the op-
timal transition is when F (ρ0

ColdW) = F (ρ1
ColdW).

The other constraints in Eq. (19) are trivially
satisfied with an inequality. Therefore, the sec-
ond laws give effectively the same constraint as
the usual second law.

However, when Ω > 1, we find a new nanoscale
limitation. In this situation, the efficiency for
near perfect work is only

ηstat
max =

(
1 + βHot

βCold − βHot
Ω
)−1

(27)

for a quasi-static heat engine. Furthermore, note
that for the case of a single qubit, all energy-
incoherent states are thermal states with a partic-
ular temperature, and therefore the quasi-static
limit is the only possible parametrization for the
limit ρ1

Cold → τ0
Cold. This means that for a single-

qubit cold bath, if Ω > 1 holds, then Eq. (27)
gives the maximum achievable efficiency, which
will be strictly less than ηC .

Eq. (27) marks a limitation at the
nano/quantum scale. This limitation occurs be-
cause in the constrained optimization of Eq. (19),
unlike when Ω ≤ 1, the α =∞ second law poses
the strongest constraint (even stronger than the
constraint of the non-equilibrium free energy),
and therefore becomes solely relevant in dictating
the state transition. In particular, the α = 1 sec-
ond law can only be satisfied with a strict inequal-
ity when Ω > 1. The α-Rényi divergence D∞,
corresponding to the α = ∞ second law in Eq.
(19), is a well-known quantity in single-shot in-
formation theory called the max relative entropy,
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E
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E

Figure 3: For fixed inverse temperatures βCold,
βHot, the efficiency of a nanoscale heat engine
depends on the structure of the cold bath. At
the nano/quantum scale, Carnot’s statement about the
universality of heat engines does not hold. We find that
the maximum efficiency of a heat engine, does not only
depend on the inverse temperatures βCold, βHot of the
heat baths. In (a) the energy gaps are small enough to
allow the heat engine to achieve Carnot efficiency, i.e.,
Ω ≤ 1. In (b) the efficiency of the heat engine is reduced
below the Carnot efficiency because the energy gap of
the qubits are above the critical value Ω > 1.

denoted byDmax [56, 57]. As such, in this regime,
we find that instead of the non-equilibrium free
energy, it is the max relative entropy that de-
termines the efficiency of the heat engine cycle.
The emergence of the max relative entropy as the
deciding factor in obtainable efficiency is a signa-
ture of single-shot effects coming into play. In the
quantum thermodynamics literature, it has also
been shown that the max relative entropy dictates
the minimum amount of input work required to
create a state via catalytic thermal operations [6].

The restriction of near perfect work per cycle
can now be further justified by examining how
well the heat engine performs when the machine
runs over many cycles: we find that if Ω ≤ 1, the
heat engine can be run quasi-statically with an ef-
ficiency arbitrarily close to the Carnot efficiency
while extracting any finite amount of work with
an arbitrarily small entropy increase in the bat-
tery. This follows from repeatedly applying our
single-shot results in the Ω ≤ 1 regime, as shown
in Section E.3 of the Supplementary Material.

3.3 Comparison to standard free energy results
For any system in thermal contact with a bath
at inverse temperature β, consider the non-
equilibrium free energy defined in Eq. (8). In the
macroregime, the usual second law states that the
non-equilibrium free energy never increases,

F (ρ0) ≥ F (ρ1), (28)

when the system goes from a state ρ0 to a state
ρ1. Note that this quantity, F (ρ) is defined for
arbitrary non-equilibrium states [58, 46], where
β is simply the inverse temperature of its sur-
rounding bath. In the setting where one averages
over infinitely many cycles, this quantity has been
shown to correspond to the amount of work ex-
tractable from a generic, non-equilibrium state
[46]. It also implies that F (ρ) dictates the possi-
bility of asymptotically transforming n copies of
ρ0 into ρ1, in the limit where n→∞.

In the single-shot quantum regime, however,
Eq. (28) is but one of many conditions necessary
for a state transformation. The generalized sec-
ond laws [7] are a core result of quantum thermo-
dynamics, that were derived based only on the
foundations of quantum theory. Using these sec-
ond laws, not only that many physical assump-
tions in classical thermodynamics can be avoided,
but also one sees a more refined structure of the
second law expressed in the context of nanoscale
quantum systems. The limitations we observe on
the efficiency are a consequence of having such
generalized second laws.

From another perspective, the fact that more
laws appear in this regime can intuitively be
understood as being analogous to the fact that
when performing a probabilistic experiment only
a handful of times, not just the average, but other
moments of a distribution become relevant. In-
deed, all second laws converge to the standard
second law in the limit of infinitely many par-
ticles [7], illustrating why we are traditionally
accustomed to only this second law. The stan-
dard second law also emerges in some regimes of
inexact catalysis [7], however, this corresponds
to a degradation of the machine in each cycle,
which would need one to use work to repair. An-
other example of a regime where the second law
emerges, is when the catalysts are allowed to be-
come correlated among themselves or with the
rest of the machine [59, 47]; however, in the lim-
iting case in which only the second law is rele-
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vant, the dimension of the catalysts diverge. Fur-
thermore, correlations between catalysts and the
other states may require some additional work to
destroy, hence making it less clear how to faith-
fully characterise the net extracted work.

It is illustrative to analyze our problem when
we apply just the standard second law in Eq. (28)
to derive bounds on efficiency, which is indeed a
matter of textbook thermodynamics [60]. How-
ever, we here apply the law precisely to the heat
engine model as given in Section 2, in which all
energy flows are accounted for and (near) perfect
work is performed. One might wonder whether
the limitations we observe are just due to either
a limited model, or our demand for near perfect
instead of average work, and might thus also arise
even when invoking only the standard second law.
That is, are these newfound limitations really a
consequence of the need to obey a wider family
of second laws, or would the standard free energy
predict the same things when energy is quantized,
and quantum correlations are possible?

We show independently of whether we consider
perfect or near perfect work, that according to the
standard free energy in Eq. (28), the maximum
achievable efficiency is given by the Carnot effi-
ciency. Furthermore, we recover Carnot’s state-
ment that the Carnot efficiency can be achieved
for any cold bath (i.e. for a cold bath with any
finite dimensional pure point spectrum). We also
see that for this case, the Carnot efficiency can
always be achieved for quasi-static heat engines.
These results can be proven without invoking any
additional assumptions than those laid out in Sec-
tion 2. In contrast, usual proofs of the second law
require assumptions such as reversibility or that
the system is in thermodynamic equilibrium at
all times. Therefore, with our setup we recover
exactly what Carnot predicted, namely that the
maximum efficiency of heat engines only depends
on the temperatures of the hot and cold bath.
This rules out that our inability to achieve what
Carnot predicted according to the macroscopic
laws of thermodynamics is not merely the conse-
quence of an overly stringent heat engine model,
or definition of work.

Finally, it is important to note that there have
been several recent works [10, 28, 37, 29, 31, 18,
61, 62] on analyzing the efficiencies of small quan-
tum heat engines, and had achieved Carnot effi-
ciency. In [37], a protocol was even constructed

to achieve the Carnot efficiency for any system
Hamiltonian and any arbitrary quantum state —
albeit considering operations which only preserve
total energy on average. However, more com-
mon to all these approaches is that they consider
an average notion of work, without directly ac-
counting for a contribution from disordered en-
ergy (heat). Instead, one aims keeps the entropy
of the battery low [37], or bound the higher mo-
ments of the energy distribution [29]. However,
these only limit contributions from heat, but do
not fully prevent them. Our notion of (near) per-
fect work now makes this aspect of macroscopic
work explicit in the nanoregime, which has not
been studied in the previous work. It is important
to note that our work does not contradict previ-
ous results such as that of [37]. For example, the
analysis of [37] shows that in each step of their
protocol to achieve Carnot efficiency, the amount
of energy change scales the same as the amount
of entropy change, which does not correspond to
perfect or near perfect work. Needless to say, im-
perfect work with some contribution of heat can
also be useful in certain scenarios. Yet, it does
not quite constitute work if we cannot explicitly
single out a contribution from heat. One could
construct a machine which extracts some amount
of energy, with some non-negligible amount of in-
formation. It is proven in this case that Carnot
efficiency can even be exceeded [49]. This should
not come as a surprise, because we are no longer
asking for work — energy transfer about which
we have (near) perfect information.

4 Proof Overview
To quantify the amount of extractable work, we
apply the generalized second laws derived in [7].
The initial cold bath ρ0

Cold is thermal, and there-
fore diagonal in the energy eigenbasis, while the
initial battery state ρ0

W is also a pure energy
eigenstate (see Fig. 2). Since the unitary U(t)
is energy conserving, it will never increase coher-
ences between global energy eigenstates [7]. We
can therefore conclude that ρ1

ColdW is also diag-
onal in the energy eigenbasis. We can thus in-
voke the necessary and sufficient conditions for
a transformation to be possible [7]. Specifically,
ρ0
Cold ⊗ ρ0

W → ρ1
ColdW iff ∀α ≥ 0,

Fα(ρ0
Cold ⊗ ρ0

W, τ
h
ColdW) ≥ Fα(ρ1

ColdW, τ
h
ColdW),

(29)
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where τhColdW is the thermal state of the joint sys-
tem (cold bath and battery) at temperature THot.
The generalized free energy Fα is defined as

Fα(ρ, τ) := 1
βHot

[Dα(ρ‖τ)− lnZHot] , (30)

where Dα(ρ‖τ) are known as α-Rényi diver-
gences. For states ρ, τ which are diagonal in the
same eigenbasis, the Rényi divergences can be
simplified to

Dα(ρ‖τ) = 1
α− 1 ln

∑
i

pαi q
1−α
i , (31)

where pi, qi are the eigenvalues of ρ and τ respec-
tively. The case α = 1 is defined by continuity
in α. Taking the limit α → 1 for Eq. (30), one
recovers the non-equilibrium free energy, F (ρ) =
〈Ĥ〉ρ − β−1

HotS(ρ). Using the second laws [7] is a
powerful tool, since when searching for the opti-
mum efficiency, we do not have to optimize ex-
plicitly over the possible machines (ρM, ĤM), the
form of the hot bath ĤHot, or the energy conserv-
ing unitary U(t). Whenever Eq. (29) is satisfied,
then we are guaranteed a suitable choice exists
and hence we can focus solely on the possible fi-
nal states ρ1

ColdW.
Since we know that ρ1

ColdW is diagonal in the
energy eigenbasis, the correlations between cold
bath and battery can only be classical (w.r.t.
energy eigenbasis). However, even such correla-
tions cannot improve the efficiency: we show in
the Supplementary Material that we may take the
output state to have the form ρ1

ColdW = ρ1
Cold ⊗

ρ1
W in order to achieve the maximum efficiency.

According to Fig. 2, consider ρ0
W = |EjW〉〈E

j
W|

and the final state

ρ1
W = (1− ε)|EkW〉〈EkW|+ ε|EjW〉〈E

j
W|. (32)

Although this is a particularly simple case of ρ1
W,

we can show that it is actually sufficient for our
analysis, i.e. allowing a more general battery
state does not change the maximum efficiency.
We do this by analyzing the generalized free en-
ergy Fα in the limit of α → ∞, and show that
any other final battery state achieves at most the
same maximum efficiency given by Eq. (32) (see
Supplementary Material Section F.2). From the
second laws Eq. (29), we may derive the maxi-
mum amount of extractable work, which is the
largest value of Wext = EkW − E

j
W such that the

state transition ρ0
Cold ⊗ ρ0

W → ρ1
Cold ⊗ ρ1

W is pos-
sible. The form of Wext (derived in the Supple-
mentary Material Section E.2.1) is

Wext = inf
α≥0

Wα, (33)

Wα = 1
βHot(α− 1) [ln(A− εα)− α ln(1− ε)],

(34)

A =
∑
i p
α
i q

1−α
i∑

i p
′α
i q

1−α
i

, (35)

where pi = e−βColdEi
ZβCold

, qi = e−βHotEi
ZβHot

are probabili-
ties of the thermal state of the cold bath at tem-
peratures βCold, βHot respectively, and p′i are the
probability amplitudes of state ρ1

Cold when writ-
ten in the energy eigenbasis of ĤCold. The quan-
tityWext is dependent on the initial and final cold
bath ρ0

Cold, ρ
1
Cold, the hot bath inverse tempera-

ture βHot, and the allowed failure probability ε.
The difficulty of evaluating Wext comes from the
infimum over α, which is completely dependent
on βHot, βCold, ĤCold and other parameters.

The efficiency η defined in Eq. (17), however,
is not determined by the maximum extractable
work, but rather by an optimal tradeoff between
Wext and the energy drawn from the hot bath,
∆Hot. Since ĤColdHotMW = ĤCold+ĤHot+ĤM+
ĤW is void of interaction terms, and since total
energy is preserved, we can also write the change
of energy in the hot bath, in terms of the energy
change in the remaining systems,

∆Hot = ∆Cold + ∆W. (36)

where ∆Cold := tr
[
HColdρ

1
Cold

]
−tr

[
HColdρ

0
Cold

]
,

and ∆W := tr(ĤWρ
1
W)− tr(ĤWρ

0
W) are changes

in average energy of the cold bath and battery.
We thus see that the efficiency can be described
solely in terms of the battery and the cold bath.
Macroscopic second law We first analyze the
efficiency invoking only the standard second law,
namely assuming that the free energy (α = 1)
fully dictates if a certain state transition is pos-
sible. The question is then: given an initial cold
bath Hamiltonian ĤCold, what is the maximum
attainable efficiency considering all possible fi-
nal states ρ1

Cold? In both cases of perfect and
near perfect work, we find that the efficiency is
only maximized whenever ρ1

Cold is (A) a thermal
state, and (B), when it is a thermal state, can
only achieve the Carnot efficiency when the in-
verse temperature βf is arbitrarily close to βCold.
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We refer to this situation as a quasi-static heat
engine. Moreover, we find that the Carnot effi-
ciency can be achieved by any given ĤCold. These
results rigorously prove Carnot’s findings when
only the usual free energy is relevant.
Nanoscale second laws Here, when considering
perfect work under the constraints of all general-
ized free energies coming into play, we are im-
mediately faced with an obstacle: the constraint
at α = 0 implies that Wext > 0 is not possible,
whenever ρ0

Cold is of full rank. This is due to the
discontinuity of D0 in Eq. (31) w.r.t. the quan-
tum state, and is similar to effects observed in
information theory in lossy vs. lossless compres-
sion: no compression is possible if no error how-
ever small is allowed. However, when considering
the limit ∆S/Wext → 0, i.e. near perfect work,
the D0 constraint is satisfied automatically.

The results for the macroscopic second law
form an upper bound for both the maximum ex-
tractable work and efficiency for nanoscale sec-
ond laws, since the constraint of generalized free
energy at α = 1 is one of the many constraints
described by all α ≥ 0. We can thus show that
the results from the standard second law have the
following implication in the nanoregime: if we can
achieve the Carnot efficiency, we can only do so
when ρ1

Cold → τ0
Cold. We analyze the quasi-static

regime. Furthermore, we specialize to the case
where the cold bath consists of multiple identical
two-level systems, each of which are described by
a Hamiltonian with energy gap E.

Firstly, we identify characteristics that the fail-
ure parameter of work extraction ε should have,
such that near perfect work is extracted in the
limit βf → βCold (i.e. when (A) and (B) are sat-
isfied). We then show two technical results:

1. The choice of ε (as a function of βf ) simplifies
the minimization problem in Eq. (33), by re-
ducing the range of the variable α appearing
in the optimization ofWext. Under the consid-
eration of near perfect work, ε can be chosen
such that the optimization of α is over α ≥ κ
for some κ ∈ (0, 1], instead of α ≥ 0. The
larger κ is for a chosen ε, the slower ∆S/Wext
converges to zero.

2. We analyze the following cases separately:

• For Ω ≤ 1, ε can always be chosen so that
Eq. (33) is obtained in the limit α → 1.

Figure 4: Comparison of the quasi-static
nanoscale efficiency versus Carnot efficiency.
Top: efficiency vs. the energy gap Emin of ĤCold (re-
call that kB = 1). According to Eqs. (26), (27), for
any TCold < THot one can achieve Carnot efficiency
when Emin is sufficiently small. Otherwise, we find a
reduced efficiency. This has been plotted for THot = 15
and TCold = 10. Middle: efficiency vs. TCold, where
Emin = 15. For every ĤCold, there exists a tempera-
ture regime (TCold vs. THot) such that Carnot efficiency
cannot be achieved. This happens as TCold gets further
from the temperature of the hot bath THot = 20. Bot-
tom: efficiency vs. THot, where Emin = 15. Similarly,
we see the inability of attaining Carnot efficiency, as THot
increases relative to TCold = 5.
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Evaluating the efficiency in the limit α→ 1
corresponds to the Carnot efficiency.

• For Ω > 1, we show that for the best choice
of ε, the infimum in Eq. (33) for Wext is
obtained at α → ∞. Furthermore, Ω > 1
means that up to leading order terms (with
regards to the quasi-static limit parame-
ters), W1 > W∞ for Wα defined in Eq. (34).
But we know that the quantity W1 gives us
Carnot efficiency. Therefore, the maximum
efficiency is strictly less than the Carnot
value.

5 Discussions and Conclusion

Our work establishes a fundamental result for the
operation of nanoscale heat engines. We find all
cold baths can be used in heat engines; and —
remarkably — that even when one of the heat
baths is as small as a single qubit, as long as
certain conditions of the bath Hamiltonian are
met, Carnot efficiency can still be achieved in the
quasi-static limit. However, Carnot efficiency is
not necessarily always achieved for all baths; in-
stead, achievability depends on the Hamiltonian
structures of the baths. In the case where the cold
bath consists of multiple qubits, we find that for
all values of inverse temperatures βCold and βHot
of the cold and hot baths, there exists an energy
gap Emin(βCold, βHot) of the qubits forming the
cold bath above, in which the optimal quasi-static
efficiency is reduced below the Carnot efficiency.
Viewed from another direction, for a fixed energy
gap Emin(βCold, βHot), whether the Carnot effi-
ciency can be achieved depends on the relation
between THot and TCold as illustrated in Fig. 4.
Loosely speaking, the Carnot efficiency can be
achieved whenever the two temperatures are un-
equal but not too far apart. One might wonder
why this restriction has not been observed before
in the classical scenario. There, the energy spec-
trum of the bath is continuous or forms a quasi-
continuum, and hence we always have access to
the regime where Carnot efficiency is achievable.

Nanoscale heat engines are starting to be con-
structed experimentally [14, 20]. Not all of these
nanoscale heat engines will be able to obtain the
Carnot efficiency due to sub-optimality of the
heat engines. Our results may influence future
nanoscale machine designs, since engineers may
wish to use thermal baths that have small energy

gaps such that Ω is not too large, depending on
the temperature difference between the two baths
involved.

Our result is a consequence of the fact that the
second law takes on a more complicated form in
the nanoregime. It has been known for some time
now that in addition to the standard second law,
many other second laws become relevant and lead
to additional restrictions. However, the implica-
tions of these restrictions on heat engines that
operate in the quantum nanoregime have never
been addressed in full until this paper. From
a statistical perspective, small numbers require
more refined descriptions than provided by av-
erages, and as a result thermodynamics becomes
more complicated when considering systems com-
prised of few particles. Similar effects can also be
observed in information theory, where averaged
quantities as given by the Shannon entropy need
to be supplemented with refined quantities when
we consider finitely many channel uses.

In the macroscopic regime, for completeness,
we ruled out the possibility that the observed lim-
itations on efficiency is a consequence of our de-
mand for near perfect work, or the fact that we
are using systems with discrete (sufficiently large
spaced) spectra. This verification was achieved
by showing that the Carnot efficiency can indeed
always be attained (regardless to the size of an en-
ergy gap if present) when extracting near perfect
work, when we are in such large systems that only
the standard second law is relevant. One might
wonder whether heat engines that do not operate
by extracting an infinitesimal amount of work,
or employing quantum coherences would allow us
to achieve the Carnot efficiency independent of
the structure of the cold bath. As we show in
the Supplementary Material, both do not help.

It would furthermore be satisfying to derive the
explicit form of a hot bath, and machine attain-
ing Carnot — or our reduced Carnot — efficiency.
One might wonder whether a non-trivial machine
(ρM, ĤM) is needed at all in this case. To illus-
trate the dependence on the bath, it was sufficient
to consider a bath comprising solely of qubits.
The tools proposed in the Supplementary Mate-
rial can also be used to study other forms of bath
structures, yet it is a non-trivial question to de-
rive efficiencies for such cold baths.

Most interestingly, there is the extremely chal-
lenging question of deriving a statement that is
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analogous to the Carnot efficiency, but which
makes explicit the trade-off between information
and energy for all possible starting situations. In
a heat engine, we obtain energy from two thermal
baths about which we have minimal information.
It is clear that the Carnot efficiency is thus a spe-
cial case of a more general statement in which we
start with two systems of a certain energy about
which we may have some information, and we
want to extract work by combining them. Indeed,
the form that such a general statement should
take is by itself a beautiful conceptual challenge,
since what we understand as efficiency may not
only be a matter of work obtained vs. energy
wasted. Instead, we may want to take a loss of
information about the initial states into account
when formulating such a fully general efficiency.
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In this Supplementary Material, we detail our findings. Sections A-C are aimed at giving the reader
an overview of the important concepts regarding heat engines, and to introduce the quantities of
interest. Firstly, in Section A we describe the setup of our heat engine, the systems involved, and how
work is extracted and stored. By using this general setup, we then proceed in Section B to introduce
conditions for thermodynamical state transitions in a cycle of a heat engine. In Section C, we introduce
the formal definition of efficiency, and specify how can this quantity be maximized over a set of free
parameters (involving the bath Hamiltonian structure).

After providing these guidelines, we start in Section D to apply the macroscopic law of thermody-
namics. We have performed the analysis with the generalization of allowing for an arbitrarily small
probability of failure. The results in this section might be familiar and known to the reader, however
from a technical perspective, their establishment is helpful for proving our main results (in Section
E) about nanoscale systems. In Section E, we apply the recently discovered generalizations of the
second law for small quantum systems. The results in Section D and Section E are summarized at
the beginning of each section, for the reader to have a concise overview of the distinction between
thermodynamics of macroscopic and nanoscopic systems. Finally, in Section F, we show that even
when considering a more general setup, these results obtained in Section E remain unchanged.

A The general setting for a heat engine
A heat engine is a procedure for extracting work from a temperature difference. It comprises of four
basic elements: two thermal baths at distinct temperatures THot and TCold respectively, a machine, and
a battery. The machine interacts with these baths in such a way that utilizes the temperature difference
between the two baths to perform work extraction. The extracted work can then be transferred and
stored in the battery, while the machine returns to its original state.

In this section, we describe a fully general setup, where all involved systems and changes in energy
are accounted for explicitly. Let us begin with the total Hamiltonian

Ĥt = ĤCold + ĤHot + ĤM + ĤW, (37)

where the indices Hot, Cold, M, W represent a hot thermal bath (Hot), a cold thermal bath (Cold), a
machine (M), and a battery (W) respectively. Let us also consider an initial state

ρ0
ColdHotMW = τ0

Cold ⊗ τ0
Hot ⊗ ρ0

M ⊗ ρ0
W. (38)

The state τ0
Hot (τ0

Cold) is the initial thermal state at temperature THot (TCold), corresponding to the
hot (cold) bath Hamiltonians ĤHot, ĤCold. More generally, we have the following definition

Definition 3. (Thermal state) Given any Hamiltonian Ĥ and temperature T , the thermal state is de-
fined as τ = 1

tr(e−Ĥ/kBT )
e−Ĥ/kBT . For notational convenience, we shall often use inverse temperatures,

defined as βh := 1/kBTHot and βc := 1/kBTCold where kB is the Boltzmann constant.

We will assume throughout that TCold < THot. This is what is meant by “hot”; namely that it is at
a higher temperature than the “cold” bath. The initial machine (ρ0

M, ĤM) can be chosen arbitrarily, as
long as its final state is preserved (and therefore the machine acts like a catalyst).

The aim is to achieve a final reduced state ρ1
ColdHotMW, such that

ρ1
ColdMW = trHot(ρ1

ColdHotMW) = ρ1
Cold ⊗ ρ1

M ⊗ ρ1
W, (39)

where ρ1
M = ρ0

M, i.e. the machine is preserved, and ρ1
Cold, ρ

1
W are the final states of the cold bath

and battery. In Section F, we will consider the case in which there are correlations between the final
state of the cold bath, hot bath, battery and or machine. We will find that the correlations do not
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change our results. For any bipartite state ρAB, we use the notation of reduced states ρA := trB(ρAB),
ρB := trA(ρBA).

Finally, we describe the battery such that the state transformation from ρ0
ColdHotMW to ρ1

ColdHotMW
stores work in the battery. This is done as follows: consider the battery which has a Hamiltonian
(written in its diagonal form)

ĤW :=
nW∑
i=1

EW
i |Ei〉〈Ei|W, (40)

where {EW
i ∈ R}

nW
i=1 are arbitrary while nW ∈ N+ is an arbitrarily large fixed integer. For some

parameter ε ∈ [0, 1), we consider the initial and final states of the battery to be

ρ0
W = |Ej〉〈Ej |W (41)
ρ1
W = (1− ε)|Ek〉〈Ek|W + ε|Ej〉〈Ej |W (42)

respectively. The parameter Wext is defined as the energy difference

Wext := EW
k − EW

j . (43)

where we define EW
k > EW

j such that Wext > 0. We refer to the parameter ε as the probability of
failure of work extraction. Note that ε in Eq. (42) is also the trace distance

d(ρ, σ) = 1
2‖ρ− σ‖1 = 1

2tr
[√

(ρ− σ)†(ρ− σ)
]

(44)

between ρ1
W and |Ek〉〈Ek|W. In Section F, we will generalize this definition to include all final states

of the battery ρ1
W, which are a trace distance ε from the ideal final battery state |Ek〉〈Ek|W. We show

that our findings regarding the achievability of C.E. remains unchanged.
Throughout our analysis, we deal with two distinct scenarios of work extraction as defined below.

