
Improving Cross-Validation Classifier Selection Accuracy

through Meta-Learning

Jesse H. Krijthe
Student number: 1527053
MSc Computer Science

Track Media & Knowledge Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

12 July 2012

Preface

Progress in research and implementations of methods from machine learning, pattern
recognition and statistics has provided a large number of methods for practitioners to
choose from. In the case of classification problems, this choice is often made based on the
cross-validation errors of different methods. The research presented in this thesis is con-
cerned with whether it is possible to improve upon the accuracy of this selection strategy
by reframing the classifier choice as a meta-learning problem. Unlike traditional work
on meta-learning, I focus on improving selection accuracy, rather than computational
efficiency. From this new perspective, I show better classifier choices can be made than
the cross-validation selection strategy in some simulated cases. I study these cases and
discuss a methodology to test whether these results might hold on real-world datasets
as well. This thesis holds the results and insights gained from these inquiries.

The thesis paper is intended to be self-contained, no additional material is part of the
main work. The chapters following the main paper contain notes from my research log
on topics and experiments that did not make it into the main text. It also includes notes
on my initial research topic on using data complexity measures to characterize changes
in problem complexity during classifier combination. I have spent four months on this
initial topic before coming up with an experiment that finally culminated in the work
presented in this thesis. The appendix also contains a four-page paper [8] on the initial
results of this research that was accepted to be presented at the International Conference
on Pattern Recognition 2012.

Most of the research for this thesis was conducted during a six month stay in the Statistics
and Learning department of Alcatel-Lucent Bell Labs in Murray Hill, New Jersey under
the supervision of Dr. Tin Kam Ho (Bell Labs) and Dr. Marco Loog (Delft University
of Technology). I would like to thank Tin and her team for welcoming me at the labs,
making me feel part of the group and including me in their discussions. I am particularly
grateful to Tin for taking the time to discuss my work even when it was not always
convenient. I would also like to thank Piotr Mirowski, Harald Steck and Adriaan J. de
Lind van Wijngaarden for their guidance and friendship during my visit. Last but not
least, I would like to thank Marco Loog for the continued support during all phases of
the project.

I would like acknowledge and thank the graduation committee consisting of the following
members: Prof. dr. ir. M.J.T. Reinders, Dr. M. Loog, Prof. dr. J.N. Kok, Dr. L. van
der Maaten and Mr. Yan Li.

Jesse Hendrik Krijthe, 6 July 2012

1

Contents

1 Thesis paper 4

2 Introduction to the Notes 17

3 Notes on Data Complexity measures 19
3.1 Introduction . 19
3.2 Description of the original data complexity measures 19

3.2.1 F: Feature measures . 20
3.2.2 L: Linear classifier measures . 20
3.2.3 N: Non-linearity measures . 20
3.2.4 T: Descriptive measures . 20

3.3 Potential issues . 20
3.4 Stability and bias of the measures . 22
3.5 Implementation problems . 22
3.6 Discussion . 22

3.6.1 What to remove . 22
3.6.2 What to add . 22

4 Notes on Data Complexity in Classifier Combination 24
4.1 Bagging . 25
4.2 Exploring bagging accuracy . 27

4.2.1 Setup . 27
4.2.2 Results . 28

4.3 First experiments . 28
4.3.1 Implementation . 28
4.3.2 Random Forest spaces . 29
4.3.3 Layering . 30
4.3.4 Open Problems . 30

5 Notes on Improving Cross-validation 34
5.1 Introduction . 34
5.2 Small simulated universes . 35
5.3 Experiments pseudo-real world data . 36

2

5.3.1 More complex meta-features . 38
5.4 Conclusion . 40

6 Notes on Implementation 41
6.1 Interacting with C code . 41
6.2 Parallelization . 42

7 Thesis proposals 43
7.1 Preliminary proposal . 43
7.2 Narrow proposals . 44

7.2.1 Enhancing the complexity approach 44
7.2.2 Behavior of classifier combinations 45
7.2.3 Clustering tendency . 45
7.2.4 Manifold learning/Kernels/Dissimilarity approach 45
7.2.5 Predicting classifier accuracy . 46
7.2.6 Website to accumulate large number of real world datasets 46

7.3 Proposal notes . 46

Bibliography 48

A ICPR2012 Submission 50

3

Chapter 1

Thesis paper

4

Improving Cross-Validation Classifier Selection Accuracy through Meta-learning I

Jesse H. Krijthe

Delft University of Technology
jkrijthe@gmail.com

Abstract

In order to choose from the large number of classification methods available for use, cross-validation error estimates are often
employed. We present this cross-validation selection strategy in the framework of meta-learning and show that conceptually, meta-
learning techniques could provide better classifier selections than traditional cross-validation selection. Using various simulation
studies we illustrate and discuss this possibility. Through a collection of datasets resembling real-world data, we investigate whether
these improvements could possibly exist in the real-world as well. Although the approach presented here currently requires signifi-
cant investment when applied to practical applications, the concept of being able to outperform cross-validation selection opens the
door to new classifier selection strategies.

Keywords: Classifier selection, Meta-learning, Error estimation

1. Introduction

Research in machine learning, pattern recognition and statis-
tics has produced a plethora of different classification algo-
rithms for practitioners to choose from. Given this large number
of classification methodologies, as well as parameter settings
and scalings or transformations of the data, the classifier selec-
tion problem remains important in machine learning practice.
But how do we, preferably with a high level of accuracy, select
the method that is most suitable to a given problem?

The optimal way to select a classifier would be to try all
classifiers under consideration and select the method with the
lowest classification error. In practical settings, we are always
dealing with finite data and the classification errors therefore
needs to be estimated. The prevailing method to approach this
estimation in classifier selection is to use a cross-validation strat-
egy [24]. This is an intuitive approach that provides (nearly)
unbiased estimators for the errors. Unfortunately, this method
is not without its drawbacks. First of all, evaluating the cross-
validation errors for every possible method is computationally
intensive and therefore does not scale well as the number of
classifiers increases. Secondly, for small sample sizes, cross-
validation error estimates have been shown to become unreli-
able [3, 12].

To improve upon the first drawback, meta-learning [25] was
introduced to aid in the classifier selection. Meta-learning treats
classifier selection as a classification problem in itself. The
classes in this ’meta-problem’ are the optimal classifier choices,
while its features can be any statistics calculated on the dataset.

IPreliminary results of this research have been described in a paper with
the same title in [15], which covers the first experiment presented here. We
extends these results with larger experiments on pseudo real-world data and a
more thorough description and discussion of our findings.

In the meta-learning literature, several computationally efficient
meta-features were introduced as alternatives to cross-validation
errors. Their goal is to retain accuracy in selection, while im-
proving time-efficiency. In this field, however, classifier se-
lection through cross-validation is used as the benchmark by
which meta-learning is compared in terms of accuracy. As
such, meta-learning becomes an computationally efficient ap-
proximation of the presumably more accurate cross-validation
selection. What has not been considered, however, is whether
and how we would improve the accuracy of classifier selection
through a meta-learning framework. Especially in the small-
sample setting referred to above, a possibility and a need exist
for a selection strategy that improves upon cross-validation se-
lection.

Our work considers precisely this question: is it possible to
use meta-learning techniques to improve the accuracy (rather
than the computational efficiency) of classifier selection using
cross-validation? The approach we take is to project cross-
validation selection into the meta-learning framework. Maybe
surprisingly, this constitutes a novel view to meta-learning and
opens up new possibilities unexplored to this date.

Seen from this meta-learning perspective cross-validation
corresponds to a static, untrained meta-classifier, using the cross-
validation errors as its meta-features. The question then be-
comes whether using this untrained method is justifiable. We
study this problem by constructing problem universes where a
trained meta-learner outperforms the static rule corresponding
to cross-validation selection. Thus, the main contribution of
this work is to show that, at least at a conceptual level, meta-
learning can be used to outperform cross-validation selection
in terms of selection accuracy. It does not only have to serve as
a time-efficient proxy.

Through a second simulation study we argue that additional

measures on the dataset, apart from the cross-validation errors,
can aid in the classifier selection problem. In other words, not
all information important to the classifier selection problem is
captured by the cross-validation errors. This offers support for
approaches like data complexity [10] which try to capture these
effects. This is our second contribution.

Although we can show these effect conceptually, through
simulated universes, the third contribution of this work is to
study the possible improvements in accuracy of meta-learning
selection on a collection of datasets resembling real-world data.
Even though the effects are smaller then in the simulation stud-
ies, the important observation is that the effect might exist in
the real-world settings as well. Whereas cross-validation selec-
tion has long been considered the optimal method for classifier
selection based on limited training data, we show this is not
necessarily the case.

The rest of this paper is organized as follows. Section 2
discusses work related to this paper. Section 3 introduces meta-
learning and cross-validation in more detail. Section 4 covers
our experimental setup and results, both the constructed uni-
verses used to illustrate the possibility of outperforming cross-
validation selection, as well as some experiments on pseudo
real-world data. Section 5 offers a discussion of the results.
Section 6 concludes.

2. Related Work

2.1. Cross-validation selection

A thorough description and evaluation of the strategy of us-
ing cross-validation errors for the classifier selection problem
was first offered by [24]. This method has remained the preva-
lent strategy in use. The main conclusion in [24] is that the
cross-validation strategy allows for a higher average accuracy
and lowers the chance of poor performance, compared to stick-
ing with a single classifier. The author also notes, however, that
like any single classifier, the strategy constitutes an inductive
bias. This bias may or may not correspond to the actual prop-
erties of the problem at hand. Our work can be interpreted as
a way to incorporate experience gained from other datasets to
adapt this bias, so it better corresponds to the types of problems
the practitioner is facing.

2.2. Issues with cross-validation errors

Even though cross-validation selection is an effective ap-
proach in many cases, for small samples, cross-validation er-
ror estimates have been shown to become unreliable. [5] gives
an overview of the potential problems of large variances of the
cross-validation errors for feature and classifier selection in the
case of small sample micro-array classification. [3] studies the
effectiveness of cross-validation error estimation compared to
resubstitution and bootstrapped estimates of the error on both
real and simulated data. They note that, in practice, the small
bias of cross-validation is often less important than its variance
properties. They find that the variance of cross-validation error
estimators tends to be larger than resubstition or bootstrapped
error estimation. In particular, they note this variance increases

as the complexity of a classifier increases. This relates to a
study of the stability of classifiers of [14], that found similar
results.

[12] uses only simulated data to study the problem of get-
ting an accurate error estimate of the performance of a classi-
fier. Noting cross-validation errors become too unreliable for
this purpose in the small-sample setting, they propose to use a
hold-out set to determine error estimates and confidence inter-
vals. Whereas these papers try to get a hold on the size of the
variance of the cross-validation error estimator, our work stud-
ies these small sample problems for classifier selection specifi-
cally. We try to answer the question whether meta-learning can
help in situations were cross-validation errors become unreli-
able. Unlike the solution proposed by [12], we therefore choose
not to use a hold-out set but attempt to estimate performance on
the whole set of training objects available: in the small-sample
case, using fewer training objects can actually change which
classifier performs best. Because we assume the practitioner
wants to get the most of the little data he has, we use all the
data to train our classifiers.

2.3. Meta-learning
Another problem the cross-validation selection approach to

classifier selection faces is that it can quickly become impracti-
cal from a computational point of view as the number of classi-
fiers or the training set sizes increase. The main focus in meta-
learning has been to develop alternative features that are less
computationally intensive than cross-validation errors but can
still aid the classifier choice [4]. A comprehensive overview of
meta-learning is given by [25].

Since the first meta-learning study [1], various meta-features
have been introduced and evaluated. Common meta-features
include [13, 17]: statistical measures such as the average mean,
variance, skewness and kurtosis of the variables in the dataset;
information theoretic measures, such as entropy; and simple
descriptive measures, such as the number of variables, classes
or object in the dataset. More esoteric meta-features include
measures on the structure of a decision tree trained on the data
[2, 22].

The land-marking approach proposed by [23] involves us-
ing cross-validation errors of simple classifiers as meta-features
to select between a set of more complex classifiers. These sim-
ple, computationally efficient classifiers form the ’landmarks’
on which we anchor the performance of more elaborate clas-
sifiers. The approach taken in our research is most similar to
this approach. Unlike landmarking, we are not concerned with
time-efficiency, but focus on accuracy improvement. We there-
fore use the cross-validation errors of all classifiers in the set,
instead of the cross-validation errors of a small set of simple
classifiers.

[8] investigates whether cross-validation errors of the land-
marks can predict the performance of more complex classifiers
on more training data. Although this may look similar to our
approach, our goal is to actually predict classifier performance
on small training sets, not predict the performance of classifiers
trained on large training sets using only a subsampled training
set.

6

2.4. Data complexity measures

A recent attempt at putting together a comprehensive set of
14 meta-features and studied in [10, 19, 20] is known as the data
complexity measures. Apart from combining the most effective
meta-features from the literature they also introduce other mea-
sures describing the geometrical and topological properties of
the dataset. Well known measures include the leave-one-out er-
rors of a 1 nearest neighbor and a linear classifier, inspired by
the landmarking approach, and the ratio of the number of ob-
jects to the number of dimensions in the dataset. The goal of the
geometric properties is to establish the complexity of the clas-
sification boundary. One example of such a measure is the non-
linearity of a classifier with respect to the dataset introduced by
[11]. For a given classifier, this is defined as the fraction of ob-
jects, obtained by interpolating between two objects of the same
class assigned by the classifier, that share the class assignment
with these two points. As [18] notes, this fraction can be used
as a measure of how much two classes interleave.

These data complexity measures were then used to estab-
lish the so-called domains of competence of different classifiers
[19]. The domain of competence of a classifier is the types of
datasets this classifier has lower error on than other classifiers.
The data complexity measures are a way to describe these types
quantitatively. If the combination of these measures offers a
succinct and interpretable description of datasets, a domain of
competence allows us to better understand what properties of a
dataset allow a classifier to succeed or fail. The measures can
also be utilized as features in the meta-learning problem.

3. Methods

In this section we introduce in more detail the two approaches
compared in this work, cross-validation selection and meta-
learning, in the broader setting of parameterizations for clas-
sifier selection. Our intention is to illuminate the similarities
between both approaches and present the cross-validation se-
lection approach as a simple form of meta-learning.

3.1. Classifier selection

The goal in this work is to select from a set of m classifiers
C = {c1, c2, . . . , cm}, the one ci that will give the lowest clas-
sification error accuracy ei when trained on our given dataset
D. In practice, we have limited data, so ei is unavailable. The
choice of classifier therefore needs to depend on measures that
we can calculate from our given data D. We will call these mea-
sures parameterizations of D. These measures offer a quanti-
tive description (hence parameterization) of a dataset in a new
space spanned by these parameters (see Figure 1). The cross-
validation error estimates introduced in the next section are one
possible parameterization. The meta-learning literature offers
a host of others in the meta-features, for instance, statistical
measures, information theoretic measures or data complexity
measures [10, 19, 20].

Once the measures are chosen, a classifier selection strat-
egy becomes a geometrical boundary in the space parameter-
ized by these measures (see Figure 1). For instance, if we take

the number of objects in the dataset n as a measure, a selection
strategy could be to always use a nearest mean classifier when
the number of objects in a dataset is below a certain threshold,
to guard against overtraining. In this case, and in the case of
cross-validation selection that we will introduce next, this ge-
ometrical boundary is fixed. Meta-learning, on the other hand,
offers a dynamic boundary learned by experience on previous
datasets.

