
Vertical Landing for Micro Air Vehicles
using Event-Based Optical Flow

B.J. Pijnacker Hordijk

Friday 9th December, 2016

F
a
c
u

lt
y

o
f

A
e
ro

sp
a
c
e

E
n

g
in

e
e
ri

n
g

Vertical Landing for Micro Air Vehicles
using Event-Based Optical Flow

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

B.J. Pijnacker Hordijk

Friday 9th December, 2016

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright © B.J. Pijnacker Hordijk
All rights reserved.

Delft University Of Technology
Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Vertical Landing for Micro Air
Vehicles using Event-Based Optical Flow” by B.J. Pijnacker Hordijk in partial ful-
fillment of the requirements for the degree of Master of Science.

Dated: Friday 9th December, 2016

Readers:
Dr.ir. Q.P. Chu

Dr. G.C.H.E. de Croon

Ir. K.Y.W. Scheper

Dr. M. Snellen

Acknowledgements

This thesis would not have reached its current level without the guidance and support of my
supervisors, Guido de Croon and Kirk Scheper, and I would like to thank them dearly for it.
Guido has been an inexhaustible source of inspiration and enthusiasm throughout the project,
always encouraging me to go further and to investigate uncovered ground. Kirk helped me
tremendously with the implementation and experiments, getting me started with working
with the sensor and programming in C, helping out with the hardware on the quadrotor, and
piloting the drone during flight tests.

Also, a word of thanks goes out to my family and friends for keeping up my spirit during
the project. In particular, I would like to thank my parents; your advice and never-ceasing
support kept me on the right path in difficult times.

B.J. Pijnacker Hordijk
Delft, December 9, 2016

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

vi Acknowledgements

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Abstract

Small flying robots can perform landing maneuvers using bio-inspired optical flow by main-
taining a constant divergence. However, optical flow is typically estimated from frame se-
quences recorded by standard miniature cameras. This requires processing full images on-
board, limiting the update rate of divergence measurements, thus the speed of the control loop
and the robot. Event-based cameras overcome these limitations by only measuring pixel-level
brightness changes at microsecond temporal accuracy, hence providing an efficient mechanism
for optical flow estimation.

This thesis presents, to the best of our knowledge, the first research integrating event-based
optical flow estimation into the control loop of a flying robot. We extend an existing ’local
plane fitting’ algorithm to obtain an improved and more computationally efficient optical flow
estimation method, valid for a wide range of optical flow velocities. This method is validated
for real event sequences. In addition, a method for estimating the divergence from event-based
optical flow is introduced, which accounts for the aperture problem.

The developed algorithms are implemented in a constant divergence landing controller on-
board of a quadrotor. Flight tests demonstrate that, using event-based optical flow, accurate
divergence estimates can be obtained over a wide range of speeds. This enables the quadrotor
to perform very fast landing maneuvers.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

viii Abstract

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Acronyms

AE Angular Error
AER Address-Event Representation
ATIS Asynchronous Time-based Image Sensor
CCD Charge-Coupled Device
CMOS Complementary Metal Oxide Semiconductor
CP Cross-Product
DAVIS Dynamic and Active pixel Vision Sensor
DSF Direction Selective Filtering
DVS Dynamic Vision Sensor
eDVS Embedded Dynamic Vision Sensor
EE Endpoint Error
EMD Elementary Motion Detector
FoC Focus of Contraction
FoE Focus of Expansion
IM Integration Method
IMU Inertial Measurement Unit
LK Lucas-Kanade
MAV Micro Air Vehicle
meDVS Miniature embedded Dynamic Vision Sensor
NES Normal-to-Edge Search
NRMSE Normalized Root Mean Square Error
PEE Projection Endpoint Error
PF Planar Flow
PM Probability Mapping
PNF Planar Normal Flow
RSS Residual Sum of Squares
STPF Spatiotemporal Plane Fitting

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

x Acronyms

TSS Total Sum of Squares
VSLAM Visual Simultaneous Localization and Mapping

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

List of Symbols

Greek Symbols

α Direction of an optical flow field

∆tR Refractory period for rejecting consecutive events

δx, δy, δt Relative coordinates of an event in space-time

η Optical flow estimate density

ϑx, ϑy, ϑz Observer translational velocities normalized by Z0, referred to as the visual
observables

Θ Visual observables vector (= [ϑx, ϑy, ϑz]
T)

Π Homogeneous plane parameter vector (= [px, py, pt, p0]T)

Π∗ Reduced plane parameter vector (=
[
p∗x, p

∗
y

]T
)

ρF Optical flow estimation rate

Σe Surface of active events in space-time

Σi
S Sum of all values of S along optical flow direction i

τ Time-to-contact

φ, θ, ψ Euler angles representing the camera attitude

ωx, ωy Ventral flows in x- and y-direction

Roman Symbols

A Regression matrix in a linear least-squares system

D Flow field divergence

d Distance of an event to a fitted plane.

D Pixel undistortion map

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

xii List of Symbols

e Event tuple generated by an event-based camera

f Focal length

h Height above ground

I Light intensity perceived by a pixel

K Total confidence value for visual observable estimates

kρF , kVar{S}, kR2 Individual confidence values for ρF , Var{S}, R2 respectively

k1, . . . , k5 Lens distortion model parameters

kf Time constant applied during recursive updating of the flow field

kP Proportional control gain in divergence controller

kS Timestamp difference factor for clustering events

kt Time constant in a low-pass filter

L List of recent events

M Map of last event timestamps

n Normal flow vector

m Number of directions in the visual observables estimator

nmin Minimal number of events for a reliable plane fit

nR Maximum number of rejected events in optical flow estimation

P Polarity of an event

p, q, r Angular body rate components of the observer’s ego-motion

q0, qx, qy, qz Quaternions representing the camera attitude

R2 Coefficient of determination

Si Projected optical flow position along a direction i

T Vertical thrust

t Time

U, V,W Translational velocity components corresponding to X,Y, Z

u, v Optical flow vector components, pixels per second

û, v̂ Normalized optical flow vector components on the image plane

Vi Projected optical flow velocity along a direction i

V Local optical flow vector (= [u, v]T)

W Weight matrix for a weighted least-squares system

Wi Individual weight of a direction i

X, Y, Z Metric position in Cartesian coordinates.

x, y Pixel x- and y-locations on a pixel array

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

xu, yu Undistorted pixel x- and y-locations

x̂f , ŷf Location of the Focus of Expansion on the image plane

x̂, ŷ Normalized x- and y-coordinates of a point on the image plane

xp, yp Camera principal point coordinates

y Observations matrix in a linear least-squares system

Z0 Distance of the nodal point to the ground plane along the optical axis

ZX , ZY Gradients of a planar surface with respect to the image plane

Subscripts

B Body-fixed reference frame

C Camera-fixed reference frame

W World reference frame

xiv List of Symbols

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Contents

Acknowledgements v

Abstract vii

Acronyms ix

List of Symbols xi

List of Figures xxii

List of Tables xxiv

1 Introduction 1

1-1 Motivation and research question . 3

1-2 Structure of this thesis . 3

I Paper 5

II Literature Review 25

2 Landing Strategies for Micro Air Vehicles using Optical Flow 27

2-1 Modeling optical flow . 27

2-1-1 Optical flow in the pinhole camera model 27

2-1-2 Simplified visual observables derived from optical flow 29

2-2 Optical flow measurement . 30

2-2-1 Frame-based cameras . 30

2-2-2 Insect-inspired sensors . 33

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

xvi Contents

2-2-3 Optical mouse sensors . 34

2-3 Bio-inspired landing strategies using optical flow 34

2-4 Applications in Micro Air Vehicles . 35

2-4-1 Navigating using ventral flow . 35

2-4-2 Constant divergence landing . 36

2-4-3 Constant rate-of-change in time-to-contact 37

2-4-4 Estimating the slopes of a landing surface 38

2-4-5 Deriving metric scale and distance during landing maneuvers 38

3 Event-based Vision 39

3-1 The Dynamic Vision Sensor . 39

3-1-1 Working principle . 40

3-1-2 Sensor characteristics, advantages, and limitations 40

3-1-3 Processing software . 41

3-2 Related hardware developments . 42

3-2-1 Performance improvements . 42

3-2-2 Combination with absolute brightness measurements 42

3-2-3 Miniaturization . 43

3-3 Applications of event-based cameras . 43

3-3-1 Visual tracking . 44

3-3-2 Visual control systems . 45

3-3-3 Pose estimation . 46

4 Event-based Optical Flow 47

4-1 Optical flow estimation techniques . 47

4-1-1 Pixel velocity from neighbor events . 47

4-1-2 Event-based Lucas-Kanade . 48

4-1-3 Spatiotemporal plane fitting . 49

4-1-4 Flow-based corner detection . 50

4-1-5 Direction selective filtering . 50

4-1-6 Event-based Elementary Motion Detection 52

4-2 Evaluating event-based optical flow performance 52

4-3 Estimating visual observables . 53

4-3-1 Using sequential flow vectors . 53

4-3-2 Mapping techniques . 53

5 Synthesis 55

5-1 Landing strategies . 55

5-2 Event-based cameras . 56

5-3 Event-based optical flow . 56

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Contents xvii

III Preliminary Comparison of Event-Based Optical Flow Methods 59

6 Methodology and Datasets 61

6-1 Outline of the analysis . 61

6-2 Determining ground truth visual observables and optical flow 62

6-3 Dataset description . 64

7 Analysis of Optical Flow Estimation Methods 67

7-1 Local flow estimation algorithms . 67

7-1-1 Event-based Lucas-Kanade . 67

7-1-2 Normal-to-Edge Search . 68

7-1-3 Space-Time Plane Fitting . 69

7-1-4 Direction Selective Filtering . 70

7-2 Evaluation of algorithm performance . 71

7-2-1 Flow error metrics . 71

7-2-2 Processing time and flow output density 71

7-3 Results . 72

7-3-1 Qualitative results . 72

7-3-2 Quantitative results . 72

7-3-3 Comparison to results in literature . 74

7-4 Improving performance through filters . 75

7-4-1 Background activity filter . 75

7-4-2 Flow regularization filter . 76

7-4-3 Effect of filters on flow estimation performance 76

8 Analysis of Visual Observable Estimation Methods 79

8-1 Algorithms for estimating the Focus of Expansion 79

8-1-1 Probability mapping method . 79

8-1-2 Integration method . 80

8-1-3 Cross-product method . 80

8-1-4 Estimating visual observables using the Focus of Expansion 81

8-2 Algorithms for simultaneous estimation of visual observables 81

8-2-1 Estimating a planar flow field . 81

8-2-2 Estimating a planar normal flow field . 82

8-3 Datasets . 82

8-4 Flow statistics . 83

8-5 Results . 83

8-5-1 Detailed flow sequences . 83

8-5-2 Quantitative results and computational effort 86

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

xviii Contents

9 Discussion of Preliminary Results 87

9-1 Datasets . 87

9-2 Performance of optical flow methods . 87

9-3 Performance of visual observable estimation methods 88

9-4 Relation to results presented in the paper . 89

IV Appendices 91

10 Calibration of the Dynamic Vision Sensor 93

10-1 Calibration model . 93

10-1-1 Intrinsic parameters . 94

10-1-2 Lens distortion . 95

10-2 Calibration approach . 95

10-3 Calibration procedure results . 96

10-4 Undistortion of events . 96

10-5 Undistortion of event-based optic flow . 98

11 Experimental Setup 99

11-1 Overview . 99

11-2 Operation during flight tests . 101

11-3 Communication architecture and data logging 101

11-4 Timestamp synchronization of log files . 102

12 Software and Implementation 105

12-1 cAER module for optical flow estimation . 105

12-1-1 Architecture . 105

12-1-2 Estimation algorithm . 106

12-2 Paparazzi module for visual observables estimation 108

12-2-1 Estimation algorithm . 108

12-2-2 Divergence controller . 111

12-3 Overview of source code . 111

12-4 Overview of sensor settings and algorithm parameter values 112

13 Supplementary Results 115

13-1 Optical flow estimation . 115

13-1-1 Qualitative comparison between baseline and new algorithm 115

13-1-2 Effect of plane parameter reduction on performance 116

13-2 Visual observables estimator . 116

13-2-1 Effect of preservation of flow field statistics 116

13-2-2 Effectiveness of the confidence filter . 117

Bibliography 123

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

List of Figures

1-1 Output from frame-based (top) and event-based (bottom) cameras observing a
rotating dot stimulus, represented in space-time. Adapted from Mueggler, Huber,
and Scaramuzza (2014a). 2

2-1 Projection of a world point on the image plane in a pinhole camera model. Adapted
from Longuet-Higgins and Prazdny (1980). 28

2-2 Illustration of the aperture problem occurring with an edge moving through the
field of view. Only the black flow component can be identified with certainty, while
the actual flow may be any of the gray vectors. 32

2-3 Elementary Motion Detector (EMD) models investigated by Eichner, Joesch,
Schnell, Reiff, and Borst (2011). On top of the images are two photoreceptor
cells, from which the signals flow downward. The square blocks (on the left with
LP) indicate time delays applied through a low-pass filter. The circular cells (on
the left with M) indicate multiplication of two signals. Adapted from Eichner et
al. (2011). 33

2-4 The test setup used by Ruffier and Franceschini (2014), with a tethered rotorcraft
flying above a circular surface. In this experiment, the surface was moved vertically
to simulate an unsteady environment. Adapted from Ruffier and Franceschini (2014). 36

2-5 Simulated constant divergence landing using the noise and delay model. From Ho
and De Croon (2016). 37

3-1 Picture of the Dynamic Vision Sensor (DVS). 39

3-2 Working mechanism of a DVS pixel. From Lichtsteiner, Posch, and Delbruck (2008). 40

3-3 Size comparison of the DVS, the eDVS, and the meDVS (left to right). From
Conradt (2015). 44

3-4 The pencil balancer setup used by Conradt, Berner, Cook, and Delbruck (2009). 45

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

xx List of Figures

4-1 Optical flow estimated from a bouncing ball sequence using the event-based adap-
tation of Lucas-Kanade. From Benosman, Ieng, Clercq, Bartolozzi, and Srinivasan
(2012). 49

4-2 Illustration of Σe in space-time and its gradients. From Benosman, Clercq, Lagorce,
Ieng, and Bartolozzi (2014). 50

4-3 Corner points and optical flow estimated in three scenes: a 3D cube wireframe, a
human face, and an outdoor scene with a moving car. Adapted from Clady, Ieng,
and Benosman (2015). 51

4-4 Composition of spatiotemporal filters in one spatial dimension and time. From
Brosch, Tschechne, and Neumann (2015). 51

4-5 A probability map for locating the Focus of Expansion (FoE) bounded by several
flow vectors. The yellow area indicates the map region with the highest probability
for the FoE location. 54

6-1 Optitrack-based world reference frame and the body-fixed reference frame, with
Euler angle definitions. 62

6-2 Textures used for data acquisition. 65

6-3 Ground truth visual observable, height above ground, and event rates of the input
datasets. 66

6-4 Visualization of events recorded during a flash in set 2. Green dots represent
positive polarity (ON) events; red dots are negative polarity (OFF) events. A clear
stripe of ON events is visible due to the flash. 66

7-1 Working principle of the NES algorithm using a simple pixel grid. The darkness of
a square indicates how recently an event has fired. A horizontal edge orientation
(red line) is assigned here, since in this direction the most recent events occurred.
Normal to this edge, events are found searching upward (blue vector), which is
evidence for downward optical flow. 69

7-2 Illustration of the orthogonal system of the flow vector V, a plane normal vector
N, and a luminance edge described by the vector [ex, ey, 0]T 69

7-3 Illustration of error metrics. The vector V indicates the estimated flow, while VGT
indicates ground truth. 71

7-4 Events, estimated flow vectors, and ground truth flow obtained from the four base
algorithms in set 3 within a 100 ms time window. Only a limited part of the DVS
pixel grid is shown for clarity. The green and red dots indicate events (green =
positive polarity, red = negative). The yellow arrows indicate flow estimates for
each algorithm. The purple arrows are the accompanying ground truth flow vectors. 73

7-5 Flow estimate results in the synthetic rotating bar sequence of Ruckauer and Del-
bruck (2016). Results are shown from four variants of the Lucas-Kanade (LK)
method and the local plane fitting (LP) method, and from the DvsDirectionSelec-
tiveFilter algorithm (DS). Adapted from Ruckauer and Delbruck (2016). 75

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

List of Figures xxi

7-6 Working principle of the current flow regularization filter illustrated through 3
sequentially detected flow vectors. Flow vector 1 is detected first, but not supported
by other vectors and therefore rejected. Vector 2 is supported by vector 1, which
has similar magnitude and orientation, and is therefore preserved as vector 2*.
Vector 3 is detected last and supported by vector 2, but has a different magnitude
and orientation, and is rejected. 76

7-7 Effect of the background activity filter applied to the upper left quarter of the pixel
grid in set 3. On the left, the unfiltered events are shown. The right image shows
filtered events, using a threshold of 10 ms. 77

7-8 Background activity filter effect on event rate in set 3, with various threshold settings. 77

7-9 Effect of the flow regularization filter on optical flow estimates from the Spatiotem-
poral Plane Fitting (STPF) algorithm applied to set 3. Both images show events
(green = positive polarity and red = negative) and flow vectors (yellow) obtained
during the same time window. The left image is the basic algorithm result; the
right image shows the filtered flow vectors. 78

8-1 Flow field parameters estimated by different methods on contracting flow in set 1
(checkerboard texture). Flow estimate statistics are shown as well. 84

8-2 Flow field parameters estimated by different methods while perceiving ventral flow
in set 3 (roadmap texture). 85

10-1 Lens distortion observed in DVS event output when a checkerboard pattern. Events
are accumulated over a duration of 100 ms. Green dots are events with positive
polarity, red dots indicate negative polarity. 94

10-2 Reconstructed images and world points obtained from flashing the checkerboard
pattern. The top row shows the input (distorted) images. The images on the
bottom row are undistorted based on the calibration result. The brightness of a
pixel corresponds to the number of events at that location. The green markers
indicate identified world points and the red cross is the estimated location of the
principal point. 97

10-3 Comparison of (a) the scene with uncorrected events in Figure 10-1 to (b) cor-
rected, undistorted events. The scale of the uncorrected scene in (a) is adjusted
to match the corrected scene. The principal point is shown as a red cross. 97

11-1 Overview of the experimental setup, including pictures of the MavTec. In (a) a
top view of the vehicle is shown. The DVS is located at the bottom, protected by
a foam cover. In (b) the cover is removed to expose the DVS. In (c) an overview
of the processing workflow is shown, indicating the distribution of processes over
the Odroid and the Lisa/M processors. 100

11-2 Flowchart of the communication between different parts of the experimental setup.
Solid lines indicate the main workflow; dashed lines represent interaction with data
storage. 102

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

xxii List of Figures

12-1 Flowchart of the cAER implementation architecture. Solid lines indicate the main
workflow; dashed lines represent interaction with date storage. 106

12-2 Flowchart of the optical flow algorithm. Solid lines indicate the main workflow;
dashed lines represent interaction with date storage. 107

12-3 Overview of the Paparazzi architecture. Solid lines indicate the main workflow;
dashed lines represent interaction with date storage. 108

12-4 Flowchart of the of the visual observables estimator in Paparazzi. Solid lines indi-
cate the main workflow; dashed lines represent interaction with date storage. . . 109

12-5 Flowchart of the divergence controller. Solid lines indicate the main workflow;
dashed lines represent interaction with date storage. 112

13-1 Optical flow estimates for four specific sequences. Left: sequence name, time
windows for showing events (∆te) and optical flow (∆tF), and the applied scaling
factor for the optical flow vector magnitude. Middle: optical flow estimated from
the baseline algorithm in the paper (Benosman et al., 2014). Right: estimates
from the presented optical flow algorithm. Yellow arrows show the estimated
optical flow, while the accompanying blue arrows show the ground truth vectors.
Events are shown as green dots (positive polarity) or as red dots (negative polarity).118

13-2 Height measurements and ground truth values and estimates of ϑz for the first
sequence, in which slow downward motion is performed. 119

13-3 Height measurements and ground truth values and estimates of ϑz for the first
sequence, in which fast up-and-down motion is performed. 119

13-4 From top to bottom: height measurements, ground truth values and estimates of
ϑz, and confidence values for the first sequence, in which the DVS is standing on
the ground before being moved upwards. 120

13-5 From top to bottom: height measurements, ground truth values and estimates of
ϑz, and confidence values for the second sequence, in which slow downward motion
is performed. 121

13-6 From top to bottom: height measurements, ground truth values and estimates
of ϑz, and confidence values for the third sequence, in which fast up-and-down
motion is performed. 122

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

List of Tables

3-1 DVS specifications (IniLabs, n.d.) . 41

6-1 Summary of event dataset characteristics . 64

7-1 Optic flow errors and computation characteristics for the three datasets. The
A-prefix to error quantities indicates that these are the average of the complete
dataset. The symbol tC indicates computation time per event and η indicates the
flow density. 74

7-2 Effect of applying filters (individually and combined) to the STPF algorithm eval-
uating event set 3. The background activity (BA) filter operates at a threshold
of 10 ms. The flow regularization (FR) filter requires flow input to have at least
one direct neighbor, which has a maximum orientation difference of 20◦ and a
magnitude difference of 0.5 of the new flow vector magnitude 78

8-1 Visual observable estimation errors (mean absolute error and variance) when ap-
plied to the flow estimate dataset. Computation times per event (tC) are shown
as well. 86

10-1 Calibration results for the DVS. 96

12-1 Relevant new and modified source files in the open-source software packages cAER
and Paparazzi, and a brief description of each file. The symbol # is used here to
represent the path sw/airborne/modules in the Paparazzi software. 113

12-2 DVS bias settings applied in cAER during the experiments. The values are provided
as integers, similar to their definition in cAER. 114

12-3 Overview of all algorithm parameter values used in the experiments. 114

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

xxiv List of Tables

13-1 Projection Endpoint Errors (mean absolute error and standard deviation) and den-
sity results of the baseline algorithm, three-parameter and two-parameter plane
versions of the baseline algorithm, and the final algorithm. Values highlighted in
bold are the lowest PEE or the highest density result for all algorithms. 117

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 1

Introduction

Rapid advances in micro-electronics catalyzed the development of tiny flying robots (Flore-
ano & Wood, 2015), formally referred to as Micro Air Vehicles (MAVs). Due to their size
and agility, MAVs excel at applications in confined and cluttered environments. However,
achieving autonomous flight with very small MAVs (for example, the 20-gram DelFly Ex-
plorer (De Wagter, Tijmons, Remes, & De Croon, 2014)) is a significant challenge due to
strict weight and power limitations for on-board equipment. For overcoming this challenge,
visual navigation techniques observed in flying insects are highly interesting.

Visual navigation in flying insects is primarily based on optical flow, the apparent motion of
brightness patterns perceived by an observer due to relative motion with respect to the envi-
ronment (Gibson, 1979). In essence, optical flow provides information on the ratio of velocity
to distance, such that the actual metric distance to the environment is not directly available.
Instead, flying insects navigate based on certain visual observables extracted from the optical
flow field that relate to ego-motion. When performing landings, honeybees were seen to con-
trol their descent based on the divergence of the optical flow field perceived from the ground
(Baird, Boeddeker, Ibbotson, & Srinivasan, 2013). When looking down, flow field divergence
conveys the vertical velocity scaled by the height. By maintaining a constant divergence
in downward motion, an observer approaches the ground while exponentially decreasing its
downward speed. For flying robots capable of vertical landing, this is an interesting strategy,
which has been explored in several experiments with rotorcraft MAVs (e.g. De Croon, 2016;
Herissé, Hamel, Mahony, & Russotto, 2012).

While such optical flow based navigation strategies are bio-inspired, most visual sensors em-
ployed for measuring optical flow differ significantly from their natural counterparts. Com-
monly used miniature cameras operates in a frame-based manner: full frames are obtained
by periodically measuring brightness at all pixels. This is a relatively inefficient process for
motion perception, since the information output rate is independent of the actual dynamics
in the scene. Static parts of a frame are recorded as well as changing parts, even though
only the latter are relevant for motion perception. Therefore, follow-up processing of a full
frame is necessary, which at present still requires significant processing. In addition, fast
inter-frame displacements lead to motion blur, which limits the accuracy of resulting optical

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

2 Introduction

flow estimates or requires complex algorithms to account for this. These characteristics are
undesirable for optical flow measurement on-board miniature flying robots, which are subject
to strict computational limits and exhibit fast dynamics.

In contrast, biological vision systems, such as the compound eyes of insects, employ an event-
driven mechanism; they measure changes in the perceived scene at the moment of detection
(Posch, Serrano-Gotarredona, Linares-barranco, & Delbrück, 2014). Several researchers have
attempted to minic the sensory system in insects in order to measure optical flow. For
example, Ruffier and Franceschini (2005, 2014) developed a 2-photodetector neuromorphic
chip for measuring translational optical flow on-board of a tethered rotorcraft MAV, and
Floreano et al. (2013) designed a miniature curved compound eye, highly based on the fruit
fly Drosophila.

In particular, neuromorphic event-based cameras are a promising class of sensors for optical
flow perception. When a pixel of an event-based camera measures a relative increase or
decrease in brightness, it registers an event, mapping its pixel location to the timestamp and
sign of the change. This timestamp is obtained with microsecond resolution and latencies
in the range of 3 to 15 s. This fundamentally differs from conventional frame-based visual
sensing, since the sensor only provides output when and where a change occurs, without being
restricted to a fixed sampling rate. This difference is illustrated in Figure 1-1 for a rotating dot.
In addition, event-based pixel architectures enable intrascene dynamic ranges exceeding 120
dB (Yang, Liu, & Delbruck, 2015). These characteristics are highly desirable in robotic visual
navigation. Experiments using event-based cameras demonstrated high performance of visual
control systems through low-latency state updates, efficient data processing, and operation
over a wide range of illumination conditions (Conradt, Berner, et al., 2009; Delbruck & Lang,
2013).

time

time

Frame-based

camera

output

Event-based

camera

output

Figure 1-1: Output from frame-based (top) and event-based (bottom) cameras observing a
rotating dot stimulus, represented in space-time. Adapted from Mueggler et al. (2014a).

This novel approach to visual sensing is in general incompatible with state-of-the-art com-
puter vision algorithms for estimating optical flow, due to the lack of absolute brightness
measurements. Therefore, several event-based methods for optical flow estimation (e.g. Bar-
dow, Davison, & Leutenegger, 2016; Benosman et al., 2014) as well as benchmarking datasets
(Barranco, Fermuller, Aloimonos, & Delbruck, 2016; Ruckauer & Delbruck, 2016) have been

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

1-1 Motivation and research question 3

developed. Of the existing techniques, the local plane fitting approach by Benosman et al.
(2014) is the most promising based on its application to estimating time-to-contact (the re-
ciprocal of flow field divergence) in simple scenes (Clady et al., 2014) and good results in
Ruckauer and Delbruck (2016). However, until now, no study has discussed an implementa-
tion of event-based optical flow into an optical flow based control loop of an MAV.

1-1 Motivation and research question

The Micro Air Vehicle Laboratory (MAVLab) of Delft University of Technology performs,
among other projects, research regarding the application of optical flow to landing of MAVs.
Recently experiments have been executed regarding constant divergence landing tasks using
downward-facing frame-based cameras on-board of quadrotors (De Croon, 2016; Ho & De
Croon, 2016; Ho, de Croon, van Kampen, Chu, & Mulder, 2016). The application of event-
based cameras in this task is of great interest, since it has the potential to significantly increase
the speed of landing maneuvers through its more efficient sensing mechanism, and to enable
navigation over a wider range of illumination conditions.

This thesis is a continuation of prior work performed for the MAVlab (Paz Gomes Verdugo,
2015). The aim is to develop a fully functional landing control system for MAVs using
event-based optical flow and estimates of relevant visual observables (in particular, flow field
divergence). In the preliminary work of this thesis, we compare the performance of recently
developed event-based optical flow methods and compatible estimators for visual observables.
In the second stage, the most suitable methods are further developed, implemented on a
quadrotor MAV, and validated experimentally during closed-loop landing experiments.

The main research question is formulated as follows:

Can event-based optical flow estimation improve the performance of optical
flow based landing control systems for Micro Air Vehicles?

1-2 Structure of this thesis

The main contributions of this thesis are presented in the scientific paper in Part I. This
paper can be read as a standalone document and consists primarily of (1) a concise overview
of related work, (2) a description of the developed algorithms and evaluation of their perfor-
mance, (3) flight test results of a quadrotor with the developed algorithms implemented in a
constant divergence landing controller, and (4) the main conclusions and recommendations.
The remainder of this thesis provides appendices to support the paper.

Part II contains a more in-depth review of relevant literature and serves as background ma-
terial for the unacquainted reader. In Chapter 2 several concepts related to optical flow
based navigation and frame-based optical flow estimation are introduced. Next, Chapter 3
introduces event-based cameras, their working principle, and related research. Chapter 4
separately reviews existing approaches for estimating event-based optical flow and visual ob-
servables. The part is closed in Chapter 5 which provides a synthesis of the literature results.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

4 Introduction

Next, Part III documents a preliminary comparison between available methods for estimating
optical flow and visual observables. The findings in this comparison form the basis for the
final algorithms presented in the paper. To start with, in Chapter 6 the methodology and
datasets used in this analysis are presented. Subsequently, specific results for estimating local
optic flow are presented in Chapter 7 followed by the process of estimating visual observables
in Chapter 8. The preliminary results are discussed in Chapter 9, in which we also briefly
relate the findings to the final algorithms presented in the paper.

Part IV contains individual appendices that support the final state of the work described in
the paper. This part starts with Chapter 10, which discusses how the event-based camera
used in this work is calibrated. Then, Chapter 11 discusses the experimental setup in detail.
Chapter 12 describes the details of the implementation of the algorithms in the experimental
setup. Last, Chapter 13 presents additional results to support observations in the paper.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Part I

Paper

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

1

Vertical Landing for Micro Air Vehicles
using Event-Based Optical Flow

B.J. Pijnacker Hordijk, K.Y.W. Scheper, and G.C.H.E. De Croon
Control & Simulation, Department Control & Operations
Delft University of Technology, Delft, The Netherlands

Abstract—Small flying robots can perform landing maneu-
vers using bio-inspired optical flow by maintaining a constant
divergence. However, optical flow is typically estimated from
frame sequences recorded by standard miniature cameras. This
requires processing full images on-board, limiting the update rate
of divergence measurements, thus the speed of the control loop
and the robot. Event-based cameras overcome these limitations
by only measuring pixel-level brightness changes at microsecond
temporal accuracy, hence providing an efficient mechanism for
optical flow estimation. This paper presents, to the best of our
knowledge, the first work integrating event-based optical flow
estimation into the control loop of a flying robot. We extend an
existing ’local plane fitting’ algorithm to obtain an improved and
more computationally efficient optical flow estimation method,
valid for a wide range of optical flow velocities. This method
is validated for real event sequences. In addition, a method
for estimating the divergence from event-based optical flow
is introduced, which accounts for the aperture problem. The
developed algorithms are implemented in a constant divergence
landing controller on-board of a quadrotor. Experiments show
that, using event-based optical flow, accurate divergence estimates
can be obtained over a wide range of speeds. This enables the
quadrotor to perform very fast landing maneuvers.

Index Terms—Event-based vision, neuromorphic, optical flow,
Micro Air Vehicles, autonomous landing.

I. INTRODUCTION

RAPID advances in micro-electronics catalyzed the de-
velopment of tiny flying robots [1], formally referred to

as Micro Air Vehicles (MAVs). Due to their size and agility,
MAVs excel at applications in confined and cluttered environ-
ments. However, achieving autonomous flight with very small
MAVs (for example, the 20-gram DelFly Explorer [2]) is a
significant challenge due to strict weight and power limitations
for on-board equipment. For overcoming this challenge, visual
navigation techniques observed in flying insects are highly
interesting.

Visual navigation in flying insects is primarily based on
optical flow, the apparent motion of brightness patterns per-
ceived by an observer due to relative motion with respect
to the environment [3]. In essence, optical flow provides
information on the ratio of velocity to distance, such that
the actual metric distance to the environment is not directly
available. Instead, flying insects navigate based on certain
visual observables extracted from the optical flow field that
relate to ego-motion. Honeybees were seen to control their
descent during landings based on the divergence of the optical
flow field perceived from the ground [4]. When looking
down, flow field divergence conveys the vertical velocity

scaled by the height. By maintaining a constant divergence in
downward motion, an observer approaches the ground while
exponentially decreasing its downward speed. For flying robots
capable of vertical landing, this is an interesting strategy. This
application has been explored in several experiments with
rotorcraft MAVs [5]–[8].

While such optical flow based navigation strategies are
bio-inspired, most visual sensors employed for measuring
optical flow differ significantly from their natural counterparts.
Commonly used miniature cameras operate in a frame-based
manner: full frames are obtained by periodically measuring
brightness at all pixels. This is a relatively inefficient process
for motion perception, since the information output rate is
independent of the actual dynamics in the scene. Static parts
of a frame are recorded as well as changing parts, even though
only the latter are relevant for motion perception. Therefore,
follow-up processing of a full frame is necessary, which at
present still requires significant processing. In addition, fast
inter-frame displacements lead to motion blur, which limits
the accuracy of resulting optical flow estimates or requires
complex algorithms to account for this. These characteristics
are undesirable for optical flow measurement on board minia-
ture flying robots, which are subject to strict computational
limits and exhibit fast dynamics.

In contrast, biological vision systems, such as the compound
eyes of insects, employ an event-driven mechanism; they
measure changes in the perceived scene at the moment of
detection [9]. Several researchers have attempted to minic the
sensory system in insects in order to measure optical flow.
For example, in [10] a tethered rotorcraft MAV was equipped
with a 2-photodetector neuromorphic chip for measuring trans-
lational optical flow. In [11] a miniature curved compound eye
design, highly based on the fruit fly Drosophila, was presented.

In particular, event-based cameras are a promising class
of sensors for optical flow perception. When a pixel of an
event-based camera measures a relative increase or decrease
in brightness, it registers an event, mapping its pixel location
to the timestamp and sign of the change. This timestamp
is obtained with microsecond resolution and latencies in the
range of 3 to 15 µs. In addition, event-based pixel architectures
enable intrascene dynamic ranges exceeding 120 dB [12].
These characteristics are highly desirable in robotic visual nav-
igation. Experiments using event-based cameras demonstrated
high performance of visual control systems through low-
latency state updates, efficient data processing, and operation
over a wide range of illumination conditions [13], [14].

2

This novel approach to visual sensing is in general incom-
patible with state-of-the-art computer vision algorithms for
estimating optical flow, due to the lack of absolute brightness
measurements. Therefore, several event-based methods for
optical flow estimation [15]–[19] as well as benchmarking
datasets [20], [21] have been developed. Of the existing
techniques, the local plane fitting approach by [16] is the
most promising based on its application to estimating time-
to-contact (the reciprocal of flow field divergence) in simple
scenes [22] and good results in [21]. However, until now, no
study has discussed an implementation of event-based optical
flow into an optical flow based control loop of an MAV.

This paper contains three main contributions. First, a novel
method for estimating event-based optical flow inspired by
[16] is introduced. Its applicability is extended to a wider range
of velocities, while improving computational efficiency. Sec-
ond, a method for incorporating event-based optical flow into
visual estimation of divergence is proposed, which accounts
for the aperture problem that occurs in most existing event-
based optical flow methods. Third, the proposed algorithms
for event-based optical flow divergence estimation are incor-
porated in a constant divergence landing controller on-board of
a quadrotor. To the best of the authors’ knowledge, this paper
presents the first functional event-based visual controller on-
board of an MAV.

We begin by discussing related work concerning land-
ing using optical flow, event-based vision, and optical flow
estimation in Section II. Then, Section III introduces the
mathematical models describing the relations between the ego-
motion of the MAV, optical flow, and visual observables used
in this work. In Section IV the estimation method for event-
based optical flow is described and evaluated. Subsequently,
Section V introduces the approach to estimating visual observ-
ables from event-based optical flow, followed by an assessment
of its performance in combination with the optical flow
method. Afterwards, Section VI presents flight test results of
the full estimation pipeline during constant divergence landing
maneuvers. Lastly, the main conclusions and recommendations
for future work are presented in Section VII.

II. RELATED WORK

This section introduces the fundamental concepts and pre-
vious contributions relevant for this work. First, Section II-A
discusses bio-inspired landing strategies involving optical flow
and associated research involving MAVs. Second, the concept
of event-based cameras is described in Section II-B. Third, an
overview of existing approaches to optical flow estimation is
provided in Section II-C, including both frame-based camera
applications and recently developed event-based techniques.

A. Landing Using Optical Flow

Although optical flow does not by itself provide metric
scale to motion, information from optical flow fields is useful
for several navigation tasks, including landing. Simple bio-
inspired strategies were proposed in the past decades that
utilize the visual observables in the optical flow field perceived

from the ground. Such strategies form a lightweight alterna-
tive for visual estimation of three-dimensional structure, ego-
motion, and relative pose, which can be performed through
visual Simultaneous Localization And Mapping (SLAM) [23]
or visual odometry [24]. These techniques have become in-
creasingly efficient over the last few years [25], [26], yet still
require processing and maintaining large amounts of measure-
ment data. This strongly contrasts with optical flow based
techniques, in which all information required for navigation
is contained in a small number of visual observables.

The visual observables related to horizontal motion above
ground are the ventral flows ωx, ωy , referring to the average
flows along the x and y image axes. In several experiments
with a tethered MAV [10], [27], the authors mimicked navi-
gation strategies seen in insects, which have been observed to
follow terrain and land using ventral flow [28]. By maintaining
a constant ratio between forward motion and height and at
the same time slowing down, they perform smooth landings.
Ventral flows may also be used for hover stabilization to
augment visual vertical control [29].

In recent aerial robotic applications, mainly visual observ-
ables based on vertical motion were applied, allowing control
of vertical dynamics independent of horizontal motion. One
of these observables is flow field divergence D, i.e. the ratio
of vertical velocity to height. Its reciprocal is the time-to-
contact to the ground τ . Similar to ventral flows, divergence
was seen to guide docking and landing motion in biology. In
[4] honeybees were seen to keep D constant. Hence, velocity is
decreased exponentially, ensuring a smooth touchdown. Other
strategies for vertical landing exist based on τ , such as the
constantly decreasing τ strategy observed in braking human
drivers [30]. This strategy provides more control over the
landing trajectory [29], though it involves more parameters.

