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Abstract 

Flexural shear failure is a brittle failure mode that can occur in reinforced concrete (RC) beams without 
stirrups due to the combination of flexural and shear stresses. The failure mode begins with vertical 
flexural cracks at the bottom of the RC beam central span area due to flexural tensile stresses, followed 
by diagonal cracks. During stabilization, a diagonal crack enlarges, leading to flexural shear failure. The 
failure mode is brittle due to the significant bearing capacity reduction making it more difficult to predict. 
 
Accurately predicting the capacity of concrete structures is important for ensuring their safety, especially 
in the case of brittle failures. Various design codes are available to design and assess such structures, 
but an advanced numerical method called the Non-Linear Finite Element Analysis (NLFEA) is an alter-
native to these codes. NLFEA allows for more detailed and accurate modeling of the structure behavior 
by considering material, geometry, and boundary conditions nonlinearity. By using NLFEA, engineers 
can optimize their design and gain a deeper understanding of the behavior of RC beams without stir-
rups. The NLFEA model requires several modeling decisions to accurately simulate the structures’ be-
havior.  
 
Sensitivity analysis on different modeling aspects is crucial to obtain a numerical model that can accu-
rately simulate the RC beam. To be considered accurate, the numerical model should simulate approx-
imately the same damage progression, failure mode, and failure load compared to the experiments. 
The sensitivity analysis is performed to modeling aspects with uncertainties identified during the litera-
ture review. These uncertainties are in the constitutive model, finite element discretization, and analysis 
procedure modeling aspects. Sensitivity analysis on various modeling aspects is performed using four 
experimental beams with distinct geometrical sizes, while some material configurations differ. This re-
search investigates whether, using sensitivity analysis, a numerical model can be obtained that accu-
rately simulates flexural shear failure for RC beams without stirrups. 
 
The total strain crack models’ crack orientation sensitivity analysis shows that the rotating crack orien-
tation can suffer from over-rotation, which causes delamination of the concrete cover. Over-rotation 
also shows a strong correlation with many non-converged steps. In addition, the fixed crack orientation 
simulates a more realistic representation of the experimental failure mode. The compression-compres-
sion confinement sensitivity analysis shows that this modeling aspect does not influence simulations for 
cases with flexural shear failure much and can thus be excluded. A slightly lower failure load is simu-
lated with the confined numerical model for one of the four cases. The sensitivity analysis on the FIB 
bond-slip relation and Shima bond-slip relation reveals that the former has a lower initial stiffness when 
using the same material configurations for their modeling assumptions. Due to the lower initial stiffness, 
there is a higher relative displacement between the concrete and reinforcement. In some cases, this 
results in either increased convergence problems, a higher possibility of dowel failure, a lower failure 
load, or a combination of them.  
 
For the fourth sensitivity analysis modeling aspect, the full Newton-Raphson (NR) iteration scheme 
simulations are slightly more representative of the experiment than the Secant iteration scheme. This 
result is obtained despite the full NR scheme having more convergence problems during the initial 
crack. In addition, for a few cases, the Secant iteration scheme simulates symmetrical flexural shear 
failure due to failing to include material nonlinearity.  
 
Sensitivity analysis of the reinforcement elements shows that simulations with truss elements are more 
accurate than beam elements. The beam elements models show compatibility issues when combined 
with plane stress elements. The interface elements fail to correctly tie the beam elements’ extra rota-
tional degree of freedom to the transitional degree of freedom. This incompatibility results in conver-
gence problems. Also, higher relative displacements and a higher stiffness after the initial crack is no-
ticed in some cases compared to the experiment. The final sensitivity analysis reveals that the element 
size sensitivity increases with an increase in the geometrical beam size. Too-large element sizes de-
crease the accuracy of simulations. In contrast, too-small element sizes increase the computational 
cost but can also simulate irregular crack patterns not representative of the experiment. A formula is 
introduced from the sensitivity analysis for beams up to a depth of 1200 mm to predict an appropriate 
element size.  
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The sensitivity analysis reveals that the most accurate numerical model is a fixed crack orientation and 
the Shima bond-slip relation combined with truss elements using the full NR iteration scheme. The 
sensitivity analysis is followed by a quantitative analysis of 76 experimental cases to verify the accuracy 
of the obtained numerical model for a broad range of differently configured experimental cases. Analysis 
shows that dowel failure can get captured due to an excessive change in the damage-based shear 
retention factor using the obtained numerical model. However, decreasing sensitive load step sizes to 
very small ones results in flexural shear failure. Also, the quantitative simulations show that the numer-
ical model simulations are largely accurate, with 62 simulated cases below a failure load percentage 
difference of 10 %  compared to the experiment. The average percentage difference is 6 % between 
the simulations and the experiment. 
 
Analysis shows that this research successfully obtains a numerical model that accurately simulates 
flexural shear failure for RC beams without stirrups. The information obtained from this research can 
be used to make modeling choices. In addition, some uncertainties for other modeling aspects are 
introduced for future research. These modeling aspects are the shear retention model, concrete ele-
ments compatibility with the reinforcements beam elements, and the global element size for beams 
deeper than 1200 mm. 
 
Keywords:  
Element size, Flexural shear failure, Modeling aspect, Nominal shear strength, Non-Linear Finite ele-
ment Analysis, Numerical modeling, Quantitative analysis, Reinforced concrete beams without stirrups, 
Sensitivity analysis, Size effect
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𝛼𝐸 Aggregate type-dependent scaling factor 

Ned Axial force (from loading) 
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M Bending moment 

𝛽 Brittleness numbers (Gustafsson, Hillerborg, and Carpinteri) 
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 𝐺𝐶𝑘, 𝐺𝑐 Compressive fracture energy  

Ac Concrete area 

Vc Concrete compression zone shear force 

fc,c Concrete compressive cube strength 

fc Concrete compressive strength 

Ax, Ay Contact areas 

w Crack opening 

𝛿 Crack sliding 
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H Depth  
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Δ𝑒 Distance neutral axis and center of the internal lever arm 

c Distance point loads (four-point experiment) 

d Effective depth  

𝜀𝑥 Effective shear depth longitudinal strain (mid-depth) 

