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Morphic words are letter-to-letter images of fixed points x of morphisms on finite 
alphabets. There are situations where these letter-to-letter maps do not occur naturally, 
but have to be replaced by a morphism. We call this a decoration of x. Theoretically, 
decorations of morphic words are again morphic words, but in several problems the idea 
of decorating the fixed point of a morphism is useful. We present two of such problems. 
The first considers the so called A A sequences, where α is a quadratic irrational, A is 
the Beatty sequence defined by A(n) = �αn�, and A A is the sequence (A(A(n))). The 
second example considers homomorphic embeddings of the Fibonacci language into the 
integers, which turns out to lead to generalized Beatty sequences with terms of the form 
V (n) = p�αn� + qn + r, where p, q and r are integers.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to show that if one suspects an infinite word on a finite alphabet to be a morphic word, i.e., 
the letter-to-letter image of a fixed point of a morphism, then the way to achieve this is not to try to do this directly, but 
indirectly. By the latter we mean that one replaces the search for a fixed point and a letter-to-letter map by a search for 
a fixed point and a more general object: a morphism. To emphasize this principle, we call this morphism a decoration, and 
the infinite word will then be a decoration of a fixed point. It is well-known that the class of decorations of fixed points of 
morphisms is equal to the class of morphic words, see, e.g., Corollary 7.7.5 in the monograph by Allouche and Shallit [2]. 
Their proof, although algorithmic, is somewhat indirect. We will be using a ‘natural’ algorithm to go from the decorated 
fixed point to a morphic word, given, e.g., in [16]. We describe this algorithm in the proof of Corollary 9.

We illustrate the usefulness of this ‘decoration principle’ by giving two examples: iterated Beatty sequences in Section 3
and integer images of the Fibonacci language in Section 4. In that section we solve the Frobenius problem for homomor-
phic embeddings of the Fibonacci language in the set of integers, which means that we give a precise description of the 
complement of this embedding.

Although the two examples are seemingly unrelated, they are connected by the appearance of generalized Beatty se-
quences, which we define in Section 2.

In the appendix we give a different proof that the difference sequence of the iterated Beatty sequence A A defined by 
A A(n) = �n�n

√
2�� is a morphic word. This leads to a morphic word on an alphabet of size 4. We conjecture that this is 

the smallest size possible, which is equivalent to the conjecture that the difference sequence of A A is not a fixed point of a 
morphism.
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For some general results for a special class of decorations of fixed points of morphisms see [15]. In [15] the decorations 
are so called marked morphisms, which in some sense are the opposite of the decorations that one will encounter in the 
present paper. We mention also that decorations of morphisms are closely connected to HD0L-systems. See [19] for some 
recent results on these in the context of Beatty sequences, which in some sense are also opposite to our results.

2. Generalized Beatty sequences

Let α be an irrational number larger than 1, then A defined by A(n) = �nα� for n ≥ 1 is known as the Beatty sequence of
α. Here, �·� denotes the floor function. Following [3] we call any sequence V of the form

V (n) = p A(n) + qn + r for n ≥ 1

where p, q, r are integers, a generalized Beatty sequence, for short a GBS.
If S is a sequence, we denote its sequence of first order differences as �S , i.e., �S is defined by

�S(n) = S(n + 1) − S(n), for n = 1,2 . . .

How does one recognize GBS’s? In general this is not easy, but there is a useful characterization for quadratic irrational 
numbers α, which have the property that α ∈ (0, 1) and their algebraic conjugate α /∈ (0, 1). These are known as the Sturm 
numbers. In general, the sequences of first differences

cα := (�(n + 1)α� − �nα�) = (
�A(n)

)

are called Sturmian sequences. The characterization is derived from the following key result, which is also proved in the 
monographs [2] and [17].

Proposition 1. ([10], [1]) Let α be a Sturm number. Then there exists a morphism σα on the alphabet {0, 1}, such that σα(cα) = cα .

In the following we will consider the variants of σα on various other alphabets than {0, 1}, but will not indicate this in 
the notation. As noted in [3], the following lemma follows directly from Proposition 1 by realising that

V = p A + q Id + r ⇒ V (n + 1) − V (n) = p(A(n + 1) − A(n)) + q = p cα(n) + q.

Lemma 2. (Allouche and Dekking [3]) Let α be a Sturm number. Let V = (V (n))n≥1 be the generalized Beatty sequence defined 
by V (n) = p(�nα�) + qn + r, and let �V be the sequence of its first differences. Then �V is the fixed point of σα on the alphabet 
{q, p + q}.

3. Iterated Beatty sequences

Recall that a Beatty sequence is a sequence A = (A(n))n≥1, with A(n) = �nα� for n ≥ 1, where α is a positive real number. 
What Beatty observed is that when B = (B(n))n≥1 is the sequence defined by B(n) = �nβ�, with α and β satisfying

1

α
+ 1

β
= 1, (1)

then A and B are complementary sequences, that is, the sets {A(n) : n ≥ 1} and {B(n) : n ≥ 1} are disjoint and their union is 
the set of positive integers. In particular if α = ϕ = 1+√

5
2 is the golden mean, this gives that the sequences (�nϕ�)n≥1 and 

(�nϕ2�)n≥1 are complementary.
In this paper we look at sequences as functions from N to N . In this way compositions Z = XY of two sequences X

and Y are defined as the sequence given by Z(n) = X(Y (n)) for n ∈N .
A well known result on the composition of Beatty sequences in the golden mean case is the following.