In practical control systems, a constant divergence approach
suffers from instability as height decreases, due to self-induced
oscillations. In [8] it was shown that a relation exists between
the employed divergence controller gain and the height at
which oscillations occur. A main insight then was that a drone
could detect its own oscillations, and in this way determine
its height. This strategy can be employed to trigger a separate
final touchdown phase, or to continuously measure height by
landing at a near-unstable control gain. The finding in [8]
also contains an important key to high-performance optical
flow divergence landings. This was used in [31] to develop an
adaptive gain controller, which detects the height at the start
of a landing maneuver, sets initial controller gains based on
the height, and lands while exponentially reducing the gains.
Although the landings performed were quite fast compared
to landings in the literature (D = 0.3 compared to a typical
D = 0.05 [6]), the speed of the landings in [31] are still
quite limited by the standard cameras available on the used
AR drone 2.0.

B. Event-Based Cameras

Inspired by the workings of biological retinas, event-based
cameras rely on a sensing mechanism that fundamentally
differs from their frame-based counterparts. In frame-based

3

cameras the pixel values are measured at fixed time intervals to
produce a sequence of images. In event-based cameras, on the
other hand, pixel activity is driven by light intensity changes.
Whenever a pixel measures a local change, it produces a event.
Specifically, this occurs when the pixel’s logarithmic intensity
measurement I(x, y, t) (at pixel location (x, y) and timestamp
t) increases or decreases beyond a threshold C:

|∆ (log I (x, y, t))| > C (1)

Events are encoded according to an Address-Event Rep-
resentation (AER) [32], which consists of event information
encoded by an address and the timestamp of detection. Typi-
cally, an event encodes the pixel position (x, y), the timestamp
t, and the polarity P ∈ {−1, 1}, which indicates the sign of the
intensity change. A visualization of a basic stream of events, in
comparison to an equivalent set of frames, is shown in Fig. 1.

Fig. 1. Frame-based and event-based visual output generated from a simple
synthetic scene, in which a black horizontal bar moves upward. The events
are visualized as points in space-time, hence showing the trajectory of the
leading and trailing edges of the black bar. Events with positive polarity are
highlighted in green; those with negative polarity are marked in red.

The sensor used in this work is the Dynamic Vision Sensor
(DVS) - specifically, the DVS128 - which is the first commer-
cially available event-based camera [33]. It features a 128x128
pixel grid operating at an intrascene dynamic range of 120 dB,
measuring events at 1 µs timing resolution with a latency of
15 µs [32]. A picture of the DVS is shown in Fig. 2. Since the
availability of the DVS, other event-based cameras have been
developed. Most notable are the Asynchronous Time-based
Image Sensor (ATIS) [34], which measures absolute intensity
as well as polarity for each event, and the Dynamic and Active
pixel Vision Sensor (DAVIS) [35], whose pixels record events
as well as full frames. Interesting in the context of this work
is the 2.2 gram micro embedded DVS (meDVS) [36], which
is highly suitable for on-board MAV applications.

Event-based cameras have several interesting applications
for robotic navigation. Initial work has been performed on
visual SLAM with event-based cameras [37], [38]. In [39] a

Fig. 2. Picture of the event-based camera employed in this work, the DVS.

pose estimation algorithm based on line tracking is applied to a
quadrotor, enabling it to perform aggressive maneuvers . Some
studies demonstrate the ability to simultaneously reconstruct
intensity maps and relative pose [40] and, more recently,
three-dimensional structure [41]. Others aim at combining
the benefits of event-based and frame-based vision using the
DAVIS. For example, the method presented in [42] uses frames
to identify visual features and events to track their position in
high-speed motion, in order to perform visual odometry.

C. Optical Flow Estimation

In the following, we discuss available techniques for
estimating optical flow. Many recent visual navigation
experiments, in particular those with commercially available
quadrotors, employ standard frame-based cameras, in
combination with follow-up processing algorithms. Others
employ off-the-shelf optical mouse sensors or specialized
neuromorphic optical flow sensors, which directly yield
translational optical flow output. For event-based cameras,
several techniques have recently been developed, yet these
have seen limited applications in robotic navigation.

1) Estimation from Frame Sequences: At present, a wide
range of optical flow estimation techniques is available for
frame-based cameras. Most of these algorithms derive from
the brightness constancy assumption, which states that, when
a pixel flows from one frame to another, its intensity I is
conserved [43]. This assumption leads to the well-known
optical flow constraint:

Ix(x, y)u+ Iy(x, y)v = −It(x, y) (2)

where x and y are the pixel position and u and v denote
the unknown optical flow components in pixels per second.
The partial derivatives Ix, Iy , and It are obtained from two
sequential frames. Since this equation provides two unknown
components, a second constraint is necessary to obtain optical
flow. Many recent methods aim at providing a dense optical
flow field estimate, where optical flow is estimated for any
pixel for the frame. In this case, a global cost function
minimization is performed, in which a second constraint is
provided by prior knowledge. An example of such a constraint
is the requirement of smoothness in the flow field in the well-
known Horn-Schunck technique [44]. Recent dense optical

4

flow algorithms provide accurate results for complex scenes,
but at the cost of high computation times [43].

In recent real-time robotic applications, the most popular
frame-based algorithm is the Lucas-Kanade algorithm [45].
This algorithm is originally developed for estimating optical
flow in the local neighborhood of a pixel. In order to solve
(2), the second assumption is that u and v are constant across
neighboring pixels. Therefore, a least-squares system can be
composed based on (2), using Ix, Iy , and It from neighboring
pixels. This system can be solved for u and v. This technique
is mainly applied to sparse estimation, where motion is only
computed locally at visual features of interest.

Local optical flow estimation techniques are subjected to
the aperture problem, which occurs when motion ambiguity
is present due to a limited field of view [46]. This occurs
along object contours which lack clearly distinguishable corner
points. The result is that only normal flow can be estimated,
which is the motion component normal to the contour’s
orientation. At corner locations, this ambiguity is not present.
Only at these points, optical flow is estimated using Lucas-
Kanade. Therefore, a corner detection algorithm (e.g. [47]) can
be applied to first obtain points of interest in the frame. This
strategy is applied in many recent optical flow based landing
experiments [7], [8], [29], [48].

Alternatively, in [6] a ’pyramidal’ variant of Lucas-Kanade
is applied [49] to account for large displacements. This is a
coarse-to-fine approach: optical flow is first computed for a
highly downsampled frame. Then, the frame is iteratively re-
fined, computing more detailed optical flow at each refinement
level, using the estimate at the previous level to initialize the
estimate.

In all these approaches, it is necessary to process full
frames, either to find features of interest such as corners, or
to obtain sufficiently detailed dense optical flow. While it is
possible to use low resolution frames for faster processing,
this comes at the cost of reduced detail and hence lower
accuracy. Event-based cameras are much less subject to this
trade-off, since their output directly highlights locations of
interest for estimating optical flow.

2) Optical Flow Sensors: Hardware-based solutions
for estimating optical flow have also been applied. Some
researchers employ off-the-shelf optical mouse sensors for
measuring translational optical flow e.g. [50]. In addition, the
visual motion processing in insects inspired researchers to
develop highly simplified optical flow sensors, such as the
2-photodetector elementary motion detector was developed
for the tethered MAV research in [10], [51]. Optical flow
sensors achieve relatively high sampling rates due to their
simplicity. However, their operating principle is generally
limited to measuring translational flow. For measuring patterns
of optical flow, such as divergence, multiple separate sensors
need to be applied and integrated.

3) Event-Based Methods: Since the introduction of the
DVS and subsequently developed sensors, several different
approaches to event-based optical flow estimation have been
developed. Most of these techniques operate on each newly

detected event and its spatiotemporal neighborhood, providing
sparse optical flow estimates. However, in most cases, the
algorithms do not distinguish between corner points and other
visual features. Thus, they primarily estimate normal flow. In
the following, a brief review of recent approaches is presented.

An adaptation of the frame-based Lucas-Kanade tracker is
introduced in [15]. Similar to the original algorithm, it solves
the optical flow constraint by including the local neighbor-
hood of a pixel. Since absolute measurements of I are not
available, the authors replaced the intensity I by the sum
of event polarities at a pixel location, obtained over a fixed
time window. The reconstructed ’relative intensity’ is used
to numerically estimate Ix, Iy , and It. However, the number
of events is generally too low for this approach to provide
accurate gradient estimates, in particular for the temporal
gradient It.

In [16] an algorithm is presented that operates on the
spatiotemporal representation of events as a point cloud (as
shown in Fig. 1). When representing a sequence of events
by three-dimensional points of (x, y, t), they form surface-like
structures. The gradient of such a surface relates to the motion
of the object that triggered the events. By computing a local
tangent plane to an event and its neighbor events, normal flow
for that event is estimated. A follow-up study employs this
algorithm for detecting and tracking corners from neighboring
normal flow vectors, hence obtaining fully observable optical
flow [52]. However, real-time results are not yet demonstrated
with a non-parallelized implementation.

In [17] a technique is introduced that estimates optical
flow on object contours, based on both events and absolute
intensity measurements. Input events are used to locate motion
boundaries on contours. Along each boundary, motion is
estimated using the width of the contour, which is computed
from the local event distribution and the absolute intensity. The
latter can be reconstructed from events, but having separate
intensity measurements (e.g. from a DAVIS or ATIS sensor)
simplifies the process.

A bio-inspired approach is proposed in [18]. In this ap-
proach, optical flow is estimated using direction- and speed-
selective filters based on the first stages of visual processing
in humans. A bank of spatiotemporal filters is employed, each
of which is maximally selective for a certain direction and
speed of optical flow. For each new event, the neighboring
event cloud is convolved with the filters to obtain a confidence
measure for each filter. Optical flow for that event is then
obtained from the sum of the confidence measures weighted
by direction.

More complex event-based algorithms have also been de-
veloped, which have not demonstrated real-time performance,
but show promising results. In [53] a phase-based optical flow
method is discussed, which is developed for high-frequency
textures. The algorithm is compared to other event-based
methods [15]–[17], indeed showing significant accuracy im-
provements. Also, an approach was presented for simultaneous
estimation of dense optical flow and absolute intensity [19].
This is the only available approach aimed towards dense
optical flow estimation. Visual results of this method are
encouraging, yet a quantitative evaluation is not performed.

5

Recently, several datasets for event-based visual navigation
have been published. The set in [20] provides both frame and
event measurements from a DAVIS sensor accompanied by
odometry measurements. This facilitates comparison between
frame-based and event-based techniques for optical flow esti-
mation or visual odometry. However, to the best of the authors’
knowledge, an actual comparison of existing techniques has
not yet been published for this set. In this respect, the work
in [21] is more relevant for this work, as it features both an
event-based dataset and a comparison of various optical flow
algorithms. These are variants of the techniques in [15] and
[16], as well as a basic direction selective algorithm.

We select the local plane fitting algorithm in [16] as the
basis of the approach in our work. It has shown the most
promising results in [21] and has recently been incorpo-
rated into follow-up experiments [22], [52]. In addition, its
implementations yielded real-time operation for high event
measurement rates.

III. RELATIONS BETWEEN OPTICAL FLOW, EGO-MOTION,
AND VISUAL OBSERVABLES

This section defines the optical flow model, which relates
the ego-motion of an MAV equipped with a downward facing
camera to the perceived optical flow, and the visual observ-
ables presented in Section II-A. These relations form the basis
for our evaluation methods applied in subsequent sections,
in which ground truth values for optical flow and visual
observables are computed.

In the derivation, use is made of three reference frames: B,
C, andW , which describe the body, camera and inertial world
reference frames respectively. Their definitions are illustrated
in Fig. 3. In each reference frame, a position is denoted
through the coordinates (X,Y, Z), with corresponding velocity
components (U, V,W). The body frame is centered at the
center of gravity of the MAV. The rotation from W to B
is described by standard Euler angles ϕ, θ, ψ, denoting roll,
pitch, and yaw respectively. Similarly, p, q, and r describe the
roll, pitch, and yaw rotational rates.

The camera reference frame C is centered at the focal point
of the DVS. The camera is assumed to be located directly
below the MAV’s center of gravity, with XC = YB and
YC = −XB. However, we account for an offset ∆Z between
ZC and ZB, i.e. ZC = ZB + ∆Z.

The relations between optical flow and ego-motion are
based on the pinhole camera model formulation in [54]. In
this formulation, pixel locations (x, y) in the sensor’s pixel
grid and optical flow components (u, v) in pixels per second
are represented by their metric, real-world equivalents (x̂, ŷ)
and (û, v̂). The mapping between the two representations is
composed of two parts: correction for lens distortion and
transformation through the camera’s intrinsics matrix. A two-
parameter version of the commonly used Brown-Conrady
model [55] is applied to model the relation between (x, y)
and their undistorted equivalent (xu, yu):

[
x− xp
y − yp

]
=

[
xu − xp
yu − yp

] (
1 + k1r

2
u + k2r

4
u

)
(3)

X
W

Y
WZ

W

X
B

Z
B

φ

θ ψ

Y
B

Z
C

X
C

Y
C

Fig. 3. Definitions of the world (W), body (B), and camera (C) reference
frames. The Euler angle definitions and their signs are also shown.

The point (xp, yp) in Eq. (3) represents the camera’s prin-

cipal point, and ru =
√

(xu − xp)2
+ (yu − yp)2 is the radial

distance to the principal point. Second, the undistorted pixels
and corresponding optical flow estimates relate to their metric
equivalent through scaling with the focal length f :

x̂ =
xu − xp

f
, ŷ =

yu − yp
f

, û =
u

f
, v̂ =

v

f
(4)

In order to obtain the parameters k1, k2, xp, yp, and f ,
the DVS is calibrated using the Camera Calibration Toolbox
in MATLAB [56]. Since the DVS does not record absolute
intensity, artificial images are generated by recording events
from a flashing checkerboard pattern on an LCD screen,
similar to [39].

The optical flow components (û, v̂) due to an arbitrary
point moving in C with motion (UC , VC ,WC) at depth ZC are
obtained as follows:

û = −UC
ZC

+ x̂
WC
ZC
− p+ rŷ + qx̂ŷ − px̂2

v̂ = −VC
ZC

+ ŷ
WC
ZC

+ q − rx̂+ qŷ2 − px̂ŷ
(5)

When separate measurements of the rotational rates p, q, and
r are available (for instance, from rate gyro measurements), the
optical flow in Eq. (5) can be corrected for the ego-rotation
of the camera. This derotation leaves only the translational
optical flows ûT , v̂T . Further, if all visible points are part of
a single plane, their coordinates ZC are interrelated. In most
indoor applications, floor surfaces can be assumed planar and
horizontal. However, MAVs perform fast horizontal maneuvers
through rolling and pitching, such that the ground plane may
have a slight inclination in C. In this case, ZC is expressed

6

through three parameters: the distance Z0 to the plane at
(x̂, ŷ) = (0, 0), and the plane slopes ZX , ZY .

ZC = Z0 + ZXXC + ZY YC (6)

This can be rewritten into:

ZC − Z0

ZC
= ZX x̂+ ZY ŷ (7)

When the surface is flat, the slopes are the tangents of
the roll and pitch angles, and can therefore be obtained from
separate sensors in e.g. an IMU:

ZX = − tanϕ, ZY = tan θ (8)

Now we define the scaled velocities ϑx, ϑy , ϑz as follows:

ϑx =
UC
Z0
, ϑy =

VC
Z0
, ϑz =

WC
Z0

(9)

Following the derivation in [48], substituting Eq. (7) and
Eq. (9) into Eq. (5) leads to the following expression:

ûT = (−ϑx + x̂ϑz) (1− ZX x̂− ZY ŷ)

v̂T = (−ϑy + ŷϑz) (1− ZX x̂− ZY ŷ)
(10)

The scaled velocities represent the visual observables pre-
sented in Section II-A. ϑx and ϑy are the opposites of the
ventral flows, i.e. ωx = −ϑx, ωy = −ϑy . The vertical
component ϑz is proportional to the flow field divergence,
since D = ∇ · V = 2ϑz . It is also the inverse of time-to-
contact τ = ZC/WC = 1/ϑz .

Note that, in the presence of the vertical camera offset ∆Z,
the rotational rates p and q induce additional translational
velocity components into UC and VC . These propagate to ϑx
and ϑy , such that:

ϑx =
VB
ZC
− p∆Z

ZC
, ϑy =

UB
ZC

+ q
∆Z

ZC
(11)

These corrections are accounted for in the computation of
ground truth optical flow and values of ϑx and ϑy .

IV. EVENT-BASED OPTICAL FLOW ESTIMATION

This section describes our optical flow estimation approach.
Since it is based on the work in [16], this baseline approach
is explained first in Section IV-A. Then, the proposed mod-
ifications for achieving higher efficiency (Section IV-B) and
timestamp-based selection (Section IV-C) are discussed. In
Section IV-D the result of our improvements is evaluated in
comparison to the baseline algorithm.

A. The Baseline Plane Fitting Algorithm

The main working principle of the baseline algorithm is
based on the space-time representation of events as a point
cloud. In the following, an event is denoted as a space-time
point according to en = (x, y, t), where x and y represent
the undistorted pixel locations. Note that the polarity P is not
considered; we group positive and negative polarity events and
process them separately.

Let Σe(x, y) = t be a mapping describing the surface along
which events are positioned. The shape of Σe is a result of the
feature geometry and, in particular, its motion. In the case of
a locally linear feature (such as an edge) and constant motion,
this surface reduces to a plane. This is clearly visible in the
example scene in Fig. 1. With these assumptions, Σe can be
approximated by a tangent plane within a limited range of x,
y, and t.

For each newly detected event en, a plane Π is com-
puted that fits best to all neighboring events ei for which
xi ∈

[
xn − 1

2∆x, xn + 1
2∆x

]
, yi ∈

[
yn − 1

2∆y, yn + 1
2∆y

]
,

and ti ∈ [tn −∆t, tn], where ∆x,∆y,∆t indicate spatial and
temporal windows. The spatial windows are generally small
and are both set to 5 pixels. The temporal window setting has
a large influence on the detectable speed and interference of
multiple features, which is discussed further in Section IV-C.

The plane Π = [px, py, pt, p0]
T is computed through an

iterative process of linear least squares regression and outlier
rejection. It is represented in homogeneous coordinates, such
that the following hold for any event ei that intersects with
Π:

pxxi + pyyi + ptti + p0 = 0 (12)

Extending Eq. (12) with at least four neighboring events,
an overdetermined system of equations is obtained, which is
solved through linear least-squares. After an initial fit, the
Euclidean distance of each event to the plane is computed. All
events for which the distance exceeds a threshold dmax, are
rejected from this fit. Using the remaining events, a new least-
squares plane fit is computed. In [16], this process is repeated
until the change in Π is no longer significant. This is the case
if the norm of the change in all components in Π is smaller
than a second threshold kd, i.e. ‖Π(i)−Π(i− 1)‖ < kd.
In practice, the latter often occurs already after one or two
iterations. In this work, the values for dmax and kd specified
in [21] are applied, which are 0.01 and 1e-5 respectively.

The final plane is preserved and used to compute the local
gradients of Σe:

∇Σe (x, y) =

[
∂Σe
∂x

,
∂Σe
∂y

]T
=

[
−px
pt
, −py

pt

]T
(13)

In [16] the gradient components of Σe are assumed to be
inversely related to the optical flow components (u, v):

∇Σe (x, y) =

[
1

u (x, y)
,

1

v (x, y)

]T
(14)

However, as is also noted in [18], [21], Eq. (14) is subject to
singularities when computing u and v. If either component of
∇Σe tends to zero, the corresponding optical flow component
grows to infinity, which is incorrect. For example, consider
a horizontally moving vertical line. Along the y-direction,
temporal differences between the resulting events are in this
case very small. Therefore, ∂Σe

∂y is also small, which leads to
a high value of the vertical component v, even though the line
is moving horizontally.

In recent work, two modifications to the previously dis-
cussed methodology have been proposed. First, in [18] an

7

approach is presented that is robust to singularities in u and v,
which led to significant accuracy improvements in the com-
parison in [21]. In this approach, an orthogonality constraint is
imposed on the plane’s normal vector [px, py, pt]

t, the optical
flow vector [u, v, 1] and the orientation [lx, ly, 0] of the edge
in homogeneous coordinates. This constraint leads to a new
expression of the optical flow components u and v in terms
of the plane’s normal vector:

[
u
v

]
=

1

‖∇Σe‖2
∇Σe = − pt

px2 + py2

[
px
py

]
(15)

Second, in the implementation in [21] not all events within
the space-time window are considered. For each pixel location,
only the most recent event is used for computing optical flow.
However, high contrast edges tend to produce multiple events
in quick succession at a single pixel. Hence, the most recent
event at a pixel occurs slightly later than the first event caused
by such an edge, which leads to over-estimation of its speed.
It may also lead to optical flow estimates in the opposite
direction of the edge motion. To prevent this, a refractory
period ∆tR (typically 0.1 s) is applied. Events that occur
within ∆tR are neither processed nor preserved to support
future events.

The discussed algorithm with the previously proposed
modifications forms our baseline algorithm. In the following,
methods are proposed to increase its efficiency and range of
application.

B. Efficiency Improvements

In order to enable faster computation and scale the algo-
rithm towards low-end processing hardware, we propose two
modifications.

The first modification is to reduce the number of parameters
of the local plane. We reduce Eq. (12) by introducing the new
parameters p∗x, p∗y , p∗0:

p∗x =
px
pt
, p∗y =

py
pt
, p∗0 =

p0

pt
(16)

hence obtaining the nonhomogeneous, three-parameter form
of Eq. (12):

p∗xxi + p∗yyi + p∗0 = −ti (17)

A second reduction is performed by assuming that the new
event en intersects with the plane, which enables the definition
of relative coordinates for neighbor events as follows. Given
en and a previously identified neighbor event ei, the relative
coordinates of the neighbor event are defined as δxi = xi −
xn, δyi = yi−yn, δti = ti−tn. Substituting these coordinates
into Eq. (17) and rearranging terms, the following relation is
obtained:

p∗xδxi + p∗yδyi + δti = −p∗xxn − p∗yyn − p∗0 − tn (18)

By substituting Eq. (17) (for which we set i = n to enforce
that en intersects with the plane) into Eq. (18), the right-hand

side of the latter equation reduces to zero. Thus, the final plane
Π∗ =

[
p∗x, p

∗
y

]
is described by two parameters, the slopes:

p∗xδxi + p∗yδyi = −δti (19)

This reduced approach requires significantly less
computational effort than the baseline. While solving a
homogeneous least squares system is generally performed
using a Singular Value Decomposition (SVD), more efficient
solvers such as the commonly used QR-decomposition are
applicable to nonhomogeneous problems. With a system of
M events and N parameters, the computational complexity
of the SVD scales with O(MN2 + N3). In comparison,
the complexity of the QR decomposition scales with
O(MN2 − N3/3) [57]. Hence, a four-parameter SVD
solution has a cost that is approximately proportional to
16M + 64, which compares to 4M −8/3 for a two-parameter
QR-decomposition. Note that this is only a rough indication
of the true complexity, but it suffices for illustrating the
efficiency gain of the parameter reduction. Only a slight
reduction in accuracy is introduced with this simplification.

The second modification consists of capping the rate at
which optical flow vectors are identified, denoted as the output
rate ρF . Depending on the computational resources available,
input events can be processed at a limited rate to maintain
real-time performance. In addition, since the approach assumes
that for each individual event, motion needs to be estimated,
neighboring events produce highly similar optical flow vectors,
making the information increasingly redundant with increasing
ρF . Therefore, capping this value also prevents unnecessary
computational load on follow-up processes. To achieve this, we
keep track of the timestamp tf of the event for which the latest
optical flow vector was identified. If a new event en occurs,
optical flow is only estimated if tn − tf > 1/ρFmax

, where
ρFmax denotes the output rate limit. The event is, however,
still stored to support future events, taking into account the
refractory period. Hence, accuracy of the estimates that are
still performed, is unaffected. The resulting effect of the
value of ρFmax

on computational performance is explored in
Section IV-D3.

C. Timestamp-Based Clustering of Recent Events

The baseline algorithm incorporates a fixed setting for the
time window ∆t to collect recent events. There are two main
drawbacks of using a fixed time window, which are illus-
trated in Fig. 4 for two simple one-dimensional cases. First,
∆t defines the lower limit for the magnitude of observable
optical flow. For slower motion, the time difference between
neighboring events increases. If this difference is too large, all
neighboring events fall outside the time window (as illustrated
in Fig. 4a), such that the motion cannot be observed. Second,
a larger time window can result in the inclusion of unrelated
events. For example, in Fig. 4b events are shown which clearly
belong to separate features. Still, a part of the outdated features
falls within the time window, which leads to an inaccurate
fit. In some cases outlier rejection may prevent this, but with
tightly packed features this may still cause a failed estimate.

8

∆t

x [-]

t
[s

]

(a)

∆t

x [-]
t

[s
]

(b)

δti

∆tS

x [-]

t
[s

]

(c)

Fig. 4. Examples with one-dimensional (x− t) event structures representing
motion, in which a fixed time window for collecting events leads to failed
motion estimates. In (a), the time window is too small for being able to
perceive the slow motion that triggers the events. On the other hand, in (b)
events from two sequential fast-moving features enter the same time window.
The bottom image (c) illustrates the proposed clustering approach, in which
the time difference between the current event and the next most recent event
δti defines the maximum time difference ∆tS = kSδti. From the leftmost
event, the time difference to the next most recent event exceeds ∆tS , such
that all bottom events are rejected.

A fixed time window therefore imposes a fundamental trade-
off between minimal observable speed and feature density.
Since MAVs tend to move at a wide range of velocities, from
hovering to fast maneuvers, the capability of observing both
fast and slow motion is desirable.

To accomplish this, we propose a very simple clustering
method based on the time order of events, which is illustrated
in Fig. 4c for a one-dimensional motion case. First, the mini-
mum number of most recent events ei for observing velocity
is found. In the one-dimensional case in Fig. 4c, only one
point is necessary for constructing a line; for two-dimensional
image motion, two linearly independent points (δxi, δyi, δti)
are required in order to construct a plane. From the point with
the largest δti, the relative timestamp defines a maximum
time increment ∆tS between the timestamps of consecutive
events. To provide a margin for noise, δti is scaled with a
factor kS (which has a value of 3 in our experiments), such
that ∆tS = −δtikS (since δti should be negative). Second,
we iterate through the remaining recent events, ordered by
decreasing value of δti. If the time difference between two
consecutive events ei and ei−1 exceeds ∆tS , ei−1 and all
events that occurred before it are assumed to belong to
different features, and are rejected.

Note that this approach does not take spatial location
into account, except for finding the first linearly independent
events. Therefore, a variation on the baseline process of outlier
rejection is still applied, which is independent of time-scale.
Instead of rejection based on a distance threshold, the overall

fit quality is assessed through the Normalized Root Mean
Square Error (NMRSE), defined here as follows:

NRMSE =
n

n∑
i=1

δti

√√√√
n∑
i=1

(
δti − p∗xδxi − p∗yδyi

)2

n
(20)

Then, while NRMSE > NRMSEmax , only the event
having the maximum distance to Π∗ is rejected. This is
repeated until a maximum number of nR events are rejected. If
nR is exceeded, the estimated plane is rejected and no optical
flow is computed. Suitable values for attaining a high number
of successful estimates, without sacrificing significant quality,
are empirically set at NRMSEmax = 0.3 and nR = 2.

Still, incorrect optical flow estimates may be detected, either
due to noise in the event stream or due to undesired inclusion
of outlier events. Depending on the application, certain optical
flow magnitudes can be deemed unrealistic in advance. Optical
flow estimates are therefore rejected if their magnitude exceeds
a threshold Vmax, which is set to 1000 pixels/s. In addition,
a minimum number of events nmin must be found through
the clustering mechanism in order to have sufficient support
for a reliable fit. This number is set to 8 events. Further, a
maximal time window of ∆t = 2 s is maintained such that
unnecessary event checking is prevented. Note, however, that
this time window can now be much larger than in the baseline
approach.

D. Evaluation

To evaluate optical flow estimation performance, several
datasets were recorded in which the DVS was moved by
hand, facing towards a ground surface covered with a textured
mat. The recordings are performed indoors, using an Optitrack
motion tracking system to measure ground truth position and
orientation of the DVS. From these measurements, ground
truth optical flow vectors are obtained using the relations
derived in Section III. This is performed for each event for
which optical flow is identified, hence providing the means for
quantitative accuracy evaluation. Although currently datasets
are already available [20], [21], the recorded set specifically
represents motion above a flat surface in indoor lighting condi-
tions, i.e. the environment in which flight tests are performed
in Section VI.

Images of the recorded ground surfaces are shown in
Fig. 5. The checkerboard in Fig. 5a provides high contrast
and clear edges and is hence relatively simple for optical
flow estimation. The roadmap texture in Fig. 5b has largely
unstructured features and lower contrast. It is used to show that
our approach extends to more general situations as well. Eight
short sequences were selected to evaluate the performance of
the proposed method. Each sequence is approximately 1.0 s
long and consists of event and pose measurements in which
one primary motion type is present. Five sets are selected for
the checkerboard; one for vertical translational image motion
(ϑy ≈ 1.0), one for rotational motion (r ≈ −1.3) rad/s, and
three sets with diverging motion of different speeds (ϑz ≈

9

{0.2, 0.5, 2.0}). For the roadmap texture, three sets with
diverging motion were selected as well (ϑz ≈ {0.1, 0.5, 1.0}).

In the following analysis, the cap on ρF is not applied (i.e.
ρFmax = ∞), except for the assessment of computational
complexity in Section IV-D3.

(a) Checkerboard (b) Roadmap

Fig. 5. Ground surface textures used during the experiments.

1) Qualitative evaluation: Fig. 6 shows optical flow vectors
(yellow arrows) estimated using the improved algorithm during
three of the selected sequences, along with ground truth flow
vectors (blue arrows). Note that, for clarity, the time window
for visualizing events is larger than for visualizing optical
flow, which is why for some event locations, it appears that
no optical flow estimates are found. Accurate normal flow
estimates are visible for the checkerboard datasets. In Fig. 6a
optical flow is generally constant along the checkerboard
edges, matching well to the normal component of the ground
truth vectors. The rotating checkerboard sequence (Fig. 6b)
also provides accurate optical flow estimates. Clear variation
of the normal flow magnitude along the lines is seen.

Last, in Fig. 6c it is clearly visible that the roadmap texture
is more challenging. Event structures are less coherent and
the visible features are more noisy. Optical flow vectors are
sparsely present, yet the available estimates are sufficient
for observing the global motion. At some location with
noisy features the motion tends to be underestimated, but
the majority of the estimates is very similar to the normal
direction of the ground truth motion.

2) Quantitative evaluation: For quantitative evaluation, a
comparison was made of the proposed optical flow algo-
rithm and the baseline algorithm by [16] (as detailed in
Section IV-A). In this comparison the fixed time window
∆t for the original approach is set to 100 ms, and the
rejection distance dmax is set to 0.001 to obtain a similar
event density in both algorithms. For a consistent comparison,
the baseline algorithm incorporate the same refractory period
∆tR, maximum speed limit Vmax, and minimum number of
events nmin as the proposed algorithm.

For benchmarking optical flow accuracy, several error met-
rics have been introduced such as the endpoint error and angu-
lar error [43]. These metrics have been incorporated into recent
event-based optical flow benchmarks as well [21]. However,
they are defined for optical flow that is fully determinable and

is not subject to the aperture problem. The algorithms in this
section both estimate normal flow. In [17] a version of the
endpoint error is applied that indicates the magnitude error
of the normal flow with respect to the projection of ground
truth optical flow along the normal flow vector. This metric
is employed here as well. For each optical flow vector, we
compute the Projection Endpoint Error (PEE), which is defined
as follows:

PEE =

∣∣∣∣‖V‖ −
V

‖V‖ ·VGT

∣∣∣∣ (21)

where V = [u, v]
T is the normal flow estimate and VGT

denotes the ground truth optical flow vector.
A comparison of the resulting mean absolute PEE values,

and their standard deviations, is presented in Table I. The
optical flow density is also shown (abbreviated here as η)
which indicates the percentage of events for which an optical
flow estimate was found. A high value of η indicates that more
motion information can be obtained with a given event input.

TABLE I
PROJECTION ENDPOINT ERROR (MEAN ABSOLUTE ERROR AND STANDARD

DEVIATION) AND DENSITY RESULTS OF THE BASELINE PLANE FITTING
ALGORITHM, AND THE NEW ALGORITHM PROPOSED IN THIS WORK.

VALUES HIGHLIGHTED IN BOLD ARE THE LOWEST PEE OR THE HIGHEST
DENSITY RESULT OF BOTH ALGORITHMS.

Baseline [16] This work

PEE [pix/s] η [%] PEE [pix/s] η [%]

Checkerboard, ϑy = 1.0 18.6 ± 22.9 50.6 17.7 ± 18.7 45
Checkerboard, r = −1.3 26.8 ± 28.1 50.7 26 ± 24.7 48.2
Checkerboard, ϑz = 0.2 7.78 ± 12.1 12.6 7.81 ± 8.84 18.8
Checkerboard, ϑz = 0.5 13 ± 17.9 29.5 12.7 ± 13.9 30.7
Checkerboard, ϑz = 2.0 42.4 ± 58.4 57.5 36.3 ± 32.6 56.3
Roadmap, ϑz = 0.1 7.85 ± 6.91 3.54 9.73 ± 8.41 8.93
Roadmap, ϑz = 0.5 13.5 ± 13.7 8.44 13.6 ± 12.9 14.3
Roadmap, ϑz = 1.0 26.4 ± 30.3 13.3 19.6 ± 19.6 16.8

Overall, the results are very similar. Both algorithms
reach good scores on the checkerboard sets with translation,
rotation, and medium divergence (ϑz = 0.5). However, some
differences are observable. The proposed algorithm tends to
reach a higher optical flow density in the slow divergence
(ϑz = 0.2) checkerboard scene and in all roadmap scenes,
since the baseline algorithm fails to perceive slowly moving
features. Still, this does not degrade the estimate accuracy
with respect to the baseline algorithm, or only to a limited
extent. Note also that in both fast diverging sequences
(Checkerboard, ϑz = 2.0, and Roadmap, ϑz = 1.0) a lower
mean absolute PEE is achieved with our approach.

3) Computational Performance Evaluation: An assessment
of computational complexity is made using two datasets, one
for both texture types. Both sets have a duration of 12 s and
contain approximately 40k events per second. This enables
quantifying the potential of ρFmax to regulate processing time,
as well as the effect of texture. The algorithm is implemented
in C and interfaced with MATLAB through MEX, running
single-threaded on a Windows 10 64bit laptop with an Intel

10

(a) Translating checkerboard (b) Rotating checkerboard (c) Diverging roadmap (ϑz = 1.0)

Fig. 6. Optical flow estimated in several sequences, shown as yellow arrows. The accompanying blue arrows show the ground truth optical flow. Events
are shown as green dots (positive polarity) or red dots (negative polarity). The time window for displaying optical flow in each sequence is 10 ms. To
better visualize the event input, a larger window of 50 ms is applied for the events.

Core i7 Q720 quadcore CPU. Each dataset and setting of
ρFmax is processed ten times for consistent results. The CPU
usage of MATLAB during the test was around 12%.

The resulting computation time per event for several settings
of ρFmax

is shown in Fig. 7, in comparison with the maximal
computation time with no control of ρFmax . For both textures
it is clearly possible to regulate processing time by ρFmax . A
lower limit appears to be present, which is due to the remaining
overhead related to event timestamp copying. Interestingly,
there is a clear influence of texture. This difference is due
to higher contrast edges in the checkerboard texture, at which
several successive events are generated per pixel. Therefore,
the refractory period filter rejects these duplicate events before
optical flow computation.

Without the refractory period, computational effort is similar
for both textures. In this case, the maximal computation time
per event, i.e. without control of ρF , is 2.11 µs. This is
equivalent to processing 470k events per second in real-time,
which is easily sufficient for processing realistic scenes on the
test machine. Event sequences recorded for post-processing
contained event peaks below 150k events per second. Never-
theless, if hardware capabilities are more restricted (e.g. in on-
board applications), control of ρF can be applied to scale the
computational complexity of the algorithm down if necessary.

V. ESTIMATION OF VISUAL OBSERVABLES FROM
EVENT-BASED OPTICAL FLOW

This section describes our approach for estimating visual
observables from event-based optical flow. While optic flow
estimation is performed asynchronously, most existing con-
trol systems still operate on a periodic basis. Similarly, the
proposed algorithm aims to update the estimates of visual ob-
servables at a fixed rate. For each periodic iteration, all newly
detected optical flow vectors between the current iteration and
the previous one form a planar optical flow field, of which the
parameters are estimated.

103 104 105
0

1

2

ρFmax [1/s]

C
om

pu
ta

tio
n

tim
e

[µ
s]

Checkerboard
Roadmap

Fig. 7. Processing time per event for checkerboard and roadmap datasets, for
different settings of ρFmax . The dashed lines indicate the computation times
when no limit is applied to ρFmax .

The algorithm is based on two components. First, newly
detected optical flow vectors are grouped per direction and
incorporated into a weighted least-squares estimator for the
visual observables, as discussed in Section V-A. To enable
preservation of flow field information over subsequent peri-
odic iterations, a recursive update technique is introduced in
Section V-B. In addition, a confidence value is computed and
applied to filter the visual observable estimates, as is described
in Section V-C. The estimator is evaluated in combination with
our event-based optical flow algorithm in Section V-D.

A. Directional Flow Field Parameter Estimation

The presented approach is based on techniques introduced
in [48] and used in [7], [29], in which fully defined optical
flow estimates are available. Since our optical flow algorithm
provides normal flow output, a regular optical flow field
representation as in Eq. (10) leads to inaccurate parameter
estimates. However, in planar flow fields, normal flow may
already provide sufficient information for computing the visual
observables. Along the direction of the flow vector, normal
flow does provide accurate information.

An example diverging flow field with both optical flow
and normal flow is sketched in Fig. 8. Note that the normal

11

flow in some cases deviates significantly from the optical flow
equivalent, which leads to significant errors when computing
the flow field parameters. However, when grouped by direction
(which is done in Fig. 8 through the arrow colors), the normal
flow vectors indeed show the original pattern of divergence.
This idea is central to the proposed directional flow fields
approach.

Fig. 8. Example of a diverging flow field resulting from several randomly
oriented moving edges. The grey vectors indicate the true flow field, while
the colored vectors show the normal flow along the edge orientation. Each
color indicates a group of normal flow vectors with similar direction.

