
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

CAS-2022-5276179

M.Sc. Thesis

Distributed Gaussian Process for
Multi-agent Systems

Peiyuan Zhai B.Sc.
Student ID: 5276179

Distributed Gaussian Process for Multi-agent
Systems

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Peiyuan Zhai B.Sc.
from Shenzhen, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2022 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Distributed Gaussian Process for Multi-agent Systems” by Peiyuan
Zhai B.Sc. in partial fulfillment of the requirements for the degree of Master of
Science.

Dated: 25th August 2022

Advisor:
Dr. Raj Thilak Rajan

Committee Members:
Dr.ir.Richard Heusdens

Dr. Bianca Giovanardi

iv

Abstract

This work is focused on environmental monitoring and learning of unknown field by
Gaussian Process (GP) in Multi-agent Systems (MAS). The two main problems are how
to develop fully-distributed and robust algorithm to (1). optimize GP hyperparameters,
and (2). aggregate GP predictions from agents.

The state-of-the-art distributed GP hyperparameter optimization algorithm is prox-
imal alternated direction method of multipliers (pxADMM), which requires a center
station in MAS. Based on pxADMM, two fully-distributed algorithms, pxADMMfd and
pxADMM∗

fd, are proposed so that the center station is no longer needed. Asynchronous
behavior is also introduced into the proposed algorithms to deal with heterogeneous
processing time of agents.

Current aggregation methods are classified based on whether datasets are inde-
pendent. Under independence assumption, PoE and BCM families of methods are
distributed by applying discrete time consensus filter (DTCF), which is proposed to be
replaced by primal-dual method of multiplier (PDMM) for faster convergence. Without
independence assumption, the Nested Pointwise Aggregation of Experts (NPAE) can be
distributed by NPAE-JOR in complete graph with high flooding overhead. We propose
fully-distributed CON-NPAE in connected graph to eliminate flooding overhead.

Simulation results show that the proposed hyperparameter optimization algorithms
are fully-distributed at a cost of 2 to 4.5 times more iterations compared to pxADMM.
The fully-dsitributed PoE and BCM based methods are accelerated, and the fully-
distributed CON-NPAE makes comparable aggregations as NPAE without flooding
overhead. Future work will be focused on the theoretical convergence analysis of
pxADMM∗

fd, the effect of network structure on CON-NPAE and new type of distributed
NPAE based on inducing points.

v

vi

Acknowledgments

This nine-month-long thesis work is not only the final work of my master study in TU
Delft, but also a milestone for my academic career. This work is inspired and supported
by many people.

First, I would like to show my gratitude to my supervisor Raj Thilak Rajan for
guiding me through my thesis in the distributed signal processing area. Your guidance
helps me to discover an interesting topic for my thesis and keep in the main scope of
the project. You have also given many suggestions on good habits of doing research
and writing skills, which are valuable for my future career. With your support, I was
able to attend SITB2022 conference, which was my first one, and gained memorable
experience. What is more, thank you for organizing the weekly meeting of Distributed
Autonomous Systems group, from where I have been inspired much to extend my own
research.

I would also like to thank Richard Heusdens and Bianca Giovanardi for being mem-
bers in my thesis committee.

I want to thank my friends - Nan, Rui, Zhonggang, Xuzhou, Edoardo and many
others - for all the emotional or technical support, fun time and good restaurants.
I would also like to thank the Circuits and Systems group for providing very good
on-campus offices, inspiring seminars and fun activities.

Finally, I would like to thank my family - dad, mum and brother - for their financial
and emotional supports to me, so that I can have a wonderful time during my graduate
study.

Peiyuan Zhai B.Sc.
Delft, The Netherlands
25th August 2022

vii

viii

Contents

Abstract v

Acknowledgments vii

List of Figures xiv

List of Tables xv

Acronyms and Nomenclatures xix

1 Introduction 1
1.1 Background & Problem Statement . 1

1.1.1 Multi-agent systems . 1
1.1.2 Environmental monitoring . 1
1.1.3 Problem statement . 2

1.2 Preliminaries . 2
1.2.1 Notation . 2
1.2.2 Graph model . 2

1.3 Datasets and simulations . 4
1.3.1 Underlying field . 4
1.3.2 Simulation and sampling setting 5

1.4 Contributions . 6
1.5 Outline . 7
1.6 Conclusion . 7

2 Gaussian Process Regression
A Brief Introduction 9
2.1 Choosing data model . 9

2.1.1 Parametric and non-parametric model 9
2.1.2 Bayesian Modeling . 11

2.2 Gaussian Process regression . 12
2.2.1 Prior model . 12
2.2.2 Posterior prediction . 14

2.3 Conclusion . 15

3 Distributed GP Hyperparameter Optimization 17
3.1 Centralized GP hyperparameter optimization 17

3.1.1 Motivation . 17
3.1.2 Cross-validation . 17
3.1.3 Bayesian model selection . 18

3.2 Distributed hyperparameter optimization 19
3.2.1 Näıve Gradient Descent (nGD) [1] 20

ix

3.2.2 Alternated direction method of multipliers (ADMM) [2] 21
3.2.3 Proximal ADMM (pxADMM) 24

3.3 Proposed fully-distributed hyperparameter optimization 24
3.3.1 Fully-distributed proximal ADMM (pxADMMfd) 24
3.3.2 Asynchronous proximal ADMM (pxADMMasync) 27

3.4 Simulation&Discussion . 29
3.4.1 Artificial dataset . 29
3.4.2 Real dataset: GHRSST . 34

3.5 Conclusion . 36

4 Distributed GP Aggregation 37
4.1 GP aggregation . 37

4.1.1 Background . 37
4.1.2 GP Aggregation problem . 38
4.1.3 Independent aggregation . 38
4.1.4 Nested aggregation . 42
4.1.5 Other aggregation methods . 43

4.2 Distributed GP Aggregation . 44
4.2.1 Fully-distributed PoE and BCM families 44
4.2.2 Distributed NPAE . 45

4.3 Proposed distributed aggregation methods 46
4.3.1 PDMM-PoE/BCM . 46
4.3.2 LOC-NPAE and CON-NPAE 47

4.4 Simulation . 51
4.4.1 Quality assessment . 51
4.4.2 Artificial dataset . 52
4.4.3 Real dataset: GHRSST . 58

4.5 Conclusion . 62

5 Discussion and Conclusion 63
5.1 Conclusion - Hyperparameter Optimization 63

5.1.1 Research problem . 63
5.1.2 Current methods . 63
5.1.3 Proposed methods . 63
5.1.4 Conclusion . 64

5.2 Conclusion - Distributed Aggregation 64
5.2.1 Research problem . 64
5.2.2 Current methods . 65
5.2.3 Proposed methods . 65
5.2.4 Conclusion . 66

5.3 Future work . 66
5.3.1 Distributed hyperparameter optimization 66
5.3.2 Distributed GP aggregation . 66

A Appendix 71
A.1 Figures of Hyperparameter Optimization 71

x

List of Figures

1.1 Examples of unconnected, connected and complete graphs. 3

1.2 Examples of artificially generated 2D GP fields for simulation. The x
and y axes span the 2D input space. The z axis span the output space.
The magnitudes of the output scalar values are indicated by the colorbar. 5

1.3 The global SST map and four selected regions. (a): Map of global SST:
The map shows data of global SST on 1st April 2022. Temperature
values are indicated by different colors shown in colorbar. There is no
data in land areas, which are shown in Navy blue. (b): Map of four
selected sea regions: The four maps show SST data obtained from sea
near Japan, Caribbean sea, North Atlantic and Argentine Sea. 6

1.4 Diagram of this work. The green blocks show the contributions of the
work. The gray blocks show the future work. 8

2.1 The real underlying function shown in black line is generated by f(x) =
sin(3

1+2x2). The red dots are 25 measurement points uniformly dis-
tributed across the input region [−2, 2], for which the measurement noise
follows N (0, 0.12). The non-parametric GP regressor (GPR) is applied
with the most commonly used squared exponential kernel described in
Equation (2.7) with hyperparameters {σf , l, σn} = {0.4, 0.4, 0.1}. The
light green area indicates the 95% confidence interval given by the GPR.
Parametric Gaussian Regression with 1,3 and 5 Gaussian components
are respectively shown in red, purple and blue dotted lines. 10

2.2 Comparison of RBF kernel with different hyperparameter set and Matérn
kernel . 13

2.3 1-D GPR with increasing number of training points under hyperparam-
eter set θ = {σf , l} = {1, 0.5} . 15

3.1 (a). The figure shows two different regression results under two hyper-
parameter sets with different characteristic lengths l. (b). The figure
shows the contour lines of the scaled negative Log-likelihood based on
the dataset shown in the left figure. The values of the contours are in-
dicated by the colorbar. The triangle indicates the lowest points among
the examined hyperparameters sets, and corresponds to the optimal sets
for the given dataset. 18

3.2 (a). The figure shows MAS and underlying scalar field generated by
2D stationary GP. The field is shown as background with magnitudes
indicated by color according to the colorbar. The red dots shows the
positions of agents. The communication links are plotted as red lines
connecting pairs of agents. The black asterisks scattered around the
field shows the position of sampling points. (b). The figure shows the
topology structure of MAS, in which the numbers indicate the code of
agents from 1 to M, i.e., 8. 29

xi

3.3 The figures shows the NLML for the given datasets. The NLML values
are scaled for better visualization. The axes are in log scale. The black
triangle shows the minimum points. (a) shows the scaled NLML directly
calculated based on the entire global dataset, that is l(θ). The empty
areas at the upper right and lower left corners are NLML values with
infinite log(det(K)) values, which is a phenomenon that happens when
the dataset is large and the hyperparameters examined are far from
the real values. (b) shows the scaled NLML calculated based on the

summation of the NLML of local datasets, that is
M∑

m=1

lm(θ). 31

3.4 Comparison of different versions of pxADMM methods. 33

3.5 Step size comparison of hyperparameter optimization methods with both
x and y axes in log scale. The curves of ADMM and ADMMfd shows the
step size regarding the inner iterations based on nGD. 33

3.6 (a). The figure shows MAS and underlying GHRSST field. The field is
shown as background with magnitudes indicated by color according to
the colorbar. The red dots shows the positions of agents. The commu-
nication links are plotted as red lines connecting pairs of agents. The
black asterisks scattered around the field shows the position of sampling
points. (b). The figure shows the topology structure of MAS, in which
the numbers indicate the code of agents from 1 to M, i.e., 8. 34

4.1 (a) The plot shows a global dataset containing 300 sampling data points
in circles. Different color represent different partitions of data points.
The triangles are the position of agents that hold the local datasets. (b)
The covariance matrix of the full datasets. The colored frame contains
the corresponding local datasets at agents. 39

4.2 The upper figure shows the full topology of a MAS with 6 agents shown
in clue dots. The lower figures shows three different kinds of subgraphs
that LOC-NPAE operates on. In the lower plots, the red dots represent
the agents selected as the local computing center, in which the LOC-
NPAE is computed. 49

4.3 The figure shows the RMSE comparison of the simulated methods. The
consensus average algorithm applied is DTCF. (a). The RMSE com-
parison of the predictive means. (b). The RMSE comparison of the
predictive variances. 55

4.4 The figure shows the RMSE comparison of the simulated methods. The
consensus average algorithm applied is PDMM. (a). The RMSE com-
parison of the predictive means. (b). The RMSE comparison of the
predictive variances. 56

4.5 The figure shows the RMSE comparison DTCF and PDMM based meth-
ods. The methods applied include both DTCF and PDMM version of
PoE, gPoE, BCM and rBCM . 57

xii

4.6 The figure shows the RMSE comparison of the simulated methods. The
consensus average algorithm applied is DTCF. (a). The RMSE com-
parison of the predictive means. (b). The RMSE comparison of the
predictive variances. 60

4.7 The figure shows the RMSE comparison DTCF and PDMM based meth-
ods. The methods applied include both DTCF and PDMM version of
PoE, gPoE, BCM and rBCM . 61

A.1 Change of hyperparameters and step size in term of iteration number for
nGD . 71

A.2 Change of hyperparameters and step size in term of iteration number for
centralized ADMM . 72

A.3 Change of hyperparameters and step size in term of iteration number for
fully-distributed ADMM . 73

A.4 Change of hyperparameters and step size in terms of iteration number
for centralized pxADMM . 74

A.5 Change of hyperparameters and step size in terms of iteration number
for pxADMMfd . 75

A.6 Change of hyperparameters and step size in terms of iteration number
for pxADMM∗

fd . 76

A.7 Change of hyperparameters and step size in terms of iteration number
for pxADMMasync . 77

A.8 Change of hyperparameters and step size in terms of iteration number
for pxADMM∗

async . 78

A.9 Change of hyperparameters and step size in term of iteration number for
nGD . 79

A.10 Change of hyperparameters and step size in term of iteration number for
centralized ADMM . 80

A.11 Change of hyperparameters and step size in term of iteration number for
fully-distributed ADMM . 81

A.12 Change of hyperparameters and step size in terms of iteration number
for centralized pxADMM . 82

A.13 Change of hyperparameters and step size in terms of iteration number
for pxADMMfd . 83

A.14 Change of hyperparameters and step size in terms of iteration number
for pxADMM∗

fd . 84

A.15 Change of hyperparameters and step size in terms of iteration number
for pxADMMasync . 85

A.16 Change of hyperparameters and step size in terms of iteration number
for pxADMM∗

async . 86

A.17 The figure shows an example of the consensus error - iteration curves of
PDMM and DTCF methods. It can be found that the PDMM converges
faster than the DTCF methods in terms of the consensus error. 87

xiii

A.18 Topology of MAS under different number of agents in artificial dataset
simulation. The numbers of agents from left to right are respectively 2,
4, 8, 12 and 16. It can be found that the topology of network with 16
agents looks less connected than the other. 88

A.19 Topology of MAS under different number of agents in real dataset simu-
lation. The numbers of agents from left to right are respectively 2, 4, 8,
12 and 16. It can be found that the topology of network with 16 agents
looks like a tree structure, which is a less connected structure than the
first 4 graphs on the left. 88

xiv

List of Tables

3.1 Parameters & Variables of pxADMM 30
3.2 Results of hyperparameters optimization 30
3.3 Parameters & Variables of pxADMM for GHRSST 34
3.4 Results of hyperparameters optimization with real dataset 35

4.1 Independent aggregation methods . 41
4.2 Models for GP experts aggregation. 51
4.3 Parameters & variables of GP aggregation 53
4.4 Parameters & variables of GP aggregation 58

xv

xvi

Acronyms and Nomenclatures

Acronyms
ADMM Alternated direction method of multipliers

ayncADMM Asynchronous proximal ADMM

BCM Bayesian Committee Machine

BMS Bayesian Model Selection

DTCF Discrete Time Consensus Filter

GD Gradient descent

GHRSST The Group for High Resolution Sea Surface Temperature

GPR Gaussian Process Regression

GP Gaussian Process

MAP Maximize a posterior

MAS Multi-agent system(s)

MMSE Minimum Mean Squared Error

MM Methods of Multipliers

MoE Mixture of Experts

nGD Näıve Gradient Descent

NLML Negative log-marginal likelihood

NPAE Nested Pointwise Aggregation of Experts

PDMM Primal-Dual Method of Multipliers

pxADMM Proximal alternated direction method of multipliers

xvii

Nomenclatures
∀ ’for all’ symbol.

∈ ’to be a member of’ symbol

ν A parameter controlling the convergence rate of DTCF or JOR.

1 All-ones vector.

z Auxiliary consensus variable for used in consensus problems.

ξ Auxiliary variable used in modified PDMM consensus average.

X Collection of input data points in a dataset.

y Collection of output data points in a dataset.

O(·) Complexity (computational, memory, convergence, etc.).

K Covariance matrix of a Gaussian Process.

Σ Covariance matrix of multi-dimensional radial basis function ker-
nel.

D Dataset containing input points and corresponding observations.

∇ Difference operator.

δ(m,n) Dirac delta function equals 1 when input m = n, and 0 otherwise.

θ Hyperparameter set of Gaussian Process.

IN Identical matrix of size N ×N .

m Indices for agents owned datasets or variables when used as sub-
script.

α Influence weight in rBCM, gPoE and grBCM.

⟨a,b⟩ Inner product of vector a and b.

x Input vector of a function.

k (·, ·) Kernel function.

w Measurement noise.

N (µ, σ2) Normal distribution with mean µ and variance σ2.

M Number of agents in multi-agent systems.

|·| Number of elements in a set.

y Output scalar value of a function.

∥·∥p p-norm.

∂ Partial derivative.

⊙ Pointwise multiplication.

A Set of activated agents.

ϵ Small positive value.

a[i] The ith entry of vector a.

xviii

A[i,] The ith row of matrix A.

A[,j] The jth column of matrix A.

Cov(X,Y) The covariance between two input variables, or every input pairs
from two input vectors.

A[i,j] The entry at position (i, j) of matrix A.

A\B The relative complement of set B respect to set A

t Time or iteration indices. When used as superscript for a vari-
able, means the specific value of that variable at time instance or
iteration t

N (m) Topological neighborhood of agentm, containing all its neighbors.

λ Vector of dual variables.

ω Weights for GP aggregation.

diag(·) With input a vector, the output is a square diagonal matrix with
the elements of input vector on the main diagonal. With input a
square matrix, the output is a vector containing the main diagonal
elements.

xix

xx

Introduction 1
D

istributed algorithms in distributed systems are promising solution to many real
world applications, e.g., environmental monitoring. In this thesis, the focus is

on the algorithm for environmental monitoring in multi-agent systems (MAS). In this
chapter, basic introductions and problem statement of the thesis project are introduced
in Section 1.1. Some necessary preliminaries are explained in Section 1.2. The datasets
and simulation setting are introduced in Section 1.3. Contributions of this work are
briefly concluded in Section 1.4. The outline of the thesis report is shown in Section
1.5.

1.1 Background & Problem Statement

1.1.1 Multi-agent systems

Multi-agent system (MAS) consists of identical measurement and computation units
that work in distributed manner, where each agent is called an agent. The agents are
able to communicate with other agents (or possibly a center station) inside the largest
range of communication. Examples of agents include drones, satellites, robots, cars,
etc. A specific realization of MAS can also be called a distributed multi-agent network
that can be described by graph as explained in Section 1.2.2.

1.1.2 Environmental monitoring

MAS can be deployed for various kinds of applications, e.g., source seeking [3], en-
vironmental monitoring [4, 5], Geographical Information Systems modeling [6], signal
strength mapping [7], etc. In this work, we specifically focus on the environmental mon-
itoring of unknown spatial fields. As an example, mobile agent network [8] is applied
to measure oceanic environmental variables(temperature, flow, biological variable, etc.)
so as to better model and understand the ocean on the topic of ecosystems and climate.

The environmental monitoring task learns and reconstructs an unknown field of in-
terest from measurements taken in it. The task can be considered as finding a hidden
function describing the underlying environment, which is usually called regression prob-
lem. To learn the continuous hidden function based on discrete measurements, a data
model defining the behavior of function is firstly assumed and built, after which the
exact function is learned from the observed data. Measurement model describing the
relationship between hidden function and observed values can also be applied. There
are various models for the regression problem, among which the Gaussian Process is
chosen.

Gaussian Process (GP) is a non-parametric stochastic process that can be used
to describe functions or signals from a probabilistic perspective, in which any finite

1

collection of input points follows a multi-variate Gaussian distribution. As the data
model defined by GP, the unknown environmental field can be learned through finding
posterior distribution. As a non-parametric model, GP has the characteristic of high
flexibility and robustness, but also has high computational complexity. More details
about the GP and motivation of choosing it are introduced in Chapter 2. In MAS,
problem arise on how to apply Gaussian Process in a distributed manner, or even
fully-distributed situation that does not require assistance from center stations.

1.1.3 Problem statement

In this work, there are two problems to be studied so as to extend and improve Gaussian
Process based environmental monitoring in MASs.

1. In MASs, how to train Gaussian Process models, i.e., learning hyperparame-
ters from sampling points in the unknown fields, for environmental monitoring
applications in a fully-distributed manner that does not relies on center station.

2. Based on the sampled data points, how does a MAS with distributed Gaussian
Process models predicts the unknown field with an compatible accuracy to the
full Gaussian Process.

