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Abstract

Flexural shear failure is a brittle failure mode that can occur in reinforced concrete (RC) beams without
stirrups due to the combination of flexural and shear stresses. The failure mode begins with vertical
flexural cracks at the bottom of the RC beam central span area due to flexural tensile stresses, followed
by diagonal cracks. During stabilization, a diagonal crack enlarges, leading to flexural shear failure. The
failure mode is brittle due to the significant bearing capacity reduction making it more difficult to predict.

Accurately predicting the capacity of concrete structures is important for ensuring their safety, especially
in the case of brittle failures. Various design codes are available to design and assess such structures,
but an advanced numerical method called the Non-Linear Finite Element Analysis (NLFEA) is an alter-
native to these codes. NLFEA allows for more detailed and accurate modeling of the structure behavior
by considering material, geometry, and boundary conditions nonlinearity. By using NLFEA, engineers
can optimize their design and gain a deeper understanding of the behavior of RC beams without stir-
rups. The NLFEA model requires several modeling decisions to accurately simulate the structures’ be-
havior.

Sensitivity analysis on different modeling aspects is crucial to obtain a numerical model that can accu-
rately simulate the RC beam. To be considered accurate, the numerical model should simulate approx-
imately the same damage progression, failure mode, and failure load compared to the experiments.
The sensitivity analysis is performed to modeling aspects with uncertainties identified during the litera-
ture review. These uncertainties are in the constitutive model, finite element discretization, and analysis
procedure modeling aspects. Sensitivity analysis on various modeling aspects is performed using four
experimental beams with distinct geometrical sizes, while some material configurations differ. This re-
search investigates whether, using sensitivity analysis, a numerical model can be obtained that accu-
rately simulates flexural shear failure for RC beams without stirrups.

The total strain crack models’ crack orientation sensitivity analysis shows that the rotating crack orien-
tation can suffer from over-rotation, which causes delamination of the concrete cover. Over-rotation
also shows a strong correlation with many non-converged steps. In addition, the fixed crack orientation
simulates a more realistic representation of the experimental failure mode. The compression-compres-
sion confinement sensitivity analysis shows that this modeling aspect does not influence simulations for
cases with flexural shear failure much and can thus be excluded. A slightly lower failure load is simu-
lated with the confined numerical model for one of the four cases. The sensitivity analysis on the FIB
bond-slip relation and Shima bond-slip relation reveals that the former has a lower initial stiffness when
using the same material configurations for their modeling assumptions. Due to the lower initial stiffness,
there is a higher relative displacement between the concrete and reinforcement. In some cases, this
results in either increased convergence problems, a higher possibility of dowel failure, a lower failure
load, or a combination of them.

For the fourth sensitivity analysis modeling aspect, the full Newton-Raphson (NR) iteration scheme
simulations are slightly more representative of the experiment than the Secant iteration scheme. This
result is obtained despite the full NR scheme having more convergence problems during the initial
crack. In addition, for a few cases, the Secant iteration scheme simulates symmetrical flexural shear
failure due to failing to include material nonlinearity.

Sensitivity analysis of the reinforcement elements shows that simulations with truss elements are more
accurate than beam elements. The beam elements models show compatibility issues when combined
with plane stress elements. The interface elements fail to correctly tie the beam elements’ extra rota-
tional degree of freedom to the transitional degree of freedom. This incompatibility results in conver-
gence problems. Also, higher relative displacements and a higher stiffness after the initial crack is no-
ticed in some cases compared to the experiment. The final sensitivity analysis reveals that the element
size sensitivity increases with an increase in the geometrical beam size. Too-large element sizes de-
crease the accuracy of simulations. In contrast, too-small element sizes increase the computational
cost but can also simulate irregular crack patterns not representative of the experiment. A formula is
introduced from the sensitivity analysis for beams up to a depth of 1200 mm to predict an appropriate
element size.



The sensitivity analysis reveals that the most accurate numerical model is a fixed crack orientation and
the Shima bond-slip relation combined with truss elements using the full NR iteration scheme. The
sensitivity analysis is followed by a quantitative analysis of 76 experimental cases to verify the accuracy
of the obtained numerical model for a broad range of differently configured experimental cases. Analysis
shows that dowel failure can get captured due to an excessive change in the damage-based shear
retention factor using the obtained numerical model. However, decreasing sensitive load step sizes to
very small ones results in flexural shear failure. Also, the quantitative simulations show that the numer-
ical model simulations are largely accurate, with 62 simulated cases below a failure load percentage
difference of 10 % compared to the experiment. The average percentage difference is 6 % between
the simulations and the experiment.

Analysis shows that this research successfully obtains a numerical model that accurately simulates
flexural shear failure for RC beams without stirrups. The information obtained from this research can
be used to make modeling choices. In addition, some uncertainties for other modeling aspects are
introduced for future research. These modeling aspects are the shear retention model, concrete ele-
ments compatibility with the reinforcements beam elements, and the global element size for beams
deeper than 1200 mm.

Keywords:

Element size, Flexural shear failure, Modeling aspect, Nominal shear strength, Non-Linear Finite ele-
ment Analysis, Numerical modeling, Quantitative analysis, Reinforced concrete beams without stirrups,
Sensitivity analysis, Size effect






Preface

With this thesis report, | conclude my Master of Science program in Structural Engineering with a spe-
cialization in Structural Mechanics at Technische Universiteit Delft. | am pleased to present my thesis,
"Sensitivity analysis on numerical modeling to simulate the flexural shear failure for reinforced concrete
without stirrups.” This research investigates whether, using sensitivity analysis, a numerical model can
be obtained that accurately simulates flexural shear failure for RC beams without stirrups. In addition,
pilot research will be done for initial expressions on capturing the size effect numerically.

| have been privileged to learn from esteemed professors and researchers during my academic journey.
Their teachings have helped me gain immense knowledge and inspired my research efforts. | am in-
credibly grateful to Prof. Dr. Ir. J.G. Rots for taking the time to discuss thesis subjects and help formulate
the thesis topic. My main supervisor Ir. N. Kostense supervised me throughout the research process. |
would also like to thank my other supervisor, Dr. Ir. M. Pari, for his invaluable help with the finite element
analysis in DIANA FEA and for always being available to answer my questions. Additionally, | am thank-
ful to my third supervisor, Dr. Ir. M. Poliotti, for sharing his immense knowledge of the size effect. This
knowledge was instrumental in the research approach and method for the pilot research. During this
research, the most challenging part was structurally communicating my findings in the report, with which
the entire thesis committee helped me immensely.

| want to thank my parents, brother, and sister for their unwavering support during stressful times, love,
and memorable moments during my academic journey. Relatives and friends have also always sup-
ported me, for which | am incredibly grateful. Finally, | would like to thank the faculty staff of the depart-
ment of Structural Engineering, especially Iris Nederhof-van Woggelum, for their friendly conversations
and constant help throughout the thesis process.

| hope that the findings presented in this thesis will be of value to future researchers in structural me-
chanics. This research highlights the difficulties with numerical modeling choices in DIANA FEA, and
the findings could benefit future researchers. Additionally, the research on this topic can be furthered
with the initial expression of the size effect using the numerical method during the pilot research.

Kisoensingh Arvind
Delft, May 2023

vi






Contents

A [ 014 o Yo 1F o £ Yo R PP TPSPRPRP 1
0 R = - Vo (o | {010 o RO PPERRR 1
1.2 RESEAICH QUESTION ... ..uiiiiiii et e e e e e e e s e e e e e s e st e e e eeeessstntaaeeeaeessannsnraneeaaeeeaanns 2
1.3  Objectives and deliVErables............cooiiiiiiiiiiiiie e a e e 3
1.4 ReSearch apprOaCh ........cooiiiiiii e 3
R T I (=TT o111 1 = PRSP PPPRRP 4

A W =T = LU = VAT PP PPRPRR 6
2.1 PRYSICAI SITUCTUIE ...eeiiiiiiie ettt et et e e e hb et e e et e e e anbr e e e e anbreeeeaneee 6

2.1.1  Reinforced concrete beams subjected to flexural shear failure ............cccoceviiiiiiennnnn. 6
212 Shear transfer MECNANISMS .......oiii i 7
2.13 SHZE BIFRCT. ..o 10
2.2 NUMETICAI MOUEL ...t e e e et e e e e e e bbb e e e e e e e e e nnnenees 14
221 CONSHILULIVE MOUEI ...ttt e et e e e e e saabbrreeeaeas 15
222 Finite element diSCretiZatiON ...........c.uuuiiiiiiei e e e 21
2.2.3  ANAIYSIS PrOCEAUIE .. ..o 24
PZ8C T B T T [ o oo To =L TP PO PP PUPPPPPPPPP 27
2.4 SUMIMIEIY ittt e et e e e e et e e e e e o1 b e et e e e e e 4 b e e e et e e e e e s e R et et e e e e e s e r e et e e e e e e a s 28

3 Experimental case selection for numerical SimulationS...........ccccvviviiei i, 32
3.1  Geometrically scaled DEAmM CASES........coouuiiiiiiiii e 32
3.2 Cases with variation in reinforcement ratio ............ovveeiiiiiiiiiiiie e 33
3.3 Cases with variation in effective span-to-depth ratio...........ccccevieiiiiiiiii e, 33
3.4  Cases with variation in concrete strength..........cccccveviviiii 33
3.5 Cases with variations in geometrical and material configurations..............cccccccevvviviveieeennnn.. 34
3.6 EXperimental CaSES OVEIVIEW ........cciviiiiiiiiieie ettt ettt ettt 35

4 Numerical modeling, analysis, results, and sensitivities .........cccccccevvevi 37
4.1  Reference NUMEriCal MOUEL.........coooi e e e 38
4.2  Sensitivity analysis NUMEriCal MOUEL ...........uuuuiiiiiiiiiiiiiiiiiei e 41

4.2.1 L070] 0153 110011V 1 4o Lo = S 41
4.2.2  ANAIYSIS PrOCEAUIE ...ttt ettt e et e e e sbe e e e sbn e e e e abreeeeans 59
4.2.3 Finite element diSCretiZation...........cvuuiiiiie et e e e e e e e 64
4.3 QUANLIALIVE BNAIYSIS.....eiiiiiiiieiiti ettt e e e e e e aeee 78
4.4 Size effeCt ANAIYSIS ... .eeiiiiiiiii e 81
4.5  DiscUSSION @Nd CONCIUSION ......uuuiiiieeiiiiciiiie et e et e e e e e s e e ae e e e e e s e s nnnneeeeeaeeeeennns 83

5 Conclusion and reCoOMMENTALIONS .....coiiiiiiiiiiiiiiii et e e e e e s e aebreaeeeaeas 88
S A @70 s Tod (111 (o] o TSP UPRPTT PP 88
5.2 Future research reComMmMENdAtIONS.........coouiiiiiiiiiiiei et 90

[T o] 1o T =T o 17/ 92

L 1] 1= PP PPTTPT PP i
Annex | Critical shear displacement thEOIY ..........couiiiiiiiiiii e i
ANNEX Il EXPEIMENTAI CASES .....eiiiiiiiiiie ittt st e s bt e e sttt e e s nbe e e e s anneeeas ii
Annex Il Numerical model Sensitivity analySiS .........coiueiiiiiiiiieii e Xiii
Annex IV Robust NUMENICAl MOAEI .......ooviiieiii e e earee e s XiX
Annex V  Sensitivity analysis With the DPC SYStEM.......ccoociiiiiiiiiie e XXi
Annex VI Quantitative analysis with the DPC SYStEM ........coiciiieiiiiiieeiie e XXV
ANnex VIl Size effeCt @NaIYSES .......uuiiiieeiii e XXVii
Annex VIII  Size effect analysis geometrically scaled fictitious Cases...........ccccceeeeiiiiiiiiienieennnnns XXXi
Annex IX Python code: three-point numerical model ... XXXVi
Annex X  Python code: four-point numerical MOdEl............cooiiiiiiiiiiiii e xli

viii



List of Figures

Figure 1 Flexural shear failure crack pattern: experimental [6] (left) along the longitudinal

reinforcement visualized [1] (FIGt) ......ooor i e e e s e r e e e e e s e ennreees 7
Figure 2 Crack pattern for varying beam depths [7] ....coooiiiiiiiiiiii e 7
Figure 3 Arch action (left) and beam action (right) [9] .......cccvuiiieiie e 7
Figure 4 Four shear transfer mechanisms [11]........ccooiiiiiiiiiiiee e 8
Figure 5 Aggregate interlock mechaniSm [16] .........coeiiiriiiiiiiiee e 8
Figure 6 Hordijk softening curve stress-strain relation [17].........oouiiiiiiee e 9
Figure 7 Concrete tooth MOl [18] ....uviiiiiiiiiie ittt et e e e e e e snneee e 9
Figure 8 Bazant Size effect Law: type | (left) and type Il (right) [37].....ccocviiiiiieiniiiie e 12
Figure 9 Eurocode 2 size effect factor influence [40]..........coouiiiiiiiiieiie e 13
Figure 10 T total strain crack model: fixed (top) and rotating crack orientation (bottom) [50] ............. 16
Figure 11 Concrete compressive behavior parabolic Curve [61]............uuuuvuiviuiiiermiminieiiinieieinrninnnnn. 18
Figure 12 Tension-compression interaction reduction model [62] ..............uuuiuiiiiiiiiiiiminiiieiiiniiiieinn, 18
Figure 13 Reinforcement elastic-plastic Model [68]............uuuruiuiuimimimiiiiiiiiiiiiieiiiereieierne———. 19
Figure 14 Isotropic (left) and kinematic hardening (right) [69] ...........uururuimimimimiiieiiiiiiiiieieeee. 20
Figure 15 CEB-FIB 2010 bond-slip curve based on pull-Out [47] .......cooiiieiiiiieiiieee e 20
Figure 16 Plane-stress element thickness: uniform (left) and non-uniform (right) [71]........ccccceevnnneen. 21
Figure 17 CQ16M plane-stress IemMeENt [71] ......cocuiiiiiiiiieeiiieit ettt 22
Figure 18 Beam boundary conditions: loading plates (top) and loading supports (bottom) ................. 24
Figure 19 NR iteration scheme (left) and Secant iteration scheme (right) [69].........cccovviiiiiiiiieininnn. 25
Figure 20 Force, displacement, and arc-length control [79] .........ccceviiiiiiiiiiiiie e 25
Figure 21 Reference numerical model: constitutive Model..............uuuuiiiniiiiiiiiiiiiiiii, 29
Figure 22 Reference numerical model: finite element discretization ..............cccccvuvevvieieieininieriini. 30
Figure 23 Reference numerical model: analysis ProCeAUIE .............uuurureimimrmimiminrninieeninineernrernn. 30
Figure 24 RC beams without stirrups numerical MOdel ..............uuuiuriiiiiiiiiiiiiiiii .. 32
Figure 25 Four-point experiment configuration [83] ............uuuuuiuiuiuiuiuiiiiieieinieiereiernrnrereine——————. 33
Figure 26 Three-point experiment configuration [83].............uuuuuuiuiuiuiiiiiiiuinieieieierereie ... 34
Figure 27 EXperimental CASES OVEIVIEW ..........uiiiiiiiiieiiiiie ettt ettt ettt et e e e sebne e e nnnaee s 35
Figure 28 Constitutive model modeling aspects for sensitivity analysis ...........cccoocveveiiieieiniieee e, 41
Figure 29 A121A3 confined fixed crack orientation sensitivity analysis: force-displacement graph (left)

and convergence 109 (FIGNL) .....ooueeoo e 42
Figure 30 “Koekkoek and Garnica” experimental testing sequence [88]...........ccccccovviiiiiiiiiiiiie e, 42

Figure 31 A121A3 confined fixed crack orientation: before (left) and at failure crack stress (right).....42
Figure 32 A121A3 confined fixed crack orientation sensitivity analysis: maximum principal strain ..... 43
Figure 33 B701B2 confined fixed crack orientation sensitivity analysis: force-displacement graph (left)

and convergence 10g (NGNL) ........oovvriiiii 43
Figure 34 B701B2 confined fixed crack orientation sensitivity analysis: maximum principal strain .....43
Figure 35 Flexural shear (left) and dowel failure (Fight) [12] .........euuvuimimimimimimieiiiniiiiiiiineni. 43
Figure 36 R804A1 confined fixed crack orientation sensitivity analysis: force-displacement graph (left)

and convergence 109 (MGNL) ...... e 44

Figure 37 R804A1 confined fixed crack orientation sensitivity analysis: maximum principal strain .....44
Figure 38 H601A confined fixed crack orientation sensitivity analysis: force-displacement graph ...... 45

Figure 39 H601A confined fixed crack orientation sensitivity analysis: principal strain ........................ 45
Figure 40 Force-displacement graphs: confined and unconfined fixed crack orientation .................... 46
Figure 41 H601A in-plane principal stresses: confined (left) and unconfined fixed crack orientation
(o] L TP PRUPT 46
Figure 42 H601A maximum principal strain: confined (left) and unconfined fixed crack orientation
(o] L PO PRURT 47

Figure 43 A121A3 confined rotating crack orientation sensitivity analysis: force-displacement graph 47
Figure 44 B701B2 confined rotating crack orientation sensitivity analysis: force-displacement graph 47
Figure 45 A121A3 confined rotating crack orientation sensitivity analysis: maximum principal strain .48
Figure 46 B701B2 confined rotating crack orientation sensitivity analysis: maximum principal strain .48
Figure 47 R804A1 confined rotating crack orientation: force-displacement graph (left) and converged
ST o (o To I (T | o1 T PRSPPI 48
Figure 48 R804A1 confined rotating crack orientation: delamination ..............cccccvvvereeeiniiiiiiieene e 48


https://d.docs.live.net/8bf7dd7915db69cb/thesis/Final_presentation/Kisoensingh_Arvind_5145821_thesis_report.docx#_Toc133412222

Figure 49 R804A1 confined rotating crack orientation: in-plane principal Stress...........cccccvviiveinineen. 49
Figure 50 Force-displacement graphs confined rotating crack orientation: A121A3 (left) and B701B2

o 1 PSSR 49
Figure 51 R804A1 unconfined rotating crack orientation: force-displacement graph (left) and
(ot 0NV L= (o T=T g Lot TN (oo [N (T i SRR 50
Figure 52 R804A1 unconfined rotating crack orientation; delamination .............cccccceeeeeniiiiiiieieee e, 50
Figure 53 Force-displacement graph: FIB and Shima bond-slip relation ...........ccccccceeeiiiiiiiiiiene e, 51
Figure 54 B701B2: FIB and Shima bond-slip relation CUNVES ..........ccccuiiiiiee e e e 52
Figure 55 B701B2 reinforcement stresses: FIB (top) and Shima bond-slip relation (bottom)............. 52
Figure 56 B701B2 interface shear traction: FIB (left) and Shima bond-slip relation (right) ................. 52
Figure 57 B701B2 interface relative displacement: FIB (left) and Shima bond-slip relation (right).....53
Figure 58 B701B2 maximum principal strains: FIB (left) and Shima bond-slip relation (right) ............. 53
Figure 59 H601A reinforcement stresses: FIB (top) and Shima bond-slip relation (bottom)............... 54
Figure 60 H601A interface shear traction: FIB (top) and Shima bond-slip relation (bottom)............... 54
Figure 61 H601A interface relative displacement: FIB (top) and Shima bond-slip relation (bottom)...54
Figure 62 H601A maximum principal strains: FIB (top) and Shima bond-slip relation (bottom).......... 55
Figure 63 A121A3 rotating crack orientation with Shima bond-slip relation: force-displacement graph
(left) and convergence 10g (HGNL) ... 55
Figure 64 A121A3 rotating crack orientation with Shima bond-slip relation: delamination................... 55
Figure 65 B701B2 rotating crack orientation with Shima bond-slip relation: force-displacement graph
(left) and conVergencCe 10g (FIGNL) ........eei it 56
Figure 66 B701B2 rotating crack orientation with Shima bond-slip relation: delamination................... 56
Figure 67 A121A3 iteration schemes: Force-displacement graph (left) and non-converged steps (right)
....................................................................................................................................................... 59
Figure 68 A121A3 iteration schemes maximum principal strain: NR (top) and Secant scheme (bottom)
....................................................................................................................................................... 59
Figure 69 B701B2 iteration schemes: Force-displacement graph (left) and non-converged steps (right)
....................................................................................................................................................... 60
Figure 70 B701B2 iteration schemes maximum principal strain: NR (top) and Secant scheme (bottom)
....................................................................................................................................................... 60
Figure 71 R804Al iteration schemes: force-displacement graph...........ccccccvvvviiiiiiiniiinieiiii, 60
Figure 72 R804A1 maximum principal strain: NR (top) and Secant scheme (bottom).............cccoeeeeee. 61
Figure 73 H601A iteration schemes: force-displacement graph...........ccccceeiviiiiiiniii e, 61
Figure 74 H601A maximum principal strain: NR (top) and Secant scheme (bottom)............cccceevvnneee. 62
Figure 75 B701B2 Force-displacement graph: FIB bond-slip relation with truss elements, Shima bond-
slip relation with truss elements, and FIB bond-slip relation with beam elements ........................ 64
Figure 76 B701B2 Reinforcement stresses: FIB bond-slip relation with truss (top) and beam elements
(BOMIOMY) e —————— 65
Figure 77 B701B2 bond-slip relation interface shear traction: FIB bond-slip relation with truss (left)
and beam elements (Fght) .......oooiiiiiii 65
Figure 78 B701B2 bond-slip relation interface relative displacement: FIB bond-slip relation with truss
(left) and beam elements (FGhL) ... 65
Figure 79 Finite element discretization: numerical model elements..............cccovciiiiiiiie i 65

Figure 80 B701B2 strains with the combinations: FIB bond-slip with truss elements (top right), FIB
bond-slip with beam elements (bottom left), and Shima bond-slip with truss elements (bottom

L1 | 11 I PP RP PSR 66
Figure 81 H601A Force-displacement graph: FIB bond-slip relation with truss elements, Shima bond-
slip relation with truss elements, and FIB bond-slip relation with beam elements ........................ 66
Figure 82 H601A Reinforcement stresses: FIB bond-slip relation with truss (top) and beam elements
(o o101 ) FS TP PRURTP 67
Figure 83 H601A bond-slip relation interface shear traction: FIB bond-slip relation with truss (top) and
beam elements (DOTIOMY) ..ot e e e e e e e e e e e nnneeee 67
Figure 84 H601A bond-slip relation interface relative displacement: FIB bond-slip relation with truss
(top) and beam elements (DOLEOM) .......ooeiiiiiii e e e e 67
Figure 85 H601A strains with the combinations: FIB bond-slip with truss elements (top) and FIB
bond-slip with beam elements (middle), and Shima bond-slip with truss elements(bottom)......... 68
Figure 86 H601A element size sensitivity analysis: force-displacement graph..........cccocce v, 70
Figure 87 H601A element size sensitivity analysis: crack pattern .........cccccoviii e, 70
Figure 88 H601A irregular crack pattern: maximum principal Strain.........cccoccieiiiieee e, 70
Figure 89 H601A element size sensitivity analysis: force-displacement graph .......ccccccovvccviveeeeeennins 71



Figure 90 H601A element size sensitivity analysis: crack pattern ...........ccccovveveiiiieie e 71
Figure 91 Optimal element size predictor (left) and element size prediction for different depths (right)

....................................................................................................................................................... 76
Figure 92 H302A dowel failure: simulation (left) and experiment (right)..........ccccoviiveee e, 78
Figure 93 Quantitive analysis percentile difference: Numerical model (top left).......ccccccoviviiieireeennnns 79
Figure 94 Quantitive analysis percentile difference: EC2 (bottom left), and FIB MC2010 (bottom right)

....................................................................................................................................................... 79
Figure 95 Simulated and experimental failure 10ads.............c.uvvvviie e 79
Figure 96 “EC2 and experimental” (left) and “FIB MC2010 Simulated experimental failure loads”

(e L) T PP P T PU PP P PPPRPN 80
Figure 97 Size effect analysis: nominal shear strength and effective depth..........ccccccoiiiiiiieinen, 81
Figure 98 Size effect analysis: geometrically scaled beams crack pattern ...........ccccccovveeeiiieeennnnn, 82
Figure 99 “Garnica & Koekkoek” cases Naming PAIEIN .........cuuiiiiiiiiieiiiiie et ii
Figure 100 Case A121A3: experimental flexural shear failure ...........ccceiiiiiiiii e, Xiii
Figure 101 Case B701B2: experimental flexural shear failure ...........cccoceveeeiiiiciiiie e Xiii
Figure 102 Case R804A1: experimental flexural shear failure ..............ccccovvieiiiiiiiiiiiiiiinnn, Xiii
Figure 103 Case H601A: experimental flexural shear failure ..............cccccuvviviiiiiiiiiiiin, Xiii
Figure 104 A121A3 maximum principal strain fixed crack orientation: confined (left) and unconfined

(NG e ———————— Xiii
Figure 105 B701B2 maximum principal strain: confined (left) and unconfined (right) ...........cccccccvvnnis Xiii
Figure 106 R804A1 Shima bond-slip-strain relation: force-displacement graph ...........cccccovvveeeininnes. Xiv
Figure 107 B701B2 Reinforcement shear stresses FIB bond-slip with beam (top) and truss elements

(o011 (0] 1 1) F PO P PP OPPRP Xiv
Figure 108 H601A reinforcement shear stresses: FIB bond-slip with beam (top) and truss elements

(o011 (0] 1 1) F PO OUP PP OPPRP Xiv
Figure 109 A121A3 Force-displacement graph: FIB bond-slip relation with truss elements, Shima

bond-slip relation with truss elements, and FIB bond-slip relation with beam elements................ Xiv
Figure 110 R804A1 Force-displacement graph: FIB bond-slip relation with truss elements, Shima

bond-slip relation with truss elements, and FIB bond-slip relation with beam elements................ XV
Figure 111 R804A1 element size sensitivity analysis: crack pattern...........ccccccvvvveveininininininieininin. XV
Figure 112 R804A1 element size force-displacement graph: NR (left) and Secant scheme (right)..... xv
Figure 113 B702B1 element size sensitivity analysis: crack pattern ..........ccccceeiviieiiiiiiienieee e, XVi
Figure 114 B702B1 element size force-displacement graph: NR (left) and Secant scheme (right) .....xvi
Figure 115 A121A3 element size sensitivity analysis: crack pattern ..........cccocceiiiiiiniee e, XVi
Figure 116 A121A3 element size force-displacement graph: NR (left) and Secant scheme(right)....... XVi
Figure 117 H121A element size and iteration schemes sensitivity analysis ..........cccccovvceeeinniinennnnn. XVii
Figure 118 H404A element size and iteration schemes sensitivity analysis ..........cccccvveiiiiieninnn. XVii
Figure 119 H851C element size and iteration schemes sensitivity analysis ..........ccccoeeeeiiiiiiiieiiienennn, XVii
Figure 120 A751B1 element Size SEeNSItiVity aNalYSIS ..........cceiiiiiiiiiiii s XVii
Figure 121 B502A3 element size SeNnSitivity @NalYSIS ...........uuuuuiuimiuimimiuiminininininieiernrnreinrnn—... Xviii
Figure 122 R803AL element size SENSItiVIty @nalySiS............uuuuuuiuiuiuiuiiimiiininieiniiieieieinnn———. Xviii
Figure 123 Robust numerical model: constitutive MOdel ...............uuuuiuimiiiuiiiiiiiiiiiiiiiiirieen. Xix
Figure 124 Robust numerical model: finite element diSCretization ...........cccoocveieiiiiieeiniiie e, XX
Figure 125 Robust numerical model: analysiS ProCeaUIE...........coccuuiiiiiiiiie i XX
Figure 126 Robust numerical model with DPC BOUNAArIES .........cccuviiiiiiiiieiiiiie e XXi
Figure 127 FCFTN With DPC DOUNUAIIES .......eviiiiiiiiieiiiie ettt XXii
Figure 128 FUFBN With DPC DOUNGAIIES .......eviieiiiiiieiiiiii ettt et e e XXii
Figure 129 FUFTN With DPC DOUNUAIIES .......eviiiiiiiiie ittt XXiii
Figure 130 FUSSTN With DPC DOUNGAIES ........cuviiiiiieeiii ittt e e e e e XXiii
Figure 131 FUSTS With DPC DOUNTAIIES .....cooiiiiiiiiie ettt e e e e e XXiV
Figure 132 Quantitative analysis with DPC boundaries.............cccoiiiiiiiiiiiiiieee e XXV
Figure 133 R802A1: force-displacement graph .........cooo i XXV
Figure 134 Bhal cases force-displacement graph: effective depths ..........ccccoiiiine, XXVii
Figure 135 Force-displacement graph: reinforcement ratio 0.63 %6 .........ccooeeiiiiiiiiieiieeiniiiiiieeeeeee, XXVii
Figure 136 Force-displacement graph: reinforcement ratio 1.88 % ........ccovcvveeiiiiieeiiiiee e, XXVii
Figure 137 Force-displacement graph: reinforcement ratio 2.52 % ........cccoocvveeiviiie e XXViii
Figure 138 Force-displacement graph: effective span-to-depth ratio 2.50 ...........ccccceviieiiiieeennn XXVii
Figure 139 Force-displacement graph: effective span-to-depth ratio 2.72..........cccccevvieiiieeenne XXViii
Figure 140 Force-displacement graph: concrete strength 50 MPa...........ccooviiiiiiiiiienniiee e XXiX
Figure 141 Force-displacement graph: concrete strength 75 MpPa.........ccvveeiiiiiiiieiiiee e XXiX

Xi



Figure 142 Force-displacement graph: concrete strength 100 MPa .........ccoocoviiiiiiieiniiiee e XXiX

Figure 143 Size effect analysis with variation in the reinforcement ratio............cc.ccccceiviiii e XXXi
Figure 144 Force-displacement graph: d = 300 mm (left) and d = 1200 mm (right)..........cccccvveeeeennn. XXXIi
Figure 145 Effective span-to-depth ratio Variation .............cccuveereeei i XXXIi
Figure 146 Size effect analysis with variation in the effective span-to-depth ratio .............ccccveee... XXXiii
Figure 147 Effective span-to-depth ratio: force-displacement graph...........ccccoviineeie e, XXXiii
Figure 148 Size effect analysis with variation in the concrete strength .............ccccvveeee e, XXXV
Figure 149 Concrete strength: force-displacement graph .........cccccoviiiiiiiiei e XXXV

Xii



List of tables

Table 1 Effective span-to-depth ratio and failure modes relation: Nawy (left) [1] and Slobbe et al.

(e a0 22 PSPPSR 6
Table 2 Shear transfer mechanisms contribution [10] .......cceeeiiiiiiiiiiiee e 8
Table 3 Material properties of CONCIELE [41] ..uuuuiieiiiiiiiiieee e e e r e e e e e s aareeees 14
Table 4 Material properties of reinforcemMent [4L1] ........oooiiiiiiiiiiiie e 14
Table 5 Fixed and rotating crack orientation: pros and CONS ............ccieeiiiiieeiniieee e 15
Table 6 FIB bond-slip model bond-stresses considering good conditions [47] ........cccceevviveeiiineeeennnn 21
Table 7 Reference numerical model: constitutive model @...........eeeveiiiiiiiiiiiiiii e 38
Table 8 Reference numerical model: constitutive model b ...........oeeiiiiiiiiiii e 38
Table 9 Reference numerical model: finite element discretization .............ccccccieiiiiiiiiii e, 38
Table 10 Reference numerical model: analysis procedure..........ccccccvvveviviiiiiiiiiieeeeeeeeeeeeeeeeeee 38
Table 11 Sensitivity analysis Cases Properties ........cccvvvivviiiiiiiiiiee et 40
Table 12 Confinement with the fixed crack orientation sensitivity analysis summary ............cccccceee..... 50
Table 13 Constitutive model sensitivity analysiS SUMMArY ...........cccoevvviiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 57
Table 14 R804A1 Non-converged steps: NR and Secant iteration schemes..........cccccccevvvvvivivivenenenn, 61
Table 15 H601A Non-converged steps: NR iteration SCheme ... 62
Table 16 Iteration schemes sensitivity analysiS SUMMAIY ........ccccooiiiiiiiiiiiiee e 62
Table 17 Reinforcement element sensitivity analysis: FIB bond-slip & truss elements, Shima bond-slip

& truss elements, and FIB bond-slip & beam elements..........c.ococeeiiiiiiinn e 68
Table 18 Reference numerical model: number of elements over the beam depth...........cccccooviieennn 69
Table 19 H601A element Sizes SENSItiVIty aNaIYSIS ......ccovuiiiiiiiiiieiie e 70
Table 20 H601A element size sensitivity analysis SUMMArY ...........covvvviiiiiiiiiiieeceeeeeeeeeeeeeeeeee e 72
Table 21 Element size sensitivity analysis of 1200 mm cases: NR and Secant iteration schemes .....72
Table 22 R804A1 element size sensitivity analysisS SUMMANY ..........ccooevvviiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeee 73
Table 23 B702B1 element size sensitivity analySiS SUMMAIY ..........ccccovvviiiiiiiiiieiiieiecceeeeeeeeeeeeeeeee e 74
Table 24 A121A3 element size sensitivity analySisS SUMMATY ...........ccoovvvviiiiiiiiiiiiiceeeeeeeeeeeeeeeeeeeeeee 74
Table 25 R803A1 element size sensitivity analysis SUMMArY ...........cccovvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 75
Table 26 B502B2 element size sensitivity analySis SUMMATY .........cccoeeoiiiiiieiniiiee e 75
Table 27 A751B1 element size sensitivity analySis SUMMATY ..........ccceeiiiiiieiniiie e 75
Table 28 Sensitivity analysis cases with element size prediCtor...........oovcciieiiie e 77
Table 29 Compression-compression confinement sensitivity analysis summary ..........cc.cccceevvcveeeeeee 83
Table 30 Total strain crack models’ crack orientation sensitivity analysis SUMMary ............ccccccceeu.. 83
Table 31 Bond-slip relation sensitivity analySisS SUMMAIY .........cc.oiiiiiiiieiiiiie e 83
Table 32 Iteration scheme sensitivity analysis SUMMArY ..........ccccccoveviiiiiiiiiiiiceeeee e 83
Table 33 Reinforcement element sensitivity analysis SUMMArY ...........ccccccveveviiiiiieiieeeeeeeeeeeeeeeeee 83
Table 34 Global element size sensitivity analysiS SUMMArY ............ccccoevvviiiiiiiiiieceeeeeeeeeeeeeeeeeeeeeeee 83
Table 35 Robust numerical model: concretes’ constitutive mode..............ccccccccoiiiiiiiiiiiiiinciiieee 84
Table 36 Robust numerical model: reinforcements’ constitutive model ...............ccccooveiiiiiiniiieene.n. 84
Table 37 Robust numerical model: finite element discretization a...........ccccccvveeeiiicceiee e, 85
Table 38 Robust numerical model: finite element discretization b...........ccccocveeii i, 85
Table 39 Robust numerical model: analysis ProCedUIe ... 86
Table 40 Element size sensitivity analysSiS CASes PrOPEILIES .......uuveiiureieiiiiiiie ettt ii
Table 41 “Garnica & Koekkoek” cases properties and experimental results 1..........cccccceveevveviiinennnnn, iii
Table 42 “Garnica & Koekkoek” cases simulated reSUltS 1 .........cccuuveveeiiiiicciiiiee e eeecieee e iv
Table 43 “Garnica & Koekkoek” cases predicted reSUIES T........ccuueeeiiiiiiiiiiiiiiie e Y
Table 44 “Garnica & Koekkoek” cases properties and experimental results 2..............ccccccccoovvnnnnen. Vi
Table 45 “Garnica & Koekkoek” cases simulated reSultS 2 .............ueeeiiiiiiiiiiiiiee e vii
Table 46 “Garnica & Koekkoek” cases predicted reSUltS 2.............ccccoiiiiiiiiiiiiiiiiiiii e viii
Table 47 Bhal cases properties and experimental reSUILS ..........ccuuviiiiiiiiiiiii e iX
Table 48 Bhal cases Simulated rESUILS .............oiiiiiiiiii e iX
Table 49 Bhal cases prediCted rESUILS ...........uviiiiie e e e s s rrer e e e e e s e e nnneeeeees iX
Table 50 Ahmad et al. cases properties and experimental rFeSUIS ..........ccccvveiireeein i X
Table 51 Ahmad et al. cases SIMulated rESUILS ........ccuuiiiiiiie e X
Table 52 Ahmad et al. cases PrediCted rESUILS ... X
Table 53 Krefeld et al. cases properties and experimental reSULS ............ccccvvievreeeiiiicieeee e Xi

xii



Table 54 Krefeld et al. cases SIMUIALEA FESUILS .........uiiiiii et e e e e e s e e e aaans Xi

Table 55 Krefeld et al. cases prediCted reSUILS ...........eiiiiiiie e Xi
Table 56 Mphone et al. cases properties and experimental reSults ...........cccccvcevee i, Xii
Table 57 Mphone et al. cases simulated reSUIS.............uueviiei i Xii
Table 58 Mphone et al. cases predicted reSUILS ... e Xii
Table 59 Maximum reinforcement stress (top) and shear traction (bottom) ...........cccccvveveeeiiiiciinnennnn. XV
Table 60 Sensitivity analysis cases with d: 300mm, 500mm, and 800 MM.............cccccvvvereeeeeeviicinnnn XViii
Table 61 Sensitivity analysis cases With d 1200 MM .......cuiiiieiiiiiiiiir e Xviii
Table 62 Collin's DPC system ClasSifiCatioN ............ocviiiiiiiiie e XXi
Table 63 Collin's DPC SyStemM DOUNAIIES .........uuviiiiiiee it XXi
Table 64 Ahmad et al. cases experimental and simulated failure l0ads..........cccccccviiiiiiiiiiee e, XXVi
Table 65 Reinforcement ratio variation SIOPES. ..........ueiiiiiiiii i XXX
Table 66 Effective span-to-depth ratio variation SIOPES.........ccocuiiiiiiiiiiiiiee e XXX
Table 67 Concrete strength variation SIOPES ..........oocuiiiiiiiiiiii e XXX

Xiv



List of equations

LT 0= 11 o o T N PP 8
Lo 0T 11 o] o TN N S PRERRR 10
Lo 0= 11 o] o T N 1 PSSR 11
Lo 0= 11 o] o TN Y 0 SR PRERRR 11
=T (U= 1o T T YA T OO PP PUPPPPPP 11
=T (U= 1ol T YA B T OO PT PP PUPPPPPP 12
=T (U= 1ol 0 T YA | OO PSP PUPPPPPP 12
=T (U= o T 0 T YA P T PSP PT PP PUPPPTTPP 17
=T (U= 1ol T 1 D G T OO PT PP PUPPPPPP 17
=T (U= 1o T D TSP PP PT PP OTPPPPPP 18
L0 TU = 11T T 18
L0 TU = 11T T 1 19
L0 TU = 11T T €1 20
L0 TU = AT T €Y/ 22
L0 TU = AT T Y0 23
=T (U= 1ol 0 T YA I [P OO PT PP OUTPPRUPP 27
=T (U= 1ol 0 T YA | PSPPSR OTTPPRUPP 27
=T (U= 1ol 0 T YA | | OO OUPPPTPP 27
=T (U= 1ol T 0 D G [P OO PT PP TPPPRUPP 27
=T (U= 1o T T 0,0 G [P OO PT PP OTTPPPP 89
=T (U= 1o T 0 T D0 [P PO PO PPUPPPURPPPPTN i
EQUALTION [ XX ] +etuuuiuininiuiiniiiiii s i
EQUALTION [ XX T +ertutiinniiiiniiiiiiiii s i
EQUALION [ XXIV ]ttt s i
EQUALTION [ XXV ]ttt s i

XV



Vrd,c
Cclear

Ae

VEec2

a

Vmc 2010
Gr

Grk

Scr

So

S

Notations

(Effective) length

(Effective) span

Aggregate interlock shear force

Aggregate size factor

Aggregate type-dependent scaling factor
Axial force (from loading)

Bar diameter

Bending moment

Brittleness numbers (Gustafsson, Hillerborg, and Carpinteri)
Cauchy stresses

Cement matrix compressive strength
Characteristic 0.1% proof stress
Characteristic concrete compressive strength
Characteristic tensile strength

Coefficient of friction

Compressive fracture energy

Concrete area

Concrete compression zone shear force
Concrete compressive cube strength
Concrete compressive strength

Contact areas

Crack opening

Crack sliding

Crack width

Crack width at the bottom of a crack
Decayed shear stiffness

Depth

Design shear resistance (member without stirrups)
Distance between reinforcement ribs
Distance neutral axis and center of the internal lever arm
Distance point loads (four-point experiment)
Effective depth

Effective shear depth longitudinal strain (mid-depth)
Effective span-to-depth ratio

Equivalent length, crack bandwidth

Eurocode 2 shear force

Failure mode index

FIB Model Code 2010 shear force

Fracture energy

Fracture energy

Height of a fully developed crack

Initial/linear slip (section 0)

In-plane principal strain

XVi



;nin

Zc
Asi

P
Qccke
Bmin
fet0.05
E1

dg
da
hmax
Tmax
me

Ocp

fctm

Vhumerical

peak
Enn

\

Lateral cracking minimum reduction factor compressive strength

Lever arm

Longitudinal reinforcement area
Longitudinal steel ratio

Long-term effect coefficient x concrete determination reduction factor
Lower bound reduction factor
Lower-bound characteristic tensile strength
Maximal principal strain

Maximum aggregate size

Maximum aggregate size

Maximum equivalent length
Maximum shear stress

Mean compressive strength

Mean compressive stress (from axial force)
Mean tensile strength

Mode-I fracture energy

Normal stiffness

Normal stress

Numerical shear force

Peak elastic strain

Poisson ratio

Reduced Poisson’s ratio

Reduced stiffness

Reinforcement diameter

Relative displacement (slip)

Relative slip sections 1, 2, and 3
Residual tensile stresses shear force
Shear force (shear direction)

Shear force at the support

Shear retention Factor/ reduction factor FIB Model Code 2010
Shear span to effective depth

Shear stiffness

Shear strength

Shear stress

Shear traction

Side length

Size effect factor

Smallest width cross-section

Steel characteristic yield strength
Steel safety coefficient

Strain at the crack

Strain at the peak compressive strain
Strain effect and member size factor
Stress at the crack

Tensile strength

The clear width of the beam

XVii



The nominal strength of the specimen
The shear force from the dowel action
The ultimate strain

Thickness/ width

Total interface shear traction
Transitional size

Ultimate shear stress

Ultimate strain at the crack
Uncracked compression zone height/ internal lever arm
Vertical displacement

Young’s modulus after 28 days

XViii



BC
BFGS
DPC
EC2

FCFTN

FEA
FEM

FUFBN
FUFTN

FUSBN

FUSSTN

FUSTN

FUSTS

HSC
LE
LoA
LSC

LVDT

MC 2010
MNR
MSEL
NLFEA
NR

NSC
ONR
RBK

RC

RCFTN
RTD
RUFTN

RUSSTN

RUSTN
SD

Abbreviations

Boundary condition
Broyden-Fletcher-Goldfarb-Shanno
Demerit Point Classification
Eurocode 2

Confined compression-compression behavior fixed crack orientation and the FIB bond-
slip relation with truss elements using the full Newton-Raphson iteration scheme

Finite Element Analysis
Finite Element Method

Unconfined compression-compression behavior fixed crack orientation and the FIB
bond-slip relation with beam elements using the full Newton-Raphson iteration scheme

Unconfined compression-compression behavior fixed crack orientation and the FIB
bond-slip relation with truss elements using the full Newton-Raphson iteration scheme

Unconfined compression-compression behavior fixed crack orientation and the Shima
bond-slip relation with beam elements using the full Newton-Raphson iteration scheme

Unconfined compression-compression behavior fixed crack orientation and the Shima
bond-slip-strain relation with truss elements using the full Newton-Raphson iteration
scheme

Unconfined (compression-compression) fixed crack orientation and the Shima bond-slip
relation with truss elements using the full Newton-Raphson iteration scheme

Unconfined compression-compression behavior fixed crack orientation and the Shima
bond-slip relation with truss elements using the Secant iteration scheme

High-strength concrete
Linear Elastic

Level of Approximation
Low-strength concrete

Linear Variable Differential Transformer, a sensor used to measure deformations and
deflections in a single direction

Model code 2010

Modified Newton-Raphson

Modified Size Effect Law
Non-Linear Finite Element Analysis
Newton-Raphson

Normal-strength concrete
Quasi-Newton-Raphson

Richtlijnen Beoordeling Kunstwerken
Reinforced concrete

Confined rotating crack orientation and the FIB bond-slip relation with truss elements
using the full Newton-Raphson iteration scheme

Rijkswaterstaat Technical Document

Unconfined rotating crack orientation and the FIB bond-slip relation with truss elements
using the full Newton-Raphson iteration scheme

Unconfined rotating crack orientation and the Shima bond-slip-strain relation with truss
elements using the full Newton-Raphson iteration scheme

Unconfined rotating crack orientation and the Shima bond-slip relation with truss ele-
ments using the full Newton-Raphson iteration scheme

Standard deviation

XiX



SEL
ULS

(Bazant) Size Effect Law
Ultimate Limit State

XX






1 Introduction

1 Introduction

1.1 Background

Flexural shear failure is a brittle failure mode commonly observed in reinforced concrete (RC) beams,
caused by the combination of flexural and shear stresses. The brittle nature of the flexural shear failure
mode makes it more difficult to predict and requires great care. Accurately predicting the capacity of
concrete structures is crucial for ensuring their safety, and designing such structures can be done using
various design codes. The different design codes use analytical, empirical, or mechanical models. How-
ever, an advanced numerical method called the Non-Linear Finite Element Analysis (NLFEA) can be
used as an alternative to these design codes. The RC beams without stirrups failing from flexural shear
failure exhibit non-linear behaviors, which can be modeled using NLFEA. NLFEA allows for more de-
tailed and accurate modeling of the behavior of RC beams without stirrups, considering material, ge-
ometry, and boundary conditions nonlinearity [1]. NLFEA is especially useful for large structures, struc-
tures consisting of complex boundary conditions, or structures where a brittle failure mode is expected.
By using NLFEA, engineers can gain a deeper understanding of the behavior of RC beams without
stirrups and optimize their design for improved performance and safety.