Definition 4. (Perfect work) An amount of work extracted Wext is referred to as perfect work when
ε = 0.

The next definition of work involves a condition regarding the von Neumann entropy of the final
battery state. Let ∆S be the von Neumann entropy of the final battery state. When the initial state
ρ0
W is pure, we have

∆S := −tr(ρ1
W ln ρ1

W). (45)

When the final battery state is given by Eq. (42), its probability distribution has its support on a
two-dimensional subspace of the battery system, this definition also coincides with the binary entropy
of ε,

h2(ε) = −ε ln ε− (1− ε) ln(1− ε) = ∆S. (46)

We will see that no heat-engine can actually achieve the value of Carnot efficiency exactly, but moreover,
that under certain conditions; some achieve it as a limiting process.8 For this reason, it is convenient
to introduce the notion of a partially ordered set of heat engines. Roughly speaking, we will say later
that a heat engine can achieve the Carnot efficiency when a heat engine in the closure of the set can
achieve said efficiency. Let SH.E. = {(Wext, ε)} denote a partially ordered set9 of heat engines with
extracted work Wext and corresponding failure parameter ε, introduced above.

Definition 5. (Near perfect work) We say that a partially ordered set of heat engines SH.E. (introduced
above) can achieve near perfect work when

8This subtlety is not unique to nano scale sized systems, but moreover is also true at the macroscopic level. In the
standard formulation of Carnot’s famous results about heat engine efficiency, the Carnot efficiency can only be achieved
in the so-called “quasi-static limit”.

9The partial order is given by the condition Wext ≤W ′ext for two set elements (Wext, ε), (W ′ext, ε
′) ∈ SH.E..
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Figure 5: The setting of a working heat engine.

1) 0 < ε ≤ l, for some fixed l < 1 and

2) For all 1 > p > 0 there exists a non trivial subset SH.E.
p ⊂ SH.E. such that when (Wext, ε) ∈ SH.E.

p ,

0 < ∆S
Wext

< p, (47)

where recall ∆S = ∆S(ε) [see Eq. (46)].

Note that when this definition is used in lemmas and theorems, the precise type of “heat engine” will
be specified, e.g. heat engines satisfying the macroscopic laws of thermodynamics (which are defined
later). In the main text, we have provided a detailed discussion regarding the physical meaning of
perfect work and near perfect work, and the necessity for considering these quantities. In particular,
it is discussed how it can only be achieved as a limiting process. Why we are interested in such limits
will become apparent when we discuss the macroscopic case, even before we derive the efficiency in
the nano regime. As we will see later in the proof to Lemma 5, 1) and 2) in Def. 5 are both satisfied
if and only if

lim
ε→0+

∆S
Wext

= 0. (48)

Since the initial state ρ0
ColdHotMW is diagonal in the energy eigenbasis, and since catalytic thermal

operations do not create coherences between energy eigenstates, therefore ρ1
ColdMW has to be diagonal

in the energy eigenbasis. Furthermore, (as already stated above) in Section F, we extend the setup
to include correlation in the final state between the battery, cold bath and machine and more general
final battery states.

Note that in our model we allow the battery to have arbitrarily many (but finite) eigenvalues. One
can compare this to the two-dimensional battery used in [7], referred to as the wit. Having a minimal
dimension, the wit is a conceptually very useful tool to visualize work extraction. However, it has
the disadvantage that the energy spacing, i.e. the amount of work to be extracted, has to be known
a priori to the work being extracted in order to tune the energy gap of the wit. The more general
battery, which we describe in Eq. (40), requires a higher system dimension, but has the advantage that
it can form a quasi-continuum and thus effectively any amount of work (i.e. any Wext > 0) can be
stored in it without prior knowledge of the work extraction process. We will see that our results are
independent of nW ≥ 2.

To summarize, so far we have made the following minimal assumptions:

(A.1) Product state: There are no initial nor final correlations between the cold bath, machine and
battery. Initial correlations we assume do not exist, since each of the initial systems are brought
independently into the process. This is an advantage of our setup, since if one assumed initial
coherence, one would then have to use unknown resources to generate them in the first place.
We later also show that correlations between the final cold bath and battery do not provide
improvements in maximum extractable work or efficiency.
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(A.2) Perfect cyclicity: The machine undergoes a cyclic process, i.e. ρ0
M = ρ1

M.

(A.3) Isolated quantum system: The heat engine as a whole, is isolated from and does not interact with
the world. This assumption ensures that all possible resources in a work extraction process has
been accounted for.

(A.4) Finite dimension: The Hilbert space associated with ρ0
ColdHotMW is finite dimensional but can be

arbitrarily large. Moreover, the Hamiltonians ĤCold, ĤHot, ĤM and ĤW all have bounded pure
point spectra, meaning that these Hamiltonians have eigenvalues which are bounded.

After defining the set of allowed operations, and describing the desired state transformation process,
one can then ask: what conditions should be fulfilled such that there exists a hot bath (τ0

Hot, ĤHot),
and a machine (ρ0

M, ĤM) such that ρ0
ColdW → ρ1

ColdW is possible? Throughout this document we use
“→” to denote a state transition via catalytic thermal operations.

In Section D, by assuming the macroscopic law of thermodynamics governs the heat engine, we derive
the efficiency of a heat engine, and verify the long known Carnot efficiency as the optimal efficiency.
We do this for both cases where ε = 0 and when ε is arbitrarily small. In Section E, we analyze the
same problem under recently derived second laws, which hold for small quantum systems. We show
that these new second laws lead to fundamental differences to the efficiency of a heat engine.

Throughout our analysis, a particular notion that describes thermodynamical transitions will be
important towards achieving maximum efficiency. We therefore define this technical term, which will
be used throughout the manuscript.

Definition 6. (Quasi-static) A heat engine is quasi-static if the final state of the cold bath is a thermal
state and its inverse temperature βf only differs infinitesimally from the initial cold bath temperature,
i.e. βf = βc − g, where 0 < g � 1.

Since throughout this analysis we frequently deal with arbitrarily small paramaters ε, g, we also
introduce beforehand the notation of order function Θ(x), o(x), which denotes the growth of a function.

Definition 7. (Big Θ, small o notation [63]) Consider two real-valued functions P (x), Q(x). We
say that
1. P (x) = Θ(Q(x)) in the limit x→ a iff there exists c1, c2 > 0 and δ > 0 such that for all |x−a| ≤ δ,
c1 ≤

∣∣∣P (x)
Q(x)

∣∣∣ ≤ c2.

2. P (x) = o(Q(x)) in the limit x→ a iff there exists c3 ≥ 0 such that lim
x→a

∣∣∣∣P (x)
Q(x)

∣∣∣∣ = c3.

Remark 1. In Def.7, if the limit of x is unspecified, by default we take a = 0. In [63], these order
terms were only defined for x → ∞. However, choosing a general limit x → a can be done by simply
defining the variable x′ = 1/(x− a), and x→ a+ is the same as taking x′ →∞.

We also list a few properties of these functions here for x → 0, which will help us throughout the
proof:
a) For any c 6= 0, Θ(c · P (x)) = Θ(P (x)).
b) For any functions P1(x) and P2(x), Θ(P1(x)) + Θ(P2(x)) = Θ (max {|P1(x)|, |P2(x)|}).
c) For any functions P1(x) and P2(x), Θ(P1(x)) ·Θ(P2(x)) = Θ(P1(x)P2(x)).
d) For any functions P1(x) and P2(x), Θ(P1(x))/Θ(P2(x)) = Θ(P1(x)/P2(x)).

Definition 6 has two direct implications for a quasi-static heat engine:

(i) The temperature of the final state of the cold bath Tf , only increases w.r.t. its initial temperature
by an infinitesimal amount, i.e. Tf = TCold + T 2

Cold g + Θ(g2).

(ii) The amount of work extracted is infinitesimal: as we shall see later, the extractable perfect and
near perfect work Wext > 0 (see Defs. (4), (5)) is of order Θ(g). This follows from using Eq. (82)
for the case where ρ1

Cold is a thermal state with inverse temperature βf = βc − g, and calculating
the Taylor expansion of Wext about g = 0.
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B The conditions for thermodynamical state transitions

In this section, we state the laws which govern the transitions from initial, ρ0
ColdHotMW to final,

ρ1
ColdHotMW states for one cycle of our heat engine. By applying these laws, the amount of extractable

work W ext can be quantified and expressed as a function of the cold bath. We distinguish between
two cases, the standard macroscopic regime, and the quantum regime.

B.1 Second law for macroscopic systems
The cold bath, machine and battery form a closed but not isolated thermodynamic system. This
means only heat exchange (and not mass exchange) occurs between these systems and the hot bath.
Therefore, a transition from ρ0

ColdMW to ρ1
ColdMW will be possible if and only if the non-equilibrium free

energy, F does not increase
F (ρ0

ColdMW) ≥ F (ρ1
ColdMW), (49)

where
F (ρ) := 〈Ĥ〉ρ −

1
β
S(ρ), (50)

and S(ρ) := −tr(ρ ln ρ) and 〈Ĥ〉ρ := tr(Ĥρ) being the entropy and the mean energy of state ρ
respectively. Throughout the manuscript, whenever the state is a thermal state at temperature β, we
use the shorthand notation 〈ĤCold〉β and S(β).

The non-equilibrium free energy bears a close relation to the relative entropy,

D(ρ‖σ) = tr(ρ ln ρ)− tr(ρ ln σ). (51)

Whenever ρ and σ are diagonal in the same basis, the relative entropy can be written as

D(ρ‖σ) =
∑
i

pi ln pi
qi
, (52)

where pi, qi are the eigenvalues of ρ and σ respectively. Now, for any Hamiltonian Ĥ, consider τβ =
e−βĤ/Zβ , which is the thermal state at some inverse temperature β, with partition function Zβ =
tr[e−βĤ ], and denote its eigenvalues as qi. Then for any diagonal state ρ with eigenvalues pi, and
denoting {Ei}i as the eigenvalues of Ĥ,

D(ρ‖τβ) =
∑
i

pi ln pi
qi

= −S(ρ) +
∑
i

pi(βEi + lnZβ) = βF (ρ) + lnZβ. (53)

This implies that

F (ρ) = 1
β

[D(ρ‖τβ)− lnZβ]. (54)

In Section D we will solve Eq. (49) in order to evaluate the maximum efficiency.

B.2 Second laws for nanoscopic systems
In the microscopic quantum regime, where only a few quantum particles are involved, it has been shown
that macroscopic thermodynamics is not a complete description of thermodynamical transitions. More
precisely, not only the non-equilibrium free energy, but a whole other family of generalized free energies
have to decrease during a state transition [7]. This places further constraints on whether a particular
transition is allowed. In particular, these laws also give necessary and sufficient conditions, when a
system with initial state ρ0

ColdW can be transformed to final state ρ1
ColdW (both diagonal in the energy

eigenbasis), with the help of any catalyst/machine which is returned to its initial state after the process.
Formally, these laws correspond to the following case: A transition from the initial state ρ0

ColdMW
to the final state ρ1

ColdMW, is possible iff there exists an energy-preserving unitary U(t) on the global
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system, (i.e. a unitary that obeys [U(t), ĤColdHotMW] = 0), where states ρ0
ColdMW, ρ1

ColdMW are of
the form Section described in A (i.e. the state of the machine ρ0

M is preserved). If (τ0
Hot, ĤHot) and

(ρ0
M, ĤM) can be arbitrarily chosen, these correspond to the set of catalytic thermal operations [7] one

can perform on the joint state ColdW. This implies that the cold bath is used as a resource state.
We can apply these second laws to our scenario by associating the catalyst with ρ0

M, and considering
the state transition ρ0

W ⊗ τ0
Cold → ρ1

W ⊗ ρ1
Cold as described in Section A. Note that the initial state

ρ0
W ⊗ τ0

Cold is block-diagonal in the energy eigenbasis (for the battery by our choice, and for the cold
bath because it is a thermal state). By catalytic thermal operations, the final state is also block-
diagonal in the energy eigenbasis. Furthermore, according to the second laws in [7], the transition
from ρ0

W ⊗ τ0
Cold → ρ1

W ⊗ ρ1
Cold is then possible iff

Fα(τ0
Cold ⊗ ρ0

W, τ
h
ColdW) ≥ Fα(ρ1

Cold ⊗ ρ1
W, τ

h
ColdW) ∀α ≥ 0, (55)

where τhColdW is the thermal state of the system at temperature THot of the surrounding bath. The
quantity Fα(ρ, σ) for α ≥ 0 corresponds to a family of free energies defined in [7], which can be written
in the form

Fα(ρ, τ) = 1
βh

[Dα(ρ‖τ)− lnZh] , (56)

where Dα(ρ‖τ) are known as α-Rényi divergences. Sometimes we will use the short hand F∞ :=
limα→∞ Fα. On occasion, we will refer to a particular transition as being possible/impossible according
to the Fα free energy constraint. By this, we mean that for that particular value of α and transition,
Eq. (55) is satisfied/not satisfied. The α-Rényi divergences can be defined for arbitrary quantum
states, giving us necessary (but insufficient) second laws for state transitions [7, 13]. However, since we
are analyzing states which are diagonal in the same eigenbasis, the Rényi divergences can be simplified
to

Dα(ρ‖τ) = 1
α− 1 ln

∑
i

pαi q
1−α
i , (57)

where pi, qi are the eigenvalues of ρ and the state τ . The cases α = 0 and α → 1 are defined by
continuity, namely

D0(ρ‖τ) = lim
α→0+

Dα(ρ‖τ) = − ln
∑
i:pi 6=0

qi, (58)

D1(ρ‖τ) = lim
α→1

Dα(ρ‖τ) =
∑
i

pi ln pi
qi
, (59)

and we also define D∞ as

D∞(ρ‖τ) = lim
α→∞+

Dα(ρ‖τ) = ln max
i

pi
qi
. (60)

The quantity D1(ρ‖τ) coincides with D(ρ‖τ), as we have defined in Eq. (51), and evaluated in Eq. (52)
for diagonal states. We will often use this convention. Furthermore, since we are considering initial
states which are block-diagonal in the energy eigenbasis, these generalized second laws are both nec-
essary and sufficient conditions for state transformations. Therefore, in Section E.2.1 we will solve
Eq. (55) explicitly to find an expression for Wext with the ultimate goal of evaluating the maximum
efficiency in this regime.

The reader should note that for both Section B.1 and B.2, the conditions for state transformation
place upper bounds on the quantity Wext. In particular, this allows us to express the maximum values
Wext can take (such that the joint state transformation of cold bath and battery is possible) in terms
of quantities related to the cold bath, and the error probability ε. It is also worth comparing the
conditions for state transformation in Section B.1 and B.2, which are stated in Eqs. (49) and (55). In
particular, Eq. (49) is but a particular instance of Eq. (55), and therefore the nanoscopic second laws
always place a stronger upper bound on Wext compared to the macroscopic second law.
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C Efficiency, maximum efficiency and how to evaluate it
The central quantity of interest in this article is the efficiency of heat engines. Since we have already
introduced the notion of a heat engine in Section A, and the rules which govern the possibility of
thermodynamical transitions of one cycle of a heat engine in Section B, it is timely to define the
efficiency. After defining this quantity, we demonstrate how to go about calculating its maximum
value under different conditions, such as for perfect work, near perfect work, in both the macroscopic
and nanoscopic regimes. This will prepare the scene for Sections D and E, where we evaluate the
maximum efficiency more explicitly.

C.1 Definition of efficiency and maximum efficiency
As stated in the main text, the efficiency of a particular heat engine (recall that a heat engine is defined
by its initial and final states ρ0

ColdHotMW, ρ
1
ColdHotMW as described in Section A) is defined as

η := Wext
∆H , (61)

where Wext is the amount of work extracted which is defined in Eq. (43), and ∆H is the amount of
mean energy drawn from the hot bath, namely ∆H := tr(ĤHotρ

0
Hot)− tr(ĤHotρ

1
Hot), where ρ1

Hot is the
reduced state of the hot bath.

Now, consider the set of conditions on state transformations given by Eq. (55) for nanoscale systems.
As discussed in Section B, these conditions place a restriction on the range of values Wext can take.
Therefore, for any fixed ρ1

Cold, we define η
nano(ρ1

Cold) as the maximum achievable efficiency as a function
of the final state of the cold bath. More precisely,

ηnano(ρ1
Cold) (62)

= sup
Wext

η(ρ1
Cold) subject to Fα(ρ0

W ⊗ τ0
Cold, τ

h
ColdW) ≥ Fα(ρ1

W ⊗ ρ1
Cold, τ

h
ColdW) ∀α ≥ 0. (63)

In Eq. (62), we have written the quantity in Eq. (61) as η = η(ρ1
Cold) to remind ourselves of its explicit

final cold bath state dependency. Therefore, the maximum efficiency will correspond to maximizing
over the final state of the cold bath:

ηmax = sup
ρ1
Cold∈S

ηnano(ρ1
Cold), (64)

where S is the space of all quantum states in HCold. By analyzing this quantity in Section E, we show
that perfect work cannot be extracted. Therefore, when we calculate the maximization in Eq. (64) we
will consider near perfect work (see Def. 5).

In the macro regime, we have to satisfy a less stringent requirement, namely the macroscopic second
law of thermodynamics. And hence we have that for fixed ρ1

Cold, η
mac(ρ1

Cold) is the maximum efficiency
as a function of ρ1

Cold

ηmac(ρ1
Cold) = sup

Wext

η(ρ1
Cold) subject to F (ρ0

ColdMW) ≥ F (ρ1
ColdMW) (65)

and tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (66)

where Ĥt is defined in Eq. (37). Similarly to the nanoscale setting, the maximum efficiency is

ηmax = sup
ρ1
Cold∈S

ηmac(ρ1
Cold). (67)

We can also define the maximum quasi-static efficiencies for the macro and nano scale. The maximum
efficiency of a quasi-static heat engine (see Def. 6), is

ηstat
max = lim

g→0+
ηnano(τ(g)), (68)

ηstat
max = lim

g→0+
ηmac(τ(g)), (69)
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for the nanoscopic and macroscopic cases respectively. τ(g) ∈ HCold is the thermal state with Hamil-
tonian ĤCold at temperature βf = βc−g and ηnano, ηmac are defined in Eqs. (62) and (65) respectively.
Since we can extract perfect and near perfect work in the macroscopic setting, we will derive the
efficiency for both cases in Section D.

C.2 Finding a simplified expression for the efficiency

We can find a more useful expression for ∆H appearing in Eq. (61). This can be obtained by observing
that since only energy preserving operations are allowed, we have

tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (70)

where Ĥt = ĤHot+ĤCold+ĤM+ĤW. Since the Hamiltonian does not contain interaction terms between
these systems, the mean energy depends only on the reduced states of each system. Mathematically, it
means that Eq. (70) can be written as

tr(ĤHotρ
0
Hot) + tr(ĤColdρ

0
Cold) + tr(ĤMρ

0
M) + tr(ĤWρ

0
W) = (71)

tr(ĤHotρ
1
Hot) + tr(ĤColdρ

1
Cold) + tr(ĤMρ

1
M) + tr(ĤWρ

1
W). (72)

Also, note that since ρ0
M = ρ1

M, therefore tr(ĤMρ
0
M) = tr(ĤMρ

1
M). This implies that we have

∆H = ∆C + ∆W, (73)

where

∆C := tr
[
ĤColdρ

1
Cold

]
− tr

[
ĤColdτ

c
Cold

]
, (74)

and

∆W := tr(ĤWρ
1
W)− tr(ĤWρ

0
W). (75)

are the change in average energy of the cold bath and battery. We can thus write Eq. (61) as

η = Wext

∆W + ∆C . (76)

Furthermore, from Eqs. (41), (42), (43) and (75), we have ∆W = (1− ε)Wext, and hence we can write
the inverse efficiency as

η−1(ρ1
Cold) = 1− ε+ ∆C(ρ1

Cold)
Wext(ρ1

Cold)
, (77)

where we have made explicit the ρ1
Cold dependency. We already know from the setting that ρ0

Cold is
thermal. If ρ1

Cold is also a thermal state at some temperature β according to the cold bath Hamilto-
nian ĤCold, we will sometimes use the shorthand notation η(β) for η(ρ1

Cold) and ∆W (β), ∆C(β) for
∆W (ρ1

Cold), ∆C(ρ1
Cold) respectively.

In Section D, we will derive an expression for Wext and solve Eqs. (65), (67). In Section E, we will
derive a new expression for Wext in the nanoscopic regime, and solve Eqs. (62), (64).

D Efficiency of a heat engine according to macroscopic thermodynamics
In this section, we study the efficiency of the setup detailed in Section A under the constraints of
macroscopic thermodynamics, as described in Section B.1. This implies that the non-equilibrium free
energy solely dictates whether ρ0

ColdW → ρ1
ColdW is possible. We find that in both cases of extracting

perfect and near perfect work,
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(1) The maximum achievable efficiency is the Carnot efficiency.

(2) The Carnot efficiency can be achieved for any cold bath Hamiltonian.

(3) For any ∆C, the maximum efficiency achievable for the particular value of ∆C, is achieved iff the
final state of the cold bath is thermal (according to a different temperature Tf ).

(4) When the final state of the cold bath is thermal, the Carnot efficiency is achieved iff we take
the limit corresponding to a quasi-static heat engine (Eq. (69)). Roughly speaking, this means
that there is only infinitesimal change in the final temperature of the cold bath, compared to its
original state.

This section can be summarized as follows: in Section D.1, we first apply the macroscopic law of
thermodynamics, namely the fact that non-equilibrium free energy is non-increasing, to our heat engine
setup. By making use of energy conservation, we can derive the amount of maximum extractable work
as shown in Eq. (81). Next, in Section D.2 we show that when considering the extraction of perfect
work, we show the points (1)-(4) as stated above. In Section D.3, we show that points (1)-(4) hold
also when considering near perfect work.

The main results can be found in Theorem 1 and Lemma 6. One may think points (1)-(4)
are obvious since it has long been known that the optimal achievable efficiency of a heat engine
operating between two thermal baths is the Carnot efficiency, and that this efficiency can be achieved
quasi-statically. The motivations for proving these results here are two-fold. Firstly, this is a rigorous
and mathematical proof of optimality, while usually one encounters arguments such as reversibility,
or that the heat engine must remain in thermal equilibrium at all times during the working of the
heat engine. Secondly, we will find later on at the nano/quantum scale that the Carnot efficiency can
be achieved but observation (2) does not hold anymore. For these reasons, it is worthwhile proving
that one can actually achieve points (1)-(4) in this setting for any cold bath Hamiltonian according
to macroscopic thermodynamics. From a practical point of view, many of the technical results proved
here will be needed in the proofs of Section E, where we derive results involving a more refined set
of generalized free energies, which describes thermodynamic transitions for nanoscale quantum systems.

D.1 Maximum extractable work according to macroscopic law of thermodynamics

Our first task is to find an expression for Wext in the macro regime. We do so by solving Eq. (49) for
Wext such that

〈ĤColdMW〉ρ1
ColdMW

− 1
βh
S(ρ1

ColdMW) ≤ 〈ĤColdMW〉ρ0
ColdMW

− 1
βh
S(ρ0

ColdMW). (78)

The entropy is an additive quantity under tensor product, meaning that S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)
for any states ρ1, ρ2. Furthermore, since the joint Hamiltonian does not contain interaction terms,
therefore the mean energy also depends only on the reduced states. In summary, both S and 〈Ĥ〉 are
additive under a tensor product structure of ρ0

ColdMW and ρ1
ColdMW as described in Eqs. (38) and (39).

This means one can rewrite Eq. (78) by expanding its terms,

〈ĤCold〉ρ1
Cold

+ 〈ĤM〉ρ1
M

+ 〈ĤW〉ρ1
W
− 1
βh

[
S(ρ1

Cold) + S(ρ1
M) + S(ρ1

W)
]
≤ (79)

〈ĤCold〉ρ0
Cold

+ 〈ĤM〉ρ0
M

+ 〈ĤW〉ρ0
W
− 1
βh

[
S(ρ0

Cold) + S(ρ0
M) + S(ρ0

W)
]
,

Furthermore, note that ρ0
M = ρ1

M, and therefore S(ρ0
M), 〈ĤM〉ρ0

M
are common terms on both sides of Eq.

(79) which can be cancelled out. Furthermore, by our construction of the battery in Eqs. (40)-(43),
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we have that S(ρ0
W) = 0, S(ρ1

W) = ∆S = h2(ε) and 〈ĤW〉ρ0
W

= EW
j and 〈ĤW〉ρ1

W
= (1− ε)EWk + εEWj .

Thus, Eq. (79) can be simplified to

(1− ε)Wext + 〈ĤCold〉ρ1
Cold
− 1
βh
S(ρ1

Cold) ≤ 〈ĤCold〉ρ0
Cold
− 1
βh
S(ρ0

Cold) + 1
βh

h2(ε), (80)

where Wext has been defined in Eq. (43). In other words, (1− ε)Wext ≤ F (ρ0
Cold)−F (ρ1

Cold) + 1
βh
h2(ε).