Theorem 3. (Carlitz-Scoville-Hoggatt [7]) Let U = (U (n))n≥1 be a composition of the sequences A = (�nϕ�)n≥1 and B =
(�nϕ2�)n≥1 , containing i occurrences of A and j occurrences of B, then for all n ≥ 1

U (n) = Fi+2 j A(n) + Fi+2 j−1n − λU ,

where Fk are the Fibonacci numbers (F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn) and λU is a constant.

This means that any composition of A and B can be written as an integer linear combination p A + qId + r, where Id is 
defined by Id(n) = n. The length 2 compositions in Theorem 3 give
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A A = B − 1 = A + Id − 1, AB = A + B = 2A + Id, B A = A + B − 1 = 2A + Id − 1, B B = A + 2B = 3A + 2Id.

A result as Theorem 3 does not hold for all quadratic irrationals. If we take, for example, α = √
2, i.e., we consider the 

Beatty sequence given by A(n) = �n
√

2�, then the complementary Beatty sequence B is given by B(n) = �n(2 + √
2)�. It is 

proved in [8] (see also [14]) that for n ≥ 1

AB(n) = �√2�n(2 + √
2)�� = A(n) + B(n) = 2A(n) + 2n.

However, no expression for A A is given.1 In fact, one can easily prove that there do not exist integers p, q and r such that 
A A = p A +qId + r. This follows from Lemma 2 in Section 2, since the first order difference sequence of A A takes more than 
2 values. Still, expressions for A A are known involving the sequence �√2{n√

2}�, see Theorem 1 in [13], and see [5].
Why does the golden mean always yield GBS’s for the difference sequences of the compositions of A and B , but the 

silver mean does not? Our Theorem 5 clarifies the situation.
From now on we focus on the iterated Beatty sequence A A given by A A(n) = ��nα�α�. It has been studied by many 

authors. See, among others, [7], [8], [13], [4], [5]. The main effort in these papers has been to express A A as a linear 
combination of A, Id and the constant function.

Here is an important basic result on the iterates of the Beatty sequence A(n) = �nα� for algebraic α of degree d. In the 
following, {nα} = nα − �nα� is the fractional part of nα.

Theorem 4. (Fraenkel [13]) Let d ≥ 1 and a0, ..., ad, n, K , L, M ∈Z. Suppose that adxd + ad−1xd−1 + · · · + a1x + a0 = 0 has a real 
nonzero root α. Let A(n) = �nα�. Then

A
(
M + Ln + ∑d−2

i=0 Ai(Kai+2 A(n))
) = (L − Ka1)A(n) − Ka0n + D, where D is bounded in n, namely,

D = �Mα + (L + Ka0α
−1){nα} − θα�, where θ = ∑d−2

i=1 (Kai+2 A(n)αi − Ai(Kai+2 A(n))).

We are interested only in the case d = 2. Let (x − α)(x − α) be the minimal polynomial of a quadratic irrational α.

Theorem 5. Let α > 1 be a quadratic irrational with minimal polynomial in Z[x]. Let A(n) = �nα�. The sequence A A is a generalized 
Beatty sequence if and only if |α| < 1.

Proof. If one substitutes K = 1, L = M = 0, d = 2 and a2 = 1 in Theorem 4, one obtains

A A(n) = −a1 A(n) − a0n + D(n),

where (x − α)(x − α) = x2 + a1x + a0, and

D(n) =
⌊a0

α
{nα}

⌋
.

The theorem now follows, since αα = a0, and since the sequence ({nα}) is equidistributed over [0, 1].
Here we used that θ = 0 for d ≤ 2, as indicated by Fraenkel in the Notes on page 642 of [13]. �

Example 6. Let α = 1 + √
2, with corresponding A(n) = �n(1 + √

2)�. As in the proof of Theorem 5 one computes that 
A(A(n)) = 2A(n) + n − 1. The number α − 2 = √

2 − 1 is a Sturm number. The corresponding Sturmian sequence is fixed 
point of the morphism σα−2 given by 0 → 01, 1 → 010, as follows from a computation by continued fractions ([10],[2]). 
Since A(n) = �n(α − 2)� + 2n, �A is fixed point of the morphism given by 2 → 23, 1 → 232. Since A A(n + 1) − A A(n) =
2(A(n + 1) − A(n)) + 1, �A A is fixed point of the morphism given by 5 → 57, 7 → 575. So in this particular case �A A is 
pure morphic. �

What is the structure of A A if α > 1 and |α| > 1?
We determine this for the Fraenkel family, also known as the metallic means, which are the positive solutions to x2 + (t −

2)x = t , where the natural number t is the parameter. For t = 1 one obtains the golden mean, for t = 2 the silver mean 
√

2.

Theorem 7. Let α = (
2 − t +√

t2 + 4
)
/2, for t = 2, 3, . . . , and let A(n) = �nα� for n ≥ 1. Then �A A is a morphic word. In fact, �A A

is a decoration δ of a fixed point of a morphism τ , both defined on the alphabet {1, 2 . . . , t+ 1}. For t = 2 and t = 3 the morphisms τ
and δ are given respectively by

τ (1) = 12, τ (2) = 131, τ (3) = 121, δ(1) = 13, δ(2) = 222, δ(3) = 132,

τ (1) = 123, τ (2) = 124, τ (3) = 1141, τ (4) = 1241, δ(1) = 113, δ(2) = 122, δ(3) = 2122, δ(4) = 1222.