1.2 Preliminaries

1.2.1 Notation

The list of acronyms and nomenclatures are included before the start of this Chapter.

By default, a vector is oriented vertically and denoted by boldface lowercase English
or Greek letters, and a matrix is denoted by boldface English or Greek capital letters.
A set of variables am with m ∈ 1, 2, · · · ,M can be denoted as {am}Mm=1. If the indices
for a can be described by a set, e.g., S, then the equivalent notation is {am}m∈S .

A set of real numbers forming 1 dimensional Euclidean space is denoted as R, for
which the D dimensional case is denoted as RD. The sets for positive and negative real
number are respectively denoted as R+ and R−.

1.2.2 Graph model

A graph can be used to model the network structure of MAS, and the basics of graph
is introduced in this section [9, Ch. 10].

Definition 1.1 (Graph). A Graph G = (V , E) consists of a non-empty set V of vertices
(or nodes), and a set E of edges (or links) between pairs of vertices.

The agents in MAS can be regarded as vertices and denoted as V , and the commu-
nication links between pairs of agents are the edges denoted as E .

2

Figure 1.1: Examples of unconnected, connected and complete graphs.

Basic concepts

• Directed and undirected edge: An edge connecting a pair of vertices u and v
can be denoted as (u, v), indicating that the edge starts from u and ends at v. If
the direction matters, then the edge is a directed edge connecting a pair of ordered
vertices. If the order does not make a difference, then the edge is undirected. In
MAS, an undirected edge represent a two-way communication link between a pair
of agents.

• Directed and undirected graph: An undirected graph consist of only undi-
rected edges, while a directed graph includes directed edges.

• Simple graph: When an edge starts and end at the same vertex, it is called
a loop. A simple graph is a graph in which there is not any loop and no two
different edges connecting the same pair not vertices.

• Weighted and unweighted graph: A graph with different values assigned to
the edge is called a weighted graph. A graph in which the edges do not have
weights, or only weight 0 and 1, is called unweighted graph. In unweighted graph,
0 and 1 respectively means the disconnection and connection of an edge. In MAS,
edges with weights 0 and 1 respectively means the nonexistence and existence of
communication links between agents.

• Complete graph: A complete graph is a simple undirected graph in which each
unique pair of vertices is connected by one edge. A MAS with network structure
as complete graph is be called complete network. An example of complete graph
with 6 nodes is shown in Figure 1.1c.

• Connected graph: A path is a sequence of edges starts from a vertex in the
graph and travels from vertex to vertex. The path can end at the same vertex. A
connected graph is a graph in which there is always a path between any pair of
vertices. A MAS with network structure as connected graph is called connected
network. In a connected network, if the information can be passed through agents,

3

then the information sent from any agent in the network can always be received by
any other agents. Examples of unconnected and connected graphs with 6 agents
are shown in Figure 1.1a and 1.1b.

• Neighbors and neighborhood: For nodes u and v connected by undirected
edge (u, v), they are neighbors of each other. For set containing all the neighbors
of an agent m, it is called neighborhood of agent m and denoted as N (m).

Without specific indication, all the networks in this work are undirected, unweighted
and connected.

Graph representation

• Adjacency matrix: The adjacency matrix A of graph G = (V , E) with M
vertices is an M ×M matrix with each entry the value 1 or 0. The entry A[m,n]

at position (m,n) is given by

A[m,n] =

{
1 if (vm, vn) is an edge of G
0 otherwise

, (1.1)

where vm, vn ∈ {vi}Mi=1 are vertices from V .

• Degree: The degree dm of a vertex vm ∈ V is the number of edges connected to it.
Degree vector d collects the degrees of all the vertices. There is d = A1 = 1TA.
The degrees can also be organized in a diagonal matrix D such that D = diag(d).

• Laplacian: The Laplacian matrix of graph is given by L = D−A. The Lapla-
cian matrix can be used to check the connectivity of graph. The second smallest
eigenvalue of L can be denoted as λ2, which is related to the convergence speed of
DTCF algorithm introduced in Chapter 4. Also, the graph is disconnected when
λ2 = 0, which can be used to check the connectivity of generated MAS.

1.3 Datasets and simulations

To construct a dataset, an underlying environmental field is first chosen or generated,
based on which the samples are taken through interpolation at points of interest. A
dataset D consists of two parts, the set of input points X and corresponding output
scalar values y sampled from underlying fields.

The generation of underlying fields is introduced in section 1.3.1, then the simulation
and sampling setting are introduced in section 1.3.2.

1.3.1 Underlying field

The datasets provide underlying rectangular 2D environmental fields with range
[rx,1, rx,2] ⊂ R on x axis and [ry,1, ry,2] ⊂ R on y axis, which can also be denoted
as [rx,1, rx,2]× [ry,1, ry,2] ⊂ R2.

4

Artificial 2D Gaussian Process field This is a dataset generated according to 2D
spatial Gaussian Process with specified hyperparameters. The details of Gaussian Pro-
cess are introduced in Chapter 2. A 2D stationary Gaussian Process can be simu-
lated through generating a multivariate normal distribution with circulant embedding
method [10], which is a fast algorithm developed to utilize the good properties of Fast
Fourier transform (FFT) and multivariate normal distribution. Details of the circulant
embedding are out of the scope of this work, and the interested reader is referred to
the cited references for detailed descriptions. The code used for circulant embedding
methods is adapted from [11]. Figure 1.2 shows four examples of the generated 2D GP
fields with the same set of hyperparameters.

Figure 1.2: Examples of artificially generated 2D GP fields for simulation. The x and y axes
span the 2D input space. The z axis span the output space. The magnitudes of the output
scalar values are indicated by the colorbar.

GHRSST dataset The Group for High Resolution Sea Surface Temperature
(GHRSST) dataset [12, 13] contains daily global sea surface temperature since 2002.
For simplicity, we use Sea Surface Temperature (SST) to indicate the dataset in the
following paragraphs. The spatial resolution of the dataset is 0.01 degree in both lati-
tude and longitude. Several regions are copped as 2D field for evaluation of proposed
algorithm. Four cropped regions and their positions in the entire map is shown in Fig.
1.3.

1.3.2 Simulation and sampling setting

MAS setting MAS can be mathematically represented by an undirected connected
graph G = {V , E}, where the number of agents |V| = M . The locations XV of agents
are uniformly distributed in the range of field. The largest communication distance of
an agent is denoted as rmax ∈ R+, which is identical among the agents. The rmax is
arbitrarily chosen in a way such that the graph is connected but not complete.

Sampling points and datasets division In MAS, each agent m holds a local dataset
Dm = {Xm,ym}. Collectively, the set containing all the local datasets is called global
dataset and denoted by D.

There are two methods to generate and divide the datasets. The first one is to
uniformly sample the points inside the field, which gives the global dataset D. Then

5

Global SST and selected areas

Japan

Caribbean

North Atlantic

Argentina

-150 -100 -50 0 50 100 150

longitude

-80

-60

-40

-20

0

20

40

60

80

la
ti
tu

d
e

0

5

10

15

20

25

30

(a) The global SST map and the positions of selected regions

(b) Four selected regions

Figure 1.3: The global SST map and four selected regions. (a): Map of global SST: The map
shows data of global SST on 1st April 2022. Temperature values are indicated by different
colors shown in colorbar. There is no data in land areas, which are shown in Navy blue.
(b): Map of four selected sea regions: The four maps show SST data obtained from sea near
Japan, Caribbean sea, North Atlantic and Argentine Sea.

the points are randomly and equally distributed to local datasets without overlap.
The second method firstly generate the local datasets, which are then collectively

combined as global dataset. The dataset Dm for agent m is generated through uniform
sampling inside a circle around agent m with radius rm, which is called the sampling
range of agent m. The rm is assumed to be identical among agents. The points
generated outside the region of field are ignored, and makes the exact number of points
slightly different among agents. Then the global datasets is formed by the combination
of all the local datasets D = {Dm}Mm=1.

1.4 Contributions

The main contributions of this thesis project are algorithms proposed to solve the
problems stated.

• For hyperparameter optimization of Gaussian Process, two algorithms are pro-

6

posed. A fully-distributed proximal ADMM algorithm is proposed to extend the
current proximal ADMM algorithm. An asynchronous version is also proposed to
speed up the convergence. Details of the mentioned algorithms are in Chapter 3.

• For distributed Gaussian Process aggregation, two algorithms are proposed. The
current fully-distributed rBCM aggregation algorithm is improved with introduc-
tion of PDMM. A fully-distributed NPAE method is proposed so that the amount
of data transferred in the network is reduced compared to current NPAE based
methods. Details of the mentioned algorithms can be found in Chapter 4.

1.5 Outline

This thesis report is structured as follows.
In Chapter 1, the basic introductions to the background and the problems are given.

Necessary preliminaries and notations are also explained.
In Chapter 2, the parametric and non-parametric models for environmental monitor-

ing are compared. It is also motivated to choose the non-parametric model, i.e., Gaus-
sian Process. Gaussian Process for regression problem is also introduced from perspec-
tives of constructing the prior model and predicting based on posterior model.

In Chapter 3, current hyperparameter optimization algorithms, both centralized
and distributed, are introduced. Fully-distributed and asynchronous versions of state-
of-the-art optimization methods are proposed. Simulations are performed and analyzed.

In Chapter 4, the current algorithms of aggregating local predictions from agents
into global predictions are first introduced. Two algorithms are then proposed to im-
prove the current methods.

In Chapter 5, discussions of the thesis project and future works are included.
Figure 1.4 shows the diagram of the structure for this work.

1.6 Conclusion

In this chapter, the following parts are introduced:

• Background and problem statements: This work is on the topic of environ-
mental monitoring in multi-agents systems with Gaussian Process.

• Notations used in this work, and preliminaries about the graph model that is
used to model MAS.

• The datasets used for simulation, and the simulation settings for constructing
MAS and generating sampling points.

• The outline of the entire report.

In the next chapter, the motivation of choosing a proper data model, i.e., Gaussian
Process, and the basics of Gaussian Process are introduced.

7

Background and
introduction

GP Introduction

Hyperparameter
optimization

Distributed
aggregation

Conclusion

nGD, MM,
ADMM

pxADMM

pxADMMfd

pxADMM∗
fd

pxADMMasync

pxADMM∗
async

Independent

Dependent

(g)PoE

(r)BCM

DTCF-(g)PoE

DTCF-(r)BCM

PDMM-(g)PoE

PDMM-(r)BCM

NPAE NPAE-JOR

NN-NPAE

DEC-NPAE

Theoretical convergence
analysis of pxADMM∗

fd

Inducing points based
distributed NPAE

Figure 1.4: Diagram of this work. The green blocks show the contributions of the work. The
gray blocks show the future work.

8

Gaussian Process Regression
A Brief Introduction 2
F

or environmental monitoring, the underlying field can be modeled by Gaussian
Process (GP), which is a robust and flexible for unknown signal modeling. In

this chapter, more detailed motivation of choosing GP are discussed. Also, the prior
and posterior models for GP based regression are introduced. This chapter begins
with motivation of choosing Gaussian Process (GP) as the data model in section 2.1,
followed by introduction to the basics and properties of GP in section 2.2, including
the prior and posterior model. Some 1-D GP simulations are also presented.

2.1 Choosing data model

Let the underlying function of environmental field denoted as f(x), where x ∈ RD is
input variable. The task of learning the field is then equivalent to finding corresponding
f(x) value under given input x. To describe f(x), various data models are available
and can be classified into two groups, parametric and non-parametric model. In this
section, an introduction about parametric and non-parametric model is first given, then
the Bayesian model and its structure are introduced, which is a class of methods that
GP can be classified into.

2.1.1 Parametric and non-parametric model

Depending on whether the output value is directly associated with the input through
a set of predetermined parameters or not [14], the data model can be classified as
either a parametric or non-parametric model. Their different properties make them
suitable for different applications considering the amount of known prior information,
computational ability, data available, flexibility, etc.

In many cases, the parametric models contain sets of predefined parameters that
directly control the output values under given inputs. For example, a 1-D polynomial
model can be noted as f(x) =

∑
i=0,1,2,...

wix
i, where parameters {wi}i=0,1,2,... are called

weights. The weights directly control the output of the model at given input point.
The model is trained by finding the correct set of parameters for the given data, and
predictions can then be made by directly calculating the function value at desired input
point. Some other typical parametric models include Gaussian Mixture Models and
logistic regression. Since the entire model is mainly controlled by few parameters but
depends less on the data, a parametric model usually does not require a large dataset for
training, which brings a smaller computational intensity. Though strong assumption
gives parametric models the above advantages, it also constrains the flexibility of a
specific model being applied to other dataset. For example, the performance of linear
regression model drops drastically when applied to a dataset with quadratic pattern.

9

Furthermore, the exact parametric representation for some dataset could be hard to
find, either because of the convoluted underlying physics properties or lack of prior
knowledge.

On the contrary, non-parametric models do not assume predefined parameters or
even an explicit form for the exact underlying function, but rely more on the data
to construct a model. Under simple assumptions, non-parametric models automati-
cally explore patterns from the datasets. For example, K-Nearest Neighbors classifier
explores similarities among data points based on only one hyperparameter K and a
proper distance metric, and provide good classification results in nonlinear dataset. As
for GP, it is powerful in nonlinear regression to fit complicated signals that are hard to
be parametrically modeled. Another special advantage provided by GP regression is the
prediction confidence which can be applied in explore-exploit problem, e.g., maximizing
an unknown function with high evaluation cost [15]. Though non-parametric models
provides higher flexibility, their data-dependent nature brings higher computational
complexity, which is the main drawback for large scale application.

Figure 2.1: The real underlying function shown in black line is generated by f(x) = sin(3
1+2x2).

The red dots are 25 measurement points uniformly distributed across the input region [−2, 2],
for which the measurement noise follows N (0, 0.12). The non-parametric GP regressor (GPR)
is applied with the most commonly used squared exponential kernel described in Equation
(2.7) with hyperparameters {σf , l, σn} = {0.4, 0.4, 0.1}. The light green area indicates the
95% confidence interval given by the GPR. Parametric Gaussian Regression with 1,3 and 5
Gaussian components are respectively shown in red, purple and blue dotted lines.

Fig. 2.1 compares examples of parametric and non-parametric model, respectively
Gaussian fitting and Gaussian Process Regression (GPR). The non-parametric GPR
make prediction by giving posterior distribution, and only need a fixed number of 3
hyperparameters. Parametric Gaussian fitting tries to fit the data points to a summa-
tion of multiple weighted Gaussian function, for which the flexibility and number of
parameters both increase with the number of Gaussian components. The figure shows

10

that GPR fit the underlying function better than Gaussian fitting. In fact, Gaussian
fitting sometimes gives similar results as GPR, but requires careful selection of Gaus-
sian components number, which requires a good knowledge of the underlying function.
On the contrary, GPR requires less information and parameter tuning to reach a even
better results.

1. In this work, systems are assumed to be operated in fields with limited prior
knowledge, thus the exact underlying physics phenomenons can be hard to decide
or parametrized. Under limited prior assumptions, non-parametric models are
more flexible and powerful in learning the pattern of the field.

2. As a Bayesian modeling methods, GP builds a prior for the data model and makes
posterior prediction based on the data. From a probabilistic view, GP provides the
confidence level of prediction, which can be further utilized by MAS as reference
for exploring the field. Structure of GP as a Bayesian Model is introduced in
section 2.1.2.

3. Without any approximation, GP has high computational and space complexity,
respectively O(N3) and O(N2), where N is the number of data points. However,
under a distributed setting in MAS, the dataset naturally can be divided and
assigned to different agents, on which the number of data points to be processed
is less. By simply dividing the dataset to M agents, the computational and space
complexity can be respectively reduced to O(N

3

M2) and O(N
2

M
), which is already a

good start for further optimization.

2.1.2 Bayesian Modeling

Rather than assuming certain values for function, Bayesian modeling is a probabilistic
model that regards all the signals involved, either input or output, as random variables.
Bayesian modeling relates several parts of the systems based on Bayes’ theorem

p(A|B) =
p(B|A)p(A)

p(B)
, (2.1)

where A,B are the event or random variables, p(A|B) and p(B|A) are respectively
posterior and likelihoods of A regarding B. p(A) and p(B) are known as either marginal
or prior probability. In the application of non-parametric regression, the structure can
also be written with regards to the function, observations and hyperparameters [16]
given by

[Func.,Hyperpar.|Observ.] ∝ [Observ.|Func.,Hyperpar.]

[Func.|Hyperpar.] [Hyperpar.] ,
(2.2)

where Func., Hyperpar. and Observ. represent function, hyperparameters and obser-
vations respectively. For regression, a prior for function and hyperparameters is first
proposed, after which data points are used for calculating the posterior distribution.
The prior and posterior distribution of GP are discussed respectively in section 2.2.1
and 2.2.2. The hyperparameters can also be optimized to best fit the given datasets,
which will be discussed in detail in chapter 3.

11

2.2 Gaussian Process regression

Gaussian Process can be applied to solve either regression or classification problems,
both of which can be regarded as approximating function. In regression problem,
prior, likelihoods and posterior are all Gaussian, thus making GP for regression more
analytically tractable than that for classification, which involves non-Gaussian discrete
output [17, Ch.3]. In this section, GP for regression is introduced. The prior data
model of GP is first defined, then prediction based on posterior distribution is given.

2.2.1 Prior model

As a Bayesian model, GP assumes a probabilistic model for the underlying function,
such that the function is not modeled by a deterministic curve but a random process.
The definition of GP is given by the following [17, pp.13].

Definition 2.1 (Gaussian Process). A Gaussian Process is a stochastic process with
every entry following Gaussian distribution, of which any finite collection follows a
multi-variate Gaussian distribution.

When there is an infinite number of points covering the input region, GP can be used
to characterize the distribution of a continuous function, i.e., the underlying function
f(x). Similar to single Gaussian distributions, a GP can be characterized by mean
function µ(x) and covariance function k(xm,xn), and denoted as

f(x) ∼ GP (µ(x), k(xm,xn)) , (2.3)

where xm and xn indicate any pair of input variables. The prior model actually describes
an infinite number of possible functions with defined probabilistic properties. Plot (a)
in Fig. 2.3 shows some possible realizations of the same GP. The mean function µ(x) is
usually set to zero when knowledge of the underlying function is limited, but can also
be set to a specific function to incorporate more prior information. The kernel function
k(xm,xn) describes the correlation of a pair of input variables, for which various choices
make GP suitable for function with different properties.

To study GP with noisy dataset, a measurement model is first built as

y = f(x) + w(x), (2.4)

where w(x) ∼ N (0, σ2
n) is the additive white Gaussian noise (AWGN) with σn ∈ R

the noise variance. To train a GP, some measurements are taken in the unknown
field under the measurement model. A training set with N data pairs is denoted by
D = {xn, yn}Nn=1, where xn ∈ RD, yn ∈ R and D is the input dimension. The set of

input points is denoted as X = {xn}Nn=1, and the set of corresponding observed values is

y = {yn}Nn=1. Since the number of data points in real application is finite, a zero-mean
GP is realized through building a zero-mean multivariate normal distribution, which
can be denoted as

y ∼ N (0,K), (2.5)

12

where K is covariance matrix generated by

K =

k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

. . . · · ·
k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)

 . (2.6)

The kernel function describes the correlation between the random input variables. In
the environmental monitoring application, the signals are usually smooth and contin-
uous ones that are suitable for the application of squared exponential kernel, which is
also called Radial Basis Function (RBF) kernel. The kernel imposes a smooth relation-
ship such that two input variables are more correlated when they are closer to each
other. The RBF kernel is given by

k(xm,xn) = σ2
f exp

[
−1

2
· (xm − xn)

T Σ−1 (xm − xn)

]
+ σ2

nδ(xm,xn), (2.7)

where the prior variance σf controls the maximum covariance allowed. For data that
varies in a wide range in the output domain, σf should be large enough. Fig. 2.2a
and 2.2b compares some GP realizations with different σf . Characteristic lengths
Σ = diag (l21, l

2
2, · · · , l2D) are related to the effective range of the kernel. A larger ld

in dimension d makes a pair of input points stay correlated in a longer distances. Fig.
2.2a and 2.2c compares examples of GP with different l values. Collectively, prior
variance and characteristic lengths can be denoted by θ = {σf ,Σ}.