We can also express Wext with the relative entropy instead, by using Eq. (54). We can apply this
identity to Eq. (80) whenever the initial and final states are diagonal in the energy eigenbasis. Note
that the initial ρ0

Cold is a thermal state (of some temperature), and therefore diagonal in the energy
eigenbasis. Since we start with a state τ0

Cold ⊗ ρ0
W which is diagonal w.r.t. the Hamiltonian, and since

catalytic thermal operations can never increase coherences between energy eigenstates (or in the macro
setting, since we only demand mean energy conservation), we know that the final state ρ1

Cold ⊗ ρ1
W is

also diagonal in the energy eigenbasis. Therefore, Eq. (80) can be rewritten w.r.t. the relative entropies
as follows

(1− ε)Wext ≤ F (ρ0
Cold)− F (ρ1

Cold) + 1
βh

h2(ε) = 1
βh

[
D(ρ0

Cold‖τhCold)−D(ρ1
Cold‖τhCold) + h2(ε)

]
. (81)

D.2 Maximum efficiency for perfect work is Carnot efficiency
In this section, we want to find the maximum efficiency according to Eqs. (61), (65) and (67), for the
case of ε = 0 which implies h2(ε) = 0. We do this by the following steps:

1. Evaluate Wext. According to Eq. (81), we know that

Wext = F (ρ0
Cold)− F (ρ1

Cold) = 1
βh

[
D(ρ0

Cold‖τhCold)−D(ρ1
Cold‖τhCold)

]
, (82)

where recall that we have defined τhCold previously as the thermal state of system Cold with tem-
perature THot. Note that here equality can be achieved because in macroscopic thermodynamics,
satisfying the free energy constraint is a necessary and sufficient condition for the possibility of a
state transformation. Note that since by construction the initial and final states of the battery
are pure energy eigenstates, namely ε = 0 and therefore

Wext = ∆W. (83)

2. Write inverse maximum efficiency as optimization problem. By substituting the simplified expres-
sion for efficiency derived in Eq. (77) into Eq. (67), we have

η−1
max = inf

ρ1
Cold

(ηmac)−1 = 1 + inf
ρ1
Cold

∆C
Wext

. (84)

3. Maximize Wext given a fixed value of ∆C. This is done in Lemma 1, where we show that given a
fixed ∆C, the final cold bath state that maximizesWext is uniquely a thermal state, corresponding
to a certain inverse temperature β′.

4. Show that 3) implies that efficiency is maximized by a thermal state of the cold bath. This is proven
in Lemma 2. Therefore, this implies one only needs to optimize Eq. (84) over one variable, i.e.
βf , the final temperature of the cold bath.

5. Show that the efficiency is strictly increasing with βf . This is done first by proving several iden-
tities, which are summarized in Corollary 1. Using these identities, we prove in Lemma 4 that
the first derivative of efficiency w.r.t. βf is always positive over the range where Wext > 0. This
leads us to conclude, in Theorem 1, that maximum efficiency is achieved in the limit βf → βc,
and evaluating the efficiency at this limit gives us the Carnot efficiency.
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Firstly, let us develop a technical Lemma 1, which concerns the unique solution towards maximizing
Wext for a fixed ∆C. By applying Lemma 1, we show in Lemma 2 that the maximal efficiency is
achieved when ρ1

Cold is a thermal state. The reader can easily find similar proofs in [64].

Lemma 1. Given any Hamiltonian ĤCold, a corresponding thermal state τhCold of some temperature
βh, and a fixed initial state ρ0

Cold, consider the maximization over final states ρ1
Cold,

max
ρ1

Cold

Wext = 1
βh

[
D(ρ0

Cold‖τhCold)− min
ρ1

Cold

D(ρ1
Cold‖τhCold)

]
. (85)

over all states ρ1
Cold which are diagonal in the energy eigenbasis, subject to the constraint that ∆C is a

constant. Then the solution for ρ1
Cold is unique, and ρ is a thermal state according to the Hamiltonian

ĤCold at a certain temperature β′.

Proof. Firstly, from Eq. (74) we see that the constraint ∆C being a constant, is the same as
tr
[
ĤColdρ

1
Cold

]
being a constant. This is because they differ only by a constant term. On the other

hand, from Eq. (75) and (83), we can see that maxρ1
Cold

Wext is equal to the R.H.S. of Eq. (85). Since
ρ1

Cold and τ are both diagonal in the energy eigenbasis (ρ1
Cold by the statement in the lemma, and

τ by it being a thermal state), one can evaluate the relative entropy by using Eq. (51). Denote the
eigenvalues of our variable ρ1

Cold to be {pi}i, and the eigenvalues of the thermal state τ to be {qi}i.
We can then write the optimization problem as

min
{pi}

∑
i

pi(ln pi − ln qi); subject to
∑
i

piEi = c constant, and
∑
i

pi = 1.

where qi = e−βEi

Zβ
; Zβ =

∑
i

e−βEi .

We can now employ techniques of Lagrange multipliers to solve this optimization. The constrained
Lagrange equation is

L({pi}, λ) =
∑
i

pi(ln pi − ln qi) + λ

(∑
i

Eipi − c
)

+ µ

(∑
i

pi − 1
)
, (86)

dL

dpi
= (ln pi − ln qi + 1 + λEi + µ) = 0, (87)

dL

dλ
=
∑
i

Eipi − c = 0. (88)

dL

dµ
=
∑
i

pi − 1 = 0. (89)

We find that the normalized solution is

pi = e−β
′Ei

Zβ′
, Zβ′ = e(1+µ)Zβ, (90)

and pi are probabilities corresponding to the Boltzmann distribution, according to inverse temperature
β′ = β+λ. Depending on the mean energy constraint c and normalization condition, one can solve for
the Lagrange multipliers λ and µ. With this we conclude that the state ρ which maximizes D(ρ1

Cold‖τ)
is a thermal state, where its temperature is such that the constraint on mean energy is satisfied.

Lemma 2. Consider the work extraction process described by the state transformation ρ0
ColdMW →

ρ1
ColdMW, where ρ0

Cold, ρ0
W and ρ1

W have been described in Section A. Denote HCold as the Hilbert space
of the cold bath. Then the maximal efficiency in Eq. (84) is obtained for a final state of the cold bath
ρ1

Cold, which is thermal:

η−1
max = 1 + inf

ρ1
Cold∈Sτ

∆C
Wext

, (91)

Accepted in Quantum 2019-07-22, click title to verify. Published under CC-BY 4.0. 29



where Sτ the set of all thermal states (for ĤCold with any temperature T > 0) in HCold. Furthermore,
all non-thermal states do not achieve the maximum efficiency, i.e.

η−1
max < 1 + ∆C

Wext

∣∣∣
ρ1

Cold

for any ρ1
Cold ∈ S \ Sτ . (92)

where S is the space of all quantum states in HCold

Proof. First of all, note that without loss of generality we can always consider only diagonal states, as
explained in the paragraph before Eq. (81) that catalytic thermal operations do not increase coherences
between energy eigenstates. We begin by substituting Eqs. (74) and (82) into Eq. (84), and finding

η−1
max = 1 + inf

ρ1
Cold

∆C
Wext

(93)

= 1 + inf
ρ1

Cold

βh∆C
D1(τ cCold‖τhCold)−D1(ρ1

Cold‖τhCold)
(94)

= 1 + βh

 sup
ρ1

Cold

D1(τ cCold‖τhCold)−D1(ρ1
Cold‖τhCold)

tr(ĤColdρ1
Cold)− tr(ĤColdτ cCold)

−1

. (95)

In the last line of Eq. (95), we see that only two terms depend on the maximization variable ρ1
Cold.

This means we can perform the maximization in two steps:

sup
ρ1

Cold

D1(τ cCold‖τhCold)−D1(ρ1
Cold‖τhCold)

tr(ĤColdρ1
Cold)− tr(ĤColdτ cCold)

= sup
A>0

D1(τ cCold‖τhCold)−B(A)
A

(96)

where B(A) is the optimal value of a separate minimization problem:

B(A) = inf
ρ1

Cold∈S
tr(HColdρ

1
Cold)−tr(ĤColdτ

c
Cold)=A

D1(ρ1
Cold‖τhCold) (97)

From Lemma 1, we know that the solution of the sub-minimization problem in Eq. (97) has a unique
form, namely ρ1

Cold = τ fCold is a thermal state of some temperature βf . Therefore, Eq. (96) can be
simplified to

sup
ρ1

Cold

D1(τ cCold‖τhCold)−D1(ρ1
Cold‖τhCold)

tr(ĤColdρ1
Cold)− tr(ĤColdτ cCold)

= sup
βf

D1(τ cCold‖τhCold)−D1(τ fCold‖τhCold)
tr(ĤColdτ

f
Cold)− tr(ĤColdτ cCold)

. (98)

Whats more, for every constant A, the function

f(x) =

1 + βh

[
D1(τ cCold‖τhCold)− x

A

]−1
−1

(99)

is bijective in x ∈ R and thus due to the uniqueness of the sub-minimization problem in Eq. (97), we
conclude that for all non-thermal states ρ1

Cold, the corresponding efficiency will be strictly less than
that of Eq. (95). Thus from Eq. (98) and (95) we conclude the lemma.

After establishing Lemma 2, we can continue to solve the optimization problem in Eq. (84) by only
looking at final states which are thermal (according to some final temperature βf which we optimize
over). In the next Lemma 3 and Corollary 1, we derive some useful and interesting identities. These
identities concern quantities such as the derivatives of mean energy and entropy of the thermal state
(with respect to inverse temperature), and relates them to the variance of energy. The reader can find
similar proofs in any standard thermodynamic textbook (For example in Sections 6.5, 6. of [60]), but
we derive them here for completeness.
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Lemma 3. For any cold bath Hamiltonian ĤCold, consider the thermal state τβ = 1
Zβ
e−βĤCold with

inverse temperature β. Define 〈ĤCold〉β = tr(ĤColdτβ), and S(β) = −τβ ln τβ to be the mean energy
and entropy of τβ. Then the following identities hold:

d〈ĤCold〉β
dβ

= −var(ĤCold)β (100)

dS(β)
dβ

= −β · var(ĤCold)β, (101)

where var(ĤCold)β = 〈Ĥ2
Cold〉β − 〈ĤCold〉2β is the variance of energy for τβ.

Proof. Intuitively we know that the expectation value of energy increases as temperature increases (or
as the inverse temperature decreases). More precisely, consider the probabilities of τβ for each energy
level of the Hamiltonian Ei,

pi = e−βEi

Zβ
, where Zβ =

∑
i

e−βEi

dpi
dβ

= 1
Z2
β

[
−Eie−βEi · Zβ −

dZβ
dβ
· e−βEi

]
= −piEi −

1
Zβ

dZβ
dβ

pi = −piEi + pi〈ĤCold〉β. (102)

The last equality holds because of the following identity:
−1
Z

dZ

dβ
= −1

Z

∑
i

(−Ei)e−βEi =
∑
i

piEi = 〈ĤCold〉β. (103)

Therefore, we have

d〈ĤCold〉β
dβ

=
∑
i

d〈ĤCold〉β
dpi

dpi
dβ

=
∑
i

Ei ·
[
−piEi + pi〈ĤCold〉β

]
(104)

= −〈Ĥ2
Cold〉β + 〈ĤCold〉2β = −var(ĤCold)β. (105)

On the other hand, similarly, one can prove the second identity by writing down the expression of
entropy for the thermal state,

S(β) = −
∑
i

e−βEi

Zβ
ln e

−βEi

Zβ
=
∑
i

βEi
e−βEi

Zβ
+ lnZβ

∑
i

e−βEi

Zβ
= β〈ĤCold〉β + lnZβ. (106)

Therefore, the derivative of S(β) w.r.t. β is

dS(τβ)
dβ

= 〈ĤCold〉β + β
d〈ĤCold〉β

dβ
+ 1
Zβ

dZβ
dβ

= β · d〈ĤCold〉β
dβ

= −β · var(ĤCold)β. (107)

By using Lemma 3 in a special case, we obtain the following corollary:

Corollary 1. Given any Hamiltonian ĤCold, consider the quantities

∆C(βf ) = tr(ĤColdτβf )− tr(ĤColdτβc) = 〈ĤCold〉βf − 〈ĤCold〉βc (108)

and

Wext(βf ) = F (τβc)− F (τβf ) = 1
βh

[
D(τβc‖τβh)−D(τβf ‖τβh)

]
, (109)

where τβ corresponds to the thermal state defined by ĤCold at inverse temperature β. Then

d∆C(βf )
dβf

= −var(ĤCold)βf (110)

dWext(βf )
dβf

= βh − βf
βh

var(ĤCold)βf . (111)
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Proof. For ∆C(βf ), it is straightforward from Lemma 3 that

d∆C(βf )
dβf

=
d〈ĤCold〉βf

dβf
= −var(ĤCold)βf . (112)

On the other hand, ∆W (βf ) can be simplified by substituting Eq. (54) into Eq. (109),

Wext(βf ) = F (τβc)− F (τβf ) = 〈ĤCold〉βc − 〈ĤCold〉βf −
1
βh

[
S(τβc)− S(τβf )

]
. (113)

With this, we can evaluate the derivative

dWext(βf )
dβf

= −
d〈ĤCold〉βf

dβf
+ 1
βh

dS(τβf )
dβf

= var(ĤCold)βf −
βf
βh

var(ĤCold)βf

= βh − βf
βh

var(ĤCold)βf .

The second equality is obtained by Lemma 3 for
d〈ĤCold〉βf

dβf
, and the third by grouping common factors

together.

In the next step, by using Corollary 1, we show that when the final state of the cold bath is thermal,
the optimal efficiency is achieved only in the quasi-static limit, i.e. in the limit βf → βc when the
efficiency is optimised over all final thermal states of the cold bath.

Lemma 4. Evaluate the efficiency expressed in Eq. (77) for the situation where the final state of the
cold bath is a thermal state at inverse temperature βf :

η(βf ) = Wext(βf )
∆C(βf ) +Wext(βf ) . (114)

Then for all βf < βc,
dη(βf )
dβf

> 0.

Proof. To prove this, we show that dη−1

dβf
< 0, where η−1 = 1 + ∆C

Wext
. Evaluating the derivative of η−1

w.r.t. βf , we obtain

dη−1

dβf
= 1
W 2

ext
·
[
d∆C(βf )
dβf

Wext −
dWext(βf )

dβf
∆C

]
(115)

=
var(ĤCold)βf

W 2
ext

·
[
−Wext −

βh − βf
βh

∆C
]

(116)

=
var(ĤCold)βf

W 2
ext

·
[
∆C + 1

βh

[
S(τβc)− S(τβf )

]
− βh − βf

βh
∆C

]
(117)

=
var(ĤCold)βf

W 2
ext

βf
βh
·
[
∆C − 1

βf
[S(τβf )− S(τβc)]

]
. (118)

The first equality is obtained by invoking the chain rule of differentiation. The second equality is
obtained by substituting dWext

dβf
, d∆C
dβf

, as evaluated earlier in Corollary 1. The third equality is obtained
by expressing Wext according to Eq. (113), plus recognizing that 〈ĤCold〉τβf − 〈ĤCold〉τβc = ∆C. The
last inequality is obtained, simply by taking out a common term βf/βh. We then make the following
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observations:
1) The factor

βf
βhW

2
ext

> 0, (119)

2) The variance of energy for any positive temperature

var(ĤCold)βf > 0, (120)

3) and the last term ∆C − 1
βf

[S(τβf )− S(τβc)] can be written as F (τβf )−F (τβc), where F is the free
energy of a system w.r.t. a bath with inverse temperature βf . But then, since τβf is the thermal state
with the same inverse temperature, this means that τβf is the unique state that minimizes free energy.
Therefore, F (τβc)− F (τβf ) > 0 for any τβc .

From Lemma 2 and Lemma 4, we conclude that the maximization of efficiency for any Hamiltonian
Ĥ happens for a final state which is thermal, and the greater its inverse temperature βf , the higher
efficiency is. With these lemmas we can now prove the main result of this section (Theorem 1).

In the next theorem, we evaluate the efficiency at the limit βf → β−c , and show that it corresponds
to the Carnot efficiency.

Theorem 1 (Carnot Efficiency). Consider all heat engines which extract perfect work (see Defini-
tion 4). Then according to the macroscopic second law of thermodynamics, the maximum achievable
efficiency (see Eq. (67)) is the Carnot efficiency

ηmax = 1− βh
βc
. (121)

It can be obtained for all cold bath Hamiltonians ĤCold, but when the final state of the cold bath ρ1
Cold

is thermal, then only for quasi-static heat engines (as defined in Def. 6 and Eq. (69) for quasi-static
maximum efficiency). In this quasi-static limit, an infinitesimal amount of work is extracted.

Proof. From Eq. (67), we have an expression for the optimal efficiency in terms of a maximization
over final cold bath states ρ1

Cold ∈ S. By Lemma 2, we know that the optimal solution is obtained
only for thermal states. Subsequently, by Lemma 4, it is shown that when the final cold bath is of
temperature βf , the corresponding efficiency is strictly increasing w.r.t. βf . Also note that since by
definition Wext > 0, this implies that βf < βc. Intuitively, this is because heat cannot flow from a cold
to hot system without any work input. One can also see this mathematically, by showing that for any
β ≥ βh,

dF (τβ)
dβ

= d

dβ

[
〈ĤCold〉β −

1
βh
S(β)

]
=
(
β

βh
− 1

)
var(ĤCold)β ≥ 0. (122)

This implies that if βf ≥ βc ≥ βh, then F (βf ) ≥ F (βc), and according to Eq. (109) Wext ≤ 0.
Therefore, when the final state of the cold bath ρ1

Cold is thermal, the optimal efficiency must be
achieved only when its inverse temperature βf approaches βc from below. Let βf = βc − g, where
g > 0. Then we have

η−1
max = lim

g→0+
(ηmac)−1(βc − g), (ηmac)−1(βc − g) = 1 + ∆C

Wext

∣∣∣
ρ1

Cold=τ(βc−g)
. (123)

Since as g → 0+, both the numerator and denominator vanish, we can evaluate this limit by first
applying L’Hôspital rule, the chain rule for derivatives (for any function F , dF

dg = − dF
dβf

), and then
Corollary 1 to obtain

lim
g→0+

∆C
Wext

= lim
g→0+

d∆C
dg

dWext
dg

= lim
βf→β−c

d∆C
dβf
dWext
dβf

= βh
βc − βh

.
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This implies that

η−1
max = lim

g→0+
(ηmac)−1(βc − g) = 1 + βh

βc − βh
= βc
βc − βh

(124)

and hence ηmax = 1− βh
βc
.

D.3 Maximum efficiency for near perfect work is still Carnot efficiency
In this section, we show that even while allowing a non-zero failure probability ε > 0 in the near perfect
work scenario, the maximum achievable efficiency is still the Carnot efficiency. It is worth noting that
this result is also important later, as an upper bound to maximum efficiency in the nanoscopic regime.
We first prove it in Lemma 5 for the case where the final state of the battery is fixed as in Eq. (42).
Then later, we show in Lemma 6 that Carnot efficiency is still the maximum, even if we allow a more
general final battery state. Before we present the proof, it is useful for the reader to recall the definition
of near perfect work (Def. 5) and quasi-static heat engines (Def. 6).

Lemma 5. Consider all heat engines which extract near perfect work (see Def. 5). Then according
to the macroscopic second law of thermodyanmics, the maximum efficiency of a heat engine, ηmax is
the Carnot efficiency

ηmax = sup
ρ1

Cold∈S
ηmac(ρ1

Cold) = 1− βh
βc
, (125)

and the supremum is achieved for quasi-static heat engines (see Def. (6) and Eq. (69)).

Proof. The ideas in this proof are very similar to that of Section D.2, and the main complication
comes from proving that even if we allow ε > 0, as long as ∆S/Wext is arbitrarily small, the maximum
efficiency cannot surpass the Carnot efficiency.
Let us begin by establishing the relevant quantities for near perfect work extraction. The amount

of work extractable from the heat engine, when we have a probability of failure, according to the
standard free energy can be obtained by solving Eq. (81). We thus have that the maximum Wext is

Wext = β−1
h (1− ε)−1

[
D(τβc‖τβh)−D(ρ1

Cold‖τβh) + ∆S
]
, (126)

where ∆S is defined in Eq. (45).
Before we continue with the analysis, we will note a trivial consequence of Eq. (126). Condition 1)

in Def 5 implies that (1− ε)−1 is upper bounded. The terms in square brackets in Eq. (126) are also
clearly upper bounded for finite βc, βh. Hence Wext is bounded from above. ∆S is solely a function
of ε and only approaches zero in the limits ε→ 0+, ε→ 1−; and ε→ 1− is forbidden by 1) in Def 5.
Thus if 1) and 2) in Def 5 are satisfied,

lim
ε→0+

∆S
Wext

= 0. (127)

In turn, if Eq. (127) is satisfied, then we have near perfect work by Def. 5. Thus Eq. (127) is satisfied
iff we have near perfect work. We will use this result later in the proof.
Extracting a positive amount of near perfect work implies that we can rule out all states ρ1

Cold
such that D(τβc‖τβh) ≤ D(ρ1

Cold‖τβh) from the analysis. This can be proven by contradiction: if
D(τβc‖τβh) ≤ D(ρ1

Cold‖τβh), then from Eq. (126) βhWext ≤ ∆S/(1− ε) and together with 2) in Def 5
this would imply

0 < βh(1− ε) ≤ ∆S
Wext

< p. (128)

However, since from 1) Def. 5 we have ε ≤ l, Eq. (128) cannot be satisfied for all p > 0, leading to a
contradiction.
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From Eq. (77) we have

η−1
max = 1− ε+ inf

ρ1
Cold∈S

∆C
Wext

= (1− ε) ·
[
1 + βh∆C

D(τβc‖τβh)−D(ρ1
Cold‖τβh) + ∆S

]
, (129)

where ∆C = ∆C(ρ1
Cold) and is defined in Eq. (74).

Firstly, let us show that with a similar analysis as shown in Lemma 2, the maximum efficiency
occurs when ρ1

Cold is a thermal state. From Eq. (129), we have

η−1
max = (1− ε)

[
1 + βh inf

ρ1
Cold∈S

∆C
D(τβc‖τβh)−D(ρ1

Cold‖τβh) + ∆S

]
(130)

= (1− ε)
[
1 + βh inf

A>0

A

D(τβc‖τβh)−B(A) + ∆S

]
(131)

where

B(A) = inf
ρ1

Cold∈S
tr(ĤColdρ

1
Cold)−tr(ĤColdτβc )=A

D(ρ1
Cold‖τβh). (132)

We can split this minimization problem to Eqs. (131) and (132) because D(τβc‖τβh) and ∆S do not
depend on the variable ρ1

Cold. Furthermore, when ρ1
Cold is a thermal state of inverse temperature βf ,

we have seen in the beginning of the proof in Theorem 1 that for Wext > 0, βf < βc. This implies
that the variable A = ∆C = tr(ĤColdτβf )− tr(ĤColdτβc) > 0.

By Lemma 1, for any fixed A > 0 we conclude that the infimum in Eq. (132) is achieved uniquely
when ρ1

Cold is a thermal state. Therefore, our optimization problem is simplified to optimization over
final temperatures βf (or g = βc − βf ),

η−1
max = (1− ε) ·

1 + βh inf
βf

∆C>0

∆C
D(τβc‖τβh)−D(τβf ‖τβh) + ∆S

 (133)

Consider cases of βf , where D(τβc‖τβh) − D(τβf ‖τβh) is non-vanishing (finite), i.e. which are not
quasi-static. Note that this always corresponds to extracting near perfect work, since when ε → 0+,
we have ε,∆S → 0 and these contributions disappear from Eq. (133). However, by Lemma 2 we also
know that the infimum over βf occurs uniquely at the quasi-static limit, when g → 0+.
What remains, is then to consider the quasi-static heat engine, namely the limit g → 0+. Extracting

near perfect work in this case corresponds to requiring that limg→0+
∆S
Wext

= 0, where ε = ε(g) and
limg→0+ ε(g) = 0. Equivalently

lim
g→0+

Wext
∆S =∞. (134)

Substituting Eq. (126) into Eq. (134),

lim
g→0+

(1− ε(g))−1
[
1 +

D(τβc‖τβh)−D(τβf ‖τβh)
∆S

]
=∞ (135)

which implies that lim
g→0+

D(τβc‖τβh)−D(τβf ‖τβh)
∆S =∞, or equivalently,

lim
ε→0+

lim
g→0+

∆S
D(τβc‖τβh)−D(τβf ‖τβh) = 0. (136)
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Finally, we evaluate the inverse efficiency at the quasi-static limit,

η−1 = lim
g→0+

(1− ε(g)) ·
[
1 + βh

∆C
D(τβc‖τβh)−D(τβf ‖τβh) + ∆S

]
(137)

= 1 + βh lim
g→0+

∆C
D(τβc‖τβh)−D(τβf ‖τβh) + ∆S (138)

= 1 + βh lim
g→0+

∆C[
D(τβc‖τβh)−D(τβf ‖τβh)

] · (1 + ∆S
D(τβc‖τβh)−D(τβf ‖τβh)

)−1

(139)

= 1 + βh lim
g→0+

d∆C(τβf )/dg
dD(τβf ‖τβh)/dg (140)

= 1− βh
βh − βc

, (141)

where from Eq. (139) to (140), we make use of Eq. (136) : the second term within the limit is simply
1, and the first term depends only on g, which we can obtain Eq. (140) by invoking the L’Hôspital
rule. The last equality in Eq. (141) follows directly from the identities we derived for dWext

dβf
and d∆C

dβf
in Corollary 1,

d∆C
dg

= −d∆C
dβf

= −var(ĤCold)βf (142)

dD(τβf ‖τβh)
dg

= −
dD(τβf ‖τβh)

dβf
= βh

dWext
dβf

= (βh − βf )var(ĤCold)βf , (143)

while in the limit g → 0, βf = βc.
Finally, we now see that the quasi-static efficiency is

η =
(
βh − βc − βh
βh − βc

)−1
= βc − βh

βc
= 1− βh

βc
(144)

which is exactly the Carnot efficiency.