𝑎
𝑑⁄  Effective span-to-depth ratio 

ℎ Equivalent length, crack bandwidth 

VEC2 Eurocode 2 shear force  

𝛼 Failure mode index 

VMC 2010 FIB Model Code 2010 shear force  

𝐺𝐹 Fracture energy 

 𝐺𝐹𝑘 Fracture energy 

scr Height of a fully developed crack 

𝑆0 Initial/linear slip (section 0) 

S  In-plane principal strain 
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 𝛽𝜎
𝑚𝑖𝑛  Lateral cracking minimum reduction factor compressive strength 

zc Lever arm 
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 ρ  Longitudinal steel ratio 

𝛼𝑐𝑐𝑘𝑡  Long-term effect coefficient × concrete determination reduction factor 

𝛽min Lower bound reduction factor  

fctk;0.05 Lower-bound characteristic tensile strength 

E1 Maximal principal strain 
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 𝑓𝑐𝑡𝑚  Mean tensile strength 

𝐺f
I Mode-I fracture energy 

Kn Normal stiffness 

𝜎 Normal stress 
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peak 
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 ν  Poisson ratio 
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Vs Shear force (shear direction) 
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Ks Shear stiffness 

Vu Shear strength 

𝜏 Shear stress 

tt Shear traction 
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k Size effect factor 

bw Smallest width cross-section 

fyk Steel characteristic yield strength 

𝛾s Steel safety coefficient 
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𝑘𝑣 Strain effect and member size factor 
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cr  Stress at the crack 
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𝜎𝑁 The nominal strength of the specimen  

Vd The shear force from the dowel action 

𝛼u The ultimate strain  
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STSx Total interface shear traction 
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FEA Finite Element Analysis 

FEM Finite Element Method 

FUFBN 
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1 Introduction 

1.1 Background 

Flexural shear failure is a brittle failure mode commonly observed in reinforced concrete (RC) beams, 
caused by the combination of flexural and shear stresses. The brittle nature of the flexural shear failure 
mode makes it more difficult to predict and requires great care. Accurately predicting the capacity of 
concrete structures is crucial for ensuring their safety, and designing such structures can be done using 
various design codes. The different design codes use analytical, empirical, or mechanical models. How-
ever, an advanced numerical method called the Non-Linear Finite Element Analysis (NLFEA) can be 
used as an alternative to these design codes. The RC beams without stirrups failing from flexural shear 
failure exhibit non-linear behaviors, which can be modeled using NLFEA. NLFEA allows for more de-
tailed and accurate modeling of the behavior of RC beams without stirrups, considering material, ge-
ometry, and boundary conditions nonlinearity [1]. NLFEA is especially useful for large structures, struc-
tures consisting of complex boundary conditions, or structures where a brittle failure mode is expected. 
By using NLFEA, engineers can gain a deeper understanding of the behavior of RC beams without 
stirrups and optimize their design for improved performance and safety. 
 
The NLFEA model relies on logical, numerical modeling decisions to accurately simulate the structures’ 
behavior. These modeling choices affect the various shear transfer mechanisms contributing to the 
shear capacity of RC beams without stirrups. The mechanisms are aggregate interlock, residual tensile 
stresses, concrete compression zone, and dowel action. To make informed modeling choices, a theo-
retical analysis is necessary to gain a deeper understanding of these mechanisms and the modeling 
choices they influence. The modeling choices can significantly impact simulation results, potentially 
leading to either underestimating or overestimating the structural capacity. The best way to validate the 
modeling assumptions and uncertainties is by performing sensitivity analysis on the numerical model 
and validating the simulations with a wide range of differently configured cases. These uncertainties 
are in the constitutive model, finite element discretization, and analysis procedure. A reference numer-
ical model found from past research and guidelines [2] must be introduced first, after which modeling 
aspects can be analyzed. Sensitivity analysis on numerical models is crucial to improve the accuracy 
and successfully simulate different RC beams without stirrups failing from the flexural shear failure 
cases. 
 
The study numerically simulates RC beams without stirrups failing from flexural shear failure for cases 
with different geometrical and material configurations. Investigating and comparing different configura-
tions is essential to verify the numerical model's accuracy and limitations. As a boundary for the exper-
iment selection, only experiments that fail due to the flexural shear failure mode are implemented using 
NLFEA for this report. The shear capacity predicted by design equations proposed in some codes of 
practice is also compared to the numerical model simulations. Two codes that will be used are the 
Eurocode 2 (EC2) [3]  and FIB Model Code 2010 (FIB MC 2010) [4]. 
 
This study aims to obtain a numerical model using sensitivity analysis to simulate flexural shear failure 
for differently configured RC beams without stirrups. The failure mode, correct damage progression, 
and failure load are used to judge the reliability of this model for a wide range of differently configured 
beams and should also be applicable for future research. In addition, as pilot research, this report will 
also address initial expression on capturing the size effect for the RC beams without stirrups using 
NLFEA. The size effect is a phenomenon that describes the decrease in nominal shear strength as the 
structure size increases [5] [6]. When analyzing geometrically large beams, the size effect is essential, 
as it can be severe for such structures. Various theories have been proposed to account for the size 
effect, with no widely accepted consensus. With all the capabilities of the NLFEA, it is hoped that this 
advanced numerical method can capture this effect.  
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1.2 Research question 

This research investigates whether, using sensitivity analysis, a numerical model can be obtained that 
accurately simulates flexural shear failure for RC beams without stirrups. Thus, the main research ques-
tion for this thesis is: 
Can a numerical model be obtained using sensitivity analysis to simulate the flexural shear fail-
ure for RC beams without stirrups? 
 
Four sub-questions must be answered to get a conclusion on the main research question and pilot 
research. These sub-questions also help logically construct the report. The sub-questions include a 
brief description for each of them and are given below: 
 
Sub-question 1: What is the flexural shear failure for RC beams without stirrups, and how are 
experimental cases selected to study this failure mode on the beam with numerical simulations? 

Flexural shear failure is a brittle failure mode for RC beams without stirrups and is caused by a 
combination of flexural and shear stresses. Different requirements should be met before 
experimental cases are selected for numerical analysis. The following three requirements are 
important:  

• Firstly, the effective span-to-depth ratio for selected RC beams without stirrups cases should be 
within a boundary. This boundary is because the flexural shear failure mode, which is the focus 
failure mode in this research, heavily depends on the effective span-to-depth ratio. 