1 Neither for B A. The sequence B A has about the same complexity as A A, since B A = A A + 2A, as implied by B(n) = A(n) + 2n for all n ≥ 1.
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For t ≥ 4 the morphism τ is given2 by τ (1) = 1...[t − 1] t, τ (2) = 1...[t − 1] [t + 1], and for j = 3, ..., t − 1

τ ( j) = 1...[t − j] [t − j + 1] [t − j + 1] [t − j + 2] . . . [t − 2] [t + 1],
τ (t) = 112 . . . [t − 2] [t + 1]1, τ (t + 1) = 1223 . . . [t − 2] [t + 1]1.

For t ≥ 4 the morphism δ is given by δ(1) = 1t−1 3, δ(2) = 1t−2 22, δ( j) = 1t− j 2 1 j−2 2 for j = 3, ..., t − 1, and δ(t) =
2 1t−2 22, δ(t + 1) = 12 1t−3 22.

In the proof of this theorem we need the combinatorial Lemma 8. We know that �A is fixed point of the morphism σ
on the alphabet {1, 2} given by

σ(1) = 1t−12, σ (2) = 1t−121, (2)

as can be found in Crisp et al. [10], or Allouche and Shallit [2]. Here one uses that α has a very simple continued fraction 
expansion: α = [1; t, t, t, . . . ].

Lemma 8. Let t ≥ 2 be an integer. For t = 2, define the three words u1 = 121, v = 2112, and w = 1212.
For t ≥ 3, define the t − 1 words u j = 1t− j21 j for j = 1, ..., t − 1, and the two words v = 21t 2, w = 121t−12.
Let σ be the morphism in (2), then for t = 2, one has σ(u1) = u1 v, σ(v) = u1 wu1, σ(w) = u1 vu1 .
For t = 3 one has σ(u1) = u1u2 v, σ(u2) = u1u2 w, σ(v) = u1u1 wu1, σ(w) = u1u2 wu1 .
For t ≥ 4 one has σ(u1) = u1...ut−1 v, σ(u2) = u1...ut−1 w, and for j = 3, ..., t − 1 one has

σ(u j) = u1...ut− jut− j+1ut− j+1ut− j+2 . . . ut−2 w,

σ (v) = u1u1u2 . . . ut−2 wu1, σ (w) = u1u2u2u3 . . . ut−2 wu1.

Proof. First we take t = 2. Then σ is given by σ(1) = 12, σ(2) = 121. One easily verifies the statement of the lemma: 
σ(u1) = 1212112 = u1 v, σ(v) = 1211212121 = u1 wu1, σ(w) = 1212112121 = u1 vu1.

The case t = 3 follows from an analogous computation.
Next, the case t ≥ 4. We first mention four relations, directly implied by the definitions, which will be used in the proof:

v = 21σ(1), w = 12σ(1), w = ut−12, u1 = σ(2).

We also use repeatedly

σ(1 j) = u1 . . . u j−11t− j2 for j = 2, . . . t − 1,

which can be proved by induction: σ(1 j+1) = u1 . . . u j−11t− j2σ(1) = u1 . . . u j−11t− j21t−12 = u1 . . . u j1t− j−12.
We then have

σ(u1) = σ(1t−121) = u1 . . . ut−212σ(2)σ (1) = u1 . . . ut−2121t−121σ(1) = u1 . . . ut−121σ(1) = u1...ut−1 v,

σ (u2) = σ(1t−2211) = u1 . . . ut−31121t−1211t−212σ(1) = u1 . . . ut−112σ(1) = u1...ut−1 w.

Now for u j , with 3 ≤ j ≤ t − 1: (interpreting u1 . . . u0 as an empty prefix in the case j = t − 1; so in that case the outcome 
is σ(ut−1) = u1u2u2u3 . . . ut−2 w (if t ≥ 4).)

σ(u j) = σ(1t− j) σ (21 j)

= u1 . . . ut− j−11 j2 1t−121 σ(1 j)

= u1 . . . ut− j−1 ut− j 1 j−121 1t−12 σ(1 j−1)

= u1 . . . ut− j−1ut− j ut− j+1 1 j−12σ(1 j−1)

= u1 . . . ut− j−1ut− jut− j+1 1 j−12 1t−12 σ(1 j−2)

= u1 . . . ut− j−1ut− jut− j+1 ut− j+1 1 j−22 σ(1 j−2)

= u1 . . . ut− j−1ut− jut− j+1ut− j+1 1 j−22 1t−12 σ(1 j−3)

= u1 . . . ut− j−1ut− jut− j+1ut− j+1 ut− j+2 1 j−32 σ(1 j−3)

= · · ·

2 For readability, we denote the letters t − j as [t − j].
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= u1 . . . ut− j−1ut− jut− j+1ut− j+1 . . . ut−2 12 σ(1)

= u1 . . . ut− jut− j+1ut− j+1ut− j+2 . . . ut−2 w.

For v and w one derives:

σ(v) = σ(2)σ (1t−1)σ (12) = u1 u1 . . . ut−212σ(1)σ (2) = u1u1u2 . . . ut−2 w u1

σ(w) = σ(ut−12) = u1u2u2u3 . . . ut−2 w σ(2) = u1u2u2u3 . . . ut−2 w u1. �
Proof of Theorem 7. In view of the complexity of the proof we first give the proof for the case t = 3, i.e., the case α =
(
√

13 − 1)/2, the bronze mean.
We then have to show that �A A is a decoration δ of a fixed point of a morphism τ , both defined on the alphabet 

{1, 2, 3, 4}, where τ is given by

τ (1) = 123, τ (2) = 124, τ (3) = 1141, τ (4) = 1241,

and the decoration δ is given by

δ(1) = 113, δ(2) = 122, δ(3) = 2122, δ(4) = 1222.