Later, in Section F.2 we will need Lemma 2 to hold in a more general scenario, i.e. instead of the
final battery state being ρ1

W = (1−ε) |Ek〉〈Ek|W +ε |Ej〉〈Ej |W, we want to allow the final battery state
to be any energy block-diagonal state with trace distance ε. Next we state and prove this generalized
lemma.

Lemma 6. Consider all heat engines which extract near perfect work (see Definition 5), but allowing
for any final battery state with a trace distance ε to the ideal final pure state |Ek〉〈Ek|W. Then according
to the macroscopic second law of thermodynamics, the maximum efficiency of a heat engine, ηmax is
the Carnot efficiency

ηmax = sup
ρ1

Cold∈S
ηmac(ρ1

Cold) = 1− βh
βc
, (145)

and when the final state of the cold bath ρ1
Cold is thermal, the supremum is only achieved for quasi-static

heat engines (see Def. (6) and Eq. (69)).

Proof. Firstly, let us note that since the initial state ρ0
ColdW which we start out with is energy block-

diagonal, the final state has to also be block-diagonal. Therefore, given the product structure between
the cold bath and battery, it is sufficient to consider the case when the final battery state is energy
block-diagonal. Next, let us note that any final state ρ2

W which is energy block-diagonal, and has trace
distance ε with |Ek〉〈Ek|W can be written as,

ρ2
W = (1− ε) |Ek〉〈Ek|W + ερjunk

W , where ρjunk
W =

∑
i

pi |Ei〉〈Ei|W ,
∑
i

pi = 1 and pk = 0. (146)
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Next, one can calculate Wext given by the standard free energy condition, i.e.

F (τβc) + F (ρ0
W) ≥ F (ρ1

Cold) + F (ρ2
W). (147)

Using the identity F (ρ) = tr(Ĥρ)− β−1S(ρ), we have that

F (τβc) + Ej ≥ F (ρ1
Cold) + (1− ε)Ek + εtr(ĤWρ

junk
W )− β−1

h S(ρ2
W). (148)

Substituting Wext = Ek − Ej , and rearranging terms, we have

(1− ε)Wext ≤ F (τβc)− F (ρ1
Cold) + β−1

h ∆S − ε[tr(ĤWρ
junk
W )− Ej ]. (149)

Finally, by using the identity (in Eq. (54)) that F (ρ) = β−1
h [D(ρ‖τβh)− lnZβh ], the maximum amount

of extractable work is given by

Wext = (1− ε)−1β−1
h · [D(τβc‖τβh)−D(ρ1

Cold‖τβh) + ∆S − εẼ], (150)

where Ẽ = tr(ĤWρ
junk
W )− Ej .

Following the steps in Lemma 5, in particular the derivations in Eq. (130) and (131), we have

η−1
max = (1− ε) ·

1 + βh inf
βf

∆C>0

∆C
D(τβc‖τβh)−D(τβf ‖τβh) + ∆S − εẼ

 . (151)

To show Eq. (151) gives the Carnot efficiency, we show that 1) for non quasi-static cases where βf < βc,
Carnot efficiency is not attained, and 2) in the quasi-static limit, Carnot efficiency is attained.
Let us first consider the case of extracting a non-vanishing amount of near perfect work, i.e. for all

cases where βf < βc. Then near perfect work, by Def. 5, corresponds to the limit ε→ 0,

η−1 = lim
ε→0

(1− ε) ·
[
1 + βh

∆C
D(τβc‖τβh)−D(τβf ‖τβh) + ∆S − εẼ

]
(152)

= 1 + βh
∆C

D(τβc‖τβh)−D(τβf ‖τβh) . (153)

In this limit, all terms involving ε vanish, and the inverse efficiency has the same expression as the
efficiency for perfect work. We already know from Lemma 4 that the infimum over βf cannot be
obtained in this regime, since the inverse efficiency is strictly decreasing with βf .
Therefore, again we are left with analyzing the quasi-static limit for this problem. Following the

derivation in Eq. (139) for the quasi-static limit, we obtain

η−1
max = 1 + βh lim

g→0+

∆C[
D(τβc‖τβh)−D(τβf ‖τβh)

] · (1 + ∆S − εẼ
D(τβc‖τβh)−D(τβf ‖τβh)

)−1

, (154)

where ε = ε(g) and note that requiring near perfect work implies that

lim
g→0+

∆S
D(τβc‖τβh)−D(τβf ‖τβh) = 0. (155)

Next, we observe the relationship between ε and ∆S, in the regime where ε is small. Given any
ε > 0 denoting the trace distance d(ρ2

W, |Ek〉〈Ek|W) = ε, the smallest amount of entropy that can be
produced corresponds to ∆S = h2(ε). This is because if we try to distribute the weight ε over more
energy eigenvalues, then by majorization the entropy only increases. But we also know that ε ≤ h2(ε)
for small values of ε, in particular over the regime ε ∈ [0, 1

2 ]. Therefore, we have that in this regime,
ε ≤ h2(ε) ≤ ∆S holds. Therefore, we also know that

lim
g→0+

εẼ

D(τβc‖τβh)−D(τβf ‖τβh) = 0, (156)

where ε = ε(g). Plugging Eqns. (155) and (156) into Eq. (154), we have that the quasi-static efficiency
is η = 1− βh

βc
.
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E Efficiency of a nanoscopic quantum heat engine
In this section, we will be applying the conditions for state transitions for nanoscale systems, as detailed
in Section B.2. The reader will see that due to these extra constraints from the generalized free energies,
the fundamental limitations on efficiency will differ greatly from those observed in Section D.

Firstly, in Section E.1, we show that the extraction of a positive amount of perfect work is impossible
using the setup. In Section E.2, we show that this can be resolved by considering near perfect work
instead. Then we find that:

(1) The maximum achievable efficiency is still the Carnot efficiency. This is proven in Section E.2.2.

(2) However, in the case of quasi-static heat engines, the Carnot efficiency cannot be achieved for all
cold bath Hamiltonians. This is our main result, which is stated in Theorem 2, found in
Section E.2.6. The results in Section E.2.4 and E.2.5 are more technical proofs, that pave the
way for deriving this main result.

E.1 Impossibility of extracting perfect work
We will first show that with the general setup as described in Section A, no perfect work can ever be
extracted. By this we mean that whenever ε as defined in Eq.(42) equals zero, then for any value of
Wext > 0, and for any final state ρ1

Cold, the transition |Ej〉〈Ej |W⊗ τ0
Cold → |Ek〉〈Ek|W⊗ ρ1

Cold is not
possible. Intuitively speaking, this occurs because the cold bath is initially in a state of full rank. Since
thermal operations cannot decrease the rank of the system, therefore the final state of the cold bath
ρ1
Cold must also be of full rank. By directly solving Eq. (55), for Wext, we can find the an equation

governing the amount of extractable work. To solve Eq. (55) for Wext, we start by first using Eq. (56)
to find an expression solely in term of the Rényi divergences and the fact that the bipartite thermal
states are product states,

Dα(τ0
Cold ⊗ ρ0

W‖τhColdW) ≥ Dα(ρ1
Cold ⊗ ρ1

W‖τhColdW) ∀α ≥ 0. (157)

Now using the additivity of the Rényi divergences, from (157) it follows

Dα(ρ1
W‖τhW)−Dα(ρ0

W‖τhW) ≤ Dα(τ0
Cold‖τhCold)−Dα(ρ1

Cold‖τhCold) ∀α ≥ 0. (158)

By directly solving the L.H.S., we find that Wext must satisfy

Wext ≤ kTHot

[
Dα(τ0

Cold‖τhCold)−Dα(ρ1
Cold‖τhCold)

]
∀α ≥ 0. (159)

Hence

Wext ≤ kTHot inf
α≥0

[
Dα(τ0

Cold‖τhCold)−Dα(ρ1
Cold‖τhCold)

]
, (160)

where τhCold is the thermal state of the cold bath (according to the cold bath Hamiltonian ĤCold), at
temperature THot (since the surrounding hot bath is of temperature THot). However from Eq. (56),
D0(τ0

Cold‖τhCold) = D0(ρ1
Cold‖τhCold). Therefore according to Eq. (160), the amount of work extractable

satisfies Wext ≤ 0.
We phrase this with more rigor in the following Lemmas 7 and 8, which proves that for perfect work,

Wext > 0 is impossible. The proof holds for general initial states ρ0
Cold of full rank, in particular, they

need not even be diagonal in the energy eigenbasis.

Lemma 7. For any Wext > 0, consider the Hamiltonian ĤW given by Eq. (40). Then for any inverse
temperature βh > 0, the thermal state τhW = 1

tr[e−βhĤW ]
e−βhĤW satisfies

tr
[
(|Ej〉〈Ej |W − |Ek〉〈Ek|W) τhW

]
> 0. (161)
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Proof. Follows directly from the definitions. Since Wext > 0, we know that EW
j < EW

k . Evaluating
the quantity above gives 1

tr[e−βhĤW ]
·
(
e−βhE

W
j − e−βhEW

k

)
> 0.

Lemma 8. Consider any general quantum state ρ0
Cold of full rank. Then for any ρ1

Cold, the transition
from ρ0

Cold ⊗ ρ0
W → ρ1

Cold ⊗ ρ1
W is not possible via catalytic thermal operations if

tr
[(

Πρ0
W
−Πρ1

W

)
τhW

]
> 0, (162)

where Πρ is the projector onto the support of state ρ, and τhW is the thermal state of the battery at the
initial hot bath temperature.

Proof. One can show this by invoking the quantum second law for α = 0 [7], which says that if
ρin → ρout is possible via catalytic thermal operations, then

D0(ρin‖τ) ≥ D0(ρout‖τ), (163)

where τ is the thermal state of the system at bath temperature, and

D0(ρ‖σ) = lim
α→0+

1
α− 1 ln tr[ρασ1−α] = − ln tr[Πρσ], (164)

is defined for arbitrary quantum states ρ, σ. Applying this law with ρin = ρ0
W ⊗ ρ0

Cold and ρout =
ρ1

W ⊗ ρ1
Cold, we arrive at

D0(ρ0
W‖τhW)−D0(ρ1

W‖τhW) ≥ D0(ρ1
Cold‖τhCold)−D0(ρ0

Cold‖τhCold), (165)

where τhCold and τhW are thermal states of the cold bath and battery at the temperature of surrounding
hot bath (THot) respectively. Since ρ0

Cold have full rank, and since τhCold is normalized, therefore
according to Eq. (164), D0(ρ0

Cold‖τhCold) = 0. Furthermore, since the α−Rényi divergence D0 is
non-negative, therefore the r.h.s. of Eq. (165) is lower bounded by 0. Thus, we have

tr[(Πρ0
W
−Πρ1

W
)τhW] ≤ 0. (166)

Since this is a necessary condition for state transformations, we arrive at the conclusion that: when
Eq. (166) is violated, state transformations are not possible. But from Lemma 7, any type of
perfect work extraction violates Eq. (166). Therefore, in this setting, perfect work extraction is
always impossible.

To summarize, Lemma 8 implies that if the initial state of the cold bath is thermal, and therefore
of full rank, then any work extraction scheme via thermal operations bringing ρ0

W = |j〉〈j|W to ρ1
W =

|k〉〈k|W where Wext = EW
k −EW

j > 0 is not possible. In general, we see that if Πρ0
W
6= Πρ1

W
, then when

transition ρ0
W to ρ1

W is possible, transition ρ1
W to ρ0

W is not. Consequentially, we will have to consider
near perfect work at the nano regime.

E.2 Efficiency for extracting near perfect work
As we have just seen in the previous Section E.1, we cannot extract perfect work. Due to the impos-
sibility result, we consider the relaxation of extracting near perfect work in the nanoscale setting.

• We begin by evaluating the expression for efficiency according to the nanoscopic laws of thermo-
dynamics, given a final state of the cold bath, and comparing it to the expression according to
macroscopic laws of thermodynamics. This is done in Sections E.2.1 and E.2.2, and the relation
between two efficiencies are summarized in Eq. (177). Since the nanoscopic efficiency is always
smaller than the macroscopic efficiency, which attains Carnot efficiency only in the limit ∆C → 0,
it will be a necessary condition to consider this limit if we want to achieve the Carnot efficiency,
when considering nanoscopic laws of thermodynamics.
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• We analyze the quasi-static regime, focusing on the special case where the cold bath consists of n
qubits. Since the quasi-static limit corresponds to the case of small g > 0, and ε also has to be
arbitrarily small for near perfect work extraction, we perform Taylor expansion of the analytical
expressions for Wext and ∆C w.r.t. g and ε. This is done in Section E.2.3.

• In Section E.2.4, we identify how to choose ε(g) such that it corresponds to drawing near perfect
work in the quasi-static limit. We first begin by observing that any continuous function ε(g) that
vanishes in the limit g → 0 can be characterized with a real-valued parameter κ̄ that determines
how quickly ε goes to zero. This is shown in Lemma 11. In Lemma 12, we show that near perfect
work is drawn only if κ̄ ∈ [0, 1].

• Lemma 12 gives us the analytical expression and minimization range in order to evaluate Wext,
according to Eq. (230). In Section E.2.5, we show how one can evaluate this optimization problem,
by comparing the stationary points and endpoints of the function αBα

α−1 that gives the leading term
in Eq. (230). Lemma 13 proves a technical property of the first derivative of this function. Using
it, we prove in Lemma 14 that one can always choose ε(g) with some κ̄ < 1 such that the infimum
of αBαα−1 is obtained at either α = κ̄ or α→∞.

• Finally, in Section E.2.6, we use the results in Section E.2.5 regarding the evaluation of Wext to
find the efficiency in the quasi-static limit.

E.2.1 An explicit expression for Wext

Our first task is to work out an explicit expression for Wext depending on the initial and final states of
the cold bath, ε and hot bath (inverse) temperature βh. Such as expression is found by applying the
generalized second laws as detailed in Section B.2.

Lemma 9. Consider the transition
τ0

Cold ⊗ ρ0
W → ρ1

Cold ⊗ ρ1
W with ε > 0. (167)

where ρ0
W and ρ1

W are defined in Eqs. (41), (42) respectively. Let Wext denote the maximum possible
value such that Eq. (167) is possible via catalytic thermal operations, with a thermal bath of inverse
temperature βh. Let βc > βh. Then the final state ρ1

Cold =
∑
i p
′
i|Ei〉〈Ei|Cold is block-diagonal in the

energy eigenbasis, and
Wext = inf

α≥0
Wα, (168)

Wα = 1
βh(α− 1) [ln(A− εα)− α ln(1− ε)], (169)

A =
∑
i p
α
i q

1−α
i∑

i p
′α
i q

1−α
i

, (170)

where pi = e−βcEi
ZβC

, qi = e−βhEi
Zβh

, and p′i are the probability amplitudes of state ρ1
Cold when written in

the energy eigenbasis of ĤCold. The quantities W1 and W∞ are defined by taking the limit α→ 1,+∞
respectively.
Proof. Eq. (55) is necessary and sufficient for Eq. (167) to be satisfied. We can apply the additivity
property of the Rényi divergence, to Eq. (55) to find

Dα(ρ0
W‖τhW) +Dα(τβc‖τβh) ≥ Dα(ρ1

W‖τhW) +Dα(ρ1
Cold‖τβh), (171)

where τβh and τhW are the thermal states with Hamiltonians ĤCold and ĤW respectively, at inverse
temperature βh. From Eq. (171) it follows,

−1
α− 1 ln

[
εα + (1− ε)αe−β(Ek−Ej)(1−α)

]
≥ Dα(ρ1

Cold‖τβh)−Dα(τβc‖τβh) (172)

= −1
α− 1 lnA. (173)
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By examining the three cases α < 1, α > 1 separately, have find

εα + (1− ε)αe−β(Ek−Ej)(1−α) ≥ A if α < 1
εα + (1− ε)αe−β(Ek−Ej)(1−α) ≤ A if α > 1

(174)

where note that A is independent of Ek and Ej . Now note that the largest value of Ek − Ej in Eq.
(174), is obtained when the inequalities hold with equality. Thus, since these equations have to hold
for all α ∈ [0,∞], the largest amount of work we can extract corresponds to the value of Ek − Ej for
which Eq. (174) holds for all α ∈ [0,∞], with an equality for at least one particular value of α ∈ [0,∞].
In other words Wext is given by Eq. (168), and Wα satisfies,

εα + (1− ε)αe−βWα(1−α) = A. (175)

Note that due to the continuity of the Rényi divergences in the neighbourhood of one, this case follows
by continuity. Solving Eq. (175) for Wα gives us Eq. (169).

As we will see later there exist ρ1
Cold such that,Wext given by Eq. (168), has a solution (i.e. Wext > 0)

for any ε > 0. We can use this to write down an explicit solution to the maximization problem Eq.
(62). Using Eqs. (62), (77) and Lemma 9, we conclude

ηnano(ρ1
Cold) =

(
1− ε+ ∆C(ρ1

Cold)
infα≥0Wα(ρ1

Cold)

)−1

(176)

where Wα is given by Eqs. (169), (170) and recall ∆C can be found in Eq. (74). From Eqs. (176),
(169), (170), we see that the optimization problem supρ1

Cold
ηnano(ρ1

Cold) is still a formidable task. In
the next section, see will show that we can use the results from Section D, to drastically simplify the
problem.

E.2.2 An upper bound for the efficiency

Before moving on to solving the nanoscale efficiency explicitly, we will first use the results of Section
D.3 to find upper bounds for the efficiency in the nanoscale regime, in the context of extracting near
perfect work (Def. 5).

Recall how we have discussed in comparing Sections B.1 and B.2, that the solution for the family of
free entropies Fα, in the case of F1 is simply the non-equilibrium free energy. Therefore, from Lemma
9, it follows that W1 is simply the maximum amount of extractable work according to Eq. (49). From
Eqs. (65), (77),

ηmac(ρ1
Cold) =

(
1− ε+ ∆C(ρ1

Cold)
W1(ρ1

Cold)

)−1

. (177)

One can now compare Eq. (177) with Eq. (176), and note that for any ρ1
Cold ∈ S, we haveW1(ρ1

Cold) ≥
infα≥0Wα(ρ1

Cold). Therefore, we conclude that for any ρ1
Cold ∈ S,

ηnano(ρ1
Cold) ≤ ηmac(ρ1

Cold). (178)

Eq. (178) in conjunction with Lemma 5 has an important consequence. Namely,

sup
ρ1
Cold∈S

ηnano(ρ1
Cold) ≤ 1− βh/βc (179)

with equality only if the state ρ1
Cold that solves the supremum is the limiting case where it tends to

the initial state of the cold bath, ρ1
Cold → ρ0

Cold. Therefore, in order to see whether we can still achieve
the Carnot efficiency, we will consider the quasi-static regime in the rest of Section E.
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E.2.3 Evaluating near perfect work in the quasi-static heat engine

In light of the results from the previous section, we will now calculate the near perfect work Wext for
quasi-static heat engines, i.e. the case where ε, g � 1. Specifically, we make the following assumption
about the cold bath Hamiltonian:
(A.5) The Hamiltonian is taken to be of n qubits:

ĤCold =
n∑
k=1

1
⊗(k−1) ⊗ Ĥc,k ⊗ 1⊗(n−k), where Ĥc,k = Ēk|Ēk〉〈Ēk|, (180)

and Ēk > 0 is the energy gap of the k-th qubit. Here for simplify, we have chosen w.l.o.g. the ground
state of each qubit to have an eigenvalue equal to zero.
The tensor product structure in Assumption (A.5) allows us to simplify ρ0

Cold, to

ρ0
Cold =

n⊗
i=1

τi,βc , (181)

where τi,βc is the thermal state of ith qubit Hamiltonian Ĥi,c at inverse temperature βc. For the
simplicity of following proofs, we present them in the special case of identical qubits, i.e. that Ēi = E
for all 1 ≤ i ≤ n. This means Eq. (181) can be reduced to

ρ0
Cold = τ⊗nβc . (182)

Furthermore, since we consider quasi-static heat engines, the output state is

ρ1
Cold = τ⊗nβf , (183)

with βf = βc − g ,where 0 < g � 1. Eq. (180) together with Eq. (183) allows us to further simplify
Eq. (170) to

A =
(∑

i p
α
i q

1−α
i∑

i p
′α
i q

1−α
i

)n
, (184)

where pi = e−βcEδi,0
Zβc

, p′i = e
−βfEδi,0
Zβf

, qi = e−βhEδi,0
Zβh

, with δ1,0 = 0, δ1,1 = 1, are the probabilities of

thermal states (different temperatures) for the qubit Hamiltonian Ĥc. The proof follows along the
same lines as the proof to Lemma 9, but now noting that in Eq. (171) we can replace Dα(τCold‖τβh)
and Dα(ρ1

Cold‖τβh) with nDα(τβc‖τβh) and nDα(τβf ‖τβh) respectively. This follows from the additivity
property of the Rényi divergences. After proving the special case of identical qubits, we show in
Theorem 2 that it can be extended to non-identical qubits as generally described by Assumption
(A.5).

Since we are dealing with near perfect work and quasi-static heat engines, both g > 0 and ε > 0 are
infinitesimally small. Thus with the goal in find of finding a solution for Wext from Eqs. (168), (169),
and (184); we will proceed to find an expansion of Wα for small ε and g.

i) The expansion of A in a quasi-static heat engine

To simplify our calculations of Wext, especially that of efficiency, it is important to express A in
Eq. (184) in terms of its first order expansion w.r.t. the parameter g. Recall that this parameter
g = βc−βf is the difference of inverse temperature between the initial and final state of the cold bath.

Firstly, note that for any integer n, the expression in Eq. (184) evaluates toA|g=0 = 1. This is because
at g = 0, βf = βc and therefore the probabilities pi, p′i are identical. To obtain an approximation in
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the regime 0 < g � 1, we derive

dA

dg
= −n

(∑
i

pαi q
1−α
i

)n(∑
i

p′αi q
1−α
i

)−n−1 [∑
i

αp′α−1
i q1−α

i

dp′i
dg

]
(185)

= −αnA
(∑

i

p′αi q
1−α
i

)−1 [∑
i

p′αi q
1−α
i (Ēi − 〈Ĥc〉βf )

]
. (186)

The first inequality holds by noticing that only the probabilities p′i depend on g, which means only the
denominator in Eq. (184) is differentiated, using the chain rule

dA({p′i})
dg

=
∑
i

dA({p′i})
dp′i

dp′i
dg
. (187)

The equality in Eq. (186) makes use of the fact that dp′i
dg = − dp′i

dβf
= p′i(Ēi − 〈Ĥc〉βf ) as derived in

Eq. (102). Evaluated at g = 0, implies that p′i = pi, and therefore this gives

dA

dg

∣∣∣∣
g=0

= αnBα, where (188)

Bα = 1∑
i

pαi q
1−α
i

∑
i

pαi q
1−α
i

(
〈Ĥc〉βc − Ēi

)
. (189)

Recall that pi, qi are probabilities of the thermal states of Ĥc, at inverse temperatures βc, βh respec-
tively. With this, we can write the expansion of A with respect to g as

A = 1 + αngBα + Θ(g2). (190)

Later on, we will also need to evaluate the derivative of Bα w.r.t. α. This quantity, when evaluated
at α = 1, has a close relation to the change in average energy of the cold bath (per copy), ∆C

n .

Lemma 10. Let
∆C ′(βc) := d

dg
∆C(βf )

∣∣∣∣
g=0

, (191)

where recall βf = βc − g. Then

B′1 = dBα
dα

∣∣∣∣
α=1

= βc − βh
n

∆C ′(βf ) = (βc − βh) · var(Ĥc)βc . (192)

Proof. From the definition of ∆C (Eq. (74)) and using Eqs. (180), (181), (183), we have

∆C
n

= tr[(τβf − τβc)Ĥc]. (193)

Recalling that βf = βc − g and using Eq. (112), from Eq. (193) it follows

1
n

∆C ′(βc) = 1
n

d∆C
dg

∣∣∣∣
g=0

= − 1
n

d∆C
dβf

∣∣∣∣
βf=βc

= var(Ĥc)βc . (194)

Now, let us evaluate the partial derivative of Bα w.r.t. α. Denoting ri = pi
qi
, and invoking the chain

rule of derivatives for Eq. (189)

dBα
dα

=
(∑

i

pαi q
1−α
i

)−2{[∑
i

qir
α
i ln ri

(
〈Ĥc〉βc − Ēi

)] [∑
i

pαi q
1−α
i

]
(195)

−
[∑

i

qir
α
i ln ri

] [∑
i

pαi q
1−α
i

(
〈Ĥc〉βc − Ēi

)]}
. (196)
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Substituting α = 1 into Eq. (195), we obtain that
∑
i p
α
i q

1−α
i = 1. Also,

∑
i p
α
i q

1−α
i

(
〈Ĥc〉βc − Ēi

)
= 0

while the factor multiplied in front is finite. Therefore, we are left with the terms

B′1 =
∑
i

pi ln ri
(
〈Ĥc〉βc − Ēi

)
(197)

=
∑
i

pi

[
ln Zh
Zc

+ (βh − βc)Ēi
]

(〈Ĥc〉βc − Ēi) (198)

= (βc − βh)var(Ĥc)βc (199)

= βc − βh
n

∆C ′(βc). (200)

The second equality comes from substituting ri = pi
qi

= e(βh−βc)Ēi · Zh/Zc. In the third equality,
ln Zh

Zc
is brought out of the summation, while the summation yields 0. Subsequently, we invoke∑

i piĒi(〈Ĥc〉βc − Ēi) = 〈Ĥc〉2βc − 〈Ĥ
2
c 〉βc = −var(Ĥc)βc .

ii) The expansion of Wα in the quasi-static heat engine

In the following we proceed to derive an expansion of Wα valid for small g, and ε. Note that W1 is
defined through continuity to be the limit of the Rényi divergences at α → 1, and the small ε and g
expansion does not hold for α = 0, we shall have to examine W1 and W0 separately.