The NLFEA model relies on logical, numerical modeling decisions to accurately simulate the structures’
behavior. These modeling choices affect the various shear transfer mechanisms contributing to the
shear capacity of RC beams without stirrups. The mechanisms are aggregate interlock, residual tensile
stresses, concrete compression zone, and dowel action. To make informed modeling choices, a theo-
retical analysis is necessary to gain a deeper understanding of these mechanisms and the modeling
choices they influence. The modeling choices can significantly impact simulation results, potentially
leading to either underestimating or overestimating the structural capacity. The best way to validate the
modeling assumptions and uncertainties is by performing sensitivity analysis on the numerical model
and validating the simulations with a wide range of differently configured cases. These uncertainties
are in the constitutive model, finite element discretization, and analysis procedure. A reference numer-
ical model found from past research and guidelines [2] must be introduced first, after which modeling
aspects can be analyzed. Sensitivity analysis on numerical models is crucial to improve the accuracy
and successfully simulate different RC beams without stirrups failing from the flexural shear failure
cases.

The study numerically simulates RC beams without stirrups failing from flexural shear failure for cases
with different geometrical and material configurations. Investigating and comparing different configura-
tions is essential to verify the numerical model's accuracy and limitations. As a boundary for the exper-
iment selection, only experiments that fail due to the flexural shear failure mode are implemented using
NLFEA for this report. The shear capacity predicted by design equations proposed in some codes of
practice is also compared to the numerical model simulations. Two codes that will be used are the
Eurocode 2 (EC2) [3] and FIB Model Code 2010 (FIB MC 2010) [4].

This study aims to obtain a numerical model using sensitivity analysis to simulate flexural shear failure
for differently configured RC beams without stirrups. The failure mode, correct damage progression,
and failure load are used to judge the reliability of this model for a wide range of differently configured
beams and should also be applicable for future research. In addition, as pilot research, this report will
also address initial expression on capturing the size effect for the RC beams without stirrups using
NLFEA. The size effect is a phenomenon that describes the decrease in nominal shear strength as the
structure size increases [5] [6]. When analyzing geometrically large beams, the size effect is essential,
as it can be severe for such structures. Various theories have been proposed to account for the size
effect, with no widely accepted consensus. With all the capabilities of the NLFEA, it is hoped that this
advanced numerical method can capture this effect.
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1.2 Research gquestion

This research investigates whether, using sensitivity analysis, a numerical model can be obtained that
accurately simulates flexural shear failure for RC beams without stirrups. Thus, the main research ques-
tion for this thesis is:

Can a numerical model be obtained using sensitivity analysis to simulate the flexural shear fail-
ure for RC beams without stirrups?

Four sub-questions must be answered to get a conclusion on the main research question and pilot
research. These sub-questions also help logically construct the report. The sub-questions include a
brief description for each of them and are given below:

Sub-question 1: What is the flexural shear failure for RC beams without stirrups, and how are

experimental cases selected to study this failure mode on the beam with numerical simulations?
Flexural shear failure is a brittle failure mode for RC beams without stirrups and is caused by a
combination of flexural and shear stresses. Different requirements should be met before
experimental cases are selected for numerical analysis. The following three requirements are
important:

o Firstly, the effective span-to-depth ratio for selected RC beams without stirrups cases should be
within a boundary. This boundary is because the flexural shear failure mode, which is the focus
failure mode in this research, heavily depends on the effective span-to-depth ratio.

e Secondly, the selected experimental cases should comprise beams with various geometrical and
material configurations. This requirement will allow a statement based on the quantitive
simulations with different configurations after sensitivity analysis of the numerical model.

o Thirdly, a set of selected experimental cases should be geometrically scaled beams. These
beams will be used during the pilot research to determine if the numerical method can capture
the size effect.

Sub-question 2: Does model uncertainty during the numerical model sensitivity analysis cause

inaccurate results?
In the past, different studies have been done on model uncertainty. These studies hoped to reduce
the model uncertainty bias from numerical models. However, getting a robust model for specific
cases is still challenging, from only reports and guidelines. Therefore, a reference numerical model
will be set up with recommendations from reports and guidelines and then analyzed. Sensitivity
analysis is done for the constitutive model, finite element discretization, and analysis procedure.
The model uncertainty reason causing inaccuracy should be stated if the numerical model results
in inaccurate results for the experimental simulations after sensitivity analysis.

Sub-question 3: How do the numerical model simulations compare to the experimental results?
From previous reports, appropriate cases will be applied to study the accuracy of the obtained
numerical model from sensitivity analysis. A comparison with the experimental results using the
failure load percentage difference will show the performance of the numerical mode for all cases.
Design codes (EC2 and FIB MC 2010) will also be used to compare the numerical model
performance.

Sub-question 4: According to the pilot research, can numerical analysis capture the size effect
for the RC beams without stirrups that fail due to flexural shear failure?
The size effect is described as a decrease in the nominal shear strength with a geometrical increase
in the structure. The nominal shear strength is a parameter dependent on the size effect, as there
is no size effect if the nominal shear strength is independent of the structure size. A set of
geometrically scaled experimental cases will be used to show initial expressions on if the numerical
method can capture the size effect.
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1.3 Objectives and deliverables

At the end of this research, whether a numerical model is successfully obtained using sensitivity anal-
ysis to simulate the flexural shear failure for RC beams without stirrups is answered. If the model results
are inaccurate, the reasoning for this should be given. In addition, pilot research will be done for initial
expressions on capturing the size effect numerically. With the initial expression, the research on the
size effect can be furthered.

1.4 Research approach

Now that the research question, objective, and deliverables hoped to be obtained are known, a research
approach is put together. A step-by-step overview of the research method in the correct order is given
below.

Firstly, the literature review is done on some important topics. Understanding the flexural shear failure
for RC beams without stirrups and the damage progression during a failure is crucial. The reason for
understanding this well is that the numerical model should replicate this behavior during its simulation.
Because of the flexural shear failure, the shear capacity is vital, which is contributed by the four shear
transfer mechanisms. The four shear transfer mechanisms are the aggregate interlock, residual tensile
stresses, concrete compression zone, and dowel action. Also, when modeling the numerical model,
including these four shear transfer mechanisms is essential.

After understanding the failure mode and different mechanisms that affect the shear capacity, the size
effect is also explained. The size effect must be included in the analysis of RC beams without stirrups
that fail in shear, especially for large beams. In addition, because design codes will be used for com-
parison with the numerical model, understanding their respective theories on the structures’ capacity
and calculations is important. Finally, in the literature review, the numerical model can be addressed.
The advanced numerical method, "Non-Linear Finite Element Analysis"(NLFEA), will simulate the ex-
perimental cases. It should be kept in mind that the numerical method depends on logical, numerical
modeling assumptions to include certain behaviors. Some structures will also have specific require-
ments to result in accurate simulations. Numerical modeling consists of the constitutive model, finite
element discretization, and analysis procedure. Guidelines and past reports can help significantly in
modeling assumptions but also help identify the model uncertainties.

Before the numerical model sensitivity analysis can be done to get a robust numerical model, experi-
mental cases on RC beams without stirrups should be selected for the numerical analysis. The experi-
mental cases will be chosen based on beams with different geometrical configurations, material config-
urations, and the effective span-to-depth ratio boundary. The reason for selecting cases based on the
effective span-to-depth ratio is that only cases with flexural shear failure are chosen, with the failure
mode depending on the ratio. A wide range of cases with different configurations is needed for the
cases. This approach should produce a numerical model verified with various configurated beams. Also,
a series of geometrically scaled beams should be included, as these will be used for the pilot research
on size effect analysis. Here the beam geometry is an important parameter in the beam selection, as
geometrically small and large beams are required for the size effect analysis.

Following the selection of experimental cases, the next step is to validate the modeling assumptions
and reduce model uncertainties. The best way to do this is by qualitatively performing multiple sensitivity
analyses of the numerical model with some experimental cases. These initial cases should be differently
configured beams. The numerical model sensitivity analysis is done for different modeling aspects from
the constitutive model, discretized model, and analysis procedure. This analysis should lead to a robust
numerical model that successfully simulates the flexural shear failure for RC beams without stirrups.
With the numerical model found, the remaining experimental cases are simulated and compared to see
if the results are acceptable from a quantitative analysis. These simulations should also show the limi-
tations of the obtained numerical model. The accuracy is based on the correct damage progression,
failure mode, and failure load. In addition, the numerical model cannot be used if performance is unsat-
isfactory and sensitivity analysis should be performed further.
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Finally, the size effect analysis can be performed, and an initial expression is found on whether the size
effect can be captured with the numerical approach. The set of geometrically scaled experimental cases
is simulated with the numerical model for the size effect analysis. During the size effect analysis, com-
parisons will be made to the experimental results, Size Effect Laws, and design codes to identify limi-
tations or shortcomings in the performances of the methods mentioned.

Finally, the report can conclude whether a numerical model is found using sensitivity analysis that can
successfully simulate the flexural shear failure for RC beams without stirrups. In addition, for the pilot
research, the results of the initial expression on whether the size effect can be captured with the nu-
merical method are addressed.

1.5 Thesis outline

This report is structured with five main chapters, which help reach the research goal. The first Chapter
introduces the thesis background, research question, objectives, and approach. A brief overview of the
other main Chapter is given below:

2 Literature review:

The failure mode, size effect, design codes, and shear transfer mechanisms are explained during the
literature review. In addition, the background for the numerical model, assumptions from previous
reports, and model uncertainties are addressed. These steps for the numerical model help with a
reference numerical model and identify the model uncertainties.

3 Experimental case selection for numerical simulations:

A selection is made for experimental cases using boundaries introduced during the literature review.
The boundaries are based on RC beams without stirrups with flexural shear failure having different
geometrical and material configurations. Also, the effective span-to-depth ratio boundary should be kept
in mind, and a set of experimental cases should be geometrically scaled to study the size effect.

4 Numerical model:

The literature review has helped with a reference numerical model consisting of assumptions and model
uncertainties. The uncertainties should be reduced to get a robust numerical model for the size effect
analysis. Sensitivity analyses on the numerical model can do this elimination of uncertainties until a
robust model is obtained with the initial cases. After that, the other experimental cases were simulated
for a quantitive analysis of the obtained numerical model to check its accuracy and limitations. Lastly,
this Chapter will use the geometrically scaled experimental cases for the size effect analysis. During
this analysis, the behavior of the nominal shear strength is of great importance.

5 Conclusion and recommendations:

The final Chapter summarizes all findings during the study to answer all sub-research questions. At
last, the main research question can be answered with a conclusion, and recommendations for future
work will follow this.
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2 Literature review

This chapter performs a literature review, giving background information and explaining essential topics

for this report. The chapters' content is specified in the order they will be presented, along with the

motivation for the subjects:

e Physical structure
This study focuses only on RC beams without stirrups where flexural shear failure occurs. There
are more possible failure modes for the beams, but only experiments that fail due to flexural shear
failure are selected for analysis. This type of failure and its behavior will be explained before, during,
and after the failure occurs. Next, all four shear transfer mechanisms will be discussed to
understand the theoretical background and their contribution to the shear capacity. The four shear
transfer mechanisms are the aggregate interlock, residual tensile stresses, concrete compression
zone, and dowel action. This knowledge will help include the mechanisms in the numerical model.
Besides this, this Chapter will also explain the size effect, which increases with the beam size.

e Numerical model
The numerical model is an essential aspect of the literature review. This topic will consist of three
sections: constitutive model, finite element discretization, and analysis procedure. For each section,
modeling aspects will also be identified that require sensitivity analysis.

e Design codes
This section will discuss the design codes, EC2 and FIB MC 2010. These codes will be compared
with the numerical model in Chapter 4.

2.1 Physical structure

2.1.1 Reinforced concrete beams subjected to flexural shear failure

The introduction briefly explained the flexural shear failure, but this Chapter will describe it more in-
depth. For RC beams without stirrups, different failure modes can be found. Experiments show that the
parameter effective span-to-depth ratio is critical for the failure mode with concentrated loading. Ac-
cording to Nawy [1], the possible failure types depend on the effective span-to-depth ratio, and their
relation is given in Table 1. In addition, Slobbe et al. [2] combined experiments from two studies [3] [4]
in their research to get the relation between the effective span-to-depth ratio and the failure mode, which
is given in Table 1.

Table 1 Effective span-to-depth ratio and failure modes relation: Nawy (left) [1] and Slobbe et al.
right) [2
Failure @/, (According to Nawy) | 4/, (According to Slobbe et al.) |
Flexure failure Exceeds 5.5 27.0
Flexural shear failure Between 2.5 and 5.5 Between 3.0-7.0
Shear compression failure Between 1 and 2.5 <25

The flexural shear failure begins with vertical flexural cracks, also called main cracks, at the bottom of
the RC beam central span area due to flexure tensile stresses. The main cracks also cause the rotation
of the principal stresses. Following the cracks, the bond between the longitudinal reinforcement and
surrounding concrete gets destroyed at the support. Next, brittlely, a couple of diagonal cracks develop
at approximately 1.5d to 2d away from the surface of the beam’s support. During stabilization, one of
the diagonal cracks enlarges. This tensile crack is towards the top compression fibers of the beam
where the point load is active. As a result of further propagation of the diagonal tensile crack, the flexural
shear failure mode is caused. The diagonal tensile crack is caused due to the development of secondary
cracks. According to Yang et al. [5], the critical diagonal crack starts from the last flexural crack. As a
result of unstable secondary cracks, there is a fast drop in bearing capacity and increased deflection as
the flexural shear crack opens.
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In short, the flexural shear failure mode results from the combination of the flexural and shear stresses.
This failure mode is brittle due to the significant bearing capacity reduction. Figure 1 shows the flexural
shear failure crack pattern for an experiment. The right side shows the crack pattern around the rein-
forcement in the same figure.

4
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Figure 1 Flexural shear failure crack pattern: experimental [6] (left) along the longitudinal reinforce-
ment visualized [1] (right)

During the simulation of the numerical cases, the failure mode behavior described above should be
captured to get flexural shear failure. Luo et al. [7] studied the crack pattern of different beam depths.
During the numerical analysis, the expected crack patterns are essential for this report to know what
crack pattern output to expect from the simulations. The different crack patterns for the varying beam
depths are given in Figure 2:

depth=160mm
depth=360mm
depth=750mm

Figure 2 Crack pattern for varying beam depths [7]
2.1.2 Shear transfer mechanisms

The early shear strength predicting models used to be based on geometrical theories. There are two
geometrical model types: arch action and beam action. The type of model depends on the effective
span-to-depth ratio. Kim et al. [8] state that beams with an effective span-to-depth ratio smaller than 2.5
are determined by the arch action and are called large beams. Beams with a ratio larger than 2.5 are
dominated by the beam action and are called slender beams. An overview of these two model types is
shown in Figure 3:

Figure 3 Arch action (left) and beam action (right) [9]

A downside of the geometrical theories is the absence of all shear transfer mechanisms. The mecha-
nisms govern the shear failure for slender beams. This chapter’s section will explain the four types of
shear transfer mechanisms. According to Koscak et al. [10], the critical shear crack shape is correlated
with the crack opening and sliding behavior. The shear sliding behavior is typical for reinforced concrete
at the ultimate limit state (ULS). These behaviors, in turn, depend on the shear transfer mechanisms.
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An overview of the four shear transfer mechanisms and the location they are active are given in Figure

4,
va

The four shear transfer mechanisms:
Vc:The shear force from the concrete compression zone
Ver:The shear force from residual tensile stresses
Vai:The shear force from aggregate interlock
Vd:The shear force from the dowel action

vd

7
Figure 4 Four shear transfer mechanisms [11]

Garnica [12] states that some shear transfer mechanism grows in importance during the crack propa-
gation while others lose their significance. It should be said that these average results can be vastly
different depending on the case configuration in question. As will be seen further in this section, the
shear transfer mechanisms depend on many factors. Kos¢ak et al. [10] found the average contributions
of these four mechanisms for RC beams without transverse reinforcement and are given in Table 2:

Table 2 Shear transfer mechanisms contribution [10
Shear transfer mechanism  Average contribution
Aggregate interlock

Residual tensile stresses
Concrete compression zone
Dowel action

2.1.2.1 Aggregate interlock

The aggregate interlock mechanism can occur if the aggregate size is larger than the crack width, as
shear forces can be transferred [2]. Walraven [13] described aggregate interlocking as an effect that
allows for the development of shear and compressive stresses caused by the tangential and normal
direction displacements between two cracked surfaces. The stresses are developed due to the “inter-
lock” of two opposite faces as the bulging aggregates cause this interlock. According to Huber et al.
[14], the potential shear transfer between two opposing crack surfaces depends on the crack kinemat-
ics/pattern and the roughness of the crack surface. Important parameters for this mechanism are the
concrete’s fracture mode, compressive strength, aggregate size, and crack width.

Several models for this mechanism have been developed over the years, but the Walraven model has
a physical basis. This model relates the crack sliding (6) and crack opening (w) to the shear stress (t)
and compressive stress (o). The mentioned stresses are visible in Figure 5 and calculated with the
formula in Equation [ 1] [15]:

UGy 2
T Opu8y

—T—gcpu =N
Opy-8x

Figure 5 Aggregate interlock mechanism [16]

()= (20 )

Equation [ I ]
With:
opu = 6.39 fc%56
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The effect of aggregate interlock can be studied with experiments such as roughness, push-off, and
shear tests. Beams with shear cracks close to the point load show higher shear strength and more
significant contribution from aggregate lock than beams with only cracks at the center of the shear span.
Jayasinghe et al. [11] say the best way to safeguard the aggregate interlock mechanism is by using
stirrups. However, in this thesis, beams with stirrups will be neglected.

2.1.2.2 Residual tensile stresses

According to Hordijk [17], the residual tensile strength of concrete consists of its ability to transfer tensile
stresses after the concrete has cracked. These tensile stresses are created near the tip of the concrete
and soften as the crack opening increases. A popular model to express the tension-softening behavior
of concrete is Hordijk's exponential stress-crack width model, visible in Figure 6.
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Figure 6 Hordijk softening curve stress-strain relation [17]

The smaller the crack width, the more significant the residual tensile stress contribution. After crack
widths of 0.1 mm, the aggregate interlocking mechanism dominates the residual tensile stress. Accord-
ing to Yang [6], the total interlocking effect on the shear resistance is ten times greater than that of the
tension-softening force after 0.1 mm, making the residual tensile stress effect negligible. Further infor-
mation about Hordijk's exponential stress-crack width model will be explained during the literature re-
view of the numerical model.

2.1.2.3 Concrete compression zone

The stress distribution in uncracked reinforced concrete is based on elasticity theory. The shear stress
in the compression zone of uncracked concrete can be calculated if the boundary conditions are known.
Axial compression increases the shear resistance, while axial tension decreases the shear resistance.
According to Slobbe et al. [2], if there is no axial compression, the contribution of the concrete com-
pression zone to the shear capacity is small. If the beam depth does not show large deviations along
the length, it can be assumed that the flexural cracks form a tooth structure. The tooth structure is
shown in Figure 7.

Figure 7 Concrete tooth model [18]

The beams analyzed in this study have a continuous depth along the length of the beam, making it
possible to use the model based on Mdrsch’s formula [19]. This model accurately predicts the shear
force in the uncracked concrete zone (V¢). Morsch predicts the maximum shear stress to be reached
at the neutral axis. A parabolic stress distribution is expected above the neutral axis. Constant stress
from the neutral axis to the level of flexural reinforcement is expected below the neutral axis.

The classical beam theory can describe the concrete’s compression zone stress distribution during the
stabilized cracking phase. It is assumed that the entire uncracked contributes to the uncracked com-
pressive zone. The shear contribution from the uncracked compression zone for slender beams be-
comes small. This small contribution is because of the small depth of the compression zone.
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2.1.2.4 Dowel action

The final shear transfer mechanism is the dowel action. The dowel action refers to the capacity of the
flexural reinforcement to transfer shear forces across the crack. According to Vintzéleou [20], this action
resists the opening and sliding of the crack. In the case of RC beams, the flexural reinforcements are
the longitudinal reinforcements, which must follow a transverse displacement to activate the dowel ac-
tion. The longitudinal reinforcement transverse displacement happens when the beam deflects due to
axial loading causing the concrete’s displacement around the bar. Therefore, the more significant the
longitudinal reinforcement amount, the larger the dowel action contribution, which is also said by Slobbe
et al. [2]. According to Paulay et al. [21], three mechanisms can cause dowel action: bending, shearing,
and kinking. Dowel failure is decided by concrete splitting, where the effective area of the concrete
under tension is essential. Vintzéleou et al. [22] say concrete splitting is more common in RC beams if
the concrete cover is less than 6-7 times the bar diameter. For thin concrete covers, the splitting cracks
may be present either at the faces of the section or the bottom.

The analytical approach used for the dowel action is based on the beam on an elastic foundation anal-
ogy [22]. Steel bars and the concrete below them are considered a beam elastically supported by the
concrete above them.

2.1.3 Size effect

According to Bazant et al. [23] [24], the size effect should be accounted for flexural shear failure for RC
beams without stirrups. The size effect is described as the phenomenon due to which the nominal shear
strength (o) decreases as the beam size increases [25] [24]. According to Bazant et al. [26], the nom-
inal shear strength is calculated with the formula in Equation [ 11 ]:

_ Vv
UN_b_d

Equation [ 11 ]

One of the main influencing factors of the size effect is the release of stored energy during crack prop-
agation. The release of stored energy correlates with the fracture zone length and area size. Yang et
al. [27] found that an increased beam depth or decrease in the effective span-to-depth ratio has a
higher energy release rate. Due to the higher energy release rate, crack width increases, a more brittle
failure occurs, and the nominal shear strength decreases. With the increase of the beam depth, there
is less contribution from the aggregate interlock to the shear capacity due to the increasing crack width.
The relation of the size effect to the increasing beam depth was already well known. However, the
dependence on the effective span-to-depth ratio is also confirmed by Zararis et al. [28].

The release of stored energy is not the only source that affects the size effect but the most dominant
one for quasi-brittle materials. Bazant et al. [29] also identified that another significant source of the size
effect is the statistical size effect caused by differences in the material strength. Ghannoum [30] found
that the size effect can be seen in both normal-strength (NSC) and high-strength concrete (HSC). How-
ever, this study also found that the strength of concrete shows almost equal shear stresses at failure
for the same reinforcement ratios. In contrast to Ghanoum's finding, El-Sayed et al. [31] found a higher
size effect for HSC due to a higher brittleness. HSC is well known to be more brittle than LSC. Bentz et
al. [32] also support this finding and_state that the size effect increases with increased concrete strength.
The higher the concrete strength, the more vulnerable the structure is to aggregate fracture, decreasing
the aggregate interlock [33]. An analysis of concrete strength is vital due to its impact on the brittleness
of the beam.

According to An et al. [34], the bond effect of steel and concrete is a critical source that controls the
shear behavior and size effect. A stronger bond helps the steel yield before the crack reaches the critical
depth. For flexural shear failure, the steel will not be expected to yield. Supporting this finding, Carmona
et al. [35] found that the reinforcement and bond effect of steel and concrete can affect the size effect.
The effect of the bond on the size effect can be studied by varying the reinforcement ratio and concrete
strengths. An increase in longitudinal steel reinforcement can increase the shear stresses by controlling
the crack width. A low longitudinal reinforcement ratio reduces the shear capacity because an increase
in the crack width results in lower aggregate interlock stress transfer along the crack.

10
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In addition, a lower reinforcement ratio also decreases the dowel action. The beam size relation to the
longitudinal reinforcement is also significant. For deeper RC beams, the longitudinal reinforcement ra-
tio's effectiveness decreases.

Next, the fracture mechanics-based Bazant SEL will be addressed below. This law uses the analytical
method to describe nominal shear strength changes between geometrically scaled beams for the size
effect analysis. In addition, a brief history of Bazant SEL and its research development over the years
is given. According to Bazant, the size effect should be accounted for with the ultimate failure calculation
instead of calculations for diagonal shear cracks. The ultimate failure calculation should be accounted
for because the latter does not provide a sufficient safety margin against the safety load. Bazant pro-
posed the SEL, which had modifications over the years from new findings.

Initially, in 1984, Bazant presented the following SEL [23]:

vu = M<\/ﬁ+ 3000\/%)

d
1+ 5512

Equation [ 11l ]
With:
a =222 (For concentrated loads: a =2)
Mu d

In 1996 this law was modified by Kim et al. [36] and was called the modified Bazant SEL. The modified
law agreed better with experimental data than any other law during that time. The modified Bazant SEL
is given below:

vu =35 fc'“3p’le (0 4+ i) (é +0 18)
' © a/\J1+0.008d
Equation [ IV ]
With:
a
a=1 for Pl >3
a
a
a=2 —# for 7 <3

Bazant et al. [26] state that the size effect of concrete could not be different from that of other quasi-
brittle materials. The assumptions are that the failure load is controlled by the fracture energy Gfand
the cohesive fracture parameters. In addition, another explanation of the size effect is the profile of the
compressive stresses. The inclined compressive stress transfers a large part of the shear force at max-
imum load from the zone above the flexural crack. In large beams, the profile of the compressive
stresses is very confined but uniform for slender beams. Bazant proposed the following design code,
which was obtained with least-square regression:

3 d fc'
vu=pu ps (1 + —) g
Y 1+
Equation [ V]
With:
d0 =k fc"2/3

x = 3.800Vda, if dais not known: x = 3.330
u =133 for the best fit
u =10 for the best design

11
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In 2009, Bazant et al. [37] introduced the Universal size effect, where two types of size effect laws are
identified. The purpose of this law was to get a smooth description of the complex transition between
the Weibull statistical size effect [38] and the energetic deterministic size effect. The occurrence for
each law is given below:

e Type | SEL: occurs when the crack is initiated on a smooth surface of the beam. The structures do
not have a not or pre-existing crack.

e Type Il SEL: takes place from a deep notch or crack in the beam.

e Universal SEL: This law must ensure a smooth transition from type | to type Il for quasi-brittle
materials failure. The asymptotic size effect law occurs and captures the Weibull statistical size
effect.

The nominal strength for the type | size effect is sensitive to material randomness, and the Weibull

statistical size effect is considered. This material randomness can be ignored for the type |l size effect.

SEL type Il considers the release of stored energy during failure as the cause of the size effect for

quasi-brittle materials, not the statistical size effect. In Figure 8, the size effect is expressed by the

transitional behavior between the strength criterion and the LEFM. The figure on the right is the type |
size effect, while the figure on the left is the type Il size effect.

trength oriterial plastic theary

4 trength criteria/ plas fic theory
Log(on) [©

Log(onf

Bazant SEL fype \J

Bazant SEL type b=
EFM

AN

Tog @) Log (d)
Figure 8 Bazant Size effect Law: type I (left) and type Il (right) [37]

According to the Bazant SEL type I, the figure exists of 3 sections which are:

e The strength criteria from the strength theory.

e The nonlinear fracture mechanics section has an asymptotic slope between -1 and -0.5 caused by
the influence of the size effect.

e The linear elastic fracture mechanics section with a slope of -0.5 is also recognizable as the steep-
est slope in the log-log plot.

Bazant et al. [39] researched the failure probability if SEL type Il is not considered. The results sug-

gested that the failure probability was 10-¢ for small beams. However, this probability increased to an

unsafe value of 10-3 for large beams. SEL type |l considers the release of stored energy during failure

as the cause of the size effect. The Bazant type Il SEL is expressed by Equation [ VI ].

__Bf
oy = —(—,
d

Equation [ VI ]
With:

Oy =3 the nominal stress [MPa]

d: ef fective depth [mm]
ft: tensile strength [MPa]
B, Do: dimensional parameters

During the calculation of the shear capacity using the design code EC2, the size effect factor has also

been included. The formula for the shear capacity will be given in Chapter 2.3, but below the size effect
factor k is given:

k=1+ 200
B d

Equation [ VII ]

12
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k is called the size effect factor, which considers the size effect by decreasing the shear resistance for
an increased effective depth. This factor is formulated from experimental research data. The influence
of the size effect factor with increasing beam depth can be seen in Figure 9.

Eurocode size effect factor

min(1+np.sqrt(2004d), 2) [-]

k=1

~——_

14 -

o 200 400 600 800 1000 1200
Beam depth [mm]

Figure 9 Eurocode 2 size effect factor influence [40]

Yang [6] argues that the size effect depends on different mechanisms, each having different contribu-
tions. Expressing the size effect with geometrical scaling relationships is not feasible. Yang et al. formed
a new theory for RC beams without stirrups to calculate the shear capacity. This theory will not be used
during the comparisons but does help understand the shear transfer mechanisms and shear capacity
formulas mentioned previously better. A summarization of this theory is given in Annex .

13
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2.2 Numerical model

Chapter 2.2 of this section is a literature review on the numerical model but also consists of numerical
modeling decisions that need to be made for the numerical model. Combined with the numerical model
sensitivity analysis in Chapter 4.2, these decisions should lead to a robust numerical model that can be
applied to all cases. The initial solution strategy decisions will be based on information from previous
reports and personal experience with DIANA FEA, as the scope of this topic is broad. Reports from past
years which will mainly be used as the normative guideline for the choices are from Hendriks et al. [41],
Belleti et al. [42], Putter [43] [44], Lang [45], Yang et al. [5], and Garnica et al. [46]. Finally, the most
accurate robust model will be chosen, while some limitations will be addressed.

According to Putter et al. [44], if the solution strategies are not considered to depend on the type of FEA
software, differences in solutions may still be present in the FEA software. Therefore, solution strategy
choices will be made to get the best robust model to simulate the flexural shear failure for RC beams
without stirrups in the software DIANA FEA. In addition, Putter also states that any slight change in the
constitutive model, discretized model, and analysis choices can cause a shift in model accuracy for a
brittle model. It should be noted that beams without stirrups are more sensitive to solution strategy
choices. This sensitivity makes it difficult to get a robust model based on only literature for a specific
case.

Before the constitutive models are explained for the materials concrete and reinforcement in the follow-
ing section, it is crucial to know how the material properties are chosen for the numerical models. These
are calculated with the help of EC2 [40], FIB MC 2010 [47], and Richtlijnen Beoordeling Kunstwerken
(RBK) [48]. A summary of the concrete and reinforcement material properties is given in Table 3 and
Table 4, respectively. In addition to the tables, in DIANA FEA for concrete, the isotropic linear elastic
model should be based on Young’s Modulus E with E > 0 and Poisson’s ratio v with 0 < v < 0.5. Hendriks
et al. [41] found that concrete’s initial Young’s Modulus should be reduced by 0.85 due to initial cracks.

Table 3 Material properties of concrete [41

Concrete
Mean compressive strength fom = for + Af, Af =8 MPa
Compressive strength minimum reduction fac-
tor By = 0.4;p = pn
(From lateral cracking)
Lower-bound characteristic tensile strength fetk005 = 0.7 feem
- C50 03 %
Mean tensile strength 60 Heem =03/
> C50/60: fooy = 2.12In (1
+0.1fem)
Fracture energy Gp, = 0.7 X 0.073£%18
Compressive fracture energy Geg = 250 X for /fom X 0.073£0:18
Young’s modulus after 28 days E.,, = 22000(0.1£.,,)°3
(Initial) Poisson ratio v=0.20
Density plain concrete p = 2400 kg/m3
Density reinforced concrete p = 2500 kg/m?3
Long-term effect coefficient x _
Q'c:/{’t =1.0

Concrete determination reduction factor

Table 4 Material properties of reinforcement [41]
Reinforcement
Poisson ratio v=0.3
Density steel p = 7850 kg/m?3
Steel safety coefficient =11
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2.2.1 Constitutive model

To effectively mimic the behavior of the experimental cases, correct choices for the constitutive model
must be employed to capture the material's correct behavior. Therefore, the constitutive model literature
review will be done for the concrete and reinforcement in the sections below.

2.2.1.1 Concrete

The constitutive model for concrete will be explained in five sections. The sections will be the following:
Model types

Tensile behavior

Compressive behavior

Reduction due to interaction

Equivalent length.

Each of the sections can be found in the order below:

Model types:

The total strain crack model will be used to model the concrete. This model is categorized under the
smeared crack model and describes a material's tensile and compressive behavior using a single
stress-strain relationship. The stresses in this model are computed depending on the crack directions.
The total strain crack model can be used with the following three types of crack models:

e The rotating crack orientation

e The fixed crack orientation

e The rotating to fixed crack orientation, which is a rotating and fixed crack orientation hybrid

The rotating and fixed crack orientations will be investigated and used for the model sensitivity analysis
during this study. If correct results are not found with one of these crack models, the rotating to fixed
crack orientation will also be used for the sensitivity analysis. However, Lavli [49] has found that this
model acts between the rotating and fixed crack orientations. Due to this behavior, when neither the
rotating nor fixed crack orientation gives accurate results, nor will the rotating to fixed crack orientation.
For the two crack orientation models in focus, earlier studies have shown diverse responses for RC
beams without stirrups cases. The different response results (with pros and cons) are shown in Table
5. The crack model behaviors from Table 5 will be given special attention during the model sensitivity
analysis. Overlapping advantages and disadvantages will be omitted. Also, remedies will be suggested
for some problems introduced in the table.

Table 5 Fixed and rotating crack orientation: pros and cons

Rotating crack orientation Fixed crack orientation

o e For beams without stirrup, limited variation is
=2 shown in the obtained coefficient of variations
= - [44]
E O INIgf EniEeise) o)) SifEeen pelng e The crack pattern is captured more realistic [5]
'S,: ¢ Included aggregate interlock (due to the shear
retention model)

o e Dependence on the shear retention model
= * Over-rotation of cracks and struts results in (this can cause an overestimation of the fail-
< a higher capacity than in reality [44] ure load) [44]
N . Requires visual inspection of the rotated | e Unable to solve sufficient change in the prin-
K cracks and force-displacement behavior to cipal stress-strain above the reinforcement
-é’ get the failure moment [43] (causing premature failure) [45]

e Accounts for additional [44]
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The fixed crack orientation saves the principal tensile strains, compressive strain, and crack orientation
as parameters. Once the tensile strength of concrete is reached in an orthogonal coordinate system,
the orientation in a fixed crack strain model is captured and evaluated. The crack gets followed by this
coordinate system, and because this system is fixed, shear stresses can also occur. This model ana-
lyzes normal and shear stresses on the crack surface. It thus can reproduce the physical behavior of
concrete cracks more precisely than the rotating crack orientation. The rotating crack orientation as-
sumes that the orientation of the cracks rotates continually in response to changes in the axis of the
principal strains. The way both crack models' crack orientation work is displayed in Figure 10.

Fixed crack orientation

G mm) G ) 7

04 T4 @
Rotating crack orientation

Principal direction Cﬁ
i :%1 4= )
iy

01
Figure 10 T total strain crack model: fixed (top) and rotating crack orientation (bottom) [50]

Shear stresses are present in the fixed crack orientation, as shown in Figure 10. This model requires a

reduction of the shear stiffness along the crack using a shear retention model. As previously mentioned,

the fixed crack orientation result of the load capacity will depend on the type of shear retention model.

According to Slobbe et al. [2], including a constant shear retention factor in the model can be interpreted

as the aggregate interlock mechanism. DIANA FEA offers seven types of shear retention models, which

are:

e Aggregate Size-Based Shear Retention: shear retention is based on aggregate size.

e Al-Mahaidi shear retention function: the shear stiffness reduction depends on the normal total strain.

e Constant Shear Retention: The shear retention factor is introduced in the shear retention model to
describe the residual shear stiffness of the crack. Araujo et al. [51] suggested using 8 = 0.01, as
the contribution of the shear strength from the crack is small on the structure's shear crack.

o Damage-Based Shear Retention: shear retention is based on the damage due to cracking.

o Maekawa shear retention curves: two types of shear retention curves by Professor Maekawa are
offered in DIANA FEA.

¢ Normal Crack Strain Based Shear Retention: multi-linear diagram of shear retention factors and the
normal crack strains.

e Variable Shear Retention: shear retention varies with shear strain.

Recently multiple studies have been done on the shear retention models using DIANA FEA. Because

of the large amount of available data, no sensitivity analysis for the shear retention model is required.

The damage-based shear retention model will be used, which causes a reduction of the shear stiffness

at a rate like that of the normal stiffness. From some reports, the following main conclusions were found

in favor of the damage-based shear retention mode:

e The variable shear retention model is more consistent than the constant shear retention model [52].

e The damage-based shear retention model works well for RC beams without stirrups. In contrast,
the other tested shear retention models led to more significant sensitivities [44].

e The aggregate-sized shear retention model fails to capture shear and mixed-mode failure, resulting
in stiffer simulations than the experiment [53].

e The problem of over-rotation is avoided with the damage-based shear retention model [54].

Lang [45], however, states that the damage-based tension model can result in excessive loss of the

shear retention factor. As a result of these problems with the shear retention model, Slobbe et al. [2]

point out the advantage of the rotating crack orientation. With this choice, picking a shear retention

model can be avoided, which avoids the possibility of shear stress locking.

16



2 Literature review

Tensile behavior:

According to Marzec et al. [55], during flexural shear failure, the tensile parameters' effects dominate
over the compressive parameters. At the same time, the reverse situation is the case for compressive
shear failure. Concrete is a material with low tensile strength, where the crack occurs perpendicular to
the maximum tensile stress and in a brittle manner. The tensile softening behavior is related to the
mode-| fracture energy G; [56]. Sucharda says [57] fracture energy is vital for NLFEA but extremely
hard to calculate with experiments.

DIANA FEA offers multiple softening curves, but Hendriks et al. (8) recommend using an exponential-
type or exponential softening diagram. This softening curve is preferable because it simulates more
localized cracks and, as a result, avoids broad areas of diffuse cracking. The Hordijk softening curve
[58], an exponential-type softening diagram, is chosen due to the high amount of backing from reports
with similar cases. The softening curve selected is shown previously in Figure 6.

Each part of the stress-strain relation curve and additional information is given below:

e In the first part, the concrete acts elastically until the tensile strength f;, after which the tensile
softening starts.

e The elastic part ends at the strain peak £ . At the ultimate strain < ., the stress in the
crack off, becomes zero, after which the crack is fully open.