• Secondly, the selected experimental cases should comprise beams with various geometrical and 
material configurations. This requirement will allow a statement based on the quantitive 
simulations with different configurations after sensitivity analysis of the numerical model.  

• Thirdly, a set of selected experimental cases should be geometrically scaled beams. These 
beams will be used during the pilot research to determine if the numerical method can capture 
the size effect. 
 

Sub-question 2: Does model uncertainty during the numerical model sensitivity analysis cause 
inaccurate results? 

In the past, different studies have been done on model uncertainty. These studies hoped to reduce 
the model uncertainty bias from numerical models. However, getting a robust model for specific 
cases is still challenging, from only reports and guidelines. Therefore, a reference numerical model 
will be set up with recommendations from reports and guidelines and then analyzed. Sensitivity 
analysis is done for the constitutive model, finite element discretization, and analysis procedure. 
The model uncertainty reason causing inaccuracy should be stated if the numerical model results 
in inaccurate results for the experimental simulations after sensitivity analysis. 

 
Sub-question 3: How do the numerical model simulations compare to the experimental results?  

From previous reports, appropriate cases will be applied to study the accuracy of the obtained 
numerical model from sensitivity analysis. A comparison with the experimental results using the 
failure load percentage difference will show the performance of the numerical mode for all cases. 
Design codes (EC2 and FIB MC 2010) will also be used to compare the numerical model 
performance. 
 

Sub-question 4: According to the pilot research, can numerical analysis capture the size effect 
for the RC beams without stirrups that fail due to flexural shear failure? 

The size effect is described as a decrease in the nominal shear strength with a geometrical increase 
in the structure. The nominal shear strength is a parameter dependent on the size effect, as there 
is no size effect if the nominal shear strength is independent of the structure size. A set of 
geometrically scaled experimental cases will be used to show initial expressions on if the numerical 
method can capture the size effect.  
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1.3 Objectives and deliverables  

At the end of this research, whether a numerical model is successfully obtained using sensitivity anal-
ysis to simulate the flexural shear failure for RC beams without stirrups is answered. If the model results 
are inaccurate, the reasoning for this should be given. In addition, pilot research will be done for initial 
expressions on capturing the size effect numerically. With the initial expression, the research on the 
size effect can be furthered. 
 

1.4 Research approach 

Now that the research question, objective, and deliverables hoped to be obtained are known, a research 
approach is put together. A step-by-step overview of the research method in the correct order is given 
below. 
 
Firstly, the literature review is done on some important topics. Understanding the flexural shear failure 
for RC beams without stirrups and the damage progression during a failure is crucial. The reason for 
understanding this well is that the numerical model should replicate this behavior during its simulation. 
Because of the flexural shear failure, the shear capacity is vital, which is contributed by the four shear 
transfer mechanisms. The four shear transfer mechanisms are the aggregate interlock, residual tensile 
stresses, concrete compression zone, and dowel action. Also, when modeling the numerical model, 
including these four shear transfer mechanisms is essential. 
 
After understanding the failure mode and different mechanisms that affect the shear capacity, the size 
effect is also explained. The size effect must be included in the analysis of RC beams without stirrups 
that fail in shear, especially for large beams. In addition, because design codes will be used for com-
parison with the numerical model, understanding their respective theories on the structures’ capacity 
and calculations is important. Finally, in the literature review, the numerical model can be addressed. 
The advanced numerical method, "Non-Linear Finite Element Analysis"(NLFEA), will simulate the ex-
perimental cases. It should be kept in mind that the numerical method depends on logical, numerical 
modeling assumptions to include certain behaviors. Some structures will also have specific require-
ments to result in accurate simulations. Numerical modeling consists of the constitutive model, finite 
element discretization, and analysis procedure. Guidelines and past reports can help significantly in 
modeling assumptions but also help identify the model uncertainties.  
 
Before the numerical model sensitivity analysis can be done to get a robust numerical model, experi-
mental cases on RC beams without stirrups should be selected for the numerical analysis. The experi-
mental cases will be chosen based on beams with different geometrical configurations, material config-
urations, and the effective span-to-depth ratio boundary. The reason for selecting cases based on the 
effective span-to-depth ratio is that only cases with flexural shear failure are chosen, with the failure 
mode depending on the ratio. A wide range of cases with different configurations is needed for the 
cases. This approach should produce a numerical model verified with various configurated beams. Also, 
a series of geometrically scaled beams should be included, as these will be used for the pilot research 
on size effect analysis. Here the beam geometry is an important parameter in the beam selection, as 
geometrically small and large beams are required for the size effect analysis. 
 
Following the selection of experimental cases, the next step is to validate the modeling assumptions 
and reduce model uncertainties. The best way to do this is by qualitatively performing multiple sensitivity 
analyses of the numerical model with some experimental cases. These initial cases should be differently 
configured beams. The numerical model sensitivity analysis is done for different modeling aspects from 
the constitutive model, discretized model, and analysis procedure. This analysis should lead to a robust 
numerical model that successfully simulates the flexural shear failure for RC beams without stirrups. 
With the numerical model found, the remaining experimental cases are simulated and compared to see 
if the results are acceptable from a quantitative analysis. These simulations should also show the limi-
tations of the obtained numerical model. The accuracy is based on the correct damage progression, 
failure mode, and failure load. In addition, the numerical model cannot be used if performance is unsat-
isfactory and sensitivity analysis should be performed further. 
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Finally, the size effect analysis can be performed, and an initial expression is found on whether the size 
effect can be captured with the numerical approach. The set of geometrically scaled experimental cases 
is simulated with the numerical model for the size effect analysis. During the size effect analysis, com-
parisons will be made to the experimental results, Size Effect Laws, and design codes to identify limi-
tations or shortcomings in the performances of the methods mentioned. 
 
Finally, the report can conclude whether a numerical model is found using sensitivity analysis that can 
successfully simulate the flexural shear failure for RC beams without stirrups. In addition, for the pilot 
research, the results of the initial expression on whether the size effect can be captured with the nu-
merical method are addressed. 
 