In order to observe flow field divergence along a normal
flow direction, at least two separate normal flow vectors are
required, whose positions are sufficiently apart. For example,
in Fig. 8 the purple group of normal flow vectors does not, by
itself, provide sufficient information for perceiving divergence.
Also, if the flow vectors are located in close proximity, errors
in normal flow magnitude have a larger influence. In Fig. 8
the green group is more sensitive to these errors than the red
group, since the edges are located closely together. Grouping
per direction enables assessment of the reliability of the flow
field in each direction, taking the previous issues into account.

A set of m directions {α1, α2, . . . , αN} is defined, where
α1 = 0 and αi − αi−1 = π/m. In this work, m = 6
directions are used. For each newly available flow vector, we
first determine the closest match of αi to the flow direction
αf . Each direction αi accommodates both flow in similar
and opposite direction, i.e. when −π < αf < 0, a match
is computed for αf + π.

Along the selected direction αi, the projected normal flow
position S and magnitude V are computed, hence obtaining a
one-dimensional representation of the flow along αi:

[
S
V

]
=

[
x̂ ŷ
û v̂

] [
cosαi
sinαi

]
(22)

Subsequently, it is corrected for rotational motion by sub-
tracting the normal component of the rotational flow:

VT = V − cosαi
(
p− ŷr − qx̂ŷ + px̂2

)

+ sinαi
(
q − x̂r − px̂ŷ + qŷ2

) (23)

For each direction, a one-dimensional flow field is main-
tained. From Eq. (10) and Eq. (22), the flow field in a single
direction is expressed as:

VT = −ϑx cosαi − ϑy sinαi + ϑzS (24)

To solve Eq. (24) for the visual observables, a weighted
least-squares solution is computed using the flow vectors
from all directions. Let cα = cosα and sα = sinα. The
overdetermined system to be solved is composed as follows:

−cα1
−sα1

S1,1

...
...

...
−cα1

−sα1
S1,n1

−cα2
−sα2

S2,1

...
...

...
−cα2

−sα2
S1,n2

...
...

...
−cαm

−sαm
Sm,nm

ϑx
ϑy
ϑz

 ≈

V1,1

...
V1,n1

V2,1

...
V2,n2

...
Vm,nm

(25)

which has the form AΘ ≈ y. The weighted least-squares
solution is then obtained from the normal equations:

ATWAΘ = ATWy (26)

in which W a diagonal matrix composed of the weights per
direction:

W = diag
(
W1, · · · ,W1,W2, · · · ,W2, · · · ,Wm

)
(27)

The weight Wi is used to represent the reliability of normal
flow along a direction i based on the spread of Si along that
direction. Its value is determined by the variance Var{Si}.
We let Wi scale linearly with Var{Si}, up to a maximum of
Var{S}min:

Wi =

0 Var{Si} = 0
Var{Si}

Var{S}min
0 < Var{Si} ≤ Var{S}min

1 Var{Si} > Var{S}min
(28)

The minimum variance Var{S}min is set to 600 pixels2.
Note also that, through the formulation of Eq. (25), direc-

tions with more normal flow estimates have a larger influence
on Θ. Hence, directions for which more information is avail-
able, contribute more to the solution.

B. Recursive Updating of the Flow Field

The solution to Eq. (26) for Θ provides the estimate for the
visual observables. However, depending on the sampling rate
of the estimator, it is possible that, during a single periodic
iteration, too few normal flow estimates are available for an
accurate fit. This leads to noise peaks in the measurement of
Θ, especially during low speed motion. To limit this effect,
the matrices A and y are not completely renewed at each
iteration. Instead, rows from previous iterations are retained
and assigned an exponentially decreasing weight, similar to
an exponential moving average filter.

For an efficient implementation of the former, A and y are
not explicitly composed as shown in Eq. (25). Instead, our
approach operates on the normal equations in Eq. (26). For
each direction independently, we recursively update parts of
the matrices B = ATWA and C = ATWy. These matrices
are composed by the following elements:

12

B =

b11 b21 b31

b21 b22 b32

b31 b32 b33

 , C =

c1
c2
c3

 (29)

From Eq. (25), it can be shown that the elements of B are
expressed as:

b11 =
m∑
i=1

Wini(cαi)
2
, b21 =

m∑
i=1

Winicαisαi

b22 =
m∑
i=1

Wini(sαi)
2
, b31 =

m∑
i=1

Wicαi

ni∑
j=1

Si,j

b33 =
m∑
i=1

Wi

ni∑
j=1

S2
i,j , b32 =

m∑
i=1

Wisαi

ni∑
j=1

Si,j

(30)

and those of C are expressed as:

c1 =
m∑
i=1

Wicαi

ni∑
j=1

Vi,j

c2 =
m∑
i=1

Wisαi

ni∑
j=1

Vi,j

c3 =
m∑
i=1

Wi

ni∑
j=1

Si,jVi,j

(31)

We introduce a shorthand notation ΣiS =
∑ni

j=1 Si,j to
represent the sums, cross-product sums, and sums of squares
of S and V for direction i. The unweighted contribution of the
associated flow vectors is then contained in ni and the sums
ΣiS , ΣiS2 , ΣiV , and ΣiSV . These values are further referred to as
the flow field statistics. Hence, a newly detected flow vector
is included in the flow field estimate by incrementing these
quantities according to the values S and V of the new vector.

What makes this decomposition interesting, is that the flow
field statistics form a compact summary of the flow field,
independent of the actual number of flow vectors. Thus, flow
field information from a previous iteration can be efficiently
included in subsequent ones, without increasing the size of
the system in Eq. (25). Now, at the start of each iteration, it
is possible to include information from the flow field of the
previous iteration, simply by preserving a fraction F of the
previous flow field statistics. Hence, the estimator accuracy is
less dependent on the sampling rate of the algorithm.

The preservation process is illustrated using the statistic
ΣiV . At the start of iteration k, ΣiV is initialized as ΣiV (k) =
FΣiV (k − 1). During iteration k, ΣiV is then updated using
newly available normal flow vectors that are allocated to
direction i. Hence, the complete update for ΣiV is performed
as follows:

ΣiV (k) = FΣiV (k − 1) +

ni∑

j=1

Vi,j (32)

The value of F is computed as:

F = 1− t(k)− t(k − 1)

kf
(33)

where the time constant kf is assigned a value of 0.02
s. This step is similar for all statistics. When all newly

available vectors are categorized and processed, the flow field
is recomputed using Eq. (26).

C. Confidence Estimation and Filtering

In visual sensing, the reliability of motion estimates varies
greatly depending on the environment. Factors such as visible
texture and scene illumination have an effect on the estimate.
With event-based sensing, motion in the scene is another key
factor.

Therefore, a confidence value is computed based on several
characteristics of the flow field, in order to quantify the
reliability of the estimate. This confidence value is defined
as a product of three individual confidence metrics based on
the following statistical quantities:
• The flow estimation rate ρF .
• The maximal variance Var{S} of all flow directions.
• The coefficient of determination R2 of the solution to

Eq. (26), applied here as a nondimensional measure of
the fit quality.

R2 is generally computed through the following [58]:

R2 = 1− RSS

TSS
(34)

In this work, the Residual Sum of Squares (RSS) and Total
Sum of Squares (TSS) are computed in weighted form as
follows:

RSS = yTWy −ΘTATWy

TSS = yTWy −

(
m∑
i=1

WΣiV

)2

m∑
i=1

Wni

(35)

For each indicator, a confidence value k is computed ranging
from 0 to 1 (higher is better), similar to the variance weight in
Eq. (28). The individual confidence values are thus dependent
on settings for R2

min, Var{S}min, and ρFmin
(not to be

confused with ρFmax). The values of R2
min and ρFmin are set

to 1.0 and 1500 respectively. Note that, since Eq. (28) already
provides individual confidence values per direction in the form
of W , we simply let kVar{S} = max (Wi : i = 1, . . . ,m).

The total confidence value K is then the product of kρF ,
kVar{S}, and kR2 . Hence, each individual confidence factor
needs to be close to 1 in order to obtain a high K. For
example, when ρF and R2 are very large, but the flow is
very localized (the maximal value for Var{S} is small),
the estimate is still not reliable. In this case, it is likely
that a single visual feature causes the normal flow, which is
insufficient for computing the visual observables.

The confidence K is useful to monitor the estimate quality
of the visual observables during flight. In addition, it is the
main component of a confidence filter for Θ. This filter is
based on a conventional infinite impulse response low-pass
filter, in which K is multiplied with the filter’s update constant.
The final estimate for the visual observables Θ̂ is determined
through the following update equation at iteration k:

13

Θ̂(k) = Θ̂(k − 1) +
(
Θ(k)− Θ̂(k − 1)

)
K
t(k)− t(k − 1)

kt
(36)

where kt is the time constant of the low-pass filter, which
is set to 0.02 s. Lastly, a saturation limit is applied that caps
the magnitude of the update of each individual value in Θ to
∆ϑmax in order to reject significant outliers. The value for
∆ϑmax is set to 0.3.

D. Results

For evaluating the accuracy of the presented visual ob-
servable estimator, we use the measurements generated for
evaluating optical flow performance in Section IV-D, which
are generated through handheld motion. Optitrack position
measurements provide the ground truth estimates for ϑx, ϑy ,
and ϑz . For each set, normal flow estimates are computed
using the C-based implementation discussed in Section IV-D.
The flow detection rate cap ρFmax

is set to 2500 flow vectors
per second and the periodic estimator samples the visual
observables at 100 Hz, similar to the on-board implementation
in Section VI.

In our experiments the main variable of interest is ϑz ,
as it forms the basis for the constant divergence controller.
Therefore, this variable is investigated over a wide range
of velocities. However, the estimates of ϑx and ϑy are also
interesting to assess, since a more elaborate optical flow based
controller may also include the horizontal components for
hover stabilization. The latter process does require the MAV
to perform rolling and pitching motion, inducing rotational
normal flow. Therefore, the effectiveness of derotation is
evaluated as well.

1) Vertical Motion: For assessment of ϑz estimates, ver-
tical oscillating motion was performed above both texture
types. The vertical speed of these oscillations was gradually
increased, hence covering a wide range of divergence values.
This enables a first-order characterization of the estimator
behavior.

Fig. 9 shows the resulting estimates compared to ground
truth measurements, accompanied by height measurements
h = −ZW . Detail sections are shown for low and high
divergence motion, for which also the confidence value is
shown.

The detail plots show that the estimator is relatively sensitive
to local outliers in normal flow at low speeds. In addition, the
confidence K is generally low due to lower detection rates
of optical flow and low value of R2. At higher speeds, the
errors are relatively smaller. Note that K is also generally
higher there. Somewhat lower confidence values are seen for
the roadmap texture.

Around sign changes, brief moments are present where the
confidence value K is low. The result of this is that, due to the
confidence filter, the update of ϑ̂z at these points is limited,
which leads to a local delay with respect to the ground truth.
However, when higher confidence estimates are available, the
estimate quickly converges back to the ground truth value.

Based on the estimator results in Fig. 9 we can assess how
the error varies with the ground truth divergence. Fig. 10 shows
the variation of the absolute error εϑz

= |ϑ̂z − ϑz| with the
magnitude of ϑz . A quadratic model ε = p0 + p1ϑz + p2ϑ

2
z

is fitted to the points, which is represented by the blue line.
The values of p0, p1, and p2 are shown in Table II. The
errors of both the checkerboard set and the roadmap set are
combined, since the estimator shows roughly the same error
distribution for both cases. Interestingly, the largest individual
errors appear to be present at low divergence. This results from
the local delay occurring around zero-crossings in Fig. 9. Note,
however, that the error increase with the magnitude of |ϑz| is
limited, which enables application of the presented pipeline to
a wide range of velocities.

In [31] an extensive characterization of two frame-based
visual estimators for ϑz is performed, which includes an
assessment of their absolute error distribution up to ϑz ≈ 1.3
(Fig. 10 in the paper). For a first-order comparison, Fig. 9
also shows the quadratic error fit obtained for the frame-based
’size divergence’ estimator, which performed best in [31].
Compared to the presented event-based estimator, the size
divergence estimator achieves slightly lower errors in the
region of ϑz < 0.5. However, for faster motion, the error is
lower for our event-based estimator. Note that our quadratic
model is based on relatively little measurements, and does
not yet provide a full characterization.

TABLE II
PARAMETERS OF THE QUADRATIC FIT MODELS IN FIG. 10.

This work Size divergence [31]
p0 0.0761 0.0455
p1 -0.0016 -0.0043
p2 0.0288 0.1841

2) Horizontal Motion: Estimation performance for the
components ϑx and ϑy is assessed through a dataset consisting
of primarily horizontal motion. In the following set, the DVS
is moved in a circular pattern above a checkerboard surface at
approximately 0.8 m height.

The resulting visual observable estimates are shown in
Fig. 11. For completeness, the values of ϑz are displayed
as well. Overall, the horizontal movement is captured well
in the estimates, although some disturbances are still clearly
present, for example around t = 23 s. The deviations are
comparable to those seen in the vertical motion dataset. A
summary of the error values is presented in Table III.

TABLE III
MEAN AND STANDARD DEVIATION OF ABSOLUTE ERRORS FOR THE

ESTIMATES DURING HORIZONTAL MOTION, SHOWN IN FIG. 11.

Mean abs. error [1/s] Standard deviation [1/s]
ϑx 0.094224 0.074771
ϑy 0.081472 0.068432
ϑz 0.059899 0.047099

3) Effect of Derotation: In order to assess how well normal
flow can be derotated with the current setup, measurements

14

30 40 50 60 70
0

0.5

1

t [s]

h
[m

]

30 40 50 60 70

−2

0

2

t [s]

ϑ
z

,ϑ̂
z

[1
/s

]

40 42 44

0

0.2

0.4

ϑ
z

,ϑ̂
z

[1
/s

]

40 42 44
0

0.2

0.4

0.6

0.8

1

t [s]

K
[-

]

62 63 64
−2

0

2

62 63 64
0

0.2

0.4

0.6

0.8

1

t [s]

(a) Checkerboard texture

35 40 45 50 55 60
0

0.5

1

t [s]

h
[m

]

35 40 45 50 55 60

−1

0

1

t [s]

ϑ
z

,ϑ̂
z

[1
/s

]

40 42 44 46

0

0.2

ϑ
z

,ϑ̂
z

[1
/s

]

40 42 44 46
0

0.2

0.4

0.6

0.8

1

t [s]

K
[-

]

61 61.5 62 62.5

−1

0

1

61 61.5 62 62.5
0

0.2

0.4

0.6

0.8

1

t [s]

(b) Roadmap texture

Fig. 9. From top to bottom: Height measurements (top row) and estimates of ϑz (second row, red line) in comparison to ground truth measurements
(blue line). The two bottom rows show detail sections of ϑz estimates (third row) at low speed and high speed, as well as the accompanying estimate
confidence value K (bottom row). Measurements are shown for (a) checkerboard and (b) roadmap textures separately.

−2 0 2
0

0.2

0.4

0.6

0.8

1

ϑz [1/s]

ε ϑ
z

[1
/s

]

Measurements Quadratic fit Size divergence [31]

−0.4−0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

ϑz [1/s]

ε ϑ
z

[1
/s

]

Fig. 10. Left: absolute error distribution for the estimates of ϑz shown
in Fig. 9. The measurements of the checkerboard and roadmap datasets are
combined here. The red line shows a quadratic fit of the error. For comparison,
the model obtained for the frame-based size divergence estimator [31] is
shown as well. Right: detail view of the error distribution around ϑz = 0.

were conducted in which the DVS performed pure rotation
along all axes. We compare body rate measurements, ground
truth values for ϑx and ϑy , and estimates with and without
derotation. Fig. 12 shows these quantities obtained in three
separate sequences, in which each body rate is varied inde-
pendently.

The most relevant influences are those of p on ϑx and q on
ϑy , which are shown in the top and middle graphs respectively.
The influence of r is less profound. For conciseness, only

20 22 24 26 28
0

0.2
0.4
0.6
0.8
1

t [s]

h
[m

]

18 20 22 24 26 28
−1

−0.5

0

0.5

1

t [s]

ϑ
x

,ϑ̂
x

[1
/s

]

20 22 24 26 28
−1

−0.5

0

0.5

1

t [s]

ϑ
y

,ϑ̂
y

[1
/s

]

20 22 24 26 28
−1

−0.5

0

0.5

1

t [s]

ϑ
z

,ϑ̂
z

[1
/s

]

Fig. 11. Height and visual observable measurements (blue) and estimates
(red) during horizontal motion above checkerboard texture.

15

18.5 19 19.5 20 20.5

−2

0

2

t [s]

−
p

[r
ad

/s
],
ϑ
x

[1
/s

]

24.5 25 25.5 26 26.5

−2

0

2

t [s]

q
[r

ad
/s

],
,ϑ

y
[1

/s
]

29 29.5 30 30.5 31 31.5

−2

0

2

t [s]

r
[r

ad
/s

],
,ϑ

y
[1

/s
]

-p, q, r Ground Truth
Estimate Derotated Estimate

Fig. 12. Baseline and derotated estimates of ϑx, ϑy compared to ground
truth measurements and body rates p, q, and r. Note that the sign of p is
inverted to match ϑx.

the effect of r on ϑy is shown, which provided the clearest
result. Some residual motion in p and q is present in the latter
case, though it does not fully account for the deviation seen
in Fig. 12. Note that the derotation process generally performs
well; the largest part of the rotational flow is successfully
corrected in the derotated estimate.

VI. CONSTANT DIVERGENCE LANDING EXPERIMENTS

This section presents experimental results of constant diver-
gence landings with the presented algorithms in the control
loop. In Section VI-A the divergence control law is defined,
after which the experimental setup is detailed in Section VI-B.
Results from the experiments are presented and discussed in
Section VI-C.

A. Divergence Controller
The control law regulates ϑz through the vertical thrust T .

The controller applies a thrust difference ∆T with respect to
a nominal hover thrust T0, such that T = T0 + ∆T . A simple
proportional control law is applied to ∆T based on ϑz , similar
to [8]:

∆T = kP (ϑzr − ϑz) (37)

The nominal hover thrust T0 counteracts the weight of the
test vehicle. Its value is adapted in-flight in the height control
loop of the test vehicle’s autopilot software. Before the start
of each landing, the vehicle first performs automatic hover to
obtain a stable estimate for T0. During the subsequent landing
maneuver its value is kept constant.

B. Experimental Setup

The flying platform used in this work is a customized
quadrotor referred to as the MavTec. Its main component
is a Lisa/M board, which features a 72MHz 32bit ARM
microprocessor as well as a pressure sensor and 3-axis rate
gyros, accelerometers, and magnetometers. The Lisa/M runs
the open-source autopilot software Paparazzi1, which handles
the control of the drone. The DVS is mounted at the bottom
of the MavTec facing downwards, aligned according to the
reference frame definitions of C and B in Section III. Ex-
periments are performed indoors, using an Optitrack motion
tracking system to measure ground truth position and attitude.

In addition, an Odroid XU4 board is mounted on the
quadrotor, which processes the event output of the DVS. It
features a Samsung Exynos 5422 octacore CPU (four cores at
2.1 GHz and four at 1.5 GHz). The Odroid receives the events
from the DVS through a USB 2.0 connection and processes
these through the C-based open-source software cAER [59].

An overview of the experimental setup is shown in Fig. 13,
including an overview of the on-board processing workflow in
Fig. 13c. The estimation pipeline is subdivided in two stages.
First, raw events are transmitted from the DVS to the Odroid
through a USB interface. In cAER, optical flow is computed
from the events using an implementation of our optical flow
algorithm. Any event for which flow is estimated, is trans-
mitted to the Lisa/M board through a serial UART interface.
This process is completely event-based and is performed in
a single thread. Separate threads handle event reception and
transmission through the USB and UART interfaces.

Second, in Paparazzi, a periodic follow-up processing thread
runs at 100 Hz. At each iteration, all newly received optical
flow events are collected and corrected for the quadrotor’s atti-
tude and rotational motion. When all new events are processed,
new estimates of the scaled velocities are computed with
accompanying confidence values. A separate thread running
at 512 Hz performs divergence control using the new update
for ϑz , as well as horizontal position control and stabilization.

The source code for our versions of cAER and Paparazzi
are publicly available online2.

C. Results

Constant divergence landing maneuvers were performed for
several values of the setpoint ϑzr . During the tests, the target
ground location was covered with the roadmap textured mat
shown in Fig. 5b. Currently, no mechanism is implemented
to account for instability of constant divergence landings at
low height, as described in [8]. Therefore, when significant
self-induced oscillations are observed, the landing maneuver
is manually terminated.

Resulting flight profiles (height, vertical speed, and di-
vergence) are shown in Fig. 14 for setpoints of ϑzr =
{0.5, 0.7, 1.0}. Note that these values are much higher than the
setpoints in comparable frame-based experiments [6], [7]. The
estimates for ϑz are shown in comparison to the ground truth

1Paparazzi UAV, http://wiki.paparazziuav.org/
2cAER: https://github.com/baspijhor/caer/tree/flow adaptive final

Paparazzi: https://github.com/baspijhor/paparazzi/tree/event based flow

16

(a) Top view

(b) Bottom view showing the DVS

DVS Events

IMU Rotational
Rates

Flow Direction
Assignment and

Derotation

Visual
Observables
Estimation
(100 Hz)

Attitude Control

Divergence
Control

cAER, runs on Odroid

Optitrack Position
Measurements

Refractory Period
Optical Flow
Estimation

Estimation Rate
Control

UART

Paparazzi, runs on Lisa /M

Horizontal Position
Control

On-board systems

Thrust Command

Roll, Pitch, Yaw

Command

(c) Overview of the implementation

Fig. 13. Overview of the experimental setup, including pictures of the MavTec. In (a) a top view of the vehicle is shown. The DVS is located at the
bottom, protected by a foam cover. In (b) the cover is removed to expose the DVS. In (c) an overview of the processing workflow is shown, indicating
the distribution of processes over the Odroid and the Lisa/M processors.

estimate and the corresponding setpoint. For these maneuvers,
the proportional gain kP is set to 0.2. This gain ensures that
the descent remains stable during the first part. Decent tracking
performance is seen for the lower two setpoints, while at
ϑzr = 1.0 some overshoot is observed. Still, a faster response
may be obtained with an adaptive gain, such as in [31].

The expected instability is also clearly visible. For each
setpoint, oscillations with diverging amplitude start to appear
when the height is around 0.6 m above the ground, requiring
the maneuver to be aborted manually at the moment. Also,
a time delay is observed, whose magnitude differs between
datasets. By examining the cross-correlation functions of the
estimate and ground truth signals, average time delays of 0.05
s, 0.04 s, and 0.10 s are observed for the respective signals.
A possible cause for this is the latency in the UART interface
between the Odroid and the Lisa/M. Also, part of the delay
results from the confidence filter that delays visual observable
updates around zero-crossings.

In practice, the visual observable estimator thread running
on the Lisa/M microprocessor does not maintain its target
frequency of 100 Hz with an optical flow measurement rate
ρFmax

of 2500 events per second. Instead, it drops to around 75
Hz during the landing maneuvers. However, given the limited
processing power of the microprocessor, this is still a decent
result. It well exceeds sampling rates seen in recent frame-
based optical flow estimation pipelines, which are in the order
of 15 to 25 Hz [6], [8], [29], [31]. Also, with a lower setting
of ρFmax

(around 2000 optical flow events per second), the
target frequency of 100 Hz is well attainable. The Odroid
can transmit up to approximately 8500 optical flow events per
second over the UART connection, limited by the baud rate
of 921.6 kilobytes per second.

0 2 4 6
0

1

2

3

4

landing starts

t [s]

h
[m

]

ϑzr = 0.5
ϑzr = 0.7
ϑzr = 1.0

0 2 4 6
−2

−1

0

t [s]

W
W

[m
/s

]

0 2 4 6
−0.5

0

0.5

1

1.5

t [s]

ϑ
z

.ϑ̂
z

[1
/s

]

Fig. 14. Height above ground, vertical speed, and divergence measurements
with ground truth during a constant divergence landings performed at three
different divergence setpoints. In the bottom graph, the dotted, dashed,
and solid lines represent the setpoint, ground truth, and estimate for ϑz
respectively.

For the largest part, the maneuvers are executed success-
fully, even for high divergence values setpoints. With ϑzr =
1.0, the MAV performs a rapid maneuver, descending from
a height of 3.5 m to 1 m within 1.79 s. In comparable

17

recent experiments with frame-based cameras for divergence
measurement [31], landings were performed up to ϑzr = 0.3.
Since higher values have not been attempted in these exper-
iments, we cannot know for certain that frame-based optical
flow is not applicable to such high speeds.

VII. CONCLUSION

In this paper we present a successful implementation of
event-based optical flow estimation into a constant divergence
landing controller for flying robots. Three main contributions
lead to this result.

First, a novel algorithm for computing event-based optical
flow is derived from an existing local plane fitting technique.
The algorithm is capable of estimating normal optical flow
with a wide range of magnitudes through timestamp-based
clustering of the event cloud. Its performance is evaluated in
ground texture scenes recorded by a DVS. Accurate estimates
are seen in real event scenes with sparse, high contrast edges,
as well as in scenes with densely packed, lower contrast
features. Compared to the existing technique, optical flow
accuracy is slightly improved for fast motion, while a larger
number of succesful optical flow estimates is obtained during
slow motion. In addition, it is shown that the optical flow
detection rate can be capped to limit computational effort
for the algorithm, which enables implementation on low-end
platforms without sacrificing accuracy.

Second, we introduce an algorithm for estimating optical
flow based visual observables from normal optical flow mea-
surements. By grouping flow vectors by their direction, the
aperture problem is circumvented for estimating the param-
eters of a planar optical flow field. The estimator assesses
the reliability of its output through a confidence metric based
on the flow estimation rate, the variance of optical flow
positions, and the coefficient of determination of the flow field.
When coupled to the optical flow algorithm, it is capable of
estimating the visual observables accurately over a wide range
of speeds. Also, the influence of fast rotational motion on the
visual observables is adequately corrected through separate
rotational rate measurements.

Third, using the developed pipeline, fast constant diver-
gence landing maneuvers are demonstrated using a quadrotor
equipped with a downward facing DVS. Decent tracking
performance is achieved for the majority of the descent using
a simple proportional controller. The final touchdown of the
landing maneuver is not yet performed due to self-induced
oscillations close to the ground. However, stability-based
control methods have already been demonstrated that can
resolve this issue. A future controller based on these methods
can, for example, autonomously detect the oscillations and
switch to a final touchdown phase based on constant thrust,
or perform a complete landing maneuver using an adaptive
gains. In addition, our controller does not yet incorporate the
visual observables for horizontal stabilization, but relies on an
external position tracking system. However, with the estimate
accuracy and rotational motion correction presented in this
work, this appears feasible.

In a first-order comparison to recent work on landing
using frame-based cameras for estimating optical flow, the

presented event-based pipeline demonstrates more accurate
measurements at high speed and a higher sampling rate, which
enable faster maneuvers. However, for a more solid conclu-
sion regarding real-time computational benefits of event-based
vision, a comparison should be performed where both frame-
based and event-based cameras are incorporated in the same
hardware configuration.

While miniature frame-based bottom cameras are readily
embedded into several commercially available quadrotors, the
on-board hardware configuration in this work is still relatively
bulky and inefficient. The implementation in this work is
performed on a relatively large MAV in order to carry the
weight of the DVS with separate computers for processing
events and estimation of visual observables. However, with
the availability of smaller and lighter event-based cameras,
such as the 2.2 mg meDVS, embedded implementations on
smaller vehicles are possible, enabling the full potential of the
sensor’s low latency.

REFERENCES

[1] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
2015.

[2] C. De Wagter, S. Tijmons, B. D. W. Remes, and G. C. H. E. De Croon,
“Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram
onboard stereo vision system,” in Proceedings - 2014 IEEE International
Conference on Robotics and Automation, 2014, pp. 4982–4987.

[3] J. J. Gibson, The ecological approach to visual perception. Boston:
Houghton Mifflin, 1979.

[4] E. Baird, N. Boeddeker, M. R. Ibbotson, and M. V. Srinivasan, “A
universal strategy for visually guided landing,” Proceedings of the
National Academy of Sciences of the United States of America, vol.
110, no. 46, pp. 18 686–18 691, 2013.

[5] B. Herisse, F. X. Russotto, T. Hamel, and R. Mahony, “Hovering flight
and vertical landing control of a VTOL Unmanned Aerial Vehicle using
optical flow,” in 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008, pp. 801–806.

[6] B. Herissé, T. Hamel, R. Mahony, and F.-X. Russotto, “Landing a VTOL
Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow,”
IEEE Transactions on Robotics, vol. 28, no. 1, pp. 77–89, 2012.

[7] H. W. Ho and G. C. H. E. De Croon, “Characterization of Flow Field
Divergence for MAVs Vertical Control Landing,” in AIAA Guidance,
Navigation, and Control Conference, 2016, pp. 1–13.

[8] G. C. H. E. De Croon, “Monocular distance estimation with optical flow
maneuvers and efference copies: a stability-based strategy,” Bioinspira-
tion & Biomimetics, vol. 11, no. 1, pp. 1–18, 2016.

[9] C. Posch, T. Serrano-Gotarredona, B. Linares-barranco, and T. Delbrück,
“Retinomorphic Event-Based Vision Sensors : Bioinspired Cameras
With Spiking Output,” Proceedings of the IEEE, vol. 102, no. 10, pp.
1470–1484, 2014.

[10] F. Ruffier and N. Franceschini, “Optic Flow Regulation in Unsteady En-
vironments: A Tethered MAV Achieves Terrain Following and Targeted
Landing Over a Moving Platform,” Journal of Intelligent & Robotic
Systems, vol. 79, pp. 275–293, 2014.

[11] D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner,
R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski,
G. L’Eplattenier, F. Recktenwald, H. a. Mallot, and N. Franceschini,
“Miniature curved artificial compound eyes.” in Proceedings of the
National Academy of Sciences of the United States of America, vol.
110, 2013, pp. 9267–72.

[12] M. Yang, S.-C. Liu, and T. Delbruck, “A Dynamic Vision Sensor With
1% Temporal Contrast Sensitivity and In-Pixel Asynchronous Delta
Modulator for Event Encoding,” IEEE Journal of Solid-State Circuits,
vol. 50, no. 9, pp. 2149–2160, 2015.

[13] J. Conradt, R. Berner, M. Cook, and T. Delbruck, “An embedded AER
dynamic vision sensor for low-latency pole balancing,” in 2009 IEEE
12th International Conference on Computer Vision Workshops, ICCV
Workshops, 2009, pp. 780–785.

18

[14] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction time at
4% CPU load using event-based dynamic vision sensor,” Frontiers in
Neuroscience, vol. 7, no. 223, pp. 1–7, 2013.

[15] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan,
“Asynchronous frameless event-based optical flow,” Neural Networks,
vol. 27, pp. 32–37, 2012.

[16] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow.” IEEE transactions on neural networks and
learning systems, vol. 25, no. 2, pp. 407–17, 2014.

[17] F. Barranco, C. Fermuller, and Y. Aloimonos, “Contour Motion Esti-
mation for Asynchronous Event-Driven Cameras,” Proceedings of the
IEEE, vol. 102, no. 10, pp. 1537–1556, 2014.

[18] T. Brosch, S. Tschechne, and H. Neumann, “On event-based optical flow
detection,” Frontiers in Neuroscience, vol. 9, no. 137, pp. 1–15, 2015.

[19] P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous Optical
Flow and Intensity Estimation from an Event Camera,” in Proceedings of
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 884–892.

[20] F. Barranco, C. Fermuller, Y. Aloimonos, and T. Delbruck, “A Dataset
for Visual Navigation with Neuromorphic Methods,” Frontiers in Neu-
roscience, vol. 10, no. February, pp. 1–9, 2016.

[21] B. Ruckauer and T. Delbruck, “Evaluation of event-based algorithms
for optical flow with ground-truth from inertial measurement sensor,”
Frontiers in Neuroscience, vol. 10, no. 176, 2016.

[22] X. Clady, C. Clercq, S.-H. Ieng, F. Houseini, M. Randazzo, L. Natale,
C. Bartolozzi, and R. Benosman, “Asynchronous visual event-based
time-to-contact.” Frontiers in neuroscience, vol. 8, no. 9, 2014.

[23] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[24] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 1, 2004, pp. I—-652.

[25] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO : Fast Semi-Direct
Monocular Visual Odometry,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 15–22.

[26] J. Engel, T. Schöps, and D. Cremers, “{LSD-SLAM}: Large-scale direct
monocular {SLAM},” in European Conference on Computer Vision
(ECCV). Springer International Publishing, 2014, pp. 834–849.

[27] F. Expert and F. Ruffier, “Flying over uneven moving terrain based on
optic-flow cues without any need for reference frames or accelerome-
ters.” Bioinspiration & biomimetics, vol. 10, 2015.

[28] M. Srinivasan, S. Zhang, M. Lehrer, and T. Collett, “Honeybee naviga-
tion en route to the goal: visual flight control and odometry,” Journal
of Experimental Biology, vol. 199, no. 1, pp. 237–244, 1996.

[29] M. T. Alkowatly, V. M. Becerra, and W. Holderbaum, “Bioinspired
Autonomous Visual Vertical Control of a Quadrotor Unmanned Aerial
Vehicle,” Journal of Guidance, Control, and Dynamics, vol. 38, no. 2,
pp. 249–262, 2015.

[30] D. N. Lee, “A theory of visual control of braking based on information
about time-to-collision.” Perception, vol. 5, no. 4, pp. 437–459, 1976.

[31] H. W. Ho, G. C. H. E. de Croon, E. van Kampen, Q. P. Chu,
and M. Mulder, “Adaptive Control Strategy for Constant Optical
Flow Divergence Landing,” pp. 1–14, 2016. [Online]. Available:
http://arxiv.org/abs/1609.06767

[32] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15 µs
Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[33] D.-i. D. Cho and T.-j. Lee, “A Review of Bioinspired Vision Sensors and
Their Applications,” Sensors and Materials, vol. 27, no. 6, pp. 447–463,
2015.

[34] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB dy-
namic range frame-free PWM image sensor with lossless pixel-level
video compression and time-domain CDS,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 1, pp. 259–275, 2011.

[35] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240x180
130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor,”
IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341,
2014.

[36] J. Conradt, “On-Board Real-Time Optic-Flow for Miniature Event-Based
Vision Sensors,” in 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO), Zhuhai, China, 2015.

[37] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous local-
ization and mapping for event-based vision systems,” in International
Conference on Computer Vision Systems. Springer-Verlag Berlin
Heidelberg, 2013, pp. 133–142.

[38] D. Weikersdorfer, D. B. Adrian, and D. Cremers, “Event-based 3D
SLAM with a depth-augmented dynamic vision sensor,” 2014 IEEE
International Conference on Robotics and Automation (ICRA), pp. 359–
364, 2014.

[39] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-DOF Pose
Tracking for High-Speed Maneuvers,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 2761–2768.

[40] H. Kim, “Simultaneous Mosaicing and Tracking with an Event Camera,”
in Proceedings of the British Machine Vision Conference 2014, 2014.

[41] H. Kim, S. Leutenegger, and A. J. Davison, “Real-Time 3D Recon-
struction and 6-DoF Tracking with an Event Camera,” in European
Conference on Computer Vision. Amsterdam: Springer International
Publishing, 2016, pp. 349–364.

[42] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-Latency
Visual Odometry using Event-based Feature Tracks,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016.

[43] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” International
Journal of Computer Vision, vol. 92, no. 1, pp. 1–31, 2011.

[44] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, pp. 185–203, 1981.

[45] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in International Joint Conference
on Artificial Intelligence, vol. 81, 1981, pp. 674–679.

[46] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Computing Surveys, vol. 27, no. 3, pp. 433–466, 1995.

[47] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a machine
learning approach to corner detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–19, 2008.
[Online]. Available: http://arxiv.org/pdf/0810.2434

[48] G. C. H. E. De Croon, H. W. Ho, C. De Wagter, E. Van Kampen,
B. Remes, and Q. P. Chu, “Optic-flow based slope estimation for
autonomous landing,” International Journal of Micro Air Vehicles, vol. 5,
no. 4, pp. 287–297, 2013.

[49] J.-Y. Bouguet, “Pyramidal implementation of the Lucas Kanade
feature tracker - Description of the Algorithm,” Intel Corporation,
Microprocessor Research Labs, vol. 5, 2001. [Online]. Available:
http://robots.stanford.edu/cs223b04/algo affine tracking.pdf

[50] J.-C. Zufferey, A. Beyeler, and D. Floreano, “Autonomous flight at low
altitude using light sensors and little computational power,” International
Journal of Micro Air Vehicles, vol. 2, no. 2, pp. 107–117, 2010.

[51] F. Ruffier and N. Franceschini, “Optic flow regulation: The key to
aircraft automatic guidance,” Robotics and Autonomous Systems, vol. 50,
no. 4, pp. 177–194, 2005.

[52] X. Clady, S.-H. Ieng, and R. Benosman, “Asynchronous event-based
corner detection and matching.” Neural Networks, vol. 66, pp. 91–106,
2015.

[53] F. Barranco, C. Fermuller, and Y. Aloimonos, “Bio-inspired Motion
Estimation with Event-Driven Sensors,” in Advances in Computational
Intelligence. Springer International Publishing, 2015, pp. 309–321.

[54] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a moving
retinal image.” Proceedings of the Royal Society of London, B: Biolog-
ical Sciences, vol. 208, no. 1173, pp. 385–397, 1980.

[55] D. Brown, “Decentering Distortion of Lenses,” Photometric Engineer-
ing, vol. 32, no. 3, pp. 444–462, 1966.

[56] J.-Y. Bouguet, “Complete Camera Calibration Toolbox for Matlab,”
1999. [Online]. Available: http://www.vision.caltech.edu/bouguetj/calib
doc/

[57] M. T. Heath, Scientific computing: an introductory survey, 2nd ed. New
York: McGraw-Hill, 2002.

[58] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005.
[59] L. Longinotti, “cAER: A framework for event-based processing on

embedded systems,” BSc Thesis, University of Zürich, 2014. [Online].
Available: http://sourceforge.net/projects/jaer/files/cAER/

Part II

Literature Review

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

Chapter 2

Landing Strategies for Micro Air
Vehicles using Optical Flow

The concept of optical flow is a means to quantify motion in the images perceived by cameras
and biological retinas. Several animals use implicit features of perceived optical flow to
control ego-motion, which result in surprisingly simple models of their behavior. These models
formed inspiration for the development of basic control systems for MAVs. First, we introduce
optical flow concepts through a mathematical model in Section 2-1. Second, we describe the
estimation process of optical flow in these applications through conventional cameras and
through special sensors for optical flow perception in Section 2-2. Next, we discuss landing
strategies seen in biology in Section 2-3 and their applications involving MAVs in Section 2-4.