I
e The area in the graph is equal to %

e The damage-based reduction model should also be applied when modeling the tensile behavior.
This model reduces the Poisson’s ratio after the crack.
The formula for this curve is given below:

cr 3 cr

1 Enn Enn

+ (1= exp | —¢c; ——
Enn-cr &

O-rgl(grcl;l nn-ult
— = .
fe L— o — (L + ) exp(—cy) ,if0 < & < &
nnn.ult
0 Jif et . < T < oo
nn-ult nn

Equation [ VIII ]

The following reduced & simplified formula is found for the tensile strength:
1

GLE\2
fi = (0.739 %) ,
Equation [ I1X ]
With:
h: equivalent length/ crack bandwidth.

Compressive behavior:

Numerical studies from Hasegawa et al. [59] [60] have shown that accounting only for the concrete

tensile behavior is sufficient to capture the flexural shear failure for deep RC beams. However, because

a compressive failure mode is possible, this should not be excluded by modeling only the tensile be-

havior. According to Hendriks et al. [41], the following points are essential about concrete compressive

behavior:

e Concrete shows a pressure-dependent behavior.

e Concrete’s post-peak behavior depends on the boundary conditions.

e Influence by lateral cracking should cause a reduction of compressive strength.

e To reduce element size sensitivity, the softening behavior based on the compressive fracture en-
ergy G, should be modeled.
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The parabolic curve recommended by Feenstra [61] to model this behavior is in Figure 11. In addition,

the formulas for the Feenstra model are also given in Equation [ X ].

o
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Figure 11 Concrete compressive behavior parabolic curve [61]
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Reduction due to interactions:

Equation [ X ]

The concrete’s compressive strength should be reduced for two types of interactive behaviors. These
two interactive behaviors are tension-compression and compression-compression behavior.

The first interactional behavior discussed is the tension-compression interaction. According to Vecchio
et al. [62], for this behavior, the concrete strength and stiffness decrease after it cracks. This behavior
is also called compressive behavior with lateral cracking. After the cracks, the concrete loses its full
compressive strength. Excluding the compressive strength reduction around the cracked elements
caused by cracks would not be conservative for the numerical model with the flexural shear failure mode
and thus must be included. An example of different reduction models available is shown in Figure 12.

[ no softening
05 _AMaekawa
/

~——— Experimental
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Figure 12 Tension-compression interaction reduction model [62]

The reduction model proposed by Vecchio & Collins [62] will be applied, which can be considered with

the following reduction factor:

1
1+K,

Boe = —— < 1, with K, = 0.27 (- 22— 0.37)
0
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The reduction factor due to lateral cracking can also be used, which Belletti et al. [42] suggest be-
ing Bmin=0.6. However, Japan Society of Civil Engineers [63] found that 0.2 can be subtracted from this
value if there is potential reverse cyclic loading until a significant tensile strain occurs. A Bmin Of 0.4 will
be implemented, which is also the lower bound of the reduction factor. According to Salah et al. [64],
Bmin=0would result in over-stiff behavior from the structure.

The second interactive behavior is the compression-compression behavior, also known as the com-
pressive behavior with lateral confinement. During the compression-compression interaction, confine-
ment can be considered but also skipped depending on the numerical model. In this report, confinement
does not play a significant role in the chosen 2D numerical cases with expected flexural shear failure.
According to Putter [43], it is recommended to use an unconfined model. However, to know if modeling
this behavior is necessary, sensitivity analysis will be performed for this in Chapter 4. An unconfined
numerical model and a numerical model with confinement will be used for sensitivity analysis. The
confinement model used for the sensitivity analysis is the Shelby & Vecchio model [65].

Equivalent length:

Recent studies have suggested that the equivalent length is critical for the shear capacity of RC beams
without stirrups. DIANA FEA offers three methods to calculate the equivalent length/crack bandwidth:
the user-specified method, the Rots element-based method, and Govindjee’s projection method. Ac-
cording to Hendriks et al. [41], the user-specified crack width method can be inaccurate while increasing
the number of modeling factors for the numerical model. On the other hand, the Rots element-based
method has accuracy problems for distorted or high aspect-ratio elements. Govindjee’s method [66]
has the least problems and is best suited. This method automatically decides the equivalent length. The
formula for Govindjee’s projection method is given below:

-1

hy@) ={ | N |- n )

Equation [ XII ]
With:
¢‘ _ (xi - xc) : n(x) - ¢min
' ¢max - ¢min

A problem with this method is that directional mesh bias can occur. This problem occurs when the
localized band direction and mesh lines are not aligned, causing the strain localization to depend on
the mesh orientation [67]. Through the years, updated versions of these Govindjee’s projection method
have been created. The newer version also has an added orientation factor, improving this method.
However, because the new methods are not a part of the current version of DIANA FEA (version 10.5),
the updated methods will be excluded from this thesis.

2.2.1.2 Reinforcement

Reinforcement has an elastic-plastic behavior, as shown in Figure 13. This figure shows that the yield
point is the elastic limit, while hardening starts after the yield point till the ultimate strength. To include
the non-linear mechanism, the Von Mises plasticity model will be used as the non-linear model. Here
the ultimate stress will reach before the steel fails. According to Hendriks et al. [41], rupture can be
modeled by specifying sharp, softening branches. Alternatively, a post-processing check should be
done if rupture is not modeled.

ol

Ultimate strength

material fracture
Yield strength

Young's modulus (stress/strain)

=
Figure 13 Reinforcement elastic-plastic model [68]
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Hardening is beyond ideal plasticity and should also be introduced into the model as strain-isotropic
hardening. Giuliano [74] explains that isotropic hardening is when the material yield surface expands
under plastic deformation. An alternative to isotropic hardening is kinematic hardening. The difference
between the two hardening types is the “Bauschinger effect.” Both hardening types are based on the
strain-hardening hypothesis [69]. In Figure 14, an overview of the two hardening types is given. The
two stress-strain relation diagrams show the change in the yield surface.

Figure 14 Isotropic (left) and kinematic hardening (right) [69]

The concrete-reinforcement interaction is the primary mechanism driving the stress redistribution after
cracking. This mechanism can be modeled in multiple ways using DIANA FEA. Putter [43] recommends
using the bond-slip relation as the most dependable. In addition, Yang et al. [5] state that this model
improves the simulation results. The bond-slip relation describes the slip between concrete and rein-
forcement. DIANA FEA offers several bond-slip relations, which are listed below:

e The quadratic function proposed by Dorr.

e Power Law relation proposed by Noakowski.

e Bond-slip relationship presented by Shima.

e Bond-slip-strain relationship presented by Shima.

e CEB-FIB 2010 bond-slip relation.

The Shima bond-slip and CEB-FIB 2010 models are often used. Putter [43] has found that the CEB-
FIB 2010 model works best for RC beams without stirrups-specific cases. He explains that the failure
load is overestimated due to the higher bond stress at which the stiffness decreases significantly for the
Shima bond-slip relation. Still, a numerical model sensitivity analysis will be done between the two bond-
slip relations to decide which performs best for the specific cases in this report. Chapter 4.2.1.2, Figure
54 compares a stress-displacement graph using both models during the model sensitivity analysis. For
now, the theoretical background of both models is explained below.

The first model discussed is the Shima bond-slip relation [70]. This model is defined by the formula in
Equation [ XIII ]. This formula is a function of the concrete strength and reinforcement diameter, and a
curve can be plotted from it. Also, the stiffness of this model is infinite.

t, = 0.970) (1 - e“w(%t)o'ﬁ) [MPa]

c

Equation [ XIII ]

The CEB-FIB 2010 bond-slip curve is unique from the other models because of the unloading and
reloading behavior. This behavior uses linear stiffness until the opposite stress value is reached. Be-
cause of this, the calculations are done in four phases, shown in Figure 15. Each phase is also de-
scribed in the figure.

tau
talmax| -~
I: An exponential growth from no stress to Tmex resulting in the relative displacement s,
tau. | II: A constant 1,5, until s,
f | 1 1l ;IV HlI: A linear decrease from Tmax to Ty until s; is met.
i IV: Hereafter there is increase in displacement with a constant 1;

$ Sy s3 S
Figure 15 CEB-FIB 2010 bond-slip curve based on pull-out [47]
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The following calculations in Table 6 are important for the phases when modeling the bond-slip relation
because of multiple modeling conditions. Good bond-slip conditions for the pull-out failure will be con-
sidered in this report.

Table 6 FIB bond-slip model bond-stresses considering good conditions [47
Bond stresses Boundaries Pull-out failure: Pull-out failure:

(with good conditions) (Relative displacements) Ribbed bars Smooth bars

T0 = Tmax (i) a ‘ 0<s<s1
To = Tmax \ s1<s<s2 s1=1mm 51=0.01mm
T0= Tmax (Tmax- rf):;sz2 ‘ $2<s<s3 s2=2mm s2=s1
T \ $3>s $3=Cclear s3=sl
Tmax=2.5Vfck Tmax=0.1Vfcm
Additional formulas: a=0.4 a=0.5
17=0.4 Tmax Tf=Tmax

The element should have a neglectable initial deformation compared to the continuum element. High
initial stiffness is introduced as a solution for the normal and shear stiffness. For the stiffnesses, the
following formula is used:

¢ Normal stiffness (Kn):g

e Shear stiffness (Ks)=0.1*Kn
2.2.2 Finite element discretization

In the earlier section, the constitutive models were discussed. With the information gathered till now,
the next step is finite element discretization. By discretizing the experimental cases, the experimental
cases can then be approximated as closely as possible with the help of NLFEA. The discretization will
be done for the concrete, reinforcement, mesh, loading, and boundary conditions below.

2.2.2.1 Concrete

Because the RC beam model will be made in 2D, 2D plane-stress elements, also called membrane
elements, can be used with all nodes in-plane. Shun summarized [71] characteristics of the 2D plane-
stress elements, which are:

e The elements make use of the XY coordinate system.

e Transitional displacement takes place in the x-direction and y-direction.

e Strain components are: &,,, &, and the shear component y,,,.

¢ A small thickness compared to the length and width dimensions.

e Stresses g,, and strains ¢,, perpendicular to the face (z-direction) equals zero.

The specified thickness is vastly different for this type of element. It is enough to specify the thickness
at one node for uniform-thickness cases. For non-uniform thickness cases, the thickness needs to be
specified for every node, as shown in Figure 16:

. \ g

4 i

Figure 16 Plane-stress element thickness: uniform (left) and non-uniform (right) [71]
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Hendriks et al. [41] recommend quadratic elements over linear elements giving more deformation
modes and preventing locking. In addition, Borst et al. [72] state that these elements should be fully
integrated to avoid spurious modes due to extensive cracking. The element recommended for the 2D
RC beam model is an eight-node-quadrilateral element. The element that fits this recommended in
DIANA FEA is CQ16M, displayed in Figure 17.

Figure 17 CQ16M plane-stress element [71]

Essential facts and choices about CQ16M are listed below:
e The polynomial equation for the displacement:

(&) = ag + a;¢ + an + azén + a,&% + asn® + agé?n + a;én?
Equation [ XIV ]

e ¢, Vvaries linearly in the x-direction and quadratic in the y-direction.

e ¢, varies linearly in the y-direction and quadratic in the x-direction.

* ¥, Varies quadratically in the x-direction and y-direction.

e This element uses an isoparametric quadratic scheme and makes use of numerical integration.

e A 3x3 Gaussian integration scheme will be used instead of a 2x2 Gaussian one. Because DIANA
FEA has a 2x2 reduced integration in the default settings, this must be adjusted.

e The element pairs well with embedded elements and grid elements for longitudinal reinforcement.

2.2.2.2 Reinforcement

From the earlier sections, some considerations need to be made before doing the finite element dis-
cretization for the reinforcement. As mentioned in the last section, the bond-slip relation will be modeled
and can be done in DIANA FEA with truss or beam elements.

The advantage of embedded reinforcement with truss elements is that the reinforcement does not re-
quire a modification in the connectivity of the concrete elements. Hendriks et al. [41] state that slip can
be modeled explicitly due to the combination of the embedded reinforcement with interface elements.
However, unfortunately, the truss element cannot be used to model the dowel action, as this element
only takes up axial stresses.

Beam elements can describe axial forces, shear forces, in-plane moments, and out-of-plane moments.

These descriptions give axial deformation, shear deformation, curvature, and torsion. However, Shun

[71] points out that the dimensions perpendicular to the bar length must be minor compared to the bar

length. An advantage of the beam elements is that it also considers bending stiffness, making it possible

for the concrete to withstand shear stresses with the dowel effect. Cook et al. [73] found that the beam

elements limit freedom in meshing due to the characteristic of sharing nodes with continuum elements.

DIANA FEA offers the following three classes for beam elements:

e Class-I beam element: from the classical beam theory, it works well for linear and non-linear
geometrical analysis.

e Class-Il beam element: numerically integrated from the classical beam theory. This element works
well for linear and non-linear geometrical + physical analysis.

e Class-lll beam element: numerically integrated from the Mindlin beam theory. This element works
well for linear and non-linear geometrical + physical analysis. This class of beam elements also
includes shear deformation.
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Due to this, the element includes shear deformation, consisting of 3 nodes and 9 degrees of freedom.
The geometrical nonlinearity of the dowel action should be considered. This nonlinearity should be
considered due to the change in the line of action. According to Slobbe et al. [2], this inclusion works
well with Class-Ill beam elements. The displacement variables can be derived from Equation [ XV ].

U (§) = ap +a;é + azfz
Uy (&) = by + by & + by¢?

$,(8) = ¢ + 1§ + 87
Equation [ XV ]

According to Putter et al. [43] [44], the best results for RC beams without stirrup cases are found for the
beam element combined with CEB-FIB 2010 bond-slip relation for the fixed crack orientation. However,
convergence difficulties have been found for beam elements during the analysis using the CEB-FIB
2010 bond-slip relation on the force norm. Compared to the CEB-FIB 2010 bond-slip relation with the
Shima-bond-slip relation, the Shima-bond-slip relation did not result in many convergence difficulties.
The analysis found the convergence difficulty is because, unlike the Shima-bond-slip relation, the CEB-
FIB 2010 bond-slip relation requires bond stresses during the increase of the strain. As a result, this
causes an increase in the residual force. Because many modeling aspects are still undecided for the
numerical model, choosing based on just this information from the literature review is not ideal. From a
theoretical perspective, both reinforcement element types have advantages and disadvantages. A nu-
merical model sensitivity analysis will be done with the truss and beam elements. The reinforcement
element type will be chosen depending on the better results during the sensitivity analysis.

2.2.2.3 Mesh

The element size must be chosen based on the beam dimensions to avoid element size sensitivity
problems. Over the years, various element size sensitivity analyses have been performed, and recom-
mendations for the formula have been given. However, whether these recommendations will accurately
work for all numerical cases in this report is still unknown. The suggestions below highlight information
over the years, from which an initial element size can be decided. This initial element size, in turn, will
be optimized with an element size sensitivity analysis for beams with different dimensions.

Correct element sizes benefit the dowel crack initiation and propagation rate, as they depend on the

element size. Also, the element size cannot be more extensive than 1.5 times the maximum aggregate

size. In 2020 Hendriks et al. [41] proposed the formula ( min (%%)) to calculate the element size for

2D RC beam models. In addition, a second formula for the maximum element size has been given,
. Leq . . .

which says h max s The reasons for the maximum size are the following:

e Avoid snap-back post-peak behavior caused by the softening materials.
e Avoid stress distribution jumps to keep it as smooth as possible.
e Capture damage distribution.

Putter [43] found that elements with the size :—0 gave the best results. It was also shown that cases on

beams without stirrups over 600mm showed mesh dependence when analyzing with element sizes
;—0,:—0,5—0,:—0. The report states the analysis for beams without stirrups should still be done with great care
due to their sensitivity. Especially in large beams, finer element sizes resulted in overestimating the
resistance. It should be noted that the largest element size is already tiny.

Even larger element size could also have been assessed during this report's sensitivity analysis, as the

most significant size was chosen as the best. Lang [45] did some element size sensitivity analysis, and
recommendations were made to make the element size smaller than 135 to simulate the flexural shear

failure. However, a much smaller element size resulted in a longer computation time with no significant
improvements, so making the element size smaller is not required. Gedik et al. [74] showed that an
element size is sufficient between 10 mm and 30 mm. Adhikary et al. [75] parametric study shows that
an element size smaller than 25 mm no longer improves the result.
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Because the initial cases will be based on experiments from Stevin lab, special attention is given to a
report by Teshome [53]. In this report, similar beams were studied and used an element size of 25 mm.
The recommendations from Lang [45] are also remarkably close to the element size of 25 mm for the
initial cases. With the information found till now, the initial element size will be chosen to be 25 mm.
During the element size sensitivity analysis in Chapter 4.2.3.2, the element size will be decreased and
increased until an optimum element size is found for a specific beam depth.

2.2.2.4 Loading, boundary conditions, and symmetry

Applying point loads and constraints for the boundary conditions can result in high-stress concentrations
in the model. The high-stress concentration can affect the numerical model simulations, which should
be avoided. Hendriks et al. [41] suggest that loading and support plates are a satisfactory solution to
avoid this. Distributed loads can also be placed on the plate as an alternative instead of applying point
loads that cause high-stress concentrations. The right boundary conditions are critical because they
influence specimen stress distribution. Hasegawa [76] says the shear capacity, post-peak behavior,
and failure type can all be affected. In addition, placing supports over the entire plate length as a bound-
ary condition can cause a crack near the plate.

Symmetry can reduce computational costs for a numerical simulation but has its problems and re-
strictions. A fundamental problem with using symmetry is that it is assumed that failure occurs symmet-
rically. Therefore, symmetry can only be applied if the structure, loads, and constraints are symmetrical.
The user should also remember that the load gets halved when symmetry is used, and the load is
applied midspan. Because of these restrictions and an expected non-symmetric failure type (flexural
shear failure), symmetry will not be applied to the model. An overview of the numerical model with the
proper loading conditions, boundary conditions, and non-symmetry is shown in Figure 18.

Figure 18 Beam boundary conditions: loading plates (top) and loading supports (bottom)
2.2.3 Analysis procedure

During NLFEA, the force and displacement have a non-linear relation. Due to this, equilibrium cannot
be reached directly, and the analysis must be done with the correct analysis procedures. The simulation
is run with the incremental-iterative procedure. According to Putter [44], the procedure's choice can
affect the result. However, this effect is not as dominant as the constitutive assumptions.

2.2.3.1 Incremental-iterative procedure

DIANA FEA offers different methods for the incremental-iterative procedure. Lang [45] states that the
various methods form the global stiffness matrix differently, affecting the excessive change of the prin-
cipal stress-strain. The different methods offered by DIANA FEA are explained by Borst et al. [69] and
are listed below:

o Newton-Raphson (NR) iteration scheme: The prediction depends on this scheme's last unknown or
last found situation. Also, the stiffness is updated after every iteration, which can be time-consum-
ing.

¢ Modified Newton-Raphson (MNR) iteration scheme: It is unnecessary to set up the stiffness matrix
every time for this scheme. Because of this, doing more iterations than the standard version is
necessary but iterates faster. The prediction depends on the converged equilibrium state.

e Quasi-Newton-Raphson (QNR) iteration scheme: this scheme does not entirely set up a new stiff-
ness matrix every iteration but uses information from the previous results. This scheme is perfect
for unconstrained optimization and often combined with the line search method.

e Linear-Elastic (LE) iteration scheme: as the scheme name says, it uses the linear stiffness matrix.
Even though this scheme is robust, stability problems can occur at bifurcation points.
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Hendriks et al. [41] recommend the standard (full) NR iteration scheme as the results were accurate
and sufficient (if combined with the arc-length control). A disadvantage of the NR type of iteration
schemes (NR, MNR, and QNR) is its limited radius of convergence. However, this radius can be en-
larged with the line search method. This method improves the incremental displacement vector by scal-
ing the vector to get the point of lowest potential energy along the search direction to represent the
equilibrium. With this, the current iteration procedure creates a more robust model with increased con-
vergence.

Multiple reports [2] [77] have used the Secant iteration scheme while using the displacement method.
The scheme can be based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS), Broyden, or Crisfield
algorithm. The BFGS algorithm will be chosen if the Secant iteration scheme is used, as this algorithm
has been applied in the previously mentioned reports. Akram et al. [78] researched the two discussed
schemes and concluded that the full NR iteration scheme is the fastest available, while the Secant
iteration scheme is the most effective. Both schemes will be used for sensitivity analysis in Chapter
4.2.2. In Figure 19, the difference between both schemes can be seen.

u : u
Figure 19 NR iteration scheme (left) and Secant iteration scheme (right) [69]

2.2.3.2 incremental procedure

Applying the external load depends on how the equilibrium path is sought after with increments. Ac-
cording to Borst et al. [69], this choice helps control the load and get convergence for each step. Apply-
ing the external load can be done in three ways using DIANA FEA and is listed below, with also an
overview of them in Figure 20:

e Load control: here, the load is applied directly on the beam in several steps.

e Displacement control: prescribing the displacements, giving nodal forces that must be summed up
for the external force. This one is more stable but not recommended for structures with multiple
loads [41].

e Arc-length control: the incremental displacements are constrained to a prescribed value by adapting
the increment size during iteration.

A

/43{! control

unknown load SN
parameter | 7 )érﬂeng!h control

preseribed+——='
increment

unknown displacement Dl
parameter

Figure 20 Force, displacement, and arc-length control [79]

Lang [45] recommends using the arc-length control combined with the line search method, as the force-
controlled analysis did not capture the softening behavior. Putter [44] also used the same combination
to trace the post-peak load paths. The arc-length control method [80] helps find the equilibrium path
while dealing with limit and bifurcation points. Unfortunately, the load control method stumbles at limit
points, while the displacement method cannot manage snhap-back behavior. However, negative load
steps can be prescribed to overcome the snap-back problem for the displacement method.
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Hasegawa [81] did research on the methods for RC beams without stirrups and found the following:

e Arc-length control with indirect displacement does not get the bifurcation path for flexural shear
failure.

e Direct displacement method: branch-switching was captured for the correct bifurcation point.
However, this method will require the Secant stiffness.

Yang et al. [82] also report that the arc-length method may fail near or at limiting points for softening

materials.

2.2.3.3 Convergence criteria

Complete equilibrium cannot be reached but can be calculated to a sufficient tolerance while accepting

a small error. For this, the convergence criteria are used. DIANA FEA offers four types of convergence

criteria, namely:

e Force norm: the norm can be solved directly for convergence but is not recommended for linear
elastic regimes.

¢ Displacement norm: the norm requires an additional iteration to reach convergence.

e Energy norm: the norm is composed of internal forces and relative displacements. This norm also
requires an additional iteration to reach convergence.

¢ Residual norm: like the force norm, this norm considers the out-of-balance forces vector and the
constrained degrees of freedom values.

The user gives the maximum number of iterations allowed to avoid too many. The iterations stop if
convergence has been met, the maximum number of iterations is reached, or divergence occurs. Putter
[43] recommends using at least 100 iterations per step for cases like the ones important for this report.
Reaching the maximum number of iterations cannot be seen as convergence. Lang [45] states that
always getting convergence for each step is unnecessary if reliable results for shear failure have been
found. Yang et al. [5] do, however, state that lack of convergence can cause unstable propagation of
the flexural shear crack. This unstable propagation will affect the deformation and stresses in the struc-
ture. The convergence logs generated during the simulation should always be studied to avoid such a
problem.

The iteration schemes should converge for at least one of the norms to be considered sufficient. The
following norms have been advised where the convergence of one of the norms is considered sufficient:
e The energy norm with a tolerance of 0.001

e The force norm with a tolerance of 0.01

According to Hendriks et al. [41], using the displacement norm alone is considered inappropriate for the
analysis.
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2.3 Design codes

In the final part of the report, predictions from design codes will also be compared to the numerical
simulations to compare the predicted shear capacity. The design code is from EC2 guidelines [40] and
FIB MC2010 [47]. The EC2 guidelines analytical design code evaluates the shear resistance (Vrd,c)
while including the size effect with the formula in Equation [ XVI ].

1
VRd,c = (CRd,c k (100 pl fck)s + k1 ocp| bwd,
Equation [ XVI ]
With the requirement that
VRd,c = (vmin + k1 ocp) bwd
Equation [ XVII ]
Where:

The importance of the factor k has been given in Chapter 2.1.3. A minimum requirement is also given
in the formulas above for the VRd, c. This requirement is meant as a minimum for scenarios where the
reinforcement ratio is low.

Another second design code chosen for this report is the FIB MC 2010, which is based on a physical-
mechanical model instead of an analytical model. The formulas for the shear strength based on a level
of approximation (LoA) Il for beams without stirrups are given in Equation [ XVIII ]:

Ve=ky fe by 2,
Equation [ XVIII ]

With:
0,4 1300
"7 1+1500 &, 1000 + kg, - 2
kag =T+ > 0.75
1 ifa, = 2d,

g =1a,/2d, if0.25d,<a, < 2d,

0.5 ifa, <d,

1 (Mg 1 le
= 2E.4, (T *Vea + Nea (E * 7))

Because the design codes are not the focus of this report, a simplified LoA Il will be used. The design
codes are used for comparison purposes with the numerical simulations. It should be remembered that
the LoA Il introduces simplifications, causing a reduction in the model’s accuracy. The following simpli-
fications are done for the LoA Il

e &, which is the strain at the midsection will be assumed to be:

_ fyk

X 2Eg

Equation [ XIX]
The aggregate size factor kqgis assumed to equal the lower bound factor of 0.75. It was initially believed

that kgg equals 1.25, which is also recommended. However, with the initial assumption, the results are
too conservative and have a high failure load percentage difference.
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2.4 Summary

This chapter’s section will summarize essential information gathered in the previous sections of this
Chapter to make numerical modeling choices. In addition, this summary also helps to decide which
modeling aspect requires sensitivity analysis in Chapter 4. With sensitivity analysis using numerical
cases, it is hoped to get a robust numerical model, which will be applied to all experimental cases.
These experimental cases will be given in the next chapter. The numerical model also hopes to account
for the four shear transfer mechanisms as much as possible to improve its accuracy. Before moving to
the shear transfer mechanisms, a summation of occurrences during the flexural shear failure is given:

Vertical flexural cracks formed.

Longitudinal reinforcement and concrete bonds are destroyed.

Diagonal cracks developed.

A diagonal crack enlarges.

Flexural shear failure occurs.

This failure mode is fundamental and has a significant bearing capacity reduction. This failure mode
occurs for beams with an effective span-to-depth ratio between 2.5 and 7.0. This condition will be ap-
plied while selecting the experimental cases in Chapter 3. Bazant et al. [23] [24] state that the size effect
should be accounted for such cases. The size effect on beams will be analyzed by geometrically scaling
beams and comparing the nominal shear strength.

Now that the failure mode and size effect is summarized, a summation of the four shear mechanisms
and numerical modeling choices is combined given below:
e Dowel action:

o The dowel action's parameters are the element size, reinforcement element, constitutive
reinforcement model, and reinforcement ratio. Most importantly, the reinforcement ratio will decide
the contribution of the dowel action. The larger this is, the more significant the contribution.

o The element size should be small enough to start the dowel crack and its propagation.

o Truss elements do not include the dowel action. Beam elements are required to model the dowel
action. In addition, the geometrical nonlinearity of the dowel action must also be included.

e Aggregate interlock & residual tensile stresses:

o This aggregate interlock is dominant for a crack width greater than 0.1mm. At the same time, the
residual tensile stress is dominant if the crack width is smaller than 0.1mm.

o If the fixed crack orientation is used, the shear retention model has to be included. This model
can be interpreted as the aggregate interlock.

o The residual tensile stress is included in the Hordijk fictitious crack model, including localized
cracks.

o For the aggregate interlock, the most critical parameters are the aggregate size and concrete
strength.

o Like the dowel action, the contribution of these two mechanisms is small for large beams.

e Concrete compression zone:

o The importance of this mechanism lies in the beam depth, which influences the uncracked area.
Understandably, the slenderer the beam is, the smaller the contribution.

o Compression-compression confinement can also influence this mechanism.

The inclusion and effects of the four shear transfer mechanisms on the numerical model depend on the
constitutive case and finite element discretization. Figure 21, Figure 22, and Figure 23 show an over-
view of the obtained reference numerical model and modeling choices from the literature review on the
next page. The reference model exists of the components: constitutive model, finite element discretiza-
tion model, and analysis procedure.
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Lower bound Tensile curve: Hordijk \ truss bond-slip
reduction curve: 0.4 ; v Y
Reduction model Crack-bandwidth:
Confinement model: (Poisson's ratio): Govindjee’s projection Shear retention function:
Selby and Vecchio Damage-based method damage-based
Figure 21 Reference numerical model: constitutive model
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/ Model extras & Finite Element discretization \

Mesh Materials Load & boundary conditions
Seeding method: division Concrete Reinforcement Load: force
cementope. ¢ | i
initial: 25mm Quadratic element: CQ16M Truss element Boundary condition plates: Steel

Mesher type: Hexa/Quad Sl sl Model: full

Figure 22 Reference numerical model: finite element discretization

Loading method: displacement method
Command: structural nonlinear
Load steps:
User specified: linear part 2(0.5)
User specified: depending on model
. Maximum iterations: 100 . .
ey Method : Full Newton-Raphson —
Line searching: on

Continuation of iteration: off

Satisfy all specified norms: off

Convergence norm: energy norm (0.001) + force norm (0.01)

Mo convergence: continue

Figure 23 Reference numerical model: analysis procedure
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3 Experimental case selection for numerical
simulations

3 Experimental case selection
for numerical simulations

The experimental cases will be chosen based on boundaries for the effective span-to-depth ratio, based
on different geometries and material configurations to increase the variety in configurations for the
cases from Chapter 2. The reason for selecting cases depending on the effective span-to-depth ratio is
that only cases with flexural shear failure are chosen. The boundary archived from the literature review
in Chapter 2 for the effective span-to-depth ratio is between 2.5 and 7. In addition, the effective depth
will be restricted to a maximum beam depth of 1200 mm. This restriction is because geometrically large
beams are very mesh sensitive but are important for the pilot research. In Chapter 4.2.3.2, the element
size sensitivity analysis will be done for beams with a depth of up to 1200 mm. A basic overview of the
models and the naming of the dimensions are given in Figure 24:

l@] plates (steel) Vertical force (Vz)
- = /Beam (concrete)

/Longitudinal reinforcement

Boundary conditions-_| /Suppor‘t plate (steel)

™

ol =T

—Coordinate system (x,y)
Figure 24 RC beams without stirrups numerical model

All the experimental cases from the reports below will be used to see if the robust numerical model
found in Chapter 4 can simulate accurate results. Simulations of these cases with enough variety in the
configurations will show the accuracy and limitations of the numerical model. The initial cases are sum-
marized below, with their properties in Annex Il. The first four reports given below are given with their
original reference. However, they are also summarized in the report by Dunkelberg et al. [83]. These
cases are based on a single geometrical or material variation. Their simulations can indicate if the
increase in a single configuration can cause inaccurate results for the numerical model.

3.1 Geometrically scaled beam cases

This report by Bhal [84] was selected due to its inclusion of geometrically scaled beams. This set of
experiments will also be used for the size effect analysis as there are geometrically scaled beams re-
quired for the size effect analysis. Some important geometrical and material configurations have the
following ranges:

o Effective depth: (300 mm - 1200 mm)

o Effective span-to-depth ratio: (2.94)

e Concrete strength: (fcc: 22.02 MPa - 28.12MPa)

e Reinforcement ratio: (1.26 %)

These cases consist of four beams with effective depths: 300mm, 600 mm, 900mm, and 1200mm.
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3 Experimental case selection for numerical simulations

A four-point test configuration is used for the beams, as shown in Figure 25. A new geometrical param-
eter (c) is also introduced, which gives the distance between the two-point loads. The four-point exper-
iment setup also applies to the following three reports.

C

0.5*P u 00-5*P

7-Y =
L
Figure 25 Four-point experiment configuration [83]

3.2 Cases with variation in reinforcement ratio

This report [85] tested twenty-six reinforced HSC beams without stirrups to determine the diagonal
cracking and ultimate shear capacity. Out of these twenty-six cases, a selection was made for cases
with only variation in the reinforcement ratio. Some important geometrical and material configurations
have the following ranges:

o Effective depth: (184.15 mm - 208.03 mm)

o Effective span-to-depth ratio: (4.00)

e Concrete strength: (fcc: 74.09 MPa - 81.59 MPa)

e Reinforcement ratio: (1.77 % - 6.64 %)

All cases have a depth of 254 mm, but the effective depth is slightly different due to the reinforcement
area. The cases have the following reinforcement ratios: 1.77%, 2.25%, 3.26%, 3.93%, 5.03%, and
6.64%. This selection gives a broad range for reinforcement ratio variation to assess the accuracy of
the numerical model.

3.3 Cases with variation in effective span-to-depth ratio

In Krefeld et al. report [86], over 200 RC beam cases have been tested. However, from these cases,
the cases with stirrups are neglected. Also, cases with variations in the beam depth, reinforcement ratio,
concrete class, and distributed loading are disregarded. Only beams with concentrated loading will be
chosen to stay consistent with the experimental case selection. Finally, the effective span-to-depth ratio
range will be kept within the boundaries for which the flexural shear failure occurs. With these re-
strictions, some important geometrical and material configurations have the following ranges:

o Effective depth: (250.44 mm)

o Effective span-to-depth ratio: (3.40 — 7.05)

e Concrete strength: (fcc: 40.54 MPa — 45.62 MPa)

¢ Reinforcement ratio: (4.15 %)

The effective span-to-depth ratios studied will be 3.40, 4.61, 5.83, and 7.05.

3.4 Cases with variation in concrete strength

Mphonde et al. report [87] will be used to study the numerical model performance for the concrete
strength variation. This report studied the concrete strength using three different series, for which the
effective span-to-depth ratio differed for each. The first series was chosen with a constant effective
span-to-depth ratio of 3.49. It was essential to have a broad range of cases with different concrete
strengths available due to its role during flexural shear failure for the beam. For the first series of cases
from the report, some important geometrical and material configurations have the following ranges:

o Effective depth: (298.45 mm)

o Effective span-to-depth ratio: (3.49)

e Concrete strength: (fcc: 25.29 MPa - 114.10 MPa)

e Reinforcement ratio: (3.34 %)

The concrete compressive cube strengths are 25.29 MPa, 45.88 MPa, 50.70 MPa, 90.91 MPa, 99.07
MPa, 111.85 MPa, and 114.10 MPa.
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3 Experimental case selection for numerical simulations

3.5 Cases with variations in geometrical and material
configurations

The following experimental cases based on two reports from the Stevin lab were recommended by the
supervisors and used for analysis. These cases have a detailed analysis for each test, making them
beneficial for a quality analysis during the numerical model sensitivity analysis in Chapter 4. Each anal-
ysis in this report is supported with sufficient information about the tests, photos of the test, a load time
curve, a load-displacement curve, and LVDT measurements. With the help of detailed measurements
in the reports, the damage progression and failure load analysis can be done in more detail. The detalil
in these reports is also why some experimental cases from them are chosen during the (qualitative)
sensitivity analysis.

Koekkoek et al. [88] report aimed to study the transition between flexure failure and shear failure for RC
beams without stirrups. From reviewing the report, it was found that some of the experimental beams
did consist of stirrups. Therefore, beams, where results were affected by the stirrups, will be neglected.
Some important geometrical and material configurations that were varied have the following ranges:

o Effective depth: (269.50 mm - 762.50 mm)

o Effective span-to-depth ratio: (2.54 - 5.49)

e Concrete strength: (fcc: 23.70 MPa - 91.10 MPa)

e Reinforcement ratio: (0.58 % - 1.17 %)

From the results of these experiments, beam configurations were varied. A three-point test was applied
here, and Figure 26 can be used to get an overview of the test.

I

A FaY
L
Figure 26 Three-point experiment configuration [83]

Garnica et al. [89] report was a follow-up study to Koekkoek’s work [88], where the experiment analysis
took place similarly at Stevin Lab. This report varies the same configurations as the earlier one but
studied only geometrically large beams with the beam depth kept at 800mm or 1200 mm. Beams of
1200 mm have not been studied during the Koekkoek report. Some important geometrical and material
configurations that were varied have the following ranges:

o Effective depth: (765.00 mm - 1160.00 mm)

o Effective span-to-depth ratio: (3.27 - 3.92)

e Concrete strength: (fcc: 81.25 MPa - 89.16 MPa)

e Reinforcement ratio: (0.27 % - 0.85 %)

Because the “Garnica and Yang” report is a follow-up to the “Koekkoek and Yang” report, both will be
referred together further as the “Garnica & Koekkoek” report during this research. Fifty-one cases (37
+ 14) will be simulated and studied from these two reports.
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3 Experimental case selection for numerical simulations

3.6 Experimental cases overview

An overview of the experimental cases is given in this chapter. Before the selection of the experimental
cases, the following boundaries are considered:

e The effective span-to-depth ratio between 2.5 and 7.0 to capture the flexural shear failure

o A maximum effective depth of 1200 mm to simulate geometrically large/deep beams
The selected experiments were with three-point or four-point setups. Besides the boundaries, cases
with different geometrical and material configurations were used. This approach would allow verifying
the numerical model for various case configurations. The figure below gives a schema with the experi-
mental cases and the main variation in their configuration.

76 experimental cases

Koekkoek et al. [87]

Bhal [84] Ahmad et al. [85] Mphonde et al. [86] Garnica et al. [88]
Effective depth ratio
300 - 1200 mm
Effective depth ratio Reinforcement ratio Concrete strength _ )
300 - 1200 mm 1.77 - 6.64 % 25 - 114 MPa Reinforcement ratio
1.77 - 6.64 %

Concrete strength
25-114 MPa

Figure 27 Experimental cases overview
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4 Numerical modeling,
analysis, results, and
sensitivities

Before analyzing to see whether the numerical model can simulate the flexural shear failure for RC
beams without stirrups, it is required to have a robust numerical model. Such a model can be obtained
with sensitivity analysis using a numerical reference model. This model should represent most config-
urations of different RC beams without stirrups subjected to flexural shear failure while reducing as
much model uncertainty as possible. Castaldo et al. [90] state that some model uncertainty character-
izes the NLFEA. In addition, specific requirements should be met with the numerical model for RC
beams without stirrups to simulate the flexural shear failure. Neglecting some requirements in the model
will cause the neglection of a behavior. An example is that neglecting a nonlinear material behavior
during numerical modeling required to simulate the flexural failure mode will lead to capturing a wrong
failure mode.

In this chapter, the following topics are addressed:

1. Reference numerical model:
The reference numerical model obtained from the literature review is first introduced in the section.
In addition, information on initial cases for the numerical model sensitivity analysis using DIANA
FEA is also provided here. These cases are a selection of differently configured (material and
geometrical configurations) experimental cases from Chapter 3.5.

2. Sensitivity analysis numerical model:
The sensitivity analysis for the numerical model is done on various modeling aspects of the
constitutive model, finite element discretization, and analysis procedure. An analysis of the
compression-compression confinement, two bond-slip relations in combination with two types of
crack orientations are done for the constitutive model. Following that, two schemes of the
incremental iteration procedure are analyzed. Finally, analysis is done on the reinforcement element
type and element size for the finite element discretization. After the sensitivity analysis, the
numerical model should be able to capture the correct damage progression, failure mode, and close
enough failure load compared to the experiment.

3. Quantitative analysis:
After the sensitivity analysis with the initial experimental cases simulates satisfactory results, a
guantitative analysis can be done. This analysis will include all experimental cases from Chapter 3.
This analysis obtains a general performance overview of the numerical model, and the model's
limitations are identified.

4. Size effect analysis:
During the size effect analysis, a set of geometrically scaled experimental cases will be used to
show initial expressions on if the numerical method can capture the size effect. These cases will be
based on experimental cases from Chapter 3.1.
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4 Numerical modeling, analysis, results, and sensitivities

4.1 Reference numerical model

The assumptions and modeling choices from the literature review are the foundation for the reference
numerical model. The reference numerical model is given in Chapter 2.4 (Figure 21, Figure 22, and
Figure 23), with the different modeling choices for sensitivity analysis marked with Bold text. In addition,
the reference numerical model is also given in the tables from Table 7, Table 8, and Table 9 for a more

ordered overview.

Table 7 Reference numerical model: constitutive model a
Concrete Modeling choice
Class Concrete and masonry

Material model Total-strain crack model

Crack orientation Fixed

compressive curve Parabolic

Reduction model lateral cracking Vecchio and Collins 1993

Lower bound reduction curve 0.4

Compressive-compressive confinement =l e RY/Tewp1[o)

Tensile curve Hordijk

Reduction model Poisson’s ratio Damage-based

Crack-bandwidth Govindjee’s projection method

Shear retention function Damage-based

Table 8 Reference numerical model: constitutive model b
Reinforcement Modeling choice
Class Reinforcement
Material model Bond-slip reinforcement
Non-linear model Von Mises plasticity
Plastic hardening Total strain-yield stress
Hardening hypothesis Strain hardening
Hardening type Isotropic hardening
Bond-slip interface model [K&S35gI2pe)Ie)
Reinforcement type Truss bond-slip

Table 9 Reference numerical model: finite element discretization
Concrete Modeling choice
Quadratic element CQ16M
Integration Full: 3x3
Reinforcement Modeling choice
Element
Mesh Modeling choice
Element size Initially 25 mm
Mesher type Hexa/ Quad
Seeding method division

Table 10 Reference numerical model: analysis procedure
Analysis procedure \ Modeling choice
Loading method Displacement method

Command Structural non-linear

Load steps Start with 0.5 (linear part)

User specified Depending on model

Maximum iterations 100

Line searching On

Continuation of iteration Off

Off

Satisfy all specified norms

Convergence norm

Energy norm (0.001) and force norm (0.01)

Continue

|
|
|
|
Incremental-iterative procedure \ Full NR
|
|
|
|
|

No convergence
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The sensitivity analysis will be done on the following modeling aspects:
e The use of compression-compression confinement:

o Modeling aspect choices: “Selby and Vecchio” confinement and unconfined.

o Motivation: this modeling aspect is critical for beams that fail in compression. Although the flexural
shear failure is a tensile failure, it would still be interesting to see how this modeling aspect impacts
concrete behavior during this failure mode.

e The reinforcement bond-slip relation:

o Modeling aspect choices: the FIB bond-slip relation or the Shima bond-slip relation.

o Motivation: according to Yang et al. [32], the crack pattern is more realistic when compared to a
perfect bond assumption by including a bond-slip in the reinforcement modeling. The bond-slip
relation allows relative displacement between the reinforcement and concrete, increasing cracks'
progression. The main difference between the two bond-slip relations mentioned is that the FIB
bond-slip relation accounts for a decrease in the bond stress if high slip values are increased
further. The behavior discussed between the two models is shown in Figure 54. Besides decreas-
ing the shear traction, the figure shows that the Shima bond-slip relation has a higher traction
capacity.

e The total strain crack models’ crack orientation:

o Modeling aspect choices: the fixed crack orientation or the rotating crack orientation.

o Motivation: these two crack modeling choices will be combined with the compression-compres-
sion confinement and bond-slip constitutive modeling aspects. These combinations will result in
eight different variations for the constitutive model, out of which the best-performing model can
be chosen while still reviewing only a single aspect. An overview of the combinations is given in
Figure 28.

e Thereinforcement element type:

o Modeling aspect choices: truss elements or beam elements.

o Motivation: both reinforcement elements are combined with the plane stress element used for
concrete in a numerical model. Interest is shown in these two elements because the beam ele-
ments include bending stiffness, making it possible for the concrete to withstand shear stresses
with the dowel effect. As a result of using this element, the dowel action can be included. The
truss elements do not include the dowel action.