In the following and throughout the manuscript, we will use the notation x ∈ (y,∞] to indicate that
the expression whose input x in being referred to holds for x ∈ (y,∞) and for the limit case limx→+∞.
Similarly, we use the notation x ∈ [y,∞] when referring to an expression which holds for x ∈ [y,∞)
and for limx→+∞.

(A) For ε > 0, α ∈ (0, 1) ∪ (1,∞].
We start with the case ε > 0, α ∈ (0, 1) ∪ (1,∞):

Wα = 1
βh(α− 1) [ln(A− εα)− α ln(1− ε)] (201)

= 1
βh(α− 1)

[
ln
(
1 + αngBα + Θ(g2)− εα

)
− α ln(1− ε)

]
(202)

= 1
βh(α− 1)

[
αngBα + Θ(g2)− εα + Θ(ε2α) + Θ(gεα)− α

(
−ε+ Θ

(
ε2
))]

, (203)

= 1
βh(α− 1) [αngBα − εα + αε] + Θ(g2) + Θ(ε2α) + Θ(gεα) + Θ(ε2). (204)

In the second equality, we have used the expansion of A derived in Eq. (190). In the third equality, we
use the Mercator series

ln(1 + x) =
∞∑
k=1

(−1)k+1

k
xk, |x| < 1, (205)

to expand both of the natural logarithms in line Eq. (201). The order terms of Θ(g3), Θ(g4), Θ(g2εα)
vanish because they are of higher order compared with Θ(g2) and Θ(gεα). The last equality occurs
because cΘ(g(x)) = Θ(g(x)) for any c ∈ R\0.
Finally, we consider the limit case α→∞. By direct calculation using the expression in line Eq. (201),
we find

lim
α→+∞

Wα = 1
βh

[ng lim
α→+∞

Bα + ε] + Θ(g2) + Θ(ε2), (206)

Accepted in Quantum 2019-07-22, click title to verify. Published under CC-BY 4.0. 44



which is identical to the expression one obtains by taking the limit α → +∞ in Eq. (204). We thus
conclude that for ε > 0, α ∈ (0, 1) ∪ (1,∞],

Wα = 1
βh(α− 1) [αngBα − εα + αε] + Θ(g2) + Θ(ε2α) + Θ(gεα) + Θ(ε2). (207)

(B) For ε > 0, α = 1
We are now interested in finding a small ε > 0, g > 0 expansion for W1, which is defined through
continuity of the Rényi divergences. Going back to Eq. (171), note thatW1 is the maximum value such
that Eq. (171) holds with equality, when all Dα terms in Eq. (171) are evaluated at α → 1. Recall
that limα→1Dα(ρ‖τ) = D(ρ‖τ) (see Eq. (59)), the relative entropy we have derived in Section D.
Therefore, one can write an equation for W1 in a more compact form: W1 is the value such that

n ·
[
〈Ĥc〉βc −

1
βh
S(βc)

]
= n ·

[
〈Ĥc〉βf −

1
βh
S(βf )

]
+ (1− ε)W1 −

1
βh

h2(ε), (208)

where 〈Ĥc〉βc is the mean energy evaluated at temperature TCold, S(βc) is the von Neumann entropy
of the state τβc , and h2(ε) is the binary entropy function. Rearranging Eq. (208), we get

W1 = 1
1− ε

[
n〈Ĥc〉βc − n〈Ĥc〉βf − n

1
βh

(S(βc)− S(βf )) + 1
βh

h2(ε)
]
. (209)

We can expand (209) using a power law expansion in g and ε for the terms in Eq.(209), obtaining

W1 =
[
1 + ε+ Θ(ε2)

]
·
[
n
d(−〈Ĥc〉βf + β−1

h S(βf ))
dg

∣∣∣∣
g=0

g + Θ(g2) + 1
βh

h2(ε)
]
. (210)

To proceed, we recall that βf = βc − g and evaluate the term

d(−〈Ĥc〉βf + β−1
h S(βf ))

dg

∣∣∣∣
g=0

=
d(〈Ĥc〉βf − β

−1
h S(βf ))

dβf

∣∣∣∣
βf=βc

= −var(Ĥc)βc + βc
βh

var(Ĥc)βc (211)

= βc − βh
βh

var(Ĥc)βc . (212)

This implies that when fully expanded, Eq. (210) reads as

W1 =ngβc − βh
βh

var(Ĥc)βc + β−1
h h2(ε) + Θ(εg) + Θ(ε)h2(ε) + Θ(gε2) + Θ(ε2)h2(ε) (213)

+ Θ(g2) + Θ(εg2) + Θ(ε2g2) (214)

=ngβc − βh
βh

var(Ĥc)βc + β−1
h (−ε ln ε+ ε) + Θ(εg) + Θ(ε2 ln ε) + Θ(ε2) + Θ(g2), (215)

where we have used h2(ε) = −ε ln ε+ Θ(ε), which follows from finding the power-law expansion of the
second term in Eq. (46).

Although Eq. (207) is not defined for α = 1, we can evaluate it in the limit α → 1 to see if it
coincides with the correct expression of W1 (in Eq. (215)) at least for the leading order term (found
in square brackets of Eq. (207)). For the leading order term of Eq. (207), we find

lim
α→1

1
βh(α− 1) [αngBα − εα + αε] = β−1

h

[
ng lim

α→1

αBα
α− 1 − lim

α→1

εα − αε
α− 1

]
(216)

= β−1
h

[
ng lim

α→1

αBα
α− 1 + (−ε ln ε+ ε)

]
, (217)

= ng
βc − βh
βh

var(Ĥc)βc + β−1
h (−ε ln ε+ ε). (218)
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The last equality holds because

lim
α→1

αBα
α− 1 = lim

α→1

dBα
dα

(219)

= (βc − βh) · var(Ĥc)βc , (220)

where Eq. (219) is derived from L’Hôspital rule (B1 = 0 follows from the definition, see Eq. (188)),
and Eq. (220) comes by invoking Lemma 10. Thus noting that Eq. (218) is simply the first two terms
in Eq. (220), we conclude that the small g > 0 and ε > 0 expansion of Wα for α ∈ (0,∞] can be
summarized as

Wα = (221)
1

βh(α−1) [αngBα − εα + αε] + Θ(g2) + Θ(ε2α) + Θ(gεα) + Θ(ε2) if α ∈ (0, 1) ∪ (1,∞],

lim
α→1+

1
βh(α− 1) [αngBα − εα + αε] + Θ(εg) + Θ(ε2 ln ε) + Θ(ε2) + Θ(g2) if α = 1.

(222)

(C) For α = 0
We will now investigate the α = 0 case. This is also particularly important to understand the difference
between perfect and near perfect work, since in Section E.1, the impossibility of extracting perfect work
arises from evaluating the allowed values ofWext under the α = 0 constraint. We show that by allowing
ε > 0, Wext > 0 is allowed once again. Recall D0(p‖q) = limα→0Dα(p‖q) =

∑
i:pi 6=0 qi. Thus from Eq.

(171)

D0(ρ0
W‖τW)−D0(ρ1

W‖τW) ≥ nD0(τβf ‖τβh)− nD0(τβc‖τβh) = 0. (223)

where the last equality follows from the fact that thermal states have full rank. This inequality is
satisfied for any value of Wext, since whenever ε > 0, ρ1

W is a full rank state, and D0(ρ1
W‖τW) = 0.

Furthermore, D0(ρ0
W‖τW) ≥ 0 because all Rényi divergences are non-negative. Therefore, taking into

account Eqs. (221) and (223), for quasi-static heat engines which extract near perfect work, we only
need to solve

Wext = inf
α>0

Wα, (224)

where Wα is given by Eq. (221).

E.2.4 The choice of ε determines the infimum to evaluating Wext

In this section, we will show that the infimum over α > 0 in Eq. (224) can be simplified to taking the
infimum over α > κ̄ instead, where the parameter κ̄ determines how quickly ε goes to 0 w.r.t. the
parameter g. We define κ introduce κ̄ in Lemma 11, for functions of ε(g).

Lemma 11. For every continuous function ε(g) > 0 satisfying limg→0+ ε(g) = 0, for which the limit
limg→0+ εκ(g)/g, κ ∈ R exists, we have that ∃ κ̄ ∈ R≥0 s.t.

δ(κ) = lim
g→0+

εκ(g)
g

=


0 if κ > κ̄

σ ≥ 0 if κ = κ̄

∞ if κ < κ̄

(225)

where κ̄ = +∞ is allowed (that is to say, limg→0+
εκ(g)
g diverges for every κ) and σ = +∞ is also

allowed.

Proof. The main idea in this proof is to divide the non-negative real line into an infinite sequence of
intervals in an iterative process. We specify the ends of these intervals by constructing a sequence
{κi}∞i=1, and evaluating δ at these points. We then prove that according to our construction, there
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0
κ

κ κ

for all κ < κn, 

for all κ > κn+1,

δ(κ)

δ(κ)=∞

δn+1< ∞

δ(κ)=0

δn=∞

δn+2 < ?

Figure 6: Illustration of the scenario where δ(κn) =∞ and δ(κn+1) <∞.

are only two possibilities:
1) κi forms a convergent sequence, where the limit limn→∞ κn = κ̄, or
2) the ends of these intervals extend to infinity. In this case, κ̄ =∞. The way to construct this interval
is as follows: in the first round, pick some κ1 > 0. The corresponding interval is [0, κ1]. Evaluate
δ(κ1). If δ(κ1) = ∞, then proceed to look at the interval [κ1,

3
2κ1]. Otherwise if δ(κ1) < ∞, choose

κ2 = κ1
2 and evaluate δ(κ2). Depending on whether δ(κ2) goes to infinity, we pick one of the intervals

[0, κ2] or [κ2, κ1].
A general expression of choosing κn can be written: during the nth round, define the sets S(0)

n ,S(∞)
n

such that

S(0)
n = {κi|1 ≤ i ≤ n and δ(κi) = 0}
S(∞)
n = {κi|1 ≤ i ≤ n and δ(κi) =∞}.

Note that if we find δ(κi) = c 6= 0 for some finite constant c, then our job is finished, i.e. κ̄ = κi (We
prove this later). Subsequently, define for n ≥ 1,

κ(0)
n = min

κ∈S(0)
n

κ and κ(∞)
n = max

κ∈S(∞)
n

κ.

If either sets are empty, we use the convention that the corresponding minimization/maximization
equals 0. Once these quantities are defined, we can choose the next interval by evaluating

κn+1 = κ(∞)
n + |κ

(∞)
n − κ(0)

n |
2 . (226)

In the n-th round, the corresponding interval is [κ(∞)
n , κn+1].

Let us now analyze why we can use this scheme to find κ̄. Firstly, consider the case where δ(κi)
whenever evaluated, produces infinity. This means that in each round, κ(∞)

n = κn increases with n (by
the iterative scheme), and κ(0)

n = 0 always stays at zero. Note that this scheme has been constructed
in a way such that limn→∞ κn =∞. Indeed, for all n, by using Eq. (226),

κn+1 = 3
2κn =

(3
2

)2
κn−1 = · · · =

(3
2

)n
κ1, (227)

which tends to infinity as n goes to infinity, whenever κ1 > 0. Later we will prove a property of
the function δ, which combined with this scenario means that δ(κ) = ∞ for every κ ≥ 0. Therefore,
κ̄ =∞.
Next, suppose that there exist an n-th round, such that δ(κn) =∞ and δ(κn+1) <∞, as illustrated

in Fig 6. Note that the function δ(κ) has a peculiar property, i.e. we know that if δ(κn) = ∞, then
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for any κ < κn,

δ(κ) = lim
g→0+

εκ−κn(g)︸ ︷︷ ︸
→+∞

εκn(g)
g︸ ︷︷ ︸
→∞

= +∞. (228)

On the other hand, if δ(κn+1) = 0, then we know that for any κ > κn+1,

δ(κ) = lim
g→0+

εκ−κn+1(g)︸ ︷︷ ︸
→0

εκn+1(g)
g︸ ︷︷ ︸
→0

= 0. (229)

Moreover, if δ(κj) = c 6= 0 for some positive, finite c, then following the same arguments, one can
easily see that for all κ < κj , δ(κ) = ∞ and for κ > κj , δ(κ) = 0. In this case we find that κ̄ = κj .
These observations are illustrated in Figure 6 for clarity.
One can now evaluate κn+2 (which is the midpoint of κn and κn+1) and its corresponding value of

δ(κn+2). From this point on, in each iteration we either find κ̄ exactly (whenever the function δ when
evaluated produces a finite, non-zero number), or the length of the next interval gets halved, and goes
to zero in the limit of n→∞. This, by Eq. (226), also implies that limn→∞ κ

(∞)
n = limn→∞ κ

(0)
n . We

also know the following:
1) for all κ < κ

(∞)
n , δ(κ) =∞,

2) for all κ > κ
(0)
n , δ(κ) = 0.

Therefore, we see that κ̄ exists and κ̄ = limn→∞ κ
(∞)
n = limn→∞ κ

(0)
n . By this we conclude the proof.

To provide some intuition about how κ̄ compares the rate of convergence ε, g → 0, let us look at
the following examples:
1) Consider ε1(g) = exp(−1/g). Then κ̄ = 0 with σ =∞.
2) Consider ε2(g) = g ln g. Then κ̄ = 1 with σ =∞.
3) Consider ε3(g) = c · g1/k for k > 0. Then κ̄ = k with σ = c.

In the next lemma, we consider the scenario of near perfect work, given in Def. 5, and show that this
imposes a finite range of values κ̄ should take. Given a particular κ̄, we also show that the minimization
of Eq. (224) changes with κ̄.

Lemma 12. Given any ε(g) ∈ (0, 1] as a continuous function of g, where g > 0. If limg→0+ ε(g) = 0
and limg→0+

∆S
Wext

= 0, then the following holds:

1. The quantity κ̄ (defined in Lemma 11) can only have any value in κ̄ ∈ [0, 1], where limg→0+
ε ln ε
g =

0 has to hold if κ̄ = 1.

2. The extractable work can be written as

βhWext = g ·
[

inf
α≥κ̄

nαBα
α− 1 + f(g)

]
, (230)

where limg→0+ f(g) = 0 and infα≥κ̄ can be exchanged for infα>κ̄ if κ̄ = 0.

Proof. Firstly, let us use Eq. (221) to simplify our expression for Wext: Wext = infα≥0Wα, where

βhWα =
{
gW̃α + Θ(g2) + Θ(ε2α) + Θ(gεα) + Θ(ε2) if α ∈ (0, 1) ∪ (1,∞]
gW̃1 + Θ(εg) + Θ(ε2 ln ε) + Θ(ε2) + Θ(g2) if α = 1,

(231)

and
W̃α := 1

α− 1

(
αnBα + α

ε

g
− εα

g

)
, (232)
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and for α = 1
W̃1 = lim

α→1
W̃α =

(
lim
α→1

αnBα
α− 1

)
+ ε

g
− ε

g
ln(ε). (233)

From now on, the order terms in Eq. (231) can be neglected, since it can be checked that all of them
are of higher order compared to the terms we grouped in W̃α, in the limit of vanishing g. Even then,
we note that due to the complicated form of Wext, it is not straightforward to begin our proof with
the assumption limg→0+

∆S
Wext

= 0.
Instead, we begin by noting that given a function ε(g) that satisfies the conditions of the above

lemma, then one can invoke Lemma 11, and therefore there exists a κ̄ ∈ R≥0 such that Eq. (225)
holds. We then, for all possible κ ∈ R≥0, evaluate all W̃α to take the infimum and obtain Wext. Given
Wext, we then evaluate the quantity limg→0+

∆S
Wext

= 0.
The value of κ̄ determines how the limits of quantities like ε

g ,
εα

g behave. Therefore, we need to split
the analysis into three different regimes: κ̄ ∈ [0, 1), κ̄ = 1, κ̄ ∈ (1,∞).

1) For κ̄ ∈ [0, 1)
For this case, we know the following limits:
A. limg→0+

ε
g = 0.

B. For α < κ̄, limg→0+
εα

g =∞.
C. For α = κ̄, limg→0+

εα

g = σ ≥ 0.
D. For α > κ̄, limg→0+

εα

g = 0.
E. Note that ∃ k1 > κ̄ such that 1− k1 > 0. Thus limg→0+

ε
g ln ε = limg→0+

εk1
g ε1−k1 ln ε = 0

Therefore, by using Eq. (232) and (233) (for α = 1 separately) we have

W̃α =



+∞ if α ∈ [0, κ̄)

αnBα
α− 1 + 1

κ̄− 1

(
κ̄
ε

g
− εκ̄

g

)
= αnBα
α− 1 + σ

|κ̄− 1| + Θ
(
ε

g

)
κ̄ if α = κ̄

αnBα
α− 1 + Θ

(
εα

g

)
if α ∈ (κ̄, 1)

αnBα
α− 1 + Θ

(
ε

g

)
if α ∈ (1,∞]

lim
α→1

αnBα
α− 1 + Θ

(
ε ln ε
g

)
if α = 1,

(234)

where the expression in Eq.(234) has been written as a leading order term, plus higher order terms that
vanish in the limit g → 0 10. In the second line we have used

(
κ̄ε− εκ̄

)
/(κ̄− 1) = |

(
κ̄ε− εκ̄

)
/(κ̄− 1)|

as ε→ 0+ for κ̄ ∈ [0, 1).
Therefore, we conclude that for κ̄ ∈ [0, 1) and any σ ≥ 0, due to continuity in α of αnBαα−1 ,

βhWext = βh inf
α>0

Wα = g ·
[

inf
α≥κ̄

αnBα
α− 1 + Θ (f(g))

]
, (235)

where f satisfies limg→0+ f(g) = 0 in the expression of Eq. (234). Note that if κ̄ = 0, then infα≥κ̄ can
be exchanged for infα>κ̄ since in Eq. (224) the point α = 0 was already excluded.
We can now calculate limg→0+

∆S
Wext

for κ̄ ∈ [0, 1) and any σ ≥ 0:

lim
g→0+

∆S
Wext

= lim
g→0+

−ε ln ε− (1− ε) ln(1− ε)(
infα≥κ̄ αnBα

α−1

)
g

= lim
g→0+

1
infα≥κ̄ αnBα

α−1

 −ε ln ε
g︸ ︷︷ ︸

→0 (Item E)

− ε+ Θ(ε2)
g︸ ︷︷ ︸

→0 (Item A)

 = 0,

(236)
10In Eq. (234), the interval [0, 0) is taken to be the empty set (this is relevant for the case κ̄ = 0).
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where we have assumed that
inf
α≥κ̄

αnBα
α− 1 > 0. (237)

As we will see later (see Eq. (252)), Eq. (237) holds if κ̄ > 0. However, if α = 0

αnBα
α− 1 = 0, (238)

and we need to use Eq. (234) for the case α = κ̄ = 0. The relevant line in Eq. (234) is the 2nd line,
from which we have W̃0 = σ = εκ̄/g = 1/g. which tends to +∞ as g → 0+. Alternatively, as already
mentioned, this result is also clear since Wα for α = 0 is infinite since it expresses the rank condition
for state transitions which is always satisfied regardless of how much work is being extracted. Hence

lim
g→0+

∆S
Wext

= 0 (239)

in this case also. Thus from Eqs. (238) and (239), we conclude that Eqs. (235) and (236) are still
valid when κ̄ = 0. To summarize, so far we have proven that whenever κ̄ ∈ [0, 1), Eq. (230) holds for
some f(g) which vanishes as g tends to zero, and furthermore limg→0+

∆S
Wext

= 0.

2) For κ̄ ∈ (1,∞)
In this regime, like the previous analysis, we can list out the following limits:
A. limg→0+

ε
g = 0.

B. By definition of κ̄, for α < 1, limg→0+
εα

g =∞.
C. limg→0+

ε ln ε
g =∞ since both ε

g and ln ε goes to infinity as g → 0.
Therefore, by using Eq. (232) and (233) (for α = 1 separately) we have

W̃α =


1
g ·

1
1−α [εα + Θ(ε) + Θ(g)] if α ∈ [0, 1)

1
g · [−ε ln ε+ Θ(ε) + Θ(g)] if α = 1
1
g ·

1
α−1 [αε+ Θ(εα) + Θ(g)] if α ∈ (1,∞].

(240)

Note that for all of these expressions in Eq. (240), W̃α → ∞ as g → 0+. Next we want to calculate
Wext, which is the infimum of Wα, taken over all α ≥ 0. Note that in the limit of vanishing g, ε also
goes to zero. Therefore from Eq. (240), we see that the equation for gW̃α which vanishes most quickly
in the limit g → 0 happens when α ∈ (1,∞]. Therefore, we conclude that for κ̄ ∈ (1,∞) and any
σ ≥ 0,

βhWext = βh inf
α≥1

Wα = g ·
[

inf
α≥1

α

α− 1
ε

g
+ Θ (f(g))

]
= ε+ g ·Θ (f(g)) (241)

We can now calculate limg→0+
∆S
W for κ̄ ∈ (1,∞) and any σ ≥ 0:

lim
g→0+

∆S
W

= lim
g→0+

−ε ln ε− (1− ε) ln(1− ε)
ε

= lim
g→0+

−ε ln ε
ε︸ ︷︷ ︸

→∞

− ε+ Θ(ε2)
ε︸ ︷︷ ︸
→1

= +∞. (242)

From this, we note that the whole regime of κ̄ ∈ (1,∞) does not contain any cases corresponding to
our condition of interest: limg→0+

∆S
Wext

= 0 never holds.

3) For κ̄ = 1
Similar to the first two cases, we again list out the relevant limits:
A. limg→0+

ε
g = σ for some σ ≥ 0.

B. For α < 1, limg→0+
εα

g =∞.
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C. For α > 1, limg→0+
εα

g = 0.
Therefore, by using Eq. (232) and (233) (for α = 1 separately) we have

W̃α =



1
g ·

1
1−α [εα + Θ(ε) + Θ(g)] if α ∈ [0, 1)

1
g · [−ε ln ε+ Θ(ε) + Θ(g)] if α = 1 ∧ σ > 0

n lim
α→1

αBα
α− 1 −

ε ln ε
g
≥ n lim

α→1

αBα
α− 1 if α = 1 ∧ σ = 0

1
α−1

[
αnBα + ασ −Θ

(
εα

g

)]
if α ∈ (1,∞].

(243)

Note that for α ∈ [0, 1) and the case α = 1 ∧ σ > 0, W̃α tends to infinity, while for the other cases
W̃α is finite.
Therefore, we can conclude that for κ̄ = 1,

βhWext = g ·
[(

inf
α≥1

α

α− 1 (nBα + σ)
)

+ Θ (f(g))
]
, (244)

where f(g) = εα

g vanishes as g tends to zero.
Now, we evaluate the limit limg→0+

∆S
W for κ̄ = 1 and any σ ≥ 0:

lim
g→0+

∆S
W

= lim
g→0+

−ε ln ε− (1− ε) ln(1− ε)(
infα≥1

1
α−1 (αnFα + ασ)

)
g

= lim
g→0+

−ε ln ε
c · g

− ε+ Θ(ε2)
c · g︸ ︷︷ ︸
→0

. (245)

This limit of interest can be zero if and only if limg→0+
ε ln ε
g = 0.

We have calculated the limits limg→0+ ∆S/Wext to leading order in g for all functions ε(g) > 0
satisfying limg→0+ ε = 0. These are found in Eqs. (236), (242), and (245). We have found that
limg→0+ ∆S/Wext = 0 occurs only in two cases:
i) κ̄ ∈ [0, 1), and
ii) κ̄ = 1 and limg→0+

ε ln ε
g = 0.

The amount of work, Wext is found in Eq. (235) and (244) respectively. Indeed, they take the form of
Eq. (230), for different functions f(g). With this, we conclude the proof of the lemma.

E.2.5 Solving the infimum for Wext

We have seen in Lemma 12 that the function αBα
α−1 corresponds to the largest order term in Wext w.r.t.

small g (quasi-static heat engine). Our next objective is to find the infimum of αBα
α−1 over α ∈ [κ̄,∞]

appearing in Eq. (230). Such an infimum is is not easy to evaluate, but whenever the cold bath consists
of multiple identical qubits, we show that the derivative d

dα
αBα
α−1 has some nice properties. Roughly

speaking, we show that this derivative does not have many roots, which in turn means that αBα
α−1 does

not have many turning points. We have used this to prove in Lemma 14 that the infimum is either
obtained at α = κ̄ or α→∞.