2-1 Modeling optical flow

To mathematically represent the perception of motion in monocular vision, a model is intro-
duced that relates the motion of points on an image to the corresponding motion of these
points in the world. A common approach is to use a perspective projection model of motion,
often referred to as the pinhole camera model. This model simplifies images appearing on
spherical retinas through the assumption that the retina is planar. Hence, the relation be-
tween points in the world and their projection on the image plane become simple equations.
In applications involving wide-angle viewing, for example using omnidirectional or fisheye
cameras, it may be necessary to apply a more advanced projection model, such as a spherical
model (Geyer & Daniilidis, 2000), as this assumption will not be valid. However, for the
camera used in this work, the pinhole camera model is sufficiently accurate.

2-1-1 Optical flow in the pinhole camera model

The formulation of Longuet-Higgins and Prazdny (1980) is frequently employed (e.g. De
Croon et al., 2013; Ho & De Croon, 2016) and is applied in this work to model optical flow.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

28 Landing Strategies for Micro Air Vehicles using Optical Flow

Figure 2-1 shows a sketch of a point A with coordinates (X,Y, Z) in an observer-fixed reference
frame OXY Z. The origin corresponds to the nodal point of the observer. The Z-axis is the
optical axis. A plane normal to the Z-axis is located in front of the observer, representing
the retina or focal plane of the observer. The intersection of this plane and the optical axis,
point o = (xp, yp) is the principal point.

In arbitrary ego-motion, the observer reference frame is subject to translational velocities
(U, V,W) along, and rotational velocities (p, q, r) around the X-, Y -, and Z-axes respectively.
In this situation, the derivatives of the coordinates of point A with respect to the observer
are:

Ẋ = −U − qZ + rY

Ẏ = −V − rX + pZ

Ż = −W − pY − qX
(2-1)

r

W
Z

O

U

X

Y

V

q

p

A

a

o

Figure 2-1: Projection of a world point on the image plane in a pinhole camera model. Adapted
from Longuet-Higgins and Prazdny (1980).

Let (x̂, ŷ) = (X/Z, Y/Z) represent the normalized coordinates of the point projected at an
image plane at a distance of 1 m from the origin This point produces observable optical flow

with velocity components (û, v̂) =
(

˙̂x, ˙̂y
)

. Now û and v̂ can be represented in terms of the

ego-motion of the observer, and the depth of the point:

û = Ẋ/Z −XŻ/Z2 = (−U/Z − q + rŷ)− x̂ (−W/Z − pŷ + qx̂)

v̂ = Ẏ /Z − Y Ż/Z2 = (−V/Z − rx̂+ p)− ŷ (−W/Z − pŷ + qx̂)
(2-2)

These equations show that the motion of a point on the image plane consists of one part due
to translational motion, and another due to rotations:

ûT = (−U + x̂W) /Z, ûR = −q + rŷ + px̂ŷ − qx̂2

v̂T = (−V + ŷW) /Z, v̂R = −rx̂+ p+ pŷ2 − qx̂ŷ (2-3)

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

2-1 Modeling optical flow 29

2-1-2 Simplified visual observables derived from optical flow

Assuming that the observer’s environment is static, the observer’s ego-motion states (p, q, r,
U ,V ,W) are equal for all world points. The point depth Z varies per point. Hence, if multiple
points and their associated optical flow, one could combine optical flow observations for mul-
tiple points in order to solve for depths and ego-motion. This is a complex calculation which
forms a basis for e.g. structure-from-motion (estimating the world point depths) (Adiv, 1985)
and monocular visual odometry (estimating observer motion and position) problems (Nistér,
Naroditsky, & Bergen, 2004). Solutions to these problems are computationally demanding
and result into low-rate control systems (e.g. Kendoul, Fantoni, & Nonami, 2009).

However, other quantities regarding the observer’s motion can be extracted using a simpler
approach. These visual observables provide non-metric information regarding the relative
motion of the observer, that are still useful for navigation tasks. In the case of landing
maneuvers, Eq. (2-3) can be simplified through two assumptions, which we discuss in the
following.

Derotation

First, if the observer can, through other sensors, obtain information on rotational velocity,
the rotational flow components can be corrected for, i.e. the flow can be derotated. This
correction is often seen in MAV-related applications, since MAVs are commonly equipped
with rotational rate sensors as part of an Inertial Measurement Unit (IMU) (e.g. De Croon
et al., 2013; Grabe, Bulthoff, Scaramuzza, & Giordano, 2015; Herissé et al., 2012).

With the rotational components left out, some basic motion cues are provided by Eq. (2-3). It
is shown by Longuet-Higgins and Prazdny (1980) that, if we define the coordinates x̂f = U/W
and ŷf = V/W , the translational velocities become:

ûT = (x̂− x̂f)W/Z, v̂T = (ŷ − ŷf)W/Z (2-4)

Hence, if there is a translational motion W , a point on the image plane (x̂f , ŷf) exists where û
and v̂ are zero independent of the point depth, while their magnitude increases further away
from this point. This point is therefore referred to as the FoE, or in the case of negative W ,
Focus of Contraction (FoC). This visual cue provides the observer with a sense of motion
direction. Further, if this point is known, it is possible to compute for each point the time-
to-contact τ = Z/W to the corresponding world point. This quantity provides a non-metric
measure of how fast the observer approaches this world point.

Planar flow

Second, if the camera is viewing a perfectly planar surface, a constraint can be imposed on
the depth of points, based on their projected position and the orientation of the plane. With
this assumption, a deterministic expression for the components of a planar flow field can be
obtained. De Croon et al. (2013) proposed an expression that directly expresses the flow field
in terms of the plane slopes and the observer’s normalized velocities. Let Z0 represent the
distance to the plane along the optical axis of the observer, and (ZX , ZY) the plane slopes

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

30 Landing Strategies for Micro Air Vehicles using Optical Flow

along the observer’s X- and Y -axes respectively. Further, let ϑx = U/Z0, ϑy = V/Z0, and
ϑz = W/Z0 represent the velocities of the observer, normalized by Z0. As shown by De Croon
et al. (2013), this results in the following expression:

û = −ϑx + (ϑxZX + ϑz)x̂+ ϑxZY ŷ − ZXϑzx̂2 − ZY ϑzx̂ŷ
v̂ = −ϑy + ϑyZX x̂+ (ϑyZY + ϑz)ŷ − ZY ϑz ŷ2 − ZXϑzx̂ŷ (2-5)

A further simplification can be made if the slopes are negligible. Then Eq. (2-5) reduces to a
very simple expression relating normalized velocities to the flow field:

û = −ϑx + ϑzx̂
v̂ = −ϑy + ϑz ŷ

(2-6)

The normalized velocities ϑx, ϑy, ϑz are valuable sources of information in the visual percep-
tion of motion usable for basic navigation. They are the main visual observables in this thesis.
Similar to the general case, τ can be obtained from ϑz, in this case through τ = Z0/W = 1/ϑz.
Alternatively, ϑz can be related to the flow field divergence D, which is defined as (McCarthy,
Barnes, & Mahony, 2008):

D (x, y) =
∂û

∂x̂
(x̂, ŷ) +

∂v̂

∂ŷ
(x̂, ŷ) (2-7)

From Eq. (2-6) is then derived that, in translational motion facing perpendicular to a planar
surface, D = 2ϑz = 2/τ .

The remaining normalized velocities ϑx, ϑy are the opposites of the ventral flows ωx, ωy of the
ground plane, i.e. ωx = −ϑx, ωy = −ϑy. The ventral flows quantify the projected velocities
of the ground plane on the retina.

2-2 Optical flow measurement

As optical flow is perceived through changes in light perception, measurement of optical flow is
possible from sensors that measure brightness. The main type of sensor used for this purpose
is a regular frame-based camera that outputs a stream of images. In addition, specialized
sensors for optical flow measurement have been developed and used for navigation tasks. We
briefly discuss here how these are used and what the limitations of both approaches are.

2-2-1 Frame-based cameras

Charge-Coupled Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS)
imaging sensors, i.e. frame-based camera sensors, are widely used and highly versatile. Be-
sides navigation, frame-based cameras enable intelligent visual perception capabilities for
MAVs. Computer vision techniques can be employed for object detection, feature tracking,
classification, scene reconstruction, and mapping. In autonomous applications for MAVs such
capabilities are essential. Also for remote piloted applications, operators usually require vi-
sual information from the MAV. For surveillance, exploration, aerial video, and inspection

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

2-2 Optical flow measurement 31

applications, the camera is the main payload of the MAV. Extending their usage to visual
navigation is therefore a straightforward option.

On-board cameras for MAVs typically enable optical flow update rates in the range of 15 to
25 Hz (De Croon, 2016; Grabe et al., 2015; Herissé et al., 2012). From these images, optical
flow estimation is performed using computer algorithms. The main drawback of optical
flow estimation from frame-based cameras is that processing in real-time is computationally
intensive, as is seen in real-time implementations. In the following we discuss techniques and
issues that are frequently seen in MAV and real-time robotic applications.

Frame-based optical flow techniques

In this work we primarily distinguish between local and global approaches to computing
optical flow. In a local approach, optical flow is estimated at certain pixel locations
incorporating information from neighboring pixels. In contrast, global approaches compute
dense image flow over a full image.

The local approach of Lucas and Kanade (1981) (further referred to as ‘Lucas-Kanade’) is
the technique mostly used in real-time optical flow applications, where it outperforms other
classical methods (McCarthy & Barnes, 2004). Despite its long existence, it is still a leading
approach in recent real-time MAV applications (e.g. De Croon, 2016; Grabe et al., 2015; Ho
& De Croon, 2016). It result from the brightness constancy constraint, which states that total
brightness is conserved across sequential frames. This constraint can be expressed in the form
of the following partial differential equation:

Ixu+ Iyv = −It (2-8)

where Ix, Iy and It are the partial derivatives of I, which can be computed from two sequential
frames, and (u, v) are the velocity components of an optical flow at the image level, i.e. in
pixels per second. As such, however, Eq. (2-8) is insufficient to determine u and v. To solve
this, Lucas and Kanade (1981) proposed the assumption that, within the direct neighborhood
of a point in the image, u and v are constant. Hence, with n > 2 neighboring pixels, an
overdetermined system of equations is obtained:

(Ix)1 (Iy)1
...

...
(Ix)n (Iy)n

[
u
v

]
= −

(It)1
...

(It)n

 (2-9)

From Eq. (2-9), estimates for u and v are obtained through ordinary least-squares.

A global estimation technique seen in early MAV applications (Chahl, Srinivasan, & Zhang,
2004) is based on image interpolation (M. V. Srinivasan, 1994). This technique computes
reference images to which predefined transformations are applied, e.g. translation or rotation.
Then, through interpolation the most likely transformation is estimated. It is well-suited for
computing ventral flows, though not for more complex motion patterns, such as divergence
from an unknown FoE.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

32 Landing Strategies for Micro Air Vehicles using Optical Flow

Aperture problem, normal flow, and corners

A common issue in optical flow estimation is the aperture problem. It occurs when there
is ambiguity in the observed motion due to a limited field of view (Beauchemin & Barron,
1995). An example is illustrated by Figure 2-2 where a long line moves through a rectangular
aperture. Since the endpoints of the line are not observable, only the line motion component
normal to the line (the bold vector) can be observed with certainty. It is not possible to observe
whether any motion occurs in tangential direction. The bold vector indicates therefore the
normal flow observable from the line.

Figure 2-2: Illustration of the aperture problem occurring with an edge moving through the field
of view. Only the black flow component can be identified with certainty, while the actual flow
may be any of the gray vectors.

This problem is seen frequently in local optical flow algorithms where a limited pixel neigh-
borhood is used, such as the Lucas-Kanade algorithm. Lines or object contours are observed
through features with a brightness gradient dominant in one spatial direction, and are referred
to as edges. Along an edge, only normal flow can be identified. Therefore, most implemen-
tations of Lucas-Kanade operate on corners (e.g. De Croon, Alazard, & Izzo, 2015; Ho & De
Croon, 2016), i.e. image features where a significant brightness gradient is observable in two
linearly independent spatial directions. The Lucas-Kanade technique is in this case preceded
by a corner detector such as the popular FAST algorithm (Rosten, Porter, & Drummond,
2008).

Evaluating optical flow algorithm performance

In order to evaluate the performance of optical flow methods, benchmarking techniques have
been developed. The most notable benchmarks are the framework set up by Barron, Fleet,
and Beauchemin (1994) and, more recently developed, the Middlebury benchmark (Baker et
al., 2011). In these frameworks optical flow techniques are evaluated based on predefined
image sequences for which ground truth flow fields are available.

The Middlebury benchmark is set up such that researchers can download the image datasets
and publish their results online1. This facilitated ongoing development of new optical flow
techniques, and hence, results from over 100 techniques have been published so far (Baker et
al., 2011).

1Available at http://vision.middlebury.edu/flow/eval/

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

http://vision.middlebury.edu/flow/eval/

2-2 Optical flow measurement 33

2-2-2 Insect-inspired sensors

Inspiration for different sensor types was formed by the compound eyes of insects, which
are built up from several small photoreceptors called ommatidia. As opposed to vertebrate
eyes using lenses, compound eyes offer the advantages of a very wide field of view and high
temporal resolution (Floreano et al., 2013). Both these advantages are desirable for robotic
applications involving motion detection. Efforts have therefore been made to create artificial
compound eyes.

Floreano et al. (2013) developed a miniature panoramic curved sensor showing close similar-
ities to these compound eyes. This 1.75 g sensor, the CurvACE, features a 180◦×60◦ field of
view, covered with 42×15 separate ommatidia, and a signal acquisition bandwidth of 300 Hz.
Its ommatidia adapt their local brightness independently, allowing for a large intrascene dy-
namic range. However, despite its small size, a relatively high power consumption is required
(0.9 W)

The motion detection mechanism used by insects is also interesting for sensor design through
its simplicity. It is referred to as an EMD, and it detects motion through correlation of the
signals of neighboring photoreceptors. A classical model for the EMD is the Reichard detector
(Hassenstein & Reichardt, 1956). This model involves multiplication of a receptor signal with
the time-delayed signal of a neighbor receptor, see Figure 2-3a. Since its introduction, other
variants of this mechanism have been introduced as well. In recent research involving flies
(Eichner et al., 2011), most evidence was seen for the mechanism by Franceschini, Riehle, and
Le Nestour (1989). The improvement of the Franceschini model is that there is no interaction
between signals of opposite sign.

(a) The Reichardt detector model. (b) The Franceschini detector model.

Figure 2-3: EMD models investigated by Eichner et al. (2011). On top of the images are two
photoreceptor cells, from which the signals flow downward. The square blocks (on the left with
LP) indicate time delays applied through a low-pass filter. The circular cells (on the left with M)
indicate multiplication of two signals. Adapted from Eichner et al. (2011).

EMDs formed the basis for extremely simplified optical flow sensors. In the work by Ruffier
and Franceschini (2005) and Ruffier and Franceschini (2014) a microcontroller-based sensor
using only two photoreceptors was employed. Despite its simplicity, this sensor was capable of

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

34 Landing Strategies for Micro Air Vehicles using Optical Flow

measuring flow at a 1000 Hz sampling rate with decent accuracy, though only in a single spatial
direction. A drawback of EMDs-based sensors is that they typically cannot, by themselves,
measure patterns of optical flow such as divergence or rotation. However, this can be overcome
through integration of data from multiple sensors (Expert & Ruffier, 2015).

2-2-3 Optical mouse sensors

Off-the-shelf optical mouse sensors provide a second simple alternative. They have smaller
pixel grids than camera image sensors (typically 32×32 pixels) but can achieve higher update
rates (in the order of 1000 Hz) (Chao, Gu, & Napolitano, 2014). These sensors measure
two-dimensional translational optical flow. They were seen frequently in MAV applications
where translational flow measurements were sufficient, or in arrays of several sensors (Zufferey,
Beyeler, & Floreano, 2010; Zufferey & Floreano, 2006). In comparison to EMDs they work
well in highly illuminated scenes such as in outdoor conditions, but perform less in indoor
applications (Expert, Viollet, & Ruffier, 2011).

2-3 Bio-inspired landing strategies using optical flow

Extensive research has been performed on how animals exploit optical flow for navigation. In
this research, the visual observables identified in Section 2-1-2 were related to visually guided
maneuvers performed in biology.

Honeybees were seen performing grazing landings based on the velocity of the ground plane
as seen on the retina (Chahl et al., 2004; M. Srinivasan, Zhang, Lehrer, & Collett, 1996).
Therefore, in a grazing landing, the honeybee lands by keeping ventral flow constant. Hence,
when the honeybee slows down, height above the surface is decreased accordingly through
ωx = −U/Z. According to Chahl et al. (2004), a linear relationship can also be observed
between forward speed and descend speed, i.e.

Ż = cU = −cωxZ (2-10)

with c a proportionality constant. In this case, the height during a landing maneuver decays
exponentially over time, hence ensuring a smooth landing:

Z(t) = Z(t0)e−cωx(t−t0) (2-11)

Recent research has also shown that honeybees land on vertical surfaces with constant image
divergence (Baird et al., 2013), which is equivalent to keeping τ constant. This results in a
similar landing behavior seen in grazing landings. However, only the velocity perpendicular
to the landing surface is regulated. In this case, Ż = Z/τ , which is equivalent to Eq. (2-10),
and similarly results in exponentially decaying height.

A different strategy was observed in human drivers performing braking maneuvers (Lee,
1976) and pigeons performing landings (Lee, Davies, Green, & Van der Weel, 1993). In these
experiments behavior was observed where not τ was kept constant, but its rate of change τ̇ .
The result is that a slightly different landing trajectory is obtained. Let k = −τ̇ be the rate

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

2-4 Applications in Micro Air Vehicles 35

of change setpoint. Then, as derived by Izzo and De Croon (2012), the height decreases as
follows:

Z(t) = Z(t0)

(
k

t

τ(t0)
+ 1

)1/k

(2-12)

Eq. (2-12) shows that, for this strategy, a deterministic point exists where Z = 0, depending on
the choice of k. The higher its value, the faster is the landing executed. Also note that, when
k = 1, the trajectory for Z becomes linear with t. For the human driver experiments by Lee
(1976) a value for k around 0.5 was observed. Interestingly, this makes Eq. (2-12) quadratic,
which is equivalent to applying constant deceleration (Alkowatly, Becerra, & Holderbaum,
2015). The ability to tune k make the constant τ̇ a versatile approach where the landing
profile can be tailored to the desired application.

2-4 Applications in Micro Air Vehicles

The strategies outlined in Section 2-3 inspired researchers to develop simple reactive control
systems for landing. In this section the main applications seen in MAVs are discussed. These
include landing control laws as well as related applications such as slope estimation and
deriving metric scale.

2-4-1 Navigating using ventral flow

The observations of grazing landings performed by honeybees inspired researchers to apply a
constant ventral flow technique to landing tasks. Chahl et al. (2004) implemented this strategy
on-board of a small fixed-wing MAV to explore applications in this field. A small camera was
used for ventral flow estimation through image interpolation. Optical flow was controlled by
the elevator of the MAV, while forward thrust was reduced. Similarly, Green, Oh, and Barrows
(2004) applied an optical flow sensor to perform landing and obstacle avoidance on-board of
a fixed-wing MAV. During these experiments, a properly tuned ventral flow controller proved
feasible for landing these type of aircraft, when tuning the controller properly to stay above
stall speed.

The constant ventral flow strategy for MAVs was extensively investigated by Ruffier and
Franceschini (2005), with a specific focus on mimicking navigation in insects. The authors
demonstrated the constant ventral flow strategy using a tethered rotorcraft equipped with
an optical flow sensor moving along a circular trajectory above a textured pattern. Similar
experiments were performed for navigating in roofed environments by incorporating dorsal
flow (Expert & Ruffier, 2012) and navigating in unsteady environments (Ruffier & Frances-
chini, 2014). An example test setup is shown in Figure 2-4. In the first work, the rotorcraft
pitch angle was used to control the flight condition. A downward pitch angle setpoint resulted
in steady forward flight. Landing was performed by slowly pitching up, such that forward
speed decreased, and the height was decreased accordingly through the ventral flow controller.
Hence, the controller was capable of terrain following and landing by solely keeping ventral
flow constant.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

36 Landing Strategies for Micro Air Vehicles using Optical Flow

Figure 2-4: The test setup used by Ruffier and Franceschini (2014), with a tethered rotorcraft
flying above a circular surface. In this experiment, the surface was moved vertically to simulate
an unsteady environment. Adapted from Ruffier and Franceschini (2014).

While during most experiments using this setup the rotorcraft attitude was controlled exter-
nally through the tether, Expert and Ruffier (2015) performed similar tethered experiments
with a twin-rotor MAV that could regulate its own pitch angle, height, and speed, without the
need for inertial sensors or external guidance. The MAV was equipped with two CurvACE
sensors mounted facing forward and backward, giving it a full 360◦ field of view around its
pitch axis. Through an active reorientation system, the sensors were rotated independently
from the MAV pitch angle to align parallel with the nearest surface. This was done based on
differences in ventral or dorsal flow perceived by the front and rear CurvACE sensors.

2-4-2 Constant divergence landing

The limitations of navigating using ventral flow only, are that this requires forward motion,
and that no control is possible over vertical dynamics independent from forward motion.
While this is not necessarily problematic for landing fixed-wing MAVs, for rotorcraft MAVs
pure vertical motion and hovering are commonly desired navigation maneuvers. Divergence
cues provide a solution in this case. The simplest approach would be to keep D constant.
Ventral flow control can in this case be used to control horizontal motion independently.

Herissé et al. (2012) applied a constant divergence strategy to hovering above and landing on
a moving platform. In addition, the authors implemented a control law to force ventral flows
to zero, enforcing horizontal control. Control performance was demonstrated successfully in
a maneuver consisting of horizontal stabilization above a landing pad, followed by vertical
landing. However, response speed was limited due to the latency and low sampling frequency
of the outer control loop (15 Hz). A landing maneuver took 25-40 s, and there was significant
‘hesitation’ before the actual touchdown.

Very recent work by Ho and De Croon (2016) focused on experimentally characterizing con-
stant divergence landing systems in terms of parameters affecting control performance, i.e.
noise and delay. Here a typical latency of 0.1 s was obtained using a regular camera, with an
algorithm running at 25 Hz. It was seen that noise and mainly time delay introduce significant

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

2-4 Applications in Micro Air Vehicles 37

oscillations and destabilize the control algorithm close to the landing surface. This is seen in
Figure 2-5, which shows a simulated landing using the noise and delay model. This is due
to the higher sensitivity of divergence measurements to erroneous motion: small errors give
rise to the same motion, but since this motion is scaled by Z, disturbances have much more
influence at low height.

Figure 2-5: Simulated constant divergence landing using the noise and delay model. From Ho
and De Croon (2016).

2-4-3 Constant rate-of-change in time-to-contact

Research was also performed into using different τ -based laws. Izzo and De Croon (2012)
investigated the concepts of using constantly decreasing τ and exponentially decreasing τ
within the context of spacecraft landing. In particular, exponentially decreasing τ is found to
provide a mass-optimal landing. Further work included the application of these control laws
to a simulated spacecraft descent, estimating optical flow from scaled images (De Croon et
al., 2015).

Kendoul (2014) designed and implemented a purely τ -based autopilot, using estimates for τ
in three dimensions for control. In this study τ was calculated from fused GPS, IMU, and
pressure sensor measurements; future work is proposed for applying vision sensors for this.
However, the autopilot performed maneuvers only on the basis of the τ values. Reference
τ trajectories in three dimensions were calculated at the start of a maneuver such that it is
completed within a given time. Two control laws are proposed for τ tracking: a hybrid linear
control law and a nonlinear ratio control law. Extensive testing of this setup was performed
on-board of an Ascending Technologies Pelican quadcopter, showing good performance of the
controller.

The constant τ̇ approach was implemented on-board of a MAV by Alkowatly et al. (2015). τ
and ventral flow were computed by assuming a planar optical flow field structure, and directly
estimating its parameters using least squares. Derotation of the optical flow field is performed
here using an unscented Kalman filter for sensor fusion.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

38 Landing Strategies for Micro Air Vehicles using Optical Flow

2-4-4 Estimating the slopes of a landing surface

With Eq. (2-5), a relation was established that defines a planar flow field for surfaces under
an arbitrary inclination with respect to the observer. De Croon et al. (2013) employed this
relation to estimate the slopes of a landing surface, before deciding to initiate a landing
maneuver. An experiment was performed where a quadrotor MAV descended a staircase
and landed when the estimated slope was low enough. The MAV successfully landed at the
bottom of the staircase. Small errors were still seen in the slope, most likely caused by the
pitch attitude of the MAV.

2-4-5 Deriving metric scale and distance during landing maneuvers

Growing evidence suggests that animals require some sense of metric scale for landing. For
example, honeybees need it to timely extend their legs before touchdown (Evangelista, Kraft,
Dacke, Reinhard, & Srinivasan, 2010). Since the discussed visual observables do not provide
any indication of metric scale, additional information is needed. Therefore, recent work has
been performed aimed at estimating the metric scale from basic visual observables.

A sensor fusion approach (e.g. Grabe et al., 2015) is interesting for most MAVs, since they
are commonly fitted with several sensors that do rely on metric scale, such as an IMU.
However, for the smallest MAVs that rely on pure visual sensing (e.g. De Croon, De Clercq,
Ruijsink, Remes, & De Wagter, 2009), this approach is not an option. In addition, insects
lack accelerometer-like inertial senses (Expert & Ruffier, 2015), yet they still appear capable
of sensing a form of metric distance.

Van Breugel, Morgansen, and Dickinson (2014) demonstrated a method for estimating dis-
tance during a constant divergence docking maneuver, based on the control input required
by the control law. It was shown that, for a constant divergence motion, a direct relation
exists between divergence, control input, and distance. Such an approach by itself is highly
noise-sensitive due to errors in divergence. However, through recursive least-squares estima-
tion of the distance trajectory parameter (i.e. the initial distance, comparable to Z(t0) in Eq.
(2-11)), accurate estimates for distance were obtained.

A novel approach based on the stability of a constant divergence control law was recently
proposed by De Croon (2016). In Section 2-4-2 it was established that a constant divergence
controller becomes increasingly unstable closer to the ground. In this work, it was established
that the height where self-induced oscillations of the controller start, is in fact dependent
on the control gain. Hence, through detecting these oscillations and the controller gain at
which they occur, the height can be estimated. This technique has interesting applications,
e.g. triggering when to turn off a constant divergence controller and finish a descent with low
vertical speed, or to land with adaptive control gain and continuously estimate height.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 3

Event-based Vision

Applications discussed in the previous chapter involved mainly frame-based cameras and
special optical flow sensors. In this chapter we introduce event-based vision by means of the
sensor used in this research, the DVS, in Section 3-1. Next, a comparison of the DVS to other
event-based sensors is made in Section 3-2. Finally, an overview of current research using the
DVS and similar sensors is given in Section 3-3.

3-1 The Dynamic Vision Sensor

The DVS is an event-based vision sensor with a 128×128 pixel array, designed by Lichtsteiner
et al. (2008). A picture of the device is shown in Figure 3-1. As opposed to pixels in conven-
tional frame-based image sensors, the pixels of the DVS operate asynchronously. Each pixel
individually responds to changes in perceived brightness by generating events. Therefore, the
output of the sensor is a stream of events encoding local brightness changes in the sensor’s
field of view.

Figure 3-1: Picture of the DVS.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

40 Event-based Vision

3-1-1 Working principle

DVS events correspond to an increase or decrease with respect to a reference brightness
level set at the last occurring event. Specifically, the criterion for generating an event is that
the logarithmic change in brightness with respect to the last event ∆I in a pixel exceeds
a predefined threshold. The result is that brightness changes perceived are encoded in the
time differences between consecutive events.

Figure 3-2 illustrates this behavior. The top graph shows a typical voltage output of the
photoreceptor Vp, which represents the logarithmic level of brightness perceived. In the
bottom graph, Vp is reset to a baseline value once it exceeds either the ON or the OFF
threshold, such that the difference voltage Vdiff is obtained. A reset generates a corresponding
ON or OFF event.

Each event e encodes the timestamp at which a threshold is exceeded at a pixel (t), the pixel
location on the array (x, y), and the polarity of the change (P). This polarity has a discrete
value of +1 or -1 corresponding to an ON or OFF event respectively. This method of encoding
is referred to as an Address-Event Representation (AER) (Lichtsteiner et al., 2008).

Figure 3-2: Working mechanism of a DVS pixel. From Lichtsteiner et al. (2008).

3-1-2 Sensor characteristics, advantages, and limitations

The DVS is currently available for purchase by the product name ‘DVS128’. The sensor is
housed in a casing with a standard CS lens. It interfaces with other hardware through a
USB 2.0 connection, which is also used to power the device. Table 3-1 shows an overview of
the specifications of the DVS as published online (IniLabs, n.d.). The values of latency and
power consumption are slightly lower than the values published by Lichtsteiner et al. (2008),
possibly due to improvements in the design.

Mainly due to asynchronous pixel readout, the DVS offers distinct advantages compared to
frame-based cameras. First, information from the sensor is sparse and contains much less
redundant data compared to sets of frames obtained from frame-based sensors. Second, the

1Available from Yang et al. (2015)

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

3-1 The Dynamic Vision Sensor 41

Table 3-1: DVS specifications (IniLabs, n.d.)

Array size 128×128 pixels
Pixel size 40×40 µm
Dimensions 5×5×2.5 cm (without lens)
Weight 120 g (including lens)
Connectivity USB 2.0
Latency 12 µs (at 1 klux illumination)
Temporal contrast sensitivity 1 17%
Power consumption 23 mW
Intrascene dynamic range 120 dB
Event bandwidth 1 million events per second

DVS measures changes at a very high temporal resolution (1 µs) and with small latency (15
µs). Third, the average power consumption is 24 mW. Last, due to the combination of event-
based encoding and logarithmic intensity measurement, the sensor achieves a dynamic range
of 120 dB.

Currently, the DVS’s main limitations are the relatively small number of pixels, and the lack
of absolute brightness levels. In addition, temporal contrast sensitivity is still limited. In
essence, this quantity represents the minimum event threshold, and hence how much detail in
scenes can be captured by the DVS. Also, experiments show that with the standard DVS, the
stated latency of 15 µs cannot be achieved due to USB data transfer. In practice, latencies
ranging from 125 µs to 4 ms were obtained, depending on the sensor activity (Conradt, Cook,
et al., 2009; Delbruck & Lichtsteiner, 2007). Interestingly, higher activity leads to lower
latencies. A possible reason is that USB data packets fill up faster when more events are
transmitted, and are thus sent more often (Delbruck & Lang, 2013).

3-1-3 Processing software

The open-source tool jAER has been developed (Delbruck, 2007) in order to record and
visualize measurements of the DVS. This Java-based program processes the output of sensors
using AER encoding, such that it can be recorded and played back at lower speed. It is
suitable for a monocular setup as well as for a stereo vision configuration.

Operation settings of the DVS, such as the pixel firing threshold, can be adjusted in order to
obtain a desired response. Also, jAER offers the possibility to immediately process data in
real-time using filters, allowing to use the tool for research purposes and testing. These filters
process each event at the moment it is received by jAER. Results from previous work are
represented in jAER through these filters, such as control algorithms for a robot goalkeeper
(Delbruck & Lichtsteiner, 2007), a pencil balancer (Conradt, Cook, et al., 2009), and a slot
car racer (Delbruck et al., 2015). Within the context of this research, it is also interesting to
note that filters have been implemented for determining optical flow, as well as optical flow
based visual servoing (Delbruck, 2007).

In addition, a version of jAER has been developed based on the C programming language,
named cAER. This version is aimed at enhancing portability of the framework to embed-
ded systems, providing more efficient processing, and integration into complex applications
(Longinotti, 2014). A modular structure is used, allowing for the definition of filters similar

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

42 Event-based Vision

to jAER. Its functionality was validated on multiple systems, including a Raspberry Pi model
B, a PandaBoard, and a desktop PC. For interfacing the DVS with the processor on board
of a MAV, this is a promising framework.

3-2 Related hardware developments

Several event-based vision sensors have been created before the DVS was available. Most
were, however, not practical. Kramer (2002) developed a 48×48 pixel ‘optical transient’
sensor based on CMOS image sensor technology, where a filtering circuit asynchronously
converts measured transients to ON/OFF events. This sensor had problems achieving a low
temporal contrast sensitivity as well as leakage currents (Lichtsteiner et al., 2008). Zaghloul
and Boahen (2004) developed a 96×60 pixel silicon retina to model spiking output cells of
the human retina, which suffered from poor fixed-pattern noise.

The DVS was the first practical, commercially available event-based vision sensor, initiating
research on applications of this type of sensor (Cho & Lee, 2015). Since then, several other
event-based vision sensors have been designed. Some show various performance improvements
with respect to the DVS. Others combine the event-based advantages of the DVS with the
availability of absolute brightness values. In addition, smaller versions of the DVS have been
developed for lightweight embedded applications.

3-2-1 Performance improvements

Serrano-Gotarredona, Leñero-Bardallo, and Linares-Barranco (2011) developed and tested a
128×128 pixels sensor featuring a smaller pixel size (35×35 µm), a finer temporal contrast
sensitivity (10%) and a lower latency (3.6 µs). A pre-amplifying stage has been added to
achieve this. However, its power consumption is therefore higher (reaching a maximal value
of 231 mW) and dynamic range is limited to 100 dB. An improved design features a lower
latency of 3 µs, while also reducing power consumption to 4 mW and temporal contrast
sensitivity to 1.5%, maintaining an effective dynamic range of 120 dB. This improvement
resulted mainly from a new pixel photo sensing and transimpedance pre-amplifying stage,
and allows this sensor to capture motion with more detail (Serrano-Gotarredona & Linares-
Barranco, 2013).

Recently, a 60×30 pixel sensor was published, which features a 1% temporal contrast sensi-
tivity, 130 dB dynamic range and in-pixel asynchronous delta modulation to encode events.
The latter resulted in better preservation of signal, reducing losses by a factor 3.5 (Yang et
al., 2015).

3-2-2 Combination with absolute brightness measurements

A drawback of the DVS and its newer variants is the lack of absolute brightness levels. This
mainly limits its application in areas such as loop closure in Visual Simultaneous Localization
and Mapping (VSLAM), object recognition, and classification (Cho & Lee, 2015). Therefore,
interest has gone out to sensors that combine the benefits of both frame-based and event-based
vision.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

3-3 Applications of event-based cameras 43

An alternative that provides a solution to this problem is the Asynchronous Time-based
Image Sensor (ATIS) (Posch, Matolin, & Wohlgenannt, 2011). It has a 304×240 pixel array
operating asynchronously through the AER communication scheme. In this sensor, each
pixel not only transmits events indicating the direction of relative brightness change, but also
absolute brightness values. It achieves a slightly higher dynamic range of 125 dB, but requires
a power consumption ranging from 50 mW (static) to 175 mW (high activity).

Further development of the DVS resulted into the Dynamic and Active pixel Vision Sensor
(DAVIS) (Brandli, Berner, Yang, Liu, & Delbruck, 2014). Essentially, it combines an improved
DVS with a conventional global shutter frame-based sensor. Each of the 240×180 pixels
contains circuitry to read out individual, asynchronous brightness change events, as well as
absolute brightness values in a synchronous manner. The asynchronous capabilities of the
sensor have been improved to achieve a 130 dB dynamic range, a latency of 3 µs, and a lower
power output of maximally 14 mW. The DAVIS is also equipped with an IMU. Compared to
the ATIS, the DAVIS offers advantages in terms of low power consumption and the flexible
availability of complete frames desired. On the other hand, the localized nature of absolute
brightness measurements by the ATIS may be desirable when complete image data is not
necessary, for example in local classification. Both the ATIS and the DAVIS are commercially
available and are frequently used in recent research.

Recently, a new version of the DAVIS chip has been reported that is able to distinguish colors
(Li et al., 2015). This sensor, nicknamed C-DAVIS, is currently under development and aims
to achieve a pixel size slightly larger than those of the DAVIS. The array size is also increased
to house 320×240 pixels available for monochrome asynchronous event-based vision. Also,
each pixel is aimed to contain 4 subpixels for synchronous image capture, such that RGBA
frames of 640×480 pixels can be captured.

3-2-3 Miniaturization

Work has also been done to design and build the DVS in a more compact form, suitable for
lightweight, embedded applications. The result is a 23 g version of the camera that has no
casing and a smaller lens: the Embedded Dynamic Vision Sensor (eDVS). The current version
features a 32-bit 204 MHz microcontroller, 136 kB SRAM, and 1 MB storage to enable on-
board processing, as well as an accelerometer (IniLabs, n.d.). These on-board computational
resources allow for processing at minimum latency. Additionally, a further miniaturized ver-
sion, the Miniature embedded Dynamic Vision Sensor (meDVS), has been reported, where
the sensor size is narrowed down to just the size of the DVS128 chip (20×20 mm). This
sensor has a custom made plastic lens and only a 4 Mbps UART port for communication,
hence weighing only 2.2 g (Conradt, 2015). The sensor is shown in comparison to the eDVS
and a regular DVS in Figure 3-3.

3-3 Applications of event-based cameras

The introduction of event-based vision opened up new research in the field of computer
vision. Recently work was performed to achieve visual tracking, optical flow detection, object
recognition and classification, stereo vision, and VSLAM (Cho & Lee, 2015). In this section we

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

44 Event-based Vision

Figure 3-3: Size comparison of the DVS, the eDVS, and the meDVS (left to right). From
Conradt (2015).

summarize several past applications, showing the state-of-the-art of research using event-based
sensors, the significance of this new sensor, the advantages, and the challenges encountered.
We focus on the applications in visual tracking, control systems and visual odometry: fields
in which the fast dynamics of the DVS have the biggest impact. Since work on event-based
optical flow detection is particularly relevant in this research, this is discussed separately in
Chapter 4.

3-3-1 Visual tracking

Litzenberger et al. (2006) developed a cluster tracking algorithm for AER data. In short,
this algorithm tries to match incoming events to clusters of previous events, whose positions
are tracked and updated using new event positions. It was applied to vehicle tracking on a
two-lane highway and for tracking of walking people in a top-down view. This approach was
expanded upon by Piatkowska, Belbachir, Schraml, and Gelautz (2012) to address occlusions
of multiple clusters through Gaussian mixture models.