Figure 2.2: Comparison of RBF kernel with different hyperparameter set and Matérn kernel

RBF is actually a special case of a more generalized class of kernel called Matérn
kernels, which is argued as a better choice for modeling certain physic phenomenons
due to its finite differentiability [18, pp.70]. However, since RBF kernel has already

13

shown good results in some artificial and real dataset, methods in this work are still
developed and tested based on RBF kernel. Fig. 2.2d shows some realizations of GP
with Matérn kernel.

2.2.2 Posterior prediction

With the prior model established under hyperparameter set θ, finding the underlying
function is equivalent to finding posterior distribution

p(f∗|D,θ), (2.8)

where f∗ is the unknown function to be learned. In real application, the regression can
be down by recursively performing pointwise prediction of unknown value y∗ at x∗ in
the region of interest. According to GP definition, the new dataset D∗ = {D, {x∗, y∗}}
also follows a multi-variate Gaussian distribution, of which the covariance matrix is an
extended matrix based on K given by[

y
y∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
(2.9)

, where K∗ = Cov(y∗,X) and K∗∗ = Cov(y∗, y∗) are given by

K∗ = [k(x∗,x1), k(x∗,x2), · · · , k(x∗,xN)] ,

K∗∗ = k(x∗,x∗).
(2.10)

Under Bayesian model, prediction is down by finding the posterior distribution, i.e., the
conditional probability p(y∗|y,x,θ), or p(y∗|D) for simplicity. According to the defi-
nition of GP, this conditional probability also follows the Gaussian distribution [19,
pp.337-339], which is given by the posterior

p(y∗|D) ∼ N
(
K∗K

−1y,K∗∗ −K∗K
−1KT

∗
)
. (2.11)

With posterior known, the optimal estimation of y∗ would then be E {y∗|D}, which
is equivalent to an MMSE or MAP estimator. The predictor of posterior mean value
is denoted by µ(y∗|x∗,D), which can also be denoted as µ in short. Similarly, the
posterior variance is denoted by σ2(y∗|x∗,D), or σ2 in short. The range of variance is
σ2 ∈ [0, σ2

∗∗], where σ2
∗∗ is the prior variance. The variance can be used to indicate the

certainty of prediction, for which a minimum value means the most confident prediction,
and maximum value indicates totally uncertain prediction.

An example of applying GPR to a toy dataset with zero measurement noise is shown
in Fig. 2.3. Some possible process under the prior model without training dataset are
shown in Fig. 2.3a, which shows that most function outputs fall in the range of 95%
confidence interval. Fig. 2.3b shows the GPR results with 1 known data points. Since
the measurement is noiseless, the known point makes the best prediction, the green
line, at that point the value of known point. The corresponding prediction variance
around the known point is very low, which means high confidence. As predicted points
move outside the characteristic length, the best estimation and variance fall back to the
prior distribution since no observation is available. Fig. 2.3c and 2.3d shows the GPR

14

Figure 2.3: 1-D GPR with increasing number of training points under hyperparameter set
θ = {σf , l} = {1, 0.5}

.

results with more known points added into the training dataset. Similarly, the GPR
is more confidence about the prediction at places with known points than the regions
without. It should be noticed that, though the green line is the optimal function,
GPR actually also allows the possibility of other functions, shown in gray lines. With
more and more known points added to the region of interest, the prediction confidence
would be increasingly high, revealing the fact that GPR is a data-dependent Machine
Learning method.

2.3 Conclusion

In this chapter, the motivation of applying Gaussian Process for distributed environ-
mental monitoring and basics of GP are introduced.

• Motivation: Advantage and disadvantage (section 2.1.1)

– A GP is a non-parametric model that has the advantage of high robust-
ness, flexibility and low reliance on prior knowledge, which is suitable for
the unknown environmental field monitoring task.

– GP has the disadvantage of high computational complexity because of its
data-dependent nature. This drawback can be alleviate through distribution
in MAS.

• Gaussian Process regression:

– GPR is based on Bayesian Modelling, which constructs the data model as a
prior model (i.e., GP), and predicts through posterior model based on

15

observations (Equation (2.2), Figure 2.3).

– The high computational complexity mainly comes from large matrix in-
version. (Equation (2.11))

– The performance of GP on different datasets is affected by hyperparame-
ters (Figure 2.2), which need to be optimized before prediction.

In the next chapter, GP hyperparameter optimization and its distribution are in-
troduced.

16

Distributed GP
Hyperparameter Optimization 3
A

lthough GPR is claimed to be a non-parametric method, this is only true for
the data model, which means there is no obvious parameter controlling the data

model, e.g., weights for linear model. Hyperparameters still exists in kernel (e.g., the
characteristic scalar, largest variance, etc.) , and need to be optimized in training stage
of GPR. A proper setting of hyperparameters can largely improve the performance of
GPR, while a bad one may result in large error, so careful tuning is important for a
good GPR. Finding the best set of hyperparameters for the given dataset is termed as
hyperparameter optimization (or model selection).

In section 3.1, some centralized GP hyperparameter optimization algorithms are
introduced, including cross-validation and Bayesian model selection. The Bayesian
model selection is chosen as the method to be distributed, for which some existing
methods are introduced in section 3.2. Some improved algorithms are explained in
section 3.3. Finally, simulation results of several selected methods are compared and
discussed in section 3.4.

3.1 Centralized GP hyperparameter optimization

3.1.1 Motivation

As shown in Figure 2.2, the characteristics of GP realizations vary with the change
of hyperparameters set or kernel function. From the view of Bayesian Modeling, the
hyperparameters affect the prior model for the underlying function, which eventually
influence the posterior distribution and the prediction performance. Figure 3.1a shows
an example of posterior distribution being affected by the hyperparameters.

The hyperparameters optimization methods tries to find the best set of hyperpa-
rameters for the given datasets, which, equivalently speaking, finds the most possible
prior data model. Two centralized methods are introduced in [17, Ch. 5], i.e., cross-
validation (CV) and Bayesian model selection (BMS). In this section, these methods
are briefly introduced, and reasons of choosing BMS is also explained.

3.1.2 Cross-validation

Cross-validation is a widely used methods for evaluating the performance of machine
learning algorithms. In the most simple Holdout case, the global dataset D is divided
into two non-overlapping subsets, including a training set DT = {XT ,yT} and a vali-
dation set DV = {XV ,yV }. In the example of GP hyperparameter optimization, a GP
model is first trained based on DT with covariance matrix KT (θ), after which values
at input points XV are predicted as ŷV . A cost function HCV (yV , ŷV) is then applied
to measure the differences between the validation output values and predictive means,

17

-2 -1 0 1 2

x

-0.5

0

0.5

1

1.5

2

2.5

3

y

sample points l=1.49 l=0.4

(a) Regressions under different l values

(1.49,1.21)

10
0

10
1

10
0

1.1

1.2

1.3

1.4

1.5

(b) Scaled negative Log-likelihood

Figure 3.1: (a). The figure shows two different regression results under two hyperparameter
sets with different characteristic lengths l. (b). The figure shows the contour lines of the
scaled negative Log-likelihood based on the dataset shown in the left figure. The values of the
contours are indicated by the colorbar. The triangle indicates the lowest points among the
examined hyperparameters sets, and corresponds to the optimal sets for the given dataset.

for which widely-used choices include squared error [20] and predictive log probabil-
ity [17, pp. 116]. To find the best hyperparameter set, the cost function is minimized
with respect to θ.

In a more robust K-fold CV case, the global dataset is divided into K non-
overlapping subsets {Xk,yk}Kk=1. For the k-th iteration of K-fold CV, the validation
set is chosen as DV,k = {XV,k,yV,k}, and corresponding training set DT,k = D\DV,k,
which is the complementary set of DV,k with respect to D. With predictive means ŷV,k,
the k-th cost function is HCV,k (yV,k, ŷV,k). The global cost function is formulated as

HCV (yV , ŷV) = 1
K

K∑
k=1

HCV,k (yV,k, ŷV,k) and minimized to find the optimal θ. When

K = N , the special case of K-fold CV is called Leave-one-out cross-validation (LOO-
CV), which brings more robust solution in the cost of higher computational demands.

3.1.3 Bayesian model selection

A hierarchical structure is used for optimizing regression models in [17, Sec. 5.2].
The model describes a probabilistic model for parameter, hyperparameter and model
selection with three levels of posterior, likelihood and prior. Model selection based on
this structure is called Bayesian model selection. For GP hyperparameter estimation
with type of kernel known, the posterior over hyperparameter is

p (θ|y,X) =
p (y|X,θ) p (θ)

p (y|X)
, (3.1)

where p (θ) is the hyper-prior distribution, θ is the hyperparameter set, X contains the
input points, and y contains the output values. The normalizing constant is given by

p (y|X) =

∫
p (y|θ) p (θ) dθ. (3.2)

18

To find the best set of hyperparameters given training data, a MAP estimator can be
applied to maximize p (θ|y,X). Suppose that we do not know prior information about
the distribution of θ, the problem can be equivalently solved by an ML estimator
maximizing p (y|X,θ).

Under GP model, marginal likelihood is given by

p (y|X,θ) = (2π)−
n
2 · |K(θ)|−

1
2 · exp

(
−1

2
yTK−1 (θ)y

)
, (3.3)

where position (i, j) of K (θ) is calculated by Equation (2.7) under a given set of
θ = {σf ,Σ}. The log-likelihood is then given by log p (y|X,θ) = −1

2
yTK−1 (θ)y −

1
2
log |K(θ)|− n

2
log 2π. Then, the problem can be equivalently formulated as minimizing

the negative log-marginal likelihood (NLML) l(θ) as follow

P0 : min
θ

l(θ) = yTK−1 (θ)y + log |K (θ)| , (3.4)

where the −n
2
log 2π term is ignored since an additive constant does not affects the

optimization results.
In Figure 3.1b, a scaled version of NLML for dataset shown in Figure 3.1a is visu-

alized through contour lines. Gradient based optimizer can be applied to solve both
CV and BMS. Both methods involves the calculation of K−1 (θ) and gradients for all
the hyperparameters. The computational complexity for K−1 (θ) is O (N3), while com-
puting derivatives are respectively O (N3) and O (N2) for LOO-CV and BMS, which
indicates that BMS performs slightly better than CV in terms of computational com-
plexity. The CV is argued to have more robust performance under possibly wrong
assumption of data model since it directly gives an estimation for the predictive proba-
bility [17, pp. 118]. However, it is assumed in this work that the prior data model has
been correctly chosen, so the extra robustness provided by CV in model misspecifica-
tion is unnecessary. Thus, the BMS is preferred for further distribution for its relatively
low computational complexity.

3.2 Distributed hyperparameter optimization

Bayesian model selection method is applied to optimize the hyperparameter set, which
is equivalent to solving problem P0 in Equation (3.4). First step of distributing the
problem is modify the cost function to a separable form.

Distributed problem formulation The distributed problem is studied with MAS and
datasets setting described in section 1.3.2.

Suppose that the NLML can be independently distributed as M local likelihood
functions {l1 (θ) , l2 (θ) , · · · , lM (θ)}, where lm (θ) = yT

mKm (θ)−1 ym + log |Km (θ)|.
lm (θ) at agent m is only related to dataset m, i.e. {Xm,ym}, based on which the local
covariance matrix Km (θ) is calculated. Also, we assume that the whole network share
a same set of hyperparameters. Under these assumptions, P0 can be approximated by

19

minimizing the summation of M local likelihood functions

P1 : min
θ

M∑
m=1

lm (θ) . (3.5)

Several existing methods can be applied to solve the problem above. The most sim-
ple solution for unconstrained minimization problem is näıve gradient descent. After
further distribution, problem P1 can be reformulated as a linearly constrained optimiza-
tion problem, for which the primal dual method can be applied. Since the cost function
is non-convex, the method of multipliers is applied as a special case of proximal point
method [2, pp. 23], which increase the robustness for non-convex optimization [21].
Based on alternated direction method of multipliers, a proximal update step is applied
to replace exact update [1]. These methods are introduced in detail in the following
paragraphs.

3.2.1 Näıve Gradient Descent (nGD) [1]

A centralized gradient descent [22, Cha.9] can be performed by iterating

θt+1 = θt − µ · ∇l(θ)|θ=θt , (3.6)

where µ is step size, and t indicates the iteration number. In the distributed setting,
gradient ∇l(θ) is unknown to a single agent, but can be approximated as ∇l(θ) =
M∑

m=1

∇lm(θ), where ∇lm(θ) only depends on data at agent m. Then, a star topology

can be applied to the network, in which the agent in the center is called central agent
and the rest are worker agents.

For each iteration, the central agent collects gradients ∇lm(θ) from worker agents,
updates θ according to Equation (3.6), and sends updated θ back. After receiving the
updated θ, worker agents calculate ∇lm(θ) based on the new hyperparameters and
start next iteration. At agent m, ∇lm(θ) is

∇lm (θ) =
1

2
yT
mKm (θ)−1 ∂Km (θ)

∂θ
K−1

m (θ)ym − 1

2
tr

(
K−1

m (θ)
∂Km (θ)

∂θ

)
=

1

2
tr

((
K−1

m (θ)ymy
T
mK

−T
m (θ)−K−1

m (θ)
) ∂Km (θ)

∂θ

)
,

(3.7)

where ∂Km(θ)
∂θ

=
[
∂Km(θ)

∂σf
, ∂Km(θ)

∂l1
, ∂Km(θ)

∂l2
, · · · , ∂Km(θ)

∂lD

]T
. With some algebra, the kernel

partial derivatives towards σf and {ld}Dd=1, where D is the input dimension, are given
by

∂Km (θ)

∂σf

=
2

σf

·Km (θ)

∂Km (θ)

∂ld
= σ2

f · dist
(
Xm,[d,]

)
⊙Km (θ) ,

(3.8)

20

where dist (X) means calculating the covariance matrix regarding all the entries of
matrix X. X[d,] contains only the dth dimension of all the entries, and ⊙ represents
the pointwise multiplication.

Distributed nGD is described in Algorithm 1, where Tmax is a predefined largest
iteration number.

Algorithm 1: nGD for distributed GP hyperparameter optimization [1]

Input: {lm(·)}Mm=1, G1

Output: θ
1: Initialize: θ0, ϵ > 0, t, Tmax, µ > 0
2: for t={1, 2, · · · , Tmax} do
3: for m = {1, 2, · · · ,M} do
4: ∇lm(θt)
5: end
6: for central agent do
7: collects all ∇lm(θt) from worker agents.

8: ∇l(θt) =
M∑

m=1
∇lm(θt). /*Calculate gradient*/

9: θt+1 = θt − µ · ∇l(θt). /*Gradient descent*/

10: Broadcast θt+1 to all worker agents.

11: end
12: if

∥∥θt+1 − θt
∥∥
2
< ϵ then

13: Stop iteration.
14: end
15: t := t+ 1

16: end

3.2.2 Alternated direction method of multipliers (ADMM) [2]

In this section, the procedure of developing ADMM for GP hyperparameter optimiza-
tion problem is shown. The first method is primal-dual method, which is a basic method
of solving optimization problems. Considering the con-convex target function, Methods
of Multipliers is then introduced. Finally, ADMM is introduced for faster convergence.

Primal-dual method [22] As shown in Equation (3.5), the likelihood function is
assumed to be consisted of several parts distributed across the network. Replace θ
with θm for agent m, lm (θm) is now a local function which does not directly depend on
any global variable. To ensure that all agents share the same set of hyperparameters,
constraints are added such that θm = z, where z is a global variable. Problem P1 can
be reformulated as

P2 : min
{θm}Mm=1,z

M∑
m=1

lm (θm)

s.t. θm = z, m = 1, 2, . . . ,M,

(3.9)

21

which is a constrained optimization problem.
P2 minimizes a factorizable target function that can be independently distributed to

multiple agents, and simultaneously levies constraints such that specific local variables
should finally converge to the same value as their counterparts on other agents. Opti-
mization problems like P2 are called consensus optimization problem. When the cost
function is convex, the problem P2 can be solved by primal-dual method by constructing
dual problem from Lagrangian given by

L
(
{θm}Mm=1 , z, {λm}Mm=1

)
=

M∑
m=1

(lm (θm) + ⟨λm,θm − z⟩) , (3.10)

which, under the knowledge of optimal dual variable values, can be minimized to obtain
optimal hyperparameters. Since the dual problem is always concave [22, sec. 5.1.2], the

dual ascent methods can be applied to obtain the optimal {λ∗
m}

M
m=1. The dual gradient

ascent iteration of problem P2 at time instance t is given by

λt+1
m = λt

m + µ (θm − z) , (3.11)

where µ is the gradient ascent step size. The primal-dual method apply Lagrangian
minimization (primal update) and dual ascent iteratively until convergence to obtain
the optimal {θm}Mm=1.

MM [23] Considering that the lm(θm) are non-convex functions, the classical primal-
dual methods are expected to be not robust. Methods of Multipliers (MM) can be
introduced to achieve higher robustness. MM is developed by applying proximal point
methods in the optimization of Lagrangian [23], where the new Lagrangian equation is
called augmented Lagrangian. For MM, the augmented Lagrangian of P2 is given by

L
(
{θm}Mm=1 , z, {λm}Mm=1

)
=

M∑
m=1

(
lm (θm) + ⟨λm,θm − z⟩+ ρ

2
∥θm − z∥22

)
, (3.12)

where ρ ∈ R+ controls the weight of the quadratic term. The update iterations of MM
at time instance t is given by(

zt+1,
{
θt+1
m

}M
m=1

)
= argminL

({
θt
m

}M
m=1

, zt,
{
λt

m

}M
m=1

)
(3.13a)

λt+1
m = λt

m + ρ
(
θt+1
m − zt+1

)
, (3.13b)

Although MM provides higher robustness, performing exact joint minimization in Equa-
tion (3.13a) for each iteration is unnecessary and time-consuming.

ADMM [2] By restricting the iteration number of joint estimation to be 1, P2 can
be solved by consensus ADMM. Update equation of ADMM at iteration t is given by

zt+1 = argmin
z

(
M∑

m=1

−
〈
λt

m, z
〉
+

ρ

2

∥∥θt
m − z

∥∥2
2

)
(3.14a)

θt+1
m = argmin

θm

(
lm (θm) +

〈
λt

m,θm

〉
+

ρ

2

∥∥θm − zt+1
∥∥2
2

)
(3.14b)

λt+1
m = λt

m + ρ
(
θt+1
m − zt+1

)
, (3.14c)

22

where z update is equivalent to zt+1 = 1
M

M∑
m=1

(
θt
m + 1

ρ
λt

m

)
. More details of performing

ADMM are given in Algorithm 2.

Algorithm 2: ADMM for distributed GP hyperparameter optimization [2]

Input: {lm(·)}Mm=1, G
Output: {θm}Mm=1

1: Initialize: {θ0
m}Mm=1, z

0 = 1, {λ0
m}Mm=1, Tmax, ϵ > 0, ρ

2: for t = {1, 2, · · · , Tmax} do
3: for central agent do

4: zt+1 = 1
M

M∑
m=1

(
θt
m + 1

ρλ
t
m

)
/*Centralized primal z update*/

5: Broadcast zt+1

6: end
7: for worker agents m = {1, 2, · · · ,M} do

8: θt+1
m = argmin

θ
lm (θ) +

〈
λt
m,θm

〉
+ ρ

2

∥∥θ − zt+1
∥∥2
2

/*Primal θ update by

nGD*/

9: λt+1
m = λt

m + ρ
(
θt+1
m − zt+1

)
/*Dual update*/

10: Send θt+1
m and λt+1

m to central agent

11: end
12: if

∥∥θt+1 − θt
∥∥
2
< ϵ then

13: Stop iteration.
14: end

15: end

Fully-distributed ADMM (ADMMfd) To fully distribute the algorithm over net-
work without central agent, P2 can be modified as

P3 : min
{θm}Mm=1,{zmn}(m,n)∈E

M∑
m=1

lm (θm)

s.t. θm = zmn, ∀(m,n) ∈ E ,
(3.15)

where zmn is variable associated with edge between agents m and n, and there is
zmn = znm. Also, recall that E represents the edges of MAS. Now problem P3 is an
edge-based constrained problem which only involves local variables that are directly
associated with a single agent and its neighbors. The augmented Lagrangian now
becomes

L
(
{θm}Mm=1 , {zmn,λmn}(m,n)∈E

)
=

M∑
m=1

lm (θm) +
∑

n∈N (m)

(
⟨λmn,θm − zmn⟩+

ρ

2
∥θm − zmn∥22

) ,
(3.16)

23

where λmn are dual variables associated with edge (m,n) stored on agent m. The
corresponding update iterations of fully-distributed ADMM is given by

zt+1
mn =

1

2

(
ρ−1

(
λt

mn + λt
nm

)
+ θt

m + θt
n

)
(3.17a)

θt+1
m = argmin

θm

lm (θm) +
∑

n∈N (m)

(〈
λt

mn,θm

〉
+

ρ

2

∥∥θm − zt+1
mn

∥∥2
2

) (3.17b)

λt+1
mn = λt

mn + ρ
(
θt+1
m − zt+1

mn

)
. (3.17c)

in which Equation (3.17b) requires exact update through nGD.