¢ Incremental-iterative procedure:

o Modeling aspect choices: the full NR iteration scheme or the Secant-iteration scheme.

o Motivation: in the past, various sensitivity studies have been done on these two schemes. The
results, however, have different opinions about the better scheme due to the different numerical
models and situations for their respective analyses. It would be interesting to determine which
scheme is the most accurate for RC beams without stirrups to simulate the flexural shear failure.

e Global element size:

o Motivation: because beams with different dimensions are used during this research, this can be-
come a crucial factor in deciding the accuracy of the numerical model. As seen later during the
sensitivity analysis, the element size depends on the beam geometry (depth and length). This
dependence on geometry is also reflected in many recommendation formulas for the element size
mentioned in the literature review. Using too small elements is not a correct choice as this can
result in high computational time. On the other hand, using a large element size reduces the
model accuracy and can cause jumps between elements caused by a discontinuous stress field.

Four numerical cases are used for numerical model sensitivity analysis. The cases are based on “Gar-
nica & Koekkoek” experiments and have geometrical and material properties variations. The properties
are found in Table 11 with the names A122B1, B701B2, R804A1, and H601A. Some more cases with
comparable properties for cases A122B1, R804A1, and H601A are included in the table to enhance
the quality of the sensitivity analysis.

39



4 Numerical modeling, analysis, results, and sensitivities

Sensitvity analysis cases’ properties table:

Table 11 Sensitivity analysis cases properties

Effective : a :
Test Date: t‘e[rr‘ngr;*] HDfm] span-to-depth Effegt'[‘rﬁ rg]epth /a fmg:]e re'rr;ft?;;e[ry/sm Fffnbrg]r
ratio a [mm] []

v avaRe] 2015| 5000 300 1000 270 3.7 78 1.17 3920
A4kl 2015 | 5000 300 1000 271 3.7 79 1.16 3320
Ve Wl 2015| 5000 300 1000 270 3.7 79 1.16 3320
=yoNiz 2015| 5000 500 1500 472 3.18| 81 0.67 3920
(VNN 2016| 8000 800 3500 755 464 85 0.65 3925
aec{ozi=kN 2015| 8000 800 3500 755 4.64) 85 0.65 3325
g (CIONWAN 2019| 9000 | 1200 4500 1158 3.89] 86 0.57 4025
g (61027 2019 | 9000 | 1200 4500 1158 3.89] 86 0.57 4025

A visualization of the three-point experimental test setup used for these cases is visible in Chapter 3,
Figure 26. The initial element size for all cases A122B1, B701B2, and R804A1 is 25 mm. This element
size is chosen based on the results of Chapter 2.2.2.3, but most importantly, Teshome [53] previously
used this element size for beams from the “Garnica & Koekkoek” reports. Teshome also used an ele-
ment size of 50 mm, which is too big according to the other recommendations from Chapter 2.2.2.3.
For case H601A, the element size is 40 mm. The reasoning for not using an element size of 25 mm is
given in Chapter 4.2.1.1. Finally, in this section, some notes regarding the four experimental cases are
given below:

e RB804A1, R804B1, and H601A were done with cyclic loading, which can influence the experimental
results.

o A steel plate was added to R804B1, which was unfortunately deformed, causing an additional
reduction of the global stiffness. This difference in stiffness is visible between experimental cases
R804A1 and R804B1 (Figure 36), which have the same geometrical and material configurations.

e Figure 99 from Annex Il explains the naming of the experimental cases for the “Garnica & Koekkoek”
report.

After the numerical model sensitivity analysis, all the remaining cases mentioned in Chapter 3 are sim-

ulated and analyzed quantitatively. Once an accurate numerical model is found from the sensitivity

analysis and quantitative numerical simulations, the use of the model can be furthered for the pilot
research on the size effect.
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4.2 Sensitivity analysis numerical model

The sensitivity analysis for the numerical model will be done with the following three modeling sections
and order:

e The constitutive model

o Finite element discretization

e Analysis procedure

4.2.1 Constitutive model
Sensitivity analysis of the constitutive model analysis is done on the crack orientation, compressive
lateral confinement, and bond-slip. The last two modeling aspects mentioned will be applied to the fixed

and rotating crack orientations creating eight different numerical model combinations, as shown in Fig-
ure 28 below. The red arrows show which models will be compared to each other during the analysis.

T

Fixed crack Constitutive Rotating
model model crack model
Compressive-compressive B s Compressive-compressive Brrshsl i
confinement confinement
Confined Unconfined FIB Shima Confined Unconfined FIB Shima
- - - N

Figure 28 Constitutive model modeling aspects for sensitivity analysis
4.2.1.1 Crack orientation and compressive-lateral confinement

In this section, with variations in crack orientations and compressive-lateral confinement effects, the

following four models are used for simulation:

e Confined compression-compression behavior fixed crack orientation and the FIB bond-slip relation
with truss elements using the full NR iteration scheme (FCFTN)

¢ Unconfined compression-compression behavior fixed crack orientation and the FIB bond-slip rela-
tion with truss elements using the full NR iteration scheme (FUFTN)

e Confined rotating crack orientation and the FIB bond-slip relation with truss elements using the full
NR iteration scheme (RCFTN)

¢ Unconfined rotating crack orientation and the FIB bond-slip relation with truss elements using the
full NR iteration scheme (RUFTN)

Fixed crack orientation with variation in confinement

Confined variation

The reinforcement did not yield in any of the four cases for the confined fixed crack orientation numerical
model (FCFTN). Also, most of the four cases' failure modes resembled the flexural shear failure de-
scription. An in-depth analysis is done below. The force-displacement graph's different marker mean-
ings are introduced first, which also applies to other plots of this chapter. The force-displacement graphs
consist of dots in the graph, which show the non-converged steps. Also, for cases A122B1 (Figure 29),
B701B2 (Figure 33), and R804A1 (Figure 37), the failure load is at the plotted black cross, after which
non-converged steps followed, and the simulation could not be trusted from that point on. Case H601A
(Figure 38) does not have a black cross to show the failure step as the failure load is at the maximum
load, after which a steep force decline was noticed. All four numerical cases are discussed next.
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Figure 29 presents the force-displacement graph for case A121A3.
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Figure 29 A121A3 confined fixed crack orientation sensitivity analysis: force-displacement graph (left)
and convergence log (right)

The A122B1 with confined fixed crack orientation (FCFTN) numerical simulation does not have the
same initial stiffness (before the first crack) as the experimental results. This stiffness result is because
of previous experiments on the cantilever beam. The previous loading effect is not accounted for with
the numerical model. As a result, the numerical models will show a lower displacement caused by its
higher stiffness. The numerical stiffness captured after the first crack is like the experimental one. Figure
30 summarizes how the cases from the reports ( [88] and [12]) were tested during the experiment to
explain why some experimental cases have lower initial stiffnesses than those found by the numerical
simulations. In the figure, options one and two are taken after shear failure is reached during testing.
Option one strengthens the part on which shear failure occurs, and the support is moved to the undam-
aged parts for more tests. For option two, however, instead of fixing the undamaged part, the beam is
tested at the other undamaged end of the beam. The two initial experimental stiffnesses from case
R804AL1 in Figure 37 also show this point in the result, even though both have the same geometrical
and material configurations.

loading

shear failure
stremgthen, teston the undamaged
change suppart: end

% -4—option 1 ption 2—= %

Figure 30 “Koekkoek and Garnica” experimental testing sequence [88]

For case A122B1 with confined fixed crack orientation, the maximum load is found at the cross plotted
in the graph, after which the beam fails. There is a low failure load in the case of the fixed crack orien-
tation here. This behavior will also be noticed in some of the other upcoming cases. The fixed crack
orientation is combined with the damage-based shear retention factor. This factor is based on damage
due to cracking, where the shear stress reduces as fast as the tensile stresses. Substantial changes in
the shear retention factor of the fixed crack orientation explain the possible premature failure. For case
A121A3, the change in the factor is visible in Figure 31, where Gknt represents the change in the shear
retention factor.

NLFEA_NRD.3

Phase 1. Load-step 121, Load-factor 12.000, Point load
Crack Strains Gknt

min: 9.11e-03 max: 2.81e-02

NLFEA_NR0.3

Phase 1, Load-step 122, Load-factor 12.100, Point load
Crack Sfrains Gknt

min: -3.90e-02 max: 9.92e-02

Figure 31 A121A3 confined fixed crack orientation: before (left) and at failure crack stress (right)
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In Figure 32, the maximum principal strain is for further analysis.
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Figure 32 A121A3 confined fixed crack orientation sensitivity analysis: maximum principal strain

The failure mode for case A121A3 is recognized as flexural shear failure. The failure load is captured
when failure of the beam occurs, and the force decreases. The steps plotted after in the force-displace-
ment graph are non-converged, and its results are not trustable anymore. This case simulation will be
mentioned later during the following case analysis for more findings. The force-displacement graph for
case B701B2 with confined fixed crack orientation is shown below:

B701B2 107
0 2 4 6 8 10 12 14

Number of Iterations

Displacement (mm) J

—B70182 FCFTN ® FCFTN non-converged X Failure load 0 25 50 75 100 125 150
Step

Figure 33 B701B2 confined fixed crack orientation sensitivity analysis: force-displacement graph (left)
and convergence log (right)

Similarly to case A122B1 with confined fixed crack orientation, case B701B2 with the same numerical
modeling aspects failure load is at the black cross plotted in the force-displacement graph. Further
analysis after the failure load is not required due to the unreliable non-converged steps (dots) after this
load. The failure load has been discussed till now, but the failure mode is also important. The plot of the
principal strain can be found in the figure below.
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Figure 34 B701B2 confined fixed crack orientation sensitivity analysis: maximum principal strain
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Case B701B2 with confined fixed crack orientation is subjected to dowel failure, indicated by the large
concentration of cracks along the reinforcement. The difference between flexural shear failure and
dowel failure can be seen in Figure 35.
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The flexural shear failure originates from a critical inclined crack that develops two secondary branches.
The specimen loses its capacity when the unstable secondary branches develop. In contrast, dowel
failure is characterized by the detachment of the tensile reinforcement from a flexural crack. No sec-
ondary branch develops in the compression zone [12]. From Figure 32 for case A121A3, a small sec-
ondary branch is visible in the compression zone related to the flexural shear failure.

Different potential causes can contribute to the cause of dowel failure. Firstly, due to significant changes
in the shear retention factor in the elements near the reinforcement. As a result, the numerical model
cannot solve the excessive change in the factor, the cracks propagate, and (premature) dowel failure
occurs. Secondly, due to the element size, as crack propagation rate depends on its size. Lastly, due
to the bond-slip sensitivity from the FIB bond-slip relation and elements used. These reasons may have
led to further crack propagation along the reinforcement. However, they should be studied further with
more sensitivity analysis on different modeling aspects to find the cause. The upcoming sensitivity anal-
ysis on other aspects will help with the reasoning for these two cases on the correct damage progres-
sion and failure mode. Next, case R804A1 is analyzed with its force-displacement graph given below.
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Figure 36 R804A1 confined fixed crack orientation sensitivity analysis: force-displacement graph (left)
and convergence log (right)

During the experiments in the lab, two specimens were experimented on with the same configurations.
The numerical model simulation with confined fixed crack orientation has the same pre-cracking and
post-cracking stiffness as the first experimental R804A1 specimen. However, the specimen tested af-
terward has a lower initial stiffness. This stiffness is due to the testing sequence explained in Figure 37.
For case R804A1 with confined fixed crack orientation, two crosses are plotted at load steps 184 and
199, followed by multiple non-converged steps (green dots) plotted along the force-displacement graph.
Analysis shows failure occurs during the second maximum load (second cross), while diagonal cracks
formed at the first maximum step. The last segment of the force-displacement graph is not usable for
analysis due to the convergence difficulties shown by the plotted dots. The principal strain is plotted
below to analyze the crack pattern for case R801A.

ET
025
o ' 023
* 8 o2
E 0.18
| 1 0.16
t i 0.14
u _.s—i’ [ 0.12
g, iNSSSRRNASSISSIE | 0.10
o ¢ e 0.08
‘o s L o § i i | 0.05
mmmdpEE——— S d"“’j" h""«":’f ol ottt ,_-’:? ‘! =l ! ! " I O
SEssStaniiEEd T t - i i i i _Sise isasi iwine | il

Figure 37 R804A1 confined fixed crack orientation sensitivity analysis: maximum principal strain

For R804A1 with confined fixed crack orientation, the most damage is along the reinforcement, indicat-
ing dowel failure instead of flexural shear failure. From previous experience, irregular crack patterns
(the jumps in the cracking pattern) can be due to a too-small element size. A too-small element size
does not always simulate the most accurate results, as numerical instabilities can occur. However, this
statement is not a conclusion and will be addressed during the element size sensitivity analysis. The
element size of 25 mm will be used until the element size sensitivity analysis. This approach helps keep
the analysis consistent during comparison with the upcoming sections.
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4 Numerical modeling, analysis, results, and sensitivities

Finally, the last case (H601A) can be analyzed, with its force-displacement graph given below.
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Figure 38 H601A confined fixed crack orientation sensitivity analysis: force-displacement graph

Special attention is required for case H601A. For the other cases, acceptable results were found using
an element size of 25 mm during this and other upcoming sensitivity analyses, even if not yet accurate.
Unfortunately, case H601A showed element size sensitivity issues (irregular crack patterns due to a
too-small element size) with an element size of 25 mm during all modeling aspects’ sensitivity analyses.
This issue resulted in wrong damage progression and over-predictions of the failure load. Because
none of the modeling aspects' sensitivity analysis results was practical for conclusions due to the issues
faced, the element size was changed to 40 mm. Hereafter, the modeling aspects sensitivity analysis
was simulated for case H601A with a new element size. Avoiding changing to an appropriate element
size would make the simulated results from case H601A mediocre and give inaccurate conclusions on
a modeling aspect. Only for this case the element size is changed before Chapter 4.2.3.2. For cases
Al122B1, B701B2, and R804A1, an element size of 25 mm is maintained. The element size of 40 mm,
obtained from a pre-element size sensitivity analysis, also be applied to the other modeling aspects'
sensitivity analysis only for this case. From the results of the new element size, the correct damage
progression, failure mode (flexural shear failure), and an acceptable failure load were found with this
numerical setup. The same pre-cracking and post-cracking stiffness was also found for the simulation
and experiment. While the force-displacement graph is visible in the figure above, the flexural shear
failure is visible below. In the initial branch there of the force-displacement graph, overshooting of the
failure load occurs before the first crack. This overshooting can be due to concrete modeling aspects,
reinforcement modeling aspects, or a modeling aspect of finite element discretization. The overshooting
of the initial branch will be addressed during the other modeling aspect sensitivity analysis when more
information is known to get better observations and a conclusion on this problem.
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Figure 39 H601A confined fixed crack orientation sensitivity analysis: principal strain

Unconfined variation

For the following numerical analysis, the concrete compression-compression behavior is unconfined to
study the modeling aspects' effect on the numerical model. The unconfined numerical model will be
compared to the confined one from the previous section.
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4 Numerical modeling, analysis, results, and sensitivities

The force-displacement graphs of all four cases can be seen in Figure 40, with blue lines showing the
unconfined results and green lines showing the confined results.
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Figure 40 Force-displacement graphs: confined and unconfined fixed crack orientation

As for the confined fixed crack orientation (FCFTN) beams, the same situation occurs for all unconfined
(FUFTN) beams regarding stiffness. Both numerical model configurations have similar stiffnesses along
the path of the force-displacement graphs. It is immediately observed from the force-displacement
graphs above that the unconfined cases “A122B1, B701B2, and R804A1” have a similar displacement
and failure load as the confined ones. In Annex lll, the maximum strain figures are plotted with a com-
parison of the confined and unconfined fixed crack orientation cases.

The same result for the confined and unconfined beams is not the situation for case H601A, as the
confined numerical model failed earlier. Case H601A confined numerical model and unconfined numer-
ical model in-plane principal stresses are shown at the confined numerical model failure load step and
step after to study the difference between the numerical models. In the force-displacement graph (Fig-
ure 40), load steps 143 and 144 were plotted with black crosses.

Load step 143:

601A in-plane p

Figure 41 H

At load step 143, the stresses are similar for the confined and unconfined numerical simulation. How-
ever, the confined model has sudden high stresses along the reinforcement at step 144. The formation
of these stresses causes earlier development of the flexural shear crack, leading to the confined nu-
merical model failing earlier than the unconfined one. The force-displacement graph also reflects the
failure load difference, with a slight difference of 0.03 % between the two numerical models. The results
suggest that modeling the confinement for cases with flexural shear failure cases is unnecessary. In
addition, the analysis output and non-converged steps (dots in the force-displacement graph) also sug-
gest that the unconfined state is preferred due to being slightly more accurate for simulations of such
cases.
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4 Numerical modeling, analysis, results, and sensitivities

Below, the maximum principal strain plot is given where the flexural shear failure is recognized for both
cases. (Because flexural shear failure is not a compressive failure type but a brittle shear-tension failure,
there is no dependence on concrete crushing).
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Figure 42 H601A maximum principal strain: confined (left) and unconfined fixed crack orientation
(right)

Rotating crack orientation with variation in confinement

Confined variation

The fixed crack orientation from the previous analysis is changed to the rotating crack orientation for
this numerical model. This change is made to see if an improvement can be made to the numerical
model by changing the crack orientation. This section will compare the confined rotating crack orienta-
tions (RCFTN) model to the confined fixed crack orientation (FCFTN). This approach changes one
modeling aspect between the two numerical models, making an easy comparison possible. The force-
displacement and maximum principal strain graphs are below for cases A121A3 and B701B2 with the
two confined rotating crack orientations (Figure 43 and Figure 44). The two cases analysis is done
together as the same difference in response and conclusions are found due to change in the crack
orientation of the numerical model.
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Figure 43 A121A3 confined rotating crack orientation sensitivity analysis: force-displacement graph
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Figure 44 B701B2 confined rotating crack orientation sensitivity analysis: force-displacement graph

The force-displacement graph shows that the failure load and displacement predictions are more accu-
rate with the rotating crack model than the fixed crack orientation model. Even though there are some
non-converged steps (dots in the force-displacement graph) for the rotating numerical model, these
steps are after the model has been successfully simulated to failure. The flexural shear failure for both
models occurs after the first maximum load and is followed by the non-converged steps. Thus, damage
progression, the failure mode, and the failure load itself is not affected by the non-converged steps.
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The maximum principal strain for both models is given below:
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Figure 45 A121A3 confined rotating crack orientation sensitivity analysis: maximum principal strain
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A121A3 and B701B2 confined rotating crack orientations models capture the same failure mode as the
numerical models with a fixed orientation. However, as expected, the rotating crack orientation model’'s
crack does not simulate the experimental crack (Figure 100 and Figure 101) as accurately as the fixed
crack orientation model (Figure 29 and Figure 33). The reason for a more accurate crack pattern is that
the fixed crack orientations’ crack orientation is constant. The fixed orientation is more suitable for brittle
materials due to the material's cracking behavior. The next analysis is done for case R804A1 with the
force-displacement graph and non-converged steps log below (Figure 47).
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Figure 47 R804A1 confined rotating crack orientation: force-displacement graph (left) and converged
steps log (right)

The result from R804A1 with confined rotating crack orientations cannot be trusted as many conver-
gence difficulties exist before the failure load is reached. The yellow dots in the plot are the non-con-
verged steps, while the black cross shows the first steps before the series of non-converged steps. The
high number of non-converged steps is due to over-rotation caused by the rotating crack orientation. In
previous research, Lgvli [49] found a direct correlation between over-rotation and the number of non-
converged steps. Stability issues accompany the over-rotation during simulation, and a wrong failure
mode is also captured instead of the expected flexural shear failure from the experiment. For R804A1
with confined rotating crack orientations, this can be seen in Figure 48, where there are large strains
around the reinforcement and concrete cover.
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Figure 48 R804A1 confined rotating crack orientation: delamination
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The failure is the delamination of the concrete cover caused by cracking along the reinforcement. In
addition, the crack runs more vertically than diagonally (diagonal crack) toward the loading point. The
figure plot is for the first non-converged step (black cross marker) and some steps after with an already
extremely high maximum principal strain. The element is already dissolved before the maximum load
is reached. The in-plane principal stress has also been plotted at the delamination location in Figure 49
to support the claim on excessive over-rotation of the crack orientation.
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Figure 49 R804AL1 confined rotating crack orientation: in-plane principal stress

For case R804A1, the experimental failure mode found in Figure 102 shows that no delamination should
occur. Just like for case R804A1 with confined rotating crack orientations, the same delamination prob-
lem due to over-rotation was observed from the analysis of case H601A with confined rotating crack
orientations. Thus, an in-detail analysis will be left out for case H601A as this will be redundant.

Unconfined variation

For the comparison of the unconfined rotating crack numerical model (RUFTN), the confined rotating
crack orientation (RCFTN) model will be used. There is a neglectable difference between the results of
the two models. To keep this section short, cases A121A3 and B701B2 are analyzed together, where
both simulated acceptable results. The force-displacement graphs with a comparison between the con-
fined and unconfined rotating crack orientation models are shown below for both cases:
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Figure 50 Force-displacement graphs confined rotating crack orientation: A121A3 (left) and B701B2
(right)

As seen for cases A121A3 and B701B2 with unconfined rotating crack orientation from Figure 50, there
is almost negligible difference between the force-displacement graphs of the confined and rotating un-
confined rotating crack orientation numerical model. for the two cases. The crack of both models is also
similar. Thus Figure 43 and Figure 44 can be used to visualize the unconfined model crack. Next, case
R804A1 with unconfined rotating crack orientation is analyzed. Previously this case for the confined
numerical model resulted in delamination due to over-rotation. For analysis of case R804A1 with an
unconfined rotating crack orientation, the force-displacement graph is shown in Figure 51. The uncon-
fined numerical model runs more stable than the confined model (also found for the fixed crack orien-
tation). The convergence problems do occur, but at a later stage than the confined numerical model,
thus simulating a higher failure load.
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Below, the force-displacement graph and the convergence log are shown.
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Figure 51 R804A1 unconfined rotating crack orientation: force-displacement graph (left) and conver-
gence log (right)

Unfortunately, just like for case R804A1 with the confined rotating crack orientation numerical model,
the unconfined model is also subjected to over-rotation before the failure load is reached, thus resulting
in delamination of the concrete cover. The delamination is visible in Figure 52 below. The results show
a strong correlation between the non-converged steps and over-rotation.
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Figure 52 R804A1 unconfined rotating crack orientation: delamination

The over-rotation for case H601A gets worse. The difference between case R804A1 and H601A is the
geometrical size. The results show that the rotating crack orientation numerical model results in over-
rotation for RC beams without stirrups when applied to geometrically large beams (R804A1) and wors-
ens as the beam size increases (H601A). Therefore, this research cannot use the rotating crack orien-
tation without including the compression-compression confinement.

Below is a table summarizing Chapter 4.2.1.1 results for the confined and unconfined fixed crack ori-
entation numerical model for an overview of this section. The results of the rotating crack orientation
are neglected as results for some cases were loaded with non-converged steps overshooting the norms
and thus not acceptable.

Table 12 Confinement with the fixed crack orientation sensitivity analysis summar
Test A121A3 Al22B1 \ A123A1 \ B701B2 R804A1 R804B1 H601A H602A
Vexperiment [kN] 145 152 137 202 269 250 306 306

FCFTN Vnumerical [kN] I 109 109 168 216 216 322 | 322
FCFTN YLexperimental | 1 Rgpge! 1.40 1.25 1.20 1.25 1.16 | 0.95 | 0.95
Vnumerical

FUFTN Vnumerical [kN] S 108 108 173 216 216 333 | 333
FUFTN Lexperimental | 1 Sugpey) 1.41 1.26 1.17 1.25 1.16 | 0.92 | 0.92
Vnumerical
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4.2.1.2 Crack orientation and bond-slip relation

This section will replace and compare the Shima bond-slip relation with the FIB bond-slip relation in the

numerical model. Analysis of the modeling aspect will be combined with the fixed crack and rotated

crack orientation models. The following four numerical models will be used to compare the Shima and

FIB bond-slip relation:

o Unconfined compression-compression behavior fixed crack orientation and the FIB bond-slip
relation with truss elements using the full NR iteration scheme (FUFTN)

e Unconfined compression-compression behavior rotating crack orientation and the FIB bond-slip
relation with truss elements using the full NR iteration scheme (RUFTN)

e Unconfined compression-compression behavior fixed crack orientation and the Shima bond-slip
relation with truss elements using the full NR iteration scheme (FUSTN)

¢ Unconfined compression-compression behavior rotating crack orientation and the Shima bond-slip
relation with truss elements using the full NR iteration scheme (RUSTN)

Fixed crack orientation with variation in bond-slip relation

This section will discuss the fixed crack orientation numerical models combined with the Shima bond-
slip relation (FUSTN) and compare them to the FIB bond-slip (FUFTN) models. Comparing the Shima
bond-slip relation performance to the FIB bond-slip relation is essential for the interaction between the
concrete and reinforcement. The comparison is hoped to successfully conclude which bond-slip relation
is more accurate in representing the experimental results and should be used for the constitutive model.
The load-displacement graphs for all four cases with both bond-slip relation numerical models are plot-
ted in Figure 53 for comparison. The green line shows the model with the FIB bond-slip relation, while
the blue line shows the model with the Shima bond-slip relation.
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Figure 53 Force-displacement graph: FIB and Shima bond-slip relation

In the force-displacement graphs, cases A121A3, B701B2, and R804ALl instantly increased and im-
proved the failure load and displacement with the Shima bond-slip relation. The failure load and dis-
placement simulations with the Shima bond-slip relation are closer to the experimental failure loads. An
in-depth analysis is performed to determine why there is such a difference by changing the bond-slip
relation for the numerical model. Because the analysis conclusions for the bond-slip relation of these
three cases (cases A121A3, B701B2, and R804A1) were almost similar, one of them is picked for a
detailed explanation in this chapter. During the previous sensitivity analysis, the most explanation was
done on cases A121A3 and R804A1, so now case B701B2 is chosen for the in-detail sensitivity analy-
sis.
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Case H601A, in contrast to the other three cases, showed a decrease in failure load and displacement
with the Shima bond-slip relation. However, the simulated failure load of the Shima bond-slip relation is
also closer to the experimental failure load for this case. Case B701B2 and case H601A will be primarily
focused on during this sensitivity. This approach helps avoid overcrowding this section with results from
all four cases, helps spot differences between case B701B2 and case H601A, and includes all important
observations/conclusions. However, at the end of the in-depth analysis, a summarizing table will be
shown with results for all four cases. A sensitivity analysis on case B701B2 is done first.

For case B701B2 (from Figure 53 force-displacement graph), the Shima-bond-slip relation failure load
is close to the experimental one. In the force-displacement graph, the Shima bond-slip relation also has
a steeper drop in force. This steeper drop mimics the brittle nature of the flexural shear failure better. A
‘traction and slip’ relation in Figure 54 is plotted for case B701B2 to understand the difference between
the bond-slip relation from a theoretical perspective. The plot was made using Shima et al. calculations
for the Shima bond-slip relation and the CEB-FIB 2010 calculations for the FIB bond-slip relation, found
in Chapter 2.2.1.2. The same material values were used for the calculations of this plot by entering
these values in their respective formulas. Three interesting findings are introduced from the figure while
using the same material configurations for bond-slip relations modeling assumptions. First, the FIB
bond-slip relation decreases the bond stress at high slip values. Secondly, the Shima bond-slip relation
has a higher shear traction capacity. Lastly, a higher initial stiffness for the Shima bond-slip relation is
another important difference between the two models.

—— Shima bond-slip relation
0 FIB bond-slip relation

0 5 10 15 20 25 30
delta Ut

Figure 54 B701B2: FIB and Shima bond-slip relation curves

Next, the numerical models’ reinforcement results (Cauchy stresses, total interface traction, interface
relative displacements) are analyzed. The results of the two bond-slip relation numerical models and
their respective failure loads found in the force-displacement graph (Figure 53) have been plotted be-
low. The traction and relative displacement results have been zoomed in at the location where the
failure crack occurs instead of showing the full beam to better spot the differences between the bond-
slip relations.
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Figure 56 B701B2 interface shear traction: FIB (left) and Shima bond-slip relation (right)
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Figure 57 B701B2 interface relative displacement: FIB (left) and Shima bond-slip relation (right)

When comparing, there are no apparent differences between the maximum stresses and tractions re-
sults of the two bond-slip relation models. However, the Shima bond-slip relation model has lower rel-
ative displacements at its failure load than the FIB bond-slip relation model, even though the latter failed
earlier. The maximum shear traction for the bond-slip relations has not been reached at this stage, as
visible in the figures’ legend. Due to the higher initial stiffness, the Shima bond-slip relation allows for
less relative displacement between the materials. Because of the lower initial stiffness, a larger relative
displacement is caused, resulting in faster crack propagation for the FIB bond-slip relation. The numer-
ical model could not deal with the FIB bond-slip relation model's high crack propagation rate at the
failure load. The behavior is also reflected in the non-converged step after this point. The maximum
principal strains for case B701B2 are given in Figure 58 below to show the failure mode and strains:
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Figure 58 B701B2 maximum principal strains: FIB (left) and Shima bond-slip relation (right)

During the Shima bond-slip relation sensitivity analysis, the s small secondary branch in the compres-
sion zone is developed, with less concentrated stresses along the reinforcement. Looking at the exper-
imental specimen crack pattern (Annex Ill, Figure 101), the pattern is mimicked better with the Shima
bond-slip relation.

The sensitivity analysis results for case H601A (Figure 53) are discussed now. The force-displacement
graph for this case showed a large overshot in the initial branch using the FIB bond-slip relation. The
overshooting has been reduced with the Shima bond-slip relation. After the initial overshooting, both
bond-slip relation numerical models return to a similar location in the force-displacement graph and
follow an almost identical path. This behavior shows that the overshooting does not impact the simula-
tion for further load steps. The improvement in the branch is related to the activation of the reinforcement
and concrete interaction after the initial crack. At the initial crack, there is a case of non-convergence
for both schemes. During other modeling aspects sensitivity analyses, more analysis will be done on
the cause of the overshooting, as this might depend on more modeling aspects than only the bond-slip
relation. Unlike the previous numerical case, H601A does not differ much between the Shima bond-slip
relation and the FIB bond-slip relation in failure load. The reinforcement ratio is only 0.57 % for this
case, explaining the small difference between the bond-slip relations. Even though the bond between
the reinforcement and concrete is essential to transfer the stresses between them, the bond-slip rela-
tions' influence decreases as the reinforcement ratio is low. There is less surface area for the bond
between the two materials. Compared to the case's experimental result, the bond-slip relations slightly
overpredict the failure load (Shima by 5 kN and FIB by 15 kN). The results show that the Shima bond-
slip relation overpredicts less than the FIB bond-slip relation, with the difference between the two nu-
merical models' failure loads being a marginal 1.04%.
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Below, the reinforcement stresses, shear tractions, and relative displacement are plotted to analyze the
bond-slip relation influence. The plots are made at the failure load of each bond-slip relation numerical
model.
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Figure 59 H601A reinforcement stresses: FIB (top) and Shima bond-slip relation
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Figure 61 H601A interface relative displacement: FIB (top) and Shima bond-slip relation (bottom)

When the results at the numerical model's respective failure loads are studied, the FIB bond-slip relation
numerical model relative displacements from the plots are slightly larger. The higher value is logical as
the FIB bond-slip relation deforms more and has a slightly higher failure load, as seen in the force-
displacement graph. Due to the higher initial stiffness for the Shima bond-slip relation, the shear trac-
tions appear slightly higher. The maximum tractions have not yet been reached for the bond-slip relation
numerical models with a relative displacement of less than 0.1 mm. The simulation with FIB bond-slip
relation results in acceptable values.
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An interesting behavior is noticed by comparing the relative displacement of the bond-slip relations
between case B701B2 and H601A. If there is not too high of a relative displacement occurring (this
happens with the FIB bond-slip relation model), the numerical model has an easier time coping with the
changes in the model during each step for the brittle failure mode cases. Also, this is reflected in the
small number of non-converged steps. For case H601A, the Shima bond-slip relation, and the FIB bond-
slip relation only have non-converged steps during the initial cracking. The other non-converged steps
are found after successfully simulating the correct failure mode. These non-converged steps are visible
with the dots in the force-displacement graph (Figure 53). The slight difference between the bond-slip
relation models is also due to the low reinforcement ratio for this specific case (H601A), causing the
reinforcement ratio to contribute less to the beam capacity. Lastly, the maximum principal crack strain
is given where the simulation of the flexural shear failure is seen for both bond-slip relations.
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Figure 62 H601A maximum principal strains: FIB (top) and Shima bond-slip relation (bottom)

Rotating crack orientation with variation in bond-slip relation

In this unconfined rotating crack orientation numerical model, the FIB bond-slip relation (RUFTN) is
replaced with the Shima bond-slip relation (RUSTN) and used to analyze the bond-slip relations. Many
convergence difficulties were found during the analysis for the numerical simulations of all four cases
(A121A3, B701B2, R804A1, and H601A) using the Shima bond-slip relation. For case A121A3, the non-
converged steps log and the force-displacement graph has been plotted in Figure 63.
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Figure 63 A121A3 rotating crack orientation with Shima bond-slip relation: force-displacement graph
(left) and convergence log (right)

Also, Figure 64 includes the crack width plot to understand what happened because of the convergence
problems. It should be noted that the crack width plotted at the load step is large (location shown with
a cross in the force-displacement graph), and the element is already dissolved. However, plotting at
this loading step was chosen to demonstrate the delamination. A plot with a small crack width would
not demonstrate the delamination visually clearly. In addition, the delamination increases to exceedingly
high crack widths in a few steps.

Figure 64 A121A3 rotating crack orientation with Shima bond-slip relation: delamination
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From analysis, the wrong results were caused by over-rotation, a known problem with the rotating crack
orientation. The causation of this problem was already discussed for the rotating crack orientation and
the FIB bond-slip relation, and the same applies here. There is a strong correlation between the number
of non-converged steps and over-rotation, visible in Figure 63. The crack width figure shows that the
Shima bond-slip relation at an early load step already shows an impending delamination failure. The
plot location is given with a cross on the force-displacement graph. Delamination is the cause of failure
for all four initial cases, which is the wrong failure mode.

Like with the FIB bond-slip relation, in the case of the rotating crack orientation and the Shima bond-
slip relation, the convergence difficulty increases as the geometrical beam size increases. As the ele-
ment sizes are the same and the over-rotation is in the element, the larger the beams, the more ele-
ments over-rotate. The increase in convergence difficulties results from B701B2 are shown in Figure
65 and Figure 66 to prove it. The number of non-converged steps has increased, while the step load at
which the delamination occurred was early in the force-displacement graph. In the crack width plot, a
considerable maximum crack width is shown to make the delamination visible in the figure. After the
plots, the conclusion section below (Table 13) will summarize the results between the two bond-slip
relations for comparison.

B701B2 Iteration plot Phase 2

225
200
175

= 150

f— 125

© 100

2 75

50
25
0 20
Displacement (mm)

——B701B2 ---RUFTN RUSTN ® RUFTN RUSTN X Plot location o

Number of Iterations
&

0O 25 50 75 100 125 150 175 200
Step

Figure 65 B701B2 rotating crack orientation with Shima bond-slip relation: force-displacement graph
(left) and convergence log (right)

Figure 66 B701B2 rotating crack orientation with Shima bond-slip relation: delamination
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4.2.1.3 Conclusion

Chapters 4.2.1.1 and 4.2.1.2 are summarized to conclude the sensitivity analysis for the constitutive

model. Sensitivity analysis investigated the influence of the compression-compression confinement be-

havior and bond-slip relation with the total strain crack models’ crack orientation for the constitutive

model. The following variations were used for the aspects mentioned:

e Compression-compression confinement behavior: “Selby and Vecchio” confinement and
unconfined.

e Bond-slip relation: FIB bond-slip relation and Shima bond-slip relation.

e The total strain crack models’ crack orientation: the fixed crack orientation or the rotating crack
orientation

Below in Table 13, a summary of the constitutive model sensitivity analysis failure loads is shown where

the fixed crack orientation was applied. The results of the rotating crack orientation are not shown, as

the simulated results were awful in multiple cases. The rotating crack orientation model resulted in many

non-converged steps with high force and energy norm differences. This problem would sometimes oc-

cur long before the failure load was even simulated. Thus, the rotating crack orientation is not an option

for RC beams without stirrups that fail due to flexural shear failure.

Table 13 Constitutive model sensitivity analysis summar

e A A3 A B1| A A1l B701B2 R804A1 RS804B 601A H602A
experime 145 152 137 202 269 250 | 306 | 306
erica 109 109 109 168 216 216 | 322 | 322

o 1.33 | 1.40 1.25 1.20 | 1.25 1.16 | 0.95 | 0.95

erica 108 108 108 173 216 216 | 333 | 333

o 1.34 | 141 1.26 1.17 1.25 1.16 | 0.92 | 0.92

erica 137 137 137 198 274 274 | 312 | 312

1.06 1.11 1.00 1.02 098 | 091 | 098 | 0.98

The findings for each modeling aspect during the constitutive model sensitivity analysis are also given

below:

Fixed crack orientation or Rotating crack orientation:

e The fixed crack orientation has a more realistic representation of the (flexural shear) failure crack.

e The rotating crack orientation can be subjected to delamination of the concrete cover (especially
for geometrically large beams). The delamination is caused by over-rotation from the rotating crack
orientation. In addition, a strong correlation was found between over-rotation and a high number of
non-converged steps.

e The rotating crack orientation can also be sensitive to dowel failure due to over-rotation of the ele-
ments above the reinforcement. Dowel failure is characterized by the detachment of the tensile
reinforcement from a flexural crack. For this failure mode, no secondary branch develops in the
compression zone.

e The fixed crack orientation can also be sensitive to dowel failure due to excessive change in the
damage-based shear retention factor. This excessive change in the factor can also lead to prema-
ture failure of the beam and requires very small steps for the sensitive step sizes.

Confined or unconfined:

e In a small number of cases, the unconfined numerical model had a higher failure load (for both the
fixed and rotating crack orientations). However, there is not much difference in failure load between
the confined and unconfined numerical models.

e The compression-compression confinement had a sudden concentration of high stresses along the
reinforcement in one of the four, thus capturing the wrong failure mode (dowel failure).

e The compression-compression confinement is not a modeling requirement for cases with a brittle
shear-tension failure mode, such as flexural shear failure.
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FIB bond-slip relation or Shima bond-slip relation:

The Shima bond-slip relation has a higher bond stress capacity and initial stiffness than the FIB
bond-slip relation with the same material configurations for the modeling assumptions. In addition,
the later bond-slip relation accounts for a decrease in bond stress at high slip values, which does
not happen for the Shima bond-slip relation.

Due to the higher initial stiffness, the Shima bond-slip relation allows for higher shear tractions at
less relative displacement between the materials than the FIB bond-slip relation.

The lower initial stiffness of the FIB bond-slip model increases the relative displacement, thus hav-
ing a bigger crack (propagation). As the numerical model cannot deal with the rate of changes in
the model, convergence problems occur.

The FIB bond-slip relation is found to be more sensitive to capturing dowel failure mode. The larger
relative displacement between the concrete and reinforcement causes the reinforcement to detach.
This detachment is a characterization of dowel failure.

The Shima bond-slip relation more accurately captures the flexural shear failure crack pattern.
The Shima bond-slip relation with the fixed crack orientation simulates the most accurate results.
In three cases of four, the Shima bond-slip relation model simulated a higher failure load than the
FIB bond-slip relation model. In contrast, the Shima bond-slip relation had a lower failure load in
one case. However, the Shima bond-slip relation showed more accurate results for all four cases
than the FIB bond-slip model when compared to the experimental results.