1.5 Thesis outline 

This report is structured with five main chapters, which help reach the research goal. The first Chapter 
introduces the thesis background, research question, objectives, and approach. A brief overview of the 
other main Chapter is given below: 
2 Literature review: 
The failure mode, size effect, design codes, and shear transfer mechanisms are explained during the 
literature review. In addition, the background for the numerical model, assumptions from previous 
reports, and model uncertainties are addressed. These steps for the numerical model help with a 
reference numerical model and identify the model uncertainties. 
3 Experimental case selection for numerical simulations:  
A selection is made for experimental cases using boundaries introduced during the literature review. 
The boundaries are based on RC beams without stirrups with flexural shear failure having different 
geometrical and material configurations. Also, the effective span-to-depth ratio boundary should be kept 
in mind, and a set of experimental cases should be geometrically scaled to study the size effect. 
4 Numerical model:  
The literature review has helped with a reference numerical model consisting of assumptions and model 
uncertainties. The uncertainties should be reduced to get a robust numerical model for the size effect 
analysis. Sensitivity analyses on the numerical model can do this elimination of uncertainties until a 
robust model is obtained with the initial cases. After that, the other experimental cases were simulated 
for a quantitive analysis of the obtained numerical model to check its accuracy and limitations. Lastly, 
this Chapter will use the geometrically scaled experimental cases for the size effect analysis. During 
this analysis, the behavior of the nominal shear strength is of great importance.  
5 Conclusion and recommendations:  
The final Chapter summarizes all findings during the study to answer all sub-research questions. At 
last, the main research question can be answered with a conclusion, and recommendations for future 
work will follow this. 
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2 Literature review 

This chapter performs a literature review, giving background information and explaining essential topics 
for this report. The chapters' content is specified in the order they will be presented, along with the 
motivation for the subjects: 

• Physical structure 
This study focuses only on RC beams without stirrups where flexural shear failure occurs. There 
are more possible failure modes for the beams, but only experiments that fail due to flexural shear 
failure are selected for analysis. This type of failure and its behavior will be explained before, during, 
and after the failure occurs. Next, all four shear transfer mechanisms will be discussed to 
understand the theoretical background and their contribution to the shear capacity. The four shear 
transfer mechanisms are the aggregate interlock, residual tensile stresses, concrete compression 
zone, and dowel action. This knowledge will help include the mechanisms in the numerical model. 
Besides this, this Chapter will also explain the size effect, which increases with the beam size. 

• Numerical model 
The numerical model is an essential aspect of the literature review. This topic will consist of three 
sections: constitutive model, finite element discretization, and analysis procedure. For each section, 
modeling aspects will also be identified that require sensitivity analysis.  

• Design codes 
This section will discuss the design codes, EC2 and FIB MC 2010. These codes will be compared 
with the numerical model in Chapter 4.  

 

2.1 Physical structure 

2.1.1 Reinforced concrete beams subjected to flexural shear failure 

The introduction briefly explained the flexural shear failure, but this Chapter will describe it more in-
depth. For RC beams without stirrups, different failure modes can be found. Experiments show that the 
parameter effective span-to-depth ratio is critical for the failure mode with concentrated loading. Ac-
cording to Nawy [1], the possible failure types depend on the effective span-to-depth ratio, and their 
relation is given in Table 1. In addition, Slobbe et al. [2] combined experiments from two studies [3] [4] 
in their research to get the relation between the effective span-to-depth ratio and the failure mode, which 
is given in Table 1. 
 

Table 1 Effective span-to-depth ratio and failure modes relation: Nawy (left) [1] and Slobbe et al. 
(right) [2] 

Failure 𝒂
𝒅⁄   (According to Nawy) 𝒂

𝒅⁄   (According to Slobbe et al.) 

Flexure failure Exceeds 5.5 ≥ 7.0 

Flexural shear failure Between 2.5 and 5.5 Between 3.0-7.0 

Shear compression failure Between 1 and 2.5 < 2.5 

 
The flexural shear failure begins with vertical flexural cracks, also called main cracks, at the bottom of 
the RC beam central span area due to flexure tensile stresses. The main cracks also cause the rotation 
of the principal stresses. Following the cracks, the bond between the longitudinal reinforcement and 
surrounding concrete gets destroyed at the support. Next, brittlely, a couple of diagonal cracks develop 
at approximately 1.5d to 2d away from the surface of the beam’s support. During stabilization, one of 
the diagonal cracks enlarges. This tensile crack is towards the top compression fibers of the beam 
where the point load is active. As a result of further propagation of the diagonal tensile crack, the flexural 
shear failure mode is caused. The diagonal tensile crack is caused due to the development of secondary 
cracks. According to Yang et al. [5], the critical diagonal crack starts from the last flexural crack. As a 
result of unstable secondary cracks, there is a fast drop in bearing capacity and increased deflection as 
the flexural shear crack opens. 
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In short, the flexural shear failure mode results from the combination of the flexural and shear stresses. 
This failure mode is brittle due to the significant bearing capacity reduction. Figure 1 shows the flexural 
shear failure crack pattern for an experiment. The right side shows the crack pattern around the rein-
forcement in the same figure. 
 

 
Figure 1 Flexural shear failure crack pattern: experimental [6] (left) along the longitudinal reinforce-

ment visualized [1] (right) 
 
During the simulation of the numerical cases, the failure mode behavior described above should be 
captured to get flexural shear failure. Luo et al. [7] studied the crack pattern of different beam depths. 
During the numerical analysis, the expected crack patterns are essential for this report to know what 
crack pattern output to expect from the simulations. The different crack patterns for the varying beam 
depths are given in Figure 2: 

 
Figure 2 Crack pattern for varying beam depths [7] 

 

2.1.2 Shear transfer mechanisms 

The early shear strength predicting models used to be based on geometrical theories. There are two 
geometrical model types: arch action and beam action. The type of model depends on the effective 
span-to-depth ratio. Kim et al. [8] state that beams with an effective span-to-depth ratio smaller than 2.5 
are determined by the arch action and are called large beams. Beams with a ratio larger than 2.5 are 
dominated by the beam action and are called slender beams. An overview of these two model types is 
shown in Figure 3: 
 

 
Figure 3 Arch action (left) and beam action (right) [9] 

 
A downside of the geometrical theories is the absence of all shear transfer mechanisms. The mecha-
nisms govern the shear failure for slender beams. This chapter’s section will explain the four types of 
shear transfer mechanisms. According to Košćak et al. [10], the critical shear crack shape is correlated 
with the crack opening and sliding behavior. The shear sliding behavior is typical for reinforced concrete 
at the ultimate limit state (ULS). These behaviors, in turn, depend on the shear transfer mechanisms. 
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An overview of the four shear transfer mechanisms and the location they are active are given in Figure 
4. 