3.2.3 Proximal ADMM (pxADMM)

It can be noticed from Equation (3.3) and (3.7) that l(θ) is a function about θ that
the close form minimum point is hard to find, which results in the time-consuming
minimization problems in Equation (3.14b) and (3.17b).

The proximal ADMM (pxADMM) adapts the idea that an accurate update of θm

is unnecessary for each iteration, and can be approximately updated to reduce compu-
tational complexity. First order approximation to lm (θ) around point z can be applied
as

lm (θm) ≈ lm (z) +∇lm (z) (θm − z) . (3.18)

Based on Equation (3.18), primal update of θm is

θt+1
m = zt+1 − 1

ρ+ L

(
∇lm(z

t+1) + λt
m

)
. (3.19)

To fit the algorithm into network without star topology, the centralized z update should
be distributed. Introduce new variables zm,m ∈ {1, 2, · · · ,M} for all agents. Step 4
in Algorithm 2 can be replaced by a local consensus that only update zm based on
zn,∀n ∈ N (m).

3.3 Proposed fully-distributed hyperparameter optimization

3.3.1 Fully-distributed proximal ADMM (pxADMMfd)

In this section, two fully-distributed versions of pxADMM are introduced to solve prob-
lem P3. The first method, named pxADMMfd, is developed based on ADMMfd, of which
the convergence have been proved [24]. The second method is adapted based on both
ADMMfd and pxADMM methods. Though the convergence of the method has not been
strictly proven, the experimental results shows faster convergence compared to the first
method.

pxADMMfd based on ADMMfd The pxADMMfd can be developed based on
ADMMfd through approximating Equation (3.17b). To approximate the target func-
tion as shown in Equation 3.18, a center point has to be chosen, around which the

24

function is approximated. Since a global z does not exists for fully-distributed setting,
simply choosing z as Equation (3.18) is not plausible.

An alternative choice is using the θt
m as the point. Under this setting, the approxi-

mation is given by

lm (θm) ≈ lm
(
θt
m

)
+∇lm

(
θt
m

) (
θm − θt

m

)
, (3.20)

which gives the θm update as

θt+1
m =

1

L+ ρ |N (m)|

 ∑
n∈N (m)

(ρzmn − λmn) + Lθt
m −∇lm

(
θt
m

) , (3.21)

where L ∈ R+ is a constant that satisfies ∥∇lm (θm)−∇lm (θ′
m) ∥ ≤ L∥θm−θ′

m∥ for all
θm and θ′

m. With Equation 3.17b from fully distributed ADMM replaced by Equation
3.21, the pxADMM is extended to the fully-distributed pxADMMfd method. The fully
distributed proximal ADMM algorithm is described in Algorithm 3.

Algorithm 3: pxADMMfd for fully distributed GP hyperparameter optimization

Input: {lm(·)}Mm=1, G
Output: {θm}Mm=1

1: Initialize: {θ0
m}Mm=1, {z0m}Mm=1, {λ0

m}Mm=1, Tmax, ϵ > 0, ρ, L
2: for iteration t = {1, 2, · · · , Tmax} do
3: for agent m = {1, 2, · · · ,M} do
4: for n ∈ N (m), everywhere do
5: zt+1

mn = 1
2

(
ρ−1

(
λt
mn + λt

nm

)
+ θt

m + θt
n

)
/*Primal zm update*/

6: end

7: θt+1
m = 1

L+ρ|N (m)|

(∑
n∈N (m)

(ρzmn − λmn) + Lθt
m −∇lm

(
θt
m

))
/*Primal θm

update*/

8: for n ∈ N (m) do
9: λt+1

mn = λt
mn + ρ

(
θt+1
m − zt+1

mn

)
/*Dual update*/

10: Send θt+1
m ,λt+1

mn , z
t+1
mn to N (m)

11: end

12: end
13: if

∥∥θt+1
m − θt

m

∥∥
2
< ϵ,∀m ∈ {1, 2, · · · ,M} then

14: Stop iteration.
15: end

16: end

pxADMM∗
fd Considering the problem that a global z variable does not exist for ap-

proximation, another intuitive solution is introducing an auxiliary variable in each agent
m as ζm, which is used as the center for approximation.

25

Algorithm 4: pxADMM∗
fd for fully distributed GP hyperparameter optimization

Input: {lm(·)}Mm=1, G
Output: {θm}Mm=1

1: Initialize: {θ0
m}Mm=1, {z0m}Mm=1, {λ0

m}Mm=1, Tmax, ϵ > 0, ρ, L
2: for iteration t = {1, 2, · · · , Tmax} do
3: for agent m = {1, 2, · · · ,M} do
4: for n ∈ N (m), everywhere do
5: zt+1

mn = 1
2

(
ρ−1

(
λt
mn + λt

nm

)
+ θt

m + θt
n

)
/*Primal zm update*/

6: end

7: ζt+1
m = 1

1+|N (m)|

(
ζtm +

∑
n∈N (m)

zt+1
mn

)
/*Auxiliary ζm update*/

8: θt+1
m = ζt+1 − 1

ρ+L

(
∇lm(ζt+1) +Λt

m

)
/*Primal θm update*/

9: for n ∈ N (m), everywhere do
10: λt+1

mn = λt
mn + ρ

(
θt+1
m − zt+1

mn

)
/*Dual update*/

11: Send θt+1
m ,λt+1

mn , z
t+1
mn to N (m)

12: end

13: Λt+1
m = 1

1+|N (m)|

(
Λt

m + ρ
(
θt+1
m − ζt+1

m

)
+

∑
n∈N (m)

λt+1
mn

)
/*Auxiliary Λm

update*/

14: end
15: if

∥∥θt+1
m − θt

m

∥∥
2
< ϵ,∀m ∈ {1, 2, · · · ,M} then

16: Stop iteration.
17: end

18: end

To combine the information from neighbor nodes, the following method of construct-
ing and updating ζm is proposed that

ζt+1
m =

1

1 + |N (m)|

ζt
m +

∑
n∈N (m)

zt+1
mn

 , (3.22)

which is equivalently a special case of distributed consensus filter shown in Equation
(4.19). Similarly, auxiliary variable Λm is proposed to combine λmn. The Λm is main-
tained as

Λt+1
m =

1

1 + |N (m)|

Λt
m + ρ

(
θt+1
m − ζt+1

m

)
+

∑
n∈N (m)

λt+1
mn

 , (3.23)

which can also be regarded as a special case based on Equation (4.19).
The update of θm is then adapted based on Equation (3.19) as

θt+1
m = ζt+1 − 1

ρ+ L

(
∇lm(ζ

t+1) +Λt
m

)
. (3.24)

26

Details of the update iterations of pxADMM∗
fd are shown in Algorithm 4. In Section

3.4, it will be shown from the simulation results that the pxADMM∗
fd has a better

performance than pxADMMfd in term of iterations needed for convergence.

3.3.2 Asynchronous proximal ADMM (pxADMMasync)

With synchronous algorithm, clock synchronization across the network is required,
which is an extra burden for the system, especially in large network or time varying
network. Additionally, the agents may varies in their sampling behavior, thus maintain
datasets of different size. Since the optimization includes calculation of matrix gradient
with O(N2) complexity, a small difference may be amplified in terms of computation
time for each iteration. If the whole network has to wait for the slowest agent, a lot of
time would be wasted. An asynchronous algorithm can alleviate the above issues.

An early version of asynchronous ADMM is proposed by Zhang and Kwok [25].
The algorithm proposed requires only partial synchronization instead of a complete one
for each iteration. Two tricks are introduced to keep balance between asynchronous
behavior and slow agents update. A star topology is required for the proposed method.
Wei and Ozdaglar propose another strategy in [26]. For each iteration, they consider
that only part of the constraints and cost functions are involved in the update, while
the others are ignored. A similar algorithm is proposed by Iutzeler et al. [27], in which
only the data from activated subset is used for update.

In general, asynchronous ADMM can be concluded as partially activated ADMM
based on different strategy. If an agent is activated, then it is not performing update of
primal or dual variables, but is able to share updates to neighbors. It should be noticed
that the agents are assumed to always be able to receive and store information from
neighbors. For iteration t in asynchronous ADMM, a subset At of the entire graph is
activated. Different asynchronous ADMM algorithms meanly differs in the method of
activating the subset. Before introducing fully-distributed asynchronous optimization,
At

m is introduced to denote the activated neighbors of agent m in iteration t. The
inactivated neighbors are denoted by the complementary set [At

m]
C = N (m)\At

m.
Two strategies are applied to develop asynchronous algorithm, which are known as

partial barrier and bounded delay [25].
The partial barrier strategy tries to reduce the waiting time of a fast agent by

specifying that an agent only has to wait for a minimum number of S >= 1 updates
from neighbors. With S = 1, the algorithm is equivalent to an edge-based asynchronous
algorithm. The maximum value of S on agent m is |N (m)|, which is equivalent to
synchronous algorithm.

In contrary to partial barrier that introduce asynchronous behavior, the bounded
delay strategy ensures a certain level of synchronous over the general procedure of
convergence. It restricts the asynchronous behavior by forcing a pair of agents to
communicate with each other at least one time after τ > 1 iterations. The partial
barrier assures that every links can be activated occasionally so that information can
be exchanged through out the convergence. A special case in which the partial barrier
is especially useful is when an agent only has one edge. The agent with only one edge
relies heavily on that edge to join the consensus algorithm in the rest of the network. If

27

the edge is seldom activated, the agent is almost sure to converge to a value nonidentical
to the rest of the network. Details of the algorithm are shown in Algorithm 5.

Algorithm 5: Asynchronous proximal ADMM for fully distributed GP hyperpa-
rameter optimization

Input: {lm(·)}Mm=1, G
Output: {θm}Mm=1

1: Initialize:
{
θ0
m

}M
m=1

, {z0m}Mm=1, {λ0
m}Mm=1, Tmax, ρ, L

2: stop criteria ϵ > 0
3: for iteration t = {1, 2, · · · , Tmax} do
4: Select a subset At of nodes
5: for agent m ∈ At do
6: At

m = N (m) ∩ At /*Decide activated neighborhoos*/

7: get
[
At

m

]C
/*Decide inactivate neighborhood*/

8: Denote the outdated data from agent n̄ ∈
[
At

m

]C
as
{
θt
n̄,old,λ

t
n̄m,old

}
9: for n ∈ At

m do
10: zt+1

mn = 1
2

(
ρ−1

(
λt
mn + λt

nm

)
+ θt

m + θt
n

)
/*Primal zmn update for

active agents*/

11: end

12: for n̄ ∈
[
At

m

]C
do

13: zt+1
mn̄ = 1

2

(
ρ−1

(
λt
mn̄ + λt

n̄m,old

)
+ θt

m + θt
n̄,old

)
/*Primal zmn̄ update

for inactive agents*/

14: end
15: θt+1

m =

1
L+ρ|N (m)|

(∑
n∈N (m)

(ρzmn − λmn) +
∑

n̄∈N (m)

(ρzmn̄ − λmn̄) + Lθt
m −∇lm

(
θt
m

))
/*Primal θm update*/

16: for n ∈ At
m do

17: λt+1
mn = λt

mn + ρ
(
θt+1
m − zt+1

mn

)
/*Dual update for active agents*/

18: Send θt+1
m ,λt+1

mn , z
t+1
mn to At

m

19: end

20: for n̄ ∈
[
At

m

]C
do

21: λt+1
mn̄ = λt

mn̄ + ρ
(
θt+1
m − zt+1

mn̄

)
/*Dual update for inactive agents*/

22: Send θt+1
m ,λt+1

mn̄ , z
t+1
mn̄ to

[
At

m

]C
23: end

24: end
25: if

∥∥θt+1
m − θt

m

∥∥
2
< ϵ,∀m ∈ {1, 2, · · · ,M} then

26: Stop iteration.
27: end

28: end

28

3.4 Simulation&Discussion

3.4.1 Artificial dataset

The following simulation results are carried out in the 2D GP fields randomly generated
based on hyperparameter set θ = {σf = 5, l1 = 1, l2 = 1} in the range [−5, 5]× [−5, 5].

The sampling points are sampled under an zero-mean AWGN with σn =
√
0.1.

There are in total M = 8 agents randomly generated inside the field. Each agent
owns a local dataset of size Nm = 70 that is randomly divided from the entire dataset.
The stop criteria ϵ = 1× 10−6. Figure 3.2 shows MAS topology and underlying scalar
field.

The proposed hyperparameter optimization algorithms, i.e., pxADMMfd,
pxADMM∗

fd and their asynchronous versions, will be simulated with the aforemen-
tioned setting and compared with existing algorithms, i.e., nGD, ADMM, ADMMfd

and pxADMM. It should be noticed that, for simplicity, the results of fully-distributed
methods in the figures are plotted by only the results from agent with code 1 in the
network.

(a) Topology, sampling points and background (b) Topology with agent codes

Figure 3.2: (a). The figure shows MAS and underlying scalar field generated by 2D stationary
GP. The field is shown as background with magnitudes indicated by color according to the
colorbar. The red dots shows the positions of agents. The communication links are plotted as
red lines connecting pairs of agents. The black asterisks scattered around the field shows the
position of sampling points. (b). The figure shows the topology structure of MAS, in which
the numbers indicate the code of agents from 1 to M, i.e., 8.

nGD, ADMM, ADMMfd, pxADMM The convergence behavior of nGD, ADMM
and ADMMfd are respectively shown in Figure A.1, A.2 and A.3 in Appendix A.1. For
nGD, the step size is µ = 1×10−5, and the maximum iteration number is Tmax = 11000.
For ADMM, the maximum iteration is Tmax = 1500, and the maximum iteration num-
ber for solving local θm minimization problem is Tmax,inner = 50. The hyperparameter
optimization results are listed in Table 3.2.

29

Synchronous pxADMMfd and pxADMM∗
fd The parameter values and initialization

of variables are shown in Table 3.1.

Table 3.1: Parameters & Variables of pxADMM

Parameters & variables Values Only used in

ρ 8× 70× 0.3

L 8× 70× 0.7

Tmax 11000

θ0
m = {σ0

f , l
0, σ0

n} {3, [2, 2]T , 1}
ϵ 1× 10−5

λ0
m [1, 1, 1, 1]T

z0m θ0
m pxADMM

z0mn, z
0
nm,λ0

mn,λ
0
nm [0, 0, 0, 0]T pxADMMfd, pxADMM∗

fd

Sm min(3,|N (m)|) pxADMMasync, pxADMM∗
async

τ 10 pxADMMasync, pxADMM∗
async

The simulation results of centralized pxADMM, pxADMMfd and pxADMM∗
fd are

respectively shown in Figure A.4, A.5 and A.6 in Appendix A.1. The hyperparameter
optimization results are listed in Table 3.2.

Table 3.2: Results of hyperparameters optimization

Methods σf l σn

nGD 4.2320 [0.9871;0.9509] 0.3690

ADMM 4.2652 [0.9901;0.9541] 0.3691

ADMMfd 4.1996 [0.9842;0.9478] 0.3689

pxADMM 4.2650 [0.9901;0.9541] 0.3691

pxADMMfd 4.2572 [0.9886;0.9462] 0.3822

pxADMM∗
fd 4.2625 [0.9898;0.9538] 0.3691

pxADMMasync 4.2574 [0.9886;0.9462] 0.3822

pxADMM∗
async 4.2631 [0.9899,0.9539] 0.3691

Based on the results in the figures and table, the proposed synchronized fully-
distributed pxADMM methods pxADMMfd and pxADMM∗

fd converge to the expected
hyperparameters in similar behaviors as the centralized pxADMM.

As shown in Figure A.5, the convergence of pxADMMfd is reached around 1.6× 103

iterations. The number of iterations needed is larger than that of pxADMM, which is
expected considering that the fully-distributed version does not have a global z variable
that plays a strong role in helping agents reach consensus. Since the auxiliary variables
zmn are spread on the edges across the network, more iterations are needed so that an
agent can be influenced from the agent on the far side of the network.

Results in Figure A.6 shows that pxADMM∗
fd converges after approximately 6× 102

30

iterations, which is much less compared to the pxADMMfd. The smaller number of it-
erations needed makes the method more acceptable than the pxADMMfd and ADMMfd

in MAS, where the communication burden is rather high.

The fast convergence of pxADMM∗
fd probably comes from the auxiliary variables

introduced in Equation 3.22 and 3.23. As explained in Section 3.3.1, by maintaining
auxiliary variables ζm and Λm, a DTCF process is equivalently applied that calculate
the average of respectively zmn and λmn variables, which can possibly pull the network
further to consensus. Though the current results shows convergence, future works on
mathematical analysis can be down to prove the convergence.

It can be noticed that, for all the methods examined, the signal variance σf converge
to values around 4 instead of the real value 5. To the best of our knowledge, there is
currently no analytical reason for this. Possible reason comes from the randomness of
the datasets that the range of the generated data can not reflect the real variance.

To show that the aforementioned discrepancy between converged value and real
value does not come from the error in simulation, the scaled NLML values under dif-
ferent setting of σf and l1 are shown in Figure 3.3. The NLML shown in Figure 3.3b
shows the NLML calculated by summation of local NLMLs, in which the optimal σf is
close to the converged values of the examined methods.

The Figure 3.3a shows the scaled NLML values calculated based on the global
dataset. The ranges of the examined σf and l1 values are the same as those in Figure
3.3b, but the contours are obviously different. Also, the optimal σf value is different
from that shown in Figure 3.3b.

(a) Based on NLML of global dataset (b) Based on summation of NLML of local
datasets

Figure 3.3: The figures shows the NLML for the given datasets. The NLML values are scaled
for better visualization. The axes are in log scale. The black triangle shows the minimum
points. (a) shows the scaled NLML directly calculated based on the entire global dataset,
that is l(θ). The empty areas at the upper right and lower left corners are NLML values with
infinite log(det(K)) values, which is a phenomenon that happens when the dataset is large
and the hyperparameters examined are far from the real values. (b) shows the scaled NLML

calculated based on the summation of the NLML of local datasets, that is
M∑

m=1
lm(θ).

31

Another experimental results on the σf is that the convergence is more stable with
a smaller than real initial value than a large initial value. When the optimization of
σf starts from large value, e.g., 10 when the real value is 5, the convergence results
frequently change among many values. Also, the σf converges more slowly than the
other hyperparameters. A possible reason for the above phenomenons is that the σf

indicates the ability of GP for capturing the signal changes. When the σf is larger than
enough, there is no strong ’force’ that pulls the variance to optimal. The Figure 3.3a
shows the scaled negative Log-likelihood of the given datasets. It can be found that the
slope on the σf direction is small when σf is large, which results in a smaller gradients.
This supports the experimental results that σf converges slower with smaller gradients.
The results suggest a strategy that the optimization for σf should starts from a small
value, which can be approximated before optimization based on a small subset of the
datasets.

Asynchronous pxADMMasync and pxADMM∗
async The Figure A.7 shows the con-

vergence results of asynchronous pxADMMasync. The asynchronous behavior can be ob-
viously seen as shown in Figure A.7b, in which the step size curves vary among agents.
The iteration numbers needed for convergence range from approximately 5 × 102 to
7× 102.