3.2. Cross-validation

As referred to above, cross-validation error estimates are
a commonly used parameterization of the dataset on which to
base the classifier selection choice. Cross-validation errors are
a direct estimate of the real error that each classifier would
make on an independent test set. The cross-validation proce-
dure works as follows. Our dataset, D is randomly divided into
k parts, called folds, Dk, each containing n

k objects, where n
is the total number of objects in our dataset. Next, we cycle
through these folds (i = 1, 2, . . . , k) using the objects in k − 1
folds, D \Di, for training our classifier, c, and use the objects
in the remaining fold, Di, for testing the performance of c. We
then average the error made on each of these folds to obtain
the cross-validation error estimate. The k-fold cross-validation
error can therefore be estimated as follows. c(·, ·) is a classifi-
cation function whose first input parameter is the training data
and the second a feature vector for which we want to predict
the corresponding class, while its output is the predicted class.
(y

(i)
j , x

(i)
j) is the true class/features values pair for observation

j in fold i. I(·, ·) is an identity function which returns 1 if its
parameters have equal values and 0 otherwise.

êcvk =
1

n

k∑
i=1

n
k∑

j=1

I(y
(i)
j , c

(
D \Di, x

(i)
j

)
) (1)

The k-fold cross-validation error can be shown to be a high-
biased estimator of the real error. This is because in each of
the folds we train the classifier using n− n

k samples rather than
all n samples in the dataset. This bias becomes smaller as k
becomes larger, whereas computational cost increases with k.
The variance has slightly more complex behavior, showing high
variance for both small and large values of k. It has been shown
that in practice, k = 10 is often a good choice [9, 14] although
differences are minor for reasonable values of k [3]. We have
therefore chosen to use k = 10 in our experiments.

In repeated cross-validation we repeat the process in Equa-
tion 1 several times to reduce the variance of the estimate. This
also allows us to estimate the variance of the k-fold cross-validation
error. In the related work section we mentioned that the vari-
ance of the cross-validation is usually larger than that of similar
methods. As noted by [3], the variance estimate using repeats
only measures one source of the variance of the cross-validation
errors. This can therefore be interpreted as a lower bound on the
variance. Since this variance estimate might offer information
on the accuracy of the cross-validation error estimate, we will
add it as an extra feature in one of our experiments (see section
4.3 and 4.4).

7

D
1

D
2

D
3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

D1 D2

D3

2 fold CV Error Linear Discriminant
2

fo
ld

C
V

E
rr

or
Q

ua
dr

at
ic

D
is

cr
im

in
an

t

Datasets Measures Parameterization of dataset space

Figure 1: Each dataset (on the left) can be described by measures or statistics calculated on this dataset. Each dataset therefore form a vector in the space
parameterized by these measures (on the right). The example shows the case were the measures are the cross-validation errors of 2 classifiers. The boundary in
the dataset space corresponds to the cross-validation selection strategy: if the dataset characterization is above the boundary, classifier 1, the linear discriminant, is
preferred (has lower error), if below the boundary classifier 2, the quadratic discriminant, is preferred.

In classifier selection, the cross-validation errors for all clas-
sifiers will be compared and the classifier with the lowest error
chosen. In the space parameterized by the cross-validation er-
rors of the different classifiers, this cross-validation selection
rule will form a static boundary. Consider for instance the case
where we compare two classifiers, see Figure 1. Datasets that
form a point on this diagonal have cross-validation errors that
are exactly equal, whereas above or below this diagonal, the
cross-validation error of one of the classifiers is lower than the
cross-validation error of the other. The cross-validation selec-
tion strategy is to choose the classifier with the lowest cross-
validation error estimate.

A wrong selection may result if the cross-validation error
differs from the real error. A high variance of the cross-validation
estimator increases the likelihood of these errors being far apart
and subsequently making the wrong classifier selection. In this
work we introduce this high variance by considering the clas-
sifier selection choice in the small sample setting. This was
partly inspired by the work of [3] on classifier error estimation
in small sample micro-array classification.

3.3. Meta-learning

The field on meta-learning offers an alternative selection
procedure by treating the classifier selection problem as yet an-
other classification problem, called the meta-problem. Given a
set of datasets D = {D1, D2, . . . , DN}, we have shown that
each dataset can be seen as an object in the space parameter-
ized by measures calculated on the dataset. Some examples
of measures used in the meta-learning literature are the num-
ber of objects in the dataset, the error rate of a simple classifier
or the size of a decision tree trained on the dataset. Because
these measures act as the features of the meta-problem, they
are known as meta-features. From now on, in keeping with

conventions in meta-learning literature, we will therefore refer
to parameterizations as meta-features. The meta-class for each
meta-object (dataset) is the classifier that performs best on that
dataset. Classifier selection is now done by training a classifier
(called a meta-classifier) on this meta-problem and using it to
predict the best classifier (meta-class) for a new dataset, again
using the meta-features as the parameterization of this dataset.

Meta-learning differs from cross-validation selection in two
ways. Firstly, the parameterizations (i.e. meta-features) are dif-
ferent, and secondly, learning occurs in the dataset space.

The first distinction is that whereas cross-validation selec-
tion attempts to estimate the real classification error using a
computationally intensive procedure, meta-learning has tradi-
tionally provided time-efficient measures to aid in the classifier
selection. However, if we are only concerned with selection
accuracy and not efficiency, we propose to use cross-validation
errors as meta-features since they may turn out to be very dis-
criminative. And as we treat the selection problem as a clas-
sification problem we can include other measures calculated
on the dataset as meta-features as well. It is unclear whether
the cross-validation error meta-features will contain all possi-
ble information that can be used in classifier selection. For
instance, is information on the sample size of the dataset suf-
ficiently integrated into the high errors of complex classifiers or
would adding these sizes separately help in the classifier selec-
tion problem?

The second distinction is that meta-learning estimates a se-
lection rule in the dataset space by training a meta-classifier
using a collection of datasets. We assume these datasets come
from a probability distribution over datasets, which we will re-
fer to as a universe of problems. Cross-validation selection uses
an untrained rule whereby we always select the classifier with
the lowest cross-validation error. So, contrary to meta-learning,

8

the cross-validation selection rule does not change given expe-
rience of previous classifier selections.

Thus, seen from a meta-learning perspective, cross-validation
selection can be considered a very simple untrained meta-classifier
using as its meta-features the cross-validation errors. However,
this means this simple meta-classifier has to be justified in some
way: is the meta-problem really so simple that an untrained rule
provides optimal performance, or is a trained procedure war-
ranted? Using several simulation studies we will demonstrate
that there exist universes of problems where the space formed
by the cross-validation errors does not support the superiority
of this simple decision rule. Instead, using a different meta-
classifier allows for an improvement in accuracy over cross-
validation based selection.

4. Experiments

The following sections contain the results from several sim-
ulations and experiments conducted to test whether meta-learning
can improve upon cross-validation selection. The first experi-
ment is a simulation study meant to illustrate the concept using
an small intuitive universe of problems where meta-learning
clearly outperforms cross-validation selection. In the second
experiment, we construct a universe in which adding additional
meta-features can improve performance. Improvement in ac-
curacy in this case, demonstrates cross-validation errors do not
necessarily carry all information useful for selecting a classifier.

Whereas these first two experiments are done on simulated
universes, the third experiment tests whether these effects occur
on datasets that arguably conform more to what we encounter
in the real world as well.

The setup of the experiments follow a common pattern: Data
We start with the construction of a collection of datasets which
we call a universe of problems. They are either obtained by ar-
tificial data generators (experiment 1 and 2) or from a collection
resembling real-world datasets (experiments 3). Setup Next we
create the meta-problem by training classifiers on the dataset
and calculating the meta-features. Results In the last step we
train and test several meta-learners on this meta-problem, in-
cluding the static cross-validation selection rule, and compare
their performance. All experiments were run using classifica-
tion procedures from the PRTools Matlab toolbox version 4.2.1
[6]. The first experiment was also implemented in R for verifi-
cation and additional testing.

4.1. Notation

Before we get to the description of the experiments, it will
be worthwhile to introduce some notation. Base-problems, mean-
ing classification problems with continuous attributes like the
ones a practitioner might come across will be denoted by cap-
ital letters (i.e. G). The training and test sets that a problem
consists of will be denoted by Gtrain respectively Gtest. Meta-
problems are denoted by bold capitals (i.e. G) and the train-
ing and testing splits of this meta-problem by GTRAIN respec-
tively GTEST . We will call the classifier predicted to be the
most suitable for a particular problem by our meta-learner the

assigned classifier. The best classifier is the classifier with low-
est accuracy on a large test set. In other words, the ground truth.

4.2. Simulated meta-learning example

In this section we construct a universe of problems to il-
lustrate and visualize the concept of improving cross-validation
selection.

Data
Consider an example universe of problems consisting of in-

stances of two types of two-dimensional problems. The first
problem type has strongly overlapping, two dimensional Gaus-
sian classes (call it G). The second problem type has a more
complex boundary with ’banana-shaped’ classes with Gaussian
noise but, unlike the first problem, small class overlap (call
it B) (see Figure 2). We generate problem instances from G
by selecting the separation of the class means from a uniform
distribution. For instances from B, we change the variance of
the Gaussian noise. In this way we create a family of 500 in-
stances for each problem: G = {G1, G2, ..., G500}, and B =
{B1, B2, ..., B500}. From each of these problems Bi or Gi(i =
1, ..., 500), we extract a sample of size Ntrain (varying uni-
formly randomly between 20 and 100) for training, call this
Gtrain

i and Btrain
i , and use the rest (Ntest = 20000−Ntrain)

for testing, Gtest
i and Btest

i . Even though for the two-dimensional
setting considered the sample sizes are not particularly small,
they will cause cross-validation errors to have high variance. In
real world problems, with complex boundaries, we expect this
effect to occur for even larger sample sizes. The large test set
size is used to get an accurate estimate of the real error of the
classifier for the problem instance.

Setup
The goal of our classifier selection task is to choose be-

tween two classifiers: a nearest mean classifier (NM) and a
1-nearest neighbor classifier (1-NN). Casting this as a meta-
learning problem, we create the meta-features and meta-classes
as follows. For each Gi, we obtain a 10-fold cross validation
error for the NM classifier using Gtrain

i to obtain our first meta-
feature. Doing the same for the 1-NN classifier, we obtain the
value of meta-feature 2 for Gi, and similarly for each Bi.

The meta-class for each of Gi or Bi is the classifier that per-
forms the best for the testing data Gtest

i or Btest
i . This is deter-

mined by, say, using all of Gtrain
i for training the NM classifier,

estimating the error rate of the resultant classifier on Gtest
i , and

doing the same for the 1-NN classifier. If the NM gives a lower
error, Gi is labeled with the best classifier (or true meta-class)
NM, and vice versa. Similarly we obtain the best classifier for
each Bi.

For the meta-learning problem, approximately half of the
500 instances from G or B are used for meta-training and the
rest are reserved for meta-testing. Recall that the cross valida-
tion rule corresponds to a static classifier, and hence requires no
training. We compare this to a trainable classifier that is a lin-
ear support vector machine, trained with the meta-features for
GTRAIN and BTRAIN . The comparison is shown in Figure 2.

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10−fold CV error Nearest Mean

10
−f

ol
d

C
V

er
ro

r 1
−N

N
Meta−problem

 NM, G
1−NN, G
 NM, B
1−NN, B

Gaussian problem

Banana Set

Difficult Dataset

Figure 2: On the left: an example of a universe of problems where static cross-validation selection does not perform well. On the right: the problems ’Gaussian’,
’Banana Set’ as discussed in Section 4.2, and the ’Difficult Dataset’, a 2D version of the problems discussed in Section 4.3.

Results
In Figure 2, the points plotted represent problem instances

from GTEST and BTEST . Their coordinates are given by the
two meta features, and they are marked with symbols denot-
ing their source family (◦ for the Gaussian problems, or + for
the Banana problems), and colors denoting their true meta-class
(green for NM, and pink for 1-NN).

We can observe that 1-NN almost always gives better per-
formance for the cluster of Banana problems (almost all points
in the cluster of + are marked pink). The other cluster formed
by the Gaussian problems primarily favors the NM classifier
(most ◦’s are marked green). Note that in this particular uni-
verse, the cross-validation rule does not give the best sepa-
ration: the decision boundary crosses through the cluster of
Gaussian problems (◦’s), forcing one to choose the 1-NN clas-
sifier for the points below the diagonal, while performance in
this cluster is in fact almost always better with the NM classi-
fier. The selection error, defined as the proportion of datasets
in BTEST ∪GTEST assigned by the meta-rule to a classifier
different from their true meta-class, is 0.16 for cross-validation.
The support vector machine reduces the selection error to 0.06,
offering a more accurate alternative.

4.3. Additional meta-features

The example in the previous section has shown that learn-
ing the selection rule can improve performance in some cases
where the cross-validation errors have high variance. In more
elaborate universes of problems, the meta-classes may overlap
heavily, making it difficult to select a classifier based solely on
the cross-validation errors. In this experiment we study whether
other measures characterizing the dataset may reduce this over-

lap by introducing extra meta-features that can aid the selection
task. A different universe of problems is used than in the previ-
ous section. This is because the universe in the previous experi-
ment was constructed specifically to demonstrate the change in
the selection boundary, while leaving little need for improve-
ment from additional features.

Data
The universe we consider in this experiment consists of 100

dimensional two-class problems where most of the class vari-
ance is along the class boundary (the ’Difficult Dataset’ from
the PRTools library), see Figure 2 (right). Instead of introduc-
ing more types of problems we introduce variability to the uni-
verse by randomly selecting the class-priors using a uniform
distribution between 0 and 1. Extra randomness is introduced
by varying the training set size (Ntrain is now between 20 and
100). Again Ntest = 20000 − Ntrain, in order to get ac-
curate estimates of the true error. We generate 1000 datasets
D = {D1, . . . , D1000} this way to be able to train and evaluate
different meta-learners.

Setup
The classifiers we consider in this setting are the nearest

mean classifier and the Fisher classifier. For each dataset Di

we calculate the 10 fold cross-validation estimate of both clas-
sifiers on the training set Dtrain

i . We repeat this five times. The
averages of these five runs are used as the cross-validation error
meta-features. The variances of the five runs are also used as
meta-features. We also add the number of objects in Dtrain

i as
an extra meta-feature. The meta-classes are again determined
by training both classifiers on Dtrain

i and evaluating their per-
formance on Dtest

i . As before, the classifier with the lowest

10

error on this test set is the meta-class. We evaluate different
meta-learners and meta-features by estimating the selection er-
ror using 10 times repeated, 10 fold cross-validation. Given the
size of the meta-problem D, which consists of 1000 datasets,
we assume the cross-validation error is sufficiently accurate.

Results
Cross-validation selection gives a selection error of 0.237.

Using a k nearest neighbor classifier as a meta-learner, we get
an error of 0.238. Compare this to an error of 0.271 when al-
ways selecting the most common classifier in the training set
as the assigned classifier. Adding to the meta-features an ex-
tremely simple characterization of the sampling density of the
dataset, n the number of objects in the dataset, causes a re-
duction in error to 0.151. Adding the cross-validation variance
estimates gives an error of 0.221, whereas adding both these
meta-features gives an error of 0.127. For a linear discriminant
classifier the error rates are respectively 0.241, 0.159, 0.239
and 0.110, for adding no-extra meta-features, only the num-
ber of samples, only cross-validation variance and adding both
meta-features.