Drazen, Lichtsteiner, Häfliger, Delbrück, and Jensen (2011) performed a proof-of-concept
study for applying the DVS to particle tracking velocimetry in fluid flows, using an event
matching algorithm similar to the methodology used by Litzenberger et al. (2006). Several
modifications were introduced to address issues of crossing particles. In this study tracking
capabilities of the DVS were compared to those of a standard 1,024 × 1,024 pixel camera
operating at 2,000 frames per second. The study showed that the sparsity of DVS output
data is a significant advantage, as its recorded dataset was 840 kB compared to the high-speed
camera video of 8 GB size. Also, the tracking algorithm was capable of running faster than
real-time on a 3.33-GHz Intel Core i7 Windows 7 desktop computer. However, the resolution
of the DVS currently limits the amount of particles that were successfully tracked.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

3-3 Applications of event-based cameras 45

3-3-2 Visual control systems

Delbruck and Lichtsteiner (2007) demonstrated high-speed tracking capabilities of the DVS
using a test setup of a ‘goalie robot’. A DVS was used to track balls moving towards a goal,
using the cluster tracking algorithm by Litzenberger et al. (2006). A servo directed the robot
arm in position to block the balls. Processing was performed on board of a 2 GHz Pentium M
laptop. Using this setup a latency of 2.8±0.5 ms for determining the servo motor command
was achieved. Also, a success rate in the range of 80-90% was estimated for blocking incoming
balls with > 150 ms time to impact. The main cause for the achieved latency appears to be
the USB 2.0 interface. Later, Delbruck and Lang (2013) added a self-calibration feature.

Another visual control experiment was performed by Conradt, Cook, et al. (2009) where
a pencil was balanced on top of an actuated table using a pair of DVSs (see Figure 3-4).
The setup was later improved by using eDVSs and dedicated hardware (Conradt, Berner,
et al., 2009). This balancing task requires fast state measurements in order to achieve good
performance. Tracking of the pencil pose was performed using a Hough transform approach.
Each eDVSs Both line estimates were combined to yield a full 3D estimate of the pencil
position. A PD controller uses the pose information to control the servos such that the pencil
is balanced. This setup achieves position update intervals ranging between 125 and 300 µs,
though maximum values of 1.5 ms were also measured when the pencil was not moving rapidly
or when a servo command was sent. Pencils and similar objects could be balanced for several
minutes.

Figure 3-4: The pencil balancer setup used by Conradt, Berner, et al. (2009).

An event-based visual servoing controller was developed by Gil, Garćıa, Mateo, and Torres
(2014). The authors adapted classical image-based visual servoing to work with events de-
tected by a DVS, without the use of a pattern. Incoming events are clustered in real-time into
features that can be tracked. An experiment is discussed with a stationary DVS mounted
at a manipulator endpoint tracking a mobile robot moving on the ground. Good tracking
performance was obtained, but no description of closed-loop performance (i.e. where the DVS
is moved by the manipulator) is given.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

46 Event-based Vision

3-3-3 Pose estimation

Censi, Strubel, Brandli, Delbruck, and Scaramuzza (2013) performed pose tracking of a MAV
during high-speed maneuvers using LED markers blinking at high frequency (> 1 kHz). The
DVS was placed on the floor to track infrared LED markers installed on the MAV. During
the experiment, the MAV performed flips while facing a textured wall with the on-board
camera. Pose estimates from the tracked LED markers were compared to ground truth from
an Optitrack system and a standard VSLAM algorithm. While the former performed better
on estimating translation, the Euler angles were estimated more accurately by the VSLAM
algorithm. The authors mention the resolution of the DVS as a possible cause for this.

Censi and Scaramuzza (2014) also investigated the use of the DVS in combination with a
frame-based camera, to perform visual odometry. In an experimental setting their algorithm
achieved good performance at estimating rotational motion. However, translational motion
estimates were noisy. The authors suggested to separate the use of event-based cameras for
rotation estimation, while using conventional cameras for translation.

Mueggler, Huber, and Scaramuzza (2014b) performed a demonstration of a robust pose esti-
mation method using a DVS on-board, by tracking a set of line features. A quadrotor MAV
was facing a wall with a black square marker, performing flips and tracking the edges of the
marker in order to estimate its own pose. To track the edges, line position estimates were
maintained for the marker edges using the Hough transform, similar to the work by Con-
radt, Cook, et al. (2009). During the demonstration, events were streamed to a laptop that
performed computations necessary for pose estimation. It was possible to achieve real-time
visualization of the pose estimate with this setup. The MAV reached angular rates of 1,200
◦/s during the flips. Position was estimated with a mean error (10.8 cm) slightly less than
the event-based algorithm of Censi et al. (2013), but a better performance was seen in esti-
mating orientation (mean error of 5.1◦). Also, in both position and orientation, the standard
deviation of the results was much lower (7.8 cm for position, 2.4◦ for orientation). Again, the
limited resolution of the DVS is given as the main reason for the perceived errors.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 4

Event-based Optical Flow

The field of optical flow estimation from event-based vision has gained interest since the
availability of the DVS. Several methods have been developed over the past six years. This
chapter provides first an overview of these methods and their characteristics in Section 4-
1. Second, existing frameworks for evaluation of event-based optical flow performance are
discussed in Section 4-2. Third, existing methods for computing visual observables from
event-based optical flow are described in Section 4-3.

4-1 Optical flow estimation techniques

To make the best use of event information, event-based optical flow computation is generally
performed with each newly detected event. By itself, an event provides no motion information,
but by correlating events to recently detected events from neighboring pixels, optical flow is
estimated. Hence, the methods presented in this section make use of the event history in the
spatiotemporal neighborhood of each new event.

4-1-1 Pixel velocity from neighbor events

A very simple approach is to assume that neighbor events occurring within a short time
window are caused by motion of a single feature. As such, a velocity vector may simply be
estimated by computing the time difference between each new event, and the events of the
neighbors. Very basically, such a method would then compute velocity using:

[
u
v

]
=

[
1/ (tx,y − tx−∆x,y)− 1/ (tx,y − tx+∆x,y)
1/ (tx,y − tx,y−∆y)− 1/ (tx,y − tx,y+∆y)

]
(4-1)

with tx,y indicating the time of the last event at pixel (x, y), and ∆x,∆y indicating the spacing
between pixels in x and y directions. Note that in these equations, (x, y) indicate the pixel
location in the grid, as opposed to (x̂, ŷ).

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

48 Event-based Optical Flow

This approach was taken as a starting point by Conradt (2015) in order to implement event-
based optical flow estimation on-board of a small (7 cm by 6 cm) quadrotor equipped with
a meDVS. From the local flow vectors, a global optical flow field based on angular body
rates (i.e. no translation) is determined using flow collected within 10 ms time windows, and
solving for the body rates. Manual control experiments with the quadrotor showed that the
method runs in real-time on-board, although the estimates contained significant amounts of
noise.

In the jAER software (Delbruck, 2007) a filter is present that estimates local optical flow,
referred to as DvsDirectionSelectiveFilter. This algorithm is fundamentally based on the
same assumption of pixel velocity, but with some extensions. First, only events that can be
identified as part of an edge are used. This occurs for a new event when direct neighboring
pixels fired events shortly before. The direction of the most recent neighbor event is used as
edge orientation. Then, pixel velocity is computed by searching for events normal to the edge.
In the experiments by Paz Gomes Verdugo (2015) this algorithm showed the best performance
compared to the other candidates.

An inherent drawback of the simplicity of these two methods is that motion can only be
computed in fixed directions. The first method is extremely simple and barely produces any
computational load, but horizontal and vertical velocity components are computed indepen-
dently of one another, meaning that any cross-coupling between the two is neglected. The
second method does consider diagonal motion, but due to the orientation property, the direc-
tion of motion vectors is constrained to the amount of possible orientations. When only direct
neighbors are considered, this means that velocity can only be identified in eight different di-
rections: horizontal, vertical, and twice diagonal, in both positive and negative directions.
This limits the accuracy that can be achieved with a single optical flow vector. However,
integrating multiple flow vectors may still lead to accurate results.

4-1-2 Event-based Lucas-Kanade

Benosman et al. (2012) introduce an event-based adaptation of the commonly used frame-
based technique by Lucas and Kanade (1981). It follows from the same derivation as the
original algorithm, as discussed in Section 2-2-1. However, instead of absolute brightness
values, relative brightness values are estimated by summing the polarities of events within
a time window t′ ∈ [t−∆t, t]. In this case, Ix, Iy, and It are computed through numerical
differentiation. The original formulation by Benosman et al. (2012) is as follows:

Ix (x, y) =
∑

t′∈[t−∆t,t]

P (x, y, t′)− ∑
t′∈[t−∆t,t]

P (x− 1, y, t′)

Iy (x, y) =
∑

t′∈[t−∆t,t]

P (x, y, t′)− ∑
t′∈[t−∆t,t]

P (x, y − 1, t′)

It (x, y) = 1
t−t1

∑
t′∈[t1,t]

P (x, y, t′)

(4-2)

Partial brightness derivatives are computed here using a numerical backward differences
scheme. Note that the time window for computing It differs, since instead of the regular
time window, t′ ∈ [t1, t] is used, where t1 < t.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

4-1 Optical flow estimation techniques 49

In more recent work by Brosch et al. (2015) the problem and related equations were refor-
mulated slightly. Since events by themselves result from temporal changes in brightness, an
event is already a measure of It. This approach is therefore not based on first-order partial
derivatives, but rather on second-order partial derivatives Itx, Ity, and Itt. Nevertheless, the
authors showed that Eq. (4-2) holds for second-order derivatives as well, and is still applicable
to optical flow estimation. However, instead of using a backward numerical difference scheme,
a central difference scheme was used for computing spatial derivatives.

In experiments presented by Benosman et al. (2012), the algorithm showed reasonable capacity
to estimate orientation of motion and real-time capacity on a desktop computer. However,
the tests performed used only very locally moving stimuli, and while optical flow vectors seen
in results had logical direction, their magnitude was often constant, independent of motion
speed. This is visible in an example result shown in Figure 4-1. Brosch et al. (2015) argued
that the limited number of events that is usually available, leads to severe inaccuracies in the
brightness derivatives.

Figure 4-1: Optical flow estimated from a bouncing ball sequence using the event-based adap-
tation of Lucas-Kanade. From Benosman et al. (2012).

An extension of the algorithm was investigated by Paz Gomes Verdugo (2015). It was found
that in its current form, motion is identified along the direction of edges rather than normal
to that edge. The cause found for this issue was the presence of multiple events along an
edge. To counteract this behavior, the property of orientation was determined to events,
similar to the DvsDirectionSelectiveFilter implemented in jAER (Delbruck, 2007). After the
computation of velocity using the method from Benosman et al. (2012), velocities identified
along the edge orientation of events are set to zero. This modification slightly improved the
algorithm performance.

4-1-3 Spatiotemporal plane fitting

Benosman et al. (2014) proposed an approach based on event representation in space-time
as three-dimensional points. Events are assumed to be part of a ‘surface of active events’ Σe

that maps the position of an event to its timestamp: t = Σe (x, y). An illustration of this
concept is shown in Figure 4-2. The inverse gradient components of Σe are then equivalent to
optical flow. Further, it is assumed that velocity is locally constant or, equivalently, that Σe

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

50 Event-based Optical Flow

is planar within a limited spatiotemporal window. Therefore, local velocities are estimated as
the inverted gradients of a plane fitted to a set of events within this window. In Benosman et
al. (2014), a robust plane fitting procedure is applied to a spatiotemporal window centered on
each event. An initial plane is fitted to events within this window through linear least-squares,
followed on an iterative process of outlier rejection and repeating the least-squares fit. ON
and OFF events are processed separately. In experimental results the algorithm was able to
identify motion with reasonable accuracy, although again only from simple clearly identifiable
visual stimuli.

Figure 4-2: Illustration of Σe in space-time and its gradients. From Benosman et al. (2014).

In Benosman et al. (2014) the velocity components are computed as independent inverses of
the plane slopes. Brosch et al. (2015) argued this is mathematically incorrect and also leads
to practical errors. A new approach to velocity estimation is proposed that is fundamentally
based on edge motion in space-time.

4-1-4 Flow-based corner detection

Clady et al. (2015) proposed an extension of the spatiotemporal plane fitting approach to
solve the aperture problem by detecting corners. Similar to all other local methods, the plane
fitting approach cannot be used to estimate true optical flow, but only normal flow. In this
work the authors proposed to detect intersections of edges (i.e. corners), through geometrical
constraints provided by the plane estimates, and combining the normal flow along these edges
to obtain fully observable, non-normal flow. The approach is incremental and shows accurate
results in simple scenes, as shown for example in Figure 4-3. However, due to the DVS’s
limited resolution, corners are difficult to detect for complex scenes with high event density.
Further, while no indication of computational performance is provided, the full algorithm is
relatively complex compared to those seen in other approaches.

4-1-5 Direction selective filtering

A biologically motivated approach is presented by Tschechne, Sailer, and Neumann (2014),
based on the first stages of spatiotemporal processing in vision. In this approach filters are

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

4-1 Optical flow estimation techniques 51

Figure 4-3: Corner points and optical flow estimated in three scenes: a 3D cube wireframe, a
human face, and an outdoor scene with a moving car. Adapted from Clady et al. (2015).

constructed that mimic the direction and speed selectivity mechanisms of V1 cells in the
visual cortex (De Valois, Cottaris, Mahon, Elfar, & Wilson, 2000).

A filter function is built up as a combination of two spatiotemporal filters, each built up
as a combination of two spatial filters and two temporal filters. Figure 4-4 illustrates how
the filters are built up in one spatial dimension and time. Of the spatial filters, one is even-
symmetric and the other is odd-symmetric. The temporal filters are biphasic and monophasic
respectively. These filters were tuned based on experimental data obtained from V1 cells by
De Valois et al. (2000). In two dimensions, the spatial filters can be rotated to control in
which direction the combined filter is maximally selective. Therefore, a filter bank is generated
using different rotation settings for the spatial filter (e.g. 0◦, 45◦, 90◦ and 135◦), to generate
combined filters that are maximally selective in different directions.

Figure 4-4: Composition of spatiotemporal filters in one spatial dimension and time. From
Brosch et al. (2015).

To compute optical flow using these filters, events within a spatiotemporal neighborhood of a
new event are convolved with each filter, i.e. the filter values at the events’ relative position
and timestamp are determined. The sum of these filter values results in a confidence value for
the direction associated with this filter. In this work, the true flow values are not computed,
but by summing the confidence values of all filters, the most likely direction of the flow is
obtained. However, since each filter is also maximally selective for a certain speed, filters may
also be defined that select different speeds. Then, a velocity value may also be computed for

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

52 Event-based Optical Flow

the flow.

Brosch et al. (2015) extend the spatiotemporal filtering method by Tschechne et al. (2014) and
investigated the relation between the filter parameters and the ‘preferred speed’ of the filters
through Fourier analysis. This facilitates setting up a filter bank accounting for various speed
selectivities. In order to reduce the occurrence aperture problem, a response normalization
filter based on a layer of spiking neurons is added. This filter reduces flow confidence values
where ambiguity is present, i.e. along edges. However, this normalization mechanism still
works with the filter confidence values and is not readily usable with optical flow speeds.

Note that, through direction and speed selectivity, this filter-based approach shows similarities
with EMDs seen in insect eyes (see Section 2-2-2). However, the filter structure allows for
simultaneous integration of multiple events.

4-1-6 Event-based Elementary Motion Detection

Camus (2010) investigated the use of a Reichardt detector (see Section 2-2-2) to estimate
optical flow. Normally, a Reichardt detector combines two continuous-time signals from
separate photodetectors. In the case of an event stream, it is necessary to convert the event
stream data to a continuous-time signal. The author approached this issue by representing
events by Gaussian probability distributions centered at the event. Several additional rules
were necessary to resolve and integrate multiple EMD results.

A different approach to using a Reichard detector is proposed by Richter, Rohrbein, and
Conradt (2014), which involves combining the detector with a spiking neural network. Pixels
of the DVS provide spikes when events are generated. The Reichard detectors are represented
by neurons that respond to spikes of a pixel and its neighbor, the latter including a fixed time
delay. Thus, a detector neuron spikes when these two input spikes follow each other rapidly
such that a threshold of the neuron state is exceeded. To avoid interference from flicker, the
authors propose to use a filter where detections in opposite directions are subtracted from one
another. This method is intended to be used in combination with a SpiNNaker, a massively
parallel computing system optimized to simulate large spiking neural networks. As such, the
algorithm can run in real-time consuming little power.

4-2 Evaluating event-based optical flow performance

The development of event-based optical flow techniques generates the need for a consistent
approach for comparing the performance of these approaches. Clearly, existing computer
vision benchmarks such as the Middlebury dataset (Baker et al., 2011) are by themselves
not suitable. Two very recent publications address this problem and propose datasets for
evaluating optical flow technique performance.

Barranco et al. (2016) published a dataset for visual navigation using event-based vision.
In this dataset synthetic image and event sequences were generated using 3D graphics,
generating artificial events at image locations where brightness increased or decreased.
In addition, real datasets were generated by combining a DAVIS sensor with a Kinect
RGB-D sensor and performing short rotational and translational movements using a robotic

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

4-3 Estimating visual observables 53

platform. Ground truth motion is provided from odometry measurements of the platform.
This approach is useful since it provides both image data and events, facilitating comparisons
between frame-based and event-based techniques.

Similarly, Ruckauer and Delbruck (2016) collected event sequences and images using a DAVIS,
as well as artificial event sequences for simple motion types. For the DAVIS sequences, ground
truth flow was obtained using rotational rate output of the IMU present in the sensor. Inter-
estingly, the sequences in the dataset contain primarily normal motion of edges, diminishing
the effects of the aperture problem in the evaluation process. This is useful given that most
methods published so far are local.

Additionally, the authors compare several variants of three flow methods described in Sec-
tion 4-1: the Lucas-Kanade method (Benosman et al., 2012), the plane fitting method (Benos-
man et al., 2014), and the DvsDirectionSelectiveFilter algorithm (Delbruck, 2007). All algo-
rithms are implemented in jAER and achieve real-time performance for event rates lower than
1e5 events per second on a Core i5 2.4 GHz PC. In these results, the authors improve the
Lucas-Kanade and plane-fitting approaches through Savitsky-Golay filtering, reducing com-
putational effort and improving directional accuracy. Also, noise suppression was achieved
through application of a refractory period on pixels. The most favorable results are seen for
the plane-fitting approach variants.

4-3 Estimating visual observables

The event-based optical flow techniques discussed in Section 4-1 operate on events in the
order of occurrence. Additionally, these methods are predominantly local and are subjected
to the aperture problem discussed in Section 2-2-1. In contrast, frame-based techniques for
estimating visual observables from optical flow rely on fully determined (non-normal) flow
estimates and simultaneous availability of flow across the image. Therefore, new approaches
were sought for event-based visual observable estimation.

4-3-1 Using sequential flow vectors

Paz Gomes Verdugo (2015) investigated and compared several techniques for estimating the
FoE from sequentially detected flow vectors. One promising technique is the ‘cross-product
method’. It is based on the assumption that, at the FoE, all flow vectors intersect. This
method performed the second best in the analysis by Paz Gomes Verdugo (2015).

The definition of the cross-product method is correct for non-normal optical flow. However,
in the case of normal flow, this assumption is violated, making the method less suitable for
combination with most existing event-based optical flow techniques.

4-3-2 Mapping techniques

An event-based FoE estimation method, which is robust to normal flow estimates, is intro-
duced by Clady et al. (2014) to estimate time-to-contact τ . It employs a spatial probability

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

54 Event-based Optical Flow

map whose maximal value indicates the location of the FoE. Since any correct flow vector
component, including normal flow, should point away from the FoE, the part of the image
plane ‘behind’ the flow vector is likely to contain the FoE. Hence, for this plane part the prob-
ability value is increased. Superimposing sequential optical flow vectors bound the location
of the FoE, as shown in Figure 4-5. To prevent over-fitting of the map to a certain pattern,
an exponential decay is applied to the full map. Then τ is found for each individual optical
flow estimate using the distance to the FoE (see Eq. (2-4)).

Figure 4-5: A probability map for locating the FoE bounded by several flow vectors. The yellow
area indicates the map region with the highest probability for the FoE location.

In their work, the authors use an ATIS sensor on-board of a mobile robotic platform to
compute τ and a laser range finder to obtain a ground truth estimate. Optical flow is
estimated using the plane fitting algorithm by Benosman et al. (2014). During experiments
with the robotic platform the optic-flow-based τ showed good correspondence to the ground
truth estimate. Also, computational effort needed on a desktop PC was very low (on average
20 µs per event).

Paz Gomes Verdugo (2015) introduced a different mapping technique, separating the u- and
v-components of the flow. Instead, two one-dimensional maps for the x- and y- coordinates
of flow vectors are maintained. The maps are applied to identify separately the coordinates
where u and v are minimal in magnitude, hence identifying the location of the FoE. During the
experiments the method showed the best results compared to other methods for determining
the FoE.

A limitation of both approaches is, however, that they limit themselves to the size of the
retina. If the FoE lies outside of the mapping region, it cannot be identified with map-based
approaches.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 5

Synthesis

An extensive literature study was performed at the start of this thesis, focusing on three main
areas. Valuable insights were obtained in the application of optical flow for landing tasks,
and the role of hardware in this form of navigation. Also, a broad overview of state-of-the-
art event-based cameras and their applications was established. Most importantly, several
existing approaches to event-based optical flow estimation were found, which forms a proper
basis for the design of a pipeline for event-based estimation of visual observables. This chapter
summarizes the main findings and addresses their relevance per topic.

5-1 Landing strategies

Optic flow based navigation strategies seen in biology have been widely applied in MAVs
and other robotic systems. They provide computationally lightweight, simple approaches for
controlling ego-motion during maneuvers. We saw that grazing landings can be performed
through keeping ventral flow constant and reducing forward speed or height. This approach
works only if the MAV has forward motion. Through controlling time-to-contact or flow
divergence, pure vertical motion may also be controlled. This is highly desirable for MAVs
that need to operate within confined locations. With augmentation by ventral flow control
for horizontal motion, the MAV can stabilize its motion above a suitable landing site, and
then perform vertical landing through divergence, or equivalently, time-to-contact.

As seen in landing experiments involving time-to-contact or divergence (Alkowatly et al., 2015;
Herissé et al., 2012; Ho & De Croon, 2016), time delays introduced by frame-based optical
flow estimation are significant and limit the speed at which purely vision-based maneuvers
can be performed without sacrificing stability. This problem holds not only for landing or
docking tasks, but also for other visual navigation tasks. Special optical flow sensors achieve
higher sampling rates and are usable for ventral flow control, but have limited capabilities
when optical flow patterns become more complex, making them less suitable for estimating
divergence. Combinations of several sensors are possible, though this is undesirable in smaller
MAV where space and weight constraints are strict. The CurvACE sensor (Floreano et al.,

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

56 Synthesis

2013) offers attractive characteristics for MAV experiments, due to its high sampling rate and
wide field of view. However, its power consumption is relatively high, while its resolution is
lower compared to the DVS or related sensors.

5-2 Event-based cameras

Event-based cameras are an attractive alternative due to their micro-second temporal accu-
racy and small latency. The sparse nature of their output may considerably simplify visual
processing necessary to obtain local optical flow vectors. In a control system this is highly
desirable for achieving a fast response without sacrificing stability. Theoretically, event-based
cameras can therefore greatly enhance the response of existing landing control systems. Fur-
ther practical benefits of event-based pixels are that the sensor’s intrascene dynamic range
is very high (>120 dB) and that power consumption is limited (<23 mW for DVS-based
sensors).

The DVS is a frequently used event-based camera that is convenient in usage, due to its USB
connectivity and interface with jAER. In experiments, its low resolution (128×128 pixels)
is frequently reported as a limiting factor. Also, the use of USB communication increases
the actually achievable latency to values in the order of milliseconds instead of microseconds.
However, in more recent event-based cameras, such as the ATIS, DAVIS and C-DAVIS, reso-
lution has already been improved significantly. Also, embedded and miniaturized versions of
the DVS do not rely on USB and can achieve the sensor’s 15 µs latency. The miniaturized
meDVS is especially interesting for future usage of event-based vision on-board MAVs. As this
sensor is functionally equivalent to a DVS, algorithms developed in this work are transferable
to this smaller sensor.

5-3 Event-based optical flow

Several approaches to event-based optical flow estimation have been discussed, and several
(Benosman et al., 2014; Conradt, 2015) have shown real-time capacity in experiments, ob-
taining good results using simple visual stimuli. Comparing the performance of different
approaches based on the paper results is challenging since for each approach, different means
of evaluation were used. Based on the criticism by Brosch et al. (2015), event-based Lucas-
Kanade (Benosman et al., 2012) appears to be error-sensitive with little events, mainly in
magnitude. The filtering approach is, as presented, not capable of estimating motion, ex-
cept if it is possible to map confidence values to velocities, or by including speed selectivity
settings.

By themselves, all approaches are local and can only estimate normal flow. This leads to
errors when the flow estimates are to be integrated into visual observable estimates. Flow-
based corner detection (Clady et al., 2015) may provide a solution here. This does add a layer
of complexity to a sensing algorithm. The time-to-contact estimation approach by Clady et
al. (2014) provides an alternative approach that is robust to normal flow. However, it is
invalid when the FoE is outside of the field of view, limiting the application of this approach
to pure vertical landing.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

5-3 Event-based optical flow 57

Interestingly, over the course of the preliminary work in this thesis, two datasets for eval-
uating event-based optical flow were published. These partially serve the same purpose as
the preliminary analysis performed in this work. However, the fundamentals of the datasets
are significantly different, especially the composition of ground truth data. Also, the events
are recorded with a DAVIS instead of the DVS and illumination conditions are likely dif-
ferent than in the CyberZoo where our dataset was recorded. The event data is thus not
representative of the conditions where the experimental phase of this thesis will take place.
Nevertheless, when a correction is made for the different resolution of the DAVIS, the event
datasets and ground truth are usable for evaluation of event-based optical flow algorithms.
In particular, the evaluation results from Ruckauer and Delbruck (2016) are interesting, since
three methods evaluated here are also considered in our preliminary analysis performed in
Part III, and the ground truth flow corresponds to normal flow.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

58 Synthesis

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Part III

Preliminary Comparison of
Event-Based Optical Flow Methods

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

Chapter 6

Methodology and Datasets

In this preliminary comparison we present a first analysis conducted on methods in literature
for estimating event-based optical flow. In order to gain a better understanding of event-
based vision and optical flow methods, a preliminary implementation of several techniques
is performed, in which they estimate flow from realistic event data. In addition, to form a
basis for further work conducted in this thesis, a framework is presented for evaluating the
performance of optical flow methods and visual observable estimation methods.

In this chapter an overview of the steps in the analysis is provided. We demonstrate how pose
information is used to compute ground truth visual observables and optical flow. Further, a
brief description of the input datasets is given. The following chapters provide an in-depth
description of the evaluation procedures and their results. Event-based optical flow estimation
is discussed in Chapter 7, followed by the subsequent process of visual observable estimation
in Chapter 8.

Over the course of the preliminary work it was considerefd to correct the DVS output for
lens distortion. A procedure was developed for calibrating the DVS based on its event input.
Corrections for event positions and event-based optical flow were developed and demonstrated,
which are detailed in Chapter 10. For this preliminary comparison, the lens distortion is not
yet incorporated due to an inaccurate result, but it does provide the input parameter values
for the camera’s principal point and focal length.

6-1 Outline of the analysis

In an optical flow based landing maneuver, the visual sensor used is mounted on a MAV while
facing normal to the ground, such that it perceives ventral flow and divergence cues. In order
to assess how well different techniques for estimating these cues perform in a landing task, we
record event datasets using a DVS during simulated landing maneuvers. The DVS is moved
by hand in translational motion above a flat floor.

In addition, ground truth position, velocity, and attitude data of the camera is obtained by
simultaneously tracking the pose of the DVS. This is done using a Optitrack camera system,

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

62 Methodology and Datasets

which is capable of tracking the pose of objects in the area with great accuracy. This system
can track the position, speed, and orientation of objects that are fitted with several infrared
markers. From this information, ground truth values for ventral flow and divergence can be
estimated using the relations defined in Chapter 2.

The obtained event and pose measurement datasets are employed to assess the performance
of event-based methods for local flow estimation and visual observable estimation. Each
candidate algorithm is implemented and evaluated by computing estimates and comparing
the output to the ground truth value. This process of implementation and evaluation of the
methods is performed using Matlab. This procedure is decoupled in a two-stage process:
local optical flow estimation performance and visual observable estimation performance are
assessed in two separate procedures.

6-2 Determining ground truth visual observables and optical flow

Pose and velocity information from Optitrack is used to compute ground truth values for
local optical flow, ventral flow, and divergence. For this we apply the planar optical flow
relations derived in Section 2-1. In the general case, the DVS will not be perfectly aligned
to the ground. Therefore, the velocity information from Optitrack needs to be represented in
the camera reference frame C through a transformation.

To this end, we define two additional reference frames. Optitrack position and velocity infor-
mation is represented in the inertial world reference frame W. With respect to this inertial
frame, the DVS is represented by the body-fixed reference frame B. The body-fixed frame
results from three sequential rotational transformations, represented by Euler angles φ, θ, ψ.
The sequence of rotation is (1) a yaw rotation ψ around the Z-axis, (2) pitch rotation θ
around the Y -axis, and (3) roll rotation φ around the X-axis. A graphical representation of
the reference frames and the Euler angle definitions is shown in Figure 6-1.

Y
W

X
W

Z
W

X
B

Y
B

Z
B

φ

θ

ψ

O
W

O
B

Figure 6-1: Optitrack-based world reference frame and the body-fixed reference frame, with
Euler angle definitions.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

6-2 Determining ground truth visual observables and optical flow 63

The relations in Section 2-1 are expressed in C, which is oriented depending on the camera lens
orientation. During initialization the camera lens is pointed approximately perpendicular to
the ground surface. Hence, the assumption is introduced that ZC ≈ ZB. Further, the camera
is aligned in heading with a geometrical marker in the CyberZoo, such that XC ≈ YB and
YC ≈ XB. Note that X and Y are interchanged in the observer reference frame with respect
to the body reference frame; this is due to the definition of pixel coordinates in DVS events.
Lastly, in this preliminary work it is assumed that the camera nodal point intersects with the
body center of mass.

Based on the former, a linear transform T, representing the yaw, pitch, and roll rotations,
is applied to obtain the body velocity components UB, VB,WB from the Optitrack velocity
measurements UW , VW ,WW :

UB
VB
WB

 = T

UW
VW
WW

 (6-1)

Due to the assumed correspondence between the observer reference frame and the body-fixed
reference frame, this can also be expressed as:

VC
UC
WC

 = T

UW
VW
WW

 (6-2)

To compute the transformation T, a quaternion attitude representation is applied (Diebel,
2006). The quaternions q0, qx, qy, qz are introduced, which are related to the Euler angles
through Eq. (6-3). Here, a shorthand notation cx = cos(x), sx = sin(x) is introduced.

q0

qx
qy
qz

 =

cφ/2cθ/2cψ/2 + sφ/2sθ/2sψ/2
sφ/2cθ/2cψ/2 − cφ/2sθ/2sψ/2
cφ/2sθ/2cψ/2 + sφ/2cθ/2sψ/2
cφ/2cθ/2sψ/2 − sφ/2sθ/2cψ/2

 (6-3)

The transformation matrix T is then composed by the quaternions as follows:

T =

q0

2 + qx
2 − q2

y − qz2 2 (qxqy + q0qz) 2 (qxqz − q0qy)

2 (qxqy − q0qz) q0
2 − qx2 + q2

y − qz2 2 (qyqz + q0qx)

2 (qxqz + q0qy) 2 (qyqz − q0qx) q0
2 − qx2 − q2

y + qz
2

 (6-4)

The distance to the ground along the optical axis Z0 is computed through the following
geometrical relation:

Z0 =
ZW

cosφ cos θ
(6-5)

which is used to compute the ground truth ventral flows and divergence as follows:

ωx = −UC
Z0
, ωy = −VC

Z0
, D = 2

WC
Z0

(6-6)

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

64 Methodology and Datasets

Using the obtained ventral flow and divergence, a ground truth flow vector can be computed
for each event where a flow vector is estimated. Since we collect data above an approximately
planar surface, Eq. (2-5) derived in Section 2-1-2 is applied to compute a planar flow field.
The slopes ZX , ZY in these equations are computed from the camera roll and pitch angles
obtained from Optitrack:

ZX = tanφ, ZY = tan θ (6-7)

As the data from Optitrack is generally available at a lower sampling rate than the event rate,
all flow field parameters ZX , ZY , ϑx, ϑy, and ϑz are calculated through linear interpolation
based on the event timestamp. Then, using the event position a ground truth flow vector is
calculated.

6-3 Dataset description

Three main datasets were used recorded by moving the DVS above a flat floor. Each dataset
consists of a sequence of recorded events, as well as the Optitrack pose information. The pose
information consists of position and speed in the Optitrack reference frame, and the attitudes
of the camera.

Two datasets have been recorded above a checkerboard texture shown in Figure 6-2a. In the
first set the camera moves such that expansion and contraction occur in its field of view, but
with a focus of expansion left of the center of view. This leads to a combination of ventral
flow and divergence. In the second set the camera moves parallel to the surface, such that
mainly ventral flow is perceived.

The third dataset is recorded above a roadmap playmat (see Figure 6-2b), which leads to less
structured features in the field of view, but a higher feature density. The motion performed for
this dataset consists of a short part with contraction, followed by ventral flow, and completed
with a part with expansion.

An overview of the datasets and their characteristics is provided in Table 6-1. Note that the
event density is higher for the road map dataset due to the more complex texture.

Table 6-1: Summary of event dataset characteristics

Texture Primary motion cue(s) Duration [s] Number of events

Set 1 Checkerboard Off-center expansion and
contraction

22.97 5.41e5

Set 2 Checkerboard Ventral flow 16.99 2.37e5
Set 3 Road map Centered contraction, ven-

tral flow, and expansion
4.97 3.36e5

In Figure 6-3 the computed visual observables are shown for each dataset. Additionally,
height and event rate are displayed. The event rate is computed at each event timestamp by
summing all previous events in a 0.1 s window.

The motion types highlighted in Table 6-1 are clearly present. Some observations show
that the current dataset may require improvement. First, the height measurements in set

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

6-3 Dataset description 65

(a) Checkerboard texture

(b) Roadmap texture

Figure 6-2: Textures used for data acquisition.

2 show that the spatial resolution was limited to 1 cm, and the sampling rate is limited to
approximately 3 Hz. These are settings that can be adjusted in recording the pose data, and
are therefore adjusted in upcoming datasets.

Second, in sets 1 and 2 there are sharp peaks in the event rates. These are due to ‘flashes’:
distortions where a large part of the sensor triggers. An example of flash events is shown
in Figure 6-4. Most likely these flashes are caused by incorrect settings in the DVS pixel
thresholds imposed by jAER. In set 3 the DVS pixel firing threshold was increased slightly
to remedy this, and as a result, no flash peaks are present in the event rate. Disregarding the
peaks due to flashes, typical event rates during motion are in the range of 10k to 30k events
per second for set 1 and 2, and in the range of 40k to 120k events per second for set 3.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

66 Methodology and Datasets

20 30
−2

0

2

V
is
u
a
l
o
b
s.

[1
/
s]

20 30
0

0.5

1

Z
C
[m

]

20 30
0

0.5

1

·105

t [s]

E
v
en

t
ra
te

[1
/
s]

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

·105

t [s]

12 14

−1

0

1

12 14
0

0.5

1

10 12 14
0

0.5

1

·105

t [s]

0 5 10 15

−0.2

0

0.2

0.4

ϑx ϑy ϑz

Figure 6-3: Ground truth visual observable, height above ground, and event rates of the input
datasets.

Figure 6-4: Visualization of events recorded during a flash in set 2. Green dots represent positive
polarity (ON) events; red dots are negative polarity (OFF) events. A clear stripe of ON events is
visible due to the flash.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 7

Analysis of Optical Flow Estimation
Methods

In this comparison four different algorithms are included to estimate local optical flow. These
are based on methods found in literature (see Chapter 4). We evaluate the accuracy, computa-
tion time, and flow density of the algorithms through Matlab implementations. Additionally,
we investigate the effect of two filters designed to enhance flow estimates.

7-1 Local flow estimation algorithms

This section describes the implementation of the algorithms. For convenience, abbreviations
are introduced to refer to the algorithms in the remainder of this chapter. All algorithms are
causal and asynchronous: they operate on each individual event at the moment when it is
detected. They incorporate previous events within a spatial neighborhood of the new event,
as well as within a limited time range, forming a spatiotemporal search window at the new
event.

7-1-1 Event-based Lucas-Kanade

The event-based version of Lucas-Kanade (LK) is the first algorithm. As discussed in Sec-
tion 4-1-2, brightness gradients are approximated by computing sums of event polarities
instead of absolute brightness values. A version of the formulation by Brosch et al. (2015) is
used, where spatial brightness derivatives are computed through numerical central differences,
and temporal derivatives through backward differences:

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

68 Analysis of Optical Flow Estimation Methods

Itx (x, y) = 1
2

(
∑

t′∈[t−∆t,t]

P (x+ 1, y, t′)− ∑
t′∈[t−∆t,t]

P (x− 1, y, t′)

)

Ity (x, y) = 1
2

(
∑

t′∈[t−∆t,t]

P (x, y + 1, t′)− ∑
t′∈[t−∆t,t]

P (x, y − 1, t′)

)

Itt (x, y) = 1
∆t

∑
t′∈[t−∆t,t]

P (x, y, t′)

(7-1)

With respect to the original formulation, one modification is introduced. During implemen-
tation, the flow magnitude was found to depend directly on Itt estimates. All estimates of Itt
scale proportional to 1/∆t. In the case that a larger ∆t setting is used but no extra events
are obtained, this means that the magnitude scales with the time window setting. To counter
this, we set ∆t flexible. Events are first collected within a predefined setting for ∆t. Then,
∆t is adjusted such that the difference to the earliest occurring event in the time window is
used.

Having brightness derivatives available for all pixels within a spatial neighborhood of the
event, a least-squares system of equations is solved:

I1
tx I1

ty
...