The Figure 3.4 shows the comparison among the pxADMM methods, i.e., central-
ized pxADMM, fully-distributed pxADMM and asynchronous pxADMM, of agent 1.
The curves for asynchronous methods ignore the inactivated iterations recorded. It can
be found that the asynchronous algorithms converge in general same patterns as their
synchronous versions at linear rates. Also, the activated iterations used are almost the
same. The largest difference is that the convergence of asynchronous algorithms oscil-
late more than corresponding synchronous versions. In terms of number of iterations
used, the pxADMM∗

fd uses approximately 2 times iterations than pxADMM to reach
convergence, while the pxADMMfd uses approximately 4.5 times more iterations.

The Figure 3.5 shows the comparison of all the methods mentioned above, in which
all the axes are in logarithmic scale. It can be found that all the methods finally lead
to a convergence. The centralized pxADMM, as shown in yellow solid line, converges
the fastest. The GD converges slower than all the pxADMM based methods. The
centralized ADMM converges in a much slower speed compared to GD or pxADMM
based methods, because a large amount of iterations are used to optimize the problem in
Equation 3.14b. The fully-distributed ADMM requires more iterations than centralized
ADMM to reach convergence. The result shows that the proximal update strategy
alleviates the computational complexity of ADMM.

32

0 200 400 600 800 1000 1200 1400 1600 1800

iterations

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
s
te

p
 s

iz
e

pxADMM pxADMM
fd,async
* pxADMM

fd,sync
* pxADMM

fd,async

pxADMM
fd,sync

Figure 3.4: Comparison of different versions of pxADMM methods.

10 0 10 1 10 2 10 3 10 4 10 5

iterations

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

s
te

p
 s

iz
e

GD ADMM pxADMM ADMM
fd

pxADMM
fd,async
* pxADMM

fd,sync
* pxADMM

fd,async
pxADMM

fd,sync

Figure 3.5: Step size comparison of hyperparameter optimization methods with both x and
y axes in log scale. The curves of ADMM and ADMMfd shows the step size regarding the
inner iterations based on nGD.

33

3.4.2 Real dataset: GHRSST

The following simulations are carried out in the reconstructed 2D field from the
GHRSST dataset. An example is selected for demonstration. The ranges of the field
are respectively [145.0, 150.5] and [37.0, 40.0] on longitude and latitude directions (or
referred as x and y axes). Since the real dataset used is not generated according to
known GP, the real hyperparameter set is unknown. The performance of optimization
methods will be analyzed through their convergence curves and comparisons with each
other.

Table 3.3: Parameters & Variables of pxADMM for GHRSST

Parameters & variables Values Only used in

ρ 8× 70× 0.3

L 8× 70× 0.7

Tmax 15000

θ0
m = {σ0

f , l
0, σ0

n} {6, [2, 2]T , 0.5}
ϵ 1× 10−5

λ0
m [1, 1, 1, 1]T

z0m θ0
m pxADMM

z0mn, z
0
nm,λ0

mn,λ
0
nm [0, 0, 0, 0]T pxADMMfd, pxADMM∗

fd

Sm min(3,|N (m)|) pxADMMasync, pxADMM∗
async

τ 10 pxADMMasync, pxADMM∗
async

(a) Topology, sampling points and background (b) Topology with agent codes

Figure 3.6: (a). The figure shows MAS and underlying GHRSST field. The field is shown
as background with magnitudes indicated by color according to the colorbar. The red dots
shows the positions of agents. The communication links are plotted as red lines connecting
pairs of agents. The black asterisks scattered around the field shows the position of sampling
points. (b). The figure shows the topology structure of MAS, in which the numbers indicate
the code of agents from 1 to M, i.e., 8.

34

nGD, ADMM, ADMMfd, pxADMM The convergence behavior of nGD, ADMM
and ADMMfd are respectively shown in Figure A.9, A.10 and A.11 in Appendix A.1.
Some of the optimization settings are listed in Table 3.3. For nGD, the step size is
µ = 5× 10−5. For ADMM, the maximum iteration is Tmax = 2000, and the maximum
iteration number for solving local θm minimization problem is Tmax,inner = 50.

Based on comparison among the methods from the Table 3.4 and figures, it can
be found that the nGD and ADMMfd methods have not converged after reaching the
maximum iteration number.

Synchronous pxADMMfd and pxADMM∗
fd The simulation results of centralized

pxADMM, pxADMMfd and pxADMM∗
fd are respectively shown in Figure A.12, A.13

and A.14 in Appendix A.1.

Asynchronous pxADMMasync and pxADMM∗
async Figure A.15 shows the conver-

gence curves of pxADMMasync, in which the number of iterations range from approxi-
mately 5× 103 to 5.5× 103.

Figure A.16 shows the convergence curves of pxADMM∗
async. The number of itera-

tions ranges from approximately 3× 103 to 4× 103.
Results of the optimized hyperparameters are shown in Table 3.4.

Table 3.4: Results of hyperparameters optimization with real dataset

Methods σf l σn

nGD 8.2247 [1.6009;1.2245] 0.7015

ADMM 8.4463 [1.6100;1.2290] 0.7005

ADMMfd 7.8172 [1.5847;1.2167] 0.7038

pxADMM 8.4503 [1.6102;1.2291] 0.7005

pxADMMfd 8.4619 [1.5731;1.2113] 0.6831

pxADMM∗
fd 8.4266 [1.6092;1.2286] 0.7006

pxADMMasync 8.4640 [1.5731;1.2114] 0.6831

pxADMM∗
async 8.3870 [0.6076,1.2277] 0.7007

35

3.5 Conclusion

In this chapter, GP hyperparameter optimization is motivated and introduced. The
current centralized and distributed hyperparameter optimization methods are intro-
duced. Then, new methods are proposed for optimization in MAS.

• Motivation: The GP prior model should be fitted to the training dataset for a
good model that gives accurate prediction, thus requiring the hyperparameter
optimization.

• Centralized optimization is performed based on Bayesian model selection methods
by minimizing negative Log-likelihood. The problem can be solved by nGD.

• For problem P2, ADMM and pxADMM can be applied with assistance of center
station.

• P3 can be solved by ADMMfd: slow convergence and high computational com-
plexity.

• Proposed synchronized methods

– pxADMMfd: Convergence proved, slower convergence than the centralized
version

– pxADMM∗
fd: Convergence not mathematically proved, but experimental

results show convergence. Faster convergence than pxADMMfd

• Asynchronous methods pxADMMasync and pxADMM∗
async based on two

strategies

– Partial barrier introduces asynchronous behavior by allowing fast agents
entering new iterations with partial updates from neighbors.

– Bounded delay restricts that a link is activated at least one time in certain
number of iterations, which acts as soft synchronization over the network
that assures similar convergence speed across the network.

36

Distributed GP Aggregation 4
W

ith a well trained Gaussian Process prior model, predictions in the field of interest
are to be made for further applications. The GP built on the full dataset is called

full GP, which is accurate but computational intensive. In distributed systems, the
dataset is divided into several smaller local datasets, which requires some modification
to GP prediction process.

In this chapter, methods of aggregating different GP predictions from agents in the
network are introduced. This chapter starts from introducing the background of dis-
tributed GP in Section 4.1. The GP aggregation problem is also defined in section 4.1,
where some current methods are also introduced. Current works that try to distribute
the aggregation process are introduced in Section 4.2. Some improved GP aggregation
algorithms are proposed in section 4.3. Simulation results of several selected methods
are compared and discussed in section 4.4.

4.1 GP aggregation

4.1.1 Background

Early efforts of separating a full GP or combining several GP were mainly motivated
by two needs, less computational intensity and higher flexibility.

Though GP is already a flexible model compared to most parametric models, it
sometimes fails to represent special structures with a single set of hyperparameters. A
simple case can be unstable noise variance, which varies across the input space, thus
making a single choice of kernel variance inadequate. At times, GP also fails to detect
discontinuity, which requires kernel with short characteristic length to represent.

As explained in section 2.1.1, GP is a data dependent model with high computational
complexity ofO(N3), which mainly comes from the matrix inversion in Equation (2.11).
By distributing the datasets into M local datasets, the computation can be distributed
parallelly with reduced complexity O(N

3

M2).
To solve the above problems, the Mixture of Experts (MoE) model is applied to

Gaussian Process in [28]. In the proposed algorithm, there are multiple experts with
different GP hyperparameters responsible for different parts of the function character-
istics. A gating network assigns incoming data points to appropriate expert and makes
final predictions based on prediction provided by experts. The system tracks different
characteristics better than a single GP, and also speeds up the prediction because of
the smaller datasets at the agents. Further improvement to this algorithm is proposed
in [29], which brings more robustness against incomplete data by modifying the gating
system, and [30], which further speeds up the training and inference through linear
approximation. Another similar structure is proposed in [31], where the mean value
prediction of GP is approximated by a matrix-vector multiplication (MVM) problem.

37

Then, the MVM can be accelerated through grouping the data points in a multires-
olution tree structure, i.e., the KD-tree that recursively performs binary partition of
dataset.

All algorithms introduced above divide the full datasets into smaller subsets to
speed-up the computation and introduce more flexibility. Though these centralized
algorithms are mainly developed to increase flexibility, the MoE structure has been
shown to be a promising methods for distribution.

4.1.2 GP Aggregation problem

For a full GP with complete dataset D, prediction for the value y∗ at a point of inter-
est x∗ can be calculated by finding mean value in predictive distribution. Recall GP
predictive distribution from Equation (2.11) as follow

p(y∗|D) ∼ N
(
K∗K

−1y,K∗∗ −K∗K
−1KT

∗
)
. (4.1)

Also, recall from Section 2.2.2 that the predictor for posterior mean and variance and
be respectively represented by µ(y∗|x∗,D) and σ2(y∗|x∗,D), or µ and σ2 for simplicity.

The aggregation of GP can be interpreted from two perspective. The first view is
combining predictors. In a distributed system described by graph G = {V , E}, predic-
tions are first independently given by each agent m from local predictors µm(y∗|x∗,Dm)
and σ2

m(y∗|x∗,Dm) (or µm and σ2
m for simplicity), and then combined into global pre-

dictors µG(y∗|x∗, {Dm}Mm=1) and σ2
G(y∗|x∗, {Dm}Mm=1) (or µG and σ2

G for simplicity).
From a Bayesian modeling perspective, the full GP prediction corresponds to finding

posterior distribution p(y∗|D). GP aggregation is equivalent to finding a relationship
that connects local posterior predictions pm(y∗|Dm) with p(y∗|D).

There are two different kinds of MoE methods developed based on assumption that
whether the local datasets are independent or nested. Fig.4.1 shows an example of
dividing full covariance matrix of a global dataset into 6 local covariance matrices,
which are shown in colored boxes. In Fig. 4.1b, the areas outside the boxes record the
cross-correlation among local datasets, which are unknown in the distributed setting.
The independent assumption assumes that the unknown region are filled with zero
values, which means that the local datasets are independent with each other. On the
contrary, nested assumptions tries to discover information in the unknown area, so
that the correlation among local datasets can also be take into consideration during
prediction.

4.1.3 Independent aggregation

Given two datasets Dm and Dn, Bayes’ rule indicates that

p(y∗|Dm,Dn) =
p(y∗)p(Dm|y∗)p(Dn|Dm, y∗)

p(Dm,Dn)
. (4.2)

Under independence assumption [32], Dm and Dn are conditionally independent to each
other such that

p(Dn|Dm, y∗) ≈ p(Dn|y∗), (4.3)

38

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Local dataset partition

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Full and divided covariance matrix

Figure 4.1: (a) The plot shows a global dataset containing 300 sampling data points in circles.
Different color represent different partitions of data points. The triangles are the position of
agents that hold the local datasets. (b) The covariance matrix of the full datasets. The
colored frame contains the corresponding local datasets at agents.

which can be noted as Dm ⊥⊥ Dn. Based on Equation (4.3), the posterior prediction
with two joint dataset in Equation (4.2) in can be factorized as multiple independent
predictions based on local datasets, so that

p(y∗|Dm,Dn) ≈
1

p(Dm,Dn)
· p(y∗)p(Dm|y∗)p(Dn|y∗)

=
p(Dm), p(Dn)

p(Dm,Dn)
· p(y∗|Dm)p(y∗|Dn)

p(y∗)

∝ p(y∗|Dm)p(y∗|Dn)

p(y∗)
.

(4.4)

By recursively applying conditional independence to all the local datasets, it can be
shown that

p(y∗|D) ∝

M∏
m=1

p(y∗|Dm)

pM−1(y∗)
, (4.5)

where local posterior distributions are calculated according to Equation (2.11), and the
mean and standard deviation are noted as µm and σm for agent m.

PoE family Product of Experts (PoE) was first proposed in [33] to combine multiple
latent-variable models, and applied to GP aggregation in [34].

For PoE, Equation (4.5) is applied without considering prior distribution p(y∗),

39

which is equivalent to the assumption that

p(y∗|D) =
M∏

m=1

p(y∗|Dm). (4.6)

Because each of the local posterior distributions is a Gaussian distribution, the mean
and variance values of the aggregated posterior distribution at input x∗ are given by

µPoE = σ2
PoE

M∑
m=1

σ−2
m µm, (4.7a)

σ2
PoE =

1
M∑

m=1

σ−2
m

(4.7b)

Intuitively, the PoE combines the aggregations of agents based on their confidence about
their own predictions. If an agent is uncertain about its prediction, a large posterior
variance makes the weight of its predicted mean values smaller during aggregation,
which finally makes the global predictor trust more on agents with high confidence
levels.

Since PoE does not consider prior distribution, the variance predictions are not
consistent with prior assumption. For PoE, when all agents give uncertain predictions
such that σm = σ∗∗, the global posterior variance is 1

M
σ2
∗∗ < σ2

∗∗, which indicates
an over-confident prediction. The over-confidence problem of PoE indicates that the
predictive variances are not always reliable as weights for aggregation.

To alleviate the problem of PoE, the generalized Product of Expert (gPoE) pro-

posed in [35] further introduces another set of variables {αm ∈ R+}Mm=1 controlling the
influence of experts, which can also be referred as expert importance. The relationship
between full posterior and local posteriors can be easily derived as

p(y∗|D) =
M∏

m=1

pαm (y∗|Dm) , (4.8)

where the αm introduces more freedom when weighting predictions from agents. Under
gPoE model, the posterior mean and variance values are given by

µgPoE = σ2
gPoE

M∑
m=1

αmσ
−2
m µm. (4.9a)

σ2
gPoE =

1
M∑

m=1

αmσ−2
m

(4.9b)

For gPoE, choosing non-negative αm such that
M∑

m=1

αm = 1 assures that the posterior

variance falls back to prior σ2
∗∗ in highly uncertain areas, but it also results in too

conservative prediction in areas with data points.
Suppose that the local posterior mean and variance values are known before aggre-

gation, the PoE and gPoE methods have computational complexity of O(M)

40

Table 4.1: Independent aggregation methods

Method αm σ−2
∗∗

PoE 1 0

gPoE
M∑

m=1
αm = 1, αm > 0 0

BCM 1 σ2
f + σ2

n

rBCM 1
2(log(σ

2
∗∗)−log(σ2

m))
[36]

σ2
f + σ2

n

BCM family The Bayesian Committee Machine (BCM) [32] considers prior distri-
bution in Equation (4.5). The posterior mean and variance values are then derived as

µBCM = σ2
BCM

M∑
m=1

σ−2
m µm, (4.10a)

σ2
BCM =

1
M∑

m=1

σ−2
m − (M − 1)σ−2

∗∗

(4.10b)

When GP and measurement noise are assumed to be stationary across the points, the
σ2
∗∗ is usually given by σ2

f + σ2
n. By introducing the prior information, the aggregated

posterior variance falls back to prior variance σ2
∗∗ when all agents are uncertain about

their prediction with σm = σ∗∗, thus avoids the over-confidence problem of the PoE.
Similar as how gPoE is developed, the robust Bayesian Committee Machine (rBCM)

introduces a set of influence weights {αm ∈ R+}Mm=1 to further adjust the influence of
agents. The Bayesian model in Equation (4.4) becomes

p(y∗|D) ∝ p(y∗)
M∏

m=1

pαm(Dm|f∗)

=

M∏
m=1

pαm(f∗|Dm)

f
−1+

∑M
m=1 αm

∗

.

(4.11)

The posterior mean and variance are then given by

µrBCM = σ2
rBCM

M∑
m=1

αmσ
−2
m µm, (4.12a)

σ2
rBCM =

1
M∑

m=1

αmσ−2
m −

(
M∑

m=1

αm − 1

)
σ−2
∗∗

(4.12b)

41

where αm > 0 but not necessarily
M∑

m=1

αm = 1. The

(
M∑

m=1

αm − 1

)
σ−2
∗∗ acts as a

correction term that automatically pulls the posterior variance back to the prior. By
comparing the aggregators, it can be found that the PoE, gPoE and BCM aggregators
can all be generated by adjusting the parameters from rBCM aggregators. Table 4.1
shows how rBCM can be degenerated into PoE, gPoE and BCM.

4.1.4 Nested aggregation

Though independent MoE models alleviate the computation intensity, they are based
on the assumption that the datasets are (conditionally) independent, which is usually
not the case. As shown in Fig. 4.1, correlation between local datasets should also
be considered for better approximation and consistency to full GP. Several works are
proposed under nested datasets assumption, including the generalized robust BCM
(grBCM) proposed by Liu et al. [37] and Nested Pointwise Aggregation of Experts
(NPAE) by Rullière et al. [38]. These methods are introduced in this section.

Generalized robust BCM The grBCM shares similar aggregation formula as those
from PoE and BCM families, but make changes in the structure of network and content
of datasets for better aggregation. Based on the local datasets {D1, · · · ,DM}, a global
expert dataset Dc is generated through randomly extracting points from local datasets,
which makes the Dc contain points spreading throughout the entire region of interest.
The predictive distribution of y∗ based on Dc is given by p(y∗|Dc) ∼ N (µc, σ

2
c). The

agent (or central computing unit) maintaining the Dc can communicate directly with
all the rest agents, which makes the Dc accessible by other agents. For each agent m,
an enhanced dataset D+m = {Dm,Dc} is constructed, based on which the enhanced
predictive distribution p+m(y∗|D+m) ∼ N (µ+m, σ

2
+m) can be derived. With further

proposing the conditional independence Dm ⊥⊥ Dn|Dc, the predictive distribution of
grBCM is proposed as

p(y∗|D) =

M∏
m=1

pαm
+m(y∗|D+m)

p−1+
∑M

m=1 αm (y∗|Dc)
, (4.13)

where the αm = 1
2

(
log σ2

c − log σ2
+m

)
.

The grBCM provides consistent aggregations and falls back to the prior model at the
costs of a slight increase of computational complexity. The drawback of applying and
improving grBCM in this work is that grBCM requires a network structure with central
computing unit, which is usually not applicable for fully-distributed MAS. Thus, the
grBCM is not included in the simulation and comparison of aggregation methods.

NPAE For a point of interest x∗, the NPAE considers a linear aggregation of local

predictions in the form of µNPAE =
M∑

m=1

ωmµm, where {ωm ∈ R}Mm=1 weight the pre-

dictions from agents. The exact form of ω can be derived by finding the Best Linear
Unbiased Predictor (BLUP). Let the vector collecting all local predictions be noted as

42

M = [µ1, · · · , µM]T , and the weight vector [ω1, · · · , ωM]T as ω, the BLUP is derived by
minimizing the mean squared error eM = E

{
(y∗ − ωTM)2

}
, which gives the optimal

weight vector ω̂ = K−1
MkM. The kM is the covariance between local predictions and

value to be predicted, which is given by

kM = Cov(M, y∗)

= Cov([µ1, µ2, · · · , µM]T , y∗)

= Cov
([

K∗,1K
−1
1 y1,K∗,2K

−1
2 y2, · · · ,K∗,MK−1

M yM

]T
, y∗

)
=
[
K∗,1K

−1
1 KT

∗,1,K∗,2K
−1
2 KT

∗,2, · · · ,K∗,MK−1
M KT

∗,M
]T

,

(4.14)

where K∗,m = Cov(y∗,ym). It should be noticed that the mth entry of kM can be
locally computed by agent m.