The average difference over the datasets between the clas-
sifier with the lowest true classification error and the true error
of the selected classifier, gives an indication of the size of the
improvement that is attained by making a good classifier se-
lection. Cross-validation selection gives an average error that
is 0.016 higher than the classification error obtained when al-
ways choosing the best classifier. For the linear discriminant
with both meta-features this mean difference is 0.004 while the
variance is also smaller (0.0013 vs. 0.0002).

4.4. Pseudo real-world datasets

We have shown the concept of improving classifier selection
through meta-learning works in some simulated universes. It is
unclear, however, whether these findings also hold in real-world
data. In this section we use a collection of datasets that shares
properties with real-world data to see whether meta-learning
still offers improvements.

Data
We utilize a collection of 300 datasets from a study by [19]

where it was used to study domains of competence of differ-
ent classifiers. The collection is constructed to span the space
formed by data complexity measures, that attempt to character-
ize different sources of difficulty in classification problems. As
such, a major advantage of using this collection is that it cov-
ers a large space of different problems we could come across in
the real-world. Because we assume a collection of real-world
datasets would also exhibit a wide range of different difficulties,
we consider the collection as a whole to have some resemblance
to real-world data. The flip side of this collection is that this
coverage was achieved by perturbing the objects in five original
seed datasets, making the perturbed datasets less like problems
we would actually come across in the real-world. The resulting
300 datasets have divergent properties: the number of dimen-
sions varies between 8 and 20, while the number of samples

in the original datasets is between 230 and 950. The smallest
number of samples per dimension is 15 while the largest is 85.

Using experimental, rather than simulated data poses two
major problems. (1) We can no longer have a large number of
test samples for each base-problem to establish the ground truth
with arbitrarily high accuracy. (2) The number of datasets in our
collection may be too small to train our meta-learner well.

The solution we have chosen is to estimate a density func-
tion on the datasets in our collection and use this density to
generate more data. In effect, we are assuming that these esti-
mated densities correspond to real-world data generating pro-
cesses. Problem (1) is solved by generating enough data from
this distribution to accurately estimate the real classification er-
rors. Problem (2) is solved generating many different small
datasets from these densities to form our meta-problem.

For, problem (1), generating data to establish the ground
truth, it is not clear whether this approach removes us too far
from properties of real-world data: do the densities, estimated
with limited data from a limited set of problems, still corre-
spond to problems we might come across in the real world?
We will come back to this in the discussion. As a solution for
problem (2) it is easier to check whether this approach is rea-
sonable: if we take into account the dependencies between the
datasets sampled from the same original problem during eval-
uation, increased accuracy of the meta-learner means we can
be confident the assumption has some merit. That is, if the as-
sumption the densities resemble real-world problem hold. For
now we will assume the meta-problem derived here has at least
some semblance to real-world data.

Setup
For each problem original problem Di (i between 1 and

300) we estimate the densities of the classes using a Parzen den-
sity estimator, where the width parameter is set using a maxi-
mum likelihood procedure. Note the Di’s now correspond to
different problem types, from which we generate more data,
similar to G and B before. We assume that the density de-
rived using this approach forms a data-generating process that
we could come across in the real world. This way we can gen-
erate as much data as is needed to accurately estimate the true
error of our classifiers. Similar to our earlier experiments, we
now generate 20000 objects from this distribution. Ntrain = 50
of these are randomly selected for training and the rest for test-
ing.

To increase the number of datasets, we repeat this proce-
dure 5 times for each Di. Using the same procedure as before,
we use cross-validation to estimate the error on the training set
and use the test set to estimate the true error. We are left with
a meta-problem with 1500 base-problems (5 from each of our
original 300 problems). We evaluate the performance of the
meta-learners using a restricted form of leave-one-out cross-
validation: in each iteration of the cross-validation algorithm,
we do not just leave out one dataset from the meta-problem but
all 5 datasets that originated from a single dataset Di in our
original collection. This corresponds to a total of 300 folds.
This is done to correct for the dependence between the datasets
with the same underlying problem.

11

Classifier Best on
Nearest Mean 236
k-Nearest Neighbor 118
Fisher 243
Quadratic Discriminant 32
Parzen Density 286
Decision Stump (Purity Criterion) 221
Linear Support Vector Machine 164
Radial Basis Support Vector Machine 200

Table 1: List of classifiers the meta-learners have to select between and the
corresponding number of datasets they perform best on (class priors). There
are a total of 1500 datasets in the meta-problem.

To simulate a real-world setting, we include a larger set of
classifiers in the selection. The list and corresponding meta-
class prior on the 1500 problems can be found in Table 1. Al-
though set of classifiers will be comprehensive, we have at-
tempted to include different types of classifiers in the mix, while
keeping the number of classifiers in check. The table shows the
number of problems in the meta-problem on which each clas-
sifier has lowest error on the test set. Except for the quadratic
discriminant, most classifiers seem to have a similar number of
problems where they perform best.

Results
Figure 3 shows the meta-problem of choosing between the

Fisher classifier and the Parzen classifier. Compare this to the
meta-learning space from our first experiment in Figure 2. Im-
provements in the classification boundary are more difficult in
this real universe due to the large class overlap. In fact, the
difference in selection error between the cross-validation selec-
tion rule and the linear discriminant meta-learner in the figure
is only 0.015.

Selecting from the full-set of 8 classifiers, cross-validation
selection has a selection error of 0.695. Using the restricted
leave-one-set out cross-validation strategy, a linear discrimi-
nant meta-learner gives a selection error of 0.618, a difference
of 0.077. A k-nearest neighbor meta-learner does even better
with an error rate of 0.605. The learning is not just caused by
knowing the most common best classifier, as this strategy gives
a selection error as high as 0.809.

By including additional meta-features we can get even more
performance improvement. Adding the cross-validation vari-
ances (similar to the previous experiment in section 4.3, using
5 repeats), the linear discriminant error becomes 0.599 whereas
the k-nearest neighbor error becomes 0.587, a total improve-
ment of 0.108.

Somewhat surprisingly, using unrestricted cross-validation
to evaluate the meta-classifiers yields very similar, although
somewhat more optimistic error rates for the meta-learners. This
might indicate the dependency between datasets generated from
the same original problem may not be as troublesome as we
feared. Estimating the difference in error rates between the
best classifier and the chosen classifier using this unrestricted
cross-validation gives an average difference of 0.018 for cross-
validation selection. The k-nearest neighbor meta-learner addi-

tional meta-features attains an average difference of 0.014. The
variances are approximately equal.

5. Discussion

5.1. Simulations
In our first example, in section 4.2, the reason meta-learning

in this universe is possible seems clear. By construction, all
problems with high Bayes error belong to one type of problem
and have one optimal classifier whereas low Bayes error prob-
lems have a different type and optimal classifier. So, the meta-
learner predicts problems with high errors (of either classifier)
are Gaussian in nature and that low error corresponds to Banana
type problems. The reason for choosing this extreme example
is didactic: the extreme case visually shows the possible dif-
ference between the optimal decision boundary and the static
cross-validation selection boundary. But, even if we were to
reduce the large differences between the error on the Gaussian
datasets and the Banana datasets meta-learning still shows im-
provements over the static rule, although the effects are smaller
and visually less distinct.

Whereas the reason learning is possible in this extreme sce-
nario seems clear, it is less clear why learning is possible if we
make the problem types more similar. One explanation is that,
simply by allowing a more flexible meta-learner instead of a
static rule, the meta-learner can adjust for slight differences in
the probabilities of different classifiers in different parts of the
meta-space.

Another possible explanation may come from the sources
of uncertainty that make the cross-validation errors unreliable.
The difference between the true error etrue and the cross-validation
estimate êcv determine how reliable the cross-validation esti-
mate is. The variance of this difference has various sources
[3, 12]. As [3] also notes, perhaps the most important of these
sources we should consider is the use of surrogate classifiers.
In order to predict the performance of a classifier trained on n
samples, we use k classifiers, 1 for each fold, estimated on only
n − n

k samples. For complex classifiers and small n, these k
surrogate classifiers can become very different from the actual
classifier we are trying to evaluate. Suppose a simple classifier
works well on a subset of datasets within our meta-problem.
Given the small variance of the errors in the meta-problem, this
subset will form a tight cluster in the meta-space whereas for
other subsets, were the datasets exhibit high variability (in other
words: the surrogates do not form good proxies for the real
classifier), the meta-learner becomes less confident. If a new
dataset is evaluated that belongs to the tight subset of problems,
it will still likely be assigned to this simple classifier, even if
small changes to the error estimate occur.

In other words, the method guards against the high variabil-
ity of the error estimates of complex classifiers. This may also
explain the effectiveness of including the variance estimate of
the cross-validation errors as a meta-feature in our second ex-
periment. This variance is an estimate of the internal variance
referred to above. As this is one part of the full variance [9],
it could form a low-biased estimate of the full variance of a
cross-validation error.

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

10−fold CV error Fisher

10
−f

ol
d

C
V

er
ro

r P
ar

ze
n

Real−world data meta−problem

Fisher Best
Parzen Best

Figure 3: The meta-problem for the pseudo real-world datasets, comparing two classifiers, Fisher and a Parzen density classifier. Shown are the linear discriminant
meta-classifier (solid line) and the cross-validation rule (dotted line). Class overlap is much larger in this pseudo real-world problem than our constructed universe
in Figure 2.

5.2. Additional meta-features

The finding that additional meta-features, aside from cross-
validation errors can increase selection accuracy is interesting
in its own right. It goes to show that the error estimates do
not fully contain all information present in the dataset. Even
simple measures such as the number of objects in the dataset
can increase performance. This might be caused by some mea-
sures having a lower variance, or even being deterministic. Es-
timation for these measures is less of an issue and they might
still contain some important information for classifier selection.
Since we treat classifier selection as be classification problem,
it would be expected that adding new features would yield ad-
ditional increases our ability to discriminate between classes.
Even when these features are mostly uninformative, given enough
training data the accuracy of a classifier should improve. The
size of the effect that we observe of adding the two meta-features
is, however, quite surprising. Notably, in the experiment in
section 4.3, the cross-validation variance estimate by itself was
not particularly successful, but in combination with the number
of objects, there is significant improvement in selection accu-
racy. The combination of these variables is effective because
large variances are more likely to occur for small sample sizes.
Therefore, knowing the sample size allows the meta-learner to
estimate whether a variance is unexpectedly large or small.

5.3. Pseudo real world experiments

The experiments on pseudo real-world data in section 4.4
shows the effects observed in the contrived universes also occur
in this collection of datasets. However, the results of these ex-
periments do not directly transfer to real-world datasets. There
are several reasons why this may not be the case.

First off, one might wonder how close our collection of
problems still is to real-world data. As indicated before, the col-
lection was constructed to exhibit a wide range of classification
difficulties one might come across. Furthermore, the datasets
contain these difficulties in varying degrees, almost forming a
continuum over each complexity dimension. However, apart
from the changes made to the seed datasets to obtain to datasets
with different levels of complexity, there were only 5 seed prob-
lems of which only one was an actual real-world problem. The
other four are synthetic datasets. So although the collection as a
whole shares properties with real-world data, the datasets them-
selves are not.

The reason we do treat these problems as resembling real-
world problems is because they all have various divergent prop-
erties, which is what we expect to see in a collection of real-
world datasets as well. Obtaining a similarly sized collection of
datasets with divergent properties of real-world data would re-
quire a significant amount of work, although repositories such
as UCI’s machine learning repository [7] offer a good starting
point. We therefore settle for a collection which shares these
properties, but for a large part lacks the basis of actually com-
ing from machine learning practice.

Secondly, in order to generate enough data to accurately es-
tablish the best classifier, we make the assumption that the den-
sity estimate made using the dataset correspond to a data gen-
erating process that would occur in the real-world. Especially
when there are few observations to estimate this density with,
this assumption clearly does not hold. The alternative is to use
the data not in the training sample (Dtrain

i) selected for learn-
ing to act as a test set. However, many of the datasets do not
have enough observations to predict ,with extremely high cer-

13

tainty, which classifier is best. The density sampling approach
was therefore chosen to circumvent these issues. Unfortunately,
it makes the dataset less like real-world datasets.

Even though this collection does not directly correspond to
real-world data, we can still learn a lot about how our approach
works on a universe of problems that was not specifically con-
structed to favor meta-learning and were the problem character-
istics are diverse. First of all, in these more complex universes,
selecting between just 2 classifiers gives a smaller performance
improvement as before. As can be seen in Figure 3, class over-
lap is quite large in this meta-problem. However, because we
are usually interested in selecting between a larger number of
classifiers, it is encouraging that we find a substantial improve-
ment when choosing from the set of 8 classifiers we considered.
Because the collection of datasets was not constructed specifi-
cally for our purposes and the effect is quite large (the selection
error is reduced from 0.695 to 0.587) we believe these effects
are likely to transfer over to collections of real-world data as
well. However, real-world experiments will still be needed to
confirm or disprove this.

5.4. Practical application
The goal in this work was to select the single best classi-

fier. One might wonder whether this makes sense in practice.
In all experiments, we found reasonable improvements in selec-
tion accuracy. However, ultimately, we are interested in getting
the lowest error on a given dataset. But, as [24] notes “It is only
when two models are almost equally good [. . .] and distinguish-
ing between them is relatively unimportant that cross-validation
begins to falter.“ However, even though the decrease in classi-
fication error may seem small and we need to collect a large
number of datasets to train a meta-learner, in some settings this
could be worth the added accuracy caused by selecting the best
classifier.

A selection strategy that increases the chance of inadver-
tently selecting a classifier with significantly higher error rate
than cross-validation selection may not be useful in practice.
In our experiments both the variance and the maximum dif-
ference between the lowest classifier possible and the assigned
classifier did not differ significantly between cross-validation
or meta-learning. However, in general we suggest to use a hy-
brid strategy where one uses cross-validation selection unless
the meta-learner is confident that a different classifier yields
better performance. This could be implemented using a regular-
ized version of the meta-learner: if the parameters of the meta-
learning are penalized for differing much from those implied by
the cross-validation selection rule, the meta-learner will only
change the selection if there is high confidence this change is
indeed better.

The computational complexity of the proposed approach
may be an issue in practice. As indicated before, this work
is merely concerned with showing the conceptual point of im-
proving cross-validation selection and not computation time. In
practice, the same investment/accuracy improvement tradeoff
referred to in the previous paragraph should be made. Since, the
meta-learner, once learned, can be used to predict the best class

for many new datasets, at least the computational investment
of constructing the meta-problem can be spread over a larger
number of classifier selections. The possibility of outperform-
ing cross-validation selection presented in this work also opens
the door to developing new meta-features that may be more
time-consuming than traditional meta-features but less expen-
sive than cross-validation errors.

In order to get the proposed approach to work in the real
world several steps will be needed. First of all, a perpetual prob-
lem in meta-learning is the lack of availability of large collec-
tions of real world datasets. Some projects [7, 16, 21] support-
ing the publication of datasets might help alleviate this problem,
but currently offer still too few real-world datasets. For specific
restricted application domains, the possibility of finding a rea-
sonably large set of datasets is more plausible. An example of
such a domain, were the small-sample error estimation problem
seems to be most studied, is micro-array classification. A sec-
ond problem is to establish the ground truth for these datasets.
This makes the proposed approach more suitable to applications
were we have to initially select a classifier based on few sam-
ples, while we can later evaluate this choice when more samples
become available.