The derivative of αBαα−1 w.r.t. α is given by

d

dα

αBα
α− 1 = Bα

α− 1 + α
B′α
α− 1 −

αBα
(α− 1)2 = B′α

(α− 1)2

[
α(α− 1)− Bα

B′α

]
= B′α

(α− 1)2G(α), (246)

where

G(α) := α(α− 1)− Bα
B′α

. (247)
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Now, we shall evaluate the quantities Bα, B′α, and
d
dα

Bα
B′α

for the case of qubits (see Assumption
(A.5)), where the energy levels are {0, E}. By using Eq. (180), we evaluate the quantity Bα defined
by Eq. (189) to obtain a simple expression:

Bα = E · e−βcE

1 + e−βcE
− E · e−αβcEe−(1−α)βhE

1 + e−αβcEe−(1−α)βhE
(248)

= E · 1
1 + eβcE

− E · eαβhE

eαβhE + e(βh+αβc)E
(249)

= E

1 + eβcE
·
[
1− eαβhE(1 + eβcE)

eαβhE + e(βh+αβc)E

]
(250)

= E

1 + eβcE
· e

(βh+αβc)E − e(βc+αβh)E

eαβhE + e(βh+αβc)E
. (251)

We note that Eq. (251) is zero only if α = 1, and thus for α 6= 1, αBα/(α− 1) 6= 0. From Eq. (220),
we know that limα→1 αBα/(α− 1) > 0, thus due to continuity,

αBα
α− 1 > 0 ∀ α > 0. (252)

We also derive the first derivative of Bα w.r.t. α for the special case of qubits:

B′α = dBα
dα

= E2(βc − βh)[
eαβhE + e(βh+αβc)E

]2 · e(βh+αβc+αβh)E . (253)

Note that since βc > βh by definition, therefore whenever E > 0, then B′α > 0 always holds. By further
algebraic manipulation, we compute the first derivative of the function

d

dα

Bα
B′α

= cosh[w(βc, βh, α)E]
cosh(βcE/2) , (254)

where w(βc, βh, α) = (βc − βh)α+ βh − βc
2 .

We have written Eq. (246) in this form, since for the special case of qubits, namely Eq. (253),
B′α > 0 is always true. Therefore, looking at the function G(α) whether it is positive or negative) will
tell us whether αBα

α−1 (and therefore Wα) is increasing or decreasing in a particular interval.
In Lemma 13, we identify the conditions on the energy spacing E such that several different properties

of G(α) hold.

Lemma 13. Consider G(α) = α(α− 1)− Bα
B′α

, where Bα, B′α is defined in Eq. (251) and (253). Then
the following holds:
1) If E(βc − βh) tanh(βcE/2) > 2,

∃ 0 < τ < 1 s.t. G(α) < 0 ∀α ∈ (τ, 1) ∪ (1,∞) (255)

2) If E(βc − βh) tanh(βcE/2) < 2,

∃ α > 1 s.t. G(α) > 0 ∀α ∈ (0, 1) ∪ (1, α)
G(α) < 0 ∀α ∈ (α,∞). (256)

3) If E(βc − βh) tanh(βcE/2) = 2,

G(α) > 0 ∀α ∈ (0, 1)
G(α) < 0 ∀α ∈ (1,∞). (257)
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Proof. First we note that since B1 = 0, therefore G(1) = 0. Let us also compute the derivative of
G(α) w.r.t. α:

G′(α) = 2α− 1−
cosh

(
(−βc/2 + βh + (βc − βh)α)E

)
cosh(βcE/2) . (258)

Before we continue, there are several properties of the function G′(α) which we shall make use of.
Firstly, note that G′(1) = 0, in other words, G′ has a root at α = 1. Also, G′(∞) = −∞ for any value
of E > 0, βh > 0, βc > βh

11. Also, since 2α − 1 is linear (and hence both convex and concave),
while the − cosh function is strictly concave 12 , therefore the function G′(α) is strictly concave. This
implies that the second derivative G′′(α) = d2G(α)

dα2 is strictly decreasing w.r.t. α.

The properties of G′(α) indicate that we can fully analyze the function by considering 3 different
cases:

1. G′ has two roots at α = {a, 1}, wherewhere a ∈ (−∞, 1). This corresponds to the case G′′(1) < 0.

2. G′ has two roots at α = {1, a}, where a ∈ (1,∞). This corresponds to the case G′′(1) > 0.

3. G′ has a single root at α = 1. This corresponds to the case G′′(1) = 0.

Figure 7: G′′(1) < 0. Figure 8: G′′(1) > 0. Figure 9: G′′(1) = 0.

Figure 10: A convex function G′(α) and its corresponding G(α), for different values of G′′(α).

We shall now consider these cases one by one. Suppose that

G′′(1) = G′′(α)
∣∣∣
α=1

= 2− (βc − βh)E tanh
(
βcE

2

)
< 0, (259)

then G′′(α) < 0 for all α ∈ (1,∞). Note that Eq. (259) corresponds to the first condition in the lemma
stated above.
This information about the second derivative G′′(α) now allows us to conclude the following about

G(α):

1. If for all α ∈ (1,∞), G′′(α) < 0, then we know that G′(α) < 0 holds for all α ∈ (1,∞) too. Fur-
thermore, this implies that G(α) is monotonically decreasing in the interval (1,∞) and therefore,
G(α) < 0 for all α ∈ (1,∞).

2. G′′(1) < 0 also implies that there exists an interval (τ, 1) such that G′(1) > 0 (See Fig. 7). And
since G(1) = 0, this implies that within the interval (τ, 1), G(α) < 0.

With this, we prove the first statement of the lemma.

Let us now analyze the second case, where G′′(1) > 0. This implies that G′(α) > 0 at least for some
interval α ∈ (1, a), then G′(α) changes sign exactly once at α = a, and goes to −∞. (Refer to Fig. 8).

11This is due to the fact that 2α increases linearly w.r.t. α, while the cosh term increases exponentially.
12To be more precise; due to the concavity of f(x) = −a cosh(b+xc) for a > 0. This follows from the strict concavity of

the cosh function, the invariancy of strict concavity under an affine transformation and the invariancy of strict concavity
under multiplication by a positive constant.
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Also, recall that in the limit of α→∞, G also goes to −∞. Therefore, we conclude that there exists
some α such that

G(α)
{
> 0 α ∈ (1, α)
< 0 α ∈ (α,∞) (260)

With this, we prove the second statement of the lemma.
Finally, we look at the case where G′′(1) = 0, and make the following observations:

1. Since the function G′(α) is concave, and since G′′(1) = 0 implies that α = 1 is an extremum point
for the function G′(α), we know that it must also be the global maximum. Therefore, we know
that for any α 6= 1,G′(α) < 0.

2. Since for the interval α ∈ (−∞, 1), G′(α) < 0 and we know that G(1) = 0, therefore we can
deduce that for any α ∈ (−∞, 1), G(α) > 0.

3. Since for the interval α ∈ (1,∞), G′(α) < 0 and we know that G(1) = 0, therefore we can deduce
that for any α ∈ (1,∞), G(α) < 0.

With this, we prove the final statement of the lemma, and complete our proof.

To summarize, in Lemma 13 we have identified conditions involving the energy gap of Ĥc, and
the temperatures βh, βc. Depending on whether these conditions are satisfied, we can describe the
positivity/negativity of G(α) for different regimes of α. Comparing these different scenarios, we prove
in Lemma 14 that for a quasi-static heat engine, the minimum of infα≥κ̄ αBα

α−1 is obtained only either
at α = κ̄ or α =∞.

Lemma 14. There exists some 0 ≤ ν < 1 such that ∀ κ satisfying ν < κ < 1, the following infimum
is obtained at one of two points

inf
α≥κ

αBα
α− 1 = inf

{
lim
α→κ

αBα
α− 1 , lim

α→∞
αBα
α− 1

}
< lim

α→β

αBα
α− 1 ∀ β ∈ (κ,∞), (261)

where Bα is defined in Eq. (251). Furthermore, if E(βc−βh) tanh(βcE/2) ≤ 2, then we can set ν = 0.

Proof. 1. If
d

dα

αBα
α− 1

{
> 0 ∀ α ∈ (0, 1) ∪ (1, α) for some α ≥ 1
< 0 ∀ α ∈ (α,∞).

(262)

then ∀ κ ∈ (0, 1),

inf
α≥κ

αBα
α− 1 = inf

{
lim
α→κ

αBα
α− 1 , lim

α→∞
αBα
α− 1

}
< lim

α→β

αBα
α− 1 ∀ β ∈ (κ,∞). (263)

Recall from Eq. (246) that
d

dα

αBα
α− 1 = B′α

(α− 1)2G(α), (264)

where B′α > 0, and we have derived some properties of G(α) in Lemma 13. In this proof, we apply
Lemma 13 directly to consider the three scenarios detailed in Lemma 13.
First, consider the first statement of Lemma 13. If E(βc − βh) tanh(βcE/2) > 2, then ∃ 0 < t < 1

s.t.

d

dα

αBα
α− 1 < 0 ∀ α ∈ (t, 1) ∪ (1,∞) (265)

Accepted in Quantum 2019-07-22, click title to verify. Published under CC-BY 4.0. 54



then by continuity of αBαα−1 in α, we conclude that ∀ κ satisfying t < κ < 1

inf
α≥κ

αBα
α− 1 = lim

α→∞
αBα
α− 1 = inf

{
lim
α→κ

αBα
α− 1 , lim

α→∞
αBα
α− 1

}
< lim

α→β

αBα
α− 1 ∀ β ∈ (κ,∞). (266)

Next, consider the second and third statements of Lemma 13 jointly, where E(βc − βh) tanh(βcE/2)
≤ 2. Note that both statements proved in Lemma 13 (namely, Eq. (256) and (257)) can be rewritten
as the fact that there exists α ≥ 1 s.t.

d

dα

αBα
α− 1

{
> 0 for α ∈ (0, 1) ∪ (1, α)
< 0 for α ∈ (α,∞).

(267)

In fact, the third statement is simply a special case of the second, where α = 1. If Eq. (267) holds,
then ∀ κ ∈ (0, 1),

inf
α≥κ

αBα
α− 1 = inf

{
lim
α→κ

αBα
α− 1 , lim

α→∞
αBα
α− 1

}
< lim

α→β

αBα
α− 1 ∀ β ∈ (κ,∞). (268)

By setting τ = 0, we see that the statement of Lemma 14 is achieved.
Therefore, since we have analyzed all three cases stated in Lemma 13, we conclude that there always

exists ν ∈ [0, 1) such that Eq. (261) will always be satisfied ∀ κ ∈ (ν, 1).

E.2.6 Main results: evaluating the efficiency

In this section, we derive the efficiency of quasi-static heat engines in the nano /quantum regime. We
first need to define the quantity

Ω := min
i∈{1,...,n}

Ēi(βc − βh)
1 + e−βcĒi

, (269)

where recall that Ēi is the energy gap of the cold bath qubits, as described in Eq (180) and the sentence
right after it. Recall that n denotes the number of qubits in the cold bath, where n ∈ Z+ is any positive
integer. Before stating the maximum efficiency, we will derive the efficiency as a function of κ̄ defined
in Lemma 11 (recall that this parameter is determined by the choice of ε). For simplicity, we will
still consider the special case where Ēi = E for all i in Lemma 15, (i.e. all qubits of the cold bath
are identical). Lemma 15 shows us that under the condition of extracting near perfect work, one can
choose ε (and therefore κ̄) such that a certain maximum efficiency value is achieved. The closer κ̄ is to
unity, the slower limg→0+ ∆S/W converges to zero, and also the closer the efficiency is to the Carnot
efficiency.

Using this lemma, we prove the achievability of the Carnot efficiency which depends on Ω. This is
the main result of our work, which is stated in Theorem 2.

Lemma 15 (Quasi-static efficiencies as a function of κ̄). For any n ∈ Z+ number of qubits, consider
quasi-static heat engines (Def. 6) as a function of κ̄ (defined in Lemma 11) which extract near perfect
work (Def. 5). For any κ ∈ (0,∞)\{1}, define

γ(κ) := κBκ
κ− 1 (270)

where Bκ is defined in Eq. (251), while γ(1) and γ(∞) are defined by taking the limits κ → 1,∞
respectively.
If Ω ≤ 1 (see Eq. (269)):
1) There exists ν ∈ [0, 1) such that for any κ̄ ∈ (ν, 1] (and limg→0+(ε ln ε)/g = 0 if κ̄ = 1), the

maximum efficiency is

η−1(κ̄) = 1 + βh
βc − βh

γ(1)
γ(κ̄) + Θ(f(g)) + Θ(g) + Θ(ε), (271)

where γ(1) ≥ γ(κ̄) with equality iff κ̄ = 1 and limg→0+ f(g) = 0.
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2) The corresponding amount of work extracted is

Wext(κ̄) = g
n

βh
[γ(κ̄) + Θ (f(g))] . (272)

If Ω > 1:

1) There exists ν ′ ∈ [0, 1) such that for any κ̄ ∈ (ν ′, 1] (and limg→0+(ε ln ε)/g = 0 if κ̄ = 1), the
maximum efficiency is

η−1(κ̄) = 1 + βh
βc − βh

γ(1)
γ(∞) + Θ(f(g)) + Θ(g) + Θ(ε), (273)

where γ(1) < γ(∞).

2) The corresponding amount of work extracted is

Wext(κ̄) = g
n

βh
[γ(∞) + Θ (f(g))] (274)

Proof. Firstly, let us begin by deriving the explicit form for γ(1) and γ(∞):

γ(1) = lim
α→1

α

α− 1Bα = lim
α→1

Bα + αB′α = E2(βc − βh)
(1 + eβcE)2 e

βcE , (275)

where we have made use of the L’Hôspital rule. For α→∞, since

lim
α→∞

Bα = lim
α→∞

E

1 + eβcE
eβhE − eβcEe−α(βc−βh)E

eβhE + e−α(βc−βh)E = E

1 + eβcE
,

therefore we have

γ(∞) = lim
α→1

(
1 + 1

α− 1

)
·Bα = E

1 + eβcE
. (276)

By Lemma 14, we know that the infimum of γ(α) for α ∈ [κ̄,∞) and κ̄ ∈ (ν, 1] is either at α = κ̄ or
α→∞. Therefore, if we take the ratio of Eqs. (275) and (276) to be

γ(1)
γ(∞) = E(βc − βh)

1 + e−βcE
= Ω ≤ 1, (277)

then γ(∞) ≥ γ(1) > γ(κ̄), therefore the infimum of γ(α) for α ∈ [κ̄,∞) and κ̄ ∈ (ν, 1] has to be
obtained at α = κ̄. Taking this into account and using the condition which is equivalent to that of
near perfect work in Eq. (48), we can use Lemma 14, to calculate the amount of work extracted:

Wext = inf
α≥0

Wα = g ·
[

inf
α>κ̄

n

βh
γ(κ̄) + Θ (f(g))

]
= g

n

βh
[γ(κ̄) + Θ (f(g))] , (278)

where limg→0+ f(g) = 0. On the other hand, we can calculate ∆C, which is the change of average
energy in the cold bath system, (recall this is done by Taylor expansion around g = 0)

∆C = n
(
〈E2〉βc − 〈E〉2βc

)
g + Θ

(
g2
)

= nγ(1)
βc − βh

g + Θ
(
g2
)
. (279)

Using Eq. (75), we have ∆W = (1− ε)Wext. The (inverse) efficiency, according to the definition (61),
is thus

η−1(κ̄) = 1 + ∆C
Wext

− ε = 1 + nγ(1)/(βc − βh)g + Θ
(
g2)

nγ(κ̄)g/βh + Θ (gf(g)) − ε (280)

= 1 + βh
(βc − βh)

γ(1)
γ(κ̄) + Θ(f(g)) + Θ(g) + Θ(ε), (281)
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where we have used limg→0+ f(g) = 0 which is proven in Lemma 12. We will now investigate the
efficiency when Ω > 1 is satisfied. Using Ω > 1 and Eq. (277), we have that γ(∞) < γ(1). Thus from
Lemma 14, due to continuity in κ̄ of γ(κ̄) we conclude that there exists a ν ′ ∈ [0, 1) such that for any
κ̄ ∈ (ν ′, 1],

inf
α≥κ̄

γ(α) = γ(∞). (282)

Therefore, since we are considering near perfect work, Eq. (48) holds and we can use Lemma 12 to
calculate the amount of work extracted

Wext = inf
α≥0

Wα = g ·
[

inf
α>κ̄

n

βh
γ(κ̄) + f(g)

]
= g

n

βh

[
γ(∞) + βh

n
f(g)

]
, (283)

where limg→0+ f(g) = 0. Thus using the definition of inverse efficiency (Eq. (61)), together with Eq.
(279), we have

η−1(κ̄) = 1 + ∆C
Wext

− ε = 1 + nγ(1)/(βc − βh)g + Θ
(
g2)

nγ(∞)g/βh + Θ (gf(g)) − ε (284)

= 1 + βh
(βc − βh)

γ(1)
γ(∞) + Θ(f(g)) + Θ(g) + Θ(ε), (285)

where we have used limg→0+ f(g) = 0 which is proven in Lemma 12.

We will now use Lemma 15 to conclude our main result of this letter.

Lemma 16. Consider the case of near perfect work (Def. (5)) and all cold bath qubits are identical
(i.e. Ēi = E for i = 1, . . . , n), then:
1) If Ω ≤ 1 (see Eq. (269)) the optimal achievable efficiency ηmax (see Eq. (64)) is the Carnot

efficiency:

ηmax =
(

1 + βh
βc − βh

)−1
(286)

What is more, this efficiency is achieved for quasi-static heat engines, i.e. ηmax = ηstat
max (see Eq.

(68)).

2) If Ω > 1 and the heat engine is quasi-static, then the optimal achievable efficiency is (see Eq.
(68))

ηstat
max =

(
1 + βh

βc − βh
Ω
)−1

. (287)

3) If Ω > 1 the maximum achievable efficiency ηmax (see Eq. (64)), is strictly less that the Carnot
efficiency for quasi-static heat engines.

Proof. In Lemma 5, we found that the Carnot Efficiency is an upper bound for the efficiency when we
are extracting near perfect work. We also found that Eq. (48) is satisfied iff we are extracting near
perfect work. In Lemma 15, we derived the optimal achievable efficiency for quasi-static heat engines
as a function of κ̄ when Eq. (48) is satisfied. By choosing κ̄ < 1 arbitrarily close to one, if Ω ≤ 1 is
satisfied, we will thus achieve an efficiency arbitrarily close to the Carnot efficiency. Thus since the
upper bound is equal to the lower bound, we prove part 1) of the Theorem. Part 2) of the Theorem
follows from setting κ̄ = 1 in Lemma 5 when Ω > 1 is satisfied.

By making use of Lemma 15, one can generalize Lemma 16 to consider the more general case stated
in A5 (at the beginning of Section E.2.3) where the cold bath still consists of qubits, however the energy
gaps of the qubits can be arbitrary. For convenience, we re-write the general cold bath Hamiltonian
here: for a set of variables Ē1 > 0, · · · , Ēn > 0,

ĤCold =
n∑
k=1

1
⊗(k−1) ⊗ Ĥk

c ⊗ 1⊗(n−k), where Ĥk
c = Ēk|E〉〈E|, (288)

Under the more general form of the cold bath Eq. (288), we have the following theorem.
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Theorem 2. [Quantum/Nano heat engine efficiency] Consider a quasi-static heat engine (Def. 6)
which is extracting near perfect work (Def. (5)), when the cold bath consists of multiple qubits with
energy gaps {Ēi}ni=1.

1) If Ω ≤ 1 (see Eq. (269)) the optimal achievable efficiency ηstat
max (see Eq. (68)) is the Carnot

efficiency:

ηstat
max = ηC =

(
1 + βh

βc − βh

)−1
(289)

2) If Ω > 1, then the maximum achievable efficiency is

ηstat
max =

(
1 + βh

βc − βh
Ω
)−1

, (290)

which is strictly less than the Carnot efficiency ηC .

3) Allowing for correlations between the final state of the battery and cold bath cannot improve the
efficiencies achieved in 1) and 2) above.

Proof. 1) is relatively simple to prove: as long as there exists a qubit with energy Ēi such that
Ēi(βc−βh)
1+e−βhĒi

≤ 1, one way to achieve Carnot efficiency is to simply disregard the rest of the cold bath,
and act only on such qubits. The result is a simple application of 1) in Lemma 16. This strategy
might not be optimal in terms of work extracted, but it is sufficient for our proof.

Figure 11: Illustration of the minima of two individual functions f(x), g(x) and minima of f(x) + g(x).

For 2) suppose that Ω > 1. From the Eq. (269), we conclude that for all Ēi where 1 ≤ i ≤ n,
Ωi := Ēi(βc−βh)

1+e−βhĒi
> 1. By Lemma 15, we see that this implies that the work extractable for all the

individual qubits (which is an optimization problem over all α ≥ 0) is obtained at α → ∞. In
general, considering the qubits collectively does not mean that the collective Wext is additive. This is
because the minima of two functions is not necessarily the minima of these individual functions added
together, as illustrated in the l.h.s. and middle diagrams of Figure. 11. However, (as illustrated on
r.h.s. diagram of Figure. 11), when all the functions have their minima at the same value, then the
collective minima is also obtained at that value.
Next, we show that no matter which subset of qubits S one picks, Carnot efficiency cannot be

achieved. We begin by introducing the notation γi(α), where γi(α) is defined similarly with γ(α) in
Eq. (270) and (251), and the index i indicates that E is substituted by Ēi in Eq. (251). Furthermore,
recall that from Eq. (277), Ωi > 1 is equivalent to γi(1) > γi(∞). Now, consider any subset of qubit
indices S, the amount of extractable work (as a function of g) is

WSext = g

βh

[∑
i∈S

γi(∞) + f(g)
]
, (291)

where limg→0+ f(g) = 0.
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On the other hand, we have that ∆C depends on the individual reduced qubit states, since there
are no interaction terms in ĤCold. Therefore, similar to Eq. (279),

∆CS = g

βc − βh

∑
i∈S

γi(1) + Θ
(
g2
)
. (292)

Following the same proof in Eq. (284) Lemma 15,

η−1(κ̄) = 1 + ∆C
Wext

− ε = 1 + βh
βc − βh

∑
i∈S γi(1)∑
i∈S γi(∞) + Θ(g) + Θ(ε). (293)

As we have observed before, the inverse of the Carnot efficiency η−1
C = 1 + βh

βc−βh . Furthermore, notice
that by Eq. (277), the condition Ωi > 1 implies that γi(1) > γi(∞). Since Ωi > 1 is true for all
1 ≤ i ≤ n, therefore

∑
i∈S γi(1)∑
i∈S γi(∞) > 1.

Lastly, part 3) is proven in Section F.

Suppose n is large. Then since we have a spectrum which looks like a quasi-continuum: the full
range of the spectrum is very large, compared to the individual energy gaps. If one expects that in
such a case, baths are of high temperature (small values of β), then the effects of quantization should
give us the classical observations of being able to achieve the Carnot efficiency always. It can be seen,
that for Emin = min

i∈{1,··· ,n}
Ēi, if the quantities βcEmin, βhEmin � 1, then

Ω = Emin(βc − βh)
1 + e−βcEmin

≤ Emin(βc − βh)� 1. (294)

Whenever Ω ≤ 1, we know that Carnot efficiency is achievable.

E.3 Running the heat engine for many cycles quasi-statically
We have so far proven that a heat engine can achieve the Carnot efficiency when Ω ≤ 1. However,
as like with macroscopic heat engines, this can only be achieved when the heat engine runs quasi-
statically. Macroscopic heat engines can then extract a finite amount of work by running the heat
engine over many cycles (in fact, over any infinite number of cycles if they want to obtain the Carnot
efficiency in order to run quasi-statically). The following lemma, shows that when Ω ≤ 1, a nano-scale
heat engine with a machine that runs over infinitely many cycles can also achieve the Carnot efficiency,
while extracting any finite amount of work W with vanishing entropy increase in the battery.

For simplicity, we will work with the case in which the quasi-continuum battery has a part of its
spectrum equal to that of at least N qubits, each with an energy gap Wext. We work within this
subspace. We will run a heat engine between a hot bath, cold bath using a machine which performs
N cyclic cycles. Let Ẽj and Ẽk be the smallest and largest energy eigenvalues within this subspace
respectively. We let the initial state of the battery be

ρ0
W = |Ẽj〉〈Ẽj |, (295)

ĤW|Ẽj〉 = Ẽj |Ẽj〉 while we wish the final state of the battery to be of the form

ρ1
W = r|Ẽk〉〈Ẽk|+ (1− r) ρψ, (296)

where ĤW|Ẽk〉 = Ẽk|Ẽk〉, ρψ is some orthogonal state to |Ẽk〉 and the value of the probability r is to
be specified in the following lemma. We will define the amount of work extracted from the machine
for N cycles

Wcyc := Ẽk − Ẽj . (297)

For simplicity, we will consider the case that the cold bath consists of n identical qubits with Ω ≤ 1,
and during each cycle the machine interacts with one qubit from the cold bath. The running of the
heat engine is depicted in Fig. 12 and 13.
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Side view 
of Fig. 9

Figure 12: Depiction (top view) of a heat engine compris-
ing of a hot bath, a cold bath consisting of n identical
qubits, a machine and a battery. In each cycle, the ma-
chine interacts specifically with one qubit from the cold
bath, together with the hot bath and battery. After the
end of one cycle, the machine is returned to its original
state, and acts on a different qubit in the cold bath.

Cold
bath

Hot
bath

Machine

1st
cycle

Nth
cycle

N-1 th
cycle

..
.

..
.

2nd
cycle

Top view 
of Fig. 8

Figure 13: Side view of the heat engine. Af-
ter each cycle of the machine, the battery, de-
picted here as a weight moves upward by a
small amount. After N machine cycles, it has
been lifted from its original position

∣∣Ẽj

〉
to a

final state that has most of its weight on
∣∣Ẽk

〉
.