...
Intx Inty

[
u
v

]
=

I1
tt
...
Intt

 (7-2)

This system of the form AV = y is solved through the linear least-squares solution for the
optical flow vector V:

ATAV = ATy (7-3)

7-1-2 Normal-to-Edge Search

The DvsDirectionSelectiveFilter in the jAER software (see Section 4-1-1) was implemented
as the Normal-to-Edge Search (NES) algorithm. This approach is based on computing pixel
velocity after identification of local edge orientation. Specifically, the algorithm establishes
if an event is part of an edge with a discrete orientation. For simplicity, only four edge
orientations are identified (0◦, 45◦, 90◦, 135◦).

Figure 7-1 illustrates the working principle of the algorithm. First, the algorithm establishes
evidence for each of the possible edge orientations. This is done based on the orientation
along which on average the most recent events occurred. With four possible orientations, this
algorithm considers the most recent horizontal, vertical, and diagonal neighbor events. For
robustness to missing events, also second and third closest neighbors are included.

Then, if an orientation can be identified, the algorithm searches for events normal to the edge
in two opposite directions. The direction in which the most events are found, is selected.
Now pixel velocities are computed using the events in the selected direction, and averaged to
obtain a final flow estimate.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

7-1 Local flow estimation algorithms 69

Figure 7-1: Working principle of the NES algorithm using a simple pixel grid. The darkness
of a square indicates how recently an event has fired. A horizontal edge orientation (red line) is
assigned here, since in this direction the most recent events occurred. Normal to this edge, events
are found searching upward (blue vector), which is evidence for downward optical flow.

7-1-3 Space-Time Plane Fitting

The third algorithm is the STPF algorithm proposed by Benosman et al. (2014). As dis-
cussed in Section 4-1-3, this algorithm estimates by robust fitting of a local plane to events,
represented as three-dimensional points as (x, y, t). For each incoming event, the algorithm
collects all events within a spatiotemporal neighborhood. Then, in an iterative refinement
process, a plane is fitted and improved by rejecting outliers.

The plane fitting process is detailed as follows. A plane Π is represented by the relation
pxx + pyy + ptt + p0 = 0. In this preliminary analysis, pt = 1, obtaining a nonhomogeneous
equivalent expression for Π. To obtain an initial plane estimate, a linear least-squares plane
solution is computed using all points. Then, points whose distance to the plane is larger than
a predefined threshold, are rejected, and a new least-squares fit is computed. This process
continues until the plane parameters do not change significantly anymore, or the amount
of points supporting the plane is insufficient. It was found that usually only two or three
iterations are necessary.

V = [u, v, 1]T N = [p
x
, p

y
, p

t
]T

[e
x
, e

y
, 0]T

x

y

t

Figure 7-2: Illustration of the orthogonal system of the flow vector V, a plane normal vector N,
and a luminance edge described by the vector [ex, ey, 0]

T .

Having obtained the best plane fit, the approach proposed by Brosch et al. (2015) is used
to compute optical flow. In this approach, flow is computed from the orthogonal system of
the normal vector of the fitted plane, a representation of the flow vector, and a hypothetical
luminance edge that moves along the plane with the flow vector. This normal system is shown
in Figure 7-2. It can be shown that in this case, the normal flow of the edge is related to the

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

70 Analysis of Optical Flow Estimation Methods

plane normal vector as follows:

[
u
v

]
= − pt

p2
x + p2

y

[
px
py

]
(7-4)

7-1-4 Direction Selective Filtering

The last optical flow algorithm considered in this work is the Direction Selective Filtering
(DSF) approach presented by Brosch et al. (2015). In this approach, flow is computed for
each incoming event through convolving past events with probability filters for combinations
of direction and speed.

Filters are constructed using two spatial and two temporal filters as presented in Section 4-1-5.
The spatial filters are represented by the real and imaginary parts of a Gabor filter:

G(x, y) =
2π

σ2
G

exp (2πjfG (x+ y)) exp

(
−2π2

(
x2 + y2

)

σ2
G

)
(7-5)

The monophasic and biphasic filters are composed of several Gaussian filter kernels:

Tmono(t) = exp
(
− (t−µmono)2

2σmono
2

)

Tbi(t) = −s1 exp
(
− (t−µbi1)2

2σbi12

)
+ s2 exp

(
− (t−µbi2)2

2σbi22

) (7-6)

A full filter is then a combination of these filters:

F (x, y, t) = Im (G(x, y))Tmono(t) + Re (G(x, y))Tbi(t) (7-7)

In Brosch et al. (2015) the filter parameters (fG, σG, µmono, σmono, µbi1, σbi1, µbi2, σbi2) are
estimated based on biological results from De Valois et al. (2000).

In this implementation, an extensive filter bank is created accounting for both direction
selectivity and speed selectivity. The spatial filters regulate direction selectivity through
their orientation. Speed selectivity can be regulated through adapting the parameters of the
temporal filters as described by Brosch et al. (2015). We create filters that account for four
different spatial directions (similar to the NES algorithm) and ten different speeds. Hence, a
filter bank of 40 combined filters is generated. For fast evaluation the filter components (the
spatial and temporal filters separately) are implemented in the form of look-up tables.

For each filter, a confidence value is created by summing the filter outputs for all nearby
events. In each direction, the speed with the highest confidence is selected (winner-takes-all).
Then, the optical flow is found by summing the speed vectors identified for all directions.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

7-2 Evaluation of algorithm performance 71

7-2 Evaluation of algorithm performance

7-2-1 Flow error metrics

We evaluated the accuracy of algorithms by computing three error metrics per flow vector,
which are depicted in Figure 7-3. By computing the average values of these error metrics for
all flow vectors in a datasets, these metrics provide simple means to assess algorithm accuracy
in this dataset.

V

V
GT

θ
AE

V
EE

V
PEE

Figure 7-3: Illustration of error metrics. The vector V indicates the estimated flow, while VGT

indicates ground truth.

First, the Endpoint Error (EE) is considered: the magnitude of the endpoint-to-endpoint
error vector:

EE = ‖V −VGT ‖ =

√
(u− uGT)2 + (v − vGT)2 (7-8)

Second, the Angular Error (AE) is computed, which is the difference in direction between the
two vectors:

AE = arccos
V ·VGT

‖V‖ ‖VGT ‖
(7-9)

These quantities are commonly used in benchmarking techniques, including the recently pre-
sented datasets for event-based optical flow evaluation (Barranco et al., 2016; Ruckauer &
Delbruck, 2016). However, as discussed in Chapter 4, most event-based techniques suffer
from the aperture problem. Therefore, a quantity for evaluating normal flow estimation per-
formance is a useful addition. For this, we propose the Projection Endpoint Error (PEE),
which is the absolute difference between the magnitude of ground truth flow projected to the
estimate flow vector and the magnitude of the estimated flow:

PEE =

∣∣∣∣‖V‖ −
V

‖V‖ ·VGT

∣∣∣∣ (7-10)

7-2-2 Processing time and flow output density

The average processing time per event for each algorithm is used to assess the computational
load of an algorithm. This average is computed for each dataset separately to quantify how
much the computational load varies under different conditions.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

72 Analysis of Optical Flow Estimation Methods

Lastly, the flow output density η is the percentage of the input events for which a flow vector
is identified. This value indicates how well an algorithm is compatible with visual observable
estimation, and how strict any event or flow vector filtering can be (see Section 7-4). A
high value for η requires more processing in the visual observable estimation stage due to the
larger amount of flow vectors. However, it also allows for stricter filter settings such that flow
quality can increase further, which in turn reduces flow throughput.

7-3 Results

For generating the results in this section, the algorithm parameters were set to use the same
space-time window (5x5 pixel neighborhood, events within 3 ms and 100 ms before the current
event) for detecting events. For the NES algorithm, this is equivalent to a search distance of
2 pixels. We first show qualitative flow results of the algorithms, followed by a quantitative
comparison through the calculated error metrics.

7-3-1 Qualitative results

Figure 7-4 shows a detail view of optical flow estimated during set 3 for each algorithm, along
with corresponding ground truth flow. Clear differences are visible in the algorithm output.

The LK algorithm produces flow where each vector by itself is inaccurate, and it appears
very difficult to reconstruct the original motion pattern from this flow field. It does result
in high density flow, but as can be seen in Figure 7-4 most of the flow vectors have very
low magnitude. More desirable performance is seen by the NES algorithm. The observed
flow vectors match closely to the ground truth flow. Some outliers are observed, but these
are mostly individual outliers. The flow density is in this image very low, and the algorithm
appears to miss several clear motion patterns.

The STPF algorithm shows the best performance, and produces highly coherent flow esti-
mates. Deviations are mainly seen at the end points of edges. Also note that some coherent
flow estimates deviate from the ground truth, which is due to the aperture problem. Lastly,
the DSF algorithm produces flow that is, like the LK algorithm, highly varying in angle and
magnitude. The flow orientation is in most cases better than for the LK algorithm, but also
many incorrect estimates are seen at smaller features.

7-3-2 Quantitative results

Table 7-1 summarizes the overall performance of the algorithms applied to the three different
datasets. The error quantities are shown as the average errors (e.g. average EE, denoted as
AEE of the complete datasets. In addition, the computation time needed for the dataset as
well as the number of identified velocity vectors are shown.

The STPF algorithm provides the most accurate estimate on all datasets and on all types
of errors, but for most datasets it also takes significant computation time. This is sensible,
since it involves multiple least-squares operations necessary for plane fitting. Interestingly, it
is relatively fast in the case of pure ventral motion. A likely reason is that for this set less
plane fit iterations are required per event.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

7-3 Results 73

Figure 7-4: Events, estimated flow vectors, and ground truth flow obtained from the four base
algorithms in set 3 within a 100 ms time window. Only a limited part of the DVS pixel grid
is shown for clarity. The green and red dots indicate events (green = positive polarity, red =
negative). The yellow arrows indicate flow estimates for each algorithm. The purple arrows are
the accompanying ground truth flow vectors.

NES, on the other hand, appears to be the least computationally demanding. With its cur-
rent setting it performs slightly less accurate than LK. However, its AAE is small, especially
considering that it can only identify motion in eight discrete directions. With current set-
tings the new DSF algorithm shows the lowest performance in absolute errors and medium
performance in flow direction estimation (AAE) and computation time.

Clearly, all algorithms perform the best on set 2, where due to the checkerboard texture, and
the motion direction, the observed edges perform approximately normal motion. The road
map texture appears to be slightly less challenging than the checkerboard texture, despite the
higher event density. Note that computation time values per event are too high for real-time

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

74 Analysis of Optical Flow Estimation Methods

Table 7-1: Optic flow errors and computation characteristics for the three datasets. The A-prefix
to error quantities indicates that these are the average of the complete dataset. The symbol tC
indicates computation time per event and η indicates the flow density.

AEE [pix/s] AAE [deg] APEE [pix/s] tC [µs] η [%]

Set 1

LK 65.66 67.94 44.16 288.0 57.67
NES 77.00 41.59 57.72 229.5 26.43
STPF 60.43 39.90 39.55 367.1 32.53
DSF 98.14 57.71 80.49 268.9 28.84

Set 2

LK 34.20 59.85 27.01 259.4 38.48
NES 33.74 19.57 31.95 239.6 15.61
STPF 20.11 18.13 17.77 243.3 20.21
DSF 54.95 37.25 51.16 239.1 22.57

Set 3

LK 60.26 79.16 39.96 235.6 78.87
NES 58.34 41.84 41.49 222.8 9.107
STPF 41.55 31.52 25.34 435.3 30.36
DSF 80.62 53.82 65.08 276.4 22.98

performance. Typical event rates exceed 10k events per second, while in the best case, the
NES algorithm can process 4.5k events per second. However, the values are still preliminary
and are likely to improve significantly when implementing in C.

As may expected, the newly defined PEE has lower values than the endpoint error, and pe-
nalizes algorithms less when their angular error is high. For set 2, the APEE is approximately
equal to the commonly used AEE. For the other datasets, the APEE values are lower.

7-3-3 Comparison to results in literature

We validated the results of this work to recent results seen in literature. A first-order com-
parison of our results to those obtained by Ruckauer and Delbruck (2016) is possible for the
LK, NES, and STPF algorithms. Example results are shown in Figure 7-5 for a synthetic
dataset.

Interesting is that the LK implementations in Ruckauer and Delbruck (2016) produces much
more consistently oriented flow than in this work. This may be due to our choice of flexibly
computing the temporal derivative Itt. In addition, Ruckauer and Delbruck (2016) applied
an eigenvalue threshold for the least-squares covariance matrix ATA to filter inaccurate flow.
However, similar to the original results by Benosman et al. (2012), output flow magnitude is
inaccurate, as is visible in Figure 7-5.

The NES approach in our work computes low density flow in comparison to the version by
Ruckauer and Delbruck (2016). This is likely due to less strict threshold settings. Qualitative
results are similar. The Java-based implementation (referred to as DS) is very efficient and
reaches a computational efficiency of 0.36 µs.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

7-4 Improving performance through filters 75

Figure 7-5: Flow estimate results in the synthetic rotating bar sequence of Ruckauer and Delbruck
(2016). Results are shown from four variants of the Lucas-Kanade (LK) method and the local
plane fitting (LP) method, and from the DvsDirectionSelectiveFilter algorithm (DS). Adapted
from Ruckauer and Delbruck (2016).

Our implementation of STPF is well comparable to the Java-based LProbust algorithm in
Ruckauer and Delbruck (2016), which is based on the same principles set out by Brosch et
al. (2015). The LProbust algorithm performs reasonably accurate estimates at 4.51 µs com-
putation time per event. However, the authors propose a Savitsky-Golay filter based version
(LPSG) of this algorithm which reduces computation time to 0.58 µs per event, and improves
angular accuracy, though at the cost of magnitude accuracy. This may be an interesting alter-
native for achieving real-time performance of the STPF approach, if the magnitude accuracy
can be increased.

7-4 Improving performance through filters

As part of the analysis we investigated two extensions in order to obtain better performance.
These are implemented in the form of separate filters. First, a background activity filter
is proposed to remove standalone events that are not clearly part of any moving structure.
Second, a flow regularization filter was introduced to add coherence to the flow vectors, and
remove unsupported flow vectors. In this section the working principles of the filters are
described. Also, their performance is evaluated in comparison to results in Section 7-3.

7-4-1 Background activity filter

The software package jAER includes a functionality named BackgroundActivityFilter(). This
simple but effective event filter rules out events that are not supported by direct neighbor
events that have occurred within a specified time window. Specifically, if an event occurs, the
filter checks the time of the last occurring events on neighbor pixels. If the time difference
between the new event and the last neighbor event is smaller than a time threshold, the event
is preserved for further processing. If not, the event is rejected. All events are, however,
preserved to support future events.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

76 Analysis of Optical Flow Estimation Methods

In jAER this filter was quite effective at keeping noise events out, preserving mainly moving
features. This favorably influences processing time in subsequent processes. Also, due to
its simplicity it uses very little computational resources by itself. Therefore, the filter was
incorporated into the Matlab analysis as well to see how it affects optical flow estimate
performance and processing time.

7-4-2 Flow regularization filter

Through existing event-based optical flow algorithms, local optical flow is mainly detected
along moving edges. In this case, multiple single flow vectors are identified next to each
other. Use may be made of this property to identify motion vectors with higher degrees of
confidence, rejecting flow that is not supported by neighbor flow, or does not match with
neighbor flow patterns.

A simple causal filter was designed that operates on each flow vector after identification.
Figure 7-6 illustrates its working principle by example vectors. The filter is based on two
main assumptions: (1) a moving edge generates more than one flow vector, and (2) flow
vectors along an edge are similar in magnitude and orientation. This leads to two criteria:
(1) a flow vector needs to be supported by at least one neighbor, and (2) the difference in
orientation and magnitude must be smaller than a threshold. If a flow vector fulfills these
criteria, the magnitude and orientation of the corresponding output flow vector are averaged
over the input flow vector and its supporting vectors.

V
1

V
2
*

V
2

V
3

Figure 7-6: Working principle of the current flow regularization filter illustrated through 3 se-
quentially detected flow vectors. Flow vector 1 is detected first, but not supported by other
vectors and therefore rejected. Vector 2 is supported by vector 1, which has similar magnitude
and orientation, and is therefore preserved as vector 2*. Vector 3 is detected last and supported
by vector 2, but has a different magnitude and orientation, and is rejected.

7-4-3 Effect of filters on flow estimation performance

The effect of extensions on the algorithm performance is demonstrated in this section. We
repeat the analysis of the STPF algorithm on set 3 with each extension added separately.
First, qualitative results are shown per filter by means of event and flow visualizations. Sec-
ond, a quantitative comparison to results for the STPF algorithm presented in Section 7-3-2
is made.

Background activity filter

First we consider some details of the filter results, starting with the background activity filter.
Figure 7-7 shows a subset of the events on the pixel grid, and the filtered events. We see that

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

7-4 Improving performance through filters 77

the filter effectively suppresses most stray events, preserving mainly clear features formed by
events. However, some features are already seen to ‘shrink’, showing that there is a practical
trade-off to be made between event rate and feature quality. Figure 7-8 shows for the complete
dataset how the filter threshold affects event rate over time. The peaks in the event rate are
due to camera movement. Note that these peaks are preserved well with a filter threshold
above 10 ms, but that with 1 ms it appears that significant data loss occurs.

Figure 7-7: Effect of the background activity filter applied to the upper left quarter of the pixel
grid in set 3. On the left, the unfiltered events are shown. The right image shows filtered events,
using a threshold of 10 ms.

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
t [s]

0

2

4

6

8

10

12

14

E
ve

nt
 r

at
e

[1
/s

]

×104

Unfiltered
threshold = 100 ms
threshold = 10 ms
threshold = 1 ms

Figure 7-8: Background activity filter effect on event rate in set 3, with various threshold settings.

Flow regularization filter

Figure 7-6 shows two event and flow patterns obtained from the STPF algorithm, of which
the right image results from applying the flow regularization filter. For clarity, the ground
truth optical flow vectors are left out. Clearly, the filter reduces the amount of flow vectors
significantly, and only the flow vectors that have sufficient support in the original flow pattern
are preserved. As a result, most inconsistent and individual flow vectors are rejected, while
the flow along edge-like features is preserved.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

78 Analysis of Optical Flow Estimation Methods

Figure 7-9: Effect of the flow regularization filter on optical flow estimates from the STPF
algorithm applied to set 3. Both images show events (green = positive polarity and red =
negative) and flow vectors (yellow) obtained during the same time window. The left image is the
basic algorithm result; the right image shows the filtered flow vectors.

Quantitative results

Table 7-2 shows how the performance of the STPF algorithm varies when subjected to the
different filters. We see that the background activity filter significantly reduces computation
time. Overall, the error does appear to increase slightly. However, with other datasets and
methods, this did not appear to be a consistent result; sometimes the error actually decreased.

On the other hand, the flow regularization filter does reduce errors. The filter is successful
at rejecting several outliers, favorably affecting the output flow accuracy. The computational
load penalty for this filter is small.

Table 7-2: Effect of applying filters (individually and combined) to the STPF algorithm evaluating
event set 3. The background activity (BA) filter operates at a threshold of 10 ms. The flow
regularization (FR) filter requires flow input to have at least one direct neighbor, which has a
maximum orientation difference of 20◦ and a magnitude difference of 0.5 of the new flow vector
magnitude

AEE [pix/s] AAE [deg] APEE [pix/s] tC [µs] η [%]

STPF 41.55 31.52 25.34 435.3 30.35
STPF with BA filter 43.11 29.22 27.34 261.6 22.56
STPF with FR filter 35.71 25.34 20.50 447.7 17.08
STPF with both filters 36.65 23.91 21.57 270.2 13.66

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 8

Analysis of Visual Observable
Estimation Methods

In this part of the analysis we evaluate the performance of five algorithms for computing
visual observables from optic flow vectors. In three of these algorithms the FoE is estimated
first, followed by the computation of ventral flow and divergence. The other two algorithms
directly estimate ventral flow and divergence. We discuss briefly the influence of the number
of flow vectors available and their spread. Then, qualitative and quantitative results are
presented.

8-1 Algorithms for estimating the Focus of Expansion

In these algorithms the problem of estimating the FoE is separated from computing visual
observables. These techniques are therefore generally applicable, and are not necessarily based
on assumptions regarding the flow field structure. Hence, they would also be applicable to
scenes where depth variations occur.

8-1-1 Probability mapping method

Introduced by Clady et al. (2014), the Probability Mapping (PM) method is a technique for
estimating the most likely location of the FoE. This method was introduced in Section 4-3-2
and is detailed further in this section.

Let V = [u, v]T be an incoming flow vector and d′ = [x− x′, y − y′]T the displacement vector
from the flow vector origin to any location (x′, y′) on a map. V can be a normal vector, hence
providing no direct indication of the location of the FoE. However, V bounds a half-plane in
the map in which the FoE location should be. The locations (x′, y′) that lie in this half-plane,
are identified through:

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

80 Analysis of Visual Observable Estimation Methods

d′ ·V > 0 (8-1)

Through addition of multiple flow vectors, an area on the map is bounded where the FoE is
located. To account for shift in the FoE over time, an exponential decay is applied to the full
map.

Two main modifications are made with respect to this original method. First, during general
motion the approach should work for both expansion and contraction. To achieve this, we
assign negative probability to the map section where the FoE cannot exist. With this addition,
the location with the largest absolute probability indicates either the FoE or the FoC. Second,
PM includes a modification that allows a trade-off of computational complexity and accuracy.
A full-size probability map would require maintaining and updating a 128×128 array. By
downsampling the resolution, the array size can be reduced, requiring less computations to
update the map. In this work the array is downsampled by a factor 4.

8-1-2 Integration method

In the Integration Method (IM) by Paz Gomes Verdugo (2015) the location of the FoE is
sought by finding the location where the magnitude of flow velocity is minimal. Similar to
the PM algorithm, this is a map-based approach. Two independent one-dimensional arrays
Mu(x),Mv(y) map the average u- and v- components of flow vectors separately to the corre-
sponding x and y respectively. For these maps no downsampling is necessary.

For each incoming flow vector, the u- and v-maps corresponding to the flow location are
adjusted through a low-pass filter. After updating the maps, the FoE is found from the
location where the low-pass filtered absolute velocities |Mu(x)| and |Mv(y)| are minimal.

8-1-3 Cross-product method

In Section 4-3-1 a sequential method for estimating the FoE was discussed. Proposed by Paz
Gomes Verdugo (2015), the method is based on the assumption that, at the FoE, all flow
vectors intersect. In this analysis it is implemented as the Cross-Product (CP) method.

Given a flow vector V and its displacement vector from the FoE, df = [x− xf , y − yf]T , the
condition for the FoE implies that df ×V = 0. Or, equivalently:

uyf − vxf = uy − vx (8-2)

With several sequential flow vectors available, (8-2) extends to an overdetermined system of
equations. The most likely values for xf and yf are then estimated through ordinary least-
squares. Currently this is done for each new incoming flow vector, solving for the normalized
velocities using a fixed number of previous flow vectors. This number is at present the only
parameter of the method.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

8-2 Algorithms for simultaneous estimation of visual observables 81

8-1-4 Estimating visual observables using the Focus of Expansion

The methods discussed in this section compute the FoE location, which is an in-between
parameter necessary for obtaining the visual observables. Knowing the FoE location, ϑz is
computed through the following relation:

ϑz =
(x− xf)u+ (y − yf)v

(x− xf)2 + (y − yf)2 (8-3)

This equation is based on the approach used by Clady et al. (2014) in conjunction with the
PM algorithm.

For these approaches, the ventral flows ϑx, ϑy are computed separately as the moving averages
of û = u/f and v̂ = v/f . To compute these averages, a recursive low-pass filter is employed.
Thus, ϑx is computed through:

ϑx(k + 1) = ϑx(k) + (−û(k + 1)− ϑx(k))
t(k + 1)− t(k)

kt
(8-4)

and ϑy through an equivalent form of this relation. kt is the low-pass filter time constant.
Hence, for each of the methods in this section, the ventral flow estimates are equal.

8-2 Algorithms for simultaneous estimation of visual observables

In these two techniques, the visual observables are estimated simultaneously from a set of
optical flow vectors. It is therefore not necessary to explicitly estimate the FoE and to derive
divergence separately for these.

8-2-1 Estimating a planar flow field

A technique seen frequently in recent frame-based visual landing experiments is to directly
estimate the parameters of a planar flow field (Alkowatly et al., 2015; De Croon et al., 2015;
Ho & De Croon, 2016). In Section 2-1 two models for a planar flow field were proposed
and discussed. The model in Eq. (2-6) provides a structure that directly relates local flow
components to ventral flows and divergence. Hence, for this approach it is not necessary
to first estimate the location of the FoE, and then compute divergence and ventral flow
separately. This model forms the basis for the Planar Flow (PF) algorithm.

Similar to the CP method, this approach uses a fixed number of sequential flow vectors. Using
these flow vectors, the flow field parameters ϑx, ϑy, ϑz in Eq. (2-6) are computed through
linear least-squares regression. Since there is a common parameter ϑz in both equations, the
least-squares system is composed as follows:

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

82 Analysis of Visual Observable Estimation Methods

1 x̂1 0
...

...
...

1 x̂n 0
0 ŷ1 1
...

...
...

0 ŷn 1

ϑx
ϑz
ϑy

 =

û1
...
ûn
v̂1
...
v̂n

(8-5)

using the normalized equivalents (x̂, ŷ) and (û, v̂). From the flow field parameters, ventral
flows and divergence are immediately available.

8-2-2 Estimating a planar normal flow field

The PF algorithm holds when optical flow is fully observable. However, when only normal
flow can be observed, Eq. (2-6) no longer holds. Therefore, we introduce an extension of PF
based on the fundamental assumption that only normal flow can be detected. This approach
will be referred to as the Planar Normal Flow (PNF) algorithm.

Let n = [n1, n2]T be a unit vector normal to an edge, V̂n = [ûn, v̂n]T the observable normal
flow vector in the direction of n, and V̂ = [û, v̂]T the corresponding optical flow vector. Since
V̂n results from a projection of V̂ to n, the magnitude of the projection is:

∥∥∥V̂n

∥∥∥ = V̂ · n = ûn1 + v̂n2 (8-6)

The flow field structure in Eq. (2-6) is then substituted into Eq. (8-6), obtaining a relation of
the flow field to the normalized velocities:

∥∥∥V̂n

∥∥∥ = −ϑxn1 − ϑyn2 + (x̂n1 + ŷn2)ϑz (8-7)

or, since n1 = ûn/
∥∥∥V̂n

∥∥∥, n2 = v̂n/
∥∥∥V̂n

∥∥∥:

∥∥∥V̂n

∥∥∥
2

= −ϑxûn − ϑyv̂n + (x̂ûn + ŷv̂n)ϑz (8-8)

Similar to the PF algorithm, the original flow field parameters can now be obtained through
a linear least-squares solution, using a fixed number of sequential flow vectors.

8-3 Datasets

The datasets used for evaluating visual observable estimation methods consist of optical flow
vectors identified using the STPF algorithm in order to represent realistic optical flow. Next
to this, for each dataset, two ground truth velocity vector sets are computed:

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

8-4 Flow statistics 83

• From the Optitrack validation measurements, ground truth visual observables are deter-
mined. Then, for each flow vector identified from the algorithm, a ground truth vector
is computed based on the event’s location and timestamp.

• As discussed before, in many cases optical flow can only be identified normal to a moving
edge. Therefore, we also generate a dataset of ground truth normal flow, by projecting
the ground truth vectors onto the estimated flow vectors.

Currently this strategy is applied to generate datasets based on set 1 and 3 discussed in
Section 6-3, hence obtaining 2 sets with ground truth flow, ground truth normal flow, and
flow estimates.

8-4 Flow statistics

During implementation it was found that the accuracy of visual observable estimates decreased
in parts of the dataset with limited event rate. Closer examination revealed that in these parts,
either too few flow vectors were available, or that they were distributed insufficiently across
the field of view. In fact, this was related to the motion and position of the camera. If the
motion is too small, the event rate is limited and optical flow cannot be estimated with good
accuracy. Also, if insufficient texture is recorded, optical flow is either not found, or only
found in certain parts of the retina. If flow is only available when grouped closely together,
small errors in local flow have a larger influence on the visual observable estimates than if
they are well spread out.

In order to quantify these effects we introduce and monitor three statistics: flow detection
rate, and flow position variances for both x and y. These statistics are computed in a sliding
window for each new flow vector. If the position variance is small, there is insufficient spread
in flow vectors.

8-5 Results

We first consider in slight detail two special cases of motion, contraction and ventral motion,
and highlight some detailed results through plots of the validation data over time. Then,
error metrics obtained for the estimate datasets are presented. The accuracy of the methods
is assessed through the mean absolute error and the error variance.

8-5-1 Detailed flow sequences

Contracting flow in set 1

Figure 8-1 shows results for a part of set 1 containing contraction with the focus of expansion
to the left. Flow detection statistics (rate and positional variance) are shown as well. Note
that in this set, little texture can be perceived until t = 12.4, as can be seen in the flow
statistics. In particular, the flow position variance is rather low.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

84 Analysis of Visual Observable Estimation Methods

Figure 8-1: Flow field parameters estimated by different methods on contracting flow in set 1
(checkerboard texture). Flow estimate statistics are shown as well.

Where the flow detection rate and variances are high, ground truth divergence results for all
methods are accurate. Ventral flow results are off, however, for the methods where ventral
flows are estimated independently from divergence (PM, IM, and CP).

When ground truth normal flow is analyzed, most algorithms lose accuracy, even with good
flow coverage. The PF and PM methods also under-estimate divergence. The PF method
also fails to correctly estimate ventral flows. In contrast, the normal flow variant (PNF) still
provides very accurate results for both ventral flow and divergence.

In the real estimates, performance of all methods degrades significantly. Of the used methods,
the PNF method still seems to perform the best on estimating divergence, and recognizing
the global trend in ϑx. However, in ϑy the algorithm shows intensified noise peaks compared
to the other methods.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

8-5 Results 85

Ventral flow in set 3

In Figure 8-2 results are presented for a subset of set 3 including ventral motion. In the
ground truth flow results, most methods perform well at estimating ventral flows. However, a
particularly interesting result is seen for the PNF method: there are significant peaks visible
that are not present in either the estimated flow results or the normal ground truth flow
results. Closer inspection shows that this occurs due to ambiguity in the flow direction and
magnitude. Also interesting is that at the same time, the divergence estimate is still highly
accurate. This phenomenon is less visible in the calculated flow results, although ventral flow
estimates are more noisy than most results. The divergence is slightly off here.

Figure 8-2: Flow field parameters estimated by different methods while perceiving ventral flow
in set 3 (roadmap texture).

Note also that the methods that are limited to the field of view of the camera (PM and IM)
provide incorrect divergence estimates due to wrong estimation of the FoE, even with ground
truth flow. Since ventral flows are estimated independently for these methods, these estimates
are not affected and quite accurate, even for calculated flow.

The CP method divergence estimates are accurate for ground truth flow, but fail when normal

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

86 Analysis of Visual Observable Estimation Methods

flow is evaluated. This result is also seen in the calculated flow.

Lastly, the PF method suffers little from normal flow in this case. Divergence estimates are
reasonably accurate in the calculated flow. Ventral flow results are slightly off: ϑx is slightly
underestimated. Since ϑy is slightly over-estimated when ϑx is large, this might also be due
to slight mis-alignment of the camera and Optitrack reference frames.

8-5-2 Quantitative results and computational effort

Table 8-1 shows the results from the analysis of the full sets 1 and set 3. Here only the flow
estimates from the STPF algorithm are considered. Note that in these results, no correction
is incorporated for flow detection rate or position variances. Therefore, these results should
be interpreted with care.

Table 8-1: Visual observable estimation errors (mean absolute error and variance) when applied
to the flow estimate dataset. Computation times per event (tC) are shown as well.

ϑx [1/s] ϑy [1/s] ϑz [1/s] tC [µs]

Mean Var Mean Var Mean Var

Set 1

PM 0.2384 0.1211 0.2671 0.1358 0.2856 0.1506 40.74
IM 0.2384 0.1211 0.2671 0.1358 0.3966 0.2900 21.79
CP 0.2384 0.1211 0.2671 0.1358 0.4766 0.4437 40.15
PF 0.2029 0.09058 0.2125 0.09156 0.2553 0.1294 55.51
PNF 0.3174 0.1502 0.2727 0.1475 0.3553 0.2854 57.23

Set 3

PM 0.1409 0.03556 0.17 0.06707 0.5778 0.3059 16.19
IM 0.1409 0.03556 0.17 0.06707 0.4876 0.3197 8.69
CP 0.1409 0.03556 0.17 0.06707 0.4338 0.2859 16.10
PF 0.121 0.02384 0.1303 0.03234 0.2363 0.1458 21.96
PNF 0.1857 0.06045 0.2238 0.07598 0.2757 0.1368 22.83

Quantitatively, the highest accuracy is seen mainly by the PF algorithm for both ventral
flows and divergence, showing errors with limited variation. Interestingly, this result is not
visible in the qualitative part shown in 8-1, where the algorithm performs less than most
other methods. The PNF approach shows the lowest accuracy and high error variance in
estimating ventral flows, but reasonable results for divergence estimates.

In set 1, the map-based methods PM and IM perform reasonably well, since in general, the
FoE lies within or close to the field of view. However, set 3 contains a section of pure ventral
flow which was highlighted in Figure 8-2. This clearly increases the errors for these methods,
mainly for PM.

The computational load of the PF approach is, however, relatively high. It is possible to
reduce computational load by incorporating a smaller number of previous events per fit. The
IM approach appears the least demanding. This is favorable since no downsampling is applied
to this method.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 9

Discussion of Preliminary Results

A preliminary comparison framework is set up for evaluating event-based optical flow per-
formance. Using a DVS for recording event sequences and an Optitrack system for pose
tracking, datasets are constructed representing the basic motion types relevant in landing
maneuvers for MAVs. These are used for evaluating the performance of event-based methods
for estimating optical flow and visual observables. This chapter summarizes and discusses the
results obtained in the preliminary work. At the end of this chapter, the relation between the
preliminary results and the current work is described.

9-1 Datasets

We recorded three datasets with different motion types using two types of texture. In the
present datasets, several improvements are still possible. First, the datasets are relatively
long and consist of parts where spatial event coverage and event rates are limited. A better
division into smaller sections with clear characteristics may provide a better overview of what
factors influence the algorithm performance. Second, values for ventral flow and divergence in
this dataset are relatively high when compared to values seen in landing experiments (Herissé
et al., 2012; Ho & De Croon, 2016). Third, as can be seen in Figure 6-3, the spatial and
temporal resolution in the currently recorded datasets are limited. This can be remedied by
changing settings for the Optitrack logging process.

9-2 Performance of optical flow methods

For estimating local optical flow, the STPF method shows the most desirable behavior. It
produces consistent and accurate flow estimates along edges. The runner-up is the NES
algorithm, which had the best results in Marta’s work (Paz Gomes Verdugo, 2015). LK and
DSF produce inconsistent flow, even along clear edge features. In related work (Ruckauer
& Delbruck, 2016), more accurate results for orientation were produced for LK than in the
presented method, though the optical flow magnitude is generally incorrect.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

88 Discussion of Preliminary Results

The filter extensions show to be simple but powerful additions. While the background activity
filter limits event throughput and thus computation time, the edge flow filter improves overall
flow quality and rejects inconsistent flow estimates. They are compatible with all local flow
estimation methods and are thus useful to incorporate in the on-board implementation.

Computation times for the algorithm are high at this point. With the Matlab implemen-
tations, real-time performance is not feasible with common event rates. However, the imple-
mentations are not optimized. Also, the laptop used for computations was operating with
limited CPU (10%) to prevent overheating. Lastly, implementing in C will greatly reduce
computational effort. On the other hand, an on-board processor has less computation capa-
bility compared to the laptop. A final judgment can thus only be made when the algorithms
are tested on-board.

For the STPF approach, several means are available to reduce computational load. It can be
done through (1) a faster approach to plane estimation (e.g. the Savitsky-Golay filter approach
by Ruckauer and Delbruck (2016)), (2) a limited number of plane fit iterations, which is less
computationally demanding, but also less robust, or (3) applying the background activity
filter to reduce the amount of evaluations.

9-3 Performance of visual observable estimation methods

Using the approaches described in this work, visual observable estimation can be performed
reasonably well for pure ventral flows. However, when flow patterns become more complex,
as in the case of contracting/expanding flow, estimating ventral flows and in particular di-
vergence correctly is challenging. Quantitatively the errors are too high to commence with
implementation. In comparison, Herissé et al. (2012) applied a divergence setpoint of 0.1
during experiments and 0.5 during simulation, and in the simulations by Ho and De Croon
(2016) a setpoint of 0.3 was used.

In combination with estimated optical flow, the best quantitative performance is seen by the
PF method, which provides simultaneous estimates of ventral flow and divergence. This is seen
to perform better than separately computing ventral flows and divergence. However, these
results should be used with care, since the full datasets has several regions with limited event
rate and flow coverage, which leads to unpredictable behavior. Through a better selection of
datasets for evaluation, these quantitative results may become more relevant. Alternatively,
through setting thresholds for flow detection rate and position variance, it may be possible
to automatically disregard flow data when these statistics are too low.

As expected, mapping-based methods (PM, IM) fail even for ground truth optical flow vectors
when the FoE is outside the field of view. When this happens, mainly divergence estimates
are off. This can occur quite often such as in pure ventral flow. Therefore, map-free meth-
ods are preferable. Alternatively, a map-based method may be considered that allows for
extrapolating the FoE location.

Most methods underestimate divergence when only the normal component of optical flow can
be observed. This is sensible, since normal flow has a smaller magnitude than its ‘true’ optical
flow equivalent. In an attempt to overcome this issue, the PNF method was introduced. This
method is accurate for ground truth normal flow, but brings significant noise with it when
applied to flow estimates, and fails to estimate ventral flows when flow is highly ambiguous.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

9-4 Relation to results presented in the paper 89

The computation times necessary for the discussed methods for estimating visual observables
are relatively low compared to the optical flow estimation methods. However, in the current
implementation they scale with the amount of flow vectors estimated. A less demanding
approach would be to split up the field of view into sections, where for each section an
average flow vector is maintained, and updated with each newly estimated flow vector in that
section. Then, we can periodically compute visual observables from this ‘average flow field’
at a flexible sampling frequency. This may also favorably affect robustness.

9-4 Relation to results presented in the paper

The analysis presented in this part serves as the basis for the final thesis work in several
ways. Mainly, the algorithms that are presented in the paper in Part I are based on the best
performing methods in this analysis.