Although we have studied the small sample case here, the
results are fairly robust for the size of the dataset. For extremely
small n meta-learning becomes difficult due to the fact that
most classifiers behave the same anyway. Consider the case of
n = 2, for instance, then every classifier will have very similar
behavior. When n becomes larger enough the cross-validation
estimates can be accurately estimated and meta-learning offers
no improvement. In our experiment on pseudo real-world data
happened from n = 200 and higher. For n between 20 and
200 however, improvements due to meta-learning seem possi-
ble. We believe these are not unreasonably small sample sizes
for practical problems.

The precarious problem is that we have very limited data
not just to train the classifier on, but also to estimate the er-
rors with. One might claim the proposed solution is impractical
given the need to collect many datasets. The alternative is to
(1) come up with a lower variance estimator of the error or (2)
obtain extra data to estimate the error. Work on (1) has, as of
yet, not yielded methods that significantly improve upon the
variance cross-validation errors. Adding more data (2) for er-
ror estimation is not an option: we would want to use the new
data to improve our classifiers. Also, with more data, the per-
formances of the classifiers change. The solution proposed here
then, is to use this larger data that we do have in earlier datasets,
to aid in the decision on the dataset at hand.

5.5. Methodological interpretation
We have considered classifier selection as a classification

problem in its own right. The reason for doing classifier se-
lection in the first place is an assumption that different classi-
fication problems may need different classifiers. If we really
believe this to be true, this assumption would also hold for the
meta-problem, which we also treat as a classification problem.
Therefore we should allow different meta-classifiers. Yet cross-
validation based selection is a single static, untrained meta-

14

learner. In other words, assuming classifier selection needs to
be done and only using the cross-validation selection rule for
this selection leads to a contradiction.

Another interesting point related to this, is that as the meta-
problem is a classification problem in itself, it could be param-
eterized as a vector in the meta-space as well. So the meta-
problem can contain itself! In a similar vein, a meta-learner
can give a prediction of which meta-learner to use. Although
interesting, we have not considered this possibility because our
universes are constructed and not simply the set of all problems
that can occur in practice, of which the meta-problem would be
one.

5.6. Future work

This work has presented a conceptual point which we think
helps pave the way to more developments on the topic of clas-
sifier selection and meta-learning. In particular, it shows meta-
features can be constructed that may not be more computation-
ally efficient than cross-validation errors, but increase the accu-
racy of a selection procedure. Even adding simple features, like
the number of objects in the dataset, considered here, may offer
these improvements.

The most important work remains to be done on both show-
ing these results truly hold on real-world data and using them
in a practical setting. Given the problem of accurately estab-
lishing the ground truth, some practical applications may also
lie outside the field of classification. A promising application
could be early model selection for time-series. Here the ground
truth can easily be established as more data comes in.

6. Conclusion

We have demonstrated that, at least on a conceptual level,
cross-validation classifier selection is not necessarily the best
classifier selection strategy, especially in the small sample set-
ting. By treating cross-validation selection as an untrained meta-
learner, there is promise of improving classifier selection by us-
ing trained meta-classifiers. Adding additional meta-features to
the meta-problem, apart from cross-validation errors, may pro-
vide additional improvements in selection accuracy.

An experiment on a collection of datasets that resembles
some properties of real-world data, shows these results may
hold on real-world data as well. More experiments on actual
real-world data are needed to verify these results. There are
some practical concerns in applying this approach practice. The
most important are the collection of large numbers of real-world
datasets, the problem of establishing the correct meta-classes
and the computational time. In applications were a classifica-
tion method has to be selected early in the process, before much
data is available, this method could be useful.

Overall, the results presented here motivate further devel-
opment of meta-learning, not just as a computationally-efficient
way of doing classifier selection, but potentially as more accu-
rate as well.

References

[1] Aha, D.W., 1992. Generalizing from case studies: A case study, in: In
Proceedings of the Ninth International Conference on Machine Learning,
Morgan Kaufmann. pp. 1–10.

[2] Bensusan, H., Giraud-Carrier, C., Kennedy, C., 2000. A higher-order
approach to meta-learning. Technical Report. Bristol, UK, UK.

[3] Braga-Neto, U., Dougherty, E.R., 2004. Is cross-validation valid for
small-sample microarray classification? Bioinformatics 20, 374–380.

[4] Brazdil, P., Gama, J., Henery, B., 1994. Characterizing the applicability
of classification algorithms using meta-level learning, in: Bergadano, F.,
De Raedt, L. (Eds.), Machine Learning: ECML-94. Springer Berlin / Hei-
delberg. volume 784 of Lecture Notes in Computer Science, pp. 83–102.

[5] Dougherty, E., 2001. Small sample issues for microarray-based classifi-
cation. Comparative and functional genomics 2.

[6] Duin, R.P.W., 2000. Prtools - version 3.0 - a matlab toolbox for pattern
recognition, in: Proc. of SPIE, p. 1331.

[7] Frank, A., Asuncion, A., 2010. UCI machine learning repository.
[8] Fuernkranz, J., Petrak, J., 2001. An evaluation of landmarking variants,

in: Proceedings of the ECML/PKDD Workshop on Integrating Aspects
of Data Mining, Decision Support and Meta-Learning (IDDM-2001), pp.
57–68.

[9] Hanczar, B., Dougherty, E.R., 2010. On the comparison of classifiers for
microarray data. Current Bioinformatics 5, 29–39.

[10] Ho, T.K., Basu, M., 2002. Complexity measures of supervised classifica-
tion problems. IEEE Trans. Pattern Anal. Mach. Intell. 24, 289–300.

[11] Hoekstra, A., Duin, R.P.W., 1996. On the nonlinearity of pattern classi-
fiers. Pattern Recognition, International Conference on 4, 271.

[12] Isaksson, A., Wallman, M., Göransson, H., Gustafsson, M.G., 2008.
Cross-validation and bootstrapping are unreliable in small sample clas-
sification. Pattern Recogn. Lett. 29, 1960–1965.

[13] Kalousis, A., Theoharis, T., 1999. Noemon: Design, implementation
and performance results of an intelligent assistant for classifier selection.
Intelligent Data Analysis 3, 319 – 337.

[14] Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection, in: Proceedings of the 14th international
joint conference on Artificial intelligence - Volume 2, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. pp. 1137–1143.

[15] Krijthe, J.H., Ho, T.K., Loog, M., 2012. Improving cross-validation based
classifier selection using meta-learning, in: International Conference on
Pattern Recognition. Forthcoming.

[16] Liang, P., Abernethy, J., 2009. mlcomp.org.
[17] Lindner, G., Ag, D., Studer, R., 1999. Ast: Support for algorithm se-

lection with a cbr approach, in: Recent Advances in Meta-Learning and
Future Work, pp. 418–423.

[18] Macià, N., 2011. Data complexity in supervised learning: A far-reaching
implication. Ph.D. thesis. La Salle — Universitat Ramon Llull.

[19] Macià, N., Ho, T.K., Orriols-Puig, A., Bernadó-Mansilla, E., 2010. The
lansdcape contest at icpr’10, in: Devrim Ünay, S.A., Çataltepe, Z. (Eds.),
Contests in ICPR 2010, Springer, Berlin, Heidelberg. pp. 29–5.

[20] Mansilla, E., Ho, T.K., 2004. On classifier domains of competence, in:
Proceedings of the 17th ICPR, pp. 136 – 139 Vol.1.

[21] Ong, C.S., Braun, M.L., Sonnenburg, S., Henschel, S., Hoyer, P.O., 2009.
mldata.org.

[22] Peng, Y., Flach, P.A., Brazdil, P., Soares, C., 2002. Decision tree-
based characterization for meta-learning, in: Bohanec, M., Kasek, B.,
Lavrac, N., Mladenic, D. (Eds.), ECML/PKDD’02 workshop on Integra-
tion and Collaboration Aspects of Data Mining, Decision Support and
Meta-Learning, University of Helsinki. pp. 111–122.

[23] Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G., 2000. Meta-learning
by landmarking various learning algorithms, in: Langley, P. (Ed.), ICML,
Morgan Kaufmann. pp. 743–750.

[24] Schaffer, C., 1993. Selecting a classification method by cross-validation.
Machine Learning 13, 135–143.

[25] Vilalta, R., Drissi, Y., 2002. A perspective view and survey of meta-
learning. Artificial Intelligence Review 18, 77–95.

15

Additional Notes

16

Chapter 2

Introduction to the Notes

The topic of the main thesis is whether the accuracy of classifier selection using a sim-
ple, static rule can be improved using techniques from meta-learning. The work is the
culmination of my research over a nine month period focussing on the justification of
untrained classification rules and the role of meta-learning.

The original goal, which took up the first 4 months, was to use data complexity measures
to study whether the simple, untrained, combination rules used in classifier combination
are justified. This was done by comparing the data complexity measures for the original
dataset, with the data complexity of the outputs of the classifiers that were to be com-
bined. My hypothesis was that as the static combination rule is so much simpler than
the classifiers used, data complexity in the latter case should reflect this. Once we figure
out how this complexity changes given a set of classifier, we may be able to understand
and predict whether to use a more complex combiner or, for instance, add an extra layer
in a neural network.

Unfortunately, data complexity measures turned out not to be suitable (yet), for this
kind of analysis. This was mostly due to high variability in estimation, making (non-
parametric) testing of the differences difficult, but also a lack of interpretation of the
data complexity measures themselves. After coming up with the idea presented in the
main text, I abandoned this line of research, but my personal notes on this work can be
found in this appendix.

The text and figures in these notes come directly from my research log with some added
structure. As such, it may have random comments dispersed through the text. It is
provided to give some indication of the topics that were explored during these nine
months and contains the results of some experiments that did not end up in the final
thesis.

Chapter 3 gives some background and thoughts on data complexity measures, also re-
ferred to in the main text. Chapter 4contains some results and notes on using these
data complexity measures to characterize the changes caused by classifier combination.

17

Chapter 5 provides some additional text and results related to the thesis topic that did
make it into the main text. In chapter 6 some comments are provided on the implemen-
tation of the experiments. Chapter 7 contains the original thesis topic proposal, which
is clearly different from the direction this work ultimately took.

The final chapter of this appendix contains a short, four-page paper on this thesis work.
It was submitted and accepted to be presented at the International Conference on Pat-
tern Recognition 2012.

18

Chapter 3

Notes on Data Complexity measures

3.1 Introduction

The measurement constructs used in here are the Data Complexity measures first in-
troduced by [7]. They are a set of 14 measurements (originally 12) on the data that
describe different geometrical complexities of the data. Ho considers three types of in-
trinsic complexity of a classification problem. The first is class ambiguity were we are
unable to distinguish between two classes for certain objects because they map to the
same objects in the given representation. One clear example is the letter ’l’ and num-
ber ’1’ (one) using the same image in many fonts. Given only this image (and not the
surrounding context, for example) we are unable to distinguish between the two classes.

The second difficulty is the sample sparsity, especially in high dimensional spaces, which
makes it difficult to train any classifier. Interesting but not surprising, the sample
sparsity also affects our ability to estimate the complexity of a problem accurately. We
will study this problem further below, since the number of points available to estimate
the data complexity will be reduced when training transformations.

The third difficulty is the complexity of the boundary, this can range from linear with
large margins between classes to highly non-linear with small margins. Data complexity
tries to estimate these geometrical properties of the problem.

3.2 Description of the original data complexity measures

For this study I used the implementation of the data complexity measures by [10]. They
are sightly different from the original measures by [1] to improve performance on large
datasets while keeping with the original purpose of the measures. She also added two
extra measures, F1v and F4, which are slightly more advanced versions of F1 and F3 to

19

take into account the collective effect of the features instead of looking at each feature
separately.

An overview of the measures is given in 3.1. A short overview is given below for each
of the four types (these types account for how they are constructed, not what they
measure). For a thorough description of the measures I refer the reader to [10].

3.2.1 F: Feature measures

The five feature measures try to estimate the complexity introduced by overlap of the
classes. The Fisher Discriminant Ratio (F1) does this by dividing the difference between
the class means by the sum of the class variances. Calculating this ratio for all features
and taking the maximum gives a high value when at least one dimension gives a sepa-
ration of the classes. Note that we do not take into that multiple dimensions combined
might give good separation. Think of a diagonal decision boundary in a 2 dimensional
space. The directional-vector maximum Fisher discriminant does allow for this case.
The other three measures (F2-F4) describe the overlap of the classes on each dimension.

3.2.2 L: Linear classifier measures

The measures describe properties of a linear classifier trained on the dataset.

3.2.3 N: Non-linearity measures

The measures describe properties of a non-linear classifier trained on the dataset.

3.2.4 T: Descriptive measures

Measures describing the density of the sampling.

3.3 Potential issues

1. Can we expect to predict generalization performance from features of the data? Does
the complexity of the data (mind you, not the problem) tell us something about solving
the problem? One problem is that to determine whether a given problem is complex we
need a large number of objects to find this out. If we have few samples, we can only say
that we do find the problem is complex.

Do we have enough information contained in the samples to make this prediction. A
simple experiment can shows why this might be a problem. Suppose we take a

20

Label Desciption Range Expected

1 F1 Maximum Fisher s discriminant ratio [0, µk] +

2 F1v Directional-vector maximum Fisher s discriminant [0, µk] +

3 F2 Overlap of the per-class bounding boxes [0, 1] −
4 F3 Maximum (individual) feature efficiency [0, 1] +

5 F4 Collective feature efficiency ratio [0, 1] +

6 L1 Minimised sum of the error distance of a linear classifier [0, n
nt
] −

7 L2 Training error of a linear classifier [0, 1] −
8 L3 Nonlinearity of a linear classifier [0, 1] −
9 N1 Fraction of points on the class boundary [0, 1] −
10 N2 Ratio of average intra/inter class nearest neighbour distance [0,+∞] −
11 N3 Leave-one-out error rate of the one-nearest neighbour classifier [0, 1] −
12 N4 Nonlinearity of the one-nearest neighbour classifier [0, 1] −
13 T1 Fraction of maximum covering spheres [0, 1] −
14 T2 Average number of points per dimension [0, n] Controlled

Table 3.1: Overview of the 14 data complexity measures adapted from [10] with the
minor addition of adding the last column containing the expectation of the behaviour
of different measures as we simplify the problem using a transformation. + means the
measure is expected to increase in value as the problem becomes less complex, − a
decrease.

2. Computational complexity Phahringer actually argues for using maximum complexity
of nlogn to be useful for meta-learning

3. Lack of discrimination Another potential problem is that two problems that are
clearly different map to the same point in the complexity space. The reason can be
structural or happen after generalization. The first is best exemplified by the data
complexities of two linearly separable problems but where the separating hyperplane has
a different orientation. For instance, the data complexity of a horizontal boundary and
vertical boundary gives the same data complexity. This is not necessarily a problem,
as long as we do not expect to be able to train our classifier on one of the problems
and use it on the other problem, even tough it has the same data complexity. The
second problem is might be more immediate. Given the no free lunch theorem, if we
are given a training set, performance beyond this training set is arbitrary if we take into
account all possible generalizations. So, if we find that for given datasets a certain data
complexity is associated with good performance of a certain classifier, there will always
be datasets with the same complexity that do not show this result. This problem becomes
especially important when generating datasets to match complexities with performance
of classifiers: the artificial datasets might not represent problems that we encounter in the
real world. So even though particular generalizations work well for certain complexities
on this artificial data, the processes that generated them might not resemble the real
problems encountered in practice.