Corollary 2. [Many quasi-static heat engine cycles] Let W be the finite amount of work we wish to
extract. Then for all W > 0 and δ > 0 there exists an n identical qubit cold bath (with Ω ≤ 1) and an
N ∈ N+ number of machine cycles with n ≥ N such that:

1) ηc ≥ η ≥ ηc − δ, where the efficiency η is the efficiency per cycle and is defined by Eq. (61),
and ηc = 1− βh/βc is the Carnot efficiency,

2) Wcyc ≥W − δ,

3) S(ρ0
W) = 0, S(ρ1

W) ≤ δ, and

4) r ≥ 1− δ.

whats more, δ → 0 as N → +∞.

Proof. Since in the qubit subspace, the spectrum is that of at least N qubits, we can write the initial
state in the form

ρ0
W = |Ej〉〈Ej |⊗N , (298)

with ĤW |Ej〉⊗N = Ẽj |Ej〉⊗N . We can now apply the heat engine results of Lemma 15 to the setup.
Namely, we can apply the results of one cycle to each of the qubit subspaces of the battery in parallel.
From Lemma 15 we conclude that this can be achieved with an efficiency given by Eq. (271) and
extract an amount of work per qubit/cycle given by Eq. (272). For simplicity, we will run the heat
engine using one qubit of the cold bath at a time. The final state of the battery is thus

ρ1
W = [(1− ε) |Ek〉〈Ek|+ ε |Ej〉〈Ej |]⊗N . (299)

Noting that |Ẽk〉〈Ẽk| = |Ek〉〈Ek|⊗N by definition, Eq. (299) can be written as

ρ1
W = (1− ε)N |Ẽk〉〈Ẽk|+

[
1− (1− ε)N

]
ρψ. (300)
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with ρψ orthogonal to |Ẽk〉. From Eq. (297) it follows,

Wcyc = NWext = Ng

βh
[γ(κ̄) + Θ (f(g))] , (301)

where in the last line we have used Eq. (272). We now set

N = N(g) = βh
γ(κ̄)

W

g
(302)

for all g > 0 satisfying the constraint N(g) ∈ N+. For any positive constant βhW
γ(κ̄) > 0, one can always

consider the values of βhWγ(κ̄) > g > 0 so that N(g) is large. This constraint imposes g = βhW/(γ(κ̄)N),
where N has to be an integer. Therefore, g now belongs to a subset of the positive real line, rather
than the positive real line itself as previously. However, since g monotonically decreases to zero as N
increases to infinity, we can still take the limit g → 0+ as before. Thus achieving

Wcyc = W + Θ (f(g)) . (303)

Since limg→0+ f(g) = 0, we conclude part 2) of Corollary 2. For the entropy of the final state of the
battery we have

S(ρ1
W) = NS ((1− ε) |Ek〉〈Ek|+ ε |Ej〉〈Ej |) = βhW

γ(κ̄)
(1− ε) ln(1− ε) + ε ln ε

g
= Θ

(
ε ln ε
g

)
. (304)

As stated above the efficiency is given by Eq. (271), and thus we can always choose κ̄ ∈ (0, 1), and g
(recall ε→ 0+ as g → 0+) such that 1) in Corollary 2 is satisfied. Furthermore, recall from the proof
of Lemma 12 that

lim
g→0+

ε ln ε
g

= 0, (305)

for all κ̄ ∈ (0, 1). Thus, from Eq. (304) we conclude that 3) in Corollary 2. We will now prove part 4)
of the Corollary. From Eq. (300) and part 4) of the Corollary, we can identify r = (1− ε)N . We thus
study the limit

lim
g→0+

(1− ε)N =
(

lim
g→0+

(1− ε)1/g
)βhW/γ(κ̄)

=

 lim
g→0+

(1− ε)1/ε︸ ︷︷ ︸
→ e

ε/g

βhW/γ(κ̄)

= 1, (306)

where going to the last line, we have used that fact that Eq. (305) implies that ε/g → 0 as g → 0+.
We thus conclude part 4) of the corollary.

Thus by choosing δ > 0 sufficiently small in Corollary 2, we can extract any finite amount of
work with an arbitrarily small entropy contribution with an efficiency arbitrarily close to the Carnot
efficiency as long as Ω ≤ 1.

F Extensions to the setup
Arguably, one may think that the inability to always achieve the Carnot efficiency in the nano regime
is due to some subtlety of our setup (even though we have shown that according to the standard free
energy one can always achieve the Carnot efficiency with our setup). For such reasons, in the next few
sections we show that even under more general conditions than those laid out in Section A, one still
cannot achieve the Carnot efficiency when Ω > 1.

In Section F.1, we show that allowing for correlations between the final state of the battery and cold
bath (and/or the finite dimensional machine) does not allow us to achieve the Carnot efficiency. The
main result is Theorem 3.

In Section F.2, we show that allowing for the battery to be any state with trace distance ε from
|Ek〉〈Ek|W cannot allow us to achieve the Carnot efficiency when Ω > 1. This shows that whenever we
are unable to achieve the Carnot efficiency, it is not a artificial defect from an overly specified battery
model. The main result is Theorem 4.
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F.1 Final correlations between battery, cold bath, and machine
In Section E.2.1, we stated that the final state of the heat engine after tracing out the hot bath was of
the form

trHot(ρ1
ColdHotMW) = ρ1

Cold ⊗ ρ1
M ⊗ ρ1

W (307)

where ρ1
W = ε|Ej〉〈Ej |W + (1 − ε)|Ek〉〈Ek|W, i.e. the final state of the charged battery was a tensor

product with the cold bath. We also demanded that the heat engine is cyclic i.e. that ρ1
M = ρ0

M. In
this section, we show that if one allows for the final state of the battery, cold bath and machine to
become correlated13, one still cannot achieve the Carnot efficiency when Ω > 1. That is to say, in this
section we allow the final state to be

trHot(ρ1
ColdHotMW) = ρ1

ColdMW (308)

with only two natural constrains, namely that our heat engine actually extracts work, i.e. that

ρ1
W = ε|Ej〉〈Ej |W + (1− ε)|Ek〉〈Ek|W, (309)

as before, and also that the heat engine is still cyclic, i.e.

ρ1
M = ρ0

M. (310)

Throughout this section, (unless stated otherwise) we will write ρ1
ColdMW to refer to any generic tri-

partite quantum state on the cold bath, machine and battery satisfying Eqs. (309) and (310).

• In Section F.1.1, we first define the generalized efficiency where one is allowed to consider correlated
final states. We see that although this may potentially affect the amount of extractable workWext,
the amount of heat change in the bath remains the same, by making use of energy conservation
and the fact that the global Hamiltonian HColdHotMW does not contain interaction terms between
subsystems.

• In Section F.1.2, we make use of the generalized second law when α = 1 (which is also the
macroscopic second law), in order to show that final correlations still do not allow the surpassing
of Carnot efficiency. This can be proven by noting that the von Neumann entropy is subadditive,
and the result is summarized in Lemma 19. A proof sketch can be found in the beginning of
Section F.1.2.

• In Section F.1.3, we turn to the case where Ω > 1, where without final correlations it is shown in
Theorem 2 that Carnot efficiency cannot be achieved.

F.1.1 Defining the generalized efficiency

Recall that before (see Section C.2), we have shown in Eq. (77) that if the following assumptions hold:

(i) the final reduced state of the battery ρ1
W is fixed by Eq. (42),

(ii) the state of the machine is preserved,

(iii) the final state is of tensor product form, i.e. ρ1
ColdMW = ρ1

Cold ⊗ ρ1
M ⊗ ρ1

W,

then the efficiency for a particular transformation ρ0
ColdHotMW → ρ1

ColdHotMW simplifies to being only an
explicit function of ρ1

Cold instead of the global final state. This simplified expression of the efficiency in
Eq. (77) is then used to evaluate, for example, ηmac(ρ1

Cold) in Eq. (65). Since we now drop Assumption
(iii) for the final state being uncorrelated, the efficiency and the work extracted Wext will now depend
on the tripartite final state ρ1

ColdMW instead.

13Recall that the final state of the cold bath, machine and battery are already allowed to become correlated with the
hot bath
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Therefore, let us first write a generalized expression for the maximum efficiency corresponding to a
transition ρ0

ColdHotMW → ρ1
ColdHotMW via the unitary operator U(t) in this generalised setting:

ηqm(ρ1
ColdMW) := sup

Wext

η(ρ1
Cold,Wext) s.t. trHot[U(t)ρColdHotMWU(t)†] = ρ1

ColdMW, (311)

[U(t), Ĥ] = 0, (312)
ρ1
W = ε|Ej〉〈Ej |W + (1− ε)|Ek〉〈Ek|W, (313)
ρ1
M = ρ0

M. (314)
See Fig (1) in main text for a definition of the other quantities appearing in Eq. (311). Recall that
the definition of η is given by η = Wext/∆H as in Eq. (61). In Section C.2 we showed that this can
be simplified to

η = (1− ε+ ∆C/Wext)−1, (315)
where ∆C = ∆C(ρ1

Cold). This equation holds under Assumption (i) and (ii), together with the fact that
the global Hamiltonian does not contain interaction terms between both baths, battery, and machine.
Since the derivation of Eq. (315) does not require Assumption (iii), it still holds for a general tripartite
final state ρ1

ColdMW. However, dropping Assumption (iii) may potentially allow for larger values of
Wext, and therefore subsequently might affect ηqm. For this reason we write ηqm = ηqm(ρ1

ColdMW) to
remind ourselves that it is a function of the entire final state ρ1

ColdMW.
We have written η = η(ρ1

Cold,Wext) to explicitly show the Wext dependency of η. Although not
written explicitly in Eq. (311), we should remember that U(t), ρ0

M, ĤHot and ĤM are arbitrary, other
than satisfying condition (A.4) in Section A. As such, by maximizing η overWext, these quantities will
accommodate their optimal values to maximize ηqm(ρ1

ColdMW)14. Throughout this section, we analyze
Eq. (311) only in the case of near perfect work (Def. (5)) since the proof that perfect work is not
possible (see Lemma 8) also applies to Eq. (311)15.

For the purpose of our proofs, we need to define a new family of intermediate efficiencies. They
provide the maximum possible efficiency, when considering only a particular instance α ≥ 0 of the
generalized second laws. For any α ∈ [0,∞), let us denote
ηqm
α (ρ1

ColdMW) = sup
Wext

η(ρ1
Cold,Wext) s.t. Fα(τ0

Cold ⊗ ρ0
M ⊗ ρ0

W, τ
h
ColdMW) ≥ Fα(ρ1

ColdMW, τ
h
ColdMW),

(316)
tr(Ĥtρ

0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (317)

ρ1
W = ε|Ej〉〈Ej |W + (1− ε)|Ek〉〈Ek|W, (318)
ρ1
M = ρ0

M. (319)
See Eq. (56) for definition of Fα. We denote ηqm

∞ = lim
α→∞

ηqm
α . The condition Eq. (317), is always

satisfied when all the second laws are satisfied. We add the condition as a constraint here, since we
will need it in order to write the efficiency η in the form of Eq. (315).

F.1.2 Final correlations do not allow the surpassing of Carnot efficiency

Here, we show that Carnot efficiency cannot be surpassed in a quasi-static heat engine even when we
allow arbitrary final correlations in the final state ρ1

ColdMW. This can be done in the following steps:

1. Using the definitions of generalized efficiency (allowing correlations) in Eq. (311) and general-
ized intermediate efficiencies in Eq. (316), we prove an inequality between ηqm(ρ1

ColdMW) and
ηqm
α (ρ1

ColdMW), for all α ≥ 0. This is done in Lemma 17. From this, we also conclude that
ηqm(ρ1

ColdMW) ≤ ηqm
1 (ρ1

ColdMW).
14This is an advantage, since it rules out cases such as when the Hamiltonian does not support a thermal state

(e.g. when the corresponding thermal state’s partition function diverges). In this section we consider any cold bath
Hamiltonian ĤCold that satisfies (A.6) in Section A (i.e. finite dimensional). As such it will always have a well defined
thermal state.

15For the sake of full generality, some of the lemmas in this section are proven irrespective to whether we are considering
perfect or near perfect work

Accepted in Quantum 2019-07-22, click title to verify. Published under CC-BY 4.0. 63



2. On the other hand, we show that for any final state of the cold bath, machine and battery ρ1
ColdMW,

the generalized intermediate efficiency for α = 1 only increases, if we consider the tensor product of
the marginals ρ1

ColdMW. In other words, ηqm
1 (ρ1

ColdMW) ≤ ηqm
1 (ρ1

Cold⊗ρ1
W⊗ρ1

M). One can intuitively
see why this is true: it comes from the fact that the von Neumann entropy is subadditive, therefore
the final state ρ1

Cold ⊗ ρ1
W ⊗ ρ1

M contains more entropy than ρ1
ColdMW. Therefore according to the

α = 1 second law, one can potentially draw more work by going to the state ρ1
Cold ⊗ ρ1

W ⊗ ρ1
M

instead of a correlated state ρ1
ColdMW.

3. Since the argument for ηqm
1 (ρ1

Cold ⊗ ρ1
W ⊗ ρ1

M) is of tensor product form, Assumption (iii) holds
as before, and therefore the efficiency only depends on the final state of the cold bath ρ1

Cold. This
means that Eq. (316) for α = 1 reduces to Eq. (65). Lastly, by using Lemma 22, this allows
us to further show in Lemma 19 that even by allowing correlations in ρ1

ColdMW, the efficiency
ηqm(ρ1

ColdMW) can never surpass the Carnot value.

Firstly, let us fix the following notation: for an R-partite state ρA1A2...AR , define the uncorrelated
counterpart

ρA1A2...AR :=
R⊗
i=1

ρAi . (320)

Comparing ρA1A2...AR and ρA1A2...AR , one will see that each subsystem has the same reduced state, but
the global state is different. Another useful thing is to note that if one is given a Hamiltonian which
does not contain any interaction terms between each subsystem, i.e.

ĤA1A2...AR =
R∑
i=1
1A1 ⊗ · · · ĤAi · · ·1AR , (321)

then we may conclude that

tr(ĤA1A2...ARρA1A2...AR) =
R∑
i=1

tr(ĤAiρAi) =
R∑
i=1

tr(ĤAiρAi) = tr(ĤA1A2...ARρA1A2...AR). (322)

Lemma 17. For all α ≥ 0 and all states ρ1
ColdHotMW,

ηqm(ρ1
ColdMW) ≤ ηqm

α (ρ1
ColdMW), (323)

where ηqm and ηqm
α are defined in Eqs. (311) and (316) respectively.

Proof. For every α ≥ 0, Eq. Fα(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) ≥ Fα(ρ1

ColdMW, τ
h
ColdMW) in Eq. (316) is a

necessary condition for the transformation ρ0
ColdMW → ρ1

ColdMW to occur under an energy preserving
unitary with the aid of a catalyst [7]. Energy preserving unitaries also preserve the average energy
and thus the Eq. tr(Ĥtρ

0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW) in Eq. (316) is also a necessary condition.

If a unitary U(t) satisfies the conditions in Eq. (311), then by the second laws it satisfies Eq. (316)
for any particular α ≥ 0. As a consequence of these observations, the set of allowed unitaries U(t) in
Eq. (311) is a subset of allowed unitaries facilitating the catalytic thermal operation which transforms
ρ0

ColdMW to ρ1
ColdMW in Eq. (316).

Lemma 18. For any final state ρ1
ColdMW, consider the quantity ηqm

1 (ρ1
ColdMW) defined in Eq. (316).

Consider the optimization problem

a(ρ1
ColdMW) := sup

Wext
η(ρ1

Cold,Wext) s.t. F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) = F1(ρ1

ColdMW, τ
h
ColdMW),

(324)
tr(Ĥtρ

0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (325)

ρ1
W = ε|Ej〉〈Ej |W + (1− ε)|Ek〉〈Ek|W, (326)
ρ1

M = ρ0
M. (327)

Then, ηqm
1 (ρ1

ColdMW) = a(ρ1
ColdMW).

Accepted in Quantum 2019-07-22, click title to verify. Published under CC-BY 4.0. 64



Proof. We begin by noting that the free energy F1 can be written as

F1(ρ, τh) = tr(Ĥρ)− 1
βh
S(ρ), (328)

where 〈Ĥ〉ρ := tr[Ĥρ], and S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy, while τh is the thermal
state at inverse temperature βh for the Hamiltonian Ĥ. Also, let us recall that Wext = EW

k −EW
j > 0

where EW
j is a constant.

Next, we consider the free energies F1(τ0
Cold⊗ρ0

M⊗ρ0
W, τ

h
ColdMW) and F1(ρ1

ColdMW, τ
h
ColdMW) respec-

tively, and how they relate to Wext. First of all, note that the quantity F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW)

is simply a constant that does not depend on Wext. This is because

F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) = F1(τ0

Cold, τ
h
Cold) + F1(τ0

M, τ
h
M) + F1(τ0

W, τ
h
W) (329)

= F1(τ0
Cold, τ

h
Cold) + F1(τ0

M, τ
h
M) + tr(ĤWρ

0
W)− β−1

h S(ρ0
W) (330)

= F1(τ0
Cold, τ

h
Cold) + F1(τ0

M, τ
h
M) + EW

j , (331)

where the first two terms do not depend on the battery Hamiltonian at all, while in the last equality
we have made use of the fact that ρ0

W = |Ej〉〈Ej |W. On the other hand,

F1(ρ1
ColdMW, τ

h
ColdMW) = tr(ĤColdMWρ

1
ColdMW)− β−1

h S(ρ1
ColdMW) (332)

= tr(ĤColdρ
1
Cold) + tr(ĤMρ

1
M) + tr(ĤWρ

1
W)− β−1

h S(ρ1
ColdMW) (333)

= tr(ĤColdρ
1
Cold) + tr(ĤMρ

1
M)− β−1

h S(ρ1
ColdMW) + εEW

j + (1− ε)EW
k . (334)

Note that again, tr(ĤColdρ
1
Cold) and tr(ĤMρ

1
M) do not depend on the battery Hamiltonian and therefore

do not depend on EW
k . Similarly, S(ρ1

ColdMW) depends only on the eigenvalues of the state, and is
independent of EW

k . Since ε ∈ [0, 1), we may conclude the following: F (ρ1
ColdMW, τ

h
ColdMW) is a

continuous function that strictly increases w.r.t. EW
k , and therefore it also strictly increases w.r.t.

Wext.
To prove this lemma, it suffices to show that the supremum over Wext in Eq. (316) for α = 1

has to be achieved when F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) = F1(ρ1

ColdMW, τ
h
ColdMW). We prove this

by contradiction. Suppose that Ŵext achieves the supremum for ηqm
1 , and for this value of Ŵext,

F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) > F1(ρ1

ColdMW, τ
h
ColdMW). Since we know that F (ρ1

ColdMW, τ
h
ColdMW)

strictly increases w.r.t. Wext, there must exist anW ′ext > Ŵext such that F1(τ0
Cold⊗ρ0

M⊗ρ0
W, τ

h
ColdMW) ≥

F1(ρ1
ColdMW, τ

h
ColdMW). Furthermore, since by Eq. (315) we know that the efficiency is monotonically

increasing w.r.t. Wext as well, it follows that W ′ext achieves a higher value of efficiency compared to
Ŵext while satisfying the required constraints at the same time. This is a contradiction, and therefore
we conclude that the optimization for ηqm

1 can be simplified to a(ρ1
ColdMW), where the constraint on

F1 holds with equality.

Lemma 19. For any final state ρ1
ColdHotMW, and any Hamiltonian of the form in Eq. (37), then for

perfect or near perfect work extraction (see Defs. 4 and 5), we have

ηqm
(
ρ1

ColdMW

) (1)
≤ ηqm

1

(
ρ1

ColdMW

) (2)
≤ ηqm

1

(
ρ1

ColdMW

) (3)= ηmac
(
ρ1

Cold

) (4)
≤ 1− βh

βc
, (335)

with equality in (2) iff ρ1
ColdMW = ρ1

ColdMW. The quantities ηqm
1 and ηmac are defined in Eq. (316) and

Eq. (65) respectively.

Proof. Note that inequality (1) is a direct consequence of Lemma 17, while inequality (4) holds because
of Lemma 6. It remains to prove inequalities (2) and (3).
Proof of inequality (2): Using the definition in Eq. (316) together with Lemma 18, let us compare the
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quantities

ηqm
1 (ρ1

ColdMW) = sup
Wext

η(ρ1
Cold,Wext) s.t. F1(τ0

Cold ⊗ ρ0
M ⊗ ρ0

W, τ
h
ColdMW) = F1(ρ1

ColdMW, τ
h
ColdMW),

(336)
tr(Ĥtρ

0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (337)

ρ1
W = ε|Ej〉〈Ej |W + (1− ε)|Ek〉〈Ek|W, (338)
ρ1

M = ρ0
M, (339)

and

ηqm
1 (ρ1

ColdMW) = sup
Wext

η(ρ1
Cold,Wext) s.t. F1(τ0

Cold ⊗ ρ0
M ⊗ ρ0

W, τ
h
ColdMW) = F1(ρ1

ColdMW, τ
h
ColdMW),

(340)
tr(Ĥtρ

0
ColdHotMW) = tr(Ĥtρ

1
ColdHotMW), (341)

ρ1
W = ε|Ej〉〈Ej |W + (1− ε)|Ek〉〈Ek|W, (342)
ρ1

M = ρ0
M. (343)

We first make the following observations:

• By our definition of ρ1
ColdMW, we have that ρ1

Cold = ρ1
Cold. Therefore, the term ∆C in Eq. (315)

which is only a function of the reduced state on the cold bath is the same for both efficiencies
in Eq. (336) and Eq. (340). Therefore, to compare the efficiencies, we need only to compare the
value of Wext that satisfies the free energy constraint in both optimization problems.

• In [65] (pg. 395) it has been proven that the von Neumann entropy is subadditive

S(ρAB) ≤ S
(
ρAB

)
, (344)

with equality iff ρAB = ρAB. Furthermore, since ĤColdMW does not contain interaction terms, as
we have demonstrated earlier in Eq. (322),

tr(ĤColdMWρ
1
ColdMW) = tr(ĤColdMWρ

1
ColdMW). (345)

Thus, by Eq. (328) we conclude that

F1(ρ1
ColdMW) ≤ F1(ρ1

ColdMW), (346)

with equality iff ρ1
ColdMW = ρ1

ColdMW.

• For any final state ρ1
ColdMW where ρ1

W = ε|Ej〉〈Ej |W + (1 − ε)|Ek〉〈Ek|W, we have seen in the
proof of Lemma 18 that F1(ρ1

ColdMW, τ
h
ColdMW) is a continuous function that strictly increases

with Wext.

With these three observations we can now prove inequality (2). Note that when ρ1
ColdMW = ρ1

ColdMW,
equality holds trivially. Therefore, let us consider the case where ρ1

ColdMW 6= ρ1
ColdMW. Suppose Ŵext

achieves the supremum in ηqm
1 (ρ1

ColdMW), and for such a value of Ŵext,

F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) = F1(ρ1

ColdMW, τ
h
ColdMW) > F1(ρ1

ColdMW, τ
h
ColdMW). (347)

We note also that since F1(ρ1
ColdMW, τ

h
ColdMW) strictly increases with Wext, and therefore there exists

some W ′ext > Ŵext such that F1(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) = F1(ρ1

ColdMW, τ
h
ColdMW). Therefore, W ′ext

is a feasible solution for Eq. (340), i.e. it satisfies the constraints in the optimization problem. In
conclusion, we have
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ηqm
1 (ρ1

ColdMW) =
[
1− ε+ ∆C

Ŵext

]−1

≤
[
1− ε+ ∆C

W ′ext

]−1
≤ ηqm

1 (ρ1
ColdMW). (348)

Proof of equality (3): Consider the quantity ηqm
1 (ρ1

ColdMW). Since the state ρ1
ColdMW takes on a product

structure form between all the subsystems now, Assumption (iii) in the beginning of Section F.1.1
holds again. By Eqns. (338) and (339), we know that Assumptions (i) and (ii) also hold. Therefore,
we know that under these assumptions the efficiency does not depend anymore on the global state
ρ1

ColdMW, but only ρ1
Cold. Again comparing the conditions of ηmac(ρ1

Cold) and ηqm
1 (ρ1

ColdMW), we see
that they are exactly the same quantity.

Therefore, Lemma 19 tells us that correlations between the final states of the cold bath, machine
and battery cannot allow you to achieve an efficiency greater than the Carnot efficiency.

F.1.3 Achievability of Carnot efficiency still depends on more than temperature

Earlier in Section F.1.2, we proved in Lemma 19 that Carnot efficiency gives an upper bound to the
efficiency of any arbitrary final state ρ1

ColdMW. In this section, we want to prove that when Ω > 1
holds, quasi-static heat engines cannot achieve the Carnot efficiency even when allowing correlations
between the final states of the battery and the cold bath. This can be done in the following steps:

• According to Lemma 19, Carnot efficiency can be attained only when all the inequalities in
Eq. (335) are satisfied with equalities. We use this to prove in Lemma 20 that in order to
achieve the Carnot efficiency, we may only consider the limit where correlations in the final state
vanish. Not only so, the magnitude of these correlations also have to vanish quickly enough in
order for Carnot efficiency to be achieved. In particular, we define a parameter k which quantifies
the amount of correlations, and show that k has to vanish faster than the quasi-static parameter
g, in order to achieve the Carnot efficiency ηC .

• Next, in Lemma 21, we show that if the parameter k vanishes faster than the quasi-static pa-
rameter g, then whenever Ω > 1, one can derive an upper bound for the intermediate efficiency
ηqm
∞ (ρ1

ColdMW) which considers the amount of work extractable by invoking only the generalized
second law of α → ∞. Combining Lemma 20 and Lemma 21, we conclude in Corollary 3 that
when Ω > 1, ηqm ≤ ηqm

∞ ≤ ηC is strictly upper bounded away from the Carnot efficiency.