Our final plane fitting algorithm is highly based on the STPF algorithm. Improvements
have primarily been made by reducing the number of parameters to two instead of three to
reduce computational effort, and by incorporating timestamp-based clustering to obtain more
accurate estimates for a wide range of optical flow magnitudes. Eventually, the background
activity filter and flow regularization filters are not incorporated to limit the number of
parameters in the full perception pipeline. In addition, with the settings presented in this
preliminary analysis, the background activity filter prevents perception of low optical flow
velocities, which in turns prevents sensing of visual observables at low speed.

The previous analysis demonstrated that, for estimating visual observables, the PNF algo-
rithm performs the best on ground truth normal flow, circumventing the aperture problem
as opposed to the PF algorithm. However, it is more sensitive to noise and it showed near-
singular behavior during pure ventral flow. To overcome these issues, grouping by direction
is introduced, enabling assessment of the quality of optical flow per direction. The weighted
least-squares estimator presented in the paper derives from Eq. (8-7). In addition, the in-
troduction of a confidence metric is partly the result of the datasets used in this preliminary
analysis.

Furthermore, the datasets used here highlight several issues that are taken into account in
currently used datasets. The ’flashes’ that occur in the preliminary datasets appear to be
related to software settings that control the DVS hardware. With the current settings (see
Section 12-4), the flashes are no longer observed. In addition, the Optitrack system emits
strobing infrared light in order to track objects fitted with passive markers. However, the
DVS is most sensitive in the infrared spectrum, which led to interference in prior work by
Censi et al. (2013). An altered experimental setup (discussed in Section 11-1) does not require
infrared strobing. This improved the quality of the datasets significantly.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

90 Discussion of Preliminary Results

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Part IV

Appendices

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

Chapter 10

Calibration of the Dynamic Vision
Sensor

In most cameras, the image perceived by the sensor is not a perfect representation of the
pinhole camera model. Therefore, calibration is performed to measure the camera intrinsic
parameters (focal length, principal point, skew) and to correct for lens distortion. The DVS is
no exception. Figure 10-1 shows events obtained from a checkerboard surface. The normally
straight lines of the checkerboard are represented with some curvature by the event locations,
indicating radial distortion.

However, a normal calibration procedure involves computer analysis of images shot by the
camera (Klette, 2014). This is not a trivial approach for purely event-based cameras such as
the DVS, since they are not capable of measuring absolute brightness, requiring change to
drive their output.

We propose an approach that approximates a normal procedure by reconstructing artificial
images from events. To accomplish this, events are recorded from blinking patterns, hence
allowing state-of-the-art calibration tools to be used.

10-1 Calibration model

In this work we apply the models as defined in the Matlab Camera Calibration Toolbox
(Bouguet, 1999). In the calibration process, the parameters are estimated of a model that
relates world points in an inertial world reference frame (XW , YW , ZW) to pixel locations
(x, y). In the pinhole camera model, this includes two linear transformations correcting for
the camera extrinsic parameters (the camera pose with respect to the world reference frame)
and the intrinsic parameters (Klette, 2014). Further, to correct for lens distortion, a nonlinear
transformation is used.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

94 Calibration of the Dynamic Vision Sensor

Figure 10-1: Lens distortion observed in DVS event output when a checkerboard pattern. Events
are accumulated over a duration of 100 ms. Green dots are events with positive polarity, red dots
indicate negative polarity.

10-1-1 Intrinsic parameters

For the presented research, we are mainly interested in obtaining the intrinsic parameters
of the DVS. The points in the camera reference frame can be related to (x, y) through the
intrinsic matrix, which contains the intrinsic camera parameters: focal length f , principal
point (xp, yp), and skew s.

Z

x
y
1

 =

fx s xp
0 fy yp
0 0 1

XC
YC
ZC

 (10-1)

In this definition, f contains the ratio of the lens focal length to the pixel dimensions, but is
for simplicity referred to as the focal length. It is assumed constant for both x-coordinates and
y-coordinates, since both the DVS pixel grid and the individual pixels have equal length and
width. Note that through Eq. (10-1) we can relate the pixel array locations to the normalized
coordinates (x, y), hence relating the pixel coordinates to the equations derived in Chapter 2:

[
x̂
ŷ

]
=

[
fx s xp
0 fy yp

]

x
y
1

 (10-2)

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

10-2 Calibration approach 95

10-1-2 Lens distortion

Lens distortion causes image points projected on the pixel array to deviate from the pinhole
camera model. Distortion can be separated into a radial transformation and tangential trans-
formation. The distortion model in the Matlab Camera Calibration Toolbox is based on the
Brown-Conrady model (Brown, 1966). The transformation from a pixel coordinate (x, y) to
its undistorted equivalent (xu, yu):

[
x y

]T
=
[
xu yu

]T (
1 + k1r

2 + k2r
4 + k3r

6
)

+
[

∆xt ∆yt
T
]

(10-3)

where the multiplication factor is the radial transformation, and ∆xt ∆yt
T is the tangential

transform:

[
∆xt
∆yt

]
=

[
2k4xuyu + k5

(
r2
u + 2x2

u

)

k4

(
r2
u + 2y2

u

)
+ 2k5xuyu

]
(10-4)

In the above equations, ru =
√

(xu − xp)2 + (yu − yp)2 is the radial distance to the principal
point. k1, . . . , k5 are the model parameters. Depending on the application, it may be sufficient
to use only the radial distortion correction.

10-2 Calibration approach

In a standard calibration approach, several images are captured of a high contrast planar
pattern under varying angles. In most standard computer tools, a checkerboard pattern is
used. In each image, a world point grid is then estimated from the pattern by locating
the corners of the checkerboard squares. Knowing the metric square dimensions and having
several images available, one can then fully estimate (1) the extrinsic parameters in each
image, (2) the camera intrinsic and distortion parameters (Bouguet, 1999).

Since the DVS does not provide absolute brightness values, different means to locate world
points need to be found. Huber (2014) (see also Mueggler et al. (2014b)) performed a cali-
bration procedure by recording events viewing a LED screen, which shows dot grid. Due to
the nature of LED screens, high-frequency blinking can be observed from the screen using the
DVS without manually hiding and showing the pattern. Events indicating the dots directly
provide the world points for camera calibration. Decent calibration results were obtained
for a 2.8 mm focal length lens, but due to poor viewing angles from the LED screen, the
procedure was not successful for a 3.5 mm lens. Mueggler et al. (2014b) published a C++
ROS driver online1 that allows calibration with a blinking LED grid. This approach would,
however, require manufacturing of a calibration setup for these LEDs.

The approach used in this work is similar to Huber (2014). We record events from the DVS
viewing a LCD computer monitor using the accompanying software jAER. However, instead
of using a ‘static’ pattern of dots, we use a checkerboard pattern that is flashed several times
against a static black background. We then reconstruct an ‘artificial image’ of the checker-
board by accumulating all events per pixel location, regardless of polarity. The resulting

1Available at https://github.com/uzh-rpg/rpg dvs ros

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

https://github.com/uzh-rpg/rpg_dvs_ros

96 Calibration of the Dynamic Vision Sensor

checkerboard images are then used to locate world points and estimate camera parameters
through the standard calibratino methodology in the MATLAB Camera Calibration Toolbox.

10-3 Calibration procedure results

We composed 30 artificial images from DVS events viewing a flashing checkerboard pattern
under various angles. For each image the pattern was flashed 20 times to clearly distinguish
the pattern. Table 10-1 shows the estimated intrinsic and distortion parameters. Tangential
distortion coefficients were found to be small (≈ 0.0015) and were eventually not included in
the model. Further, if was found that a two-parameter version of the radial distortion model
was more appropriate, to prevent extrapolation error at pixels in the corners of the field of
view. Note also that skew is rather small. The principal point is slightly off the center of the
image.

According to the DVS128 specifications (see Table 3-1) the camera should have a pixel size
of 40 μm. The lens has a focal length of 4.5 mm. Computing the focal length scaling factor
using these values results in a value of 112.5, which compares reasonably well to the lengths
estimated by calibration.

Table 10-1: Calibration results for the DVS.

Focal lengths fx, fy 115.3, 114.8
Principal point xp, yp 76.70, 56.93
Radial distortion coefficients k1, k2 -0.2857, 0.0829
Mean reprojection error 0.2020

To validate the calibration results, we examined the image estimates, corresponding world
points, and the effect of undistorting the image. The latter was performed using the image
undistortion function of the Matlab toolbox. Figure 10-2 shows three images obtained from
the reconstruction process, the world point estimates, and their undistorted counterparts.
World point locations can be estimated with good accuracy, even with the limited resolution
of the DVS. The corrected images are obtained by normal image undistortion (i.e. not by
displacing events). The checkerboard patterns are rectified quite well.

10-4 Undistortion of events

Undistorting point coordinates from events is possible using Eq. (10-3). However, since the
mapping provided by this equation is nonlinear, computing the undistorted event coordinates
for each single event is a relatively complex procedure. Instead, as part of the calibration
procedure, we solve Eq. (10-3) for all pixel locations and store the solutions in a look-up table.
Hence, a pixel undistortion map D : (xd, yd)→ (x, y) is obtained.

Good correction results are observed when considering the undistorted event positions. Fig-
ure 10-3 shows the same events shown in Figure 10-1, in comparison to the undistorted
events. The checkerboard lines formed by the events appear close to straight. Note also that
the undistorted pixel locations are significantly further away from the principal point. Hence,

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

10-4 Undistortion of events 97

Figure 10-2: Reconstructed images and world points obtained from flashing the checkerboard
pattern. The top row shows the input (distorted) images. The images on the bottom row are
undistorted based on the calibration result. The brightness of a pixel corresponds to the number
of events at that location. The green markers indicate identified world points and the red cross
is the estimated location of the principal point.

at the borders of the chip, optical flow estimates from undistorted pixels are significantly
larger than when the distorted pixel locations are used.

(a) Uncorrected events with distortion (b) Corrected events

Figure 10-3: Comparison of (a) the scene with uncorrected events in Figure 10-1 to (b) corrected,
undistorted events. The scale of the uncorrected scene in (a) is adjusted to match the corrected
scene. The principal point is shown as a red cross.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

98 Calibration of the Dynamic Vision Sensor

10-5 Undistortion of event-based optic flow

In a regular frame-based optic flow estimation procedure, the full image is undistorted before
applying the flow estimation algorithm. Hence, the output flow is not affected by lens dis-
tortion. For event-based flow estimation, however, a different approach is necessary. Event
positions are normally represented by integer coordinates. Undistortion of these coordinates
results into floating point pixel locations. For some algorithms, including the STPF algorithm
and the final approach applied in the paper, floating point pixel locations can be directly incor-
porated to obtain corrected optical flow output. In STPF one can use integer pixel locations
for gathering events in the space-time window, but use the corrected floating point pixel lo-
cations for computing the plane. This directly yields undistorted optical flow. However, for
algorithms that rely much more on pixel indexing, such as NES, a rather tedious conversion
needs to be performed.

For such algorithms an alternative approach is derived where optical flow is corrected through
a look-up table approach, similar to the event position mapping. Note that it is not applied in
the paper, but is presented here for completeness and reference for possible follow-up research.

The foundation of this approach is the orthogonal system solution of the STPF method
described by Eq. (7-4). In the approach, the assumption is made that each flow vector is
equivalently described by a plane. Eq. (7-4) can then be inverted to compute the hypothetical
slopes of such a plane (assuming c = 1):

[
ad
bd

]
= − 1

ud2 + vd2

[
ud
vd

]
(10-5)

In its simplest form, a tangent plane can be formed by the (distorted) flow vector origin
P0d = [xd, yd, t]

T and two other space-time points. Let these points be the direct neighbors in
the pixel grid P∆xd = [xd − 1, yd, t−∆t∆x]T and P∆yd = [xd, yd − 1, t−∆t∆y]

T . Since these
points are at unit distance from the flow origin, the hypothetical time values of these points
∆t∆x,∆t∆y are equal to the plane slopes:

ad =
∆t

∆x
, bd =

∆t

∆y
(10-6)

Now the undistorted point coordinates P0,P∆x,P∆y are computed from P0d ,P∆xd ,P∆yd

through D (xd, yd). Note that the timestamp values of these points do not change. From
these points, the normal vector of the undistorted plane is then computed through:

N = (P∆x −P0)× (P∆y −P0) (10-7)

Using Eq. (7-4) with the components of N the undistorted flow vector is then obtained.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 11

Experimental Setup

This chapter provides additional details on the experimental setup discussed in the paper,
which is used for data acquisition as well as flight tests. First, we expand on the general
overview given in the paper in Section 11-1. Second, the communication between differ-
ent parts of the setup is discussed in more detail in Section 11-3. Third, we address how
timestamps of recorded measurements are synchronized in Section 11-4

11-1 Overview

Figure 11-1 shows an overview of the experimental setup, repeated here for convenience.
Pictures of the drone, referred to as the MavTec, are shown in Figure 11-1a and Figure 11-1b.
The MavTec is a quadrotor with a lightweight carbon body spanning 0.39 m at its maximum
length (excluding rotors). A DVS with a 4.5 mm focal length lens is mounted at the bottom.
To protect the DVS during flight, it is shielded by a foam cover, which also acts as the landing
gear.

As discussed in the paper, there are two separate computers on-board. The first computer
is an Odroid XU4 board, which is mounted on top of the quadrotor. It features a Samsung
Exynos 5422 octacore CPU (four cores at 2.1 GHz and four at 1.5 GHz) and runs Ubuntu
15.04. It acts as a separate USB driver for the DVS. This enables using the readily available
open-source software cAER, such that no specific USB drivers need to be developed.

The second computer is the Lisa/M board, which features a 72MHz 32bit ARM microprocessor
as well as a pressure sensor and IMU. It handles all main on-board processing necessary for
flying using the open-source autopilot software Paparazzi1. This software has been extended
during this work with a module that estimates visual observables from event-based optical
flow measurements. This module also incorporates the divergence controller.

In order to transmit data between the Odroid and the Lisa/M, a serial UART connection is
used. This datalink has a limited capacity; therefore, optical flow estimation is performed

1Paparazzi UAV, http://wiki.paparazziuav.org/

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

http://wiki.paparazziuav.org/

100 Experimental Setup

(a) Top view. (b) Bottom view showing the DVS.

DVS Events

IMU Rotational
Rates

Flow Direction
Assignment and

Derotation

Visual
Observables
Estimation
(100 Hz)

Attitude Control

Divergence
Control

cAER, runs on Odroid

Optitrack Position
Measurements

Refractory Period
Optical Flow
Estimation

Estimation Rate
Control

UART

Paparazzi, runs on Lisa /M

Horizontal Position
Control

On-board systems

Thrust Command

Roll, Pitch, Yaw

Command

(c) Overview of the implementation

Figure 11-1: Overview of the experimental setup, including pictures of the MavTec. In (a)
a top view of the vehicle is shown. The DVS is located at the bottom, protected by a foam
cover. In (b) the cover is removed to expose the DVS. In (c) an overview of the processing
workflow is shown, indicating the distribution of processes over the Odroid and the Lisa/M
processors.

completely in cAER, such that only the events with optical flow need to be transmitted. Also,
the Odroid is much more powerful. It appeared capable of processing over 250k events per
second in real-time during optical flow estimation, even without control of ρF , though only
when UART transmission is not incorporated during compilation.

Experiments are conducted in the CyberZoo facility of Delft University of Technology. During
operation, an Optitrack pose tracking system measures the position and orientation of the
MavTec in real-time. These measurements are used to compute ground truth values of optical

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

11-2 Operation during flight tests 101

flow and visual observables off-board. They are also used for horizontal position control of
the MavTec to augment the divergence controller.

Optitrack uses an array of cameras that track objects formed by infrared markers. In a
normal setup, test objects are fitted with passive reflecting markers, which reflect infrared
strobing light emitted from the cameras. However, in (Censi et al., 2013) the strobing was
found to interfere with DVS measurements, since the camera is most sensitive in the infrared
spectrum. Therefore, during our experiments the strobing is disabled, and the MavTec is
fitted with active infrared LED markers.

11-2 Operation during flight tests

A pilot controls the MavTec during flight using a remote controller. It can also regulate
the mode of operation of the drone. Three modes are applied: (1) full manual control, (2)
Optitrack-based stable hover at a specified height, and (3) constant divergence landing.

During normal flight, mode 1 (manual control) is used. The pilot is in full control, using the
remote controller to send throttle, roll, pitch, and yaw commands. When a landing maneuver
is initiated, the pilot first brings the MavTec to the approximate hover height. Once the
MavTec is close enough, mode 2 (hover) is initiated to stabilize motion before landing. Then,
mode 3 (constant divergence landing) is initiated, at which point the divergence controller
takes over vertical control of the MavTec to perform a landing maneuver. The pilot monitors
the MavTec’s behavior during the maneuver, ready to switch back to mode 1 or 2 in case of
unexpected motion. If self-induced oscillations occur close to the ground, the pilot switches
back to mode 1, resuming manual control of the drone.

11-3 Communication architecture and data logging

Figure 11-2 shows how the different parts of the experimental setup transfer information to
each other. In addition, it shows what measurements are logged during experiments, and
where the logs are stored.

The on-board architecture works as follows. The DVS transmits events to the Odroid through
a USB 2.0 cable. The Odroid then processes the events to obtain optical flow estimates.
During this process, raw event measurements and optical flow are recorded on the Odroid.
Events are stored in AER format, encoding position x̂, ŷ, timestamp t, and polarity P . Optical
flow vectors are logged in a CSV format, in which x, y, t, and P , as well as the optical flow
(u, v) is recorded. In addition, real-time measurements of optical flow detection rate ρF and
estimation delay are recorded. The latter is estimated by tracking and comparison of currently
processed event timestamps and the Odroid real-time clock timestamp.

Optical flow estimates are then transmitted over a serial UART link to the Lisa/M. The UART
link is configured to support a data rate of 921.6 kilobytes per second, enabling transmission
of approximately 8500 optical flow vectors per second.

The Lisa/M processes optical flow to obtain visual observable estimates and perform diver-
gence control. It also records its state measurements on an SD-card at 512 Hz. The most

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

102 Experimental Setup

Optitrack system Laptop (Paparazzi
ground station)

Lisa/M
(Paparazzi)

Remote controller

Odroid
(cAER)DVS

Pose
measurements

Events

USB 2.0

Ethernet

Optical flow

UART

Position & high-
level control

Xbee uplink

Low-level control

Transmitter

Pose log

Event and
optical flow logs

On-board
data log

Real-time
measurements

Xbee downlink

On-board

Figure 11-2: Flowchart of the communication between different parts of the experimental setup.
Solid lines indicate the main workflow; dashed lines represent interaction with data storage.

important recorded variables are (1) the timestamp, (2) rotational rates (p, q, r), (3) visual
observable estimates (ϑx, ϑy, ϑz), (4) optical flow reception rate ρF , and (5) the estimate
confidence K.

During operation a ground station communicates with the MavTec, sending high-level com-
mands, parameter adjustments, and position estimates from Optitrack, while receiving real-
time measurements of relevant states. A laptop is used as a ground station, running the
off-board segment of Paparazzi. It receives Optitrack measurements of the MavTec at 120
Hz through an ethernet cable. For wireless communication between the ground station and
the Lisa/M, an XBee Pro antenna dongle is attached to the laptop and a compatible receiver
is mounted on the Mavtec. Low-level commands are transmitted from a separate remote
controller operated by the pilot.

11-4 Timestamp synchronization of log files

The use of different computers simultaneously means that the logs in Figure 11-2 are recorded
using three separate clocks. The DVS timestamps, which are used to log measurements in
cAER, are generated from an internal clock. On-board logs in Paparazzi are based on the real-
time clock timestamp of the Lisa/M. In addition, the laptop records Optitrack measurements.
Hence, synchronization of measurement timestamps is not a trivial task. In addition, several
sources of latency occur in the pipeline, such as the USB and UART transmission. To
synchronize the measurements for off-board processing, two different approaches are used.

First, in order to match the event timestamps to the Paparazzi measurements, the Paparazzi
timestamp at which the first optical flow is received by the Lisa/M, is matched to the first
event timestamp for which optical flow is estimated. However, this does not always provide a

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

11-4 Timestamp synchronization of log files 103

proper synchronization, since a time offset still exists in the respective signals of ρF measured
by cAER and by Paparazzi. Therefore, follow-up synchronization is performed by computing
the cross-correlation of both signals, and correcting for the offset.

Second, to match Paparazzi measurements to Optitrack pose logs, we utilize the active LEDs
mounted on the MavTec. It is possible to remotely switch on the LEDs using the ground
station, and at the same time, start logging on-board measurements. Since Optitrack only
tracks the MavTec if the LEDs are switched on, this can be used as a synchronization point.
Still, in several datasets this did not lead to properly synchronized measurements. This was
observed in the rotational rates p, q, r, which are measured in Paparazzi and can be calculated
from Optitrack pose measurements. In this case, cross-correlation of the rotational rates is
used to synchronize the measurements.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

104 Experimental Setup

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 12

Software and Implementation

This chapter provides a more in-depth overview of the on-board implementation used during
the experiments. First, the implementation of the optical flow estimation algorithm in cAER is
presented in Section 12-1. Next, the Paparazzi architecture, the visual observable estimator,
and the controller are detailed in Section 12-2. An overview of the source code and their
locations is provided in Section 12-3, followed by an overview of the DVS settings and all
parameters used in the algorithms (Section 12-4). Note that the text in this chapter extends on
the content of the scientific paper, and hence assumes a basic understanding of the algorithm
components and the experimental setup.

12-1 cAER module for optical flow estimation

This section aims to provide the reader some more insight in the optical flow estimation
process performed on-board. This process runs on the Odroid as part of the open-source
software cAER. This is a a framework for processing DVS events received through USB. It
is written completely in C and can be run on Linux systems. The software is written in a
modular fashion to facilitate extensions. For further information on cAER, please refer to the
documentation in (Longinotti, 2014). Our optical flow algorithm is implemented in a newly
developed module in cAER. It mainly performs optical flow estimation, but also handles
logging and UART transmission.

12-1-1 Architecture

The global architecture of the cAER module is shown in Figure 12-1. Events arrive grouped
in USB packets and are processed in the cAER mainloop thread, which sequentially performs
all event-based processing for cAER modules. Our optical flow estimator is implemented as
part of the main loop. The estimator also writes to logs for recording raw events and real-time
timing information (primarily optical flow measurement rate and estimation delay).

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

106 Software and Implementation

Optical flow
estimation

cAER mainloop
thread

UART
transmission

thread

Raw event log Optical flow log
Flow rate and

delay log

USB packets

Optical flow
ring buffer

UART

Figure 12-1: Flowchart of the cAER implementation architecture. Solid lines indicate the main
workflow; dashed lines represent interaction with date storage.

Transmission across UART is handled in a separate thread to prevent delays in the mainloop
due to transmission. Optical flow estimates are transferred from the mainloop thread to the
UART handler thread through a ring buffer. This separate thread also logs the optical flow,
such that the log exactly represents all optical flow that is transmitted.

12-1-2 Estimation algorithm

A flowchart of the optical flow processing is shown in Figure 12-2. In the following text, the
steps taken in the algorithm are detailed.

In the algorithm the event timestamp history is maintained in a map M . which records the
last event timestamp for each pixel location (x, y) and each event polarity P . M provides
the timestamps of the most recent neighbor pixels, which together form the surface of most
recent events Σe. It is also used to reject events that occur at a single location within quick
succession, i.e within the pixel’s refractory period ∆tR.

The workflow for each incoming event starts with two basic pre-filtering steps. When an
event en = [xn, yn, tn, Pn]T arrives, the first filter applies the refractory period ∆tR. If
tn −M (x, y, P) > ∆tE , the event is preserved and we set M(xn, yn, Pn) = tn. Otherwise, it
is immediately rejected. The second filter evaluates if the flow throughput rate ρF does not
exceed the specified limit ρFmax . This is done by computing the time difference ∆tF = tn−tF ,
rejecting the event if ∆tF < 1/ρFmax . Then, if the event has not been rejected, a list L is
constructed of all events in the spatiotemporal neighborhood using the timestamps in M .
This is done by iterating across all relative positions (δxi, δyi) for which δxi ∈

[
−1

2∆x, 1
2∆x

]

and δyi ∈
[
−1

2∆y, 1
2∆y

]
. Note that only events of equal polarity P are considered here.

Timestamps for which −δti < ∆t (where δti = M(xi, yi, Pn)− tn) are added to L along with
(δxi, δyi). An incremental sorting mechanism is applied, such that the resulting list is sorted
by decreasing value of δti.

With the sorted list L established, first a check is performed for the number of events, pro-
ceeding only if sufficient events are available. If this is the case, a basic clustering approach
is applied. We iterate through L, starting from the most recent neighbor event, and attempt
to find two linearly independent pixel locations (based only on (δxi, δyi)). Upon finding the

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

12-1 cAER module for optical flow estimation 107

Iterative plane fitting

Clustering

Pre-filtering

New event
en (xn, yn, tn, Pn)

Reject event,
return

Last event
timestamp map

M

Collect last event
timestamps from
M for neighboring

pixels within �x, �y, �t
in a sorted list L

Set �tS using the
two most recent

linearly
independent events

Cut off L where
�ti-1 - �ti > �tS

Fit plane to events
in L and compute

NRMSE

Compute optical
flow (u, v) from
plane slopes

Remove event with
largest distance to

plane from L

Reject event,
return

yes

At least nmin

events?
no

At least nmin events
remaining?

no

yes

Event with optical
flow estimate

NRMSE � NRMSEmin ?

yes

no Number of
rejected events

smaller than nR ?

yes

no

Optical flow
magnitude smaller

than Vmax ?

yes

no

Rate control:
tn - tF � 1 / �Fmax ?

no

yes

Refractory period:
tn – M (xn, yn, Pn) > �tE ?

no

yes

Last optical flow
estimate

timestamp tF

Figure 12-2: Flowchart of the optical flow algorithm. Solid lines indicate the main workflow;
dashed lines represent interaction with date storage.

second pixel location, the maximum separation time ∆tS = −kSδti is set. Then, we iterate
through the remaining events in the list and cut-off L if the time difference between two
sequential events in L exceeds ∆tS . If the number of remaining events in L is still sufficient,
the algorithm proceeds to the plane fitting procedure.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

108 Software and Implementation

Visual observables
estimator
(100 Hz)

Paparazzi log

Paparazzi
guidance loops

(512 Hz)

Estimator state

High-speed SD
card logger

(512 Hz)

UART receive
buffer Downlink (5 Hz)

Figure 12-3: Overview of the Paparazzi architecture. Solid lines indicate the main workflow;
dashed lines represent interaction with date storage.

Using the remaining events in L a least-squares fit of the reduced plane Π∗ =
[
p∗x, p

∗
y

]T
is com-

puted, followed by the computation of the Normalized Root Mean Square Error (NRMSE).
In this step we use the undistorted pixel locations (xui , yui) corresponding to (x, y), obtained
using the undistortion mapping D. If the NRMSE of the current fit is too large (i.e. above
NRMSEmin), the point with the largest distance ddi = δxip

∗
x + δyip

∗
y + δti is removed from

L. The plane is then recomputed, re-evaluating the NRMSE until either the fit is consistent
enough, or more than nR points are removed. In the latter case, the event is rejected.

Lastly, from the final plane slopes the optical flow vector (u, v) is computed and a final check
of the optical flow magnitude is performed. If

√
u2 + v2 > Vmax the estimate is considered

too large and rejected. Otherwise, the algorithm produces a successful optical flow estimate.

12-2 Paparazzi module for visual observables estimation

The second part of the visual pipeline, estimation of the visual observables, is implemented
in the open-source Paparazzi autopilot software1. This software runs on the Lisa/M board,
providing autopilot functionality and facilitating control from ground using either a ground
station or a remote controller. It also has a built-in modular structure. Our visual observables
estimator is implemented in a standalone module, which handles optical flow reception from
UART, visual observables estimation, confidence estimation, and divergence control.

A flowchart of the general architecture is shown in Figure 12-3. The main visual observables
estimator runs at 100 Hz. It maintains its information in a shared state, which is used for
downlinking information, logging, and control. The developed divergence controller is part
of the Paparazzi guidance loops and runs at 512 Hz. Similarly, the high-speed logger module
records the estimator state at 512 Hz. While this is much larger than the estimator frequency,
this facilitates using higher estimator update frequencies if different hardware is used.

12-2-1 Estimation algorithm

Figure 12-4 shows a flowchart of the workflow in the visual observable estimator. The flowchart
describes the periodic function of the estimator which runs at 100 Hz.

At the start, the program reads the UART receive buffer, decoding and obtaining the latest
optical flow measurements. Each flow vector j that is successfully received, is assigned to

1Paparazzi UAV, http://wiki.paparazziuav.org/

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

http://wiki.paparazziuav.org/

12-2 Paparazzi module for visual observables estimation 109

Recompute flow field

Process new optical flow vectors

UART receive
buffer

Start New optical flow
estimate?

Derotate V Update statistics
corresponding to �i

Compute variance
and weight for
each direction

where ni > 1

Compute K and
apply confidence

filter

Apply decay to
flow field statistics

New visual
observable
estimates

Latest IMU
measurements

of p, q, r

yes

no

Assign closest
direction �i and
compute S, V

Construct B and C
matrices

No update of �,
set K = 0

Any new optical
flow found?

yes

no

Solve B� = C

Is B nonsingular?
no

yes

Flow field statistics
2 2, , , , ,i i i i i

V Vi S SVS
n Σ Σ Σ Σ Σ

{1, 2, ..., }i m∈

Figure 12-4: Flowchart of the of the visual observables estimator in Paparazzi. Solid lines indicate
the main workflow; dashed lines represent interaction with date storage.

a direction group i with angle αi. Along the assigned direction, the projected position Si
and velocity Vi are computed. Next, the value of Vi is corrected for rotational motion using
the the latest measurements of p, q, r from the on-board IMU. Then, the flow field statistics
corresponding to direction i are updated as follows:

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

110 Software and Implementation

ni(j) = ni(j − i) + 1

Σi
S(j) = Σi

S(j − 1) + Sj

Σi
S2(j) = Σi

S2(j − 1) + S2
j

Σi
V (j) = Σi

V (j − 1) + Vj

Σi
V 2(j) = Σi

V 2(j − 1) + V 2
j

Σi
SV (j) = Σi

SV (j − 1) + SjVj

(12-1)

This process repeats with the remaining optical flow vectors available in the UART buffer,
until no new vectors are available during this periodic iteration. Once the buffer is empty, the
following step is using the latest flow field statistics to compose the weighted least-squares
system BΘ = C, where B = ATWA and C = ATWy. Note that this step is skipped
if, during this periodic iteration, no optical flow estimates are available. In that case, the
estimate confidence K is set to zero during this run, and no update of Θ is performed.

First, the weight of each individual direction i is computed based on the variance Var{S}i.
From the flow field statistics we can compute this as follows:

Var{S}i =
Σi
S2

ni
−
(

Σi
S

ni

)2

(12-2)

Then, the weight Wi of this direction is computed from the variance. In order to reduce the
influence of directions where a limited number of optical flow vectors has been found, each
direction where ni ≤ 1 is excluded. Note that, due to the preservation of statistics across
periodic iterations, ni is a floating point number instead of an integer.

Using the flow field statistics and weights, the matrices B and C are composed. If B is
singular (i.e. det B = 0), no update is performed, and K = 0. Otherwise, the solution to
BΘ = C is computed. With a solution available, we compute the coefficient of determination
R2, the individual confidence estimates kρF , kVar{S}, kR2 , and the total confidence value K.

R2 is computed from the flow field statistics and the C matrix. With R2 = 1− RSS/TSS as
introduced in the paper, the Residual Sum of Squares (RSS) and Total Sum of Squares (TSS)
are computed as follows:

RSS = yTWy −ΘTATWy

TSS = yTWy −

(
m∑
i=1

WΣi
V

)2

m∑
i=1

Wni

(12-3)

It can be shown that the RSS and TSS can be computed directly from the flow field statistics:

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

12-3 Overview of source code 111

RSS =

m∑

i=1

WΣi
V 2 −ΘTC

TSS =

m∑

i=1

WΣi
V 2 −

(
m∑
i=1

WΣi
V

)2

m∑
i=1

Wni

(12-4)

With the value ofK established, the confidence filter is applied to Θ, which yields the final new
estimate of the visual observables. The result is applied to update the divergence controller
setpoint. As a last step, the values of the flow field statistics are multiplied by a decay factor
F = 1− (t(k)− t(k − 1))/(kf), where k denotes the current iteration.

ni(j) = Fni(j − 1)

Σi
S(j) = FΣi

S(j − 1)

Σi
S2(j) = FΣi

S2(j − 1)

Σi
V (j) = FΣi

V (j − 1)

Σi
V 2(j) = FΣi

V 2(j − 1)

Σi
SV (j) = FΣi

SV (j − 1)

(12-5)

The remaining values are preserved for the next iteration.

12-2-2 Divergence controller

The divergence controller uses the output of the visual observables estimator to regulate the
throttle setting of the MavTec. A flowchart of the controller is shown in Figure 12-5. It
enables using either visual estimates of divergence or ground truth divergence estimated from
position estimates. The latter are computed from the Optitrack measurements.

As described in the paper, a simple proportional controller is used to control the throttle.
With either ground truth or estimated divergence, the deviation from the control setpoint is
computed, from which the deviation from nominal throttle ∆T is computed. The nominal
throttle T0 is estimated during hover before a landing is performed, using Paparazzi’s standard
vertical guidance controller2. The final throttle is then set as T = T0 + ∆T .

12-3 Overview of source code

An overview of the most important modifications and newly added files is given in 12-1. The
table contains the files for both our cAER module and the Paparazzi module. The full source
code for both modules is publicly available online at GitHub 3.

2For reference, see http://wiki.paparazziuav.org/wiki/Control Loops#Vertical loop
3cAER: https://github.com/baspijhor/caer/tree/flow adaptive final

Paparazzi: https://github.com/baspijhor/paparazzi/tree/event based flow

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

http://wiki.paparazziuav.org/wiki/Control_Loops#Vertical_loop
https://github.com/baspijhor/caer/tree/flow_adaptive_final
https://github.com/baspijhor/paparazzi/tree/event_based_flow

112 Software and Implementation

Start

Visual
observable

estimator state

Obtain divergence
from estimator

no

Use vision?
yes

Compute ground
truth divergence

Paparazzi
position

estimates

Compute
divergence error

Convert to throttle
command

Set throttle

Nominal throttleDivergence
setpoint

Figure 12-5: Flowchart of the divergence controller. Solid lines indicate the main workflow;
dashed lines represent interaction with date storage.

In our implementation, cAER is compiled using cmake, as is discussed in the accompanied
README file on GitHub. To obtain the configuration used in this work, one should run
cmake with the following options:

cmake . -DDVS128=1 -DENABLE_OPTICFLOW=1

For Paparazzi, one can install the software using the standard procedure described at GitHub,
using the provided repository3 instead of the default Paparazzi repository.

12-4 Overview of sensor settings and algorithm parameter values

Table 12-2 provides settings of the ’biases’ of the DVS used during experiments. The biases
are programmable voltages or currents in the DVS pixel circuitry, which can be controlled by
cAER4. In this work they are set for operation in the test environment (the CyberZoo), such
that noise is limited, yet sufficient detail can be perceived.

An overview of all parameter settings of the visual pipeline is given in Table 12-3.

4A detailed explanation of each bias is provided at http://inilabs.com/support/hardware/biasing/

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

http://inilabs.com/support/hardware/biasing/

12-4 Overview of sensor settings and algorithm parameter values 113

Table 12-1: Relevant new and modified source files in the open-source software packages cAER
and Paparazzi, and a brief description of each file. The symbol # is used here to represent the
path sw/airborne/modules in the Paparazzi software.

File name and path Description

cAER

main.c [modified] Calls the ’run’ function of each module for each
newly available USB event packet. It is augmented with our
module.

modules/opticflow/dvs128Calibration.c Defines the DVS intrinsic parameters and lens distortion
model and functions to incorporate them.

modules/opticflow/flowAdaptive.c The main optical flow estimation code. The functionality is
described in Section 12-1.

modules/opticflow/flowEvent.h Header file defining the ’flow event’: a data structure ex-
tending the standard DVS polarity event with optical flow
components and undistorted pixel locations. Also contains
auxiliary functions for initialization, getting, and clearing.

modules/opticflow/flowOutput.c Handles the optical flow output: in a separate thread, the
computed flow events are logged in a CSV file and/or trans-
mitted through UART.

modules/opticflow/flowRegularizationFilter.c Flow regularization filter described in the preliminary anal-
ysis in Section 7-4-3. Not included in the final pipeline.

modules/opticflow/opticflow.c Core module file containing the ’run’ function as well as
functions for initialization and termination.

modules/opticflow/uart.c Defines the functions for initializing UART communication
and for data transmission and reception.

modules/visualizer/visualizer.c [modified] Added a functionality for visualizing optical flow
for off-board testing. However, at the time of writing, this
is not working correctly.

Paparazzi

conf/airframes/KS/ks_mavtec1_dvs.xml Paparazzi airframe configuration file, defining the hardware,
autopilot, and module settings for the MavTec.

conf/modules/event_optic_flow.xml Paparazzi configuration file for the module.

#/event_optic_flow/event_optic_flow.c Main module file containing the initialization, module start,
periodic, and stop functionalities. It also contains the func-
tionality for event acquisition from UART, and defines the
constant divergence controller.

#/event_optic_flow/flow_field_estimation.c Defines the functions used for updating the flow statistics,
derotation, and flow field recomputing.

#/loggers/high_speed_logger.c [modified] Module for logging measurements at the maximal
attainable frequency in Paparazzi (512 Hz) to an SD card.
The file is modified to log states in the added module.

sw/ground_segment/misc/natnet2ivy.c [modified] Handles Optitrack measurements received on the
ground station, which are transmitted to the MavTec. The
modification separates logging from transmission to obtain
a higher log sampling rate.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

114 Software and Implementation

Table 12-2: DVS bias settings applied in cAER during the experiments. The values are provided
as integers, similar to their definition in cAER.

Bias Value

cas 54
diff 30153
diffOff 64
diffOn 850000
foll 61
injGnd 1108364
pr 217
puX 8159221
puY 16777215
refr 10
req 159147
reqPd 16777215

Table 12-3: Overview of all algorithm parameter values used in the experiments.