21

3.4 Stability and bias of the measures

Because these measures have to be estimated from the data. Especially important be-
cause we cannot use all the data in our experiment to estimate the data complexity, we
need a training set for the transformations.

3.5 Implementation problems

When we have 0/1 outputs the overlap measures do not make much sense, but this might
actually reflect the behavior of certain classifiers.

Randomness N4 measure?

3.6 Discussion

3.6.1 What to remove

Selecting the most relevant measures from the set of data complexity measures The
large number of data complexity measures (14 in all) make the tool not only expensive
to compute but also hard to interpret. It would therefore be useful to remove those
measures that are least effective to our cause or find replacements that are more readily
interpretable. This could be seen as a feature selection problem with an added twist.
The twist is that we are not only interested in the performance gain on a particular
classifier but also have to take into account interpretability.

3.6.2 What to add

One avenue I have been exploring is turning the assumptions made by different classifi-
cation algorithms into measures using well known statistical tests. One example is the
assumption of Gaussian classes made by (for instance) a linear discriminant classifier.
Using Mardia’s test for multivariate normality as a meta-descriptor I found that it does
allow for some discrimination between cases where a classifier based on these assump-
tions works well or not. However, several measures contained in the data complexity
also allow for this discrimination. Testing for multivariate normality is therefore likely
already contained in the data complexity measures but a direct measure might be easier
to interpret. It seems likely, however, that the hypothesis test needs larger samples to
allow for discrimination than some of the data complexity estimates. Perhaps trying to
measure to what extend assumptions of classifiers hold is also not descriptive enough to
determine where we lack good classifiers. We will likely only be able to determine that
the space described by classifier assumptions is well covered by the classifiers who make

22

these assumptions, but will be unable to find assumptions that we might have missed in
building classifiers.

The problem is that any measure that relies on the difference between two classes could
be used as a classifier. So in a sense, we will never get around using classifiers as the
descriptors, unless we forget about the labels altogether. Maybe based on statistical
notions. For instance based on parametric tests. Maybe based on common assumptions
underlying classifiers? Problem might be you will not catch the case when we have not
considered certain useful assumptions. We will not be able to show this gap in our set
of available classifiers.

23

Chapter 4

Notes on Data Complexity in Classifier
Combination

In supervised learning, classifier combination has proven to be an effective way to improve
performance on many classification tasks. This idea of combining the output of many
classifiers to form a new classifier that outperforms any of its component classifiers has
been further developed into ensemble methods such as bagging. In these approaches we
generally use the same classifier but train multiple times by resampling our training data.
However in all these approaches we have to solve the problem of combining the classifiers.
Since each classifier in the ensemble generates an output for a training sample, our
original input data for the problem has been transformed from the original d dimensions
to c dimensions, where c is the number of classifiers in the ensemble. The combination
is often done using very simple rules, such as a majority vote. One way of interpreting
this approach is that we assume that our transformation has decreased the difficulty of
the problem. So much so, in fact, that we can use a simple untrained rule instead of a
trained classifier.

It is clear that when this analysis can be done for the transformed spaces defined by
training classifiers, we can use the same approach to study the effect of any transfor-
mations. The total classification task could be interpreted as a transformation of the
original d dimensional input vector to a 1 dimensional space (or k dimensional, depending
on the representation). This is important because many algorithms can be interpreted
as applying various transformations on the problem space. Ensemble methods, then,
are an example of a two-transform procedure. Neural networks or deep learning archi-
tectures use many layers (transforms) of the data. But also preprocessing steps such
as feature selection or extraction and kernels are clear examples of transforms of the
original problem space to a new space that is, hopefully, easier to learn.

The question now becomes: Can we make a quantitative prediction of the change a
transformation is going to have on the data complexity of a problem? If we can, how do

24

we interpret this shift in qualitative terms?

Unfortunately, determining the inherent difficulty of a classification problem is no trivial
task. If fact, a well known statistic to describe this problem difficulty, Kolmogorov
complexity, is proven to be indeterminable. This gives some indication that trying to
capture the complexity in one statistic is too optimistic. Data Complexity [7] offers
an alternative by using a compilation of various statistics to estimate different types
of complexity inherent in the data. This set of measures has mostly been applied to
determining the domains of competence of different classifiers: towards what types of
difficulties in the data are different classifiers well suited. In this work I use these Data
Complexity measures (DC-measures) to estimate the complexity of problems measured
on the dataset.

Although a promising instrument, the data complexity measures have been recently
introduced and therefore not been applied broadly and their behavior is not thoroughly
described. Although a fine implementation has been developed [13] some features are
still lacking. Most notably, it currently handles only two-class real valued problems.

First, introduce the data complexity measures. Then I discuss how to evaluate whether
a transformation caused any changes to data complexity by discussion various methods
from parametric to non-parametric methods such as bootstrapping and permutation
tests. After we have derived a usable test we get back to the analysis of various transfor-
mations of the original problem, such as combining multiple classifiers or using a multi
layered approach.

4.1 Bagging

In this section I describe bagging, a way of building an ensemble of a single classifier
using bootstrapping. Traditionally, the resulting ensemble is combined to reach a single
prediction for each input using averaging over the classifiers in the ensemble. Although
this has a nice intuition behind it, it is not immediately clear this is the best way to do
the combination. The main questions is then whether other combiners could improve
predictions and for what base-classifier which combiner works best. Since this behavior
is likely dependent on the problem itself, I use data complexity to characterize when
which combination technique works. Moreover, by looking at the data complexity of the
outputs of the base-learners we might understand why a particular combiner works in
that situation. In other words: what transformation in the data complexity does do the
base-learners cause that leads to one combiner being better than another?

Bagging, or bootstrap aggregation is a technique to improve the accuracy of a single
classifier first introduced by [3]. The intuition is that if we would be able to resample
our given data D from the original distribution many times, we would be able to estimate
any classifier accurately. However, all we have is the given data D. Breiman’s idea is to
approximate this resampling of the theoretical distribution P (x, y) by resampling with

25

substitution from the available data D (bootstrapping). We train our single classifier
multiple times on each of theB bootstrap samples. By averaging over the resulting B
classifiers, we have a better estimate of the classification boundary.

As Wolpert [16] notes, however, its effectiveness is purely based on an intuitive argu-
ment. We do not know, for example, how much the real distribution and the emprical
distribution differ. In other words, the no free lunch theorem applies equally to bagged
classifiers as it does to its unbagged counterparts. The main argument for its effec-
tiveness,then, is an empirical one. Various studies [16, 3] have shown bagging leads to
significant improvement of classifier accuracy, while performance degrades in very few
cases.

This empirical basis does conjure the question when the approach is effective. Can we
know, beforehand, for which base-classifiers this approach is most effective? [3] suggests
the approach is only useful when dealing with unstable classifiers. In these cases, the
classifier has high variance and while training the classifier on the whole dataset we
might be ’unlucky’ and get bad performance. Bootstrapping offers a way of generating
many datasets. The variance of the mean performance of the classifiers trained on these
new datasets will thus be lower than the variance when only training the classifier once.
However, as Breiman notes, there is a trade-off since we use less unique data in each of
the bootstrapped classifiers than we have available in our complete dataset. Therefore
if we have a stable classifier, performance might actually degrade because we are unable
to reduce the variance of our classifier but at the same time effectively use less data to
train it.

Even if this explanation holds, this merely provides a motivation for the how the mean
combiner works by reducing the variance of the classifier. It might be very well posible
other ways of combining the bootstrapped base-classifiers improve accuracy even for
fairly stable classifiers. Others have studied this opportunity in more detail. [16] develops
several methods to extend bagging with stacking. [15] compares different combiner rules
to use when bagging and boosting. The default combiner choice for classification, the
majority vote, has the worst performance of all combiners used in the study. They find
that it is mostly outperformed by the weighted majority rule. Other rules, such as the
product rule

Duin [5] gives an intuitive discussion of the issue of trained vs. untrained (fixed) com-
biners. He concludes fixed combiners can only be expected to work well under strict
conditions. In particular it is important the base-learners are not overtrained and have
correct confidences as their output. One way to achieve this is by normalizating the
base-learner outputs using a seperate training set, after which we can apply a fixed com-
biner with some confidence. For instance, we can use the training set to find the optimal
parameter of a logistic function that maps the classifier output to a confidence. Another
possibility is to use a trained learner. This trained combiner might correct for misguid-
ing confidences of the base-learners. This does present the question how we train this
trained combiner. Duin offer two alternatives: use the whole training set for trainging

26

both the base-learners and the combiners or split the training set up. In the former we
need to be careful not to overtrain the learners, while in the latter, we do not have to
worry about these issues.

Kuncheva & Whitaker [9] study the effectiveness of using various diversity measures of
an ensemble to explain en predict the accuracy improvement. The diversity measures
correlate well, meaning the different researchers that have come up with these measures
do share a similar concept for the defintion of diversity. The measures also explain the
accuracy improvements well in various simulation experiments. However, when using
the measures on real world data, their usefulness is less aparent. Correlation between
these measures and and the accuracy improvement is only ????. One explanation is that
in this real dataset, the possible improvement was very small. However, one does wonder
wether current measures of diversity

4.2 Exploring bagging accuracy

The purpose of this experiment is to give us an idea which classifiers and combination
rules are interesting to study further. To do this we evaluate a large number of classifier
and combiner combinations and study how often each combiner improves the accuracy of
the base-learner. It also provides a general sense of the behavior of the combiners: does
it always increases accuracy slightly or does it exhibit large deviations in its performance
depending on the problem? Especially in the latter case the questions of when to apply
a specific combiner becomes relevant.

4.2.1 Setup

To do this type of analysis for a large number of base-classifiers and combiners we have
to make concessions in terms of thoroughness to keep the computational demands in
check. This means that for each of the 300 problems, instead of doing cross validation,
we randomly split the problem once in a training (70%) and testing (30%) part. For
each base-classifier we use the training set to build 50 bootstrapped classifiers. For
the trained combination rules we then use the same training set to train the rule. For
example, when using a linear discriminant as the combination rule, we take the output
of the bootstrapped classifiers when given the training set as input and use the this
output as the training set for the linear discriminant. Even though the single split might
provide high variance in the result for a single experiment, the hope is that when done
on each of the 300 test problems, these problems cancel each other out. So, even though
the results from single experiment should be considered fairly unreliable, the qualitative
conclusions (whether a classifier or combiner is worthy of further study) will hopefully
be useful to guide us in further analysis using the data complexity.

27

4.2.2 Results

No degradation when using naive bayes as the base-classifier or when using the product
rule as the combiner. Trained fails less often than untrained.

4.3 First experiments

In this section I describe the initial results from some initial experiments to study whether
we observe any changes in data complexity when we use the output of simple classifiers to
form a new transformed space, as opposed to the original space that the simple classifiers
work on.

4.3.1 Implementation

The problems used in these experiments are the 300, two-class, problems that form the
S1 set of problems of the ICPR2010 classifier landscape competition [11]. They are a
diverse selection of problems that were generated from 5 original problems (4 artificial
and one real-world dataset) using the techniques discussed in [12] to span the a large
part of the complexity space. I chose this set of problems because they are easy to use
(only real-valued attributes), they supposedly span the complexity space and there are
sufficiently many to draw some conclusions.

During the initial stages I used all samples to train the transformation (classifiers) and
transformed these same samples using the trained transformations. However, this might
make the results overly optimistic since using the trained transform on the training data
will make the problem seem less complex than it will be if the transform is used on new
data. The results presented here therefore use 50% of the data of each problem to train
the transform and the data complexity is calculated on the transform of the other half
of the data. However, more thought should be put into this training vs. test set: for
one the datasets were generated by selecting samples from the original problem so as to
attain the right complexity. So sampling might affect the data complexity, causing it to
be different in the training set than in the test set.

The code used to calculate the data complexity measures on a given dataset is the open
source implementation by [13] using a custom interface to Matlab. This interface seems
to work except for one dimension (N4) where subsequent runs give slight fluctuations in
the measure. These fluctuations do not occur when using the command line interface.
Given the number of datasets used here, this does not cause big problems, but it should
be resolved.

Since the data shows very extreme behaviour, it is unwarranted to make the assumption
the complexity measures follow a normal disribution. To test whether there is a change
between the complexiy measures between the original problem and the transformed

28

problem, we therefore use a sign test which assumes the data comes from any arbitrary
continuous distribution. Note that even though the measures are continuous, it is still
worth checking whether they all also behave continuously. Some might only be able to
assume certain values by construction. Also the assumption of independence of datasets
might not hold here, since some datasets were originally constructed usign the same
dataset. The sign test, evaluates the null hypothesis that the median of the differences
between the complexity measures is 0. To do this we count the number of samples where
the difference is positive and use the binomial distribution to calculate the significance.

4.3.2 Random Forest spaces

To evaluate the data complexity of the space spanned by the output of the individual
trees in a random forest I used Matlab’s TreeBagger function. This implementation is
based on Breiman’s desciption of a random forest (see [3]).

Description

The random forest is an ensemble of decision trees, combined using a majority vote con-
sidering all these trees. In Breiman’s approach each tree is trained using a bootstrapped
sample from the trainset.

Complexity on a large tree

To find out whether these transformation have any effect I first trained 100 decision trees
one each dataset and then transformed said dataset by taking the output of these trees
for each example. The mean data complexities of these transformed sets can be found in
table 4.1. On 9 of the 13 relevant dimensions (the 14th is simply controlled by choosing
the number of trees), we find the expected effect. For example, on the first dimension,
300 of the 300 datasets showed an increase in this measure after the transformation,
which for this measure means a lower complexity.

One dimension is undecided (dimension 6) since, for about half of the datasets it increases
and for about half it decreases. This may not be a problem if the increases are negligible
while the decreases are large. However, the means change does not suggest this is the
case. It is interesting that this dimension often shows insignificant changes in other
experiments as well.

Three of the dimensions (3-5) actually show the reversed effects what we would hope
to do. These show that the problem has become more complex. The reason seem to
be that these three measures all depend on the class overlap. Since the outputs of the
trees in this experiment can only attain one of two values (one of the two classes) a tree
only has to make one wrong classification for it for the classes to fully overlap on this

29

dimension. The outcomes for these dimension might therefore be because of the nature
of the outputs of our transform. This may be a motivation for using classifier confidences
to make the problem of classifier combination easier.

Training vs. Test set

In the previous experiment, we have used all the objects in a dataset to train the trans-
form. We than use this to transform these points used for training. This will likely
produce too optimistic outcomes: of course the transformation is going to be effective
on the training data, but what about new data points. To tackle this, we split the
datasets in half to form a trainingset and a testset. The training set is only used to train
the classifiers used for transformation, while the testset contains the points that will be
transformed and on which we calculate the complexity measures. The results are shown
in 4.2. We find that indeed, the previous experiment was too optimistic: the results
are much less clear in this case. However, the only dimension that has a qualitatively
different interpretation is dimension 10, were we are less sure whether it indeed becomes
simpler. Even though these estimates are much more conservative, it is does not repre-
sent how we usually treat these small datasets. When evaluating accuracy, for example,
a better approach is to use cross-validation to use the most examples as possible. The
problem might even be bigger here since we know leaving out many objects lead to dif-
ferent complexity measures (this is how the datasets were generated) and some measures
even contain the number of objects! It shows that we should get a better understanding
of how the apparent complexity that we measure depends on the sample size and what
technique is most suitable to get a realistic estimate of the real data complexity.

Increasing the number of trees

The results for the data complexity using 2, 10, 25 and 50 trees are shown in 4.1. For 2,
N2 might not be stable.