 
Figure 4 Four shear transfer mechanisms [11] 

 
Garnica [12] states that some shear transfer mechanism grows in importance during the crack propa-
gation while others lose their significance. It should be said that these average results can be vastly 
different depending on the case configuration in question. As will be seen further in this section, the 
shear transfer mechanisms depend on many factors. Košćak et al. [10]  found the average contributions 
of these four mechanisms for RC beams without transverse reinforcement and are given in Table 2: 
 

Table 2 Shear transfer mechanisms contribution [10] 

Shear transfer mechanism Average contribution 

Aggregate interlock 62.7 % 

Residual tensile stresses 23.2 % 

Concrete compression zone 13.8 % 

Dowel action 6.5 % 

 
2.1.2.1 Aggregate interlock 

The aggregate interlock mechanism can occur if the aggregate size is larger than the crack width, as 
shear forces can be transferred [2]. Walraven [13] described aggregate interlocking as an effect that 
allows for the development of shear and compressive stresses caused by the tangential and normal 
direction displacements between two cracked surfaces. The stresses are developed due to the “inter-
lock” of two opposite faces as the bulging aggregates cause this interlock. According to Huber et al. 
[14], the potential shear transfer between two opposing crack surfaces depends on the crack kinemat-
ics/pattern and the roughness of the crack surface. Important parameters for this mechanism are the 
concrete’s fracture mode, compressive strength, aggregate size, and crack width. 
 
Several models for this mechanism have been developed over the years, but the Walraven model has 
a physical basis. This model relates the crack sliding (𝛿) and crack opening (𝑤) to the shear stress (𝜏) 
and compressive stress (𝜎). The mentioned stresses are visible in Figure 5 and calculated with the 
formula in Equation [ I ] [15]: 
 

 
Figure 5 Aggregate interlock mechanism [16] 

 

(
𝜎
𝜏
) = 𝜎𝑝𝑢 ∗ (

𝐴𝑥 + 𝜇  𝐴𝑥
𝐴𝑦 − 𝜇  𝐴𝑦

),   

Equation [ I ] 
With: 

 𝜎𝑝𝑢 = 6.39  𝑓𝑐0.56 
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The effect of aggregate interlock can be studied with experiments such as roughness, push-off, and 
shear tests. Beams with shear cracks close to the point load show higher shear strength and more 
significant contribution from aggregate lock than beams with only cracks at the center of the shear span. 
Jayasinghe et al. [11] say the best way to safeguard the aggregate interlock mechanism is by using 
stirrups. However, in this thesis, beams with stirrups will be neglected. 
 
2.1.2.2 Residual tensile stresses 

According to Hordijk [17], the residual tensile strength of concrete consists of its ability to transfer tensile 
stresses after the concrete has cracked. These tensile stresses are created near the tip of the concrete 
and soften as the crack opening increases. A popular model to express the tension-softening behavior 
of concrete is Hordijk's exponential stress-crack width model, visible in Figure 6. 
 

 
Figure 6 Hordijk softening curve stress-strain relation [17] 

 
The smaller the crack width, the more significant the residual tensile stress contribution. After crack 
widths of 0.1 mm, the aggregate interlocking mechanism dominates the residual tensile stress. Accord-
ing to Yang [6], the total interlocking effect on the shear resistance is ten times greater than that of the 
tension-softening force after 0.1 mm, making the residual tensile stress effect negligible. Further infor-
mation about Hordijk's exponential stress-crack width model will be explained during the literature re-
view of the numerical model. 
 
2.1.2.3 Concrete compression zone 

The stress distribution in uncracked reinforced concrete is based on elasticity theory. The shear stress 
in the compression zone of uncracked concrete can be calculated if the boundary conditions are known. 
Axial compression increases the shear resistance, while axial tension decreases the shear resistance. 
According to Slobbe et al. [2], if there is no axial compression, the contribution of the concrete com-
pression zone to the shear capacity is small. If the beam depth does not show large deviations along 
the length, it can be assumed that the flexural cracks form a tooth structure. The tooth structure is 
shown in Figure 7.  
 

 
Figure 7 Concrete tooth model [18] 

 
The beams analyzed in this study have a continuous depth along the length of the beam, making it 
possible to use the model based on Mörsch’s formula [19]. This model accurately predicts the shear 
force in the uncracked concrete zone (𝑉𝑐). Mörsch predicts the maximum shear stress to be reached 
at the neutral axis. A parabolic stress distribution is expected above the neutral axis. Constant stress 
from the neutral axis to the level of flexural reinforcement is expected below the neutral axis. 
 
The classical beam theory can describe the concrete’s compression zone stress distribution during the 
stabilized cracking phase. It is assumed that the entire uncracked contributes to the uncracked com-
pressive zone. The shear contribution from the uncracked compression zone for slender beams be-
comes small. This small contribution is because of the small depth of the compression zone.  
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2.1.2.4 Dowel action 

The final shear transfer mechanism is the dowel action. The dowel action refers to the capacity of the 
flexural reinforcement to transfer shear forces across the crack. According to Vintzēleou [20], this action 
resists the opening and sliding of the crack. In the case of RC beams, the flexural reinforcements are 
the longitudinal reinforcements, which must follow a transverse displacement to activate the dowel ac-
tion. The longitudinal reinforcement transverse displacement happens when the beam deflects due to 
axial loading causing the concrete’s displacement around the bar. Therefore, the more significant the 
longitudinal reinforcement amount, the larger the dowel action contribution, which is also said by Slobbe 
et al. [2]. According to Paulay et al. [21], three mechanisms can cause dowel action: bending, shearing, 
and kinking. Dowel failure is decided by concrete splitting, where the effective area of the concrete 
under tension is essential. Vintzēleou et al. [22] say concrete splitting is more common in RC beams if 
the concrete cover is less than 6-7 times the bar diameter. For thin concrete covers, the splitting cracks 
may be present either at the faces of the section or the bottom.  
 