The words from Lemma 8 are in this case

u1 = 1121, u2 = 1211, v = 21112, w = 12112,

and their images under σ are

σ(u1) = u1u2 v, σ (u2) = u1u2 w, σ (v) = u1u1 wu1 σ(w) = u1u2 wu1.

The coding u1 
→ 1, u2 
→ 2, v 
→ 3, w 
→ 4 transforms σ working on {u1, u2, v, w} into τ .
Let L be the map that assigns to any word its length, so, e.g., L(u1) = 4, L(v) = 5.

CLAIM: 1) The word �A can be written as �A = x1x2 . . . where each xi is an element from {u1, u2, v, w}.
2) The word r := L(x1)L(x2) . . . is fixed point of the morphism σ4,5 given by 4 → 445, 5 → 4454.

Proof of part 1) of the claim: we know that �A is the unique fixed point of the morphism σ = σ1,2 given by 1 →
112, 2 → 1121. Since 1121 = u1 is a prefix of �A, the word σ n(u1) is also a prefix of �A for all n ≥ 1. So with Lemma 8
this proves the CLAIM, part 1). Part 2) of the claim then follows from L(u1) = L(u2) = 4, L(v) = L(w) = 5, which induces 
the morphism σ4,5 for the infinite word r of lengths.

How do we obtain �A A from �A? Since A(N) = A A(N) ∪ AB(N), a disjoint union, one obtains A A from A by removing 
the integers AB(n), which, of course, have index B(n) in the sequence A. The difference sequence �B of this sequence is 
the unique fixed point of the morphism σ4,5, since β = α + 3. It follows then from the CLAIM that the integers AB(n)

occur at positions which correspond to the third letter in the word xi . Here it is the third letter, because the first term of 
the sequence (A(B(n)) = 5, 10, 15, 22, . . . occurs at position 4 in the sequence (A(n)) = 1, 2, 3, 5, . . . . Removal of the AB(n)

is then performed by adding the third and the fourth letter in the xi . This operation turns u1 = 1121 into δ(1) = 113, 
u2 = 1211 into δ(2) = 122, v = 21112 into δ(3) = 2122, and w = 12112 into δ(4) = 1222. The conclusion is that this 
decoration δ turns the unique fixed point of τ into �A A. This ends the proof for the case t = 3.

For general t , the coding u1 
→ 1, ..., ut−1 
→ t − 1, v 
→ t, w 
→ t + 1 transforms σ working on {u1, ..., ut−1, v, w} into τ . 
An analogous claim as for the t = 3 case holds, and now the map L satisfies

L(u1) = L(u2) = ... = L(ut−1) = t + 1, L(v) = L(w) = t + 2,

which induces the morphism σt+1,t+2 for the infinite word r of lengths. One continues in the same way, using now that 
β = α + t . This time, the integers AB(n) occur at positions in A with correspond to the tth letter in the words xi from 
{u1, ..., ut−1, v, w}. Here it is the tth letter, because the first term of the sequence (A(B(n)) occurs at position B(1) = t + 1
in the sequence (A(n)). Here B(1) = �β� = �α + t� = t + 1, since a simple computation shows that 1 < α < 2 for all t .

Removal of the AB(n) is then performed by adding the tth and the (t + 1)th letter in the xi . This operation turns 
u1 = 1t−121 into δ(1) = 1t−13, u2 = 1t−2211 into δ(2) = 1t−222 and u j = 1t− j21 j into δ( j) = 1t− j21 j−22, for j = 3, ..., t − 1. 
Moreover, the two words v = 21t 2, w = 121t−12 are turned into δ(t) = 2 1t−2 22, respectively δ(t + 1) = 12 1t−3 22.

The conclusion is that this decoration δ maps the fixed point of τ to the first differences �A A. �
Corollary 9. Here is a way to write �A A = 11312221222 . . . as a morphic word for the case t = 3, i.e., α = (

√
13 − 1)/2, the bronze 

mean. Let θ on {1, . . . , 6} be the morphism given by
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θ : 1 → 123, 2 → 164, 3 → 5145, 4 → 1645, 5 → 123, 6 → 164.

Let the letter-to-letter morphism λ be given by

λ : 1 → 1, 2 → 1, 4 → 2, 5 → 2, 6 → 2, 3 → 3.

Then �A A = λ(θ∞(1)).

Proof. This corollary is derived from Theorem 7 by using the ‘natural’ algorithm given, for example, by Honkala in [16], 
Lemma 4. Honkala’s requirement of ‘cyclicity’ in that lemma is not necessary.

To make this paper more self-contained we give a description of this ‘natural’ algorithm.
Let x be a fixed point of a morphism τ on an alphabet A, and δ : A → B a decoration. Let d(a) := |δ(a)|, so that 

δ(a) = δ1(a) . . . δd(a)(a) for each a ∈ A. The ‘natural’ algorithm consists of replacing each letter a in x by d(a) copies of the 
letter a, denoted as C1(a), . . . , Cd(a)(a). The letter to letter map λ on the alphabet AC := {C j(a) : a ∈ A, j =1, . . . , d(a)} is then 
defined as λ(C j(a)) = δ j(a). The morphism τ induces a large number of morphisms θ on AC , by first mapping for each a the 
word C(a) := C1(a), . . . Cd(a)(a) to the concatenation of words Cτ (a) := C(τ1(a)) . . . C(τt(a)(a)), when τ (a) = τ1(a) . . . τt(a)(a), 
and then splitting Cτ (a) into d(a) words, defining θ(Ci(a)) as the ith word in this splitting. The splitting should be done in 
such a way that a primitive morphism θ results.