4.3.3 Layering

Found that when using the training sample complexity, layering helped, but effect seemed
to fade when splitting test and training set.

4.3.4 Open Problems

An important problem for the evaluation is how the data complexity of the new problem
should be estimated: can we use all data to train the transformation and evaluate the
data complexity estimate on this transformation. It seems more realistic to use a different
part of the data to calculate the transform to avoid being overly optimistic. There are

30

Original Transformed Difference Number Positive

1.1704 28.9736 27.8032 300

2.5567 942.3629 939.8062 293

0.07337 0.81 0.73663 243

0.33591 0.13287 -0.20304 38

0.61272 0.18711 -0.42561 30

0.48402 0.48986 0.0058352 176

0.21865 0 -0.21865 0

0.42531 0 -0.42531 0

0.33895 0.0056746 -0.33327 0

0.70484 0.24747 -0.45737 0

0.21804 7.4571e-06 -0.21803 0

0.17789 0 -0.17789 0

0.99703 0.81116 -0.18587 26

28.7778 3.8985 -24.8794 0

Table 4.1: The mean data complexity measures from the original problem and the
transformed problem when using 100 decision trees. The same data used for training as
also the data that is transformed.

Original Transformed Difference Number Positive

1.2678 3.4256 2.1578 203

3.0237 222.046 219.0223 295

0.040751 0.69 0.64925 207

0.40373 0.048657 -0.35507 4

0.7605 0.20384 -0.55666 13

0.49652 0.39552 -0.101 127

0.23556 0.075939 -0.15963 0

0.45136 0.17322 -0.27814 0

0.36472 0.24655 -0.11817 35

0.77025 0.74542 -0.024832 109

0.24633 0.15438 -0.091951 32

0.15436 0.03807 -0.11629 21

0.99575 0.99116 -0.004583 56

14.3472 1.944 -12.4031 0

Table 4.2: The mean data complexity measures from the original problem and the
transformed problem when using 100 decision trees. Half the data is used for training
the classifiers and half to transform and calculate the complexity measures.

31

Figure 4.1: The mean change is the different complexity measures. F1 has been left
out because of the different scaling. Red lines are measures that should become lower
as complexity decreases, and blue lines are measures where an increase corresponds to
lower complexity. Note: the lines are sampled at: 2, 10, 25, 50, 100 trees.

Figure 4.2: The means of different complexity measures for a different number of trees.
F1 has been left out because of the different scaling. Red lines are measures that should
become lower as complexity decreases, and blue lines are measures where an increase
corresponds to lower complexity. Note: the lines are sampled at: 2, 10, 25, 50, 100 trees.

32

some possible alternatives to the current split: using leave-one-out or cross-validation
posteriors as the new space or using cross-validations splits to get different estimates for
the data-complexity. The former seems more promising since we get to keep the same
number of data points

As noted earlier, the N4 measure seems to show some random fluctuations when using
the Matlab interface. While this might not be a problem for the results, it is still worth
investigating why this is happening. Another improvement to the Matlab interface
would be to change the underlying C code to deal with the problem matrices directly.
Currently the problems are first written to memory in ARFF format and then loaded
by the C-code. However, the performance savings might not be worth the time needed
to change the code.

More classifiers cause F4 to become insignificantly different from zero.

When layering classifiers the complexity seem to get better even after the first level,
effect becomes unstable if we add layers. Now we need to study what happens if we
move from using the transformation on the trainingset to using a test set. After doing
this, layering does not seem to work.

Out of sample approach: does this also hold for unsupervised feature reduction? Study-
ing effect of N. Is lower complexity really better?

33

Chapter 5

Notes on Improving Cross-validation

5.1 Introduction

One comment that is often mentioned to question the usefulness of meta-learning is that
it is easier to train all the classifiers you have at your disposal and use cross-validation to
select the best one. At first it seems hard to rebut this statement. Better understanding
of the behavior of classifiers could be another reason for doing meta-learning, but this
has not been very successful as of yet. But what if we could actually do better than cross-
validation? Assuming we have all the information of previously encountered problems
as well as the given dataset we should be able to outperform cross-validation which
relies on just the given dataset. Doing an experiment resampling many times from a
gaussian and a non-gaussian problem, I find that meta-learning does outperform 10-
fold-cross-validation. One reason is that cross-validation does not take into account its
performance on previous problems. In a sense, cross-validation is an untrained rule while
meta-learning is a trained rule. In the figure (see figure) we can see the ’cross-validation
classifier’ forming a diagonal line in the space (not shown) does worse than a trained rule
(shown) on the red class. The trained rule using the cross-validation estimates for the
two different classifiers as inputs gives equal performance to the meta-learner, however,
the latter uses merely two non-classifier dependent complexity measures as input.

There are several reasons why we cannot conclude we can outperform cross-validation
in general. First of all, in this example, the choice is merely between two classifiers,
a nearest mean classifier and k-nearest neighbor. Secondly, in this example we could
use an accurate estimate of the real error of the classifiers in the meta-training phase,
because we have access to the original problem to generate more testing data. In practice
we do not have this. In effect the approach outlined above works because we know the
distribution of problems in the universe (which is very small in this example, just one
type of gaussian and one type of non-gaussian problem). Meta-learning might thus
be expected to work well when we are able to get reliable estimates of distribution of

34

problems out there in the real universe. Another interesting observation is that the
meta-learning approach does show large improvement over cross-validation in selecting
the best classifier for a dataset but that the difference in average performance by the
classifiers chosen by both approaches is very small. This suggests cross-validation does
at least work for many cases were the difference between competing classifiers is large.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Feature 1

Fe
at

ur
e

2

Figure 5.1: An example universe where meta-learning can outperform cross-validation.
The features are cross-validation errors of two classifier, while the solid line is a Support
Vector Machine trained on this meta–problem. This clearly offers a better separation
of the meta-classes than the diagonal line representing cross-validation selection (not
shown)

The first experiment is an illustration of the existence of a way to improve cross-validation
under controlled conditions. The second experiment studies the effect on real world data.

5.2 Small simulated universes

Suppose we have a universe containing two kinds of problems, gaussian and non-gaussian,
split evenly over both cases (see figure for an example for each case). Our toolbox

35

contains merely two classifiers: the nearest mean classifier and the k-nearest neighbor
rule (where k is chosen using cross-validation). Now given a small dataset, which of
the two classifiers should we choose to get the best performance? One approach is to
use 10-fold cross-validation, and use the classifier with the lowest estimated error, a
technique often used in practice. The alternative that I propose here is meta-learning
and I will compare the properties of its predictions of the classifier to use with that of
cross-validation. Half of the problems are generated using a base of two gaussian classes
where the distance between the classes is uniformly chosen between [0,1]. The other
half is similar except that the classes do not follow a gaussian distribution but rather a
banana shape (see figure). We generate 500 problems from each of the types and select
a small subsample of these

5.3 Experiments pseudo-real world data

Although the introduced ideas are interesting in their own right, their practical signifi-
cance can only be tested on real world data. We need to determine the improvements by
meta-learning and additional meta-features do not just occur in a number of contrived
universes but in the real-world as well. To do this we would ideally need a large number
of datasets that form a representative sample of real-world datasets.

There are several problems however. The first is conceptual. How do we determine
whether this sample is representative of all real world data? The second is practical.
Where do we find this large number of datasets.

Data sources

Although a truly representative sample of datasets is beyond our reach, our goal is to
at least determine whether the effects occur on some datasets that represent real data.
For this we consider two sources.

The first is the collection of UCI datasets, a repository of publicly available datasets
that is widely used in the machine learning community. At time of writing there are 150
classification datasets available. An advantage of this set is that they are well known
and studied. The main disadvantage is that it is unclear whether these datasets provide
a varied set of problems and complexities. In terms of the data complexity measures,
introduced earlier, we can not be sure these datasets cover all different values of these
measures. Another disadvantage of the UCI datasets is the heterogeneity in the formats
of the datasets.

A second possible source is a set of 300 datasets generated by [11] to study domains
of competence of different classifiers in terms of the data complexity measures. These
datasets were generated from 5 different seed problems specifically to span the complexity
space. Unlike the UCI datasets, therefore, these datasets, by construction do cover a

36

large number of different complexities that we could come across in the real-world.
However, we do pay the price for this diversity: these new datasets are altered versions
of the original seed problems (of which most are constructed as well!). The result is a
set of different datasets that exhibit different complexities, but are far from ’real data’.

Setup

Unlike the simulation studies, where we set the data generating process ourselves, when
using real world data we can not simply generate more data to run our experiments. This
causes two problems. First of all, the datasets in our set of real world datasets may be
too small to extract a large test set on which to estimate the real error of each classifier
accurately. In the simulation studies we simply generated a large enough dataset (20000
objects) to get to the desired accuracy. Secondly, we might not have enough datasets to
train and test the meta-learner. So beside the base-problems, the meta-problem might
also contain too few objects.

Several available strategies and how they relate to these two problems are outlined below:

1. Split each dataset in a small

2. Similar to (1) except reuse splits as both training and test sets, as we do in cross-
validation. Each dataset is split in k folds. Each fold is used as the training set, using
the rest of the data for testing. Each datasets therefore becomes k different problems,
increasing the number of objects in our meta-problem. However, these problems are
likely correlated. Another possibility is to vary k for each dataset in order to get similar
sample sizes for the training sets. However, this removes the variability in complexity
introduced by different sample sizes.

3. Estimate the density of the problem en generate new data from this estimated density.
However, the problems are not generated to be easy, so a density estimate might be far
from any real world problem.

To establish the sample size for which meta-learning can be expected to give possible
improvements we ran the experiment described above using a smaller set of classifiers
for different sample sizes. The meta-learning errors for choosing between 1NN and a
Fisher classifier can be found in Table 5.1. For large sample sizes, meta-learning will
not outperform the accurate cross-validation errors. For extremely small sample sizes,
effects are likely small as well. When Ntrain is around 50, improvement seems possible.
Given these results we tested the larger set of classifiers on problems with Ntrain = 50.

On a more conceptual level, we believe effective classifier selection depends on the as-
sumption that there exist measures characterizing each dataset that we can rely on to
determine when one classifier outperforms another. They needs to be discriminative in
the domains of competence of different classifiers. In other words, datasets with simi-
lar values for these measures should preferably have the same optimal classifier choice.

37

n Most Common CV selection LDA K-NN

10 0.292 0.342 0.301 0.341

20 0.197 0.326 0.197 0.199

40 0.471 0.418 0.396 0.336

60 0.389 0.393 0.285 0.263

80 0.339 0.354 0.226 0.213

100 0.345 0.301 0.234 0.215

200 0.405 0.228 0.254 0.228

500 0.451 0.142 0.153 0.153

1000 0.352 0.111 0.144 0.120

2000 0.267 0.094 0.243 0.115

Table 5.1: Leave-one-set out errors of different meta-learning for different sample sizes.
The base-classifiers these meta-learners have to choose between are 1NN and a Fisher
classifier. Most Common is a strategy that always selects the classifier that is most
common in the training set of the meta-problem. Note cross-validation selection becomes
hard to improve as sample sizes increase and cross-validation becomes more accurate.

Aside from this, we believe good parameterizations need to have some additional prop-
erties. (1) Preferably the domains of competence of the classifiers are compact in the
chosen parameterization. This means the datasets a classifier works well on are close to
one another in terms of the chosen parameters, and are locally continuous, hence some
separation of the domains is possible. (2) They can be efficiently computed, which has
been the focus of most research in meta-learning and an important prerequisite for their
practical appeal. (3) Finally, it would be helpful if the parameters are interpretable.
This property helps diagnose problems when performance is worse than required, as well
as gives insight into the properties of different algorithms. Combined with compactness
in (1), this allows for an understanding of what specific type of problems a classifier
works well for.

5.3.1 More complex meta-features

I would possibly like to add an experiment that studies whether more complex meta-
features such as bootstrap errors or data complexity measures can improve meta-learning
performance.

Alternatively I could run the same analysis as in 4.3 on a single large real-world dataset.
This would show that the effects occur on real-world data as well, not just the pseudo
real-world example I showed before.

As we have seen from these attempts, meta-learning is considered to be a time efficient
alternative to the presumably more accurate cross-validation. In fact, cross-validation
selection is used to establish the ground truth against which meta-learning classifiers

38

are compared. This is based on the assumption that the cross-validation error gives
is an accurate estimate of the real error. In the large sample cases considered in the
literature, this assumption may well hold. In our research, however, we study the small
sample case, in which cross-validation errors become unreliable. This opens up the
opportunity to improve upon cross-validation selection. In the next section we will mold
cross-validation selection into the meta-learning framework to compare both approaches.
Because we can no longer rely on cross-validation to establish a ground truth, we will
assume we have a large test dataset with which we can accurately estimate the real error.
To our knowledge, this approach has not been taken before.

Another idea I came up with might not effect the meta-learning problem but I find it
interesting to consider nonetheless. Given a set of problems (which can all be described
as sets of vectors in some space), we calculate the DC measures and performance of
different classifiers. These descriptions of the datasets give us a set of vectors forming a
new problem, the meta-problem. This meta-problem itself is therefore a set of vectors
and, therefore, can be described using the data complexity measures, giving us a new
vector. This vector however, is also a vector in the meta-problem space. Therefore, the
meta-problem contains itself as an object! Now two questions present themselves: 1.
If the number of vectors in the meta-problem is not very large, adding this vector to
the meta-problem changes the meta-problem itself, giving us a new meta-problem vector
describing this new problem. Adding this vector to the problem again causes a change to
the meta-problem description... etcetera. How does this process converge? 2. Because
the vector forms an object in the meta-problem we can use a meta-classifier trained on
the meta-problem to predict which meta-classifier to use on the problem. Now, using
this new meta-classifier, we can again make a prediction giving possibly another meta-
classifier. What does convergence in these iterations of predicting meta-classifiers mean
for the final classifier that is selected and how does it depend on the initial meta-classifier
chosen?

The first source comes from the internal variance var(êcv|Dtrain), the variance of our
estimator given one particular dataset. This is caused by the random assignment of sam-
ples to different folds [2]. So, given the dataset repeating the cross-validation procedure
gives different estimates êcv. An estimate of this internal variance is what we added as
a meta-feature in the second experiment. A second source is the variance introduced
by error-counting, meaning that the estimate can only change in increments, since the
error estimates can only take on different values at increments of 1

n . The third source
the dependency between training sets in each fold, since many of the objects in D \Di

where also in D \Di−1, especially when k is large. This may be the reason for the large
variance of leave-one-out-estimation, where k = n.

Whether the cross-validation errors contain all of the information relevant to classifier
selection almost looks similar to sufficiency of a statistic, where in this case sufficiency
is with respect to the optimal classifier choice)

During the construction of the simulated universes in sections 4.2 and 4.3, we were sur-

39

prised that interesting problem universes turned out not to be trivial to construct. The
main issue is that for many distributions over datasets, often one classifier dominates the
whole meta-problem. Even though meta-learning gives good results in these cases, they
are not particularly interesting because learning is trivial: choosing the most common
classifier serves as a very good selection rule. Of course, we can only speculate whether
collections of real-datasets share this property as well. But, given that it is relatively
difficult to construct examples of universes where all classifiers have a similar prior prob-
ability, we would be quite surprised if real datasets do not have some classifiers that have
best performance on a large fraction of the these datasets.