Parameter Symbol Value Unit

Optical flow estimation

Refractory period ∆tR 0.1 [s]
Time window ∆t 2 [s]
Spatial window ∆x, ∆y 5 [pixels]
Maximum number of rejected events nR 2 [-]
Maximal NRMSE NRMSEmax 0.3 [-]
Timestamp difference factor for clustering kS 3 [-]
Minimum number of events in a fit nmin 8 [-]
Maximum optical flow velocity Vmax 1000 [pixels/s]
Optical flow output rate setpoint ρFmax 2500 [1/s]

Visual observable estimation

Number of flow field directions m 6 [-]
Flow field preservation time constant kf 0.02 [s]
Minimal variance for weight assignment Var{S}min 600 [pixels2]

Confidence filter

Minimal optical flow estimation rate ρFmin 1500 [1/s]
Minimal coefficient of determination R2

min 1.0 [-]
Low-pass filter time constant kt 0.02 [s]
Update saturation limit for visual observables ∆ϑmax 0.3 [-]

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Chapter 13

Supplementary Results

The results provided in this chapter support several observations in the paper. First, we show
additional optical flow estimation results in Section 13-1, including a qualitative comparison
of the baseline algorithm to the newly developed algorithm, and the quantitative effect of
reducing the plane parameters on optical flow accuracy. Second, additional results for the
visual observables estimator are presented in Section 13-2, which highlight the effects of flow
field preservation and the confidence filter.

13-1 Optical flow estimation

13-1-1 Qualitative comparison between baseline and new algorithm

To augment the quantitative comparison between the baseline optical flow algorithm and the
newly developed version performed in the paper (Section IV-D), this section provides side-
by-side images of optical flow estimates in several scenes. Figure 13-1 shows four scenes of
the event dataset in which significant performance differences are seen. In each scene, the
optical flow vectors are scaled by a specified factor for better visualization (i.e. high-speed
motion scenes are assigned a lower scaling factor than low-speed scenes). For generating these
results, the algorithm parameters are equal to the values used in the paper.

In the first checkerboard scene (ϑz = 0.2), the checkerboard contours move rather slowly.
The main difference between the two algorithms is that, with the baseline algorithm, optical
flow along low-speed lines is more difficult to estimate correctly. In comparison to the final
algorithm, many optical flow vectors are missing, or motion is over-estimated at slow moving
contours.

In the second scene (checkerboard, ϑz = 2.0) the contours move much faster. At several fast-
moving contours in the top right corner of the scene, the baseline algorithm fails to perceive
the correct motion, converging to optical flow estimates that point in opposite direction.
This phenomenon occurs most likely due to interaction with previously occurring features.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

116 Supplementary Results

Our algorithm is able to also correctly estimate optical flow at these locations due to the
pre-selection of interrelated events.

The third scene (roadmap, ϑz = 0.1) contains very slow motion and sparse features. Note
that for visualization of the events, the time window is rather large. The fixed time window
of the baseline approach prevents observing most of the motion in this scene, even though
some features are clearly visible. Using the final algorithm, which is capable of observing
much slower motion, several optical flow vectors are still successfully found. Note that, in
this scene, the vertical component of the ground truth optical flow is inconsistent with the
estimates. It appears that in this scene, the vertical ventral flow is locally offset from the real
value.

In the last roadmap scene (ϑz = 1.0) motion is faster and features are often incomplete, as
several events seem to be missing. Here, the baseline algorithm measures accurate normal
flow at most locations. Our algorithm shows similar accuracy in this particular scene, but it
tends to find a higher optical flow density, without losing significant quality.

13-1-2 Effect of plane parameter reduction on performance

In the paper we propose to reduce the computational complexity of the baseline algorithm,
by reducing the number of parameters in the fitted plane. However, this has an effect on
the achievable accuracy of the resulting optical flow. The results in this section quantify
this effect, by repeating the comparison based on the Projection Endpoint Error (PEE) and
density performed in Section IV-D of the paper. Instead of comparing the baseline to the
final algorithm, this comparison involves two versions of the baseline algorithm in which the
number of parameters is reduced to three and two respectively (according to Section IV-B in
the paper).

Table 13-1 shows the resulting PEE and density values for the baseline algorithm and its
three- and two-parameter variants. The PEE values show that the three-parameter and two-
parameter algorithms obtain only a slightly lower accuracy than the baseline. In fast motion
datasets, the errors are even lower for the three-parameter version compared to the baseline.
However, a clear difference is seen in the values of the density η. Especially in slow-motion
scenes and roadmap scenes, the three-parameter version obtains a significantly lower density.
Slightly better results are seen for the two-parameter version.

13-2 Visual observables estimator

13-2-1 Effect of preservation of flow field statistics

The figures in this section aim to demonstrate the effect of preserving flow field statistics in
the visual observables estimator, as is discussed in the paper in Section V-B. For this, we
analyze estimates of ϑz for the two detail sequences in Figure 9(a) in the paper (vertical
motion above a checkerboard texture). In the first sequence, slow motion towards the ground
is performed, while in the second sequence, fast up-and-down motion is seen. Each sequence
is analyzed without preservation (kf = 0) and with preservation (kf = 0.5) of statistics. In
both cases, the confidence filter is disabled.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

13-2 Visual observables estimator 117

Table 13-1: Projection Endpoint Errors (mean absolute error and standard deviation) and density
results of the baseline algorithm, three-parameter and two-parameter plane versions of the baseline
algorithm, and the final algorithm. Values highlighted in bold are the lowest PEE or the highest
density result for all algorithms.

Baseline Three parameters Two parameters
PEE [pix/s] η [%] PEE [pix/s] η [%] PEE [pix/s] η [%]

Checkerboard, ϑy = 1.0 18.6 ± 22.9 50.6 19 ± 24.5 46.9 20.7 ± 27.5 49.5
Checkerboard, r = −1.3 26.8 ± 28.1 50.7 26.3 ± 26.1 47.1 27.6 ± 28.3 49.9
Checkerboard, ϑz = 0.2 7.78 ± 12.1 12.6 8.73 ± 19 2.51 12.1 ± 20.8 5.56
Checkerboard, ϑz = 0.5 13.0 ± 17.9 29.5 14.4 ± 23.1 18.3 15.4 ± 23.8 24.5
Checkerboard, ϑz = 2.0 42.4 ± 58.4 57.5 34.3 ± 31.2 54.2 37.1 ± 33.5 57.2
Roadmap, ϑz = 0.1 7.85 ± 6.91 3.54 12 ± 12.7 0.36 15.8 ± 24.3 1.28
Roadmap, ϑz = 0.5 13.5 ± 13.7 8.44 15.8 ± 21.3 3.16 16.7 ± 21.9 6.45
Roadmap, ϑz = 1.0 26.4 ± 30.3 13.3 24.6 ± 28.2 7.7 25.2 ± 31 12.4

Figure 13-2 and Figure 13-3 show height measurements and estimates of ϑz for the first and
second sequences respectively. At low speed, flow field preservation makes a clear difference.
Without preservation, sharp noise peaks are present due to momentarily inaccurate optical
flow estimates. With preservation, many of these sharp peaks are completely rejected.

13-2-2 Effectiveness of the confidence filter

In this section the effectiveness of the confidence filter (Section V-C in the paper) is evaluated.
This is done using three sequences with vertical motion, by evaluation of the estimate accuracy
of ϑz and the confidence value K. The sequences are again part of the checkerboard-based
dataset used in the paper in Figure 9(a). In the first sequence (shown in Figure 13-4), the
camera is at first standing on the ground, before being moved upwards. In the second sequence
(Figure 13-5), slow motion is performed, while in the third sequence (Figure 13-6) the speed
is increased.

For each sequence, four results are shown. The first result is generated without any confidence
filter active, i.e. where K = 1 if optical flow is available, or K = 0 otherwise. In the
second, third, and fourth results, the confidence metric incorporates an increasing number of
individual confidence indicators, starting with K = kρF , followed by K = kρF kVar{S}, and
finally K = kρF kVar{S}kR2 . In all results, flow field preservation is not applied (i.e. kf = 0)).

At low speed, filtering based on ρF rejects many noise peaks due to temporarily low optical
flow availability. Filtering by variance has a smaller effect, but still reduces some local peaks
at low speed. In particular, filtering using kR2 has a strong effect, since it significantly reduces
the confidence value. Note that at high speed, R2 appears to be generally larger due to more
consistent optical flow. However, around zero-crossings, the fit becomes clearly much less
consistent, which results in update delay around the crossing. Note that this effect is mainly
contained in R2, and not so much in ρF or Var{S}.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

118 Supplementary Results

Checkerboard, ϑz = 0.2
∆te = 0.25 s, ∆tF = 0.05 s
Flow scale = 0.4

Checkerboard, ϑz = 2.0
∆te = 0.025 s, ∆tF = 0.005
Flow scale = 0.1

Roadmap, ϑz = 0.1
∆te = 0.5 s, ∆tF = 0.1 s
Flow scale = 0.4

Roadmap, ϑz = 1.0
∆te = 0.12 s, ∆tF = 0.02 s
Flow scale = 0.2

Figure 13-1: Optical flow estimates for four specific sequences. Left: sequence name, time
windows for showing events (∆te) and optical flow (∆tF), and the applied scaling factor for the
optical flow vector magnitude. Middle: optical flow estimated from the baseline algorithm in
the paper (Benosman et al., 2014). Right: estimates from the presented optical flow algorithm.
Yellow arrows show the estimated optical flow, while the accompanying blue arrows show the
ground truth vectors. Events are shown as green dots (positive polarity) or as red dots (negative
polarity).

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

13-2 Visual observables estimator 119

40.5 41 41.5 42 42.5 43 43.5 44 44.5
0

0.5

1

t [s]

h
[m

]

40.5 41 41.5 42 42.5 43 43.5 44 44.5 45

−0.5

0

0.5

t [s]

ϑ
z
,
ϑ̂
z
[1
/
s]

Ground truth No preservation With preservation

Figure 13-2: Height measurements and ground truth values and estimates of ϑz for the first
sequence, in which slow downward motion is performed.

62.5 63 63.5 64 64.5
0

0.5

1

t [s]

h
[m

]

62.5 63 63.5 64 64.5 65

−2

0

2

t [s]

ϑ
z
,
ϑ̂
z
[1
/
s]

Ground truth No preservation With preservation

Figure 13-3: Height measurements and ground truth values and estimates of ϑz for the first
sequence, in which fast up-and-down motion is performed.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

120 Supplementary Results

15.5 16 16.5 17 17.5 18 18.5 19 19.5
0

0.2

0.4

0.6

0.8

t [s]

h
[m

]

15.5 16 16.5 17 17.5 18 18.5 19 19.5 20

−2

0

t [s]

ϑ
z
,
ϑ̂
z
[1
/
s]

Ground truth No confidence filter

Rate filter Rate and variance filter

Rate, variance, and R2 filter

15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
0

0.5

1

t [s]

K
[-
]

Figure 13-4: From top to bottom: height measurements, ground truth values and estimates of
ϑz, and confidence values for the first sequence, in which the DVS is standing on the ground
before being moved upwards.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

13-2 Visual observables estimator 121

40.5 41 41.5 42 42.5 43 43.5 44 44.5
0

0.5

1

t [s]

h
[m

]

40.5 41 41.5 42 42.5 43 43.5 44 44.5 45

−0.5

0

0.5

t [s]

ϑ
z
,
ϑ̂
z
[1
/
s]

Ground truth No confidence filter

Rate filter Rate and variance filter

Rate, variance, and R2 filter

40.5 41 41.5 42 42.5 43 43.5 44 44.5 45
0

0.5

1

t [s]

K
[-
]

Figure 13-5: From top to bottom: height measurements, ground truth values and estimates of
ϑz, and confidence values for the second sequence, in which slow downward motion is performed.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

122 Supplementary Results

62.5 63 63.5 64 64.5
0

0.5

1

t [s]

h
[m

]

62.5 63 63.5 64 64.5 65

−2

0

2

t [s]

ϑ
z
,
ϑ̂
z
[1
/
s]

Ground truth No confidence filter

Rate filter Rate and variance filter

Rate, variance, and R2 filter

62.5 63 63.5 64 64.5 65
0

0.5

1

t [s]

K
[-
]

Figure 13-6: From top to bottom: height measurements, ground truth values and estimates of
ϑz, and confidence values for the third sequence, in which fast up-and-down motion is performed.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

Bibliography

Adiv, G. (1985). Determining three-dimensional motion and structure from optical flow gen-
erated by several moving objects. IEEE transactions on pattern analysis and machine
intelligence, 7 (4), 384–401. doi: 10.1109/TPAMI.1985.4767678

Alkowatly, M. T., Becerra, V. M., & Holderbaum, W. (2015). Bioinspired Autonomous
Visual Vertical Control of a Quadrotor Unmanned Aerial Vehicle. Journal of Guidance,
Control, and Dynamics, 38 (2), 249–262. doi: 10.2514/1.G000634

Baird, E., Boeddeker, N., Ibbotson, M. R., & Srinivasan, M. V. (2013). A universal strategy
for visually guided landing. Proceedings of the National Academy of Sciences of the
United States of America, 110 (46), 18686–18691. doi: 10.1073/pnas.1314311110

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011). A database
and evaluation methodology for optical flow. International Journal of Computer Vision,
92 (1), 1–31. doi: 10.1007/s11263-010-0390-2

Bardow, P., Davison, A. J., & Leutenegger, S. (2016). Simultaneous Optical Flow and
Intensity Estimation from an Event Camera. In Proceedings of Computer Vision and
Pattern Recognition (CVPR) (pp. 884–892). doi: 10.1109/CVPR.2016.102

Barranco, F., Fermuller, C., Aloimonos, Y., & Delbruck, T. (2016). A Dataset for Visual
Navigation with Neuromorphic Methods. Frontiers in Neuroscience, 10 (February), 1–9.
doi: 10.3389/fnins.2016.00049

Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques.
International Journal of Computer Vision, 12 (1), 43–77. doi: 10.1007/BF01420984

Beauchemin, S. S., & Barron, J. L. (1995). The computation of optical flow. ACM Computing
Surveys, 27 (3), 433–466. doi: 10.1145/212094.212141

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., & Bartolozzi, C. (2014). Event-based
visual flow. IEEE transactions on neural networks and learning systems, 25 (2), 407–17.
doi: 10.1109/TNNLS.2013.2273537

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C., & Srinivasan, M. (2012). Asynchronous
frameless event-based optical flow. Neural Networks, 27 , 32–37. doi: 10.1016/j.neunet
.2011.11.001

Bouguet, J.-Y. (1999). Complete Camera Calibration Toolbox for Matlab. Retrieved 2016-04-
01, from http://www.vision.caltech.edu/bouguetj/calib doc/

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

http://www.vision.caltech.edu/bouguetj/calib_doc/

124 BIBLIOGRAPHY

Brandli, C., Berner, R., Yang, M., Liu, S.-C., & Delbruck, T. (2014). A 240x180 130 dB 3
µs Latency Global Shutter Spatiotemporal Vision Sensor. IEEE Journal of Solid-State
Circuits, 49 (10), 2333–2341. doi: 10.1109/JSSC.2014.2342715

Brosch, T., Tschechne, S., & Neumann, H. (2015). On event-based optical flow detection.
Frontiers in Neuroscience, 9 (137), 1–15. doi: 10.3389/fnins.2015.00137

Brown, D. (1966). Decentering Distortion of Lenses. Photometric Engineering , 32 (3), 444–
462.

Camus, C. (2010). Extraction of optical flow fields from a silicon retina optical sensor (MSc
thesis, Technische Universität Darmstadt). Retrieved from http://www.honda-ri.de/

intern/pub/id/mastersthesisreference201010080849933877

Censi, A., & Scaramuzza, D. (2014). Low-Latency Event-Based Visual Odometry. In 2014
IEEE International Conference on Robotics & Automation (ICRA) (pp. 703–710). doi:
10.1109/ICRA.2014.6906931

Censi, A., Strubel, J., Brandli, C., Delbruck, T., & Scaramuzza, D. (2013). Low-latency
localization by active LED markers tracking using a dynamic vision sensor. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp.
891–898). doi: 10.1109/IROS.2013.6696456

Chahl, J. S., Srinivasan, M. V., & Zhang, S. W. (2004). Landing Strategies in Honeybees and
Applications to Uninhabited Airborne Vehicles. The International Journal of Robotics
Research, 23 (2), 101–110. doi: 10.1177/0278364904041320

Chao, H., Gu, Y., & Napolitano, M. (2014). A Survey of Optical Flow Techniques for Robotics
Navigation Applications. Journal of Intelligent & Robotic Systems, 73 (1-4), 361–372.
doi: 10.1007/s10846-013-9923-6

Cho, D.-i. D., & Lee, T.-j. (2015). A Review of Bioinspired Vision Sensors and Their
Applications. Sensors and Materials, 27 (6), 447–463. doi: 10.18494/SAM.2015.1083

Clady, X., Clercq, C., Ieng, S.-H., Houseini, F., Randazzo, M., Natale, L., . . . Benosman, R.
(2014). Asynchronous visual event-based time-to-contact. Frontiers in neuroscience,
8 (9). doi: 10.3389/fnins.2014.00009

Clady, X., Ieng, S.-H., & Benosman, R. (2015). Asynchronous event-based corner detection
and matching. Neural Networks, 66 , 91–106. doi: 10.1016/j.neunet.2015.02.013

Conradt, J. (2015). On-Board Real-Time Optic-Flow for Miniature Event-Based Vision Sen-
sors. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).
Zhuhai, China. doi: 10.1109/ROBIO.2015.7419043

Conradt, J., Berner, R., Cook, M., & Delbruck, T. (2009). An embedded AER dynamic vision
sensor for low-latency pole balancing. In 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops (pp. 780–785). doi: 10.1109/ICCVW
.2009.5457625

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R. J., & Delbruck, T. (2009).
A pencil balancing robot using a pair of AER dynamic vision sensors. In 2009 IEEE
International Symposium on Circuits and Systems (pp. 781–784). doi: 10.1109/ISCAS
.2009.5117867

De Croon, G. C. H. E. (2016). Monocular distance estimation with optical flow maneuvers
and efference copies: a stability-based strategy. Bioinspiration & Biomimetics, 11 (1),
1–18. doi: 10.1088/1748-3190/11/1/016004

De Croon, G. C. H. E., Alazard, D., & Izzo, D. (2015). Controlling spacecraft landings
with constantly and exponentially decreasing time-to-contact. IEEE Transactions on
Aerospace and Electronic Systems, 51 (2), 1241–1252.

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

http://www.honda-ri.de/intern/pub/id/mastersthesisreference201010080849933877
http://www.honda-ri.de/intern/pub/id/mastersthesisreference201010080849933877

BIBLIOGRAPHY 125

De Croon, G. C. H. E., De Clercq, K. M. E., Ruijsink, R., Remes, B., & De Wagter, C.
(2009). Design, aerodynamics, and vision-based control of the DelFly. International
Journal of Micro Air Vehicles, 1 (2), 71–97. doi: 10.1260/175682909789498288

De Croon, G. C. H. E., Ho, H. W., De Wagter, C., Van Kampen, E., Remes, B., & Chu,
Q. P. (2013). Optic-flow based slope estimation for autonomous landing. International
Journal of Micro Air Vehicles, 5 (4), 287–297. doi: 10.1260/1756-8293.5.4.287

De Valois, R. L., Cottaris, N. P., Mahon, L. E., Elfar, S. D., & Wilson, J. A. (2000). Spatial
and temporal receptive fields of geniculate and cortical cells and directional selectivity.
Vision research, 40 (27), 3685–3702. doi: 10.1016/S0042-6989(00)00210-8

De Wagter, C., Tijmons, S., Remes, B. D. W., & De Croon, G. C. H. E. (2014). Autonomous
flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system.
In Proceedings - 2014 IEEE International Conference on Robotics and Automation (pp.
4982–4987). doi: 10.1109/ICRA.2014.6907589

Delbruck, T. (2007). jAER Open Source Project. Retrieved 2015-11-23, from http://

sourceforge.net/p/jaer/wiki/Home/

Delbruck, T., & Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4% CPU load
using event-based dynamic vision sensor. Frontiers in Neuroscience, 7 (223), 1–7. doi:
10.3389/fnins.2013.00223

Delbruck, T., & Lichtsteiner, P. (2007). Fast sensory motor control based on event-based
hybrid neuromorphic-procedural system. In 2007 IEEE International Symposium on
Circuits and Systems (pp. 845–848). doi: 10.1109/ISCAS.2007.378038

Delbruck, T., Pfeiffer, M., Juston, R., Orchard, G., Muggler, E., Linares-Barranco, A., &
Tilden, M. (2015). Human vs. computer slot car racing using an event and frame-based
DAVIS vision sensor. In 2015 IEEE International Symposium on Circuits and Systems
(ISCAS) (pp. 2409 – 2412). doi: 10.1109/ISCAS.2015.7169170

Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors.
Matrix , 58 , 1–35. doi: 10.1093/jxb/erm298

Drazen, D., Lichtsteiner, P., Häfliger, P., Delbrück, T., & Jensen, A. (2011). Toward real-time
particle tracking using an event-based dynamic vision sensor. Experiments in Fluids,
51 (5), 1465–1469. doi: 10.1007/s00348-011-1207-y

Eichner, H., Joesch, M., Schnell, B., Reiff, D. F., & Borst, A. (2011). Internal Structure
of the Fly Elementary Motion Detector. Neuron, 70 (6), 1155–1164. doi: 10.1016/
j.neuron.2011.03.028

Evangelista, C., Kraft, P., Dacke, M., Reinhard, J., & Srinivasan, M. V. (2010). The moment
before touchdown: landing manoeuvres of the honeybee Apis mellifera. The Journal of
experimental biology , 213 (2), 262–270. doi: 10.1242/jeb.037465

Expert, F., & Ruffier, F. (2012). Controlling docking, altitude and speed in a circular high-
roofed tunnel thanks to the optic flow. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (Vol. 7, pp. 1125–1132). doi: 10.1109/IROS.2012
.6385946

Expert, F., & Ruffier, F. (2015). Flying over uneven moving terrain based on optic-flow cues
without any need for reference frames or accelerometers. Bioinspiration & biomimetics,
10 . doi: 10.1088/1748-3182/10/2/026003

Expert, F., Viollet, S., & Ruffier, F. (2011). A mouse sensor and a 2-pixel motion sensor
exposed to continuous illuminance changes. SENSORS, 2011 IEEE (2), 974–977. doi:
10.1109/ICSENS.2011.6127002

Floreano, D., Pericet-Camara, R., Viollet, S., Ruffier, F., Brückner, A., Leitel, R., . . . Frances-

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

http://sourceforge.net/p/jaer/wiki/Home/
http://sourceforge.net/p/jaer/wiki/Home/

126 BIBLIOGRAPHY

chini, N. (2013). Miniature curved artificial compound eyes. In Proceedings of the
National Academy of Sciences of the United States of America (Vol. 110, pp. 9267–72).
doi: 10.1073/pnas.1219068110

Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small autonomous
drones. Nature, 521 (7553), 460–466. doi: 10.1038/nature14542

Franceschini, N., Riehle, A., & Le Nestour, A. (1989). Directionally selective motion detection
by insect neurons. In Facets of Vision (pp. 360–390). Springer-Verlag Berlin.

Geyer, C., & Daniilidis, K. (2000). A unifying theory for central panoramic systems and
practical implications. In David Vernon (Ed.), Computer Vision-ECCV 2000 (pp. 445–
461). Springer Berlin Heidelberg. doi: 10.1007/3-540-45053-X 29

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
Gil, P., Garćıa, G. J., Mateo, C. M., & Torres, F. (2014). Active visual features based on

events to guide robot manipulators in tracking tasks. In Preprints of the 19th World
Congress of the International Federation of Automatic Control (pp. 11890–11897).

Grabe, V., Bulthoff, H. H., Scaramuzza, D., & Giordano, P. R. (2015). Nonlinear ego-
motion estimation from optical flow for online control of a quadrotor UAV. International
Journal of Robotics Research, 34 , 1114–1135. doi: 10.1177/0278364915578646

Green, W., Oh, P., & Barrows, G. (2004). Flying insect inspired vision for autonomous
aerial robot maneuvers in near-earth environments. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation (pp. 2347–2352). doi: 10.1109/
ROBOT.2004.1307412

Hassenstein, B., & Reichardt, W. (1956). Systemtheoretische analyse der zeit-, reihenfolgen-
und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus.
Zeitschrift für Naturforschung B , 11 (9-10), 513–524.

Herissé, B., Hamel, T., Mahony, R., & Russotto, F.-X. (2012). Landing a VTOL Un-
manned Aerial Vehicle on a Moving Platform Using Optical Flow. IEEE Transactions
on Robotics, 28 (1), 77–89. doi: 10.1109/TRO.2011.2163435

Ho, H. W., & De Croon, G. C. H. E. (2016). Characterization of Flow Field Divergence for
MAVs Vertical Control Landing. In AIAA Guidance, Navigation, and Control Confer-
ence (pp. 1–13). doi: 10.2514/6.2016-0106

Ho, H. W., de Croon, G. C. H. E., van Kampen, E., Chu, Q. P., & Mulder, M. (2016).
Adaptive Control Strategy for Constant Optical Flow Divergence Landing. Retrieved
from http://arxiv.org/abs/1609.06767

Huber, B. (2014). High-Speed Pose Estimation using a Dynamic Vision Sensor (MSc
Thesis, University of Zurich). Retrieved from http://www.kutter-fonds.ethz.ch/

App Themes/default/datalinks/BasilHuber UniZ MT2014.pdf

IniLabs. (n.d.). DVS Specifications. Retrieved 2015-12-17, from http://inilabs.com/

products/dynamic-vision-sensors/specifications/

Izzo, D., & De Croon, G. C. H. E. (2012). Landing with Time-to-Contact and Ventral Optic
Flow Estimates. Journal of Guidance, Control, and Dynamics, 35 (4), 1362–1367. doi:
10.2514/1.56598

Kendoul, F. (2014). Four-dimensional guidance and control of movement using time-to-
contact: Application to automated docking and landing of unmanned rotorcraft sys-
tems. The International Journal of Robotics Research, 33 (2), 237–267. doi: 10.1177/
0278364913509496

Kendoul, F., Fantoni, I., & Nonami, K. (2009). Optic flow-based vision system for autonomous
3D localization and control of small aerial vehicles. Robotics and Autonomous Systems,

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

http://arxiv.org/abs/1609.06767
http://www.kutter-fonds.ethz.ch/App_Themes/default/datalinks/BasilHuber_UniZ_MT2014.pdf
http://www.kutter-fonds.ethz.ch/App_Themes/default/datalinks/BasilHuber_UniZ_MT2014.pdf
http://inilabs.com/products/dynamic-vision-sensors/specifications/
http://inilabs.com/products/dynamic-vision-sensors/specifications/

BIBLIOGRAPHY 127

57 (6-7), 591–602. doi: 10.1016/j.robot.2009.02.001
Klette, R. (2014). Concise Computer Vision: An Introduction into Theory and Algorithms

(I. Mackie, Ed.). Springer-Verlag London. doi: 10.1007/978-1-4471-6320-6
Kramer, J. (2002). An integrated optical transient sensor. IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing , 49 (9), 612–628. doi: 10.1109/
TCSII.2002.807270

Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-
collision. Perception, 5 (4), 437–459. doi: 10.1068/p050437

Lee, D. N., Davies, M. N. O., Green, P. R., & Van der Weel, F. R. (1993). Visual Control
of Velocity of Approach by Pigeons When Landing. Journal of Experimental Biology ,
180 (1), 85–104.

Li, C., Brandli, C., Berner, R., Liu, H., Yang, M., Liu, S.-c., & Delbrück, T. (2015). Design
of an RGBW color VGA rolling and global shutter dynamic and active-pixel vision
sensor. In IEEE International Symposium on Circuits and Systems (pp. 718–721). doi:
10.1109/ISCAS.2015.7168734

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128x128 120 dB 15 µs Latency Asyn-
chronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits, 43 (2),
566–576.

Litzenberger, M., Posch, C., Bauer, D., Belbachir, A., Schon, P., Kohn, B., & Garn, H.
(2006). Embedded Vision System for Real-Time Object Tracking using an Asynchronous
Transient Vision Sensor. In 2006 IEEE 12th Digital Signal Processing Workshop & 4th
IEEE Signal Processing Education Workshop (pp. 173–178). doi: 10.1109/DSPWS.2006
.265448

Longinotti, L. (2014). cAER: A framework for event-based processing on embedded sys-
tems (BSc Thesis, University of Zürich). Retrieved from http://sourceforge.net/

projects/jaer/files/cAER/

Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image.
Proceedings of the Royal Society of London, B: Biological Sciences, 208 (1173), 385–397.
doi: 10.1098/rspb.1980.0057

Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an
application to stereo vision. In International Joint Conference on Artificial Intelligence
(Vol. 81, pp. 674–679).

McCarthy, C., & Barnes, N. (2004). Performance of optical flow techniques for indoor
navigation with a mobile robot. In IEEE International Conference on Robotics and
Automation (pp. 5093–5098). doi: 10.1109/ROBOT.2004.1302525

McCarthy, C., Barnes, N., & Mahony, R. (2008). A Robust Docking Strategy for a Mobile
Robot Using Flow Field Divergence. IEEE Transactions on Robotics, 24 (4), 832–842.
doi: 10.1109/TRO.2008.926871

Mueggler, E., Huber, B., & Scaramuzza, D. (2014a). Event-based, 6-DOF Pose Tracking
for High-Speed Maneuvers. Retrieved 2016-04-26, from https://www.youtube.com/

watch?v=LauQ6LWTkxM

Mueggler, E., Huber, B., & Scaramuzza, D. (2014b). Event-based, 6-DOF Pose Tracking
for High-Speed Maneuvers. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems (pp. 2761–2768). doi: 10.1109/IROS.2014.6942940

Nistér, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(Vol. 1, pp. I—-652). doi: 10.1109/CVPR.2004.1315094

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

http://sourceforge.net/projects/jaer/files/cAER/
http://sourceforge.net/projects/jaer/files/cAER/
https://www.youtube.com/watch?v=LauQ6LWTkxM
https://www.youtube.com/watch?v=LauQ6LWTkxM

128 BIBLIOGRAPHY

Paz Gomes Verdugo, M. (2015). Bio-inspired Optical Flow applied to MAV Landing (MSc
thesis). Delft University of Technology.

Piatkowska, E., Belbachir, A. N., Schraml, S., & Gelautz, M. (2012). Spatiotemporal multiple
persons tracking using Dynamic Vision Sensor. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops (pp. 35–40). doi: 10.1109/
CVPRW.2012.6238892

Posch, C., Matolin, D., & Wohlgenannt, R. (2011). A QVGA 143 dB dynamic range frame-
free PWM image sensor with lossless pixel-level video compression and time-domain
CDS. IEEE Journal of Solid-State Circuits, 46 (1), 259–275. doi: 10.1109/JSSC.2010
.2085952

Posch, C., Serrano-Gotarredona, T., Linares-barranco, B., & Delbrück, T. (2014). Retinomor-
phic Event-Based Vision Sensors : Bioinspired Cameras With Spiking Output. Proceed-
ings of the IEEE , 102 (10), 1470–1484.

Richter, C., Rohrbein, F., & Conradt, J. (2014). Bio- inspired optic flow detection using
neuromorphic hardware. Retrieved 2015-11-12, from http://mediatum.ub.tum.de/

doc/1226041/600345.pdf

Rosten, E., Porter, R., & Drummond, T. (2008). Faster and better: a machine learning
approach to corner detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32 (1), 105–19. Retrieved from http://arxiv.org/pdf/0810.2434 doi:
10.1109/TPAMI.2008.275

Ruckauer, B., & Delbruck, T. (2016). Evaluation of event-based algorithms for optical
flow with ground-truth from inertial measurement sensor. Frontiers in Neuroscience,
10 (176). doi: 10.3389/fnins.2016.00176

Ruffier, F., & Franceschini, N. (2005). Optic flow regulation: The key to aircraft automatic
guidance. Robotics and Autonomous Systems, 50 (4), 177–194. doi: 10.1016/j.robot
.2004.09.016

Ruffier, F., & Franceschini, N. (2014). Optic Flow Regulation in Unsteady Environments:
A Tethered MAV Achieves Terrain Following and Targeted Landing Over a Moving
Platform. Journal of Intelligent & Robotic Systems, 79 , 275–293. doi: 10.1007/s10846
-014-0062-5

Serrano-Gotarredona, T., Leñero-Bardallo, J. A., & Linares-Barranco, B. (2011). A Bioin-
spired 128x128 Pixel Dynamic-Vision-Sensor. In 26th Conference on Design of Circuits
and Integrated Systems.

Serrano-Gotarredona, T., & Linares-Barranco, B. (2013). A 128, 128 1.5% contrast sensitivity
0.9% FPN 3 µs latency 4 mW asynchronous frame-free dynamic vision sensor using
transimpedance preamplifiers. IEEE Journal of Solid-State Circuits, 48 (3), 827–838.
doi: 10.1109/JSSC.2012.2230553

Srinivasan, M., Zhang, S., Lehrer, M., & Collett, T. (1996). Honeybee navigation en route to
the goal: visual flight control and odometry. Journal of Experimental Biology , 199 (1),
237–244. doi: 10.1006/anbe.1998.0897

Srinivasan, M. V. (1994). An image-interpolation technique for the computation of optic flow
and egomotion. Biological Cybernetics, 71 (5), 401–415. doi: 10.1007/BF00198917

Tschechne, S., Sailer, R., & Neumann, H. (2014). Bio-Inspired Optic Flow from Event-Based
Neuromorphic Sensor Input. Artificial Neural Networks in Pattern Recognition, 8774 ,
171–182.

Van Breugel, F., Morgansen, K., & Dickinson, M. H. (2014). Monocular distance estimation
from optic flow during active landing maneuvers. Bioinspiration & Biomimetics, 9 . doi:

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

http://mediatum.ub.tum.de/doc/1226041/600345.pdf
http://mediatum.ub.tum.de/doc/1226041/600345.pdf
http://arxiv.org/pdf/0810.2434

BIBLIOGRAPHY 129

10.1088/1748-3182/9/2/025002
Yang, M., Liu, S.-C., & Delbruck, T. (2015). A Dynamic Vision Sensor With 1% Tempo-

ral Contrast Sensitivity and In-Pixel Asynchronous Delta Modulator for Event En-
coding. IEEE Journal of Solid-State Circuits, 50 (9), 2149–2160. doi: 10.1109/
JSSC.2015.2425886

Zaghloul, K. a., & Boahen, K. (2004). Optic Nerve Signals in a Neuromorphic Chip II:
Testing and Results. IEEE Transactions on Biomedical Engineering , 51 (4), 667–675.
doi: 10.1109/TBME.2003.821040

Zufferey, J.-C., Beyeler, A., & Floreano, D. (2010). Autonomous flight at low altitude
using light sensors and little computational power. International Journal of Micro Air
Vehicles, 2 (2), 107–117. doi: 10.1260/1756-8293.2.2.107

Zufferey, J.-C., & Floreano, D. (2006). Fly-Inspired Visual Steering of an Ultralight Indoor
Aircraft. IEEE Transactions on Robotics, 22 (1), 137–146.

Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow B.J. Pijnacker Hordijk

130 BIBLIOGRAPHY

B.J. Pijnacker Hordijk Vertical Landing for Micro Air Vehicles using Event-Based Optical Flow

	Acknowledgements
	Abstract
	Acronyms
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and research question
	Structure of this thesis

	I Paper
	II Literature Review
	Landing Strategies for Micro Air Vehicles using Optical Flow
	Modeling optical flow
	Optical flow in the pinhole camera model
	Simplified visual observables derived from optical flow

	Optical flow measurement
	Frame-based cameras
	Insect-inspired sensors
	Optical mouse sensors

	Bio-inspired landing strategies using optical flow
	Applications in Micro Air Vehicles
	Navigating using ventral flow
	Constant divergence landing
	Constant rate-of-change in time-to-contact
	Estimating the slopes of a landing surface
	Deriving metric scale and distance during landing maneuvers

	Event-based Vision
	The Dynamic Vision Sensor
	Working principle
	Sensor characteristics, advantages, and limitations
	Processing software

	Related hardware developments
	Performance improvements
	Combination with absolute brightness measurements
	Miniaturization

	Applications of event-based cameras
	Visual tracking
	Visual control systems
	Pose estimation

	Event-based Optical Flow
	Optical flow estimation techniques
	Pixel velocity from neighbor events
	Event-based Lucas-Kanade
	Spatiotemporal plane fitting
	Flow-based corner detection
	Direction selective filtering
	Event-based Elementary Motion Detection

	Evaluating event-based optical flow performance
	Estimating visual observables
	Using sequential flow vectors
	Mapping techniques

	Synthesis
	Landing strategies
	Event-based cameras
	Event-based optical flow

	III Preliminary Comparison of Event-Based Optical Flow Methods
	Methodology and Datasets
	Outline of the analysis
	Determining ground truth visual observables and optical flow
	Dataset description

	Analysis of Optical Flow Estimation Methods
	Local flow estimation algorithms
	Event-based Lucas-Kanade
	Normal-to-Edge Search
	Space-Time Plane Fitting
	Direction Selective Filtering

	Evaluation of algorithm performance
	Flow error metrics
	Processing time and flow output density

	Results
	Qualitative results
	Quantitative results
	Comparison to results in literature

	Improving performance through filters
	Background activity filter
	Flow regularization filter
	Effect of filters on flow estimation performance

	Analysis of Visual Observable Estimation Methods
	Algorithms for estimating the Focus of Expansion
	Probability mapping method
	Integration method
	Cross-product method
	Estimating visual observables using the Focus of Expansion

	Algorithms for simultaneous estimation of visual observables
	Estimating a planar flow field
	Estimating a planar normal flow field

	Datasets
	Flow statistics
	Results
	Detailed flow sequences
	Quantitative results and computational effort

	Discussion of Preliminary Results
	Datasets
	Performance of optical flow methods
	Performance of visual observable estimation methods
	Relation to results presented in the paper

	IV Appendices
	Calibration of the Dynamic Vision Sensor
	Calibration model
	Intrinsic parameters
	Lens distortion

	Calibration approach
	Calibration procedure results
	Undistortion of events
	Undistortion of event-based optic flow

	Experimental Setup
	Overview
	Operation during flight tests
	Communication architecture and data logging
	Timestamp synchronization of log files

	Software and Implementation
	cAER module for optical flow estimation
	Architecture
	Estimation algorithm

	Paparazzi module for visual observables estimation
	Estimation algorithm
	Divergence controller

	Overview of source code
	Overview of sensor settings and algorithm parameter values

	Supplementary Results
	Optical flow estimation
	Qualitative comparison between baseline and new algorithm
	Effect of plane parameter reduction on performance

	Visual observables estimator
	Effect of preservation of flow field statistics
	Effectiveness of the confidence filter

	Bibliography