In the proof of Corollary 9 the alphabet AC has a priori d(1) +d(2) +d(3) +d(4) = 14 letters. The situation is special here, 
since d(a) = t(a) for a = 1, 2, 3, 4. This suggests to define θ by splitting the Cτ (a) into the words C(τ1(a)) till C(τt(a)(a)). 
After projecting letters with the same θ -image and the same λ-image on a single letter, the number of letters reduces to 6, 
and one obtains the morphism θ in the corollary. �

Fraenkel’s Theorem 4 with the ‘defect’ function D = D(n) suggests that the �A A sequences can take many values. This 
is not the case.

Proposition 10. For any irrational α larger than 1 the sequence �A A = (��(n + 1)α�α� − ��nα�α�) takes values in an alphabet of 
size two, three or four.

Proof. We illustrate the proof with the case 1 < α < 2. Then s := �A is a Sturmian word taking values d = 1 or d = 2. So

�A A(n) = A(A(n + 1)) − A(A(n)) = A(A(n) + d) − A(A(n)), where d = 1 or 2.

We put i := A(n). In case d = 1, A(A(n) + d) − A(A(n)) = A(i + 1) − A(i) = 1 or 2. In case d = 2, A(A(n) + d) − A(A(n)) =
A(i +2) − A(i) = A(i +2) − A(i +1) + A(i +1) − A(i). So either A(A(n) +d) − A(A(n)) = 2 or 3, or A(A(n) +d) − A(A(n)) = 3
or 4, respectively if 11, 12 and 21 are the subwords of length 2 of s, or if 12, 21 and 22 are the subwords of length 2 of s. 
What we found is that �A A takes values in {1, 2, 3} if 1 < α < 3/2, and �A A takes values in {1, 2, 3, 4} if 3/2 < α < 2. In 
some cases �A A may take only 2 values, for example, if α is the golden mean.

The proof for other values of α is similar, exploiting balancedness of the Sturmian word s = �A. �
Example. Take α = √

11/2 = 1.658 . . . . Then A A(n) = 1, 4, 6, 9, 13, 14, 18, 21, 23 . . . , so �A A takes the four values 1, 2, 3
and 4.

Remark. Once more, let α = √
2. The differences x2,k := (AB)k − (B A)k , where k ≥ 1, are the ‘commutator’ functions. They 

are extensively studied in [9]. They are all similar to x2,1, which is equal to x2,1 = AB − B A = 2Id − A A. One can derive 
from this that all commutator functions are morphic words.

4. Embeddings of the Fibonacci language into the integers

Let L be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation 
operation. A homomorphism of L into the natural numbers is a map S : L →N satisfying

S(v w) = S(v) + S(w), for all v, w ∈ L.

The classical Frobenius problem asks whether the complement of S(L) in the natural numbers will be infinite or finite, 
and in the latter case the value of the largest element in this complement. In the classical Frobenius problem L is the full 
language consisting of all words over a finite alphabet. We will solve this problem when L = LF i.e., the set of all words 
occurring in xF, where xF is the Fibonacci word, the infinite word fixed by the morphism 0 → 01, 1 → 0.

Recall that ϕ = (1 + √
5)/2. The key ingredient in this section is the lower Wythoff sequence (�nϕ�)n≥1 = 1, 3, 4, 6, 8, 9,

11, 12, 14, 16, 17, 19, . . . . The following result is proved in [12].
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Theorem 11. ([12]) Let S : LF → N be a homomorphism. Define a = S(0), b = S(1). Then S(LF) is the union of the two generalized 
Beatty sequences 

(
(a − b)�nϕ� + (2b − a)n

)
and 

(
(a − b)�nϕ� + (2b − a)n + a − b

)
.

What remains to be done is to determine the complement of the set S(LF) in N . We shall show that the corresponding 
infinite word is always a morphic word, by representing it as a decoration of a fixed point of a morphism. It appears that 
this is a matter of complicated bookkeeping, especially when the two values S(0) and S(1) are small.

There are three morphisms f , g and h that play an important role in this section, where it is convenient to look at a
and b both as integers and as abstract letters. The morphisms are given by

f :
{ a → ab

b → a
, g :

{ a → baa

b → ba
, h :

{ a → aab

b → ab
.

Lemma 12. Let xF be the Fibonacci sequence on the alphabet {a, b}, fixed point of f . Then the fixed point xG of g is the sequence b xF, 
and the fixed point xH of h is a xF .

Proof. Berstel and Séébold prove in [6] (Theorem 3.1) that for any morphic Sturmian word cα on the alphabet {a, b} both 
acα and bcα are again morphic words. Their proof is constructive, and they give the morphisms g and h for cα = xF in their 
Example 1. �

Here is a result that gives an idea of the proof in general for the case S(0) > S(1).

Theorem 13. Let S :LF →N be a homomorphism determined by a = S(0), b = S(1). Suppose that

a + 2 < 2b + 1 < 2a − 1.

Then the first differences of the complement N \ S(LF) of S(LF) is the word obtained by decorating the fixed point xH of the morphism 
h by the morphism δ given by

δ(a) = 1b−2 2 1a−b−2 2, δ(b) = 12b−a−2 2 1a−b−2 2.

Proof. The sequence of first differences of a generalized Beatty sequence 
(

p�nϕ� +qn + r) is the fixed point of the Fibonacci 
morphism f on the alphabet {2p + q, p + q}. This follows directly form Lemma 2, see also Lemma 8 in [3]. So the two 
generalized Beatty sequences G1 := (

(a −b)�nϕ� + (2b −a)n
)

and G2, given by G2(n) = G1(n) +a −b in Theorem 11 have the 
property that �G1 = �G2 is the fixed point xF of the Fibonacci morphism on the alphabet with symbols 2(a −b) +2b −a = a
and a − b + 2b − a = b.