As [14] points out, cross-validation selection represents an inductive bias, just as any
individual classifier. He concludes that “cross-validation and prior knowledge are best
seen as complementary. Little has been done to date to help us understand how to apply
them together in classification work, and this appears to be an important area for future
work.“ Our results can be seen as a step in this direction. The prior knowledge, in our
experiments, comes from the assumption our dataset is part of a particular universe of
datasets. Results from other datasets in this universe can inform our selection decision.
As an example of prior information [14] uses the example of knowing whether a problem
is parallel or sequential (has equally important features vs. a few important features)
and preferring connectionist resp. symbolic methods as classifier. In our experiments
we assume our prior information is the former, the type of problem we are dealing with,
but we learn the latter, which methods are preferred for these problem types.

5.4 Conclusion

What meta-learning does is learn the relationship between features of the dataset and
generalization performance of different algorithms. However, we can not say anything
theoretically about this relationship, a fact used to reach the No Free Lunch theorem.
Now it is my strong belief that meta-learning therefore, can only be effectively trained
on real data. The experiment shows what happens when we live in a universe of which
we know what the true empirical function is and the meta-learner learns the relationship
within this universe. In other words we train a meta-learner on a characteristics, gen-
eralization performance relationship in a universe. Therefore, I believe meta-learning,
although possible, is only useful if we train on a set of real data. Using (semi-)artificially
generated data will not yield a useful meta-learner unless there is a very close overlap
between the generalization distribution in both universes.

Although this puts up a barrier for meta-learning it is by no means insurmountable.
Using data repositories such as (Kaggle, UCI and others), we might be able to contract
meta-training sets that reasonably approximate ’reality’. This is especially true when
we focus on a specific domain.

40

Chapter 6

Notes on Implementation

Once the conceptual ideas have been thought out, the experiments needed in this research
do not seem overly complex in terms of implementation. It turns out, however, that you
run into limitations of many software libraries because of the extremely small sample
sizes as well as the problems with scaling the approach. This chapter overs some of the
things I learned during the implementation of the project.

The main tools using in this project were Matlab combined with the PRTools library [4]
and R. The former was chosen due to the large number of classifiers that were available
for testing and the clear and concise notation. The latter was used during the simulation
studies to quickly test many different universes due to the easy and inexpensive ways
to paralellize the computations. In comparison, Matlab code was generally faster and
slightly more legible than R code. The main advantage of R was its huge collection of
libraries. Unfortunately, there is little consistency in the interfaces of difference classifier
implementation. This makes meta-learning somewhat more cumbersome than a unified
package like PRTools.

6.1 Interacting with C code

For many of the experiments in the initial phases of my research project, I needed to cal-
culate the set of data complexity measures on many (at least 300) datasets. These mea-
sures are rather computationally intensive, so an efficient implementation was needed.
Luckily, this was provided for in the form of the DCoL library by [13]. This library
provides fast C implementations of all the measures. To interface with Matlab and R
I set out to build interfaces to be able to call the library directly from Matlab/R. Un-
fortunately, the concept of an ARFF formatted data file is very much ingrained in the
design of the library. It was therefore hard to calculate these measures directly on the
Matlab/R dataset objects. As not to waste time, I used the second best alternative,
writing the Matlab/R objects to memory as ARFF files and calling the C code using a

41

Matlab/Interface. Although arguably not the most elegant solution, I believe the time
saved not having to reimplement most of the library was worth the slight degradation
in performance.

The C code itself was a time-saver as well. Comparing my own Matlab implementations
of the data complexity measures to the C versions, proved to be more than three times
faster for some measures. Over many datasets and many iterations, these time savings
add up.

6.2 Parallelization

Parallelization in Matlab: ten though Matlab offers a toolbox for this, this requires an
expensive license to operate. Using the free multicore package which provides a bit of
a hack to paralellization, it is still possible. In practice I mostly ran multiple Matlab
sessions and experiments in parallel. Advantage of open source tools, implemented
several classifiers in R but you ran into the problem of insufficient testing.

42

Chapter 7

Thesis proposals

7.1 Preliminary proposal

Research into the areas of competence of different classifiers has yielded interesting
results such as those presented in [1,3]. For my MSc research project I would like to build
on these results by finding general patterns and gaining better insight into some questions
raised in the literature. My interest in this area is two-fold. First of all, Im interested in
the possibilities of automated pattern recognition offered by a more comprehensive view
of the data complexity space and the behaviour of different classifiers therein. Secondly,
the areas of competence give insight into where classifiers work well or fail to work well
and understand this behaviour better. In the remainder of this proposal I explain what
I mean by general patterns and gaining better insight, mentioned earlier.

First, general patterns: the data complexity space offers a different way of studying
the behaviour of different classifiers. Previous studies have found interesting results for
particular classifiers. It would be interesting to see whether we can find more general
behaviours of different types of classifiers. One example is given in [1] where the authors
find decision forests subsume a single decision tree (i.e. perform better in the whole
complexity space). Do we also find this behavior for combinations of other classifiers
(for example, linear classifiers)? In general, how does the behavior of a combination of
classifiers relate to the behavior of the single classifiers in the complexity space and why
(also relates to [2])? And are there other classifiers that are inferior over the whole data
complexity space?

Secondly, regarding gaining better insight into questions raised in the literature, one
example is the extreme behaviour of linear and nearest neighbour classifiers found in [1].
It seems this is mostly caused by a lack of performance of the ensemble classifiers. Can
we gain a better understanding why and where in the complexity space this happens?
Is this a weakness in the design of the ensemble methods or intrinsic in selecting a very
specific classifier.

43

Overall, my main interests are in the areas of competence of classifiers for use in matching
classifiers with problems. The two areas presented here are two aspects of the data
complexity approach that interest me. Other questions, such as how the problem of
approximating apparent complexity relates to approximating the apparent error, how to
extend the data complexity space to semi-supervised problems or in what problems the
area of competence can be most helpful in selecting a good classifier also interest me. It
is however less clear to me how these questions relate to the available literature, while
the two topics presented earlier came up during my initial literature search.

References

1. Mansilla, E.B.; Tin Kam Ho; , ”On classifier domains of competence,” Pattern
Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference
on , vol.1, no., pp. 136- 139 Vol.1, 23-26 Aug. 2004

2. Tin Kam Ho. 2001. Data Complexity Analysis for Classifier Combination. In
Proceedings of the Second International Workshop on Multiple Classifier Systems
(MCS ’01), Josef Kittler and Fabio Roli (Eds.). Springer-Verlag, London, UK,
53-67.

3. Mitra Basu and Tin Kam Ho. 2006. Data Complexity in Pattern Recognition
(Advanced Information and Knowledge Processing). Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

7.2 Narrow proposals

7.2.1 Enhancing the complexity approach

Macia’s study shows there are different problems that each learner performs particularly
well at: golden problems. However, it is unclear whether the problems around these
golden problems are also best classified using this learner. Do we actually find clusters in
the data, either in the space of the first two principal components or in the 12 dimensional
complexity space? Or does the measure not contain enough information to describe
these problems. In this respect it would also be interesting to find which dimensions
could be dropped from the definition and what measures we could add to improve the
dataset characterization. We might look at measures generated by a decision tree such
as those proposed by Peng et. al. 2002. Another problem that might require more
study is that data complexity forms a lower dimensional representation of the problem,
so problems might overlap. This overlap has not been taken into account in Macia’s
study: here just one dataset for each point in the complexity space was considered.
However, if there are different problems that map to this point, the performance on that
single problem might not be representative of the real world. This could be done using

44

simulated micro-experiments to construct a problem were data complexity is the same
but classifier performance is different.

7.2.2 Behavior of classifier combinations

Data complexity has promise as a tool to study classifier behavior. One possible research
direction would be to study the behavior of different types of classifier combinations and
how their areas of competence depend on the areas of competence of the base classifiers.
This could either be done using an empirical study on a large number of datasets or
by constructing problems that span the whole space of, for example, the two most
descriptive complexity dimensions. Using the latter approach we might be able to find
a connection between the data generating processes (which we know because they have
been artificially constructed) and the behavior of the classifier combinations. This might
shed some light on how the shape of the area of competence of the combiner relates to
the areas of competence of the base classifiers. Another interesting question would be
whether we can find problems on which decision trees outperform decision forest (or in
general, were the base classifier outperforms the ensemble) and how this relates to the
data complexity measures.

7.2.3 Clustering tendency

One way to study the effectiveness of the domains of competence is to look at clustering
tendency. This might be done by treating the area of competence as a sample from the
distribution of the real area of competence. By computing the likelihood of this sample
originating from various distributions, for example the uniform distribution, we might
be able to determine whether what we find are real clusters of competence or that they
merely show up by random chance.

7.2.4 Manifold learning/Kernels/Dissimilarity approach

Another interesting question is how a transformation of the dataset or mapping to a
kernel space affects the data complexity measures and whether we can use this to guide
appropriate transformations of a dataset to an ’easier’ representation. This might include
selecting combinations of transformations. An interesting aspect to this is whether it is
possible to calculate data complexity estimates on all possible kernels. For example, a
RBF kernel maps to an implicit infinite dimensional Hilbert space: how can we calculate
the complexity measures from this. It might be that the approach is only possible on
manifold learning or the dissimilarity approach. In the latter case for example, we might
look at the effect of transformations with increasing numbers of prototypes (chosen
with some systematic procedure) and the resulting data complexity measures of the
transformed dataset.

45

7.2.5 Predicting classifier accuracy

Instead of predicting where a classifier will outperform other classifiers it might be in-
formative to predict the possible accuracy of classification based on the data complexity
measures. From examples were we are fairly sure that current algorithms give optimal
performance we might infer what the possible performance on other parts of the com-
plexity space should be. If real performance is different in some areas, there might be
room for developing new methods that perform well on these types of problems.

7.2.6 Website to accumulate large number of real world datasets

Using a website where users can either submit datasets or allow users to easily upload
both data complexity measures and performance of a set of learners on the dataset, would
allow us to better map learner behavior on data complexity measures. The resulting
areas of competence for each learner would allow us to offer a recommendation on what
learner would be most effective based on data complexity characteristics. From an
research perspective, this large number of datasets would offer a more complete picture
of areas of competence on real world datasets and might lead to insights on where there
is room for improvement to develop new or adept existing classifiers.

7.3 Proposal notes

[6] stops and ask the question how combination methods actually work. She wonders
whether the methods have a solid basis or are merely a desperate attempt to increase
performance. Instead of selecting the best features and classifier we now seem to select
the best classifiers and combiner. We could fall into the trap of taking this on higher
and higer levels.

Also interesting how this relates to Stochastic discriminants, in which we combine a very
large amount of weak learners to get a good coverage of the space and the problem. By
subsequently adding weak classifiers the result is proven to converge to perfect classi-
fication on the training set, and depending on the project-ability of the weak learners,
good performance on off-training set samples. It is interesting what the effect would be
of subsequently adding weak classifiers to the space on the data complexity measure of
the space.

Sequential vs. Parallel (many classifiers in one layer vs. many layers) This approach is
different from a many layered network, since we basically have only one transformation
from the original features to the classifier predictions. After adding enough learners, the
set will become linearly separable on one of the dimensions. This convergence happens
faster is we use stronger (more enhancing) learners. In multi-layer approaches we use

46

less classifiers for the transformation but do transformations sequentially so each layer
deals with a simpler problem.

Advantage of stochastic discriminant is that its easier to paralellize.

We could think of the a neural network, or the more complex variant of the deep belief
network as a number of transformations taking place sequentially. Each layer in the net-
work produces a higher level, more abstract representation of the features. The layering
is used explicitly as an argument for the success of Deep Learning architectures. How
many layers are used in classification? 2 layers in support vector machines. The above
hypothesis would suggest deep learning architectures work by reducing the complexity
of the problems through applying transformations at each layer. If some structure is
found in how these transformations effect the complexity of the problem, we could use
this to guide the choice of the number and types of layers.

Using such simple, even static, classifiers we assume that the transformed space must
be much simpler than the original space. Static classifiers would even assume how the
objects are spread over this space. Is there a difference in the effect on the resulting
space when using diverse vs. similar classifiers.Does this explain why one does better
than the other or what combiners should be used? A theory of transformations: Can
we characterize the space of transformations in terms of their effect on the complexity
of the resulting space.

47

Bibliography

[1] Mitra Basu and Tin Kam Ho. Data Complexity in Pattern Recognition (Advanced
Information and Knowledge Processing). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[2] Ulisses Braga-Neto and Edward R. Dougherty. Is cross-validation valid for small-
sample microarray classification? Bioinformatics, 20(3):374–380, 2004.

[3] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[4] R. P. W. Duin. Prtools - version 3.0 - a matlab toolbox for pattern recognition. In
Proc. of SPIE, page 1331, 2000.

[5] Robert P W Duin and Marina Skurichina. A Discussion on the Classifier Projection
Space for Classifier Combining. pages 137–148, 2002.

[6] Tin Kam Ho. Data complexity analysis for classifier combination. In Proc. Int.
Workshop on Multiple Classifier Systems (LNCS 2096, pages 53–67. Springer, 2001.

[7] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification
problems. IEEE Trans. Pattern Anal. Mach. Intell., 24(3):289–300, 2002.

[8] Jesse H. Krijthe, Tin Kam Ho, and Marco Loog. Improving cross-validation based
classifier selection using meta-learning. In International Conference on Pattern
Recognition, 2012. Forthcoming.

[9] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine Learning,
51(2):181–207, 2003.

[10] Núria Macià. Data complexity in supervised learning: A far-reaching implication.
PhD thesis, La Salle — Universitat Ramon Llull, October 2011.

[11] Núria Macià, Tin Kam Ho, Albert Orriols-Puig, and Ester Bernadó-Mansilla. The
lansdcape contest at icpr’10. In Selim Aksoy Devrim Ünay and Zehra Çataltepe,
editors, Contests in ICPR 2010, volume 6388 of Lecture Notes in Computer Science,
pages 29–5, Berlin, Heidelberg, August 2010. Springer.

48

[12] Núria Macià, Albert Orriols-Puig, and Ester Bernadó-Mansilla. Beyond homemade
synthetic data sets. In HAIS’09: Proceedings of the 4th international conference
on hybrid artificial intelligence systems, volume 5572 of Lecture Notes in Artificial
Intelligence, pages 605–612. Springer-Verlag, Berlin, Heidelberg, June 2009.

[13] Albert Orriols-Puig, Núria Macià, and Tin Kam Ho. Documentation for the data
complexity library in C++. Technical report, La Salle - Universitat Ramon Llull,
2010.

[14] Cullen Schaffer. Selecting a classification method by cross-validation. Machine
Learning, 13:135–143, 1993.

[15] Marina Skurichina and Robert P. W. Duin. The role of combining rules in bagging
and boosting. In Francesc J. Ferri, José Manuel Iñesta Quereda, Adnan Amin,
and Pavel Pudil, editors, SSPR/SPR, volume 1876 of Lecture Notes in Computer
Science, pages 631–640. Springer, 2000.

[16] David H. Wolpert and William G. Macready. Combining stacking with bagging to
improve a learning algorithm. Technical report, 1996.