From the analysis and the table overview, the constitutive model sensitivity analysis results in “ uncon-
fined (compression-compression behavior) fixed crack orientation and the Shima bond-slip relation” as
the best-performing numerical model.
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4.2.2 Analysis procedure

During the sensitivity analysis of the analysis procedure, the full NR iteration scheme is compared to
the Secant iteration scheme. The advantages and disadvantages of both schemes have already been
discussed in Chapter 2. The simulated results of the four numerical cases will be displayed below to
see if there is a difference between the two schemes. The non-converged steps in this section are
shown with dots in the force-displacement graph and logged on the right in tables for an overview and
analysis. Only the non-converged steps before failure are displayed in the log, and if no non-converged
steps are shown for a scheme, it is because the scheme does not consist of non-converged steps.
Cases First, case A121A3 is analyzed and discussed. The force-displacement graph plotted in the fig-
ure shows the non-converged steps with their out-of-balance force and energy variation. Because the
Secant iteration scheme did not consist of non-converged before reaching the failure load, no steps are
included for this iteration scheme in the log.
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Figure 67 A121A3 iteration schemes: Force-displacement graph (left) and non-converged steps (right)

Both schemes have almost equivalent force-displacement path progression till the failure load. More
important than the non-converged steps are the size of the out-of-balance forces and relative energy
variation. The force norm considers only the force with a criteria size of 0.01. In addition, the energy
norm considers both the displacement and force with a criterion of 0.001. For case A121A3 at step 22
using the full NR iteration scheme, the convergence of both norms is not met using a step size of 0.1.
However, the overshooting of the norms is by a factor of 1.8 (force norm) and 1 (energy norm) and can
easily be reduced with smaller load steps or more maximum iterations. Currently, the maximum itera-
tions are set to 100, which is not incredibly high. The experimental and numerical results of the strain
are provided in Figure 68 for further analysis.
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Figure 68 A121A3 iteration schemes maximum principal strain: NR (top) and Secant scheme (bottom)

From a comparison between the flexural shear crack pattern and the experimental pattern, the full NR
iteration scheme does not mimic the cracks for case A121A3. The Secant model does come closer to
the experimental pattern. A change in element size might improve the crack pattern as it influences its
accuracy. This statement will be researched more during the element size sensitivity analysis in Chapter
4.2.3.2.
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Next, case B701B2 is addressed. First, the force-displacement graph and non-converged steps are
given.
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Figure 69 B701B2 iteration schemes: Force-displacement graph (left) and non-converged steps (right)

The force-displacement graph does not show a vast difference between the iteration schemes, but the
full NR iteration scheme does consist of one non-converged step at the initial crack. The results for
case B701B2 using the full NR iteration scheme at step 19 are unacceptable as the results greatly
overshoot the norm for this specific step. Reducing the step size at the initial cracks will reduce the
considerable overshooting of the norm. However, the correct damage progression takes place after the
load step, and accuracy for case B701B2 was not impacted for the full NR iteration scheme due to the
already small load step of 0.1. Below, the maximum principal strain is also given for case B701B2:
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Figure 70 B701B2 iteration schemes maximum principal strain: NR (top) and Secant scheme (bottom)

For the B701B2 case, both models come close to the experimental flexural shear pattern. However, the
full NR iteration scheme mimics the experimental crack better. In contrast, the cracks along the rein-
forcement are spread and have developed some large diagonal cracks along the reinforcement for the
Secant iteration scheme. The two cases analyzed until now, A121A3 and B701B2 (Figure 67 and Figure
69), barely show any difference in their force-displacement graph between the two iteration schemes.
Next, R804A1 is analyzed, but first, the force-displacement graph is given in Figure 71, and the non-
converged steps in Table 14:
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Figure 71 R804ALl iteration schemes: force-displacement graph
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Table 14 R804A1 Non-converged steps: NR and Secant iteration schemes
Iteration R804A1|Force Out-of-balance Energy Energy

scheme step | norm forces norm variation
YU 33 |0.010 0.167 0.001 | 0.003
Newt 31 |0.010 0.371 0.001 | 0.097
Wl 40 [0.010 0.166 0.001 | 0.009
50 |0.010 0.072 0.001 | 0.001
5 T0.010 0.138 0.001 | 0.006

For case R804A1, the full NR iteration scheme has a lower failure load than the Secant iteration
scheme. The higher number of non-converged steps is a disadvantage for the full NR iteration scheme,
as visible by the dots in the graph. While the Secant iteration scheme consists of only one non-con-
verged step before failure, the full NR iteration scheme consists of four steps. The results of the non-
converged steps are based on analysis with a step size of 0.1. The full NR iteration scheme’s out-of-
balance force and energy variation overshoot the norms at some steps. For load step 31, the energy
variation result is almost ninety-five times larger than the norm. In addition, the out-of-balance forces
are thirty-six times larger than the norm. Also, a reduction in the step size did not lead to an improvement
in the overall result. In the numerical model, the non-converged steps are when the flexural cracks
open. Even though there is a difference in the number of non-converged steps, both iteration schemes
followed the same force-displacement path. Their overlapping path in the force-displacement graph is
visible above. While the Secant iteration scheme is more stable according to the literature review and
during the simulation does not run into many convergence problems during the simulations compared
to the full NR iteration scheme, the full NR iteration scheme’s failure load is closer to the experimental
failure load. Observations show that the Secant iteration scheme slightly overestimates the failure load
(14kN). Next, the maximum principal strain is shown in Figure 72 for case R804AL1.
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For case R804A1, the Secant iteration scheme flexural shear failure crack closely matches the experi-
mental result. However, the full NR iteration scheme crack pattern is incorrect, and its pattern has no
smooth transition. Strains formed from the last crack for the full NR iteration scheme are shown with
the red circle in the plot. However, unexpectedly irregular cracks are formed due to large strains trans-
ferring from one element to another horizontally or vertically. The wrong failure mode problem seems
to be caused due to the element properties or its size rather than the full NR iteration scheme only. This
statement will be researched further during the element size sensitivity analysis. The last case that is
analyzed for the iteration schemes is H601A, with its force-displacement graph and non-converged
steps given:
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Figure 73 H601A iteration schemes: force-displacement graph

61



4 Numerical modeling, analysis, results, and sensitivities

Table 15 H601A Non-converged steps: NR iteration scheme
H601A Force | Out-of-balance Energy Energy

step norm forces norm variation
72 0.010 0.165 0.001 0.010
7788 0.010 0.090 0.001 0.004
ZE 0.010 0.080 0.001 0.003
a0 0.010 0.156 0.001 0.030

H601A with the Secant iteration scheme does not consist of hon-converged steps before the flexural
shear failure is successfully simulated. This reason is why no steps are included in the table. In contrast,
the full NR iteration scheme consists of four non-converged steps before failure. Some of the results in
the table are unacceptable from analysis, like with R801A1, for a step size of 0.1. Still, because this
step size is already small, the accuracy of the numerical model was not influenced by the NR method.
The method followed a similar force-displacement path as the Secant iteration scheme at these steps.
The maximum principal strain is also given below:
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Figure 74 H601A maximum principal strain: NR (top) and Secant scheme (bottom)
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While the flexural shear failure gets nicely captured for H601A using the full NR and Secant iteration
schemes, the latter captures a symmetrical failure. However, flexural shear failure is known to be a non-
symmetrical failure mode due to the mechanical behavior of RC beams taking up several types of non-
linearities. A probable reason for the symmetrical failure is that the Secant iteration scheme fails to
include material nonlinearity due to the symmetrical modeling of the structure. Changing the step size
for the Secant method did not fix this issue. The full beam's NR iteration scheme result demonstrated
correct non-symmetric failure. Only a half beam will be shown in plots during further analysis figures
unless a symmetric failure occurs. Comparisons for the numerical failure loads and experimental failure
of the four discussed cases are below in Table 16 for both schemes to give an overview of their perfor-
mance.

Table 16 Iteration schemes sensitivity analysis summar
Test 'A121A3 A122B1 A123A1/B701B2 R804A1 R804B1 H601A H602A
Vexperiment [kN] 152 137 202 269 250 306 306 | 152
FUSTN Vnumerical [kN] [JFEH 137 198 274 274 312 312 | 137

FUSTN Yexperimental 1.06 1.11 1.00 1.02 0.98 091 | 0.98 | 0.98

Vnumerical

FUFTS Vnumerical [kN] IR 136 202 284 283 301 | 301 | 136

S S R e 106 | 112 | 1.00 | 100 | 095 | 088 | 1.02 | 1.02

To summarize this modeling aspect, both schemes had almost equivalent failure loads and displace-
ments for cases A121A3 and B701B2. However, when comparing the schemes, the other two cases
(R804A1 and H601A) showed differences in the force-displacement graphs. The main difference be-
tween the four cases is their geometrical size. Increased sensitivity from the iteration schemes appears
to occur with increased geometrical size. This table shows that the full NR iteration scheme gives slightly
more accurate results while mostly successfully capturing the flexural failure crack. This conclusion was
found, despite the Secant iteration scheme having fewer non-converged steps for all four cases.
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In addition, there was one case with symmetric failure for the Secant iteration scheme. The symmetrical
failure is wrong as the flexural shear failure is a non-symmetrical failure mode, even though the simu-
lated crack pattern is accurate. Case R804A1 had problems simulating the flexural shear failure, but
the failure load was accurate. The findings indicated that the problem is possibly due to the element
(size) and the iteration scheme used. In Chapter 4.2.3.2, element size sensitivity will demonstrate if the
correct failure mode for case R804A1 with the full NR iteration scheme can be captured. This case was
the only case with much better results for the Secant iteration scheme due to the failure mode. During
the element size sensitivity analysis, more analysis will be done on both schemes as there is not much
difference between the results. With such a slight difference in this modeling aspect simulations, con-
cluding the appropriate iteration scheme for the numerical model is impossible. In addition, the schemes
also appear to depend on the geometrical structure size and the finite element discretized model ele-
ments. Besides, the global element size also depends on the geometrical size. With this approach, a
better conclusion can be found regarding the schemes, and a link between the iteration scheme and
element size can be identified.
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4.2.3 Finite element discretization

The finite element discretization modeling aspects are the last ones for the sensitivity analysis. First,
the reinforcement element is addressed, and then the element size.

4.2.3.1 Reinforcement element

During this section's analysis, the truss elements are replaced with beam elements for reinforcement in
the numerical model. Unfortunately, due to a numerical error during simulation, the Shima bond-slip
relation combined with beam elements for the reinforcement cannot be reviewed. The problem is purely
caused due to changes in the reinforcement element. For future research, it would be interesting to see
if using another concrete element with beam elements would have solved this problem. A change in the
concrete element is avoided during this research to keep consistency in the concrete element for the
reference numerical model. Changing the reinforcement and concrete elements together makes it diffi-
cult to study a single modeling aspect (in this case, the reinforcement element) during the sensitivity
analysis.

The bond-slip relation sensitivity analysis in Chapter 4.2.1.2 shows that the Shima bond-slip relation

performs better than the FIB bond-slip relation. Still, the FIB bond-slip relation is applied to analyze the

numerical model for reinforcement element variation due to the numerical problem (error) found with

the Shima bond-slip relation. There is a possibility that a change in reinforcement element can cause

better accuracy for the FIB bond-slip relation with beam elements compared to the Shima bond-slip

relation combined with truss elements. The reinforcement element sensitivity analysis is performed with

the following numerical models:

e Unconfined compression-compression behavior, fixed crack orientation, and the FIB bond-slip
relation with beam elements using the full NR iteration scheme (FUFBN).

o Unconfined compression-compression behavior, fixed crack orientation, and the FIB bond-slip
relation with truss elements using the full NR iteration scheme (FUFTN).

¢ Unconfined compression-compression behavior, fixed crack orientation, and the Shima bond-slip
relation with truss elements using the full NR iteration scheme (FUSTN).

Comparing the FIB bond-slip relation with beam elements model and the Shima bond-slip relation with
truss elements models on the reinforcement elements are challenging to analyze due to the difference
in two modeling aspects instead of one. Thus first, the FIB bond-slip relation with beam elements model
will be compared to the FIB bond-slip relation with truss elements model to analyze the influence of a
change in reinforcement elements between the models. Afterward, the failure load simulation and crack
pattern accuracy between the three numerical models are compared. During the comparisons of the
bond-slip relations in Chapter 4.2.1.2, the B701B2 and H601A cases were used for detailed analysis.
The choice is made to use these two cases again for the in-depth analysis of the reinforcement elements
to make more accessible cross-references to the Shima bond-slip relation with truss elements. How-
ever, the analysis results of cases A121A3 and R804A1 will also be included at the end of this section.
The force-displacement graph for case B701B2 is given in Figure 75 for the first case sensitivity analysis
of the reinforcement type.

B701B2

Displacement (mm)

—B701B2 - - - FUFTN - - - FUFBN - - -FUSTN & FUFTN ® FUFBN ® FUSTN

Figure 75 B701B2 Force-displacement graph: FIB bond-slip relation with truss elements, Shima bond-
slip relation with truss elements, and FIB bond-slip relation with beam elements
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For the beam elements model, there is an earlier failure than the two truss element models. Because
of the inclusion of the dowel action contribution to the shear capacity, one would expect that the beam
elements model would have a higher failure load simulation and a more accurate representation of the
experimental result. However, this does not happen here, as the failure load is drastically underesti-
mated for the model with beam elements. Besides the force-displacement graph, the reinforcement
stresses, shear tractions, and relative displacements are also below for further analysis. The plots below
are located at the failure load step of each numerical model. The shear stresses for both element types
are included in Annex Ill, Figure 107. The figure displays that beam elements include these stresses to
account for the dowel action.
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Figure 76 B701B2 Reinforcement stresses: FIB bond-slip relation with truss (top) and beam elements
(bottom)
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Figure 77 B701B2 bond-slip relation interface shear traction: FIB bond-slip relation with truss (left)
and beam elements (right)
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Figure 78 B701B2 bond-slip relation interface relative displacement: FIB bond-slip relation with truss
(left) and beam elements (right)

While the reinforcement stresses reached for the truss elements model are higher than that of the beam
elements model, this is expected as the truss elements model also fails after reaching a higher capacity.
However, the beam elements' shear tractions and relative displacements show much larger values
while having similar material inputs for the FIB bond-slip relation. To understand better why this happens
by changing the reinforcement element, a side-by-side overview of all elements used for the numerical
model is given:

!
Plane-stress element Beam element Truss element Interface element
Figure 79 Finite element discretization: numerical model elements

65



4 Numerical modeling, analysis, results, and sensitivities

The reinforcement elements are used together with plane stress elements for concrete. If plane stress
elements are connected to beam elements directly, then the rotating degree of freedom must be tied to
the translational degree of freedom for compatibility. DIANA FEA automatically takes care of the proce-
dure. However, unfortunately, the applied interface element between the reinforcement and concrete is
not ideal as it is not successful at dealing with the rotational degree of freedom. In the force-displace-
ment diagram, there are also more non-converged steps for the beam elements model due to the in-
compatibility between elements. As a result of this problem, high shear tractions and relative displace-
ment between the two materials occur with beam elements for reinforcement. The maximum principal
strain is given below to review the failure mode and strains:
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Figure 80 B701B2 strains with the combinations: FIB bond-slip with truss elements (top right), FIB
bond-slip with beam elements (bottom left), and Shima bond-slip with truss elements (bottom right)

The FIB bond-slip relation combined with the beam elements shows high strains along the reinforce-
ment. The large strains along the reinforcement before the diagonal crack fully developed were observ-
able for the FIB bond-slip model with truss elements but increased with beam elements. The too-large
relative displacements cause increased strain along the reinforcement. Also, the transition between the
diagonal crack during failure and detached reinforcement (strains along reinforcement) is not smooth.
The Shima bond-slip relation combined with truss elements has the best crack pattern and failure load
simulation of the three numerical models. One way to tackle the incompatibility problem is by replacing
the plane stress element with a more suitable element or manually tying the rotational degree of free-
dom. The previous sensitivity analysis shows this is also the better bond-slip relation. The next case
analyzed is H601A, with the force-displacement graph for the case below.
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Figure 81 H601A Force-displacement graph: FIB bond-slip relation with truss elements, Shima bond-
slip relation with truss elements, and FIB bond-slip relation with beam elements

Case H601A for the model with beam elements has a slightly higher global stiffness following the initial
crack than the two models with truss elements and the experiment in the force-displacement graph.
The higher stiffness causes the beam element model to get an increased failure load and decreased
displacement. While the failure load is acceptable, the wrong stiffness shows that the simulation does
not accurately represent the experimental result. The force-displacement graph displays the truss ele-
ments giving more reliable results.
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Below, the reinforcement stresses, tractions, and relative displacement at each numerical model failure
load are also given. In Annex Ill, Figure 108, a plot of shear stresses is included to show that the beam

elements account for the dowel action.
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Figure 82 H601A Reinforcement stresses: FIB bond-slip relation with truss (top) and beam elements
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Figure 84 H601A bond-slip relation interface relative displacement: FIB bond-slip relation with truss
(top) and beam elements (bottom)

Like the previous case, the reinforcement stresses are higher for the simulation with truss elements.
Also, like in the previous case, the shear tractions and relative displacements from the numerical model
with beam elements are larger than those with the truss elements. However, in the case of H601A, the
difference is even more pronounced than in values (traction and relative displacement) B701B2. Both
case properties were compared to find the main configurations that make both cases different. Table
11 shows that the beam geometry is the biggest difference between the B701B2 and H601A cases.
With a larger beam, there are more elements. Thus, the effect caused by incompatibility between plane
stress elements and beam elements is increased.

67



4 Numerical modeling, analysis, results, and sensitivities

Finally, the maximum principal strain for case H601A is given in Figure 85.

FIB bond-slip relation and truss elements:

Euhesmareaa s g

040 b 6

- . i .,

Experiment: I 036 he, S
033 FIB bond-slip relation and beam elements:
029

Figure 85 H601A strains with the combinations: FIB bond-slip with truss elements. (top) and FIB
bond-slip with beam elements (middle), and Shima bond-slip with truss elements(bottom)

The figure shows high strains along the reinforcement for the numerical model with beam elements.
The detachment of the tensile reinforcement is a sign of dowel failure. Beam elements show to be prone
to high stresses along the reinforcement when combined with regular plane stress elements. For this
case, if we compare the (FIB and Shima bond-slip relation with) truss element models, the flexural shear
failure crack pattern is captured for both cases. However, based on the failure load and crack propaga-
tion of the other three numerical cases (A121A3, B701B2, and R804A1l), the Shima bond-slip relation
with truss elements is recommended. The force-displacement graphs are given for cases A121A3 and
R804A1 in Annex IV, Figure 109, and Figure 110. In addition, in the annex, Table 59 shows an overview
of the differences in maximum reinforcement stresses and relative displacements using the two element
types for all cases.

For this section, a summary of all failure loads is in the table below. The table results show more accu-
rate simulations of the (Shima bond-slip relation with) truss elements over the numerical model with
beam elements. One interesting behavior for the four cases with beam elements was noticed. A pattern
is observed in the difference in inaccurate estimations depending on the structure size. Using beam
elements in the numerical model, the geometrically smallest case (A121A3) had the largest underesti-
mation of the failure load. This failure load underestimation was reduced as the beam geometry in-
creased (B701B2). However, after a certain geometry (R804A1 and H601A), the model started overes-
timating the failure load with increased structure geometry. The difference in failure load between the
element types can be found in the force-displacement graphs of the four cases (Figure 107, Figure 109,
Figure 110, and Figure 108).

Table 17 Reinforcement element sensitivity analysis: FIB bond-slip & truss elements, Shima bond-slip
& truss elements, and FIB bond-slip & beam elements

Test A121A3/A122B1 A123A1 B701B2 R804A1 R804B1 H601A H602A

Vexperiment [kN]

FUFTN Vnumerical [kN]

FUFTN Vexperimental [_]

Vnumerical

FUSTN Vnumerical [kN]

FUSTN Vexperimental [_]

Vnumerical

FUBTN Vnumerical [kN]

FUBTN Vexperimental [_]

Vnumerical
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4.2.3.2 Element size

The final sensitivity analysis is for the element size, which is done in this chapter. The global element
size sensitivity analysis will use the unconfined compression-compression behavior of fixed crack ori-
entation and the Shima bond-slip relation combined with the truss elements model. This analysis is
essential, especially for cases with large geometry, as these are known to be more sensitive to the
element size. The analysis will be done in the order from the geometrically largest beam (H601A) to the
geometrically smallest beam (A121A3). The global element size sensitivity analysis for each case will
help to determine the optimal element size. Initial assumptions from the literature review for the element
size are specified first, after which the approach for the element size sensitivity analysis is explained.
Two studies that made recommendations using DIANA FEA for the simulations recommended the fol-
lowing:
e According to Putter [43], special attention must be given to beams with a depth greater than 600
mm, as it found severe mesh dependency and recommended 20 elements over the beam depth.
e Lang [45] found that less than 15 elements of the beam depth do not successfully capture the
flexural shear failure. The maximum element size used for simulations will be limited to the finding
from Lang unless required otherwise.

After the sensitivity analysis, the largest element size that successfully and accurately simulates the
flexural shear failure will be chosen out of all the sizes. Choosing the largest element size in this way
helps reduce computational time while providing accurate results. The initial element size was 25 mm
for cases A121A3, B701B2, and R804Al. For case H601A, the initial element size was 40 mm for
reasons explained in Chapter 4.2.1. The initial element size used resulted in the following number of
elements over beam depth:

Table 18 Reference numerical model: number of elements over the beam depth
Case Al121A3 B701B2 R804A1 HG601A

Number of elements of beam depth [-] ¥

As an approach for the element size sensitivity analysis, the following approach is used:

1 Start analyzing simulations with the initial element size.

2 Add five elements from the initial number of elements over the beam depth and run simulations with
the smaller element size.

3 Subtract five elements from the initial number of elements over the beam depth and run simulations
with the larger element size.

4  After the simulations are completed, analyze their accuracy.

5 If element size sensitivity for the different sizes is noticed due to too large elements, subtract five
elements again. If no element size sensitivity is noticed for the different sizes, add five elements
again for simulations with larger elements.

6 Run simulations with the new element size and analyze it.

7 Repeat steps 5 and 6 or stop with the sensitivity analysis if an optimal element size is found from
step 6.

Results from Chapter 4.2.2 show that the full NR iteration scheme works slightly better than the Secant
iteration scheme. However, not much difference was found between both iteration schemes. However,
both schemes showed different failure loads and damage progression for cases R804A1 and H601A.
The iteration scheme sensitivity analysis introduced suspicions that both schemes depend on the ele-
ment type and dimensions. Because of this suspicion, element size sensitivity analysis is performed
initially using both iteration schemes. First, case H601A is analyzed, followed by R804A1, followed by
B701B2, and finally, A121A3.
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H601A element size sensitivity analysis:

Unlike the other three cases, for case H601A, an element size of 40 mm was used for the modeling
aspects sensitivity analysis till now instead of 25 mm. The reasoning for this is included in Chapter
4.2.1. However, the initial results obtained with an element size of 25 mm are also included in the
sensitivity analysis. For case H601A, all the different element sizes used for the element size sensitivity
analysis are given in Table 19. Hereafter plots of the force-displacement graphs and crack patterns are
given in Figure 86 and Figure 87. In the force-displacement graph, a high element sensitivity is discov-
ered for case H601A (which is a geometrically large case).

Table 19 H601A element sizes sensitivity analysis
Depth [mm] 1200 1200 1200 1200 1200 1200
Number of elements [-] [ 40 30 25 20 15
Element size [mm] S 30 40 48 60 80
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Figure 86 H601A element size sensitivity analysis: force-displacement graph
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Figure 87 H601A element size sensitivity analysis: crack pattern

The figures above show why the exception was made not to initially use the element size of 25 mm for
this case. Overpredictions of the failure load and, more importantly, irregular crack patterns would con-
stantly occur during the sensitivity analysis due to the element size of 25 mm. Thus, reliable analysis
and conclusions for the previous modeling aspects would not be possible with an element size of 25
mm. A closer analysis was done for the simulation with this element size using the figure below from
the step at its failure load:
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l 7.13e-02
6.25e-02
5.38e-02
4.50e-02
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I 1.88e-02
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Figure 88 H601A irregular crack pattern: maximum principal strain
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The plot shows that for an incredibly small element size, huge strains show at the sides of some ele-
ments. These strains are transferred horizontally or vertically to the next element, thus creating hori-
zontal or vertical strains running over several elements. Due to this, the numerical model results in an
irregular crack pattern instead of a smooth flexural shear failure pattern, as found in experiments. This
pattern shows that the damage progression has been captured incorrectly. The element sizes 40 mm
and 30 mm have shown the correct damage progression and captured the flexural shear failure crack
close to the experimental crack pattern. However, the element size of 30 mm overpredicts the failure
load by 16 % compared to the experiment. Closer analysis displays signs of forming an irregular crack
pattern with an element size of 30 mm. At the same time, the element size of 40 mm overpredicts the
failure load by only 4 % while closely resembling the experimental beam behavior. Based on the current
findings, the element size of 40 mm is shown to be the optimal element size for beams with this depth.

Also, element sizes 48-, 60-, and 80-mm show that if the crack pattern is analyzed, they were chosen
too large by capturing the wrong failure load. This failure mode is called dowel failure and can be iden-
tified by dowel cracks along the reinforcement running toward the support. The reason for this failure
mode is the dependence of the dowel crack propagation on the element size. The larger the element
size, the more sensitive the crack propagation rate. The element size of 80 mm showed an underpre-
diction in the failure load with a factor of 1.6. For case H601A, the element size is a sensitive modeling
aspect. A similar element size sensitivity analysis is also done for the Secant iteration scheme to see
how this analysis scheme performs but also to see if the large element size sensitivity still preserves.
The force-displacement graph and crack patterns using the Secant iteration scheme are given in Figure
89 and Figure 90 below:
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Figure 89 H601A element size sensitivity analysis: force-displacement graph
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Figure 90 H601A element size sensitivity analysis: crack pattern
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Like the full NR iteration scheme, the Secant iteration scheme also captures the dowel failure for some
element sizes. However, unlike the full NR iteration scheme, the Secant iteration scheme successfully
captures flexural shear failure with an element size of 60 mm. Unfortunately, symmetrical failure occurs
for the simulation with this element size and an element size of 40 mm. However, the simulated result
for the element size of 60 mm comes closest to the experimental failure load and failure mode out of all
simulations. The reasoning for the symmetrical failure mode problem and a recommendation to fix this
problem has been addressed in Chapter 4.2.2. With the Secant iteration scheme, the element size of
25 mm also fails to capture the correct failure mode while suffering from an irregular crack pattern due
to too small mesh elements. This simulation shows that, independent of the analysis scheme, an irreg-
ular crack pattern with an overestimation of the failure load can be captured if the element size is too
small. An overview of all the H601A element size sensitivity analyses by comparing the experimental
failure load for both iteration schemes is given in Table 20:

Table 20 H601A element size sensitivi

HE01A Elements NR: NR: Vexp [] Secant:
Experiment - 306 - 306 -

25 48 397 0.77 405 0.75
30 40 363 0.84 402 0.76
40 30 312 1.02 367 0.83
48 25 213 1.43 208 1.47
60 20 208 1.47 298 1.03
80 15 187 1.64 227 1.35

The table shows the high sensitivity of the element size for the numerical simulations. The element
sizes were chosen based on the beam depth. Because element size sensitivity is a complex topic, as
seen from the analysis, choosing an element size based on only one case simulation result for beam
depth is inconvenient. Due to this, a similar element size sensitivity analysis was done on more beams
with a depth of 1200 mm. The properties for the following cases, "H404A, H121A, H851C, and H852A,"
with a beam size of 1200 mm, are given in Table 40 from Annex Il. These cases will be used for further
element size sensitivity analysis for beams with a depth of 30 mm. The element size sensitivity analysis
results are in Annex Ill (Figure 117, Figure 118, and Figure 119) for these cases. Table 21 summarizes
only the best-performing element sizes used for simulation to avoid overcrowding the graphs with too
many results. All cases capture the flexural shear failure with an element size of 40 mm, just like case
H601A. In addition, the full NR iteration scheme gives the best overall result for this element size and
not the Secant iteration scheme.

Table 21 Element size sensitivity analysis of 1200 mm cases: NR and Secant iteration schemes

H121A Vexp H404A Vex”/ H851C Vexp H852A Vexp
V [kN] [-] num V [kN] [-] num V [kN] [-] num V [kN] i num

Failure load ezl - 269 - 421 - 406 -
FUSTN 30 380 0.90 265 1.02 479 0.88 479 0.85
FUSTS 30 399 0.86 269 1.00 490 0.86 490 0.83
FUSTN 40 368 0.93 244 1.10 404 1.04 404 1.01
FUSTS 40 395 0.86 256 1.05 431 0.98 431 0.94
FUSTN 60 325 1.05 207 1.30 322 1.31 322 1.26
FUSTS 60 274 1.24 184 1.46 357 1.18 357 1.14

Experiment

The remaining three cases for the element size sensitivity analysis are addressed next. Too much focus
on the Secant iteration scheme will not be emphasized for these cases because the full NR iteration
scheme has proven more dependable for the 1200 mm deep beams. Also, a slightly better performance
was observed for the full NR iteration scheme during the modeling aspects’ sensitivity analysis. For the
cases with a depth of 1200 mm, wrongly capturing a symmetric failure is also identified for the Secant
iteration scheme. The Secant iteration scheme is not more dependable than the full NR iteration scheme
and thus will not be used for an in-depth analysis. However, the Secant iteration scheme results are
included in the summary tables below to give an overview of the simulations done.
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R804A1 element size sensitivity analysis:

This case is also a geometrically large beam and has a depth of 800 mm. The element sizes 20 mm,
25 mm, 80/3 mm, 32 mm, and 40 mm was analyzed for this case. The strains and force-displacement
graph will be placed in Annex Il for this case. The same will also be done for the other two cases
(A121A3 and B701B2). The annex shows the case results in Figure 111 and Figure 112. A summary
of the failure loads from the element size sensitivity analysis, including a comparison with the experi-
mental failure loads, is given in Table 22.

Table 22 R804A1 element size sensitivity analysis summar
R804A1  Elements [-] ‘ vikng w1y vy Vew/ g
Vnum Vnum

Experiment - 269 - 250 -
FUSTN 20 40 285 0.95 285 0.88
FUSTS 20 40 293 0.92 293 0.85
FUSTN 25 32 274 0.98 284 0.91
FUSTS 25 32 288 0.94 288 0.87

FUSTN 80/3 30 268 1.01 268 0.93

FUSTS 80/3 30 266 1.01 266 0.94
FUSTN 32 25 263 1.03 263 0.95
FUSTS 32 25 240 1.12 240 1.04
FUSTN 40 20 248 1.09 248 1.01
FUSTS 40 20 280 0.96 280 0.89

The simulated plots in Figure 111 shows that element sizes 80/3, 25, and 20 mm cannot be used due
to capturing either the dowel failure or an irregular crack pattern. However, their failure load predictions
are acceptable compared to the experimental failure loads. While case R801A1 also captures the dowel
failure and irregular crack patterns, this case is less sensitive to the element size when predicting the
failure load than case H601A. During previous modeling aspect sensitivity analysis, an element size
sensitivity issue was suspected using an element size of 25 mm for the R804A1 case. The element size
of 25 mm was causing over predictions but, more importantly, an irregular crack pattern. This element
size was still used, as not all numerical models during sensitivity analysis suffered from this. Keeping
the same element size helps to avoid changing multiple modeling aspects for a numerical model during
a section. Numerous modeling aspect changes would make it challenging to review differences caused
by the central modeling aspect for the sensitivity analysis.

Element sizes 32 mm and 40 mm are sufficiently accurate for this case using the full NR and the Secant
iteration schemes. These element sizes successfully capture the flexural shear failure while showing a
logical and expected damage progression. One thing to note is that the two experimental specimens
(V1 and V2) have a difference of 20 kN in failure load. Thus, the lower accuracy in column V2 is visible
in the table. Even though the sensitivity in element size is reduced, additional numerical analyses will
be done on new cases with the same beam depth before the end of this chapter, as was done for case
H601A. This approach will help get an optimal element size for a specific beam depth using multiple
cases to increase the quality of the element size recommendation. Similarly, additional cases will be
analyzed on the element size for cases A121A3 and B701B2.

B702B1 element size sensitivity analysis:

The third case analyzed on the element size sensitivity is B702B1. The previously used element size
of 25 mm already captured the damage progression and failure mode. However, performing an element
size sensitivity analysis can help find the optimum element size for the case. The optimum element size
should reduce unnecessary computational costs while maintaining an approximate similar numerical
simulation accuracy. The simulated results can be found in Figure 113 and Figure 114 from Annex Il
For case B701B2, all the numerical element size configurations successfully capture the flexural shear
failure. A summary of the different element sizes, number of elements over the beam depth, and simu-
lated failure loads are given in Table 23 to study the accuracy of the failure load simulations.
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Table 23 B702B1 element size sensitivity analysis summary

570182 Elements [ VIkN] "o/, [

Experiment | - 202 -
FUSTN 50/3 30 200 1.01

FUSTS 50/3 30 213 0.95
FUSTN 20 25 205 0.99
FUSTS 20 25 208 0.98
FUSTN 25 20 198 1.02
FUSTS 25 20 202 1.00

FUSTN 100/3 15 156 1.29

FUSTS 100/3 15 222 0.91

The force-displacement graph in the annex and the table above are reviewed. These results show that
the simulation underpredicts the failure load for the element size of 100/3 due to a too-large element
size. The too-large element size decreases the accuracy of the simulation. Thus, no further increase in
element size was performed. Besides analysis for the element sizes of 20 mm and 25 mm, another
analysis was added with the element size of 50/3. These three element sizes resulted in failure loads
close to the experimental result. The maximum difference between the three simulated failure loads of
different element sizes is 6 %. This additional element size sensitivity analysis was performed to show
the decrease in element size sensitivity with a decrease in the beam dimensions (depth).

A121A3 element size sensitivity analysis:

Finally, the smallest beam (A121A3) is analyzed for element size sensitivity, for which there were sus-
picions that the element size of 25 mm was already large. However, an element size sensitivity analysis
for elements of 30mm was also done to see how much the inaccuracy increases with an even larger
element size. The simulated results are in Annex Ill, Figure 115, and Figure 116. The summary of this
simulation using the numerical and experimental failure load can be seen in Table 24 below.

Table 24 A121A3 element size sensitivity analysis summa

Elements

[]

A121A3

Experiment
FUSTN 12
FUSTS 12
FUSTN 15
FUSTS 15
FUSTN 20
FUSTS 20
FUSTN 25
FUSTS 25
FUSTN 30
FUSTS 30

First, simulations were done with elements sizes of 20, 25, and 30 mm. As suspected, the element size
of 30 mm proved too large, causing incorrect damage progression. The table above shows an under-
prediction of the failure load for an element size of 30 mm due to decreased accuracy. The element
size of 30 mm had 10 elements over the beam depth, which Lang [45] also did not recommend for the
flexural shear failure. After analyzing the element sizes 20 and 25, it can be said that they capture the
correct damage progression and successfully capture the flexural shear failure. However, between el-
ement sizes 20 and 25, it was found that element size 20 delivered the more accurate representation
of the experiment, as also reflected in Table 24. Next, tests were done with reduced element sizes of
12 mm and 15 mm to determine if the size could be optimized even more over an element size of 20
mm. The maximum principal strain plots are in Figure 115.
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Element size 15 had the most accurate result with a correct crack progression, an almost similar crack
pattern to the experiment, and an accurate failure load prediction for all three experimental specimens.
Interestingly, like the previous cases, tiny element sizes can start overpredicting and show signs of an
irregular crack pattern. In this case, after element sizes 25, 20, and 15 mm simulated comparable re-
sults, the element size of 12 mm overpredicted the failure load due to being too small. This result shows
that tiny element sizes increase the computational cost and decrease the accuracy after a particular
small element size. Next, an additional element size sensitivity analysis will be done for other cases
with a similar beam depth using element sizes 15 and 20 mm. This analysis will make it clear which
element size is more optimal.

Additional cases element size sensitivity analysis:

Previously additional element size sensitivity analysis was done for multiple experimental beams with
a depth of 1200 mm. Case H601A showed considerable sensitivity, and choosing an element size for
a beam with a depth based on only one simulation is not ideal. As the beam depths (R804A1, B701B2,
and A121A3) decreased, the element size sensitivity appeared to decrease. However, because of the
considerable sensitivity of the element size, more sensitivity analysis will still be done for cases with a
depth of 800 mm, 500 mm, and 300 mm. With this approach, choosing an element size based on one
numerical simulated case per beam depth is avoided. Previously for the three cases, accurate results
with acceptable computational time were simulated with the following element sizes:

e RB804A1 with element sizes of 32 and 40 mm

e B701B2 with element sizes of 20 and 25 mm

o A121A3 with element sizes of 15 and 20 mm

The additional case with their beam depths is also given below:

e RB803A1 with a beam depth of 800 mm

e B502A2 with a beam depth of 500 mm

e A751B1 with a beam depth of 300 mm

Below are three tables (Table 25, Table 26, and Table 27), which summarize the additional cases'
element size sensitivity analysis results. In addition, figures of the simulated results are placed in Annex
Il (Figure 120, Figure 121, and Figure 122).

Table 25 RB03A1 element size sensitivity analysis summa
R8O3AL  Elements [ ‘ VIkNG Ve/ g ovakng Vew/
num

Experiment - 279 - 308 =
FUSTN 20 40 294 0.95 294 1.05
FUSTN 25 32 296 0.94 296 1.04

FUSTN 80/3 30 274 1.02 274 1.13
FUSTN 32 25 313 0.89 313 0.98
FUSTN 40 20 282 0.99 282 1.09

Table 26 B502B2 element size sensitivity analysis summar
B502A2 Elements [] V [kN] Vexp [[] V2I[kN] Vexp []
Vnum Vnum

Experiment | 173
FUSTN 20 0.98 178 0.98
FUSTN 25 1.02 171 1.02

FUSTN 100/3 0.95 183 0.95

Table 27 A751B1 element size sensitivity analysis summary
A751B1  Elements[] V[kN] e/ []
num

Experiment -
FUSTN 12 0.86
FUSTN 15 0.92
FUSTN 20 0.98
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Because the numerical sensitivity analysis results and problems due to the sensitivity have already
been addressed, a detailed explanation will be left out for the additional cases. However, the main
points that are found for the element size sensitivity analysis for these cases are the following:

e None of the cases was subjected to failure due to reinforcement yielding.

e For the additional cases, not all simulations with element sizes that could capture the flexural shear
failure previously resulted in this failure mode again.

e Case A751BL1 captures the flexural shear failure for element sizes 15 mm and 20 mm accurately.
However, considering computational cost, an element size of 20 mm is preferred for beams with a
depth of 300 mm. There is no need to increase the computational time if no significant improvement
is found in the simulation.

e For case B502B2 in Figure 121 force-displacement graph two experimental specimen results are
shown. While one specimen has the same initial stiffness as the numerical model, the other has a
lower initial stiffness. The lower initial stiffness is due to a previous experiment on the beam, as
explained in Figure 30. However, what is essential is that the post-initial crack stiffness of both
experiments resembles each other and is accurately replicated by the numerical simulation. The
same reasoning can be used for the case of R803ALl if the force-displacement graph is reviewed in
Figure 122.

e Case B502B2, unfortunately, does not capture the flexural shear failure with all element sizes used
in the analysis. The element size of 20 mm is subjected to the wrong failure mode due to the element
size being too small. The element size of 25 mm is good enough to simulate the flexural shear
failure for beams with a depth of 500 mm. A larger element size with five fewer elements over the
beam depth also captures the right failure load. However, a slight underestimation of the failure load
was noticed for the larger element sizes during the analysis of case B701B2. This underestimation
of the failure load is due to a decrease in accuracy caused by the increased element size.

e Justas it was noticed for case R804A1, for RB03A1, the best-performing element size was 40 mm.
According to the literature, beams with depths greater than 600 mm are known for increased ele-
ment size sensitivity. The flexural shear failure for element size 40 successfully captures the correct
failure mode and resembles the experimental cracks. The 80/3 mm and 32 mm element sizes also
accurately capture the failure load. However, when describing the crack pattern, these two element
sizes have element size sensitivity problems causing irregular crack patterns.

Element size sensitivity analysis: summary
There is a lack of element size recommendations from previous studies regarding geometrically large
beams, with many suggesting further research for such beams [45] [43]. The mesh sensitivity analysis
found that the 800 mm and 1200 mm beams, considered large, get the most accurate representation
of the experiment with an element size of 40 mm. Figure 91 will be used as a guideline to estimate the
element size for the remaining cases for this research. These element sizes will be adopted as the
standard size for upcoming beams with a depth of up to 1200 mm.

Element size predictor
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Figure 91 Optimal element size predictor (left) and element size prediction for different depths (right)

In Figure 91, markers show the number of elements over beam height. The green line does not go
through the plotted marker for the beam with a depth of 300 mm. The plotted dot for this beam depth
shows an element size recommendation of 20 mm. However, the green line is plotted like this because
the element size of 15 mm gave as accurate results as for element size of 20 mm during the mesh
sensitivity analysis. The only reason the element size of 20 mm got initially chosen as the optimal one
was the lower computational time.
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Also, an overview of the improvement in result for the initial cases when applying the element size
predictor is shown in Table 28.

Table 28 Sensitivity analysis cases with element size predictor

Vexperlmental/v . ‘ Initial element size Element size predictor
numerical
A121A3
Al122B1
Al123A1

B701B2

R804A1

R804B1
H601A
H602A

The RTD guidelines recommend calculating the element size depending on a minimum number of ele-
ments over the beam length and depth. For all the cases till now, the element size calculated over the
beam length was not governing. The elements over the beam length were larger than those recom-
mended over the beam depth, and the smaller size of these two was chosen as the governing one. The
formula over the beam length advised by the RTD guidelines is 50 elements over the beam length.
However, the elements over the beam length will also be accounted for in the upcoming cases from the
following simulations, as this element size may be the governing one for some cases.
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4.3 Quantitative analysis

This section quantitively compares numerical simulations to experimental results. The numerical model
is based on the model found after sensitivity analysis on multiple modeling aspects in Chapter 4.2. The
numerical model is an unconfined (compression-compression) fixed crack orientation and the Shima
bond-slip relation combined with truss elements using the full NR iteration scheme. This model can also
be found summarized in the figures from Annex IV. A quantitative analysis is done for all cases from
Chapter 3, with their properties specified in Annex Il. From the quantitative analysis, the numerical
model consistently gave satisfactory results for most cases, with a few exceptions. A few cases did not

successfully result in the correct failure mode.

The geometrically smaller beams resulted in the correct failure mode for every simulation. However, a
typical wrong failure mode that would often be captured was the dowel failure for geometrically large
beams. As found during the modeling aspect sensitivity analysis of the fixed crack model, the dowel
failure mode is caused by an excessive change in the damage-based shear retention factor. During
simulations, the change in the shear retention factor should be closely monitored. Sensitive steps for
the change in the factor are especially before and during failure and can be located from the force-
displacement graph. The excessive change in the damage-based shear retention factor is controlled by
reducing the step size of the analysis procedure when close to the failure load during the simulation.
Even though it can be cumbersome to decrease the step size to tiny steps as there is an increase in
the computational time, the flexural shear failure gets successfully captured.