The analytical approach used for the dowel action is based on the beam on an elastic foundation anal-
ogy [22]. Steel bars and the concrete below them are considered a beam elastically supported by the 
concrete above them.  
 

2.1.3 Size effect  

According to Bažant et al. [23] [24], the size effect should be accounted for flexural shear failure for RC 
beams without stirrups. The size effect is described as the phenomenon due to which the nominal shear 
strength (𝜎𝑁) decreases as the beam size increases [25] [24]. According to Bažant et al. [26], the nom-
inal shear strength is calculated with the formula in Equation [ II ]: 
 

 𝜎𝑁 =
𝑉

𝑏𝑑
 

Equation [ II ] 
 
One of the main influencing factors of the size effect is the release of stored energy during crack prop-
agation. The release of stored energy correlates with the fracture zone length and area size. Yang et 
al. [27]  found that an increased beam depth or decrease in the effective span-to-depth ratio has a 
higher energy release rate. Due to the higher energy release rate, crack width increases, a more brittle 
failure occurs, and the nominal shear strength decreases. With the increase of the beam depth, there 
is less contribution from the aggregate interlock to the shear capacity due to the increasing crack width.  
The relation of the size effect to the increasing beam depth was already well known. However, the 
dependence on the effective span-to-depth ratio is also confirmed by Zararis et al. [28].  
 
The release of stored energy is not the only source that affects the size effect but the most dominant 
one for quasi-brittle materials. Bažant et al. [29] also identified that another significant source of the size 
effect is the statistical size effect caused by differences in the material strength. Ghannoum [30] found 
that the size effect can be seen in both normal-strength (NSC) and high-strength concrete (HSC). How-
ever, this study also found that the strength of concrete shows almost equal shear stresses at failure 
for the same reinforcement ratios. In contrast to Ghanoum's finding, El-Sayed et al. [31] found a higher 
size effect for HSC due to a higher brittleness. HSC is well known to be more brittle than LSC. Bentz et 
al. [32] also support this finding and state that the size effect increases with increased concrete strength. 
The higher the concrete strength, the more vulnerable the structure is to aggregate fracture, decreasing 
the aggregate interlock [33]. An analysis of concrete strength is vital due to its impact on the brittleness 
of the beam. 
 
According to An et al. [34], the bond effect of steel and concrete is a critical source that controls the 
shear behavior and size effect. A stronger bond helps the steel yield before the crack reaches the critical 
depth. For flexural shear failure, the steel will not be expected to yield. Supporting this finding,  Carmona 
et al. [35] found that the reinforcement and bond effect of steel and concrete can affect the size effect. 
The effect of the bond on the size effect can be studied by varying the reinforcement ratio and concrete 
strengths. An increase in longitudinal steel reinforcement can increase the shear stresses by controlling 
the crack width. A low longitudinal reinforcement ratio reduces the shear capacity because an increase 
in the crack width results in lower aggregate interlock stress transfer along the crack.  
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In addition, a lower reinforcement ratio also decreases the dowel action. The beam size relation to the 
longitudinal reinforcement is also significant. For deeper RC beams, the longitudinal reinforcement ra-
tio's effectiveness decreases.  
 
Next, the fracture mechanics-based Bažant SEL will be addressed below. This law uses the analytical 
method to describe nominal shear strength changes between geometrically scaled beams for the size 
effect analysis. In addition, a brief history of Bažant SEL and its research development over the years 
is given. According to Bažant, the size effect should be accounted for with the ultimate failure calculation 
instead of calculations for diagonal shear cracks. The ultimate failure calculation should be accounted 
for because the latter does not provide a sufficient safety margin against the safety load. Bažant pro-
posed the SEL, which had modifications over the years from new findings.  
Initially, in 1984, Bažant presented the following SEL [23]: 
 

𝜈𝑢 =
10  √𝜌

3

√1 +
𝑑

25  𝑑𝑎

(√𝑓𝑐′ + 3000√
𝜌

𝛼5
) 

Equation [ III ] 
With: 

𝛼 =
𝑉𝑢  𝑑

𝑀𝑢
 (For concentrated loads: 𝛼 = 

𝑎

𝑑
) 

 
In 1996 this law was modified by Kim et al. [36] and was called the modified Bažant SEL. The modified 
law agreed better with experimental data than any other law during that time. The modified Bažant SEL 
is given below: 
 

𝜈𝑢 = 3.5  𝑓𝑐′
𝛼
3⁄ 𝜌

3
8⁄   (0.4 +

𝑑

𝑎
) (

1

√1 + 0.008𝑑
+ 0.18)  

 Equation [ IV ] 
With: 

𝛼 = 1  𝑓𝑜𝑟    
𝑎

𝑑
≥ 3 

𝛼 = 2 −
𝑎
𝑑⁄

3
  𝑓𝑜𝑟    

𝑎

𝑑
< 3 

 
Bažant et al. [26] state that the size effect of concrete could not be different from that of other quasi-
brittle materials. The assumptions are that the failure load is controlled by the fracture energy 𝐺𝑓and 
the cohesive fracture parameters. In addition, another explanation of the size effect is the profile of the 
compressive stresses. The inclined compressive stress transfers a large part of the shear force at max-
imum load from the zone above the flexural crack. In large beams, the profile of the compressive 
stresses is very confined but uniform for slender beams. Bažant proposed  the following design code, 
which was obtained with least-square regression: 
 

𝜈𝑢 = 𝜇 𝜌
3
8 (1 + 

𝑑

𝑎
)√

𝑓𝑐′

1 +
𝑑
𝑑0

 

Equation [ V ] 
With: 

𝑑0 = 𝜅  𝑓𝑐′−
2
3⁄  

𝜅 = 3.800√𝑑𝑎, 𝑖𝑓 𝑑𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛:  𝜅 = 3.330 
𝜇 = 13.3  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 
𝜇 = 10  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑑𝑒𝑠𝑖𝑔𝑛 
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In 2009, Bažant et al. [37] introduced the Universal size effect, where two types of size effect laws are 
identified. The purpose of this law was to get a smooth description of the complex transition between 
the Weibull statistical size effect [38] and the energetic deterministic size effect. The occurrence for 
each law is given below: 

• Type I SEL: occurs when the crack is initiated on a smooth surface of the beam. The structures do 
not have a not or pre-existing crack. 