49

Appendix A

ICPR2012 Submission

50

Improving Cross-validation Based Classifier Selection using Meta-Learning

Jesse H. Krijthe
Delft University of Technology

jkrijthe@gmail.com

Tin Kam Ho
Bell Laboratories, Alcatel-Lucent

tin.ho@alcatel-lucent.com

Marco Loog
Delft University of Technology

mloog@tudelft.nl

Abstract

In this paper we compare classifier selection us-
ing cross-validation with meta-learning, using as meta-
features both the cross-validation errors and other mea-
sures characterizing the data. Through simulation
experiments we demonstrate situations where meta-
learning offers better classifier selections than ordinary
cross-validation. The results provide some evidence to
support meta-learning not just as a more time efficient
classifier selection technique than cross-validation, but
potentially as more accurate. It also provides support
for the usefulness of data complexity estimates as meta-
features for classifier selection.

1 Introduction

In selecting a classifier for a classification problem, a
standard procedure is to determine the cross-validation
errors of a wide range of classifiers, and to choose
one with the lowest cross-validation error [9]. How-
ever, problems with this procedure have been observed
before. For small samples, cross-validation has been
shown to be unreliable [1, 4]. Yet with large training
samples, this approach to selection can become very ex-
pensive. Research in meta-learning has given us mea-
sures that are less computationally intensive but can still
aid the classifier choice [2]. There meta-learning is con-
sidered to be a time efficient alternative to the presum-
ably more accurate cross-validation.

In this paper, we demonstrate that meta-learning can
provide not only efficiency, but also potential improve-
ment to the accuracy of classifier selection over cross-
validation. We show this by treating the classifier se-
lection problem itself as a classification problem, where
the cross-validation errors are used as features describ-
ing the datasets, and the goal is to predict which clas-

sifier works better for each dataset. Viewing cross-
validation from this perspective, we can compare it to
other meta-learning procedures, and compare the roles
of these features and decision rules to their counter-
parts in ordinary classification problems. We also show
that additional meta-features describing properties of
the dataset can improve selection accuracy, providing
additional evidence for the potential utility of so-called
data complexity measures [3, 6, 7] in guiding classifier
selection.

The rest of the paper is structured as follows. Sec-
tion 2 presents cross-validation classifier selection in
the form of a meta-classifier. Section 3 discusses a sit-
uation where this meta-classifier fails and how to im-
prove upon it. Section 4 demonstrates the usefulness of
adding new features to this meta-problem. We end with
a discussion of our results and a conclusion.

2 Classifier Selection Problem

The premise of effective classifier selection depends
on two assumptions. First, the classifier domains of
competence [7], meaning the types of problems a clas-
sifier provides the best performance on, do not overlap
completely. Hence a careful selection can potentially
optimize performance. Secondly, there exist measures
characterizing each dataset that we can rely on to de-
termine when one classifier outperforms another. These
measures can be considered as a parametrization of the
space of all classification problems, S. An example of
such a parametrization is cross-validation errors of sev-
eral classifiers, which characterize each dataset by the
difficulties it causes to the concerned classifiers. An-
other example from the meta-learning literature is the
’data complexity’ measures [3, 6, 7] describing geomet-
rical and topological properties of a dataset.

We believe good parameterizations of S need to have
some additional properties. (1) Preferably the domains

of competence of the classifiers are compact in the cho-
sen parameterization. This means the datasets a clas-
sifier works well on are close to one another in terms
of the chosen parameters, and are locally continuous,
hence some separation of the domains is possible. (2)
They can be efficiently computed, which has been the
focus of most research in meta-learning and an impor-
tant prerequisite for their practical appeal. (3) Finally,
it would be helpful if the parameters are interpretable.
This property helps diagnose problems when perfor-
mance is worse than required, as well as gives insight
into the properties of different algorithms. Combined
with compactness in (1), this allows for an understand-
ing of what specific type of problems a classifier works
well for.

Note that the assumptions mentioned earlier are the
same as for any classification problem. In fact we can
treat the classifier selection problem as another clas-
sification problem, or a “meta-problem”. This meta-
problem has as its meta-features the measures charac-
terizing the dataset and the meta-classes are the classi-
fiers that perform best on each dataset.

Seen through this framework, classifier selection us-
ing cross-validation is a meta-classifier that makes an
additional assumption: not only is it possible to distin-
guish between the domains of competence, but we can
do this by a simple static decision rule. The selection
rule is in fact an untrained meta-classifier: we always
select the classifier with the lowest cross-validation er-
ror, regardless of our experience on other datasets.

In section 3 we will demonstrate that there exist
universes of problems where the space formed by the
cross-validation errors does not support the superiority
of this decision rule. Instead, using a different meta-
classifier allows for an improvement in accuracy over
cross-validation based selection. In section 4 we study
how adding extra meta-features to the meta-problem
may allow us to further improve accuracy, demonstrat-
ing cross-validation errors do not necessarily carry all
information useful in selecting a classifier.

3 Cross-Validation in Meta-Learning

Cross-validation based selection employs a static
decision rule: the classifier with the lowest cross-
validation error gets selected regardless of experience
obtained on selecting classifiers on previous problems.
In case of a choice between two classifiers, this rule can
be visualized by the diagonal in the 2D cross-validation
error space (see Figure 1). To illustrate how a situation
may arise where this rule is too rigid and we can im-
prove upon it, we sample classification problems from
a chosen universe that is generated systematically. The
goal is to visualize the potential issue of a static selec-

tion procedure using a simplified but intuitive example.
We believe similar results also occur for more complex
universes.

The example universe of problems we consider con-
sists of instances of two problems: a problem with
strongly overlapping, two dimensional Gaussian classes
(call it G) and a more complex problem with ’banana-
shaped’ classes with Gaussian noise and small overlap
(call it B) (see Figure 1). We introduce some differ-
ences to the instances of G by selecting the separation
of the class means from a uniform distribution. For in-
stances in B, we change the variance of the Gaussian
noise. In this way we create a family of 500 instances
for each problem: G = {G1, G2, ..., G500}, and B =
{B1, B2, ..., B500}. From each of these problems Bi or
Gi(i = 1, ..., 500), we extract a small sample of size
Ntrain (varying uniformly randomly between 20 and
100) for training, call this Gtrain

i and Btrain
i , and use

the rest (Ntest = 20000−Ntrain) for testing, Gtest
i and

Btest
i . The extremely small training set size is chosen

to cause cross-validation error to have high variance. In
real world problems, with complex boundaries, this ef-
fect will occur for larger sample sizes. The large test set
size is used to get an accurate estimate of the real error
of the classifier for the problem instance.

The goal is to choose between two classifiers: a near-
est mean classifier (NM) and a 1-nearest neighbor clas-
sifier (1-NN). Casting this as a meta-learning problem,
we create the meta-features and meta-classes as follows.
For each Gi, we obtain a 10-fold cross validation error
for the NM classifier using Gtrain

i . That is, for each of
ten passes, NM is trained using Ntrain ∗ 9/10 samples,
and tested using the remaining Ntrain/10 samples. The
total number of errors over the ten passes, divided by
Ntrain, is used as meta-feature 1 for Gi. Doing the
same for the 1-NN classifier, we obtain the value of
meta-feature 2 for Gi, and similarly for each Bi.

The meta-class for each of Gi or Bi is the classi-
fier that performs the best for the testing data Gtest

i or
Btest

i . This is determined by, say, using all of Gtrain
i

for training the NM classifier, estimating the error rate
of the resultant classifier on Gtest

i , and doing the same
for the 1NN classifier. If the NM gives a lower error, Gi

is labeled with the true meta-class NM, and vice versa.
Similarly we obtain the true meta-class for Bi.

For the meta-learning problem, a random half of the
500 instances from G or B are used for meta-training
(denoted by GTRAIN and BTRAIN) and the rest are
reserved for meta-testing (GTEST and BTEST). Re-
call that the cross validation rule corresponds to a static
classifier, and hence requires no training. We compare
this to a trainable classifier that is a support vector ma-
chine, trained with the meta-features for GTRAIN and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10−fold CV error Nearest Mean

10
−f

ol
d

C
V

er
ro

r 1
−N

N

Meta−problem

 NM, G
1−NN, G
 NM, B
1−NN, B

Gaussian problem

Banana Set

Difficult Dataset

Figure 1. On the left: an example of a universe of problems where static cross-validation selec-
tion does not perform well. On the right: the problems ’Gaussian’, ’Banana Set’ as discussed
in Section 3, and the ’Difficult Dataset’, a 2D version of the problems discussed in Section 4.

BTRAIN . The comparison is shown in Figure 1.
In Figure 1, the points plotted represent problem in-

stances from GTEST and BTEST . Their coordinates
are given by the two meta features, and they are marked
with symbols denoting their source family (o for the
Gaussian problems, or + for the Banana problems), and
colors denoting their true meta-class (green for NM, and
pink for 1-NN).

We can observe that 1-NN almost always gives bet-
ter performance for the cluster of Banana problems (al-
most all points in the cluster of + are marked pink).
The other cluster formed by the Gaussian problems pri-
marily favors the NM classifier (most o’s are marked
green). Note that in this particular universe, the cross-
validation rule does not give the best separation: the de-
cision boundary crosses through the cluster of Gaussian
problems (o’s), forcing one to choose the 1-NN clas-
sifier for the points below the diagonal, while perfor-
mance in this cluster is in fact almost always better with
the NM classifier. The selection error, defined as the
proportion of datasets in BTEST ∪ GTEST assigned
by the meta-rule to a classifier different from their true
meta-class, is 0.1583 for cross-validation. The support
vector machine reduces the selection error to 0.0601,
offering a more accurate alternative.

4 Adding Meta-Features

The example in the previous section has shown that
learning the selection rule can improve performance in
some cases where the cross validation errors have high
variance. In more elaborate universes of problems, the
meta-classes may overlap heavily, making it difficult to

select a classifier based solely on the cross-validation
errors. Other measures characterizing the dataset may
reduce this overlap by introducing extra features that
can aid the selection task.

Consider a universe of 100 dimensional linearly sep-
arable two-class problems where most of the class vari-
ance is along the class boundary (the ’Difficult Dataset’
from the PRTools library (prtools.org)), see Figure 1
(right). We introduce some variability to the universe by
randomly selecting the class-priors using a uniform dis-
tribution between 0 and 1. Similar to Section 3, we esti-
mate cross-validation errors with different sample sizes
(Ntrain is now between 20 and 100). The classifiers
we considered are now the nearest mean classifier and
the Fisher classifier. Cross-validation selection gives a
selection error of 0.265. Using a nearest neighbor clas-
sifier as a meta-learner, we improve the error to 0.234.
Adding to the meta-features an extremely simple char-
acterization of the sampling density of the dataset, the
number of objects divided by the number of dimensions,
causes a further reduction in error to 0.204.

5 Discussion
We consider classifier selection as a classification

problem in its own right. Recall that the reason for do-
ing classifier selection in the first place is an assumption
that different problems may need different classifiers. If
we really believe this to be true, we should assume the
same for the meta-problem, thereby allowing different
meta-classifiers. Yet cross-validation based selection is
a static, universal rule. We have shown that it could in-
deed be suboptimal for this meta-problem, and could be

inferior to another rule obtained by meta-learning.
The reason meta-learning can outperform cross-

validation is that it leverages experience from other pre-
viously seen instances from the same source problem,
whereas the cross-validation rule remains static. During
our experiments, we have often come across situations
where one classifier outperforms all others on most in-
stances of the same problem family. A meta-learner
might learn that this classifier should be preferred for all
problems from this family. This could be a better choice
than deciding, for each instance, solely based on cross-
validation error, as that may be unreliable when small
samples are used to train a complex classifier, which
is exactly the case where cross-validation selection fre-
quently fails. An interesting observation that follows
from this is that the belief by a practitioner working
on a specific application domain that a certain classi-
fier should always be preferred is not necessarily irra-
tional and may be a more accurate rule than using cross-
validation.

The problem universe where extra measures charac-
terizing the data improve selection accuracy shows that
these measures can not only serve as computationally
efficient proxies to cross-validation errors, but actually
improve performance. This provides support for the
goal of approaches like data complexity measures. To
make this approach more useful, however, further re-
search should focus on finding measures that take into
account the properties a good parameterization should
have. Especially interpretability will likely help adop-
tion of these extra measures, because this not only tells
the user when each classifier has good performance, but
also helps explain why this is the case.

We have chosen to use extremely small training sizes
and large test sets to highlight the issue of variance in
cross-validation error estimation. In real world data,
this could happen when complex class boundaries must
be inferred from relatively limited training samples.
Another situation where we expect cross-validation se-
lection to become unreliable is when choosing between
a large number of similar classifiers. As this number
increases, at least one of the cross-validation errors will
likely be low by chance. Meta-learning allows us to cor-
rect for this case. Even for a task where large samples
are eventually available, the procedure could be used to
select a classifier early on, and before the large samples
arrive. As more data becomes available we will be able
to evaluate whether this choice is correct.

The key question that remains is whether one can get
this improved selection strategy to work not just in some
artificial universe but in a domain of real-world datasets
as well. This can only be established through an empiri-
cal study. Unfortunately, the lack of availability of large

numbers of standardized real-world datasets is a recur-
ring problem in meta-learning research. Some projects
[5, 8] supporting the publication of datasets might help
alleviate this problem, but currently offer still too few
real-world datasets. For specific restricted application
domains, the possibility of finding a reasonably large
set of datasets is more plausible.

6 Conclusion
The purpose of this paper has been to show that the

effectiveness of the cross-validation selection could be
impacted by factors such as the variance of the cross-
validation error estimates, not unlike those factors af-
fecting the accuracy of an ordinary classification prob-
lem. As we have demonstrated, in some simple uni-
verses, cross-validation selection is not the best strat-
egy. In these cases, treating the cross-validation errors
as meta-features in a meta-classification problem of-
fers a chance to increase selection accuracy using other
decision rules. Adding other features characterizing
the dataset may also increase selection accuracy, which
supports the idea of data complexity measures and sim-
ilar approaches to meta-learning.

References

[1] U. Braga-Neto and E. R. Dougherty. Is cross-validation
valid for small-sample microarray classification? Bioin-
formatics, 20(3):374–380, 2004.

[2] P. Brazdil, J. Gama, and B. Henery. Characterizing the
applicability of classification algorithms using meta-level
learning. In F. Bergadano and L. De Raedt, editors, Ma-
chine Learning: ECML-94, volume 784 of Lecture Notes
in Computer Science, pages 83–102. Springer Berlin /
Heidelberg, 1994.

[3] T. K. Ho and M. Basu. Complexity measures of super-
vised classification problems. IEEE Trans. Pattern Anal.
Mach. Intell., 24(3):289–300, 2002.

[4] A. Isaksson, M. Wallman, H. Göransson, and M. G.
Gustafsson. Cross-validation and bootstrapping are un-
reliable in small sample classification. Pattern Recogn.
Lett., 29:1960–1965, October 2008.

[5] P. Liang and J. Abernethy. mlcomp.org, 2009.
[6] N. Macià, T. K. Ho, A. Orriols-Puig, and E. Bernadó-

Mansilla. The lansdcape contest at icpr’10. In S. A. De-
vrim Ünay and Z. Çataltepe, editors, Contests in ICPR
2010, volume 6388 of Lecture Notes in Computer Sci-
ence, pages 29–5, Berlin, Heidelberg, August 2010.
Springer.

[7] E. Mansilla and T. K. Ho. On classifier domains of com-
petence. In Proceedings of the 17th ICPR, volume 1,
pages 136 – 139 Vol.1, aug. 2004.

[8] C. S. Ong, M. L. Braun, S. Sonnenburg, S. Henschel, and
P. O. Hoyer. mldata.org, 2009.

[9] C. Schaffer. Selecting a classification method by cross-
validation. Machine Learning, 13:135–143, 1993.