We illustrate the proof by first considering the case a = 8, b = 5. In this case we have

G1 = 5,13,18,26,34,39,47,52,60, . . . , G2 = G1 + 3 = 8,16,21,29,37,42,50,55,63, . . . ...

Partition the positive integers N into adjacent sets V i, i = 1, 2, . . . defined by

V i = {G2(i − 1) + 1, . . . , G2(i)}.
Here we put G2(0) = 0. As a consequence, Card(V i) = 8 if xH(i) = a and Card(V i) = 5 if xH(i) = b, where xH =
xH(1)xH(2) · · · = a a b a a b . . . is the fixed point of h. The reason that the directive sequence is xH instead of xF is that 
the last element of each V i is equal to G2(i) for i = 1, 2, . . . .

V 1 V 2 V 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 
 
 
 � 
 
 � 
 
 
 
 � 
 
 � 
 � 
 
 � 
 
 


In the table above, the integers in G1(N) are marked with �, those in G2(N) with �, and those in the complement with a 

. By construction, all the V i with cardinality 8 have the same pattern 



�

� for their members. Also all V i with 
cardinality 5 have the same pattern 
�

�. Note that the last two symbols are 
�, for both size 5 and size 8 V i ’s, and
their first symbols are 
 for both. This implies that if we glue the patterns together, then the infinite sequence of differences 
of the positions of 
 in the infinite pattern yields first differences of the sequence of elements in N \ (G1(N) ∪ G2(N)). For 
V i of size 8 these differences (including the ‘jump over’ last value 2) are given by 1,1,1,2,1,2, and for V i of size 5 by 2,1,2. It 
follows that the first differences are obtained by decorating the fixed point xH by the morphism δ given by

δ : a → 111212, b → 212.

For the general case one considers sets V i of consecutive integers of size a or size b, where the order is again dictated 
by the fixed point xH of h. The corresponding patterns have exactly one symbol � at the end, and exactly one symbol �
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positioned a − b places before the end. It follows again that over the V i ’s the first differences of the complement set end in 
2 (the ‘jump over’ value), are preceded by a − b − 2 1’s, which is preceded by a 2. The first differences start with a number 
of 1’s, which is (a − 2) − 1 − (a − b − 2) − 1 = b − 2 for the V i ’s of length a, and (b − 2) − 1 − (a − b − 2) − 1 = 2b − a − 2
for the V i ’s of length b. This yields the decoration δ stated in the theorem. �

We now give an example of the difficulties one encounters when S(0) or S(1) are (relatively) small.

Theorem 14. Let S :LF →N be the homomorphism determined by a = S(0) = 3, b = S(1) = 1. Then the sequence of first differences 
of the complement N \ S(LF) of S(LF) is the word obtained by decorating the fixed point xH of h by δ : {a, b} → {7, 11} given by 
δ(a) = 7, 11, and δ(b) = 11.

Proof. According to Theorem 11, S(LF) is the union of the two sets G1(N) and G2(N) given by

G1(N) = {2�nϕ� − n, n ≥ 1} = 1,4,5,8,11,12 . . . , G2(N) = {2�nϕ� − n + 2, n ≥ 1} = 3,6,7,10,13,14 . . . .

The first differences �G1 = �G2 are the Fibonacci word on the alphabet {3, 1}. Imitating the proof of the previous theorem, 
we obtain the following table, induced by the morphism h given by 1 → 331, 3 → 31. One has Card(V i) = a = 3 if xH(i) = a
and Card(V i) = b = 1 if xH(i) = b, where xH = xH(1)xH(2) · · · = a a b a a b a b a a . . . is the fixed point of h.

V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
� 
 � � � � � � 
 � � � � � � � � � � 
 � � � �

There are at least two things wrong with this:

[E1] The V i ’s of length 3 do not all have the same pattern,
[E2] There are patterns that do not contain a 
.

To counter these problems, we go from the letters a = 3, b = 1 to the words h(3), h(1), yielding a partition with W i ’s of 
length 7 and 4. The table we obtain is

W1 W2 W3 W4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
� 
 � � � � � � 
 � � � � � � � � � � 
 � � � �

Problem [E1] is caused by the fact that V i ’s of length 3 have different patterns depending on whether they are followed by 
a V i of length 1 or of length 3. Problem [E1] is now solved with the W i ’s, since 33 can only occur as a prefix of h(1) = 331, 
and 31 can only occur as a suffix of either h(1) or h(3).

However, [E2] is not yet solved, since W3 does not contain a 
. The way to tackle this is to pass to the square of h, i.e., 
take the W ′

i ’s of length 18 and 11 corresponding to h2(1) = 33133131 and h2(3) = 33131.
It is obvious from the corresponding patterns, that the differences of the complement N \ S(LF) are given by the dec-

oration W ′
1 → 7, 11, W ′

3 → 11 of the W ′
i ’s. But since h2(xH) = xH, this is the same as decorating the letters a → 7, 11, and 

b → 11 in xH. �
Remark 15. Theorem 25 in [3] states that the three sequences (2�nϕ� −n, n ≥ 1) = (1, 4, 5, 8, 11, 12 . . . ), (2�nϕ� −n + 2 n ≥
1), and z := (4�nϕ� + 3n + 2, n ≥ 0) = (2, 9, 20, 27, . . .) form a complementary triple. From Lemma 2 applied with the Sturm 
number α = ϕ − 1 one deduces that �z = 7x11,7 the Fibonacci sequence on the alphabet {11, 7}, preceded by the letter 7 
(see also Lemma 8 in [3], which states that if V (n) = p(�nϕ�) + qn + r then �V = x2p+q,p+q).