Similarly, the KM = Cov(M,M) is given by
K∗,1K

−1
1 K1,1K

−T
1 KT

∗,1 K∗,1K
−1
1 K1,2K

−T
2 KT

∗,2 · · · K∗,1K
−1
1 K1,MK−T

M KT
∗,M

K∗,2K
−1
2 K2,1K

−T
1 KT

∗,1 K∗,2K
−1
2 K2,2K

−T
2 KT

∗,2 · · · K∗,2K
−1
2 K2,MK−T

M KT
∗,M

...
...

. . .
...

K∗,MK−1
M KM,1K

−T
1 KT

∗,1 K∗,MK−1
M KM,2K

−T
2 KT

∗,2 · · · K∗,MK−1
M KM,MK−T

M KT
∗,M

 ,

(4.15)
where {Km,n = Cov(ym,yn)}m,n∈{1,2,··· ,M} are the cross covariance between datasets m

and n. The size of vector kM is M × 1, and size of matrix KM is M ×M .
Substituting Equation (4.14) and (4.15) into linear predictor and error eM, the

pointwise global predictor proposed by NPAE is then given by

µNPAE = kT
MK−1

MM, (4.16a)

σ2
NPAE = K∗∗ − kT

MK−1
MkM. (4.16b)

It is shown in [39] that the NPAE is an asymptotically consistent method such that error
eM converge to 0 as the number of observations increase to infinity. Although NPAE
provides more consistent aggregation, the improvement comes at the cost of higher
computational complexity due to calculating cross covariance matrices and inverse of
KM.

4.1.5 Other aggregation methods

Another distributed GP for spatial-temporal environmental monitoring is studied in
[40]. Sparsity is introduced to reduce the computation cost. The predictive distribu-
tion is sparsely approximated with projected process approximation. Covariance matrix
is also approximated with a specially chosen kernel function. For the distributed pre-
diction, a node only need to receive data and position information from its neighbors
in communication range.

A sparsely approximated GP by Karhunen-Loève expansion is distributed in [41].
The proposed method considers a network consisting of agents with limited commu-
nication range. Agents measure their own environmental data, and collaboratively

43

maintain a global GP model. To reduce computation cost, Karhunen-Loève expansion
is applied to factorize the kernel into weighted sum of orthogonal eigenfunctions, among
which only a few most important ones are kept, thus reducing the dimension of data
space. Then a modified prediction stage is applied with the new kernel. The measured
data for prediction are not obviously exchanged between agents, but implicitly spread
across the network through consensus algorithms on latent variables.

Due to time constraints, further simulation and improvement of methods based on
sparsity, subspace, etc., are not included in this work.

4.2 Distributed GP Aggregation

The methods aforementioned provide parallelable aggregation methods based on predic-
tions with local datasets, but all require centralized computing structure, which is not
favored in many distributed multi-agent systems. In this section, the state-of-the-art
distributed methods are introduced and discussed.

4.2.1 Fully-distributed PoE and BCM families

The PoE and BCM families of methods can be fully distributed in a network through
consensus. Since all the methods can be obtained through adjusting the rBCM, the
distributed algorithm is explained based on the rBCM. The posterior prediction from
Equation (4.12) can be modified as the following

σ2
rBCM =

1

σ−2
∗∗ +

M∑
m=1

γσ,m

(4.17a)

µrBCM = σ2
rBCM

M∑
m=1

γµ,m, (4.17b)

where γσ,m = αm(σ
−2
m −σ−2

∗∗) and γµ,m = αmσ
−2
m µm. The γσ,m and γµ,m are totally local

variables that can be computed independently by each agent, so that the global mean

and variance can be obtained based on the consensus values of γ̄σ,m = 1
M

M∑
m=1

γσ,m and

γ̄µ,m = 1
M

M∑
m=1

γµ,m. The consensus average problem is formulated as follow

P4 : min
{γm}Mm=1

M∑
m=1

∥∥γm − γ0
m

∥∥2
2

s.t. γm = γn, ∀(m,n) ∈ E

(4.18)

The discrete-time consensus filter (DTCF) [42] is currently applied to solve P4 [43].
For agent m, the consensus iteration at time instance t is given by

γt+1
m = γt

m + ν
∑

n∈N (m)

(
γt
n − γt

m

)
, (4.19)

44

where ν ∈ (0, 1
∆
) and ∆ is the largest degree in the network. The DTCF follows a

linear convergence rate that is determined by the 1− νλ2 [42]. The DTCF based fully
distributed rBCM algorithm is denoted by DTCF-rBCM as shown in Algorithm 6.
Similarly, the other methods in PoE and BCM families can be denoted as DTCF-PoE,
DTCF-gPoE and DTCF-BCM.

Algorithm 6: Fully distributed DTCF based rBCM algorithm

Input: x∗, σ∗∗, {θm}Mm=1, {Xm,ym}Mm=1

Output: µrBCM , σ2
rBCM

1: Initialize: Tmax, ν ∈ (0, 1
∆)

2: for agent m = {1, 2, · · · ,M} do
3: [µm, σ2

m] = GPR (x∗,Xm,ym,θm) /*Local GP Prediction*/

4: generate αm

5: γ0µ,m = αmσ−2
m µm /*Initialize γµ,m*/

6: γ0σ,m = αm(σ−2
m − σ2

∗∗) /*Initialize γσ,m*/

7: end
8: for iteration t = {0, 1, · · · , Tmax} do
9: for agent m = {1, 2, · · · ,M} do

10: Collects γtµ,n and γtσ,n, n ∈ N (m)

11: γt+1
µ,m = γtµ,m + ν

∑
n∈N (m)

(
γtµ,n − γtµ,m

)
/*Consensus γµ,m update*/

12: γt+1
σ,m = γtσ,m + ν

∑
n∈N (m)

(
γtσ,n − γtµ,m

)
/*Consensus γσ,m update*/

13: end

14: end
15: σ2

rBCM = 1/(σ−2
∗∗ +MγTmax+1

σ,m)

16: µrBCM = σ2
rBCM,mMγTmax+1

µ,m /*Result can be obtained from any agents*/

4.2.2 Distributed NPAE

The distribution of NPAE is achieved through solving linear algebraic problems by
distributed algorithms. In Equation (4.16), K−1

MM and K−1
MkM can respectively be

regarded as the solution to linear algebraic problems

KMqµ = M, (4.20a)

KMqσ2 = kM, (4.20b)

where qµ ∈ RM and qσ2 are unknown. If the problems can be solved across the network
such that each agent m holds the result qµ,[m] and qσ2,[m], then the NPAE predictions
can be obtained by calculating kT

Mqµ and kT
Mqσ2 in distributed manner.

Two methods based on different network structures are proposed to fully distribute
NPAE in [43]. The first method NPAE-JOR, based on Jacobi over relaxation (JOR) [44,
Ch. 2.4] algorithm, is proposed for complete network, in which each agent can directly
communicate with any other agents. It is also assumed that each agent m has known

45

KM,[m,], kM,[m] and µm. For problem Aq = b, the JOR iteration at time instance t is
given by

qt+1
[m] = (1− ν)qt

[m] +
ν

A[m,m]

b[m] −
∑

n∈N (m)

A[m,n]q
t
[n]

 , (4.21)

where ν ∈
(
0, 2

M

)
. By applying JOR, qµ,[m] and qσ2,[m] are known for agent m,

which means kM,[m]qµ,[m] and kM,[m]qσ2,[m] can be calculated. The average values of
kM,[m]qµ,[m] and kM,[m]qσ2,[m] can be obtained through consensus average algorithm as

γ̄JOR,µ and γ̄JOR,σ2 . Since kT
Mqµ =

M∑
m=1

kM,[m]qµ,[m] and kT
Mqσ2 =

M∑
m=1

kM,[m]qσ2,[m], the

NPAE prediction is finally given by

µNPAE = Mγ̄JOR,µ, (4.22a)

σ2
NPAE = K∗∗ −Mγ̄JOR,σ2 . (4.22b)

The second method NPAE-DALE is proposed for connected but not necessarily
complete networks. The method proposes similar setting as NPAE-JOR, but applies a
different algorithm called Distributed Algorithm for solving Linear Equations (DALE)
[45] to solve the linear algebraic problems. For problem Aq = b, the DALE iteration
at time instance t is given by

qt+1
[m] = P1b[m] +

1

|N (m)|
P2

∑
n∈N (m)

qt
[n], (4.23)

where P1 = AT
[m,]

(
A[m,]A

T
[m,]

)−1

and P2 = IM − AT
[m,]

(
A[m,]A

T
[m,]

)−1

A[m,]. After

knowing qµ and qσ2 , the γ̄DALE,µ and γ̄DALE,σ2 can be obtained through consensus
algorithm, which are then substituted into Equation (4.22) for NPAE prediction.

The NPAE-JOR requires a complete network, which is usually not the case in MAS.
Though NPAE-DALE alleviates the requirement to a connected network, the network
still needs to be initialized through flooding necessary data points across the entire
network so that the KM,[m,] becomes locally available, which is costly in term of band-
width, time and memory.

4.3 Proposed distributed aggregation methods

In this section, two groups of algorithms are proposed. The first group of algorithms
are proposed to achieve faster convergence for fully-distributed independent aggregation
methods, i.e., PoE and BCM families. The second group of methods are proposed to
extend NPAE to fully-distributed situations.

4.3.1 PDMM-PoE/BCM

As shown in section 4.2.1, the distributed PoE and BCM families can be realized
through solving consensus problem P4. It should be noticed that the target function

46

of P4 is closed, proper and convex, for which a Primal-Dual Method of Multipliers
(PDMM) can be applied for fast linear convergence rate of O(1

t
) [46].

By applying PDMM, the tth update iteration for consensus average problem at
agent m is given by

γt+1
m =

1

1 + cdm

γ0
m +

∑
n∈N (m)

(
cγt

n + λt
n|m
) , (4.24a)

λt+1
m|n = −λt

n|m + c
(
γt+1
m − γt

n

)
, (4.24b)

where λm|n and λn|m are dual variables associated with edge (m,n) respectively stored
in agent m and n. c > 0 is a penalty parameter from the Lagrangian, and is related to
the convergence rate. The c is usually a value smaller than 1 for consensus average, and
an optimal choice is 0.303 [47]. γ0

m are the initial values. For each iteration on each link,
the standard PDMM requires transmission of four values 1, which is more than DTCF
that only transmit two values, γ from both agents. However, by introducing auxiliary
variables ξm|n = cγm + λm|n and ξn|m = cγn + λn|m on agent m and n respectively, only
two auxiliary variables need to be transmitted. With the auxiliary variable, Equation
4.24b can be simplified as

λt+1
m|n + cγt+1

m = −
(
λt+1
n|m + cγt+1

n

)
+ 2cγt+1

m

ξt+1
m|n = −ξtn|m + 2cγt+1

m .
(4.25)

The update iteration is now

γt+1
m =

1

1 + cdm

γ0
m +

∑
n∈N (m)

ξtn|m

 , (4.26a)

ξt+1
m|n = −ξtn|m + 2cγt+1

m , (4.26b)

where ξm|n can be initialized by zero. By replacing the DTCF in fully-distributed PoE
and BCM with PDMM, the proposed methods are denoted as PDMM-PoE(gPoE) and
PDMM-BCM(rBCM). The fully distributed PDMM based rBCM is shown in Algorithm
7.

4.3.2 LOC-NPAE and CON-NPAE

According to Equation 4.16, the kM and KM have to be constructed based on all
the datasets from the agents, which must be flooded through the network. In this
section, the Local NPAE (LOC-NPAE) method is proposed to avoid flooding in the
entire network. LOC-NPAE alleviates the requirement for complete network through
abandoning certain amount of cross-correlation information among local datasets. From
Fig. 4.1, it can be observed that the cross-correlation matrix is generally darker for those
pairs of agents with larger distance between them, which means that the corresponding

1{γm, λm} and {γn, λn} from both agents on the sides of edge (m,n).

47

Algorithm 7: Fully distributed PDMM based rBCM algorithm

Input: x∗, σ∗∗, {θm}Mm=1, {Xm,ym}Mm=1, {dm}Mm=1

Output: µrBCM , σ2
rBCM

1: Initialize: Tmax, c ∈ (0, 1), {ξ0µ,m|n}m∈V,n∈N (m)=0

2: for agent m = {1, 2, · · · ,M} do
3: [µm, σ2

m] = GPR (x∗,Xm,ym,θm) /*Local GP Prediction*/

4: generate αm

5: γ0µ,m = αmσ−2
m µm /*Initialize γµ,m*/

6: γ0σ,m = αm(σ−2
m − σ2

∗∗) /*Initialize γσ,m*/

7: end
8: for iteration t = {0, 1, · · · , Tmax} do
9: for agent m = {1, 2, · · · ,M} do

10: Collects ξtµ,n|m and ξtσ,n|m, n ∈ N (m)

11: γt+1
µ,m = 1

1+cdm

(
γ0µ,m +

∑
n∈N (m)

ξtµ,n|m

)
12: ξt+1

µ,m|n = −ξtµ,n|m + 2cγt+1
µ,m,

13: γt+1
σ,m = 1

1+cdm

(
γ0σ,m +

∑
n∈N (m)

ξtσ,n|m

)
14: ξt+1

σ,m|n = −ξtσ,n|m + 2cγt+1
σ,m,

15: end

16: end
17: σ2

rBCM = 1/(σ−2
∗∗ +MγTmax+1

σ,m)

18: µrBCM = σ2
rBCM,mMγTmax+1

µ,m /*Result can be obtained from any agents*/

local datasets are less correlated. For example, the dataset D5 is more correlated to D4

and D2 than D1,D3 and D6. Since the neighborhood N (m) of an agent m contains the
|N (m)| closest agents to it, an assumption can be made that N (m) holds the |N (m)|
most correlated datasets with that of agent m. Based on the assumption, it is proposed
that the full NPAE aggregator based on the global datasets can be separated into M
local NPAE aggregators maintained by every agents. For agent m, the local NPAE only
involves {Dm, {Dn}n∈N (m)}, which alleviates the overhead of flooding datasets across
the entire network.

For agent m, LOC-NPAE is equivalent to perform NPAE according to Equation
(4.16) on a subgraph including agents {m,N (m)}, where the edges are inherited from
the full graph. The subgraph with agent m as the center unit is denoted as Gm =
{Vm, Em}. Each agent m has to obtain kM,m and KM,m based on {Dm, {Dn}n∈N (m)}.
As shown in Figure 4.2, there are three types of subgraphs that have an effect on the
strategy of exchanging data in LOC-NPAE. The first type is shown in the lower left
plot, where the selected agent 1 has only one neighbor. According to Equation (4.15),
the KM,1 of size 2× 2 can be obtained based on D1 and D2, which is directly accessible
from agent 2.

The second type with agent 2 as the center unit is shown in the lower middle plot

48

Figure 4.2: The upper figure shows the full topology of a MAS with 6 agents shown in clue
dots. The lower figures shows three different kinds of subgraphs that LOC-NPAE operates on.
In the lower plots, the red dots represent the agents selected as the local computing center,
in which the LOC-NPAE is computed.

in Figure 4.2, where more than one neighbors of agent 2 exist. The agent 2 has to
first prepare the KM,2 values that are associated with edge (2, 1), (2, 3) and (2, 4) after
receiving D1,D3,D4. Then, the values associated with agent pairs {1, 3}, {1, 4} and
{3, 4} has to be obtained. Because that there are no links between agents pairs (1, 3)
and (1, 4), the corresponding values have to be calculated in agent 2. However, since
an edge exists between agent 3 and 4, the value K∗,3K

−1
3 K3,4K

−T
4 KT

∗,4 can be prepared
by either agent 3 or 4 before transmitting to agent 2, which reduces the computational
complexity on agent 2.

The third type is a special case shown in lower right plot in Figure 4.2, where the
local subgraph of agent 6 is actually a complete graph. For a complete subgraph, every
values in KM,6 can be prepared by corresponding agent pairs, and then sent directly
to agent 6.

Based on the NPAE in the aforementioned three types of subgraphs, the following
strategy can be applied in LOC-NPAE. First, K∗,m and K−1

m are calculated locally at
every agent m, based on which value K∗,mK

−1
m KT

∗,m is locally available. Then, for agent

pair (m,n), one of the agent, m for instance, collects the Dn, K∗,n and K−1
n from agent

n and calculate K∗,mK
−1
m Km,nK

−T
n KT

∗,n, which is then also sent to agent n. If an agent

pair (n1, n2) in N (m) has a link in between, the value K∗,n1K
−1
n1
Kn1,n2K

−T
n2

KT
∗,n2

should

49

be directly available for agent m by collecting from either agent n1 or n2. For an agent
pair (n′

1, n
′
2) in N (m) without link, value K∗,n′

1
K−1

n′
1
Kn′

1,n
′
2
K−T

n′
2
KT

∗,n′
2
is calculated by

agent m. Finally, the local predictions (µn, σ
2
n) are collected from neighbors. Now, the

KM,m and kM,m should be ready for agent m to perform LOC-NPAE.

The results of LOC-NPAE from agent m is denoted as (µLN,m, σ
2
LN,m). It should

be noted that the LOC-NPAE on agent m only give confident prediction in the region
covered by {Dm, {Dn}n∈N (m)}, but is less confident outside the region. To develop
CON-NPAE, DEC-rBCM is applied after LOC-NPAE, so that the agents in the network
finally obtain identical predictions about the entire region of interest.

Comparison of current methods and proposed methods are listed in Table 4.2.

Algorithm 8: Fully-distributed LOC-NPAE CON-NPAE

Input: x∗, σ∗∗, {θm}Mm=1, {Xm,ym}Mm=1, {dm}Mm=1

Output: µrBCM , σ2
rBCM

1: Initialize: c ∈ (0, 1), {ξ0µ,m|n}m∈V,n∈N (m)=0

2: for agents m = {1, 2, · · · ,M} do
3: [µm, σ2

m] = GPR (x∗,Xm,ym,θm) /*Local GP Prediction*/

4: end
5: for agents on edge (u, v) ∈ E do
6: exchange Du and Dv

7: exchange K−1
u and K−1

v

8: exchange {µu, σ
2
u} and {µv, σ

2
v}

9: calculate Ku,v = Cov(Xu,Xv)

10: end
11: for agents m = {1, 2, · · · ,M} do
12: for each pair of agents (u, v) in N (m) do
13: if Ku,v available at agent u or v then
14: Receive Ku,v from agent u or v
15: else
16: Calculate Ku,v in agent m
17: end

18: end
19: Calculate kM,m and KM,m

20: end
21: for agent m = {1, 2, · · · ,M} do
22: Calculate µLOC−NPAE,m and σ2

LOC−NPAE,m based on Equation (4.16).

23: end
24: Calculate µCON−NPAE and σ2

CON−NPAE from rBCMfd (Algorithm 6 or 7) based on
{µLOC−NPAE,m}Mm=1 and {σ2

LOC−NPAE,m}Mm=1

50

Table 4.2: Models for GP experts aggregation.