• Type II SEL: takes place from a deep notch or crack in the beam. 

• Universal SEL: This law must ensure a smooth transition from type I to type II for quasi-brittle 
materials failure. The asymptotic size effect law occurs and captures the Weibull statistical size 
effect. 

The nominal strength for the type I size effect is sensitive to material randomness, and the Weibull 
statistical size effect is considered. This material randomness can be ignored for the type II size effect. 
SEL type II considers the release of stored energy during failure as the cause of the size effect for 
quasi-brittle materials, not the statistical size effect. In Figure 8, the size effect is expressed by the 
transitional behavior between the strength criterion and the LEFM. The figure on the right is the type I 
size effect, while the figure on the left is the type II size effect. 
 

 
Figure 8 Bažant Size effect Law: type I (left) and type II (right) [37] 

 
According to the Bažant SEL type II, the figure exists of 3 sections which are: 

• The strength criteria from the strength theory. 

• The nonlinear fracture mechanics section has an asymptotic slope between -1 and -0.5 caused by 
the influence of the size effect.  

• The linear elastic fracture mechanics section with a slope of -0.5 is also recognizable as the steep-
est slope in the log-log plot. 

Bažant et al. [39] researched the failure probability if SEL type II is not considered. The results sug-
gested that the failure probability was 10-6 for small beams. However, this probability increased to an 
unsafe value of 10-3 for large beams. SEL type II considers the release of stored energy during failure 
as the cause of the size effect. The Bažant type II SEL is expressed by Equation [ VI ].  
 

𝜎𝑁 =
𝐵 𝑓𝑡

′

√1 +
𝑑
𝐷𝑜

 ,  

Equation [ VI ] 
𝑊𝑖𝑡ℎ: 

𝜎𝑁 =
𝑃

𝑏 𝑑
: 𝑡ℎ𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 [𝑀𝑃𝑎] 

𝑑: 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑡ℎ [𝑚𝑚] 
𝑓𝑡: 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ [𝑀𝑃𝑎] 
𝐵, 𝐷𝑜: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
 
During the calculation of the shear capacity using the design code EC2, the size effect factor has also 
been included. The formula for the shear capacity will be given in Chapter 2.3, but below the size effect 
factor k is given: 
 

𝑘 = 1 + √
200

𝑑
 

Equation [ VII ] 
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k  is called the size effect factor, which considers the size effect by decreasing the shear resistance for 
an increased effective depth. This factor is formulated from experimental research data. The influence 
of the size effect factor with increasing beam depth can be seen in Figure 9. 
 

 
Figure 9 Eurocode 2 size effect factor influence [40] 

 
Yang [6] argues that the size effect depends on different mechanisms, each having different contribu-
tions. Expressing the size effect with geometrical scaling relationships is not feasible. Yang et al. formed 
a new theory for RC beams without stirrups to calculate the shear capacity. This theory will not be used 
during the comparisons but does help understand the shear transfer mechanisms and shear capacity 
formulas mentioned previously better. A summarization of this theory is given in Annex I. 
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2.2 Numerical model 

Chapter 2.2 of this section is a literature review on the numerical model but also consists of numerical 
modeling decisions that need to be made for the numerical model. Combined with the numerical model 
sensitivity analysis in Chapter 4.2, these decisions should lead to a robust numerical model that can be 
applied to all cases. The initial solution strategy decisions will be based on information from previous 
reports and personal experience with DIANA FEA, as the scope of this topic is broad. Reports from past 
years which will mainly be used as the normative guideline for the choices are from Hendriks et al. [41], 
Belleti et al. [42], Putter [43] [44], Lang [45], Yang et al. [5], and Garnica et al. [46]. Finally, the most 
accurate robust model will be chosen, while some limitations will be addressed. 
 
According to Putter et al. [44], if the solution strategies are not considered to depend on the type of FEA 
software, differences in solutions may still be present in the FEA software. Therefore, solution strategy 
choices will be made to get the best robust model to simulate the flexural shear failure for RC beams 
without stirrups in the software DIANA FEA. In addition, Putter also states that any slight change in the 
constitutive model, discretized model, and analysis choices can cause a shift in model accuracy for a 
brittle model. It should be noted that beams without stirrups are more sensitive to solution strategy 
choices. This sensitivity makes it difficult to get a robust model based on only literature for a specific 
case. 
 
Before the constitutive models are explained for the materials concrete and reinforcement in the follow-
ing section, it is crucial to know how the material properties are chosen for the numerical models. These 
are calculated with the help of EC2 [40], FIB MC 2010 [47], and Richtlijnen Beoordeling Kunstwerken 
(RBK) [48]. A summary of the concrete and reinforcement material properties is given in Table 3 and 
Table 4, respectively. In addition to the tables, in DIANA FEA for concrete, the isotropic linear elastic 
model should be based on Young’s Modulus E with E > 0 and Poisson’s ratio ν with 0 ≤ ν ≤ 0.5. Hendriks 
et al. [41] found that concrete’s initial Young’s Modulus should be reduced by 0.85 due to initial cracks.  
 