The reduction of the step size approach did not work for only one case, namely case H301A, where the
step size was reduced to 0.001. This experiment was found in Garnica et al. report [89], and the case
properties, including results, can be found in Annex Il. Further research was done on this case, and
interesting findings were found in the report. After the experiment on case H301A was performed at
Stevin lab, another experiment on a case with the same material properties and dimensions was per-
formed. This case is called H302A and resulted in dowel failure during the experiment. Analyzing its
failure mode, this overlapped with the numerical simulation. The same failure mode for the numerical
simulation and case H302A during the experiment can be seen in Figure 92. Compared to H302A ex-
perimental results, the numerical model found the correct damage progression, failure load, and failure
mode. Another remark on case H301A is that this experiment was stopped midway through the testing
and, after that, resumed. Case H302A was performed without interruptions, making this a more reliable

experiment.
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Figure 92 H302A dowel failure: simulation (left) and experiment (right)

The numerical simulations' accuracy can be analyzed on their safety by the percentage difference be-
tween the experimental and simulated failure loads. Also, using the results of this method, an overview
of the accuracy can be given in histograms. The quantitive numerical simulations of cases are also
displayed in Annex Il for the different experimental cases. The percentile result for the numerical model
is specified in the histogram of Figure 93 on the next page. A similar histogram is also made for the
design codes EC2 and FIB MC 2010. The results for the FIB MC2010 are based on an LoA Il, introduced
in Chapter 2.3. The design code percentile differences are specified in Figure 94, with the legend from

Figure 93 also applied to the design code figure.
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Quantitative analysis percentile difference numerical model
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Figure 93 Quantitive analysis percentile difference: Numerical model (top left)
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Figure 94 Quantitive analysis percentile difference: EC2 (bottom left), and FIB MC2010 (bottom right)

According to the percentile differences, the numerical model simulations are satisfactory, with only 3
simulated cases over a 20% difference. All these 3 cases consisted of low reinforcement ratios and
being geometrically large. The EC2 resulted in better predictions compared to the FIB MC2010. How-
ever, if for the FIB MC2010 the LoA Ill were applied instead of the simplified LoA II, the physical-me-
chanical model results from FIB MC2010 would be improved. The simplified LoA was used as the de-
sign codes are not the focus of this study, and not all required data for LoA Ill were available. The
numerical method and design codes have the following average failure load percentage differences
with the experiment:

e Numerical simulations: 6%

e EC2 predictions: 14%

e FIB MC2010 predictions: 19%

The plot in Figure 95 below gives an overview of the experimental failure load compared to the numer-
ical simulations:
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Figure 95 Simulated and experimental failure loads

79



4 Numerical modeling, analysis, results, and sensitivities

The numerical analysis comparison in Figure 95 shows that the smaller case simulations are close to
the experimental result. However, as the beam size increases, the difference between the compared
models in failure load does increase in some cases. The largest failure loads are for beams with a depth
of 1200 mm and can be recognized from the plus markers. These were also the largest geometrical
beams out of all simulated cases. While the numerical results stay close to the plotted midline, some
under and overestimations exist. An alternative method called the DPC method was also used for a
similar comparison. The results of this method can be found in Annex VI. In the annex, six cases were
unacceptable in their failure load predictions according to the DPC method and in the annex. A short
analysis is also done on the design codes predictions. The plot Figure 96 below has been made to give
an overview of the experimental failure load to the design code predictions:
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Figure 96 “EC2 and experimental” (left) and “FIB MC2010 Simulated experimental failure loads”
(right)

The analytical result from the Eurocode sometimes underestimates the failure load with high differences
from the experiment. The results of these predictions can be explained due to the safety threshold
introduced in the analytical design code to keep the calculations safe. The physical-mechanical model
from FIB MC2010 shows large over and underestimations for the geometrically large beams. Most re-
sults found for geometrically small beams are underestimated. Overestimation of the failure load can
be dangerous and was looked at more in-depth. Three cases (E401B1, E402B, and H301A) are sub-
jected to the highest overestimations. All three cases have one thing in common, they are all large
beams (1200 mm) and have low reinforcement ratios (0.41 %, 0.41 %, and 0.27 %, respectively). These
beams should be looked at more in-depth without the simplified LoA. Using LoA 1l will improve results
as the simplifications are eliminated.
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4.4 Size effect analysis

Finally, this section performs numerical simulations for the size effect analysis. These results will give
an initial expression of whether the numerical method can capture the size effect. The size effect is
investigated on RC beams without stirrups by scaling them geometrically. The cases are based on
experiments from Bhal [84] and have an effective depth of 300 mm, 600 mm, 900 mm, and 1200 mm.
The four cases were also part of the quantitative analysis, and their simulations are accurate compared
to experimental results. Detailed information regarding the four experimental cases from this report can
be found in Annex Il. In addition, the overview of the experimental setup is given in Figure 25.

The simulated failure load and displacement of the Bhal experiments increase when the beams' geo-
metrical size is increased. This behavior is shown in the force-displacement graph in Annex VII (Figure
134). However, the nominal shear strength is required to know if the size effect is captured. A log-log
scale plot with the nominal shear strength and the effective depth is plotted to study the size effect. The
log-log plot can be seen in Figure 97 for the Bhal cases. This figure will show how accurately the nu-
merical model captures the size effect compared to the experiment and multiple analytical models. Each
analytical model used for comparison was explained during the literature review.
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Figure 97 Size effect analysis: nominal shear strength and effective depth

The markers in the figure above show the nominal shear strength values. For the experiment and nu-
merical model, these markers have been connected with a second-order curve fitted line to show better
the decreasing relation. The numerical model's decrease in the nominal shear strength can be seen in
the figure with increased effective depth and constant values for all other geometrical and material
configurations. This decrease in nominal shear strength proves the inclusion of the size effect for the
set of geometrically scaled beams. However, it is important to know if the size effect is captured accu-
rately with the numerical method by comparing this to the experimental result.

The experimental nominal shear strengths (red square markers) do not entirely align with the curve
fitting. There are small jumps from the markers below and above the fitted line. Looking at the fitted line
of the numerical method and experimental result, the nominal shear strength of the numerical simulation
(blue circle markers) closely follows the experimental results. While the small beams have the same
approximate nominal shear strength, there is a slightly increasing underestimation of the value as the
beam depth increases. This underestimation of nominal shear strength indicates a slightly higher size
effect found with simulations compared to the experiments. However, this underestimation is within
acceptable boundaries as the relative difference in numerical and experimental nominal shear strength
for the largest beam (d = 1200 mm) is 3%. There is a possibility that the size effect can be overestimated
more for geometrically scaled beams bigger than the one from this set. Future research on even larger
beams can make this remark clearer. The relative difference in the nominal shear strength between the
smallest (d = 300 mm) and largest beams (d=1200 mm) is 17 %.
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Results of the numerical model and experiments for the decreasing nominal shear strength as the beam
size increases show that the numerical model has captured the size effect. Next, the SELs and design
code predictions are analyzed. The Bazant SEL (purple cross markers) predictions show that this model
best captures the size effect. However, the disadvantage of the SEL should also be considered, as the
geometrical parameters to calculate the size effect are unknown in advance. The MSEL predictions
(black triangle markers) also show promising results, even though they are not as accurate as Bazant
SEL. The nominal shear strength results closely follow the experimental results and numerical simula-
tions with this SEL. There is a case of underestimation of the nominal shear strength for the design
codes (EC2 and FIB MC2010 with LoA Il). Analytical models have a conservative region included,
causing lower predictions. The FIB MC2010 with LoA Il is predicting the size effect well. The decrease
in the nominal strength with an increase in beam depth is like the experimental and numerical one.
Unfortunately, the EC2 underestimates the size effect as the beam size increases. For geometrically
scaled beams deeper than 1200 mm, this will lead to exaggerated predictions of the nominal shear
strength.

Another aspect of capturing the size effect is being consistent with the failure mode pattern of the geo-
metrically scaled beams. The crack pattern for all four cases is extrapolated on one beam for compari-
son in Figure 98. The figure shows that the correct failure mode (flexural shear failure) has been cap-
tured in all cases, but most importantly, the patterns do not differ much.

Beam depth:
Red: 300 mm

Blue: 900 mm
Pmic: 1200 mm

)

Figure 98 Size effect analysis: geometrically scaled beams crack pattern

Before moving to the chapter conclusion, more analysis is done on the behavioral influence on the
beam caused by the effective depth. An important observation was the relationship between the in-
creasing effective depth and the reinforcement stresses. As the beam depth increases, the tensile
stresses in the reinforcement decrease. Beams with lower tensile strains are linked to a more brittle
response during failure.

The analysis shows that the numerical method captures the size effect with varying effective depths by
geometrically scaling the beams. According to the literature review, reinforcement ratio, effective span-
to-depth ratio, and concrete strength are other possible factors influencing the size effect. The influence
of a parameter on the size effect is studied as done previously, using log-log curves for the nominal
shear strength over the effective depth with fictitious beams. The results can be found in Annex VIII.
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4.5 Discussion and conclusion

Numerous sensitivity analysis was done on different modeling aspects to get the best numerical model.
During the analysis, the correct damage progression, failure mode, and failure load were required to be
found or, at the very least, be acceptable. For this, sensitivity analysis was performed on a selection of
cases using the following modeling aspects:

The use of compression-compression confinement

The reinforcement bond-slip relation

The total strain crack models’ crack orientation

The reinforcement element type

Incremental-iterative procedure

Global element size

The tables below summarize the most important numerical model’s failure load simulations. After all
sensitivity analyses for the modeling aspects were performed, the suggested numerical model in the
table's final row was obtained.

Table 29 Compression-compression confinement Table 30 Total strain crack models’ crack orienta-

sensitivity analysis summar tion sensitivity analysis summar
pe enta Vexperimental :
0 ed 0 ed - Rotating
a Vnumerical

A A 1.33 1.33 A121A3 1.20
A B 1.40 1.41 A122B1 1.40 1.26
A A 1.25 1.26 A123A1 1.25 1.13
B701B 1.20 1.17 B701B2 1.20 | 0.94
RS04A 1.25 1.25 R804A1 1.25 1.28
R804B 1.16 1.16 R804B1 1.16 1.19

601A 0.95 0.92 H601A 0.95 Delamination

602A 0.95 0.92 H602A 0.95 Delamination

Table 31 Bond-slip relation sensitivity analysis Table 32 Iteration scheme sensitivity analysis sum-
summar

FIB ‘ Shima

ma

Vexperimental ‘ Vexperimental

Full NR Secant

Vnumerical Vnumerical
A121A3 A121A3

A122B1 140|111 A122B1
A123A1 1.25 | 1.00 A123A1
B701B2 1.20 | 1.02 B701B2
R804A1 1.25 | 0.98 R804A1
R804B1 1.16 | 0.91 R804B1
H601A 0.95 | 0.98 H601A

H602A 0.95 | 0.98 H602A

Table 33 Reinforcement element sensitivity analy- Table 34 Global element size sensitivity analysis
Sis summar summa
Vexperimental Vexperimental

Truss Initial Predictor

Vnumerical
Al121A3

A122B1
A123A1
B701B2
R804A1
R804B1
H601A

H602A

Vnumerical
Al121A3

A122B1
A123A1

R804A1
R804B1
H601A
H602A

|
|
|
B701B2 \
|
|
|
|
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Using sensitivity analysis, a numerical model is obtained that can accurately simulate the flexural shear
failure for RC beams without stirrups. Previously a summary of the constitutive model modeling aspects
findings was given in Chapter 4.2.1.3. A summary of the constitutive model numerical choices is given
in the two tables below:

Table 35 Robust numerical model: concretes’ constitutive mode
Aspect Modeling choice
Element class Regular plane stress (quadratic)
Class Concrete and masonry
Material model Total-strain crack model
Crack orientation Fixed
compressive curve Parabolic
Reduction model lateral cracking Vecchio and Collins 1993
Lower bound reduction curve 0.4
Compressive-compressive confinement JUjleelgiilglTs]
Tensile curve Hordijk
Reduction model Poisson’s ratio Damage-based
Crack-bandwidth Govindjee’s projection method
Shear retention function Damage-based

Table 36 Robust numerical model: reinforcements’ constitutive model

Aspect Modeling choice

Shape type Line
Class Reinforcement

Material model Bond-slip reinforcement
Non-linear model Von Mises plasticity

Plastic hardening Total strain-yield stress

Hardening hypothesis Strain hardening
Hardening type Isotropic hardening

Bond-slip interface model EigllyEl
Reinforcement type Truss bond-slip

The findings for the modeling aspects from sensitivity analysis will be specified below. The findings

mentioned below are an extension of the conclusion found for the constitutive model to avoid repeating

the constitutive model results. The critical findings for the remaining sensitivity analysis are the follow-
ing:

Newton Raphson iteration scheme or Secant iteration scheme:

e The full NR iteration scheme has more convergence problems than Secant's during the initial crack.
However, this should not be a problem as the overshot of the (force and energy) norms are analyzed
for the non-converged steps in the convergence log generated by DIANA FEA.

e Both iteration schemes simulate the same result for geometrically small beams. However, with an
increase in the beam size, the simulated cases become more sensitive to the iteration scheme
used, and the difference between simulated results can increase.

e Most of the time, the full NR iteration scheme captures the flexural shear failure more accurately.

e Both iteration schemes require different load steps and sometimes different element sizes for opti-
mal results.

e Secant's iteration scheme can symmetrically give the flexural shear failure for some simulations.
The Secant iteration scheme fails to include material nonlinearity due to the symmetrical modeling
of the structure, causing this type of failure.
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Beam element or Truss element:

e The beam elements applied can withstand shear stresses with the dowel effect, but this benefit is
missing for truss elements.

e Incompatibility between the beam and plane stress elements is found due to the extra rotational
degree of freedom of the beam element, which the plane stress element does not have. The inter-
face element must tie this rotational degree of freedom to the transitional degree of freedom. How-
ever, the interface element automatically used by DIANA FEA is not ideal for such a tying of de-
grees of freedom. Thus, higher shear tractions, relative displacements, and more convergence
problems occur for beam elements.

e The numerical model with truss elements reaches higher reinforcement stresses than beam ele-
ments because the latter model often fails at lower loads.

e The numerical model with beam elements sometimes overpredicts the stiffness after the initial
cracks. There were also high strains along the reinforcement for these cases, making the numerical
model with beam elements more sensitive to dowel failure.

The global element size:

During element size sensitivity analysis, a larger element size sensitivity was found for geometrically

large beams. Because the crack propagation rate depends on the element size, the wrong failure mode

was often captured. While it is well known that too-large element sizes can decrease the simulation
accuracy, some interesting findings are also addressed for too-small element sizes. When the element
size is too-small, huge strains appear at the sides of some elements. These large strains are transferred
horizontally or vertically from element to element, thus creating horizontal or vertical crack patterns. As

a result, the numerical model simulates an irregular crack pattern instead of a smooth flexural shear

failure pattern. Thus, besides increasing unnecessary computational costs, a too-small element size

should not be chosen to avoid capturing irregular crack patterns. The optimal element size from the
sensitivity analysis for different beam depths is given in Figure 91 in an element size predictor and Table

38 below. The element size predictor should be used for calculations over the beam depth to predict

the element size for beams. In addition, a formula advised by the RTD guidelines (50 elements over the

beam length) should also be considered. However, this element size is not expected to be the governing
as the element size predictor's element size is almost always smaller. The smaller element size from
the formulas is chosen as the governing element size and applied to the numerical model.

The best numerical model from all the sensitivity analyses is an unconfined (compression-compression)
fixed crack orientation and the Shima bond-slip relation with truss elements using the full NR iteration
scheme. Figures from Annex V and tables in this chapter (Table 35, Table 36, Table 37, Table 38, and
Table 39) provide a complete overview of the numerical model configurations. Some of the tables are
given below:

Table 37 Robust numerical model: finite element discretization a
Elements Modeling choice
Concrete Element Quadratic element
Concrete Integration 3x3
Reinforcement Element Truss element

Table 38 Robust numerical model: finite element discretization b
Mesh Modeling choice
L
f: )

/oo if h <800 mm
40 mm, if 800 < h < 1200 mm
Mesher type Hexa/ Quad

Seeding method division

Element size minimum <{
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Table 39 Robust numerical model: analysis procedure
Analysis procedure ' Modeling choice
Loading method Displacement method
Command Structural non-linear
Load steps Start with 0.5 (linear part)
User specified Depending on model
Maximum iterations 100
Incremental-iterative procedure [ISSIENES
Line searching On
Continuation of iteration Off
Satisfy all specified norms Off
Convergence norm
No convergence

nergy norm (0.001) and force norm (0.01)
ontinue

Q|m

Following the sensitivity analysis, a quantitative analysis is performed for all experimental cases men-
tioned in Chapter 3, which are 76 cases. The properties for all the cases can be found in Annex Il. The
numerical model from different modeling aspects’ sensitivity analysis consistently gave satisfactory re-
sults for most cases, with a few exceptions. A few cases did not successfully result in the correct failure
mode. For these cases, the dowel failure mode is caused by an excessive change in the damage-based
shear retention factor. During analysis, the change in the shear retention model should be closely mon-
itored, especially close to the sensitive steps. Sensitive load steps are especially before and during
failure. Reducing the load step to tiny steps close to the sensitive load steps increases the computa-
tional time greatly but avoids capturing the dowel failure. As a result, the flexural shear failure will be
successfully captured.

The percentage difference between the simulation and experimental failure load was used to get an
overview of the simulated failure load accuracy compared to the experimental failure loads from the
guantitative analysis. Most of the cases were at a low percentile difference. From the quantitative anal-
ysis, the following percentages were found:

o 0 % < percentage difference < 10 %: 62 cases

e 10 % < percentage difference < 20 %: 11 cases

e Percentage difference > 20 %: 3 cases

In addition, the average failure load percentage difference was 6 % for all cases for the numerical
simulations, while the EC2 average difference was 14 %.

Lastly, the pilot research on the size effect was performed. An initial expression of whether the numer-
ical method can capture the size effect is obtained from this analysis. After simulating the geometrically
scaled beams, this was followed by analyzing the changes in the nominal shear strength. An increase
in the beam size led to a decrease in the nominal shear strength, which shows that the numerical model
successfully captures the size effect. The nominal shear strength decrease between the largest and
smallest cases caused by the size effect is 17 %. The same nominal shear strength was found for the
geometrically smaller beams when comparing the numerical simulation with the experimental result.
However, the nominal shear strength is slightly underestimated in the simulations as the beam size
increases. This result indicates an overestimation of the size effect with the numerical method. How-
ever, the size effect prediction from the numerical method is acceptable, with a relative difference of
only 3 % with the experimental result for the largest beam (H601A). An analysis with some size effect
theories showed that Bazant SEL and MSEL show almost similar nominal shear strength as the exper-
imental result. Lastly, it was also important that an almost identical crack pattern was captured for the
size effect. The crack patterns of the four cases have been merged into one figure (Figure 98), which
shows that all the cases successfully captured the flexural shear failure.
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5 Conclusion and
recommendations

5.1 Conclusion

This research investigates whether, using sensitivity analysis, a numerical model can be obtained that
accurately simulates flexural shear failure for RC beams without stirrups. During this research, first,
sensitivity analysis was performed to reduce the model uncertainty for multiple modeling aspects. After
that, a quantitative analysis with many cases followed to verify if the numerical model previously ob-
tained is accurate for such simulations. Below, the important findings from this research are given.

The modeling aspects:

Sensitivity analysis was done on multiple modeling aspects for the numerical model with four experi-
mental cases. All four cases had different geometrical sizes, while some material parameters differed.
Having differences in the case configuration increases the sensitivity analysis quality. The different find-
ings for each aspect are discussed below:

1. The total strain crack models’ crack orientation:

The sensitivity analysis shows that the rotating crack orientation can suffer from delamination of the
concrete cover due to over-rotation of the crack. The delamination is recognized by cracking of the
concrete cover along the reinforcement. Over-rotation has also been shown to correlate strongly with a
high number of non-converged steps. In addition, the fixed crack orientation has a more realistic repre-
sentation of the experiment failure mode.

2. The use of compression-compression confinement:

This modeling aspect is kept unconfined for the numerical model because compression-compression
confinement is not a modeling requirement for cases with a brittle shear-tension failure mode. In addi-
tion, for one of the four sensitivity analysis cases, a slightly lower failure load was found for the confined
numerical model. In this case, high stresses were suddenly introduced along the reinforcement.

3. The reinforcement bond-slip relation:

The main difference between the Shima bond-slip relation and FIB bond-slip relation is the inclusion of
a decrease in bond stress at high slip values for the latter relation. Also, the Shima bond-slip relation
has a higher bond capacity and initial stiffness when using similar material configurations for the mod-
eling assumptions. Due to the FIB bond-slip relation's lower initial stiffness, a bigger relative displace-
ment occurs between the concrete and reinforcement. As a result, the cracks are larger with this bond-
slip relation, and the simulation also underestimates the failure load. In addition, due to the higher rela-
tive displacement between the materials of the FIB bond-slip model, this model is more sensitive to
capturing dowel failure as the tensile reinforcement detaches. Overall, the Shima bond-slip model cap-
tures the correct failure mode and failure load more accurately.

4. Incremental-iterative procedure:

The full NR and Secant iteration scheme for geometrically small beams simulate almost the same re-
sults. However, the simulations' differences increase as the beam's geometrical size increases. Analy-
sis shows the full NR iteration scheme can have more convergence problems during the initial crack.
However, its simulations after the initial cracks are more representative of the experiment. In addition,
in a few cases, the Secant iteration scheme gave symmetrical flexural shear failure due to failing to
include material nonlinearity.
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5. The reinforcement element type:

The beam elements used consider bending stiffness, making it possible for the concrete to withstand
shear stresses with the dowel effect, which truss elements do not. These reinforcement elements are
combined with plane stress elements for concrete, where the beam elements also have a rotational
degree of freedom besides the transitional ones. For plane stress elements and beam elements to be
compatible, the interface element must tie the extra degree of freedom to the transitional degree of
freedom. However, the interface element DIANA FEA applies fails to do this successfully, causing in-
compatibility issues. As a result, simulations with beam elements have been shown to consist of simu-
lations with more convergence problems and higher relative displacements than truss elements. Due
to the higher relative displacements, a numerical model with beam elements between the materials can
be more sensitive to dowel failure. In addition, comparisons between the experiment and numerical
simulations with beam elements show that the stiffness was slightly overpredicted after the initial cracks.
6. Global element size:

The global element size is a modeling aspect whose sensitivity has been observed to increase as the
beams’ geometrical size increases. More experimental cases were added to the sensitivity analysis for
the element size due to the high sensitivity of this modeling aspect. A too-large element size can de-
crease the accuracy of the simulations, and wrong failure modes can be captured as the crack propa-
gation rate depends on the element size. While choosing a too-small element size can increase the
computational time without improving the analysis quality, the numerical model can also capture irreg-
ular crack patterns. The irregular crack patterns are caused due to large strains at the end of the ele-
ments. Next, the large strains are horizontally or vertically transferred to the neighboring elements, thus
causing an irregular crack pattern. From the sensitivity analysis, the following element size formula is
recommended for beams up to a depth of 1200 mm:

h ifh <
element size = minimum <{ /20 if h <800 mm}’ L/50 )
40 mm, if 800 < h <1200 mm

Equation [ XX ]

The modeling aspects sensitivity analysis found that the best numerical model is an unconfined (com-
pression-compression) fixed crack orientation and the Shima bond-slip relation with truss elements us-
ing the full NR iteration scheme.

The quantitative analysis:

After the sensitivity analysis was completed, a quantitative analysis was conducted for all 76 experi-
mental cases. The model provided satisfactory results with the numerical model obtained from sensi-
tivity analysis, except for a few cases where dowel failure occurred due to an excessive change in the
shear retention factor. Load steps close to failure should be monitored closely and reduced to small
steps (0.001) to avoid capturing dowel failure. A downside of this approach is the high computational
time, but it does result in the correct failure mode. The failure mode percentage differences were 0 - 10
% for 62 cases, 10 - 20 % for 62 cases, and larger than 20 % for 3 cases. In addition, the average
failure load percentage difference was 6 % for the numerical simulations, while the best-performing
design code had an average of 14 %. The failure load percentage difference overview shows that a
numerical model was successfully obtained using sensitivity analysis to simulate the flexural shear fail-
ure for RC beams without stirrups.

The pilot research:

With the pilot research, it was hoped to find out if numerical analysis can capture the size effect for the
RC beams without stirrups that fail due to flexural shear failure. This pilot research gave an initial ex-
pression of the possibility. Analysis shows the numerical model nominal shear strength decreases as
the beam geometrical size increases. The simulated nominal shear strength difference was 17 % be-
tween the geometrically smallest and largest beam. Compared to the experimental results, the numer-
ical simulation slightly overestimated the size effect as the beams’ geometrical size increased with a
nominal shear strength difference of 3% for the largest beam (depth = 1200 mm). All four cases suc-
cessfully captured almost identical flexural shear failure patterns, showing that the size effect has been
successfully captured with these results.
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5 Conclusion and recommendations

5.2 Future research recommendations

Some pitfalls were met during the research, and questions outside this thesis's scope were identified.
These points can be addressed in future research, improving the numerical model for simulations of the
flexural shear failure for RC beams without stirrups. In addition, recommendations for the size effect
are made to decrease ambiguity around this topic.

After the sensitivity analysis, the numerical model showed reliable results, and no further sensitivity
analysis on modeling aspects was required to simulate cases accurately. However, some recommen-
dations are still given regarding the model for the future:

1.

In a few cases, the current numerical model would capture the dowel failure instead of the flexural
failure and required large decreases in the load step size where the change in the shear retention
factor was large to simulate the correct failure mode. Instead of increasing the computational time
a lot, a more in-depth study can be done for a more appropriate shear retention model.

The global element size sensitivity analysis was performed for beams up to a depth of 1200 mm
during this study. The analysis showed that this is still a complex topic, and the element size should
be researched further for even larger beams than those used in this research.

The beam element combined with plane stress elements ran into some compatibility problems
during the sensitivity analysis. The use of plane stress elements was already decided on for
concrete. Thus no beam element with different concrete elements was simulated. However, further
research with shell or plane stress elements with a rotational degree of freedom can identify the
use of a better element for concrete for such numerical models.

Finally, the percentage difference was higher for simulations for geometrically large beams with a
low reinforcement ratio than the other experimental. It would be interesting to see if another
numerical model configuration can improve the results for such cases. In addition, simulations
should be analyzed for cases with much lower reinforcement ratios than those used during the
research (p = 0.26 %) to see if the model maintains high accuracy for such simulations.

Recommendations regarding (the pilot research on) the size effect are also made below:

1.

An initial expression is found on whether the numerical method can capture the size effect for RC
beams without stirrups that fail due to flexural shear failure. A conclusion can be found on this
guestion with numerical simulations on a larger scale and more variety in the RC beams without
stirrups geometrical and material configurations.

For the experimental (Bhal) cases, with an increasing beam size, a marginal overestimation of the
size effect was noticed, with a nominal shear strength relative difference of 3% for the geometrically
largest beam. In future research, it would be interesting to see if this relative difference increases
to unacceptable percentages for much larger beams.
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Annex

Annex

Annex | Critical shear displacement theory

The opening of a critical flexural shear crack is taken as the lower bound for the shear capacity. Dis-
placement of an existing flexural crack can be used as a criterion for the unstable opening of the critical
flexural shear crack.
This theory is based on three shear transfer mechanisms, namely:

e Aggregate interlock

e Concrete compressive zone

e Dowel action
The residual tensile stresses have been neglected in this theory because they are considered to have
a neglectable influence.

Based on the Walraven model [13], the simplified formula below is used for rectangular RC beam cross-
sections:

Vai = fc®% scr b

- (= 2 —
— g7 ("9784° +854 - 0.27)

Equation [ XXI ]
With:
wb = 0.04mm
fc < 60MPa

Based on the Morsch formula [19], [6] derived the following simplified formulation for Vc:
2zc d — scr

Ve= §7V - d + 0.5scr

Equation [ XXII ]

The following was found for the dowel action by [91]:
A
Vd = —Vdmax

0.08
Equation [ XXIlII ]
With:
Vdmax = 1.64 bn ¢3/fck
bn = (b —ng¢)

Since it is assumed that the maximum dowel force has been reached, the following formula can be
derived:

Vd = Vdmax = 1.64 bn ¢i/f_c
Equation [ XXIV ]

The total shear force at the opening of the critical flexural shear crack equals:

d —scr 0.03 5
V=Vc+Vai+Vd=———+fc"® scr b m(—978ﬂ2 + 854 — 0.27) + 1.64 bn ¢/fc
. Equation [ XXV ]

d + 0.5scr

For an unknown applied force, iterations must be performed for Vai. Vai depends on wb, which in turn
depends on M. The crack with the smallest ;4—(1 ratio is the critical crack.
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Annex Il Experimental cases

Experimental case naming from “Garnica & Koekkoek” reports:

Naming
Experimental Mumerical
AN e AR S
X X X X X Experimental | - X X X X X X
Test number F: fixed crack model
loading position | R: rotating crack model

" End of specimen C: confined concrete
U: unconfined concrete

3 Number of specimen

B: beam element .
T truss element

If first letter is R or P: beam height
Else: reinforcement ratio

F: FIB bond-slip relation
S: Shima Bond-slip relation -+

R: ribbed bars Ss: Shima Bond-slip-Strain relation
P: smooth bars

A B, C D E F G, H: series

N: NR-teration scheme
S: Secant iteration scheme

Mothing: 25mm mesh size
K- XK mm mesh size

Figure 99 “Garnica & Koekkoek” cases naming pattern

Sensitivity analysis initial cases:
Table 40 Element size sensitivity analysis cases properties

. length L depthH| a Effective depth “/d fc,cube reinforcement

[t [mm]  [mm] [mm] d [mm] [] [MPa] ratio p [%]

SV 2018 | 9000 | 1200 | 4000 1158 3.45| 82.04 0.42% 3925
SEVENN 2018 | 9000 | 1200 | 3000 1145 2.6 | 84.12 1.14% 8025
SLGylel 2018 | 9000 | 1200 | 4500 1150 3.91| 82.99 0.85% 6025
SEEW 2018 | 9000 | 1200 | 4500 1150 3.91] 82.99 0.85% 6025
INAFLEN 2015 | 5000 | 300 | 800 274.5 2.91] 785 0.37 603.19
SE0%] 2015| 5000 | 500 | 1700 472.5 3.6 | 8L9 0.59 829.38
S10/= 2015| 5000 | 500 | 1700 4725 3.6 | 8L9 0.59 829.38
SEEINN 2015 | 8000 | 800 | 3500 762.5 4.59| 83.3 0.82 1884.96
SEDEINY 2016 | 8000 | 800 | 3500 7625 459 83 0.82 1884.96




“Garnica & Koekkoek” cases

Test
[#

A121A3
Al122B1

A123A1

A123A2

A122B2

A902B2

A902A1

A901B1

A902A3

A901A3

A901B2

A752A2

A751B1

A751A2

A601B1

C901B1

C901A3

C751A2
C751A3

B701B2

B702B1
B702A1

B501B1

B501A2
B502A3
B502B1

Table 41 “Garnica & Koekkoek” cases

properties and experimental results 1

Annex

Date fc,cube P fyk V experimental
(year) = [MPa] [%] [MPa] [kN]
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 269.50 | 3.70 no 77.70 | 1.17 3920 550.00 144.60
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 270.50 | 3.70 no 78.50 | 1.16 3320 500.00 152.30
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 270.00 | 3.70 no 79.20 | 1.16 3920 500.00 136.50
2015 | 5000.00 | 300.00 | 300.00 | 500.00 800.00 270.00 | 2.96 no 80.10 | 1.16 3320 500.00 139.00
2015 | 5000.00 | 300.00 | 300.00 | 500.00 750.00 270.50 | 2.77 no 78.50 | 1.16 3920 500.00 139.10
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 276.00 | 3.62 no 78.50 | 0.90 | 112+2@320 | 500.00 124.20
2015 | 5000.00 | 300.00 | 300.00 | 500.00 995.00 276.00 | 3.61 no 78.50 | 0.90 | 112+2@320 | 500.00 120.70
2015 | 5000.00 | 300.00 | 300.00 | 500.00 880.00 274.00 | 3.21 no 78.50 | 0.90 | 112+2@320 | 500.00 127.50
2015 | 5000.00 | 300.00 | 300.00 | 500.00 800.00 276.00 | 2.90 no 78.50 | 0.90 | 112+2@320 | 500.00 149.40
2015 | 5000.00 | 300.00 | 300.00 | 500.00 750.00 274.00 | 2.74 no 78.50 | 0.90 | 112+2@320 | 500.00 145.00
2015 | 5000.00 | 300.00 | 300.00 | 500.00 750.00 274.00 | 2.74 no 78.50 | 0.90 | 112+2@320 | 500.00 124.20
2015 | 5000.00 | 300.00 | 300.00 | 500.00 850.00 273.00 | 3.11 no 78.50 | 0.74 3916 500.00 119.00
2015 | 5000.00 | 300.00 | 300.00 | 500.00 800.00 27450 | 2.91 no 78.50 | 0.73 3916 500.00 106.70
2015 | 5000.00 | 300.00 | 300.00 | 500.00 750.00 27450 | 2.73 no 78.50 | 0.73 3916 500.00 118.40
2015 | 5000.00 | 300.00 | 300.00 | 500.00 700.00 275.50 | 2.54 no 78.50 | 0.58 | 110+2@316 | 500.00 106.40
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1250.00 | 271.50 | 4.60 no 23.70 | 0.91 | 1012+2@20 | 500.00 101.70
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 271.50 | 3.68 no 23.70 | 0.91 | 1212+2@20 | 500.00 84.10
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 270.00 | 3.70 no 23.70 | 0.74 3916 500.00 84.50
2015 | 5000.00 | 300.00 | 300.00 | 500.00 | 1000.00 | 270.00 | 3.70 no 23.70 | 0.74 3016 500.00 86.70
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1500.00 | 47150 | 3.18 no 81.10 | 0.67 3920 500.00 202.40
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1450.00 | 471.50 | 3.08 no 81.70 | 0.67 3020 500.00 164.90
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1250.00 | 471.50 | 2.65 no 81.70 | 0.67 3920 500.00 183.20
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1800.00 | 471.50 | 3.82 no 81.80 | 0.59 | 1216+2@20 | 500.00 165.70
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1750.00 | 47150 | 3.71 no 81.80 | 0.59 | 1016+2@20 | 500.00 166.40
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1700.00 | 472.50 | 3.60 no 81.90 | 0.59 | 1@16+220 | 500.00 173.60
2015 | 5000.00 | 500.00 | 300.00 | 500.00 | 1700.00 | 472.50 | 3.60 no 81.90 | 0.59 | 116+2320 | 500.00 173.20
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Table 42 “Garnica & Koekkoek” cases simulated results 1
Test V numerical Failure mode DPC numerical DPC conclusion

[#] [kN] [-] - [-]
A121A3 136.52 Flexural shear failure Sufficient
Al122B1 136.52 Flexural shear failure Sufficient
A123A1 136.52 Flexural shear failure Sufficient
A123A2 144.42 Flexural shear failure Sufficient
Al122B2 138.77 Flexural shear failure Sufficient
A902B2 130.46 Flexural shear failure Sufficient
A902A1 130.46 Flexural shear failure Sufficient
A901B1 143.02 Flexural shear failure Sufficient
A902A3 143.02 Flexural shear failure Sufficient
A901A3 129.76 Flexural shear failure Sufficient
A901B2 129.76 Flexural shear failure Sufficient
A752A2 121.91 Flexural shear failure Sufficient
A751B1 106.70 Flexural shear failure Sufficient
A751A2 125.87 Flexural shear failure Sufficient
A601B1 111.89 Flexural shear failure Sufficient
C901B1 90.16 Flexural shear failure Sufficient
C901A3 88.02 Flexural shear failure Sufficient
C751A2 85.91 Flexural shear failure Sufficient
C751A3 85.91 Flexural shear failure Sufficient
B701B2 187.63 Flexural shear failure Sufficient
B702B1 181.12 Flexural shear failure Sufficient
B702A1 178.85 Flexural shear failure Sufficient
B501B1 170.38 Flexural shear failure Sufficient
B501A2 179.77 Flexural shear failure Sufficient
B502A3 170.60 Flexural shear failure Sufficient
B502B1 170.60 Flexural shear failure Sufficient
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Table 43 “Garnica & Koekkoek” cases predicted results 1

% DPC EC2 conclu- v DPC
EC2 (201 sion MC 2010 ELASEAY) MC 2010

[kN] H [ [kN] H [
117.48 100.66
117.92 108.11

118.14 108.42
118.64 109.04
117.92
110.05 Sufficient 109.93
110.05 Sufficient 109.93

Test

#
A121A3
A122B1
A123A1
A123A2
A122B2
A902B2
A902A1

Sufficient
Sufficient

Sufficient
Sufficient

A901B1 [JFTEEE Sufficient 109.27 Sufficient
NP/ %l 110.05
INCEV R 109.43
NP 109.43 Sufficient 109.27 Sufficient

Sufficient
Sufficient
Sufficient

AT752A2
A751B1
A751A2

102.23
102.20
102.20

Sufficient 108.94
Sufficient 109.44
Sufficient 109.44

A601B1 94.92 Sufficient 109.77 Sufficient
C901B1 82.03 75.45

C901A3 82.03 Sufficient 75.45 Sufficient
C751A2 76.24 Sufficient 75.10 Sufficient
C751A3 76.24 Sufficient 75.10 Sufficient
Y=  153.83

YOPEF  154.25 Sufficient
B702A1 WS Sufficient
B501B1 147.91 Sufficient 170.94 Sufficient
B501A2 147.91 Sufficient 170.94 Sufficient
B502A3 148.23 Sufficient 171.31 Sufficient
B502B1 148.23 Sufficient 171.31 Sufficient




Test

#

Date
(year)

Table 44 “Garnica & Koekkoek” cases

[MPa]

properties and experimental results 2

fc,cube

fyk

Annex

V experimental

[kN]

R501A1

R501B1

R502B1

R502A2

R804A1

R804B1

R801A1

R801B1

R803A1

R803B1

R802A1

R802B1

E401B1

E402A

E402B

H401A
H402A
H403A
H404A
H301A
H601A
H602A
H851C
H852A
H121A
H123A

2015 | 5000.00 500.00 300.00 | 500.00 | 2500.00 455.00 | 5.49 no 80.50 | 1.15 5@20 (2 layers) 500.00 276.80
2015 | 5000.00 500.00 300.00 | 500.00 | 1500.00 455.00 | 3.30 no 75.80 | 1.15 5@20 (2 layers) 500.00 210.20
2016 | 5000.00 500.00 300.00 | 500.00 | 1750.00 465.00 | 3.76 no 77.10 | 0.68 3@20 500.00 154.90
2016 | 5000.00 | 500.00 | 300.00 | 500.00 | 1600.00 | 465.00 | 3.44 | no | 75.60 | 0.68 3020 500.00 163.90
2016 | 8000.00 | 800.00 | 300.00 | 500.00 | 3500.00 | 755.00 | 464 | no | 85.10 | 0.65 3925 500.00 269.40
2015 | 8000.00 | 800.00 | 300.00 | 500.00 | 3500.00 | 755.00 | 464 | no | 85.10 | 0.65 3025 500.00 249.90
2015 | 8000.00 | 800.00 | 300.00 | 500.00 | 2000.00 | 76250 | 2.62 | no | 84.00 | 0.64 3925 500.00 213.10
2015 | 8000.00 | 800.00 | 300.00 | 500.00 | 2000.00 | 76250 | 2.62 | no | 91.10 | 0.64 3025 500.00 204.80
2015 | 8000.00 | 800.00 | 300.00 | 500.00 | 3500.00 | 762.50 | 459 | no | 83.30 | 0.82 | 6820 (2 layers) | 500.00 279.30
2016 | 8000.00 | 800.00 | 300.00 | 500.00 | 3500.00 | 762.50 | 459 | no | 83.00 | 0.82 | 6020 (2 layers) | 500.00 307.90
2015 | 8000.00 | 800.00 | 300.00 | 500.00 | 2000.00 | 755.00 | 2.65 | no | 75.80 | 0.83 | 6820 (2 layers) | 500.00 219.40
2015 | 8000.00 | 800.00 | 300.00 | 500.00 | 2000.00 | 755.00 | 2.65 | no | 75.80 | 0.83 | 6420 (2 layers) | 500.00 270.20
2018 | 9000.00 | 800.00 | 300.00 | 500.00 | 2500.00 | 765.00 | 3.27 | no | 86.74 | 0.41 3020 500.00 158.70
2018 | 9000.00 | 800.00 | 300.00 | 500.00 | 2500.00 | 765.00 | 3.27 | no | 89.16 | 0.41 3020 500.00 190.00
2018 | 9000.00 | 800.00 | 300.00 | 500.00 | 3000.00 | 765.00 | 392 | no | 89.16 | 0.41 3020 500.00 164.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1158.00 | 3.88 | no | 81.25 | 0.42 3025 500.00 264.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1158.00 | 3.88 | no | 84.12 | 042 3025 500.00 322.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1158.00 | 3.88 | no | 81.67 | 0.42 3025 500.00 350.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4000.00 | 1158.00 | 3.45 | no | 82.04 | 0.42 3025 500.00 269.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4000.00 | 1160.00 | 3.45 | no | 86.58 | 0.27 3020 500.00 222.70
2019 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1158.00 | 3.89 | no | 86.40 | 0.57 4925 500.00 306.00
2019 | f9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1158.00 | 3.89 | no | 86.08 | 0.57 4025 500.00 306.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1150.00 | 391 | no | 82.99 | 0.85 6225 500.00 421.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1150.00 | 391 | no | 82.99 | 0.85 6025 500.00 406.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 3000.00 | 1145.00 | 260 | no | 84.12 | 1.14 8D25 500.00 341.00
2018 | 9000.00 | 1200.00 | 300.00 | 500.00 | 4500.00 | 1145.00 | 393 | no | 8299 | 1.14 8025 500.00 445.00

Vi
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Table 45 “Garnica & Koekkoek” cases simulated results 2
V numerical Failure mode DPC numerical DPC conclusion

Test

[#l [kN] [-] [ [-]
R501A1 | 254.49 Flexural shear failure Sufficient
R501B1 | 232.20 Flexural shear failure Sufficient
R502B1 | 186.71 Flexural shear failure
R502A2 | 182.06 Flexural shear failure Sufficient
R804A1 | 247.82 Flexural shear failure Sufficient
R804B1 247.82 Flexural shear failure Sufficient
R801A1 206.05 Flexural shear failure Sufficient
R801B1 206.05 Flexural shear failure Sufficient
R803A1 282.04 Flexural shear failure Sufficient
R803B1 282.04 Flexural shear failure Sufficient
R802A1 286.87 Flexural shear failure
R802B1 286.87 Flexural shear failure Sufficient
E401B1 154.02 Flexural shear failure Sufficient