On the other hand, we have Theorem 14, telling us that �z = δ(xH), where δ is the decoration a → 7, 11, and b → 11. 
Applying the ‘natural’ algorithm to δ(xH), we obtain that δ(xH) is the morphic word obtained by applying the letter-to-letter 
map λ(a) = 11, λ(b) = 7 to the fixed point xG of the morphism g . Thus

δ(xH) = λ(xG) = λ(bxF) = λ(b)λ(xF) = 7λ(xF) = 7x11,7.

Conclusion: Theorem 14 is essentially equal to Theorem 25 in [3], but has a completely different proof. �
We let C be the increasing sequence of integers in the complement of S(LF), so C(N) =N \ S(LF).

Theorem 16. Let S : LF → N be a homomorphism. Then the sequence �C of first differences of the complement N \ S(LF) of S(LF) 
is a fixed point of a morphism on an alphabet of two letters decorated by a morphism δ.
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Proof. The homomorphism S is determined by a := S(0), b := S(1).
Case 1: a ≥ 4, b = 1. Here we follow the proof of Theorem 14. The V i are given by V i = {G2(i −1) +1, . . . , G2(i)}. Problem 

[E1], mentioned in the proof of Theorem 14, is more severe in this case, as the pattern of the V i ’s of length a depends both 
on V i−1 and V i+1. If these have both length 1, then the distance to the next element in V i+1 with symbol 
 is 5, otherwise 
it is 4. To make the process context free, we choose the W i corresponding to the two words

v := h2(a) = aa1aa1a1, w := h2(1) = aa1a1.

Context-freeness now occurs because 1a1 occurs uniquely inside v and w . One checks that the decoration δ is then given 
by

δ(v) = 1a−3 4 1a−4 4 1a−3 4 1a−4 5 1a−4 4, δ(w) = 1a−3 4 1a−4 5 1a−4 4.

Since v and w start and end with the same words, this decoration yields �C , when applied to xH on the alphabet {v, w}.
Case 2: a = 1, b ≥ 5. This3 is a variant of Case 1. The sequence �G1 is fixed point of the Fibonacci morphism on the 

alphabet {1, b}, and so b �G1 is fixed point of g on {1, b}. Problem [E1] is now that the ’jump over’ from b11 to b1b is 6, 
but the ‘jump over’ from b11 to b11 equals 7. The adequate partition elements W i correspond to the words v or w:

v := g2(1) = b 1 b 1 1 b 1 1, w := g2(b) = b 1 b 1 1.

The decoration δ is given by

δ(v) = 1b−4 6 1b−5 7 1b−5 6, δ(w) = 1b−4 6 1b−56.

Case 3: a > b ≥ 2. The partition elements are defined as V i = {G2(i − 1) + 1, . . . , G2(i)}, where we put G2(0) = 0. This 
gives Card(V i) = a if xH(i) = a and Card(V i) = b if xH(i) = b, where xH = xH(1)xH(2) · · · = a a b a a b . . . is the fixed point of 
h. To get rid of problem [E1], we coarsen the partition to blocks W i corresponding to the words h(a) = aab and h(b) = ab. 
The problem disappears because aa uniquely occurs as a prefix of aab, and ab uniquely as a suffix of aab or ab. Problem 
[E2] will not occur, since any 5 consecutive integers will contain an element of C (as b ≥ 2, and no bb occurs in xH), and 
the smallest cardinality of a W i is a + b ≥ 5. Also, since both aab and ab start with a, and both end in b, the patterns of 
the W i will concatenate consistently, so that the decoration δ obtained from the patterns of the W i acting as a morphism 
on xH, will yield the difference sequence of C .

Case 4: b > a ≥ 2. The partition elements are defined as V i = {G1(i − 1) + 1, . . . , G1(i)}, where we put G1(0) = 0. This 
gives Card(V i) = a if xG(i) = a and Card(V i) = b if xG(i) = b, where xG = xG(1)xG(2) · · · = b a b a a b . . . is the fixed point of 
g . The rest of the proof follows Case 3, replacing h by g (noting that this time aa uniquely occurs as a suffix of g(a), and ab
only occurs split over a suffix of g(�) and a prefix of g(�′), for �, �′ = a, b). �

We illustrate Case 4 with the following example.

Example 17. Let a = 5, b = 9. Then G1 = 9, 14, 23, . . . and G2 = 5, 10, 19, . . . . The partition elements are W1 of cardinality 
14 corresponding to g(b) = ba = 95, and W2 of cardinality 19, corresponding to g(a) = baa = 955.

The patterns of these sets are 



�


��


� and 



�


��


��


�.
It follows that the decoration δ is given by δ(9) = δ(b) = 1112113112, δ(5) = δ(a) = 1112113113112. �
The representation in Theorem 16 is by no means unique. As an example, let the morphism ĝ2 on {1, 2, 3} be given by

ĝ2(1) = 12, ĝ2(2) = ĝ2(3) = 132.

The morphism ĝ2 is the 2-block morphism of g under the coding ba → 1, ab → 2, aa → 3 (cf. [18] and [11]). The use of ĝ2

gives an alternative way to solve problem [E2], leading, for example, in Example 17 to the fact that �C is the decoration of 
the fixed point of ĝ2 by the morphism δ given by

δ(1) = 1112113, δ(2) = 112, δ(3) = 113.