Methods Author (Year)
Independent
datasets

Expert
importance

Prior
knowledge

Fully-
distributed

PoE
Ng and Deisenroth

(2014) [34]
✓ ✗ ✗ ✗

gPoE
Cao and Fleet
(2014) [35]

✓ ✓ ✗ ✗

DTCF-PoE
Kontoudis and

Stilwell (2022) [43]
✓ ✗ ✗ ✓

DTCF-gPoE
Kontoudis and

Stilwell (2022) [43]
✓ ✓ ✗ ✓

PDMM-PoE proposed ✓ ✗ ✗ ✓

PDMM-gPoE proposed ✓ ✓ ✗ ✓

BCM Tresp (2000) [32] ✓ ✗ ✓ ✗

rBCM
Deisenroth and Ng

(2015) [36]
✓ ✓ ✓ ✗

grBCM Liu et al. (2018) [37] ✗ ✓ ✓ ✗

DTCF-BCM
Kontoudis and

Stilwell (2022) [43]
✓ ✗ ✓ ✓

DTCF-rBCM
Kontoudis and

Stilwell (2022) [43]
✓ ✓ ✓ ✓

PDMM-BCM proposed ✓ ✗ ✗ ✓

PDMM-rBCM proposed ✓ ✓ ✗ ✓

NPAE
Rullière et al.
(2018) [38]

✗ ✗ ✓ ✗

NPAE-JOR
Kontoudis and

Stilwell (2022) [43]
✗ ✗ ✓

Only in
complete
graph

CON-NPAE proposed partly ✓ ✓ ✓

4.4 Simulation

4.4.1 Quality assessment

Under the presumption that the hyperparameters of GP model have been optimized,
it is assumed that the real underlying field can be recovered by the full GPR. To assess
the performance of methods, the aggregation results are compared to the results given

51

by full GPR through root-mean-square error (RMSE) given by

eRMSE =
1

Nexp

Nexp∑
p=1

√√√√ 1

M

M∑
m=1

1

N∗

N∗∑
n=1

(y∗,m,n − y∗,full,n)
2, (4.27)

where Nexp is the number of repeated simulations under different GP fields, N∗ is the
number of values to be predicted, y∗,m,n is the prediction of nth points by agent m, and
y∗,full,n is corresponding prediction given by the full GPR.

4.4.2 Artificial dataset

To test the performance of aforementioned aggregation methods, the simulation is
repeated for Nexp = 3 times with different underlying fields. For each time, a global
training dataset D is sampled from a field generated by stationary 2D Gaussian Process
with hyperparameters {σf , l1, l2} = {5, 1, 1} and measurement error σn =

√
0.1. The

span of the field is [−5, 5] × [−5, 5]. The points to be predicted are evenly spread
over the entire field on a 100 × 100 grid. There are totally the fixed number of 1600
sampling points in the datasets, which are divided into M partially overlapping local
datasets. There are 6 M values examined, respectively 2, 4, 8, 12 and 16, which means
the corresponding local datasets sizes are respectively 800, 400, 200, 130 and 100.

The fully-distributed gPoE, BCM and rBCM are examined based on both DTCF
and PDMM algorithms, which are applied with a fixed number of 20 iterations. For
DTCF, as the convergence requires that ν ≤ 1

∆
, the step size is set to ν = 0.9 1

∆
< 1

∆
.

The penalty parameter of PDMM is set to c = 0.35, which is an experimental value for
consensus average problem in randomly generated graph.

The NPAE-JOR is simulated with a maximum 400 iterations with ν = 0.9 2
M
, which

is smaller than the theoretical maximum ν = 2
M

to achieve convergence. The NPAE-
DALE does converge for unknown reasons, so the results are not included. Parameters
used in the methods are listed in Table 4.3. It should be noticed that the defined
parameter values are also applied in simulation of real dataset.

As for the CON-NPAE, their is no parameters to be controlled. The CON-NPAE is
simulated by concatenating NN-NPAE and fully-distributed rBCM, where the rBCM
adapts the setting as shown in Table 4.3. The Figure 4.3 shows the RMSE of pre-
dictive means and variances of examined methods with DTCF algorithm. The Figure
4.4 shows the RMSE of predictive means and variances of examined methods with
PDMM algorithm. In Figure 4.5, the RMSE of PDMM and DTCF based algorithms
are compared.

PDMM based methods From Figure 4.5, it can be found that the PDMM based
methods start to perform better than DTCF based methods with the agent number
larger than 4. When the number of agents is smaller or equal to 4, MASs are very small,
in which the iteration numbers needed for the convergence of PDMM and DTCF are
small. As the number of agents increases, the network becomes more complicated,
where more iterations are required for convergence. In this situation, the PDMM has
increasingly larger advantage over DTCF in terms of smaller error under the same

52

Table 4.3: Parameters & variables of GP aggregation

Parameters & variables Values Comment

Nexp 3 Number of simulation

N∗ 10000 Points to be predicted

|D| 1600 Size of training dataset

M {2, 4, 8, 12, 16} Number of agents

{σf , l1, l2, σn} {5, 1, 1,
√
0.1} Hyperparameters and noise variance

ν 0.9 1
∆

Used in DTCF based fully-distributed
PoE and BCM families

c 0.35
Used in PDMM based fully-distributed

PoE and BCM families

ν 0.9 2
M Used in NPAE-JOR

number of iterations. The Figure A.17 shows an example of the consensus error curves
of DTCF and PDMM.

It should also be noticed that the DTCF relies on the right choice of ν value to con-
verge, which requires that the agents have the knowledge of the global topology of MAS.
As for the PDMM, there are experimental values of penalty parameters c ∈ (0.3, 0.5)
for consensus average problem. Thus, the PDMM based methods are better choices
when the agents are assumed to have no knowledge of the global network structure.

NPAE-JOR and CON-NPAE As shown in Figure 4.3, the NPAE family of methods
do not achieve the expected performance. For the NPAE-JOR method, the RMSE is
always higher than those of PDMM or DTCF based PoE and BCM families of methods.
A possible reason is that the choice of ν value is not optimal, so that the JOR algorithm
does not converge to the right q values in Equation (4.20). The results indicate that
the application of NPAE-JOR requires fine tune of parameters, which may be tricky.
Further work on automatically optimizing the choice of ν could be done to improve the
performance, but is out of the topic of environmental field learning.

As for the CON-NPAE, the results from Figure 4.3 and 4.4 show that the perfor-
mance of CON-NPAE is constrained by the performance of rBCMfd when the number of
agents is larger than 2, which is far from expectation. To analyze the reason, it should
be noticed that the proportion of the proportion of local datasets size in neighborhood
to global dataset generally becomes smaller as the number of agents increases, which

means that
|{Dm,{Dn}n∈N (m)}|

|D| reduces. An agent performing NN-NPAE can utilize the

information from its own and neighbors’ datasets. When the number of agents is small,
the local neighborhood already contains the most proportion of the global dataset,
which means that the NN-NPAE can utilize almost all of global information. Thus,
with the cross-correlation considered, the NN-NPAE and CON-NPAE have better per-
formance than BCM family of methods as expected. Specifically, these two methods are
just NPAE when number of agents is 2. However, when the number of agents increase,

53

the local neighborhood contains smaller proportion of data points compared to the to-
tal number of data points. Under this situation, even if the NN-NPAE can utilize the
local neighborhood datasets {Dm, {Dn}n∈N (m)} better than independence assumption
based methods, the CON-NPAE performance is still dominated by the rBCMfd.

Though NPAE based methods are expected to have theoretically better performance
than independence assumption based methods, the improvement comes at a cost of
much higher computational complexity. Considering that the computational, memory
and communication abilities are usually restricted for MAS, the current NPAE family
of methods may be not have obvious advantage over independence assumption based
methods.

54

RMSE of predictive means - DTCF

2 4 6 8 10 12 14 16

Agents number

10
-2

10
-1

R
M

S
E

gPoE
fd

BCM
fd

rBCM
fd

NPAE-JOR CON-NPAE

(a) RMSE of predictive means.

RMSE of predictive variances - DTCF

2 4 6 8 10 12 14 16

Agents number

10
-2

10
-1

R
M

S
E

gPoE
fd

BCM
fd

rBCM
fd

NPAE-JOR CON-NPAE

(b) RMSE of predictive variances.

Figure 4.3: The figure shows the RMSE comparison of the simulated methods. The consensus
average algorithm applied is DTCF. (a). The RMSE comparison of the predictive means. (b).
The RMSE comparison of the predictive variances.

55

RMSE of predictive means - PDMM

2 4 6 8 10 12 14 16

number of agents

10
-2

10
-1

R
M

S
E

gPoE
fd

BCM
fd

rBCM
fd

NPAE-JOR CON-NPAE

(a) RMSE of predictive means.
RMSE of predictive variances - PDMM

2 4 6 8 10 12 14 16

Agents number

10
-2

10
-1

R
M

S
E

gPoE
fd

BCM
fd

rBCM
fd

NPAE-JOR CON-NPAE

(b) RMSE of predictive variances.

Figure 4.4: The figure shows the RMSE comparison of the simulated methods. The consensus
average algorithm applied is PDMM. (a). The RMSE comparison of the predictive means.
(b). The RMSE comparison of the predictive variances.

56

RMSE comparison of DTCF and PDMM - predictive means

2 4 6 8 10 12 14 16

Agents number

10
-2

10
-1

R
M

S
E

gPoE
fd

 PDMM gPoE
fd

 DTCF BCM
fd

 PDMM

BCM
fd

 DTCF rBCM
fd

 PDMM rBCM
fd

 DTCF

(a) RMSE of predictive means.
RMSE comparison of DTCF and PDMM - predictive variances

2 4 6 8 10 12 14 16

Agents number

10
-2

10
-1

R
M

S
E

gPoE
fd

 PDMM gPoE
fd

 DTCF BCM
fd

 PDMM

BCM
fd

 DTCF rBCM
fd

 PDMM rBCM
fd

 DTCF

(b) RMSE of predictive variances.

Figure 4.5: The figure shows the RMSE comparison DTCF and PDMM based methods. The
methods applied include both DTCF and PDMM version of PoE, gPoE, BCM and rBCM

57

4.4.3 Real dataset: GHRSST

The methods are also simulated in a field cropped from the GHRSST datasets. Due
to time limit, only one subset of the real dataset is selected for simulation. The ranges
of the field are respectively [145.0, 150.5] and [37.0, 40.0] on longitude and latitude
directions (or referred as x and y axes). The field is shown in the background in Figure
3.6a. It should be noticed that the graph topology in the simulations for real datasets
are different from those applied to artificial datasets.

Table 4.4: Parameters & variables of GP aggregation

Parameters & variables Values Comment

Nexp 1 Number of simulation

N∗ 10000 Points to be predicted

|D| 1600 Size of training dataset

M {2, 4, 8, 12, 16} Number of agents

{σf , l1, l2, σn} {8.5, 1.6, 1.2, 0.7} Hyperparameters and noise variance
trained by pxADMMfd

ν 0.9 1
∆

Used in DTCF based fully-distributed
PoE and BCM families

c 0.35
Used in PDMM based fully-distributed

PoE and BCM families

ν 0.9 2
M Used in NPAE-JOR

The Figure 4.6 shows the RMSE of predictive means and variances of examined
methods. In Figure 4.7, the RMSE of PDMM and DTCF based algorithms are com-
pared.

PDMM based methods As shown in Figure 4.7, the PDMM start to have obviously
better performance than DTCF when the number of agent is larger than 12, which is
different from the results shown in Figure 4.5. A reason contributing to the difference is
that the connectivity of graphs are high for the numbers of agents 2, 4, 8 and 12, which is
illustrated in Figure A.19. The result shows that PDMM and DTCF based aggregations
are likely to give similar results in MAS with good connectivity, but PDMM performs
better when the network is not highly connected.

NPAE-JOR and CON-NPAE From the Figure 4.6, it can be found that the errors
of NPAE-JOR are sometimes lower than errors of DTCF-gPoE, DTCF-BCM or DTCF-
rBCM. However, NPAE-JOR still have generally larger errors than the DTCF-BCM
and DTCF-rBCM methods, which indicates that the JOR algorithm applied here is
still not stable with non-optimal choice of ν parameter.

As for the CON-NPAE, the method performs better than the other methods, except
when the number of agents is 16 that it has same performance as DTCF-rBCM. The

58

reason is the same as that analyzed in Section 4.4.2, that is the CON-NPAE can utilize
lower proportion of global dataset, which counteract the performance improvement of
NPAE.

The results of CON-NPAE from both artificial and real datasets indicate that the
performance of CON-NPAE is associated with the graph structure, especially with the
graph connectivity, which could be further studied in future works.

59

2 4 6 8 10 12 14 16

number of agents

10 -2

10 -1

10 0

R
M

S
E

PDMM-gPoE(proposed) DTCF-gPoE PDMM-BCM(proposed)

DTCF-BCM PDMM-rBCM(proposed) DTCF-rBCM

NPAE-JOR CON-NPAE(proposed)

(a) RMSE of predictive means.

2 4 6 8 10 12 14 16

number of agents

10 -2

10 -1

10 0

R
M

S
E

PDMM-gPoE(proposed) DTCF-gPoE PDMM-BCM(proposed)

DTCF-BCM PDMM-rBCM(proposed) DTCF-rBCM

NPAE-JOR CON-NPAE(proposed)

(b) RMSE of predictive variances.

Figure 4.6: The figure shows the RMSE comparison of the simulated methods. The consensus
average algorithm applied is DTCF. (a). The RMSE comparison of the predictive means. (b).
The RMSE comparison of the predictive variances.

60

2 4 6 8 10 12 14 16

Agents number

10 -2

10 -1

10 0

R
M

S
E

PDMM-gPoE DTCF-gPoE PDMM-BCM

DTCF-BCM PDMM-rBCM DTCF-rBCM

(a) RMSE of predictive means.

2 4 6 8 10 12 14 16

Agents number

10 -2

10 -1

10 0

R
M

S
E

PDMM-gPoE DTCF-gPoE PDMM-BCM

DTCF-BCM PDMM-rBCM DTCF-rBCM

(b) RMSE of predictive variances.

Figure 4.7: The figure shows the RMSE comparison DTCF and PDMM based methods. The
methods applied include both DTCF and PDMM version of PoE, gPoE, BCM and rBCM

61

4.5 Conclusion

1. Current methods:

• (g)PoE/(r)BCM methods with main advantage of low computational com-
plexity. Their drawbacks are mainly inconsistent prediction regards to the
real underlying function or full GPR results. Their distribution are realized
through assistance of consensus average algorithm DTCF.

• NPAE method with main advantage of providing consistent predictions. The
drawback meanly lies in 1). the large computational overhead due to the
flooding of necessary data points across the network, 2). and also the com-
plete network requirement. The NPAE is distributed through reformulating
the problem into distributed linear algebraic problems that can be solved
by distributed solvers, e.g., JOR or DALE. The drawback of the distributed
NPAE lies in the 1). large flooding overhead, 2). and parameters to be tuned
in JOR.

2. Main contributions:

• Proposing PDMM based DEC-(g)PoE/(r)BCM methods, which decrease the
number of iterations needed for aggregation.

• Proposing LOC-NPAE and CON-NPAE methods, which alleviate the flood-
ing overhead of classical NPAE, NPAE-JOR and NPAE-DALE. The proposed
methods are expected to alleviate both computational and memory complex-
ity compared to previous NPAE based methods. However, the simulation
results shows that the performance of CON-NPAE can be constrained by the
DTCF-rBCM, especially when the number of agents increase. Because, as
the number of agents increase, the contribution of NPAE to the aggregation
is relatively reduced, while the DTCF-rBCM becomes dominant.

62

Discussion and Conclusion 5
I
n this chapter, the contributions of this thesis are further discussed. Possible future
works are also introduced.

5.1 Conclusion - Hyperparameter Optimization

5.1.1 Research problem

In Chapter 3, the fully-distributed Gaussian Process hyperparameters optimization
problem is introduced and discussed. By optimizing the hyperparameters, Gaussian
Process can be optimized to best fit the given training datasets in terms of Likelihood
in Equation (3.3). The optimization problem is formulated as problem P0 in Equation
(3.4), which is restated as follow

P0 : min
θ

l(θ) = yTK−1 (θ)y + log |K (θ)| . (5.1)

Recall the problem stated in Chapter 1 about hyperparameter optimization

• In a MAS, how to train Gaussian Process models, i.e., learning hyperparame-
ters from sampling points in the unknown fields, for environmental monitoring
applications in a fully-distributed manner that does not relies on center station.

5.1.2 Current methods

To solve the problem in MAS, the target function can be divided through dividing
dataset into local datasets on agents, which results in problem P1 in Equation (3.5).
By further restricting GP to be stationary across the field, the optimization problem
can be formulated as P2 in Equation (3.9) by adding consensus constraints on hyperpa-
rameters. Further modification to edge-based constraints gives fully-distributed version
as P3 in Equation (3.15).

Classical methods applied to the aforementioned problem includes nGD and ADMM
(centralized and distributed). A state-of-the-art solution to the problem is pxADMM
as introduced in Section 3.2.3, which adapts proximal hyperparameters update so that
exact optimization of a sophisticated target function is avoided.

5.1.3 Proposed methods

Based on the pxADMM and fully-distributed ADMM, two algorithms are proposed to
extend pxADMM to fully-distributed algorithms.

63

• The first one successfully extends the pxADMM so that the optimization can be
applied in fully-distributed MAS. As shown by the simulation results in Figure A.5
and 3.4, the pxADMMfd converges to the preset hyperparameters, though much
slower than the centralized pxADMM. It has been proven [24] that the convergence
can be achieved as long as ρ and L in Equation (3.21) are large enough, where ρ
controls the weight of quadratic term in augmented Lagrangian, and L should be
larger than the gradient of l(θ) everywhere.

• The second methods pxADMM∗
fd is also based on ADMMfd, but adapts hyper-

parameters update directly from pxADMM, where the global z and local λm are
replaced by their local counterparts. Though the convergence of this method has
not been mathematically proven, experimental results shows convergence under
large enough ρ and L values. The method also converge faster than pxADMMfd,
and has equivalent convergence speed as centralized pxADMM.

In a synchronized network, fast agents has to wait for slow agents, which slower
down the processing speed in the network for each iteration. Also, synchronization in
large MAS is itself a burden. To solve the problem, asynchronous versions of fully-
distributed pxADMM are developed based on two strategies.

• The partial barrier specifies that an agent do not need to receive all updates from
neighbors, which introduces asynchronous behavior.

• The bounded delay ensures that a link between two agents is always activated
after certain number of iterations.

5.1.4 Conclusion

The proposed algorithms pxADMMfd, pxADMM∗
fd are fully-distributed ones that can

be fitted into MAS. The simulation results in both artificial and real datasets show that
the algorithms can stably learn hyperparameter sets based on limited sampling points
from the unknown environmental field. With a proper choice of hyperparameters, the
GP can well model the scalar field in environmental monitoring task.

The proposed asynchronous algorithms pxADMMasync, pxADMM∗
async converge to

the same value under the same number of update iterations as the synchronous al-
gorithms. The asynchronous behavior can provide MAS with higher robustness in
environmental monitoring task.

5.2 Conclusion - Distributed Aggregation

5.2.1 Research problem

In Chapter 4, the fully-distributed Gaussian Process prediction aggregation problem is
introduced and discussed. Recall the problem statement from Chapter 1.

• Based on the sampled data points, how does a MAS with distributed Gaussian
Process models predicts the unknown field with an compatible accuracy as the
full Gaussian Process.

64

According to the statement, the goal of GP aggregation is to recover the underlying
environmental field based on local predictions in MAS, such that the quality of pre-
diction is comparable with full GPR. At the same time, the computational complexity
should also be considered.

5.2.2 Current methods

The current efforts of solving the problem can be classified into two groups based on
whether the method makes independent assumption on the local datasets. Under inde-
pendence assumption, the posterior distribution can be totally factorized into product
of local posterior distributions as explained in Section 4.1.3. Based on the assumption,
the PoE, gPoE, BCM and rBCM have been proposed. On the contrary, the other group
of methods, including NPAE and grBCM, consider the cross-correlations among local
datasets.

As shown in Section 4.2.1, the PoE and BCM families of methods can be distributed
through solving distributed consensus average problem. The current algorithm applied
is DTCF, of which the convergence speed is affected by the graph connectivity.

The NPAE method can be distributed through solving linear algebraic problems.
The current solutions include JOR in complete network and DALE for connected net-
work. Even though DALE is claimed to extend the algorithm to connected graph, the
local datasets still need to be flooded through the network before aggregation, which
is a time-consuming and computational expensive process.

5.2.3 Proposed methods

To reduce the iterations needed for fully-distributed PoE and BCM methods, PDMM
is introduced to solve the consensus average problem. PDMM has been proved to
converge for the distributed consensus average problem at a rate of O(1

t
), where the t

represents the number of iterations.
Based on the simulation results from Chapter 4, the PDMM based PoE and BCM

families of methods have shown improved performance compared to their DTCF ver-
sions, i.e., fewer iterations are needed to achieve the same error. Thus, the PDMM
based aggregation methods are suitable for application on MAS, where the computa-
tional and communication abilities are usually constrained.