E402A 154.02 Flexural shear failure
E402B 170.61 Flexural shear failure Sufficient
H401A | 275.08 Flexural shear failure Sufficient
H402A | 275.08 Flexural shear failure Sufficient
RZORIS  275.08 Flexural shear failure
H404A | Flexural shear failure Sufficient
H301A | Sufficient
H601A | Flexural shear failure Sufficient
HB02A | 321.04 Flexural shear failure Sufficient
H851C | 403.64 Flexural shear failure Sufficient
H852A | 403.64 Flexural shear failure Sufficient
H121A | 361.00 Flexural shear failure Sufficient
|  518.17 Flexural shear failure

Vi
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Table 46 “Garnica & Koekkoek” cases predicted results 2

178.50
174.56
150.03
148.94
227.68
227.68
227.28
234.15
246.09
245.76
236.65
236.65
198.79
200.81
200.81
277.37
280.94
277.90
278.36
245.42
314.12
313.70
351.52
351.52
388.14
386.21

010

165.15
160.26
Sufficient 164.26
Sufficient 162.66
241.29
Sufficient 241.29
Sufficient 241.24
Sufficient 251.23
Sufficient 240.23
239.80
Sufficient 227.72
Sufficient 227.72
245.65
Sufficient 249.06
249.06
Sufficient 303.12
Sufficient 308.43
303.90
Sufficient 304.59
Sufficient 313.19
Sufficient 312.58
Sufficient 312.00
305.21
Sufficient 305.21
Sufficient 306.56
Sufficient 304.50

viii

Sufficient
Sufficient
Sufficient
Sufficient
Sufficient

Sufficient

Sufficient

Sufficient
Sufficient
Sufficient
Sufficient

Sufficient
Sufficient

Sufficient

Annex



Bhal cases
Table 47 Bhal cases properties and experimental results

a
A d be
(0 ») 0

426.00

Annex

1905 | 1800.00 350.00 300.00 | 300.00 881.25 300.00 2.94 no 22.02
1905 | 3600.00 650.00 300.00 | 300.00 | 1762.50 600.00 2.94 no 28.12

1905 | 5400.00 950.00 300.00 | 300.00 | 2643.75 900.00 2.94 no 26.11

d O 1905 | 7200.00 | 1250.00 | 300.00 | 300.00 | 3525.00 | 1200.00 | 2.94 no 23.95

2024 70.99

4024 | 426.00 119.48
6024 | 426.00 166.38
8024 | 426.00 187.10

Table 48 Bhal cases simulated results

Failure mode DPC numerical DPC conclusion

[] [] [-]

Flexural shear failure Sufficient
122.44 Flexural shear failure Sufficient
155.55 Flexural shear failure Sufficient
181.00 Flexural shear failure Sufficient

predicted results
v DPC

clusion mc2010  PPC '\f']c 2010 Mc 2010

[l [KN] [-]

d_350 | 4533 |

Table 49 Bhal cases
DPC DPC EC2 con-

d_650 | 7660 |
d_950
d_1250 Sufficient




Ahmad et al. cases

rho 1.7
rho 2.2
rho 3.3
rho 3.9
rho_5.0

rho 6.6

Date

(year)

Table 50 Ahmad et al. cases

properties and experimental results

Annex

V experimental

[kN]

1905 | 2070.61 | 254.00 | 300.00 | 152.40 | 832.10 | 208.03 | 4.00 | 406.40 | 74.09 | 2#5+1*#3 | 414.00 47.18
1905 | 2070.61 | 254.00 | 300.00 | 152.40 | 832.10 | 208.03 | 4.00 | 406.40 | 81.59 | 2.25 3*#5 414.00 44.96
1905 | 2058.42 | 254.00 | 300.00 | 152.40 | 826.01 | 206.50 | 4.00 | 406.40 | 78.34 | 3.26 3*#6 414.00 45.85
1905 | 2032.00 | 254.00 | 300.00 | 152.40 | 812.80 | 203.20 | 4.00 | 406.40 | 74.09 | 3.93 2*#8 414.00 58.30
1905 | 2019.81 | 254.00 | 300.00 | 152.40 | 806.70 | 201.68 | 4.00 | 406.40 | 81.59 | 5.03 2*#9 414.00 51.68
1905 | 1879.60 | 254.00 | 300.00 | 152.40 | 736.60 | 184.15 | 4.00 | 406.40 | 78.34 | 6.64 AXHT 414.00 54.71

Table 51 Ahmad et al. cases simulated results
Test V numerical Failure mode DPC numerical DPC conclusion

[#] [KN -

rho 1.7 Flexural shear failure

T B R B

Sufficient

rho_ 2.2 47.54 flexural shear failure Sufficient
rho_3.3 48.54 flexural shear failure Sufficient
rho_3.9 50.70 flexural shear failure Sufficient

rho_5.0 47.44 flexural shear failure Sufficient

rho_6.6 43.46 flexural shear failure

Table 52 Ahmad et al. cases predicted results
v DPC EC2 con- v DPC MC DPC
T[‘Zt EC2 DPCEC2 clusion MC 2010 2010 MC 2010

k] H [ [kN] [ [

LGN 56.50 47.33 Sufficient

rho_2.2 IR Sufficient
rho_3.3 B Sufficient
rho_3.9 B Sufficient
rho_5.0 [IEEIH Sufficient
G 53.61 | Sufficient




Krefeld et al. cases

Table 53 Krefeld et al. cases

a

roperties and experimental results

be

Annex

1905 | 1828.80 | 304.80 | 300.00 | 457.20 850.90 250.44 | 3.40 | 127.00 | 40.87 | 4.15 | 2*#10 | 366.00 60.70
1905 | 2438.40 | 304.80 | 300.00 | 457.20 | 1155.70 | 250.44 | 4.61 | 127.00 | 40.54 | 4.15 | 2*#10 | 366.00 59.92
1905 | 3048.00 | 304.80 | 300.00 | 457.20 | 1460.50 | 250.44 | 5.83 | 127.00 | 45.62 | 4.15 | 2*#10 | 366.00 63.76
1905 | 3657.60 | 304.80 | 300.00 | 457.20 | 1765.30 | 250.44 | 7.05 | 127.00 | 40.13 | 4.15 | 2*#10 | 366.00 49.98
1905 | 3657.60 | 304.80 | 300.00 | 457.20 | 1765.30 | 250.44 | 7.05 | 127.00 | 43.08 | 4.15 | 2*#10 | 366.00 53.94
1905 | 3657.60 | 304.80 | 300.00 | 457.20 | 1765.30 | 250.44 | 7.05 | 127.00 | 43.08 | 4.15 | 2*#10 | 366.00 53.94

dtsr_3.4

dtsr_4.6 57.24
dtsr_5.8 56.14
dtsr_7.0 51.40

Table 54 Krefeld et al. cases simulated results
Test V numerical

[# [kN]

Failure mode
[-]
Flexural shear failure

DPC numerical

[-]

flexural shear failure

Flexural shear failure

Flexural shear failure

dtsr_7.0 51.40

Flexural shear failure

dtsr_7.0 51.40

Flexural shear failure

Table 55 Krefeld et al. cases

vV
T[?gt EC2
[kN]

CISTEECH 5557 |
CISTEENE 5542 |

Ol 57.64
dtsr_7.0 [ EF¥E
disr_7.0 ¥
dtsr_7.0 IS

DPC DPC EC2
EC2 conclusion
[] [-]
Sufficient

predicted results

Vv
MC 2010
[kN]
44.31

Sufficient

Sufficient

44.13

Sufficient

Sufficient

|
|
|
|

Xi

DPC MC
2010
[

DPC conclusion

[-]
Sufficient

Sufficient

Sufficient

Sufficient

Sufficient

Sufficient




Mphone et al. cases

Table 56 Mphone et al. cases

A

roperties and experimental results

(
pe P Reba

(
Pa

Annex

1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 25.29 3.34 3*#8 414.00 65.27
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 45.88 3.34 3*#8 414.00 82.83
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 50.70 3.34 3*#8 414.00 83.46
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 90.91 3.34 3*#8 414.00 90.04
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 91.26 3.34 3*#8 414.00 90.36
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 99.07 3.34 3*#8 414.00 94.12
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 111.85 3.34 3*#8 414.00 98.51
1905 2133.60 | 336.55 | 300.00 152.40 | 1041.40 | 298.45 | 3.49 | 50.80 114.10 3.34 3*#8 414.00 100.71

Table 57 Mphone et al. cases simulated results

V numerical

Failure mode

DPC numerical DPC conclusion

[kN] [-] [-] [-]
60.46 Flexural shear failure Sufficient
76.26 Flexural shear failure Sufficient
78.64 Flexural shear failure Sufficient
85.17 Flexural shear failure Sufficient
85.17 Flexural shear failure Sufficient
90.05 Flexural shear failure Sufficient
95.27 Flexural shear failure Sufficient
95.27 Flexural shear failure Sufficient

fc_25
fc_45
fc_50
fc_90
fc_90
fc_100
fc_115
fc_115

89.55

phone et al. cases predicted results

DPC EC2 con-

[-]

clusion

[-]

|_Sufficient | 4504 |

Sufficient

MC 2010 2010 MC 2010

v DPC MC DPC
[kN] [] []

| 5048 |
53.06 |

Sufficient

Sufficient 74.17
Sufficient 78.81
Sufficient 140.66
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Annex Il Numerical model sensitivity analysis

Al122B1

Figure 101 Case B701B2: experimental flexural shear failure

R804A1 R804B1

(right)

Figure 105 B701B2 maximum principal strain: confined (left) and unconfined (right)
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R804A1 R804B1
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Figure 106 R804A1 Shima bond-slip-strain relation: force-displacement graph
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Figure 107 B701B2 Reinforcement shear stresses FIB bond-slip with beam (top) and truss elements
(bottom)
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Figure 108 H601A reinforcement shear stresses: FIB bond-slip with beam (top) and truss elements
(bottom)

A121A3 A122B1 A123A1
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Displacement (mm}
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Figure 109 A121A3 Force-displacement graph: FIB bond-slip relation with truss elements, Shima
bond-slip relation with truss elements, and FIB bond-slip relation with beam elements
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R804A1 R804B1

E E

Force (kM)
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Displacement (mm)

R_min R_delta
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Figure 110 R804A1 Force-displacement graph: FIB bond-slip relation with truss elements, Shima
bond-slip relation with truss elements, and FIB bond-slip relation with beam elements

Table 59 Maximum reinforcement stress (top) and shear traction (bottom
Cases:
Reinforcement stress

[Mpa]
Shear traction [Mpa]
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Figure 111 R804A1 element size sensitivity analysis: crack pattern -
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Figure 112 R804A1 element size force-displacement graph: NR (left) and Secant scheme (right)

XV



Annex

NR 50/3:

El
0.25
I 023
0.21
0.18
0.16
. 014
yox

0.10

Ex erlment

0.08
0.05
0.03
0.01

0 2 4 6 8 10 12 14 o 2 4 0 g8 10 12 14
225 L L 1 1 1 1 1 225 L L 1 L L L L
L]
200 - 200 yra
175 ,“.AE — L 175 e L
~150 b YTAG | _150 ﬂv;“" /'):‘J |
4 P (N Z N -
<125 o T B701B2 =125 Mas% |
2100 ‘ﬂﬁ 1 9 n
E o L - V0 — — —FUSTN 500/30 51350 w7 . — — —FUSTS 500/30
v 1y ¥ [
0 1L T — — —FUSTN 20 so | # ~ — — —FUST5 20
25 / 1 a5 I /
. T - = =FUSTN 25 o / = = =FUST5 25
Displacement (mm) = =FUSTN 100/3 Displacement (mum) — —FUSTS 100/3

Figure 114 B702B1 element size force displacement graph: NR (left) and Secant scheme (right)
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Figure 115 A121A3 element size sensitivity analysis: crack pattern
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Figure 116 A121A3 element size force-displacement graph: NR (left) and Secant scheme(right)
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Figure 117 H121A element size and iteration schemes sensitivity analysis

300

= = =FUSTN 60
- — —FUSTS 60
- — —FUSTN 40
= = =FUSTS 40
- — —=FUSTN 30
- — —FUSTS 30
— H404A

Force (kN)

0 2 4 6 8 10 12 14 16 18 20 22 24
Displacement (mm)

Figure 118 H404A element size and iteration schemes sensitivity analysis
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Figure 119 H851C element size and iteration schemes sensitivity analysis
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XVii



Annex

160
140
> 120 ——B50243
i
< 100 ——B502B1
8 80
5 60 ~ = = FUSTN 25
40 - = = FUSTN 100/3
— — —FUSTN 20

[
(=

1234567 8910111213141516171819
Displacement (mm)

5
Figure 121 B502A3 element size sensitivity analysis
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Figure 122 R803A1 element size sensitivity analysis

The tables' vertical rows with experiment 1, experiment 2, and experiment 3 indicate beams with
equivalent properties tested more than once.

Table 60 Sensitivity analysis cases with d: 300mm, 500mm, and 800 mm

A B70 R804 A B50 R80
A e s A z s z A D

136.52 187.63 247.82 106.70 170.60 282.04
p 144.60 202.40 269.40 108.70 173.60 279.30
P 152.30 249.90 173.20 307.90
P 136.50

Table 61 Sensitivity analysis cases with d 1200 mm

Newton Vexp Vexp H404A Vexp
H601A V [kN — H121A V [kN H815C V [kN
Raphson [kN] Vium [kN] Vium V [kN] Vium [kN] Vium

\TLCEN 32104 | | 36793 | 24488 | | 40364 [ |

Vexp

Experiment 1 306.00 | 341.00 269.00 421.00
Experiment 2 306.00 |
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Annex IV Robust numerical model

Constitutive model
Concrete Reinforcement
Model Behaviour Model
Element class: Shape type: line
regular plane stress
Class: reinforcement
Class:
concrete and masonry Material model:
bond-slip reinforcement
Material model:
Total strain-based crack model Mon-linear model:
Von Mises plasticity
Crack orientation: fixed
Plastic hardening:
. . ) Shear total strain-yield stress
Compressive Tensile Equivalent behaviour
behaviour behaviour length (if fixed) Hardening hypothesis:
/ strain hardening
Compression curve: ; Hardt_aning lyp-:-j::
Parabolic isofropic hardening
Reduction model Bond-slip interface failure model:
(lateral cracking): Shima
Vecchio and collins 1993
Reinforcement type:
Lower bound Tensile curve: Hordijk truss bond-slip
reduction curve: 0.4 )
Reduction model Crack-bandwidth:
Confinement model: (Poisson's ratio): Govindjee’s projection Shear retention function:
Unconfined Damage-based method damage-based

Figure 123 Robust numerical model: constitutive model
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/ Model extras & Finite Element discretization \

Mesh Materials Load & boundary conditions
Seeding method: division Concrete Reinforcement L oad: force
' method: displacement method
elenf;ﬁﬁfgr ?g;' ctor _ J' l Load plates: Steel
P Quadratic element: CQ16M T Boundary condition plates: Steel

Full int tion: 3x3 :
Mesher type: Hexa/Quad i iniegration. o Model: full

Figure 124 Robust numerical model: finite element discretization

Loading method: displacement method
Command: structural nonlinear
Load steps:
User specified: linear part 2(0.5)
User specified: depending on model
. Maximum iterations: 100 . .
ey Method : Full Newton-Raphson — s
Line searching: on
Continuation of iteration: off
Satisfy all specified norms: off
Convergence norm: energy norm (0.001) + force norm (0.01)

Mo convergence: continue

Figure 125 Robust numerical model: analysis procedure
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Annex V Sensitivity analysis with the DPC system

The numerical simulations will be compared with the experimental results to grade the simulations' reliability. Collins
(91) introduced a Demerit Point Classification (DPC) to classify predictions. The advantage of this classification is ac-

curacy considerations for a calculation model to grade the models’ safety. An overview of the DPC system can be found
in the table below:

Table 62 Collin's DPC system classification

Range | Demerit penalty Classification
Vexperimental

- 10 Extreme dangerous
Vnumerical
Vexperimental
1.179 < - 5 Dangerous
.~ "7 Vnumerical =~~~ |
Vexperimental
0.869 < J - <1.17 0 Safe

"= Vnumerical " |

Vexperimental .
0.5< - < 0.869 1 conservative
= Vnumerical =~~~ |

Vv i tal .
experszen a <0.5 2 Extreme conservative

The demerit penalty will be used to calculate the value of safety for 0 < % < 2. The closer the result is to one,

the better the numerical model performs. These values will be plotted as a function of four parameters: the effective
depth, the effective span-to-depth ratio, the concrete strength, and the reinforcement ratio.

The boundaries in the plots will be 0.869 and 1.179. These plots will give an overview in case one parameter of the four
causes dangerous or conservative results. Suppose the numerical simulations are in extremely dangerous or extremely
conservative regions. In that case, the chosen numerical model will be seen as unacceptable. Further sensitivity analysis

will be done for the numerical model. The plots will be scattered, as the discrepancy ratio variation supplies a clear
safety overview.

The legend for this system is given below:

Table 63 Collin's DPC system boundaries

>
0.8035 0.8363 0.869 J 0.9018 0.9345 0.9673 1 1.0448 1.0895 1.1343 1.179 1.2238 1.2685

Sensitivity analysis initial cases:
The experimental results and numerical simulations comparison for the best numerical model has also been plotted with
the V"—'” against the four parameters which will be used to grade the size effect. This graph shows if a parameter can

cause a numerical model to result in unsatisfactory results when graded by the DPC system. The report's two parame-
ters, “effective depth and reinforcement ratio, " vary the most.

Safety Analysis FUSTN: Effective Depth [mm] and Vexperimental/Vnumerical [-] Safety Analysis FUSTN: Rho [%] and Vexperimental/Vnumerical [-]
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Figure 126 Robust numerical model with DPC boundaries
In addition, similar plots have been added below for the other alternative numerical setup that did not perform as well

as the chosen numerical one when graded with the DPC system. The plots in the annex clearly show that one of the
four parameters can cause the specific numerical model to simulate inaccurate results.
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Safety analysis FCFTN Safety analysis FCFTN

EFFECTIVE DEPTH (MM)

ConCRETE STRENGTH (MPA)

Safety analysis FCFTN Safety analysis FCFTN

EFFECTIVE SPAN TO DEPTH RATIO
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Safety analysis FCFTN
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Figure 127 FCFTN with DPC boundaries

Safety analysis FUFBN Safety analysis FUFBN
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Figure 128 FUFBN with DPC boundaries
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Safety analysis FUFTN Safety analysis FUFTN
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Figure 129 FUFTN with DPC boundaries
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Figure 130 FUSSTN with DPC boundaries
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Safety analysis FUSTS

EFFECTIVE DEPTH (MM)

Safety analysis FUSTS

REINFORCMEENT RATIO (%)

Figure 131 FUSTS with DPC boundaries
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Annex VI Quantitative analysis with the DPC system

In this annex, the DPC system is addressed, for which the four graphs in Figure 132 are plotted against four parameters
to analyze the result.

Safety Analysis FUSTN: Effective Depth [mm] and Vexperimental/Vnumerical [-] Safety Analysis FUSTN: Rho [%] and Vexperimental/Vnumerical [-]
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Figure 132 Quantitative analysis with DPC boundaries

70 80 90

For all numerical cases based on the failure load, 92% gave an acceptable according to the DPC system. According to
the DPC system, the following cases were unacceptable: Rho_6.6, R502B1, R802A1, E402A, H403A, and H123A. From
the numerical analysis, the six cases did result in the expected damage progression and failure mode.

The three cases subjected to an overestimated failure load are R502B1, R802A1, and H123A of the failure load. In case
R802A1, stress-locking is noticed for the model due to the fixed crack orientation. This phenomenon is noticeable from
the force-displacement graph, where a too-stiff behavior is noticed. The global stiffness from the numerical model leads
to a much steeper (positive) slope compared to the experimental model and can be seen in the picture below:

R802A1
300
250 ——R802A1
experimental 1
= 200
o 150 ——R302A1
£ experimental 2
2 100
50 ——R802A1
0 numerical
0 2 4 6 8 10 12 14 16

Displacement [mm]

Figure 133 R802AL1.: force-displacement graph

In Figure 133, the experimental force drops to zero between 2 mm and 2.5 mm displacement due to unloading and
reloading. Even though stress-locking is a known problem for the fixed crack orientation, this only happens in one case
during the quantitative analysis. The other two overestimating models, namely R502B1 and H123A, are not subjected
to stress-locking. There is still an overestimation for these models, of 17% and 16% for each, respectively. This overes-
timation is because of the damage-based shear retention model, which overestimates the aggregate interlock contribu-
tion. A remedy to fix this overestimation is an alternative shear retention model.

The remaining three numerical models were subjected to underestimating the failure load. However, their numerical
analysis shows a good damage progression. After an in-depth analysis of the Rho_6.6 model, no problems were found
with the numerical model. However, if all the cases from Ahmad et al. used for this study are analyzed, the following
results in Table 64 are found.

XXV



Annex

Table 64 Ahmad et al. cases experimental and simulated failure loads
Test[#] | p[%] V experimental [kN] V numerical [kN] | h [mm] d [mm]

| 1.77 47.18 44.06 254 208
| 2.25 44.96 47.54 254 208
| 3.26 45.85 48.54 254 207
| 3.93 58.30 50.70 254 203
| 5.03 51.68 47.44 254 202
| 6.64 54.71 43.46 254 184

From Table 64 above, there is no proper trend for the experimental failure load, with no clear sign if the failure load is
decreasing or increasing due to an increasing reinforcement ratio. The numerical simulations show an increase in failure
load until a reinforcement ratio of 3.9 %. After this increase, a decrease in the failure load is noticed. A logical explanation
for this can be the following: Even though there is a constant beam depth, the effective depth varies to keep a sufficient
concrete cover while increasing the reinforcement ratio. The reduction of the effective depth caused a lower failure load
even though the reinforcement ratio was increasing. This study was meant to study only the change in the reinforcement
ratio. However, due to changes in the effective depth, this study is not ideal for studying only this parameter. In future
research, more on this can be researched. A second reason for such results can be that after reaching a percentage of
a high reinforcement ratio, an increased reinforcement ratio does not increase the failure load. However, more on this
can only be said after further research.

Finally, the other two cases for which the results are underestimated can be addressed, which are H403A and E402A.
H403A is analyzed first. Two more experiments with similar beam properties to H403A were performed at Stevin Lab,
namely H401A and H402A. The numerical failure load is sufficient for cases H401A and H402A. In contrast, the H403A
failure load differs significantly from the result of these two cases. If the failure load from H401A is compared with H403A,
a 75% overestimation is noticed for the latter case. This overestimation indicates that the error is in the experiment
instead of the numerical model. During experiments, external factors can potentially hugely influence the failure load.
These factors are, for example, gravel proportion or the gravel size and explain why an experiment with the same case
properties is repeated multiple times. The same conclusion as in this case is made regarding case E402A.
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Annex VIl Size effect analyses

Force-Displacement graph:
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Figure 134 Bhal cases force-displacement graph: effective depths

Force-Displacement graph: rho =0.63 %
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Figure 135 Force-displacement graph: reinforcement ratio 0.63 %

Force-Displacement graph: rho =1.88 %
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Figure 136 Force-displacement graph: reinforcement ratio 1.88 %
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Force-Displacement graph: rho=2.52 %

225
200
175
150

125
100 //\-\
75 e
50 /-]
2 /
0

0 0.5 1 15 2 25 3

Displacement [mm]

—d =600 mm d=1200mm =——d=300mm d =900 mm

Figure 137 Force-displacement graph: reinforcement ratio 2.52 %

Force-Displacement graph: a/d = 2,50 [-]
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Figure 138 Force-displacement graph: effective span-to-depth ratio 2.50
Force-Displacement graph: a/d = 2,72 [-]
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Figure 139 Force-displacement graph: effective span-to-depth ratio 2.72
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Force-Displacement graph: Fc = 50 MPa

Figure 142 Force-displacement graph: concrete strength 100 MPa
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Figure 140 Force-displacement graph: concrete strength 50 MPa
Force-Displacement graph: Fc = 75 MPa
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Figure 141 Force-displacement graph: concrete strength 75 Mpa
Force-Displacement graph: Fc = 100 MPa
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Table 65 Reinforcement ratio variation slopes

Reinforcement ratio
0.3m <d<0.6m
06m <d<09m
09m <d<12m

Effective span-to-depth ratio 2.72 [] 2.94 []
0.3m <d<0.6m

06m <d<0.9m

09m <d<12m

-0.31

Concrete strength 75 MPa 100 MPa
0.3m <d<0.6m

0.6m <d<09m
09m <d<12m
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Annex VIIISize effect analysis geometrically scaled fictitious cases

Variation in reinforcement ratio

An analysis is done with different reinforcement ratios on the four Bhal beams to study this potential influence on the
size effect. During the numerical model sensitivity analysis, the range of cases with varying reinforcement ratios for all
the cases (Chapter 3) was between 0.26 % and 6.64 %. Different reinforcement ratios were chosen within this calibrated
range for the size effect analysis, as the results were within an acceptable percentage difference. The chosen reinforce-
ment ratios for the size effect analysis have a significant enough difference between them to better observe the differ-
ences in the size effect. The selected reinforcement ratios are:

e 0.63% (0.5*1.26 %)

o 1.26 % (initially used for the configuration of the Bhal experiments)

e 1.88%(1.5*1.26 %)

o 252%(2.0*1.26 %)

The fifth reinforcement ratio within the calibrated experiments range would have been 3.15 (2.5 * 1.26 %). However,
such high reinforcement ratios were not analyzed because there was not much difference between the ratios of 1.88 %
and 2.52 % in the size effect analysis. In Annex VII, the force-displacement graphs are given for each reinforcement
ratio configuration. Next, the nominal shear strength of all the different reinforcement ratios is plotted against the effective
depth in a log-log plot in Figure 143.

Log-Log plot: Size Effect [with variation in the reinforcement ratio]

e Reinforcement ratio = 0.63 %
v Reinforcement ratio = 1.26 %
m Reinforcement ratio = 1.88 %
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Figure 143 Size effect analysis with variation in the reinforcement ratio

With the increase of the reinforcement ratio, the nominal shear strength also increases for the exact beam sizes. How-
ever, the speed with which the reinforcement ratio decreases for geometrically scaled beams is essential to find the
influence of the parameter on the size effect. If the results had been analyzed according to the SEL figure (Figure 8), all
the nominal shear strength values would be in the second section (the nonlinear fracture mechanics influenced by the
size effect). The analysis of Figure 143 indicates a slightly steeper slope for cases with lower reinforcement. This slope
difference signifies a more pronounced decrease in the nominal shear strength as the reinforcement ratio decreases for
RC beams without stirrups. This result concludes that a more significant size effect exists for beams with lower rein-
forcement ratios. However, these slope differences for the same beam size are minimal and almost neglectable. An
increased reinforcement ratio leads to better control of the cracks.

Comparing the reinforcement ratios of 1.88 % to 2.52 % shows interesting behavior. After a high enough reinforcement
is reached for the configuration, a further increase in the reinforcement ratio does not weaken the size effect more.
Reinforcement ratios much smaller than 0.63 % may get influenced much more by the size effect. Table 65 from Annex
VIl specifies the slopes for each configuration. The tables can be studied for a broader understanding of the effect of
the reinforcement ratio on the size effect.
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Other behavioral changes from the increase in the reinforcement ratio are also analyzed. The force-displacement graph
analysis in Annex VIl showed that the reinforcement ratio affects the beams' global stiffness. The global stiffness in-
creases as the reinforcement ratio increases, as the additional reinforcement helps better distribute the load. The same
elastic stiffness for all beams makes sense, as the concrete has not yet cracked during this phase. With the rise in global
stiffness, the failure load also increases, but the beam deforms less. The two examples in Figure 144 demonstrate the
increase in stiffness. The first example (left) is for the smallest beam with a depth of 300mm, while the second (right) is
for the largest beam with an effective depth of 1200 mm. The small beam has a relative failure load increase of 24 %
and a relative displacement decrease of 55 % between the maximum and minimum reinforcement ratio. The differences
are 43 % and 60 % for the larger one, respectively, showing a more significant capacity gain. This higher increase in
capacity for the larger beam is because the large beams with low reinforcement are influenced more by the size effect.
The effect is weakened for the case with high reinforcement.

Force-Displacement graph: reinforcement ratio Force-Displacement graph: reinforcement ratio

—d =300 mm [rho = 0.63] —d = 1200 mm [rho = 0.63]

—d =300 mm [rho = 1.26] 1 —d=1200mm [rho = 1.26]

d =300 mm [rho = 1.88] d =1200 mm [rho = 1.88]

—d =300 mm [rho = 2.52 %] —d = 1200 mm [rho = 2.52 %]
0 0.5 1 1.5 2 25 3 35 0 1 2 3 4 5 6 7 8 9
Displacement [mm] Displacement [mm]

Figure 144 Force-displacement graph: d = 300 mm (left) and d = 1200 mm (right)

Variation in effective span-to-depth ratio

The third parameter that will be studied for its influence on the size effect is the effective span-to-depth ratio. As previ-
ously stated, the parameter must be limited to an effective span-to-depth ratio between 2.5 and 7.0 to capture the flexural
shear failure. Moving out of this range results in another expected failure mode, which is not considered in this report.
The initial effective span-to-depth ratio (2.94) is already at the center of the beam for the size effect analysis. Therefore,
considering the effective span-to-depth boundary, the following ratios are chosen when calculated from the left side of
the beam:

e 2.94 (initial and maximum ratio)

o 272(294 22250
0.5

e 2.50 (minimum ratio)
An overview of the effective span-to-depth ratio locations is shown in Figure 145. In addition, nominal shear strengths
for the effective span-to-depth ratio variation are plotted in Figure 146, with the analysis of its influence followed by it.

Yellow: a/d left = 2.72; a/d right = 3.16

Figure 145 Effective span-to-depth ratio variation
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Log-Log plot: Size Effect [with variation in the effective span-to-depth ratio]
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Figure 146 Size effect analysis with variation in the effective span-to-depth ratio

In the previous section, an increase in the reinforcement ratio results in a slightly flatter but almost neglectable slope
difference. However, this is the reverse situation for the effective span-to-depth ratio. There is an increase in the steep-
ness of the curves’ slope with an increase in the ratio. Unlike the reinforcement ratio, the slope difference is more
noticeable from the log-log plot. This difference indicates that the effective span-to-depth ratio has a more significant
influence. It should also be noted that the different effective span-to-depth ratios have a difference of just 0.22 (0.50,
0.72, and 0.94), which is not much. With this observation, it can be concluded that the increase in the effective span-to-
depth ratio increases the size effect. Table 66 can be viewed from Annex VII to indicate better this parameter's influence
on the size effect with the help of the slope measurements for each ratio.

Besides increasing the size effect due to an increasing effective-span-to-depth ratio, this parameter is also a deciding
factor in the failure mode and crack pattern, as previously explained. In addition, the failure load increases as the effec-
tive span-to-depth ratio increases (moves more central of the beam). This response is seen in the force-displacement
graphs for every effective span-to-depth ratio in Annex VII. The failure load increases, but the displacement significantly
increases, as seen in Figure 147. This simulated result makes sense from a structural mechanics perspective when the
force distribution of the 'vergeet-mij-nietjes/forget-me-not' formulas are applied. The beam capacity will be more signifi-
cant when loaded at the midspan than when loaded away from it. This result is because a beam loaded at the midspan
will be more evenly distributed over the beam's cross-section, resulting in lower stress concentrations. The relative
difference in failure load is 4 % for the smallest beam and 8% for the largest beam. The relative difference in displace-
ment between the effective span-to-depth ratio of 2.5 and 2.94 is 17 % for both plotted beams.

Force-Displacement graph:
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Figure 147 Effective span-to-depth ratio: force-displacement graph

Variation in concrete strength

The concrete strength is the final parameter studied for its influence on the size effect. During the numerical model
sensitivity analysis and comparisons with experimental results, the range of simulated models had concrete strengths
from 22MPa to 114 MPa. Over the entire range mentioned, reliable results were found with the robust numerical model.
Because the results were sufficient according to the failure load percentage difference between the numerical simula-
tions and experimental results, a wide range of concrete strengths can be applied to the analysis in this section. The
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concrete strengths used for the size effect analysis are 25 Mpa, 50 Mpa, 75 Mpa, and 100 Mpa. For further analysis,
the nominal shear strength for geometrically scaled beams with different concrete strengths is in Figure 148 (left).

Log-Log plot: Size Effect [with variation in the concrete strength]
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Figure 148 Size effect analysis with variation in the concrete strength

Increasing the concrete strength increases the nominal shear strength for the same beam sizes. Differences in the
slopes for the different concrete strengths are also visible. The slopes become steeper consistently as the concrete
strength increases for the three smallest beams (effective depth is 300 mm, 600 mm, and 900 mm). The results show
an increase in the size effect as the concrete strength increases. A similar type of increase in steepness of the slope
was noticed for the effective span-to-depth ratio. The increased size effect with increased concrete strength is reduced
as the beam sizes increase for the three smallest beam sizes.

The beam size of 1200 mm requires a separate analysis as a different behavior is noticed here. While the beam with
concrete strength seems to continue its steep slope for the nominal shear strength, this is not the case for the higher
concrete strength ones. With a higher concrete strength, the large beams show an increasing material randomness
sensitivity influencing the nominal shear strength. The energetic size effect dominated the previous beam configurations,
but the energetic-statistical size effect is now noticed. Bazant et al. have also acknowledged this size effect as SEL type
I, for which the size effect is found using a formula and asymptotic matching. The statistical size effect influence is
evident for the two highest concrete strength beams. However, it can also be expected for the other LSC beams. It
should be noted that for this behavior, larger beams than the ones simulated must be done. The switch from the ener-
getic size effect to the statistical-energetic size effect can be seen in Figure 148 on the right with the orange and purple
blocks. A better overview of the slope change for the nominal shear strength of all the geometrically scaled beams can
be found in Table 67 from Annex VII.

The force-displacement graph results in Annex VII show an increase in failure load as the concrete strength increases.
The failure load increase between the lowest and highest concrete strength is between 28 % and 42% for the different
beam sizes. The increase in concrete strength affects the beam’s brittleness. The more brittle the beam, the wider the
cracks at failure. This relationship between concrete strength and brittleness is essential, especially with large beams.
As the flexural shear failure is already brittle, it is not easy to study the brittleness of the beams. However, an experiment
was done after the maximum load was reached using the displacement method. Three small and equal load steps were
applied for each beam configuration with different concrete strengths applied. A more gradual decrease in force means
a more brittle behavior. This experiment gave the following results:
e The beam with d = 300 mm drops 19 kN more for a concrete strength of 100 MPa compared to one with a concrete
strength of 25 MPa
e The beam with d = 1200mm drops 54 kN more for a concrete strength of 100 MPa compared to one with a concrete
strength of 25 MPa
The numerical simulation analysis shows that the beams with a more brittle response from increased concrete strength
exhibit a more substantial size effect. The energetic-statistical size effect is also visible for large beams with HSC. The
different force-displacement curves of this example are plotted in Figure 149.
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Figure 149 Concrete strength: force-displacement graph
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Annex
Annex IX Python code: three-point numerical model

Example: R804A1_40

setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1", addAnalysisCommand ( "NLFEA_NR", "PHASE", "Phase" )
"EXECUT (2) /LOAD/STEPS/EXPLIC/SIZES", steps ) setActivePhase ( "NLFEA NR", "Phase"
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1", setActiveInPhase ( "NLFEA NR", "GEOMETRYSUPPORTSET", [ "Load support"
"EXECUT (2) /ITERAT/MAXITE", 100 ) ], [ "Phase" ], False )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1", addAnalysisCommand ( "NLFEA_NR", "NONLIN", "Structural nonlinear" )
"EXECUT (2) /ITERAT/METHOD/METNAM", "NEWTON" ) i i b Meew ™ i o
setAnalysisCommandDetail ( "NiFEA_NR", "Structural nonlinear 1", "Exaéi%???}{éiSSigxgzggftgli( NSRRI, " RERCEEL nOREERSaE
"EXECUZAZ){ITFRgT/LINggEZ,'IiusNiFEA SR St ruetural y i setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
setAnalysisCommandDetai . ' ructural nonlinear ' "EXECUT (1) /ITERAT/MAXITE", 100 )
"EXECUT(Z)/ITFRAT/CONTIN“,‘Falﬁe ) . ) . setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
setAna§y51sCo?mandDe§a11( NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/METHOD/METNAM", "NEWTON" )
"EXECUT (2) /ITERAT/CONVER/ENERGY", True ) tAnalysisC dDetail ( "NLFEA NR", "St £ . 14 e
setAnalysisCommandDetail ( "NiFEA_NR", "Structural nonlinear 1", "ExzzzT(??/§;E;A;TT?;Es;"?lT;ue ) n ' et nonnean
"EXECUT (2) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 ) setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1" "EXECUT (1) /ITERAT/CONTIN", Fal
"EXECUT(Z)/¥TERAT/CONVER/DISPLA", False ; ' set;n;{ysisCoémandDet;il? fSL;‘EA NR", "Structural nonlinear",
setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/CONVER/ENERGY", True )
"EXECUT (2) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" ) setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )
"EXECUT (2) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" ) setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONVER/DISPLA", False )
# Output setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
# Analysis "EXECUT (1) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN"
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1" setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"QUTPUT (1) /SELTYP", "USER" ) "EXECUT (1) /ITERAT/CONVER/FORCE/NOCONV", "“CONTIN" )
addAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1" addAnalysisCommand ( "NLFEA_NR", "PAASB", "Phase 1" )
"OUTPUT (1) /USER" ) setActivePhase ( "NLFEA_NR", "Phase 1" )
# Displacement addAnalysisCommand ( "NLFEA_NR", "NONLIN", "Structural nonlinear 1" )
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear removeAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
1","OUTPUT (1) /USER/DISPLA (1) /TOTAL/TRANSL/GLOBAL") "EXECUT(1)" )

# Force

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/FORCE (1) /REACTI/TRANSL/GLOBAL")

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/FORCE (2) /EXTERN/TRANSL/GLOBAL")

addAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/NODFOR (1) /TOTAL/TRANSL/GLOBAL")

setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
"EXECUT (1) /EXETYP", "START" )

setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/MAXITE", 100 )

setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
"EXECUT (1) /ITERAT/METHOD/METNAM", "NEWTON" )

setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/LINESE", True

1","OUTPUT (1) /USER/NODFOR (2) /ELEMEN/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/CONTIN", False )

1","OUTPUT (1) /USER/NODFOR (3) /REINFO/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/CONVER/ENERGY", True )

"OUTPUT (1) /USER/ELMFOR (1) /TOTAL/ TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )

1","OUTPUT (1) /USER/ELMFOR (2) /ELEMEN/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA _NR", "Structural nonlinear "EXECUT (1) /ITERAT/CONVER/DISPLA", False )

1","OUTPUT (1) /USER/ELMFOR (3) /REINFO/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
# Total strain "EXECUT (1) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN"
# Overview setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )

"OUTPUT (1) /USER/STRAIN (1) /TOTAL/GREEN/PRINCI") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
# Concrete "EXECUT (2) /EXETYP", "LOAD"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRAIN (2) /TOTAL/GREEN/GLOBAL"

"EXECUT (2) /LOAD/LOADNR", 1 )
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addMaterial ( "Interface", "INTERF", "ELASTI", [] )

setParameter ( "MATERIAL", "Interface", "LINEAR/IFTYP", "LIN2D" )
setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSNY",
interf normal stiff )

setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSSX",
interf_shear stiff )

addGeometry( "Interface", "LINE", "STLIIF", [] )

setParameter ( "GEOMET", "Interface", "LIFMEM/THICK", beam_thickness
imprintIntersection("Beam", "Load plate", True)
imprintIntersection("Beam", "Left support plate", True)
imprintIntersection("Beam", "Right support plate", True)
createConnection( "Interface", "INTER", "SHAPEEDGE" )
setParameter ( "GEOMETRYCONNECTION", "Interface", "MODE", "AUTO" )

setParameter ( "GEOMETRYCONNECTION", "Interface", "FLIP", False )
attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Left support
plate", [[ 1s, 0, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam", [[ 1s, O,
011)

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Right support
plate", [[ lstbeam eff length, 0, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam",
[[1ls+beam eff length, 0, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Load plate", [[
ls+a, beam_height, 0 1] )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam", [[ls+a,
beam_height, 0 1] )

setElementClassType ( "GEOMETRYCONNECTION", "Interface", "STLIIF"
assignMaterial ( "Interface", "GEOMETRYCONNECTION", "Interface" )
assignGeometry( "Interface", "GEOMETRYCONNECTION", "Interface" )
resetElementData ( "GEOMETRYCONNECTION", "Interface" )

#Mesh

setElementSize( [ "Beam" ], mesh_size, -1, True )

setMesherType( [ "Beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Beam" ], "LINEAR" )

setElementSize( [ "Beam" ], mesh_size, -1, True )

setMesherType( [ "Beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Beam" ], "LINEAR" )

setElementSize ( "Reinf bottom", 1, [[ 0.5*beam_length, reinf_ height, 0
11, mesh_size, 0, True )

setElementSize ( "Reinf top", 1, [[ 0.5*beam_length, beam_height-
reinf_height, 0 ]], mesh_size, 0, True )

setElementSize( [ "Left support plate", "Right support plate", "Load
plate" ], mesh_size, -1, True )

setMesherType( [ "Left support plate", "Right support plate", "Load
plate" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Left support plate", "Right support plate",
"Load plate"™ ], "LINEAR" )

generateMesh( [] )

if analysis=='on':
# Analysis Commands
steps="0.1("+str (displacement*10)+")"
addAnalysis( "NLFEA_NR" )
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setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"REBARS/PLASTI/TRESSH", "EPSSIG" )
setParameter ( "MATERIAL", "Bond-slip Reinforcement",