Before we begin, let us note that by definition, the initial state ρ0
ColdW is diagonal in its energy

eigenbasis. Furthermore, the state ρ0
ColdMW is of the form ρ0

Cold ⊗ ρ0
M ⊗ ρ0

W. Since w.l.o.g. we can
assume that ĤM is proportional to the identity (or called the trivial Hamiltonian, see [7]), ρ0

M can
always be written as a diagonal state in an energy eigenbasis of its Hamiltonian. Therefore the state
ρ0
ColdMW is always diagonal in the energy eigenbasis of the Hamiltonian ĤColdMW := ĤCold +ĤM +ĤW.

Since catalytic thermal operations cannot create coherences [7], ρ1
ColdMW has to be also diagonal in the

energy eigenbasis of ĤColdMW.
We observe that any ρ1

ColdMW can always be written as

ρ1
ColdMW = (1− k∗)ρ1

ColdMW + k∗ρcorr
ColdMW, (349)

where k∗ = min{k ∈ [0, 1]|ρ1
ColdMW = (1− k)ρ1

ColdMW + kQ,Q ≥ 0}. This means that ρ1
ColdMW can be

written as a convex combination of two states: one being ρ1
ColdMW, and the other ρcorr

ColdMW containing
all other correlations. Note that such a k∗ always exists, in particular, k = 1 is always a feasible
solution.

We now define a particular parametrization of the final states,

ρ1
ColdMW(k, ρno corr

ColdMW, ρ
corr
ColdMW) := (1− k)ρno corr

ColdMW + kρcorr
ColdMW, k ∈ [0, k∗] (350)
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where the following holds:

(i) ρno corr
ColdMW = ρ1

ColdMW, (351)
(ii) ρcorr

ColdMW 6= ρno corr
ColdMW, (352)

(iii) ρ1
M = (1− k)ρno corr

M + kρcorr
M = ρ0

M. (353)

Since in our heat engine, the initial state has no coherences, it suffices to consider ρ1
ColdMW which

is diagonal in the energy eigenbasis. This implies that ρno corr
ColdMW = ρ1

ColdMW is also diagonal in the
energy eigenbasis, and therefore the same holds for ρcorr

ColdMW due to Eq. (350). All correlations between
the individual systems of cold bath, machine and battery are contained only in ρcorr

ColdMW. Therefore,
ρ1
ColdMW(·, ·, ·) parametrizes every possible quantum state on HColdMW which is diagonal in the global

energy eigenbasis and that returns the machine locally to its initial state after one cycle of the heat
engine. In Eq. (353), ρ1

M is the final state of the machine, since the heat engine is cyclic, recall from
Section A that we require ρ1

M = ρ0
M.

Lemma 20. For every family of states ρ1
ColdMW(k, ρno corr

ColdMW, ρ
corr
ColdMW) parametrized by k, (see Eqs.

(350)-(353)), if the quantum efficiency ηqm
1 defined in Eq. (316) of a quasi-static heat engine achieves

the Carnot efficiency
ηqm

1 (ρ1
ColdMW) = 1− βh

βc
, (354)

then the following conditions are satisfied:

1) The state ρ1
ColdMW is the final state of a quasi-static heat engine (see Def. 6)

ρ1
ColdMW = τ(g)⊗ ρ0

M(g)⊗ ρ1
W with g → 0+. (355)

2) The correlations must vanish sufficiently quickly. That is to say, the parameter k in Eq. (350)
vanishes more quickly compared to g, i.e.

lim
g→0+

k

g
= 0. (356)

Proof. Firstly, suppose that Carnot efficiency is achieved, i.e. ηqm(ρ1
ColdMW) = 1− βh

βc
. Then according

to Lemma 19, all inequalities in Eq. (335) should be satisfied with equality, in particular inequality
(4). We have established in Lemma 6 that this equality is achieved in the quasi-static limit, i.e.
ρ1

Cold = τCold(g) where g → 0+. This implies Condition 1) in the statement of the lemma.
The proof for Condition 2) consists of calculating Wext for α = 1 in Eq. (316) to leading order in

g and k. This Wext quantity can be later used to evaluate ηqm
1 . We will show that we can write the

expression for ηqm
1 into two terms: one term describes the efficiency when there are no final correlations,

and the other term is a strictly negative contribution which must vanish in order to achieve the Carnot
efficiency. This latter constraint will give us Eq. (356).
Let us denote W ′ext as the value of battery energy gap Wext = EW

k − EW
j that solves the equation

F1(τ0
Cold ⊗ ρ0

M(g)⊗ ρ0
W, τ

h
ColdMW) = F1(ρ1

ColdMW(k, ρno corr
ColdMW, ρ

corr
ColdMW), τhColdMW)16, (357)

while Ŵext as the value that solves the case where k = 0, i.e.

F1(τ0
Cold ⊗ ρ0

M(g)⊗ ρ0
W, τ

h
ColdMW) = F1(ρno corr

ColdMW, τ
h
ColdMW). (358)

Since ρno corr
ColdMW = ρ1

ColdMW = ρ1
Cold ⊗ ρ0

M(g) ⊗ ρ1
W contains no correlations, Ŵext was given by Eq.

(126). According to Lemma 18, we know that W ′ext and Ŵext are the values of Wext which solve

16We denote ρ0
M(g) because for different values of g, we are allowed to choose different initial machine states, as long

as ρ1
M(g) = ρ0

M(g).
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sup
Wext

ηqm
1 (ρ1

ColdMW,Wext) and sup
Wext

ηqm
1 (ρ1

ColdMW,Wext) respectively. Solving Eq. (357) for W ′ext with

the aid of Eq. (328), we find
W ′ext = Ŵext − χ, (359)

where Wext is the solution to Eq. (358) when k = 0, given by Eq. (126), while

χ := 1
βh

1
1− ε

[
S(ρno corr

ColdMW)− S
(
ρ1

ColdMW(k, ρno corr
ColdMW, ρ

corr
ColdMW)

)]
. (360)

Let us first note some properties of χ, which we will later use:

• Since S(·) is subadditive, due to the parametrization of ρ1
ColdMW(·, ·, ·) in Eq. (350), we have

χ ≥ 0 (361)

with equality iff ρ1
ColdMW = ρ1

ColdMW i.e. iff k = 0. Therefore, we may conclude that Ŵext
W ′ext

≥ 1.

• We have that
d

dk
χ(k, ρno corr

ColdMW, ρ
corr
ColdMW)

∣∣∣∣
k=k0

= 0 (362)

if and only if
ρ1

ColdMW(k0, ρ
no corr
ColdMW, ρ

corr
ColdMW) = 1ColdMW/N. (363)

Eqs. (362) and (363) are direct consequences of the observations:
1) Entropy is strictly concave, i.e. S

(
ρ1

ColdMW(k, ρno corr
ColdMW, ρ

corr
ColdMW)

)
is strictly concave in

k ∈ [0, 1]. Therefore, by Eq. (363) χ is strictly convex in k ∈ [0, 1]. When the first deriva-
tive of the convex function dχ

dk = 0, this must be the global minimum [66].
2) However, we know that the entropy is uniquely maximized (and therefore χ is uniquely mini-
mized) for the maximally mixed state.

Returning to evaluate the efficiency, we may use Eq. (315) to calculate the inverse efficiency,

[ηqm
1 (ρ1

ColdMW)]−1 = 1− ε+ ∆C(ρ1
Cold)

W ′ext
(364)

= 1− ε+ ∆C(ρ1
Cold)

Ŵext

Ŵext
W ′ext

(365)

≥ 1− ε+ ∆C(ρ1
Cold)

Ŵext
. (366)

The last term in Eq. (365) is non-negative because we know the terms ∆C(ρ1
Cold), Ŵext and W ′ext are

all non-negative.
With Condition 1), we now know that

1− ε+ ∆C(ρ1
Cold)

Wext
= 1− βh

βc
, (367)

in the quasi-static limit, and therefore a necessary condition to achieve the Carnot efficiency is that
limg→0

Ŵext
W ′ext

= 1 also in the quasi-static limit. Using the relation W ′ext = Ŵext + χ, we have the
requirement that

lim
g→0+

χ(k, ρno corr
ColdMW(g), ρcorr

ColdMW)
Ŵext(ρno corr

ColdMW(g))
= 0. (368)

First, let us observe that Ŵext(ρno corr
ColdMW(g)) = Wext(βc − g) given by Eq. (113). The leading order

term of Wext(βc− g) = Θ(g) as g → 0+. Therefore, in order to satisfy Eq. (368), we must firstly have
limg→0 χ = 0. From Eqs. (350), (360), this implies that we need k → 0 for all ρno corr

ColdMW.
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Since the numerator and denominator of Eq. (368) both go to zero, by L’Hospital rule, to evaluate
the limit we need to take the derivative of both terms w.r.t. g. Therefore, we expand χ to first order
in k and g. From Eq. (360) it follows

χ(k, ρno corr
ColdMW(g), ρcorr

ColdMW) = d

dk
χ(k, ρno corr

ColdMW(0), ρcorr
ColdMW)

∣∣∣∣
k=0

k

+ d

dg
χ(0, ρno corr

ColdMW(g), ρcorr
ColdMW)

∣∣∣∣
g=0

g + o(gk) + o(k2) + o(g2) (369)

= d

dk
χ(k, ρno corr

ColdMW(0), ρcorr
ColdMW)

∣∣∣∣
k=0

k + o(gk) + o(k2) + o(g2). (370)

The term d
dgχ(0, ρno corr

ColdMW(g), ρcorr
ColdMW)

∣∣∣∣
g=0

= 0 since when k = 0, χ will be constant for all g. Next, we

note that since Eqs. (361) holds, it must be that d
dkχ(k, ρno corr

ColdMW(0), ρcorr
ColdMW)

∣∣∣∣
k=0
≥ 0. Furthermore,

from Eq. (362), we have that

d

dk
χ(k, ρno corr

ColdMW(0), ρcorr
ColdMW)

∣∣∣∣
k=0
6= 0, (371)

for all ρcorr
ColdMW since by definition ρ1

ColdMW(0, ρno corr
ColdMW(0), ρcorr

ColdMW) 6= 1ColdMW/N . We can infer that
ρ1

ColdMW is not maximally mixed from a few observations, for example: this is true because we have
required that the reduced state on the battery is not maximally mixed since we consider near perfect
work extraction.
Thus, taking into account Wext(βc − g) = Θ(g), Eq. (368) implies Eq. (356).

By now, we have established a constraint on how quickly the correlations have to vanish w.r.t. g, for
the possibility of achieving Carnot efficiency. In the next Lemma 21, we will show that the constraints
given by Eq. (356) can be used to derive an upper bound for ηqm

∞ .

Lemma 21. If Eqs. (355) and (356) are satisfied, then the quantity ηqm
∞ can be upper bounded by

ηqm
∞ (ρ1

ColdMW(k,ρno corr
ColdMW(g), ρcorr

ColdMW)) (372)

≤
[
1 + βh

βc − βh
γ(1)
γ(∞)

]−1
+ Θ(f(g)) + Θ(k/g) + Θ(g) + Θ(ε), (373)

with limg→0+ f(g) = 0.

Proof. The main idea of our proof is as follows: we show that if Eqns. (355) and (356) hold, then we
can upper bound Wext while considering only the F∞ condition. This bound differs from the value
given when no correlations are present by only a small amount. Substituting this into the expression
for ηqm

∞ , we obtain Eq. (373).
Let us begin by analyzing the difference in eigenvalues of the states ρ1

ColdMW and ρ1
ColdMW. Recall

that

ρ1
ColdMW(k, ρno corr

ColdMW, ρ
corr
ColdMW) = (1− k)ρno corr

ColdMW + kρcorr
ColdMW (374)

where ρno corr
ColdMW, ρ

corr
ColdMW are both diagonal in the energy eigenbasis. Since ρ1

ColdMW is a mixture of
two energy-diagonal states, it is also diagonal. Let us denote its eigenvalues as [ρ1

ColdMW]i.
As for ρ1

ColdMW, Eqn. (355) gives the explicit form of the state,

ρ1
ColdMW = ρ1

Cold ⊗ ρ1
M ⊗ ρ1

W = τ(g)⊗ ρ0
M(g)⊗ ρ1

W. (375)

Let us denote its eigenvalues as [ρ1
ColdMW]i.

We first observe two properties involving trace distance d(·, ·):

Accepted in Quantum 2019-07-22, click title to verify. Published under CC-BY 4.0. 70



(P.i) Consider two states σ1, σ2 diagonal in the same eigenbasis. Then if ρ = (1− k)σ1 + kσ2 for some
k ∈ [0, 1], then one can conclude that the distance

d(ρ, σ1) ≤ k. (376)

(P.ii) For any two states ρ, σ diagonal in the same basis, with eigenvalues pi, qi, if their trace distance

d(ρ, σ) = 1
2‖ρ− σ‖1 ≤ ε, (377)

then this implies that their eigenvalues cannot differ by more than ε, i.e. ∀i, |pi − qi| ≤ ε. By
using this fact, we may first calculate the trace distance between ρ1

ColdMW and ρ1
ColdMW, then

bound the difference of their eigenvalues.

We find that

d(ρ1
ColdMW, ρ

1
ColdMW) ≤ d(ρ1

ColdMW, ρ
no corr
ColdMW) + d(ρno corr

ColdMW, ρ
1
ColdMW) (378)

≤ k + d(ρno corr
Cold , ρ1

Cold) + d(ρno corr
M , ρ1

M) + d(ρno corr
W , ρ1

W) (379)
≤ 4k. (380)

The first inequality is a triangle inequality that holds for all states. The second inequality holds
because of (P.i), and because trace distance is subadditive under tensor product (note that both
ρno corr

ColdMW and ρ1
ColdMW are tensor product states). The third inequality holds because we know

d(ρ1
ColdMW, ρ

no corr
ColdMW) ≤ k and that trace distance decreases under partial trace. By (P.ii), Eq. (380)

tells us that ∀i,
[ρ1

ColdMW]i = [ρ1
ColdMW]i + o(k). (381)

With Eq.(381), we may relate the F∞ quantities for the states ρ1
ColdMW and ρ1

ColdMW. From Eq.
(56), we have

F∞
(
ρ1

ColdMW(k, ρno corr
ColdMW(g), ρcorr

ColdMW), τhColdMW
)

(382)

= ln max
i

{
[ρ1

ColdMW]i
τi

}
, (383)

= ln max
i

{
[ρ1

ColdMW]i
τi

}
+ o(k), (384)

= F∞
(
τ(g)⊗ ρ0

M(g)⊗ ρ1
W, τ

h
ColdMW

)
+ o(k), (385)

where we used Eq. (56) in the last line.
The next step is to evaluate the restriction on Wext that satisfies

F∞(τ0
Cold ⊗ ρ0

M ⊗ ρ0
W, τ

h
ColdMW) ≥ F∞

(
ρ1

ColdMW(k, ρno corr
ColdMW(g), ρcorr

ColdMW), τhColdMW

)
(386)

= F∞
(
τ(g)⊗ ρ0

M(g)⊗ ρ1
W, τ

h
ColdMW

)
+ o(k), (387)

for Wext up to order o(k). Taking into account the additivity of F∞ under tensor product, we can
rearrange Eq. (387) to provide an upper bound on Wext,

Wext ≤
ng

βh
[γ(∞) + Θ(f(g)) + o(k/g)] , (388)

where lim
g→0+

f(g) = 0, γ(∞) is given by Eq. (276). The bound in Eq. (388) is achievable since the F∞
conditions imposed by Eq. (386) are achievable with equality.
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Lastly, by using the expression for efficiency in Eqs. (315), and substituting Wext from Eq. (388)
(with equality for the maximum possible Wext) followed by ∆C from Eq. (279), we have

sup
Wext>0

η(ρ1
Cold,Wext) = sup

Wext>0

(
1− ε+ ∆C

Wext

)−1
(389)

=
[
1 + βh

(βc − βh)
γ(1)
γ(∞)

]−1
+ Θ(f(g)) + o(k/g) + Θ(g) + Θ(ε). (390)

Hence using Eqs. (316), (390) we find Eq. (373). Note that in Eq (373) we have an inequality, this is
due to the fact that in the optimisation problem Eq. (316), there is an additional constraint (namely
mean energy conservation) which is not taken into account in the derivation of Eq. (390).

Finally, the above lemmas allow us to conclude that allowing further correlations in the final state
cannot allow quasi-static heat engines to achieve the Carnot efficiency when Ω > 1.

Theorem 3. [Correlations do not improve efficiency] Suppose that Ω > 1. Parametrizing the final
state of the heat engine by Eq. (350)-(353), the quantum efficiency ηqm defined in Eq. (311) in a
quasi-static heat engine is strictly upper bounded by the Carnot efficiency,

sup
k∈[0,1], ρno corr

ColdMW

ηqm
(
ρ1

ColdMW(k, ρno corr
ColdMW, ρ

corr
ColdMW)

)
< 1− βh

βc
. (391)

Proof. From Lemma 17, we have that both ηqm ≤ ηqm
1 and ηqm ≤ ηqm

∞ hold. Thus a necessary
condition to achieve the Carnot efficiency for a particular ρ1

ColdMW, is that both ηqm
1 and ηqm

∞ are
equal to or greater than the Carnot efficiency.
Lemma 20 proves that Eqs. (355) and (356) are necessary conditions for ηqm

1 to achieve the Carnot
efficiency. However, when Eqs. (355), (356) are satisfied, then Lemma 21 provides an upper bound
on the efficiency ηqm

∞ in Eq. (373).
Now, suppose Ω > 1. Since it is shown in Eq. (277) that γ(1)/γ(∞) = Ω, plugging this into the

leading term appearing in Eq. (373) [
1 + βh

(βc − βh)
γ(1)
γ(∞)

]−1
, (392)

we have that the quantity ηqm
∞ (and therefore also ηqm) is strictly less than the Carnot efficiency

1− βh/βc.

F.2 A more general final battery state
For the simplicity of our analysis, we have assumed that the battery is left in the specific final state
described in Eq. (41), i.e. an amount of work Wext = Ek − Ej is extracted, except with failure
probability ε that the battery remains in the initial state |Ej〉〈Ej |W. In this section, we show that
this is a simplification which can be removed in general, i.e. the final battery state is allowed to be
any state within the ε-ball of |Ek〉〈Ek|W. In particular, our result that the Carnot efficiency cannot be
achieved when Ω > 1 still holds.

In Lemma 22, we show that for any final state of the cold bath ρ1
Cold, allowing a more general final

battery state does not affect the amount of work bounded by the F∞ condition. We then use this to
prove in Theorem 4 that when Ω > 1, the Carnot efficiency cannot be achieved even if we allow a more
general battery final state.

Lemma 22. For any given ρ0
Cold, ρ

1
Cold, with ρ0

W = |Ej〉〈Ej |W, consider the maximum W 1
∞ := Ek1−Ej

such that ρ0
Cold ⊗ ρ0

W → ρ1
Cold ⊗ ρ1

W is allowed by the non-increasing F∞ condition (Eq. (55)) i.e.

D∞(ρ0
Cold‖τ

βh
Cold) +D∞(ρ0

W‖τ
βh
W ) ≥ D∞(ρ1

Cold‖τ
βh
Cold) +D∞(ρ1

W‖τ
βh
W ), (393)
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with
ρ1

W = (1− ε) |Ek1〉〈Ek1 |W + ε |Ej〉〈Ej |W . (394)

On the other hand, consider any battery final state

ρ2
W = (1− ε) |Ek2〉〈Ek2 |W + ερjunk

W , (395)

where ρjunk
W is an energy-diagonal state orthogonal to |Ek2〉〈Ek2 |W which may depend on ε, i.e. ρjunk

W =∑
i pi |Ei〉〈Ei|W with pk2 = 0 and

∑
i pi = 1. Define W 2

∞ := Ek2−Ej such that ρ0
Cold⊗ρ0

W → ρ1
Cold⊗ρ2

W
is allowed by the non-increasing F∞ condition, i.e.

D∞(ρ0
Cold‖τ

βh
Cold) +D∞(ρ0

W‖τ
βh
W ) ≥ D∞(ρ1

Cold‖τ
βh
Cold) +D∞(ρ2

W‖τ
βh
W ). (396)

Then for all 0 < ε ≤ ε̂ =
[
1 + eβh(Emax−Ej)

]−1
, we have W 1

∞ = W 2
∞.

Proof. Firstly, note that any energy-diagonal state ρ2
W with trace distance d(ρ2

W, |Ek2〉〈Ek2 |W) = ε can
be written in the form of Eq. (395). Rearranging the terms in Eq. (393),

D∞(ρ1
W‖τ

βh
W ) ≤ D∞(ρ0

W‖τ
βh
W ) +D∞(ρ0

Cold‖τ
βh
Cold)−D∞(ρ1

Cold‖τ
βh
Cold) =: A. (397)

One can use the definition of D∞ in Eq. (60) to expand the L.H.S. of Eq. (397), obtaining

log max{(1− ε)eβhEk1 , εeβhEj} ≤ A− logZβhW . (398)

We know that since near perfect work is extracted, ε is arbitrarily small. This implies that for ε small
enough, max{(1− ε)eβhEk1 , εeβhEj} = (1− ε)eβhEk1 .
Similarly, one can evaluate Eq. (393) to obtain

log max{(1− ε)eβhEk2 , {εpieβhEi}i 6=k2} ≤ A− logZβhW . (399)

Note that the maximization in Eq. (399) only picks out the maximum value. In particular, denoting
Emax to be the largest energy eigenvalue of the battery, then whenever

(1− ε)eβhEk2 ≥ εeβhEmax , (400)

or equivalently
ε ≤

[
1 + eβh(Emax−Ek2 )

]−1
, (401)

then max{(1−ε)eβhEk2 , {εpieβhEi}i 6=k2} = (1−ε)eβhEk2 . In other words, as long as ε is upper bounded
by Eq. (401), we know which terms attains the maximization in Eq. (398). However, we also want
an upper bound that is independent of any limit involving the final state ρ1

ColdMW we wish to take,
or any amount of work extracted (and therefore, we want the bound to be independent of Ek2). As
such, let us construct the following upper bound ε ≤ ε̂ where,

ε̂ := inf
Ek2

W 2
∞>0

[
1 + eβh(Emax−Ek2 )

]−1
=
[
1 + eβh(Emax−Ej)

]−1
(402)

Now, we see that Ek1 and Ek2 correspond to the solutions for Eq. (398) and Eq. (399), which for ε ≤ ε̂
reduce to exactly the same equation. Therefore, Ek1 = Ek2 and hence W 1

∞ = W 2
∞.

We will use Lemma 22 to prove Theorem 4. But before we proceed, let us fix some notation: we
define the efficiency as a function of α ≥ 0 :

ηJα(ρ1
Cold) = sup

EkJ−Ej>0
η(ρ1

Cold) subject to Fα(ρ0
W ⊗ τ0

Cold, τ
h
ColdW) ≥ Fα(ρJW ⊗ ρ1

Cold, τ
h
ColdW),

(403)

and tr(Ĥtρ
0
ColdHotMW) = tr(Ĥtρ

1,J
ColdHotMW). (404)
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with J = 1, 2 denoting the final battery state ρJW. We also define an α independent efficiency:

ηJ(ρ1
Cold) = sup

EkJ−Ej>0
η(ρ1

Cold) subject to (405)

Fα(ρ0
W⊗τ0

Cold, τ
h
ColdW) ≥ Fα(ρJW ⊗ ρ1

Cold, τ
h
ColdW)∀α ≥ 0. (406)

For any α ≥ 0, and any state ρ1
Cold, η

J
α(ρ1

Cold) ≥ ηJ(ρ1
Cold) holds.

We already know that when Ω > 1, for any final cold bath state ρ1
Cold, the efficiency η1(ρ1

Cold) is
strictly less than the Carnot efficiency. Theorem 4 shows that this is also true for η2(ρ1

Cold), i.e. when
allowing a more general battery final state.

Theorem 4. [General battery states do not improve efficiency] Consider a quasi-static heat engine
with a cold bath consisting of n qubits, extracting near perfect work. Let Ω > 1 (definition in Eq. (269)).
Then the efficiency limg→0+ η2(τβf ), where τβf is the final state of a quasi-static heat engine (Def. 6),
is strictly less than the Carnot efficiency.

Proof. Firstly, suppose that Ω > 1. By Lemma 15 we know that the infimum is obtained at α = ∞,
and by Lemma 16 we know that the efficiency for quasi-static heat engine is strictly less than the
Carnot value:

lim
g→0+

η1(τβf ) = lim
g→0+

η1
∞(τβf ) < ηC . (407)

In other words, for all other final states ρ1
Cold we know that Carnot efficiency cannot be achieved.

Therefore, it suffices to see that in the quasi-static limit,

lim
g→0+

η2(τβf ) ≤ lim
g→0+

η2
∞(τβf ) = lim

g→0+
η1
∞(τβf ) = lim

g→0+
η1(τβf ) < ηC . (408)

The second equality is obtained by noting that for any state ρ̃1
Cold (and therefore for τβf ):

1. ∆C is the same for both expressions of efficiency η1
∞(ρ1

Cold) and η2
∞(ρ1

Cold).

2. By Lemma 22, for all 0 < ε <
[
1 + eβh(Emax−Ej)

]−1
, W 1

∞(ρ̃1
Cold) = W 2

∞(ρ̃1
Cold).

Hence, from Items 1 and 2, one concludes that η1
∞(ρ̃1

Cold) = η2
∞(ρ̃1

Cold). The third equality in Eq. (408)
comes directly from Eq. (407).
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