Finally we mention another way in which the representation in Theorem 16 is not unique. In fact, one can show that 
every �C is a decoration of the single word xG. Let f̄ be the time reversal of the Fibonacci morphism f , i.e., f̄ is defined 
by f̄ (0) = 10, f̄ (1) = 0. One verifies that

g = f̄ f , h = f f̄ .

This leads to

3 We leave the case a = 1, b = 4 as an exercise to the reader. In this case the decoration δ turns out to be v → 11, w → 17.
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f̄ (xH) = f̄ h(xH) = f̄ f f̄ (xH) = g f̄ (xH) ⇒ f̄ (xH) = xG,

since xG is the unique fixed point of g . As a corollary one obtains that if z is a decoration of xH by δ, then z is also a 
decoration of xG: replace δ by δ′ = f̄ δ.

5. Appendix

In this section we give an alternative proof of Theorem 7, when t = 2, i.e., the case α = √
2.

Theorem 18. Let α = √
2, A(n) = �nα� for n ≥ 1 . Then �A A = 1, 3, 2, 2, 2, 1, 3, 1, 3, 2, . . . is a decoration δ of a fixed point of a 

morphism σ , both defined on the alphabet {1, 2, 3}. Here σ is given by

σ(1) = 123, σ (2) = 1, σ (3) = 121,

and the decoration δ is given by

δ(1) = 13, δ(2) = 2, δ(3) = 22.

Proof. Step 1. In this step we ‘refine’ the sequence x := �A to a sequence y on 4 symbols, which codes the occurrence of 
the terms of A A in A.

From [10] (or see [17]) one deduces that x = �A is the fixed point of the morphism γ given by

γ (1) = 12, γ (2) = 121.

We define the extended morphism γE on the alphabet {1, 2, 3, 4} by

γE(1) = 13, γE(2) = 24, γE(3) = 241 γE(4) = 132.

Note that γ = πγE , where π(1) = π(2) = 1, and π(3) = π(4) = 2. We define

y = 1,3,2,4,1,2,4,1,3,2,1,3, . . . ,

the fixed point of γE with y1 = 1. We claim that y has the property that the letters 1 and 2 alternate in y. Indeed, the 
words 132 and 12 are the only words in y with prefix 1 and suffix 2 containing no other 1’s or 2’s, and these are mapped 
to

γE(12) = 1324, γE(132) = 1324124,

in which 1’s and 2’s alternate, and similarly the words 241 and 21 are mapped to 2413213 and 2413 in which 2’s and 1’s 
alternate. Since in the first case the first occurring letter is 1 and the last is 2, and in the second case the first occurring 
letter is 2 and the last is 1, it follows by induction that the letters 1 and 2 in γ n

E (1) alternate for all n.
We are interested in the positions 3,6,10,13,. . . of the letter 2 in y. Let x′ be defined by x′

n = xn − 1. Then x′ =
0, 1, 0, 1, 0, 0, 1 . . . is a Sturmian word with slope 

√
2 − 1. Its binary complement x̃′ = 1, 0, 1, 0, 1, 1, 0 is a Sturmian word 

with slope α̃′ = 1 − (
√

2 − 1) = 2 − √
2. By Lemma 9.1.3 in [2], the positions of 1’s in x̃′ are given by the Beatty sequence 

b = (�nβ�), where

β = 1/α̃′ = 1/(2 − √
2) = 1 + 1

2

√
2.

But the 1’s in x̃′ correspond to the 1’s and 2’s in y, and since these alternate, the positions of the 2’s in y are given by the 
sequence

(b2n) = (�2nβ�) = (�n(2 + √
2)�).

Thus we found that the 2’s in y exactly occur at the Beatty complement B of A.
Step 2. In this step we partition the ‘refinement’ y of the word x = �A in three words w1, w2, w3, which will tell us 

how �A A behaves. We claim that the three words

w1 = 132, w2 = 4, w3 = 124

partition y. This follows directly from γE (y) = y by noting that

γE(w1) = 1324124 = w1 w2 w3, γE(w2) = 132 = w1, γE(w3) = 1324132 = w1 w2 w1.

This equation induces a morphism σ on the alphabet {1, 2, 3}, by replacing w j with j:
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σ(1) = 123, σ (2) = 1, σ (3) = 121.

How do we obtain �A A from �A? Since A(N) = A A(N) ∪ AB(N), a disjoint union, one obtains A A from A by removing 
the integers AB(n), which, of course, have index B(n) in the sequence A. In Step 1 we showed that this sequence of indices 
corresponds to the positions of 2’s in y. Now if such a 2 occurs in w1 = 132, then the differences xk, xk+1, xk+2 = 1, 2, 1 in 
x turn into differences 1,3 in �A A, since the second 1 disappears because of the removal of the A-number corresponding to 
xk+2, and this 1 must be added to xk+1 = 2. The other possibility is that such a 2 occurs in w3 = 124, and now the removal 
of the A-number corresponding to xk+1 leads to differences 2,2 in �A A. The conclusion is that the decoration δ given by 
δ(1) = 13, δ(2) = 2 and δ(3) = 22 turns the fixed point of σ into �A A. �
Corollary 19. Here is a way to write �A A = 1, 3, 2, 2, 2, 1, 3, 1, 3, 2, . . . as a morphic word (derived from the previous theorem). Let 
θ on {a, b, c, d} be the morphism given by θ : a → adc, b → adc, c → ad, d → bc.

Let the letter-to-letter morphism λ be given by λ : a → 1, b → 2, c → 2, d → 3. Then �A A = λ(θ∞(a)).
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