"REBARS/PLASTI/EPSSIG", [0, 0, eps, fyk, eps_uk, ftk] )
setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/DSNY",
reinf normal_stiff)
setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/DSSX",
reinf shear_ stiff
if bond_slip=="FIB":

setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/SHFTYP",
"BONDS6")

setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"RESLIP/BONDS6/SLPVAL", [thau_max, thau_f, s0, sl, s2, s3, alpha]) # max
shear stress, ultimate shear stress, s0, sl, s2, s3, alpha
elif bond slip=="Shima":

setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/SHFTYP"
"BONDS4" )

setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"RESLIP/BONDS4/SLPVAL", Ecm )
addGeometry( "Reinforcement truss", "RELINE", "REBAR", []
setParameter ( "GEOMET", "Reinforcement truss", "REITYP", "REITRU" )
setParameter ( "GEOMET", "Reinforcement truss", "REITRU/CROSSE", As )
setParameter ( "GEOMET", "Reinforcement truss", "REITRU/PERIME", Cp )
addElementData ( "Reinforcement truss data" )
setParameter ( "DATA", "Reinforcement truss data", "./INTERF", [] )
setParameter ( "DATA", "Reinforcement truss data", "INTERF", "TRUSS" )

setReinforcementAspects( [ "Reinf bottom", "Reinf top" ] )
setReinforcementType ( "REINFORCEMENTSHAPE", [ "Reinf bottom", "Reinf top"
], "TRUSS_BOND_SLIP" )

assignMaterial ( "Bond-slip Reinforcement", "SHAPE", [ "Reinf bottom",
"Reinf top" ] )

assignGeometry( "Reinforcement truss", "SHAPE", [ "Reinf bottom", "Reinf
top" ] )

assignElementData ( "Reinforcement truss data", "SHAPE", [ "Reinf bottom",

"Reinf top" ] )
setReinforcementDiscretization( [ "Reinf bottom", "Reinf top" 1],
"ELEMENT" )

#Steel plate

addMaterial ( "Plates", "MCSTEL", "ISOTRO", [] )

setParameter ( "MATERIAL", "Plates", "LINEAR/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "Plates", "LINEAR/ELASTI/POISON", vs )
setParameter ( "MATERIAL", "Plates", "LINEAR/MASS/DENSIT", rho_s )
addGeometry( "Plates", "SHEET", "MEMBRA", [] )

setParameter ( "GEOMET", "Plates", "THICK", beam_thickness )
setParameter ( "GEOMET", "Plates", "LOCAXS", True )

setElementClassType( "SHAPE", [ "Left support plate", "Load plate",
"Right support plate" ], "MEMBRA" )

assignMaterial ( "Plates", "SHAPE", [ "Left support plate", "Load plate",
"Right support plate" ] )

assignGeometry( "Plates", "SHAPE", [ "Left support plate", "Load plate",

"Right support plate" ] )

#Interface
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assignElementData( "Concrete and plate", "SHAPE", [ "Left support plate"
I3

assignElementData( "Concrete and plate", "SHAPE", [ "Right support plate"
19

# Concrete
addMaterial ( "Concrete", "CONCR", "TSCR", [] )

setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/YOUNG", Ecm )
setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/POISON", vc )
setParameter ( "MATERIAL", "Concrete", "LINEAR/MASS/DENSIT", rho_c )

if concrete=="rotating":
setParameter ( "MATERIAL", "Concrete", "MODTYP/TOTCRK", "ROTATE" )
elif concrete=="fixed":

setParameter ( "MATERIAL", "Concrete", "MODTYP/TOTCRK", "FIXED" )
setParameter ( "MATERIAL", "Concrete", "SHEAR/SHRCRV", "DAMAGE" )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENCRV", "HORDYK" )

setParameter ( "MATERIAL", "Concrete", "TENSIL/TENSTR", fctm)
setParameter ( "MATERIAL", "Concrete", "TENSIL/GF1", Gfk

setParameter ( "MATERIAL", "Concrete", "TENSIL/CBSPEC", "GOVIND")
setParameter ( "MATERIAL", "Concrete", "TENSIL/RESTST", tensile_residual )
setParameter ( "MATERIAL", "Concrete", "TENSIL/POISRE/POIRED", "DAMAGE" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/COMCRV", "PARABO" )
setParameter ( "MATERIAL": "Concrete": “COMPRS/COMSTR": fem )
setParameter ( "MATERIAL", "Concrete", "COMPRS/GC", Gck)

setParameter ( "MATERIAL", "Concrete", "COMPRS/RESCST",
compression_residual )

setParameter ( "MATERIAL", “"Concrete", "COMPRS/REDUCT/REDCRV", "VC1993" )

setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDMIN",
LB_lateral cracking)
if confinement=='yes':

setParameter ( "MATERIAL", "Concrete", "COMPRS/CONFIN/CNFCRV",
"VECCHI" )
elif confinement=='no':

setParameter ( "MATERIAL", "Concrete", "COMPRS/CONFIN/CNFCRV", "NONE"
)
addGeometry( "Concrete", "SHEET", "MEMBRA", [] )
setParameter ( "GEOMET", "Concrete", "THICK", beam_thickness)
setParameter ( "GEOMET", "Concrete", "LOCAXS", True )
setElementClassType ( "SHAPE", [ "Beam" ], "MEMBRA" )

assignMaterial ( "Concrete", "SHAPE", [ "Beam" ] )
assignGeometry( "Concrete", "SHAPE", [ "Beam" ] )
assignElementData( "Concrete and plate", "SHAPE", [ "Beam" ] )

#FIB-BS Reinforcement
addMaterial ( "Bond-slip Reinforcement", "REINFO", "REBOND", [] )

setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"REBARS/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"REBARS/POISON/POISON", vs)
setParameter ( "MATERIAL", "Bond-slip Reinforcement"

"REBARS/MASS/DENSIT", rho_s )
setParameter ( "MATERIAL", "Bond-slip Reinforcement", "REBARS/PLATYP",
"VMISES")
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createSheet( "Beam", ([ O, 0, O ],[ beam_length, 0, 0 ], [ beam_length,
beam_height, 0 ],[ 0, beam_height, 0 ]] )

createLine( "Reinf bottom", [ 0, reinf height, 0 ], [ beam_length,

reinf height, 0 ] )

createline( "Reinf top", [ 0, d, 0 ], [ beam_length, d , 0 ] )
createSheet ( "Load plate", [[x11, yl1, O ],[ x11, yl2, 0 ], [ 1ls+a, yl2,
01,0 x12,y12, 0 ],[ x12,y11, 0 1] )

createSheet ( "Left support plate", [[xlsl, ysl, 0 ],[ x1sl, ys2, 0 1,(

1s, ys2, 0 ],[ x1s2,ys2, 0 ],[ x1s2,ysl, 0 ]] )

createSheet ( "Right support plate", [[xrsl, ysl, 0 ],[ xrsl, ys2, 0 ],[
ls+beam_eff length, ys2, 0 ],[ xrs2,ys2, 0 ],[ xrs2,ysl, 0 ]] )
#Support

addSet ( "GEOMETRYSUPPORTSET", "Supports" )

createPointSupport ( "Left support", "Supports" )

setParameter ( "GEOMETRYSUPPORT", "Left support", "AXES", [ 1, 2 ] )
setParameter ( "GEOMETRYSUPPORT", "Left support", "TRANSL", [ 1, 1, 0 ] )
setParameter ( "GEOMETRYSUPPORT", "Left support", "ROTATI", [ 0, O, 0 ] )

attach( "GEOMETRYSUPPORT", "Left support", "Left support plate", [[ 1s,
ys2, 0]])

createPointSupport ( "Right support", "Supports" )

setParameter ( "GEOMETRYSUPPORT", "Right support", "AXES", [ 1, 2 ] )

setParameter ( "GEOMETRYSUPPORT", "Right support", "TRANSL", [ O, 1, 0 ] )
setParameter ( "GEOMETRYSUPPORT", "Right support", "ROTATI", [ O, O, 0 ] )
attach( "GEOMETRYSUPPORT", "Right support", "Right support plate", [[
ls+beam_eff length, ys2, 0 1] )

addSet ( "GEOMETRYSUPPORTSET", "Load support" )

createPointSupport ( "Displacement method", "Load support" )

setParameter ( "GEOMETRYSUPPORT", "Displacement method", "AXES", [ 1, 2 ]
)

setParameter ( "GEOMETRYSUPPORT", "Displacement method", "TRANSL", [ 0, 1,
01)

setParameter ( "GEOMETRYSUPPORT", "Displacement method", "ROTATI", [ O, O,
01])

attach( "GEOMETRYSUPPORT", "Displacement method", "Load plate", [[ ls+a,
beam_height+x12, 0 1] )

#Load

addSet ( "GEOMETRYLOADSET", "Point load" )

createPointLoad( "Point load", "Point load" )

setParameter ( "GEOMETRYLOAD", "Point load", "LODTYP", "DEFORM" )

setParameter ( "GEOMETRYLOAD", "Point load", "DEFORM/TR/VALUE", -1 )
setParameter ( "GEOMETRYLOAD", "Point load", "DEFORM/TR/DIRECT", 2 )
attach( "GEOMETRYLOAD", "Point load", "Load plate", [[ 1ls+a, yl2, 0 11 )
addSet ( "GEOMETRYLOADSET", "Self-weight" )

createModelLoad( "Self-weight", "Self-weight" )

#Material property

#Element data

addElementData ( "Concrete and plate" )

setParameter ( "DATA", "Concrete and plate", "./INTEGR", [] )
setParameter ( "DATA", "Concrete and plate", "INTEGR", "HIGH" )
assignElementData( "Concrete and plate", "SHAPE", [ "Load plate" ] )
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elif C50_60 == 'larger':

fetm = 2.12*1In(1+0.1*fcm)
rho_c=2.5e-09 # Mass Density [T/mm3]
Gfk=0.073*fcm**0.18 # Tensile Fracture Energy [N/mm]
Gck=250*Gfk # Compressive Fracture Energy [N/mm]
tensile_residual = 0.001
compression_residual = 0.01

# Reinforcement
vs=0.3 # Poisson Ratio [-]
Es=200000 # Young's Modulus
rho_s=7.85e-09 # Mass Density [T/mm3]
reinf_normal_stiff=(100*Ecm/mesh_size) # Normal Stiffness of bond-slip
interface [N/mm3]
reinf_shear stiff=0.l1*reinf normal_ stiff # Tangential Stiffness of bond-
slip interface [N/mm3]
As=(0.25*bar_numbers*pi* (bar_diamater**2))+(0.25*bar_numbers2*pi* (bar_dia
mater2**2)) # Area of Reinforcement [mm2]
Cp=(bar_numbers*pi*bar_diamater)+(bar_numbers2*pi*bar_diamater2) #
Perimeter of Reinforcement [mm]
LB_lateral cracking = 0.4 # [-]
eps = (fyk/Es) # [-]
if steel class == "A":

ftk = 1.05 * fyk

eps_uk = 2.5/100
elif steel class == "B":

ftk = 1.08 * fyk

eps_uk = 5/100
elif steel class == "C":

ftk = 1.15 * fyk

eps_uk = 7.5/100
if rebar == "ribbed":

thau_max = 2.5*sqrt(fck) # Pullout test

s0 = 0.001 # Close to zero should be chosen

sl =1
s2 =2
s3 = 0.7*bar_diamater # Estimation from literature
alpha = 0.4
thau_f = 0.4*thau_max
elif rebar == "smooth":

thau_max = 0.1*sqrt(fcm) # Pullout
s0O = 0.001 # Close to zero

sl = 0.01
52! =5l

s3; =gl
alpha = 0.5

thau_f = thau_max

#Interface Between Load/Support Plate and Beam
interf normal_stiff=Ecm/mesh_size #Normal Stiffness [N/mm3]
interf shear_stiff=0.0l*interf normal_ stiff #Shear Stiffness [N/mm3]

#Layout of the Beam
rename ("SHAPESET", "Shapes", "Beam elements")

XXXIX

# Setup

setModelAnalysisAspects (["STRUCT"])
setModelDimension ("2D")
setDefaultMeshOrder ("QUADRATIC")
setDefaultMesherType ("HEXQUAD")
setDefaultMidSideNodeLocation ("LINEAR")
showWorkingPlane (True)

# units

setUnit ("LENGTH", "MM")
setUnit ("MASS", "KG")
setUnit ("FORCE", "N")
setUnit ("TIME", "“SEC")
setUnit ("TEMPER", "CELSIU")
setUnit ("ANGLE", "DEGREE")

#Calculations

#Geometry

#Beam and Reinforcement

beam_length= beam_eff length+2*ls #Length of the beam [mm]
reinf height= beam_height-d #Concrete Cover [mm]

# Mesh
if beam_height<=800:

mesh_size=beam_height/20 # 20 elements over the beam height [mm]

elif beam_height>800:
mesh_size=40 # a mesh size of 40 mm [mm]

#Support Plate

plate_length=2*mesh_size # Plate length [mm]
plate_Sheight=-mesh_size # End of the support plate (Y-direction)
ys1l=0

ys2=plate_Sheight

x1sl=1s-0.5*plate_length

x1s2=1s+0.5*plate_length

xrsl=xlsl+beam_eff length

xrs2=xls2+beam_eff length

#Load Plate

plate_Lheight=mesh_size # Height of Load Plate [mm]
xll=1s+a-0.5*plate_length
x12=1s+a+0.5*plate_length

yll=beam_height

yl2=beam_height+plate_Lheight

# Concrete

ve=0.2 # Poisson Ratio [-]

fcm=0.8*fcc # Cylinder Compressive Strength [MPa]
delta_f = 8 # [MPa]

fck=fcm-delta f # Characteristic Strength [MPa]

Ecm= (l—Ecm_rgduction)*21500*(0.1*fcm)**0.33 # Young's Modulus [MPa]

if C50_60 == 'smaller_equal': # Concrete class [-]
fctm = 0.3*fck** (2/3)
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User input

non

dpf_ folder name = "R804Al1_40"

# Geometry

beam_eff length=1800 # Effective span of the beam [mm]
beam_thickness=240 # Width of the beam [mm]
beam_height=350 # Height of the beam [mm]

1s=300 # Start of the left support plate [x-direction] [mm]
a=881.25 # Shear Span of the beam [mm]

d=300 # Effective depth of the beam [mm]

# Material Properties

# Concrete

fcc = 85 # Cubic Compressive Strength [MPa]

C50_60 = 'larger' # Ooncrete class options: smaller_equal or larger
Ecm_reduction=0.00 # Maximum allowed=0.15 [RTD guidelines]

# Reinforcement

bar_numbers=3 # Number of Rebars with first dimater [-]

bar_diamater=25 # Diameter_ 1l of Reinforcement [mm]

bar_numbers2=0 # Number of Rebars with second diameter [-]
bar_diamater2=0 # Diameter_ 2 of Reinforcement [mm]

fyk=550 # Yield Strength [MPa]

steel_class = "B" # Options: A, B, C

rebar = "ribbed" # Options: ribbed or smooth; smooth coded according the
FIB guidelines

# Displacement from experiments

displacement= 50 # [mm]

# Numerical model options

concrete="fixed" # Options: fixed or rotating

bond_slip="Shima"# Options: Shima or FIB

confinement='no'# Options: yes or no

analysis= 'on' # Autorun analysis: on or off

folder_location = "C:/Diana_numerical models/" # Safe_location: current
code saves to C drive ("C:/Diana_numerical models/"), change if required

# pacakage imports
from math import log as 1ln
from math import sqrt, pi

o

Automated model

wun

# Pacakage imports

from math import log as 1ln
from math import sqrt, pi

# Create project
dpf_location = folder_location+dpf_folder_ name
newProject (dpf_location, 1000, {})

xl

# Reinforcement

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (3) /TOTAL/GREEN/LOCAL")

# Plastic strain

# Concrete

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (4) /PLASTI/GREEN/GLOBAL")

# Reinforcement

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (5) /PLASTI/GREEN/VONMIS")

# Crackwidth

addAnalysisCommandDetail ("NLFEA NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (6) /CRKWDT /GREEN/PRINCI")

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRAIN (7) /CRKWDT/GREEN/GLOBAL")

# Stress

# Overview

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (1) /TOTAL/CAUCHY/GLOBAL")

# Concrete

addAnalysisCommandDetail ("NLFEA NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (2) /TOTAL/CAUCHY/PRINCI")

# Reinforcement

addAnalysisCommandDetail ("NLFEA NR", "Structural nonlinear 1",
"OUTPUT (1) /USER/STRESS (3) /TOTAL/CAUCHY/LOCAL")

# Solve

setUnit ( "FORCE", "KN")

#runSolver( [] )

# Save

saveProject ()

# Export .dat and .dcf files
dpf_location

dpf folder name

data_file=dpf location+".dat"
exportModel ( dpf_location+".dat", 5 )
saveAnalysisCommands ( "NLFEA NR", dpf location+" NLFEA NR.dcf", 6
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Annex

Annex X Python code: four-point numerical model

Example: d_350_75

addAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
"QUTPUT (1) /USER" )
# Displacement

setActivePhase ( "NLFEA_NR", "Phase 1" )
addAnalysisCommand ( "NLFEA_NR", "NONLIN", "Structural nonlinear 1" )

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear removeAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
1","OUTPUT (1) /USER/DISPLA (1) /TOTAL/TRANSL/GLOBAL") "EXECUT(1)" )
# Force setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",

addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",

"EXECUT (1) /EXETYP", "START" )

"OUTPUT (1) /USER/FORCE (1) /REACTI/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/MAXITE", 100 )

"OUTPUT (1) /USER/FORCE (2) /EXTERN/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1",
addAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/METHOD/METNAM", "NEWTON" )

"OUTPUT (1) /USER/NODFOR (1) /TOTAL/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/LINESE", True )

1","OUTPUT (1) /USER/NODFOR (2) /ELEMEN/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/CONTIN", False )

1","OUTPUT (1) /USER/NODFOR (3) /REINFO/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/CONVER/ENERGY", True )

"OUTPUT (1) /USER/ELMFOR (1) /TOTAL/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )

1","OUTPUT (1) /USER/ELMFOR (2) /ELEMEN/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear "EXECUT (1) /ITERAT/CONVER/DISPLA", False )

1","OUTPUT (1) /USER/ELMFOR (3) /REINFO/TRANSL/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
# Total strain "EXECUT (1) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" )

# Overview setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (1) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )

"QUTPUT (1) /USER/STRAIN (1) /TOTAL/GREEN/PRINCI") setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1",
# Concrete "EXECUT (2) /EXETYP", "LOAD" ) -
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRAIN (2) /TOTAL/GREEN/GLOBAL") "EXECUT (2) /LOAD/LOADNR", 1 )

# Reinforcement setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (2) /LOAD/STEPS/EXPLIC/SIZES", steps )

"QUTPUT (1) /USER/STRAIN (3) /TOTAL/GREEN/LOCAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
# Plastic strain "EXECUT (2) /ITERAT/MAXITE", 100 )

# Concrete setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1",
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (2) /ITERAT/METHOD/METNAM", "NEWTON" )

"OUTPUT (1) /USER/STRAIN (4) /PLASTI/GREEN/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",
# Reinforcement "EXECUT (2) /ITERAT/LINESE", True )
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1"

"OUTPUT (1) /USER/STRAIN (5) /PLASTI/GREEN/VONMIS") "EXECUT (2) /ITERAT/CONTIN", False )

# Crackwidth setAnalysisCommandDetail ( "NLFEA _NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (2) /ITERAT/CONVER/ENERGY", True )

"OUTPUT (1) /USER/STRAIN (6) /CRKWDT/GREEN/PRINCI") setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (2) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )

"OUTPUT (1) /USER/STRAIN (7) /CRKWDT/GREEN/GLOBAL") setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
# Stress "EXECUT (2) /ITERAT/CONVER/DISPLA", False )

# Overview setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1"
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", "EXECUT (2) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" )

"OUTPUT (1) /USER/STRESS (1) /TOTAL/CAUCHY /GLOBAL") setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear 1",
# Concrete "EXECUT (2) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRESS (2) /TOTAL/CAUCHY/PRINCI") # Output
# Reinforcement # Analysis
addAnalysisCommandDetail ("NLFEA_NR", "Structural nonlinear 1", setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear 1",

"OUTPUT (1) /USER/STRESS (3) /TOTAL/CAUCHY/LOCAL")

xli

"QUTPUT (1) /SELTYP", "USER" )



setElementClassType ( "GEOMETRYCONNECTION", "Interface", "STLIIF" )
assignMaterial ( "Interface", "GEOMETRYCONNECTION", "Interface" )
assignGeometry( "Interface", "GEOMETRYCONNECTION", "Interface" )
resetElementData ( "GEOMETRYCONNECTION", "Interface" )

# Mesh

setElementSize( [ "Beam" ], mesh_size, -1, True )

setMesherType( [ "Beam" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Beam" ], "LINEAR" )

setElementSize( [ "Beam" ], mesh_size, -1, True )

setMesherType( [ "Beam" ], "HEXQUAD" )

setMidSideNodelocation( [ "Beam" ], "LINEAR" )

setElementSize ( "Reinf bottom", 1, [[ 0.5*beam_length, reinf height, 0
]], mesh_size, 0, True )

setElementSize ( "Reinf top", 1, [[ 0.5*beam_length, beam_height-

reinf height, 0 ]], mesh_size, 0, True )

setElementSize( [ "Left support plate", "Left load plate", "Right support
plate", "Right load plate" ], mesh_size, -1, True )

setMesherType ( [ "Left support plate", "Left load plate", "Right support
plate", "Right load plate" ], "HEXQUAD" )

setMidSideNodeLocation( [ "Left support plate", "Left load plate", "Right
support plate", "Right load plate" ], "LINEAR" )

generateMesh( [] )

if analysis=='on':
# Analysis Commands
steps="0.1("+str (displacement*10)+")"
addAnalysis( "NLFEA_NR" )
addAnalysisCommand ( "NLFEA NR", "PHASE", "Phase" )
setActivePhase ( "NLFEA_NR", "Phase" )
setActiveInPhase ( "NLFEA_NR", "GEOMETRYSUPPORTSET", [ "Load support”

1, [ "Phase" ], False )
addAnalysisCommand ( "NLFEA_NR", "NONLIN", "Structural nonlinear" )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",

"EXECUT (1) /LOAD/LOADNR", 2 )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/MAXITE", 100 )

setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/METHOD/METNAM", "NEWTON" )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",

"EXECUT (1) /ITERAT/LINESE", True )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONTIN", False )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONVER/ENERGY", True )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONVER/ENERGY/TOLCON", 0.001 )
setAnalysisCommandDetail ( "NLFEA NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONVER/DISPLA", False )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONVER/ENERGY/NOCONV", "CONTIN" )
setAnalysisCommandDetail ( "NLFEA_NR", "Structural nonlinear",
"EXECUT (1) /ITERAT/CONVER/FORCE/NOCONV", "CONTIN" )
addAnalysisCommand ( "NLFEA_NR", "PHASE", "Phase 1" )

xlii

assignGeometry( "Reinforcement truss", "SHAPE", [ "Reinf bottom", "Reinf
top" 1)

assignElementData( "Reinforcement truss data", "SHAPE", [ "Reinf bottom",
"Reinf top" ] )

setReinforcementDiscretization( [ "Reinf bottom", "Reinf top" ],
"ELEMENT" )

# Steel plate

addMaterial ( "Plates", "MCSTEL", "ISOTRO", [] )

setParameter ( "MATERIAL", "Plates", "LINEAR/ELASTI/YOUNG", Es )
setParameter ( "MATERIAL", "Plates", "LINEAR/ELASTI/POISON", vs
setParameter ( "MATERIAL", "Plates", "LINEAR/MASS/DENSIT", rho_s )
addGeometry( "Plates", "SHEET", "MEMBRA", [] )

setParameter ( "GEOMET", "Plates", "THICK", beam_thickness

setParameter ( "GEOMET", "Plates", "LOCAXS", True )

setElementClassType( "SHAPE", [ "Left support plate", "Left load plate",
"Right support plate", "Right load plate" ], "MEMBRA" )

assignMaterial ( "Plates", "SHAPE", [ "Left support plate", "Left load
plate", "Right support plate", "Right load plate" ] )

assignGeometry( "Plates", "SHAPE", [ "Left support plate", "Left load

plate", "Right support plate", "Right load plate" ] )

# Interface

addMaterial( "Interface", "INTERF", "ELASTI", [] )

setParameter ( "MATERIAL", "Interface", "LINEAR/IFTYP", "LIN2D" )
setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSNY",
interf normal_stiff

setParameter ( "MATERIAL", "Interface", "LINEAR/ELAS2/DSSX",
interf shear stiff )

addGeometry( "Interface", "LINE", "STLIIF", [] )

setParameter ( "GEOMET", "Interface", "LIFMEM/THICK", beam_thickness )
imprintIntersection("Beam", "Left load plate", True)
imprintIntersection("Beam", "Right load plate", True)
imprintIntersection("Beam", "Left support plate", True)
imprintIntersection("Beam”, "Right support plate", True)

createConnection( "Interface", "INTER", "SHAPEEDGE" )

setParameter ( "GEOMETRYCONNECTION", "Interface", "MODE", "AUTO" )
setParameter ( "GEOMETRYCONNECTION", "Interface", "FLIP", False )
attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Left support

plate", [[ 1s, 0, 0 ]J] )

attachTo( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam", [[ 1s, O,
011)

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Right support
plate", [[ lstbeam_eff length, 0, 0 ]]1 )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam",
[[1s+beam_eff length, 0, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Left load plate",
[[ ls+a, beam_height, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam", [[ls+a,
beam_height, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Right load
plate", [[ lstatc, beam_height, 0 ]] )

attachTo ( "GEOMETRYCONNECTION", "Interface", "SOURCE", "Beam", [[ls+a+c,
beam_height, 0 ]] )
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if confinement=='yes':

setParameter ( "MATERIAL", "Concrete", "COMPRS/CONFIN/CNFCRV",
"VECCHI" )
elif confinement=='no':

setParameter ( "MATERIAL", "Concrete", "COMPRS/CONFIN/CNFCRV", "NONE"

)

addGeometry( "Concrete", "SHEET", "MEMBRA", [] )
setParameter ( "GEOMET", "Concrete", "THICK", beam_thickness)
setParameter ( "GEOMET", "Concrete", "LOCAXS", True )

setElementClassType( "SHAPE", [ "Beam" ], "MEMBRA" )
assignMaterial ( "Concrete", "SHAPE", [ "Beam" ] )
assignGeometry( "Concrete", "SHAPE", [ "Beam" ] )
assignElementData( "Concrete and plate", "SHAPE", [ "Beam" ] )

# FIB-BS Reinforcement
addMaterial ( "Bond-slip Reinforcement", "REINFO", "REBOND", [] )

setParameter ( "MATERIAL", "Bond-slip Reinforcement"
"REBARS/ELASTI/YOUNG", Es

setParameter ( "MATERIAL", "Bond-slip Reinforcement"
"REBARS/POISON/POISON", vs)

setParameter ( "MATERIAL", "Bond-slip Reinforcement"

"REBARS/MASS/DENSIT", rho_s )
setParameter ( "MATERIAL", "Bond-slip Reinforcement", "REBARS/PLATYP",
"VMISES")

setParameter ( "MATERIAL", "Bond-slip Reinforcement"
"REBARS/PLASTI/TRESSH", "EPSSIG" )

setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"REBARS/PLASTI/EPSSIG", [0, 0, eps, fyk, eps_uk, ftk] )
setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/DSNY",
reinf_normal_stiff)

setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/DSSX",

reinf_shear_ stiff)
if bond_slip=="FIB":

setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/SHFTYP",

"BONDS6")

setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"RESLIP/BONDS6/SLPVAL", [thau_max, thau_f, s0, sl, s2, s3, alphal)
elif bond_slip=="Shima":

setParameter ( "MATERIAL", "Bond-slip Reinforcement", "RESLIP/SHFTYP",

"BONDS4" )

setParameter ( "MATERIAL", "Bond-slip Reinforcement",
"RESLIP/BONDS4/SLPVAL", Ecm )
addGeometry( "Reinforcement truss", "RELINE", "REBAR", []
setParameter ( "GEOMET", "Reinforcement truss", "REITYP", "REITRU" )
setParameter ( "GEOMET", "Reinforcement truss", "REITRU/CROSSE", As )
setParameter ( "GEOMET", "Reinforcement truss", "REITRU/PERIME", Cp )
addElementData ( "Reinforcement truss data" )

setParameter ( "DATA", "Reinforcement truss data", "./INTERF", [] )
setParameter ( "DATA", "Reinforcement truss data", "INTERF", "TRUSS" )
setReinforcementAspects( [ "Reinf bottom", "Reinf top" ] )
setReinforcementType ( "REINFORCEMENTSHAPE", [ "Reinf bottom", "Reinf top"

], "TRUSS_BOND_SLIP" )
assignMaterial ( "Bond-slip Reinforcement", "SHAPE", [ "Reinf bottom",
"Reinf top" ] )

xliii

setParameter ( "GEOMETRYLOAD", "Left load", "DEFORM/SUPP", "Left support"
)

setParameter ( "GEOMETRYLOAD", "Left load", "DEFORM/TR/VALUE", -1 )
setParameter ( "GEOMETRYLOAD", "Left load", "DEFORM/TR/DIRECT", 2 )
attach( "GEOMETRYLOAD", "Left load", "Left load plate", [ [ 1ls+a, yl2, 0O

11)

createPointLoad( "Right load", "Point load" )

setParameter ( "GEOMETRYLOAD", "Right load", "LODTYP", "DEFORM" )
setParameter ( "GEOMETRYLOAD", "Right load", "DEFORM/SUPP", "Left support"
)

setParameter ( "GEOMETRYLOAD", "Right load", "DEFORM/TR/VALUE", -1 )
setParameter ( "GEOMETRYLOAD", "Right load", "DEFORM/TR/DIRECT", 2 )
attach( "GEOMETRYLOAD", "Right load", "Right load plate", [ [ ls+a+c,
yl2, 01 1)

addSet ( "GEOMETRYLOADSET", "Self-weight" )
createModelload( "Self-weight", "Self-weight" )

# Material property

# Element data

addElementData ( "Concrete and plate" )

setParameter ( "DATA", "Concrete and plate", "./INTEGR", [] )

setParameter ( "DATA", "Concrete and plate", "INTEGR", "HIGH" )
assignElementData( "Concrete and plate", "SHAPE", [ "Left load plate" ] )
assignElementData( "Concrete and plate", "SHAPE", [ "Right load plate" ]
)

assignElementData( "Concrete and plate", "SHAPE", [ "Left support plate"
I3

assignElementData( "Concrete and plate", "SHAPE", [ "Right support plate"

I )

# Concrete
addMaterial ( "Concrete", "CONCR", "TSCR", [] )
setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/YOUNG", Ecm )
setParameter ( "MATERIAL", "Concrete", "LINEAR/ELASTI/POISON", wvc )
setParameter ( "MATERIAL", "Concrete", "LINEAR/MASS/DENSIT", rho_c )
if concrete=="rotating":

setParameter ( "MATERIAL", "Concrete", "MODTYP/TOTCRK", "ROTATE" )
elif concrete=="fixed":

setParameter ( "MATERIAL", "Concrete", "MODTYP/TOTCRK", "FIXED" )

setParameter ( "MATERIAL", "Concrete", "SHEAR/SHRCRV", "DAMAGE" )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENCRV", "HORDYK" )
setParameter ( "MATERIAL", "Concrete", "TENSIL/TENSTR", fctm)
setParameter ( "MATERIAL", "Concrete", "TENSIL/GF1l", Gfk)
setParameter ( "MATERIAL", "Concrete", "TENSIL/CBSPEC", "GOVIND"
setParameter ( "MATERIAL", "Concrete", "TENSIL/RESTST", tensile_residual )
setParameter ( "MATERIAL", "Concrete", "TENSIL/POISRE/POIRED", "DAMAGE" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/COMCRV", "PARABO" )
setParameter ( "MATERIAL", “"Concrete", "COMPRS/COMSTR", fcm )
setParameter ( "MATERIAL", "Concrete", "COMPRS/GC", Gck)
setParameter ( "MATERIAL", "Concrete", "COMPRS/RESCST",
compression_residual )
setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDCRV", "VC1993" )
setParameter ( "MATERIAL", "Concrete", "COMPRS/REDUCT/REDMIN",
LB_lateral_cracking)
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# Layout of the Beam

rename ("SHAPESET", "Shapes", "Beam elements")

createSheet( "Beam", [[ O, O, 0 ], [ beam_length, 0, 0 ], [ beam_length,
beam_height, 0 ],[ 0, beam_height, 0 ]] )

createline( "Reinf bottom", [ 0, reinf height, 0 ], [ beam_length,
reinf height, 0 ] )

createLine( "Reinf top", [ 0, d, 0 1, [ beam_length, d , 0 ] )

createSheet ( "Left load plate", [[x11, yl1, 0 ],[ x11, yl2, 0 ], [ 1ls+a,
yl2, 0 ],[ x12,y12, 0 ],[ x12,y1l1, 0 1] )

createSheet ( "Right load plate", [[x13, yl1, 0 ],[ x13, yl12, 0 ], [
ls+a+c, yl2, 0 ],[ x14,y12, 0 ],[ x14,yl1, 0 ]] )

createSheet ( "Left support plate", [[x1lsl, ysl, 0 ],[ x1sl, ys2, 0 ],
1ls, ys2, 0 1,[ x1s2,ys2, 0 1,[ x1s2,ysl, 0 1] )

createSheet ( "Right support plate", [[xrsl, ysl, 0 ],[ xrsl, ys2, 0 ],[
ls+beam eff length, ys2, 0 ],[ xrs2,ys2, 0 ],[ xrs2,ysl, 0 ]J] )

# Support

addSet ( "GEOMETRYSUPPORTSET", "Supports" )

createPointSupport ( "Left support", "Supports" )

setParameter ( "GEOMETRYSUPPORT", "Left support", "AXES", [ 1, 2 ] )
setParameter ( "GEOMETRYSUPPORT", "Left support", "TRANSL", [ 1, 1, 0 ] )
setParameter ( "GEOMETRYSUPPORT", "Left support", "ROTATI", [ O, O, 0 ] )
attach( "GEOMETRYSUPPORT", "Left support", "Left support plate", [[ 1ls,
ys2, 01])

createPointSupport ( "Right support", "Supports" )

setParameter ( "GEOMETRYSUPPORT", "Right support", "AXES", [ 1, 2 ] )
setParameter ( "GEOMETRYSUPPORT", "Right support", "TRANSL", [ 0, 1, 0 ] )
setParameter ( "GEOMETRYSUPPORT", "Right support", "ROTATI", [ 0, 0, 0 ] )
attach( "GEOMETRYSUPPORT", "Right support", "Right support plate", [[
ls+beam_eff length, ys2, 0 1] )

addset ( "GEOMETRYSUPPORTSET", "Load support" )

createPointSupport ( "Left displacement method", "Load support" )
setParameter ( "GEOMETRYSUPPORT", "Left displacement method", "AXES", [ 1,
21])

setParameter ( "GEOMETRYSUPPORT", "Left displacement method", "TRANSL", [
0,1, 01)

setParameter ( "GEOMETRYSUPPORT", "Left displacement method", "ROTATI", [
0, 0, 01)

attach ( "GEOMETRYSUPPORT", "Left displacement method", "Left load plate",
[[ ls+a, beam_height+x12, 0 ]] )

createPointSupport ( "Right displacement method", "Load support" )
setParameter ( "GEOMETRYSUPPORT", "Right displacement method", "AXES", [
1, 21)

setParameter ( "GEOMETRYSUPPORT", "Right displacement method", "TRANSL", [
0, 1, 0 1)

setParameter ( "GEOMETRYSUPPORT", "Right displacement method", "ROTATI", [
0, 0, 01)

attach( "GEOMETRYSUPPORT", "Right displacement method", "Right load
plate", [[ lstat+c, beam height+x12, 0 ]] )

# Load

addSet ( "GEOMETRYLOADSET", "Point load" )

createPointLoad( "Left load", "Point load" )

setParameter ( "GEOMETRYLOAD", "Left load", "LODTYP", "DEFORM" )
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if C50_60 == 'smaller_equal': # Concrete class [-]
fctm = 0.3*fck** (2/3)
elif C50_60 == 'larger':

fctm = 2.12*%1n(1+0.1*fcm)
rho_c=2.5e-09 # Mass Density [T/mm3]
Gfk=0.073*fcm**0.18 # Tensile Fracture Energy [N/mm]
Gck=250*Gfk # Compressive Fracture Energy [N/mm]
tensile_residual = 0.001
compression_residual = 0.01

# Reinforcement
vs=0.3 # Poisson Ratio [-]
Es=200000 # Young's Modulus
rho_s=7.85e-09 # Mass Density [T/mm3]
reinf_normal_stiff=(100*Ecm/mesh_size) # Normal Stiffness of bond-slip
interface [N/mm3]
reinf shear_ stiff=0.l*reinf normal_stiff # Tangential Stiffness of bond-
slip interface [N/mm3]
As=(0.25*bar_numbers*pi* (bar_diamater**2))+(0.25*bar_numbers2*pi* (bar_dia
mater2**2)) # Area of Reinforcement [mm2]
Cp=(bar_numbers*pi*bar_diamater)+(bar_numbers2*pi*bar_diamater2) #
Perimeter of Reinforcement [mm]
LB_lateral cracking = 0.4 # [-]
eps = (fyk/Es) # [-]
if steel_class == "A":

ftk = 1.05 * fyk

eps_uk = 2.5/100
elif steel class == "B":

ftk = 1.08 * fyk

eps_uk = 5/100
elif steel class == "C":

ftk = 1.15 * fyk

eps_uk = 7.5/100
if rebar == "ribbed":

thau_max = 2.5*sqrt (fck) # Pullout test

s0 = 0.001 # Close to zero should be chosen

sl =1
s2 =2
s3 = 0.7*bar_diamater # Estimation from literature
alpha = 0.4
thau_f = 0.4*thau_max
elif rebar == "smooth":

thau_max = 0.l*sqrt (fcm) # Pullout
s0 = 0.001 # Close to zero

sl = 0.01
s2 = sl
s3 = sl

alpha = 0.5
thau f = thau max

# Interface Between Load/Support Plate and Beam
interf normal_stiff=Ecm/mesh_size # Normal Stiffness [N/mm3]
interf shear_stiff=0.0l1*interf normal_stiff # Shear Stiffness [N/mm3]



setModelAnalysisAspects (["STRUCT"])
setModelDimension ("2D"
setDefaultMeshOrder ("QUADRATIC")
setDefaultMesherType ("HEXQUAD")
setDefaultMidSideNodeLocation ("LINEAR")
showWorkingPlane (True)

# Units

setUnit ("LENGTH", "MM")
setUnit ("MASS", "KG")
setUnit ("FORCE", "N")
setUnit ("TIME", “SEC")
setUnit ("TEMPER", "CELSIU")
setUnit ("ANGLE", "DEGREE")

# Calculations

# Geometry

# Beam and Reinforcement

beam_length= beam_eff length+2*1ls # Length of the beam [mm]
reinf_height= beam_height-d # Concrete Cover [mm]

# Mesh
if beam_height<=800:

mesh_size=beam_height/20 # 20 elements over the beam height [mm]
elif beam_height>800:

mesh_size=40 # a mesh size of 40 mm [mm]

# Support Plate

plate_length=2*mesh_size # Plate length [mm]
plate_Sheight=-mesh_size # End of the support plate (Y-direction)
ys1=0

ys2=plate_Sheight

x1sl=1s-0.5*plate_length
x1s2=1s+0.5*plate_length

x1s3=1s+beam_eff length-0.5*plate_length
x1ls4=1s+beam_eff length+0.5*plate_length
xrsl=xlsl+beam_eff length
xrs2=xls2+beam_eff length

# Load Plate

plate_Lheight=mesh_size # Height of Load Plate [mm]
x1ll=1s+a-0.5*plate_length
X12=1s+a+0.5*plate_length
x13=1s+a+c-0.5*plate_length
xl4=1s+a+c+0.5*plate_length

yll=beam_height

yl2=beam height+plate_Lheight

# Concrete

ve=0.2 # Poisson Ratio [-]

fcm=0.8*fcc # Cylinder Compressive Strength [MPa]

delta_f = 8 # [MPa]

fck=fcm-delta_f # Characteristic Strength [MPa]

Ecm= (1-Ecm_reduction)*21500*(0.1*fcm) **0.33 # Young's Modulus [MPa]
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# File name
dpf_folder_name = "d_350_75"

# Geometry

beam_eff length=1800 # Effective span of the beam [mm]
beam_thickness=240 # Width of the beam [mm]

beam_height=350 # Height of the beam [mm]

1s=300 # Start of the left support plate [x-direction] [mm]
a=881.25 # Shear Span of the beam [mm]

d=300 # Effective depth of the beam [mm]

c=37.50 # Distance between loading points of the beam [mm]

# Material Properties

# Concrete

fce=75 # Cubic Compressive Strength [MPa]

C50_60 = 'larger' # Ooncrete class options: smaller_equal or larger
Ecm_reduction=0.00 # Maximum allowed=0.15 [RTD guidelines]

# Reinforcement

bar_numbers=2 # Number of Rebars with first dimater [-]

bar_diamater=24 # Diameter_ 1 of Reinforcement [mm]

bar_numbers2=0 # Number of Rebars with second diameter [-]
bar_diamater2=0 # Diameter_2 of Reinforcement [mm]

fyk=425.75 # Yield Strength [MPa]

steel class = "B" # Options: A, B, C

rebar = "ribbed" # Options: ribbed or smooth; smooth coded according the
FIB guidelines

# Displacement from experiments

displacement= 50 # [mm]

# Numerical model options

concrete="fixed" # Options: fixed or rotating

bond_slip="Shima"# Options: Shima or FIB

confinement='no'# Options: yes or no

analysis= 'on' # Autorun analysis: on or off

folder_location = "C:/Diana_numerical models/" # Safe location: current
code saves to C drive ("C:/Diana_numerical models/"), change if required

Automated model

W

# Pacakage imports

from math import log as 1ln
from math import sqrt, pi

# Create project
dpf_location = folder location+dpf_ folder_ name
newProject (dpf_location, 1000, {})

# Setup
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# Solve

setUnit ( "FORCE", "KN")
#runSolver( [] )

# save

saveProject ()

# Export .dat and .dcf files
dpf_location

dpf_folder_name
data_file=dpf location+".dat"

expo;tModel( dpf_location+".dat"
saveAnalysisCommands ( "NLFEA_NR", dpf location+" NLFEA NR.dcf",

’

5)

6 )

xlvi
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