To extend the NPAE method to fully-distributed aggregation, the NN-NPAE and
CON-NPAE methods are proposed. The assumption of NN-NPAE is that the local
neighborhood contains the most relevant datasets to the selected agents. Based on the
assumption, the NN-NPAE on a single agent only perform NPAE based on the datasets
from local neighborhood. In order to let the local agents reconstruct the global field,
the rBCMfd is concatenated with NN-NPAE to provide global aggregation.

As for the performance, the CON-NPAE only performs better than independence
assumption based methods when the network is small. The reason is that, though NN-
NPAE provides the agents with good aggregations around local areas, more information
are provided by the rBCMfd, which limits the general performance of CON-NPAE
method.

65

Also, it is found from the simulation results that the current method of NPAE-JOR
and NPAE-DALE do not show high robustness of convergence, but requires fine tune
of parameters, which could be the drawback of applying them in MAS.

5.2.4 Conclusion

The proposed PDMM based PoE and BCM families of methods require smaller number
of iterations for the GP aggregation task than their DTCF based counterparts. The
PDMM based algorithms reduce the computational complexity of the environmental
monitoring task based on GP. The algorithms are also favored in terms of the commu-
nication and computation energy saved in MAS.

The proposed NN-NPAE and CON-NPAE extend the NPAE methods to fully-
distributed situation, such that flooding variables across MAS is not required, which
reduces the computational complexity compared with the current NPAE-JOR algo-
rithm. In small network with high connectivity, CON-NPAE outperforms the PoE and
BCM families of methods, but has equal or worse performance in large network with
low connectivity. Future work can be focused on related issue.

5.3 Future work

5.3.1 Distributed hyperparameter optimization

• As discussed in Section 3.3.1 and Section 3.4, the pxADMM∗
fd has shown to con-

verge in the simulations, but not been proved analytically. Future research could
be down on the convergence analysis of pxADMM∗

fd.

• The Cross-Validation based methods are not focused in this thesis. However, it
would also be interesting to study the CV based GP hyperparameter optimization
in MAS.

5.3.2 Distributed GP aggregation

• As discussed in Section 4.1.4, the centralized NPAE have been proven to be con-
sistent GP aggregation methods. However, simulations from Section 4.4 shows
the distribution of NPAE comes at a cost of high computational complexity and
unstable convergence. Another potential solution is the NPAE based on inducing
points methods [48]. The idea is that only small proportion of the most repre-
sentative points from local datasets are selected to be exchanged among agents,
which could reduce the computational, memory and especially communication
complexity.

• Based on the simulation results, it can be noticed that the graph structure plays
a role in the aggregation performance of different methods, which, however, is
not extensively studied in this thesis. The influence of graph structure on GP
aggregation performance could be a meaningful topic as future research.

66

Bibliography

[1] A. Xie, F. Yin, Y. Xu, B. Ai, T. Chen, and S. Cui, “Distributed Gaussian Processes
Hyperparameter Optimization for Big Data Using Proximal ADMM,” IEEE Signal
Processing Letters, vol. 26, no. 8, pp. 1197–1201, 2019.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.

[3] N. A. Atanasov, J. Le Ny, and G. J. Pappas, “Distributed algorithms for stochastic
source seeking with mobile robot networks,” Journal of Dynamic Systems, Mea-
surement and Control, Transactions of the ASME, vol. 137, no. 3, pp. 1–9, 2015.

[4] J. Choi, S. Oh, and R. Horowitz, “Distributed learning and cooperative control
for multi-agent systems,” Automatica, vol. 45, no. 12, pp. 2802–2814, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.automatica.2009.09.025

[5] K. Tiwari, V. Honore, S. Jeong, N. Y. Chong, and M. P. Deisenroth, “Resource-
constrained decentralized active sensing for multi-robot systems using distributed
Gaussian processes,” International Conference on Control, Automation and Sys-
tems, vol. 0, no. Iccas, pp. 13–18, 2016.

[6] A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand, “Hierarchical
Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets,”
Journal of the American Statistical Association, vol. 111, no. 514, pp. 800–812,
2016. [Online]. Available: http://dx.doi.org/10.1080/01621459.2015.1044091

[7] F. Yin and F. Gunnarsson, “Distributed Recursive Gaussian Processes for RSS
Map Applied to Target Tracking,” IEEE Journal on Selected Topics in Signal
Processing, vol. 11, no. 3, pp. 492–503, 2017.

[8] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and R. E.
Davis, “Collective motion, sensor networks, and ocean sampling,” Proceedings of
the IEEE, vol. 95, no. 1, pp. 48–74, 2007.

[9] K. H. Rosen, Discrete Mathematics and its applications, 2019. [Online]. Available:
https://academic.oup.com/teamat/article-lookup/doi/10.1093/teamat/hrq007

[10] A. T. A. Wood and G. Chan, “Simulation of Stationary Gaussian Processes in
[0, 1]d,” Journal of Computational and Graphical Statistics, vol. 3, no. 4, p. 409, dec
1994. [Online]. Available: https://www.jstor.org/stable/1390903?origin=crossref

[11] Z. Botev, “Circulant Embedding method for gen-
erating stationary Gaussian field,” 2016. [Online].
Available: https://www.mathworks.com/matlabcentral/fileexchange/
38880-circulant-embedding-method-for-generating-stationary-gaussian-field

67

http://dx.doi.org/10.1016/j.automatica.2009.09.025
http://dx.doi.org/10.1080/01621459.2015.1044091
https://academic.oup.com/teamat/article-lookup/doi/10.1093/teamat/hrq007
https://www.jstor.org/stable/1390903?origin=crossref
https://www.mathworks.com/matlabcentral/fileexchange/38880-circulant-embedding-method-for-generating-stationary-gaussian-field
https://www.mathworks.com/matlabcentral/fileexchange/38880-circulant-embedding-method-for-generating-stationary-gaussian-field

[12] NASA/JPL, “GHRSST Level 4 MUR Global Foundation Sea Surface Temperature
Analysis (v4.1),” 2015. [Online]. Available: http://podaac.jpl.nasa.gov/dataset/
MUR-JPL-L4-GLOB-v4.1

[13] T. M. Chin, J. Vazquez-Cuervo, and E. M. Armstrong, “A multi-scale
high-resolution analysis of global sea surface temperature,” Remote Sensing of
Environment, vol. 200, no. December 2016, pp. 154–169, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.rse.2017.07.029

[14] S. Theodoridis, “Chapter 3 - Learning in Parametric Modeling: Basic Concepts
and Directions,” in Machine Learning (Second Edition), second edi ed.,
S. Theodoridis, Ed. Academic Press, 2020, pp. 67–120. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B978012818803300012X

[15] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis, “Parallel Gaussian Process
Optimization with Pure Exploration,” Springer, pp. 225–240, 2013. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-3-642-40988-2 15%0Ahttp:
//www.ecmlpkdd2013.org/wp-content/uploads/2013/07/460.pdf

[16] P. Congdon, Applied Bayesian Modelling, ser. Wiley Series in Probability and
Statistics. Chichester, UK: John Wiley & Sons, Ltd, mar 2003, vol. 59. [Online].
Available: http://doi.wiley.com/10.1002/0470867159

[17] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning.
the MIT Press, 2006. [Online]. Available: www.GaussianProcess.org/gpml

[18] M. L. Stein, Interpolation of Spatial Data, ser. Springer Series in Statistics.
New York, NY: Springer New York, 1999. [Online]. Available: http:
//link.springer.com/10.1007/978-1-4612-1494-6

[19] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
USA: Prentice-Hall, Inc., 1993.

[20] L. Xu, F. Yin, J. Zhang, Z.-Q. Luo, and S. Cui, “A General O(n2)
Hyper-Parameter Optimization for Gaussian Process Regression with Cross-
Validation and Non-linearly Constrained ADMM,” 2019. [Online]. Available:
http://arxiv.org/abs/1906.02387

[21] A. Kaplan and R. Tichatschke, “Proximal Point Methods and Nonconvex Opti-
mization,” Journal of Global Optimization, vol. 13, no. 4, pp. 389–406, 1998.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2009.

[23] R. T. Rockafellar, “Augmented Lagrangians and Applications of the Proximal
Point Algorithm in Convex Programming.” Mathematics of Operations Research,
vol. 1, no. 2, pp. 97–116, 1976.

[24] M. Hong, Z. Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 337–364, 2016.

68

http://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
http://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
http://dx.doi.org/10.1016/j.rse.2017.07.029
https://www.sciencedirect.com/science/article/pii/B978012818803300012X
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_15%0Ahttp://www.ecmlpkdd2013.org/wp-content/uploads/2013/07/460.pdf
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_15%0Ahttp://www.ecmlpkdd2013.org/wp-content/uploads/2013/07/460.pdf
http://doi.wiley.com/10.1002/0470867159
www.GaussianProcess.org/gpml
http://link.springer.com/10.1007/978-1-4612-1494-6
http://link.springer.com/10.1007/978-1-4612-1494-6
http://arxiv.org/abs/1906.02387

[25] R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for consensus opti-
mization,” 31st International Conference on Machine Learning, ICML 2014, vol. 5,
no. 2, pp. 3689–3697, 2014.

[26] E. Wei and A. Ozdaglar, “On the O(1/k) Convergence of Asynchronous
Distributed Alternating Direction Method of Multipliers,” 2013 IEEE Global
Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings,
pp. 551–554, jul 2013. [Online]. Available: http://arxiv.org/abs/1307.8254

[27] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous distributed op-
timization using a randomized alternating direction method of multipliers,” Pro-
ceedings of the IEEE Conference on Decision and Control, pp. 3671–3676, 2013.

[28] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of Gaussian process ex-
perts,” Advances in Neural Information Processing Systems, 2002.

[29] E. Meeds and S. Osindero, “An alternative infinite mixture of Gaussian Process
experts,” Advances in Neural Information Processing Systems, pp. 883–890, 2005.

[30] C. Yuan and C. Neubauer, “Variational mixture of Gaussian process experts,”
Advances in Neural Information Processing Systems 21 - Proceedings of the 2008
Conference, pp. 1897–1904, 2009.

[31] Y. Shen, A. Y. Ng, and M. Seeger, “Fast Gaussian process regression using kd-
trees,” Advances in Neural Information Processing Systems, pp. 1225–1232, 2005.

[32] V. Tresp, “A Bayesian Committee Machine,” Neural Computation, vol. 12,
no. 11, pp. 2719–2741, nov 2000. [Online]. Available: https://direct.mit.edu/
neco/article/12/11/2719-2741/6426

[33] G. E. Hinton, “Training Products of Experts by Minimizing Contrastive
Divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, aug 2002.
[Online]. Available: https://direct.mit.edu/neco/article/14/8/1771-1800/6687

[34] J. W. Ng and M. P. Deisenroth, “Hierarchical Mixture-of-Experts Model
for Large-Scale Gaussian Process Regression,” 2014. [Online]. Available:
http://arxiv.org/abs/1412.3078

[35] Y. Cao and D. J. Fleet, “Generalized Product of Experts for Automatic and
Principled Fusion of Gaussian Process Predictions,” no. ii, pp. 1–5, 2014. [Online].
Available: http://arxiv.org/abs/1410.7827

[36] M. P. Deisenroth and J. W. Ng, “Distributed Gaussian processes,” in 32nd Interna-
tional Conference on Machine Learning, ICML 2015, vol. 2, 2015, pp. 1481–1490.

[37] H. Liu, J. Cai, Y. Wang, and Y.-S. S. Ong, “Generalized robust Bayesian
committee machine for large-scale Gaussian process regression,” in International
Conference on Machine Learning. PMLR, jun 2018, pp. 3131–3140. [Online].
Available: http://arxiv.org/abs/1806.00720

69

http://arxiv.org/abs/1307.8254
https://direct.mit.edu/neco/article/12/11/2719-2741/6426
https://direct.mit.edu/neco/article/12/11/2719-2741/6426
https://direct.mit.edu/neco/article/14/8/1771-1800/6687
http://arxiv.org/abs/1412.3078
http://arxiv.org/abs/1410.7827
http://arxiv.org/abs/1806.00720

[38] D. Rullière, N. Durrande, F. Bachoc, and C. Chevalier, “Nested Kriging
predictions for datasets with a large number of observations,” Statistics
and Computing, vol. 28, no. 4, pp. 849–867, jul 2018. [Online]. Available:
http://link.springer.com/10.1007/s11222-017-9766-2

[39] F. Bachoc, N. Durrande, D. Rullière, and C. Chevalier, “Properties and Compari-
son of Some Kriging Sub-model Aggregation Methods,” Mathematical Geosciences,
no. 20, 2022.

[40] D. Gu and H. Hu, “Spatial gaussian process regression with mobile sensor net-
works,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23,
no. 8, pp. 1279–1290, 2012.

[41] G. Pillonetto, L. Schenato, and D. Varagnolo, “Distributed multi-agent Gaussian
regression via finite-dimensional approximations,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 9, pp. 2098–2111, 2018.

[42] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation
in Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, jan 2007. [Online]. Available: http://ieeexplore.ieee.org/document/
5485032/http://ieeexplore.ieee.org/document/4118472/

[43] G. P. Kontoudis and D. J. Stilwell, “Fully Decentralized, Scalable Gaussian
Processes for Multi-Agent Federated Learning,” 2022. [Online]. Available:
http://arxiv.org/abs/2203.02865

[44] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods, 2003. [Online]. Available: papers2://publication/uuid/
491F0F0A-5B39-4B26-BF18-611A76CF0FDE

[45] X. Wang, S. Mou, and D. Sun, “Improvement of a Distributed Algorithm for
Solving Linear Equations,” IEEE Transactions on Industrial Electronics, vol. 64,
no. 4, pp. 3113–3117, 2017.

[46] G. Zhang and R. Heusdens, “Distributed Optimization Using the Primal-Dual
Method of Multipliers,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 4, no. 1, pp. 173–187, mar 2018. [Online]. Available:
http://ieeexplore.ieee.org/document/7859410/

[47] T. Sherson, R. Heusdens, and W. B. Kleijn, “On the relationship between pdmm
and a distributed admm variant,” in 2017 Symposium on Information Theory and
Signal Processing in the Benelux, p. 201.

[48] M. K. Titsias, “Variational Learning of Inducing Variables in Sparse Gaussian
Processes,” JMLR Workshop and Conference Proceedings, vol. 5, pp. 567–574,
2009.

70

http://link.springer.com/10.1007/s11222-017-9766-2
http://ieeexplore.ieee.org/document/5485032/ http://ieeexplore.ieee.org/document/4118472/
http://ieeexplore.ieee.org/document/5485032/ http://ieeexplore.ieee.org/document/4118472/
http://arxiv.org/abs/2203.02865
papers2://publication/uuid/491F0F0A-5B39-4B26-BF18-611A76CF0FDE
papers2://publication/uuid/491F0F0A-5B39-4B26-BF18-611A76CF0FDE
http://ieeexplore.ieee.org/document/7859410/

Appendix A
A.1 Figures of Hyperparameter Optimization

(a) hyperparameters

(b) step size

Figure A.1: Change of hyperparameters and step size in term of iteration number for nGD

71

(a) hyperparameters

(b) step size

Figure A.2: Change of hyperparameters and step size in term of iteration number for central-
ized ADMM

72

(a) hyperparameters

(b) step size

Figure A.3: Change of hyperparameters and step size in term of iteration number for fully-
distributed ADMM

73

(a) hyperparameters

(b) step size

Figure A.4: Change of hyperparameters and step size in terms of iteration number for cen-
tralized pxADMM

74

(a) hyperparameters

(b) step size

Figure A.5: Change of hyperparameters and step size in terms of iteration number for
pxADMMfd

75

(a) hyperparameters

(b) step size

Figure A.6: Change of hyperparameters and step size in terms of iteration number for
pxADMM∗

fd

76

(a) hyperparameters

(b) step size

Figure A.7: Change of hyperparameters and step size in terms of iteration number for
pxADMMasync

77

(a) hyperparameters

(b) step size

Figure A.8: Change of hyperparameters and step size in terms of iteration number for
pxADMM∗

async

78

(a) hyperparameters

(b) step size

Figure A.9: Change of hyperparameters and step size in term of iteration number for nGD

79

(a) hyperparameters

(b) step size

Figure A.10: Change of hyperparameters and step size in term of iteration number for cen-
tralized ADMM

80

(a) hyperparameters

(b) step size

Figure A.11: Change of hyperparameters and step size in term of iteration number for fully-
distributed ADMM

81

(a) hyperparameters

(b) step size

Figure A.12: Change of hyperparameters and step size in terms of iteration number for
centralized pxADMM

82

(a) hyperparameters

(b) step size

Figure A.13: Change of hyperparameters and step size in terms of iteration number for
pxADMMfd

83

(a) hyperparameters

(b) step size

Figure A.14: Change of hyperparameters and step size in terms of iteration number for
pxADMM∗

fd

84

(a) hyperparameters

(b) step size

Figure A.15: Change of hyperparameters and step size in terms of iteration number for
pxADMMasync

85

(a) hyperparameters

(b) step size

Figure A.16: Change of hyperparameters and step size in terms of iteration number for
pxADMM∗

async

86

rBCM
fd

 Mean and Variance consensus error

0 5 10 15 20 25

iterations

10
-2

10
0

10
2

c
o

n
s
e

n
s
u

s
 e

rr
o

r

Mean Error

DTCF PDMM

0 5 10 15 20 25

iterations

10
-2

10
0

10
2

c
o

n
s
e

n
s
u

s
 e

rr
o

r

Variance Error

Figure A.17: The figure shows an example of the consensus error - iteration curves of PDMM
and DTCF methods. It can be found that the PDMM converges faster than the DTCF
methods in terms of the consensus error.

87

Figure A.18: Topology of MAS under different number of agents in artificial dataset simula-
tion. The numbers of agents from left to right are respectively 2, 4, 8, 12 and 16. It can be
found that the topology of network with 16 agents looks less connected than the other.

Figure A.19: Topology of MAS under different number of agents in real dataset simulation.
The numbers of agents from left to right are respectively 2, 4, 8, 12 and 16. It can be
found that the topology of network with 16 agents looks like a tree structure, which is a less
connected structure than the first 4 graphs on the left.

88

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Acronyms and Nomenclatures
	Introduction
	Background & Problem Statement
	Multi-agent systems
	Environmental monitoring
	Problem statement

	Preliminaries
	Notation
	Graph model

	Datasets and simulations
	Underlying field
	Simulation and sampling setting

	Contributions
	Outline
	Conclusion

	Gaussian Process Regression A Brief Introduction
	Choosing data model
	Parametric and non-parametric model
	Bayesian Modeling

	Gaussian Process regression
	Prior model
	Posterior prediction

	Conclusion

	Distributed GP Hyperparameter Optimization
	Centralized GP hyperparameter optimization
	Motivation
	Cross-validation
	Bayesian model selection

	Distributed hyperparameter optimization
	Naïve Gradient Descent (nGD) Xie2019
	Alternated direction method of multipliers (ADMM) Boyd2010
	Proximal ADMM (pxADMM)

	Proposed fully-distributed hyperparameter optimization
	Fully-distributed proximal ADMM (pxADMMfd)
	Asynchronous proximal ADMM (pxADMMasync)

	Simulation&Discussion
	Artificial dataset
	Real dataset: GHRSST

	Conclusion

	Distributed GP Aggregation
	GP aggregation
	Background
	GP Aggregation problem
	Independent aggregation
	Nested aggregation
	Other aggregation methods

	Distributed GP Aggregation
	Fully-distributed PoE and BCM families
	Distributed NPAE

	Proposed distributed aggregation methods
	PDMM-PoE/BCM
	LOC-NPAE and CON-NPAE

	Simulation
	Quality assessment
	Artificial dataset
	Real dataset: GHRSST

	Conclusion

	Discussion and Conclusion
	Conclusion - Hyperparameter Optimization
	Research problem
	Current methods
	Proposed methods
	Conclusion

	Conclusion - Distributed Aggregation
	Research problem
	Current methods
	Proposed methods
	Conclusion

	Future work
	Distributed hyperparameter optimization
	Distributed GP aggregation

	Appendix
	Figures of Hyperparameter Optimization