Table 3 Material properties of concrete [41] 

Concrete 

Mean compressive strength 𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 𝛥𝑓, 𝛥𝑓 = 8 𝑀𝑃𝑎 

Compressive strength minimum reduction fac-
tor 

(From lateral cracking) 
 𝛽𝜎
𝑚𝑖𝑛 = 0.4; 𝛽 ≥ 𝛽𝜎

𝑚𝑖𝑛  

Lower-bound characteristic tensile strength 𝑓𝑐𝑡𝑘;0.05 = 0.7𝑓𝑐𝑡𝑚 

Mean tensile strength 
≤
𝐶50

60
: 𝑓𝑐𝑡𝑚 = 0.3𝑓

𝑐𝑘

2
3  

 > 𝐶50/60: 𝑓𝑐𝑡𝑚 = 2.12𝑙𝑛 (1
+ 0.1𝑓𝑐𝑚) 

Fracture energy 𝐺𝐹𝑘 = 0.7 × 0.073𝑓𝑐𝑚
0.18 

Compressive fracture energy 𝐺𝐶𝑘 = 250 × 𝑓𝑐𝑘/𝑓𝑐𝑚 × 0.073𝑓𝑐𝑚
0.18 

Young’s modulus after 28 days 𝐸𝑐𝑚 = 22000(0.1𝑓𝑐𝑚)
0.3 

(Initial) Poisson ratio ν = 0.20 

Density plain concrete ρ = 2400 kg/m3 

Density reinforced concrete ρ = 2500 kg/m3 

Long-term effect coefficient × 
Concrete determination reduction factor 

𝛼𝑐𝑐𝑘𝑡 = 1.0 

 
Table 4 Material properties of reinforcement [41] 

Reinforcement 

Poisson ratio ν = 0.3 

Density steel ρ = 7850 kg/m3 

Steel safety coefficient s = 1.1 
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2.2.1 Constitutive model 

To effectively mimic the behavior of the experimental cases, correct choices for the constitutive model 
must be employed to capture the material's correct behavior. Therefore, the constitutive model literature 
review will be done for the concrete and reinforcement in the sections below. 
 
2.2.1.1 Concrete 

The constitutive model for concrete will be explained in five sections. The sections will be the following: 

• Model types 

• Tensile behavior 

• Compressive behavior 

• Reduction due to interaction 

• Equivalent length. 
Each of the sections  can be found in the order below: 
 
Model types: 
The total strain crack model will be used to model the concrete. This model is categorized under the 
smeared crack model and describes a material's tensile and compressive behavior using a single 
stress-strain relationship. The stresses in this model are computed depending on the crack directions. 
The total strain crack model can be used with the following three types of crack models:  

• The rotating crack orientation 

• The fixed crack orientation 

• The rotating to fixed crack orientation, which is a rotating and fixed crack orientation hybrid 
The rotating and fixed crack orientations will be investigated and used for the model sensitivity analysis 
during this study. If correct results are not found with one of these crack models, the rotating to fixed 
crack orientation will also be used for the sensitivity analysis. However, Løvli [49] has found that this 
model acts between the rotating and fixed crack orientations. Due to this behavior, when neither the 
rotating nor fixed crack orientation gives accurate results, nor will the rotating to fixed crack orientation. 
For the two crack orientation models in focus, earlier studies have shown diverse responses for RC 
beams without stirrups cases. The different response results (with pros and cons) are shown in Table 
5. The crack model behaviors from Table 5 will be given special attention during the model sensitivity 
analysis. Overlapping advantages and disadvantages will be omitted. Also, remedies will be suggested 
for some problems introduced in the table. 
 

Table 5 Fixed and rotating crack orientation: pros and cons 

 Rotating crack orientation Fixed crack orientation 

A
d

v
a
n

ta
g

e
 

 • Not affected by stress-locking 

• For beams without stirrup, limited variation is 
shown in the obtained coefficient of variations 
[44] 

• The crack pattern is captured more realistic [5] 

• Included aggregate interlock (due to the shear 
retention model) 

D
is

a
d

v
a
n

ta
g

e
 

 

• Over-rotation of cracks and struts results in 
a higher capacity than in reality [44] 

• Requires visual inspection of the rotated 
cracks and force-displacement behavior to 
get the failure moment [43] 

• Dependence on the shear retention model 
(this can cause an overestimation of the fail-
ure load) [44] 

• Unable to solve sufficient change in the prin-
cipal stress-strain above the reinforcement 
(causing premature failure) [45] 

• Accounts for additional [44] 
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The fixed crack orientation saves the principal tensile strains, compressive strain, and crack orientation 
as parameters. Once the tensile strength of concrete is reached in an orthogonal coordinate system, 
the orientation in a fixed crack strain model is captured and evaluated. The crack gets followed by this 
coordinate system, and because this system is fixed, shear stresses can also occur. This model ana-
lyzes normal and shear stresses on the crack surface. It thus can reproduce the physical behavior of 
concrete cracks more precisely than the rotating crack orientation. The rotating crack orientation as-
sumes that the orientation of the cracks rotates continually in response to changes in the axis of the 
principal strains. The way both crack models' crack orientation work is displayed in Figure 10. 
 

 
Figure 10 T total strain crack model:  fixed (top) and rotating crack orientation (bottom) [50] 

 
Shear stresses are present in the fixed crack orientation, as shown in Figure 10. This model requires a 
reduction of the shear stiffness along the crack using a shear retention model. As previously mentioned, 
the fixed crack orientation result of the load capacity will depend on the type of shear retention model. 
According to Slobbe et al. [2], including a constant shear retention factor in the model can be interpreted 
as the aggregate interlock mechanism. DIANA FEA offers seven types of shear retention models, which 
are: 

• Aggregate Size-Based Shear Retention: shear retention is based on aggregate size. 

• Al-Mahaidi shear retention function: the shear stiffness reduction depends on the normal total strain. 

• Constant Shear Retention: The shear retention factor is introduced in the shear retention model to 
describe the residual shear stiffness of the crack. Araujo et al. [51] suggested using β = 0.01, as 
the contribution of the shear strength from the crack is small on the structure's shear crack. 

• Damage-Based Shear Retention: shear retention is based on the damage due to cracking. 

• Maekawa shear retention curves: two types of shear retention curves by Professor Maekawa are 
offered in DIANA FEA. 

• Normal Crack Strain Based Shear Retention: multi-linear diagram of shear retention factors and the 
normal crack strains. 

• Variable Shear Retention: shear retention varies with shear strain. 
 
Recently multiple studies have been done on the shear retention models using DIANA FEA. Because 
of the large amount of available data, no sensitivity analysis for the shear retention model is required. 
The damage-based shear retention model will be used, which causes a reduction of the shear stiffness 
at a rate like that of the normal stiffness. From some reports, the following main conclusions were found 
in favor of the damage-based shear retention mode: 

• The variable shear retention model is more consistent than the constant shear retention model [52]. 

• The damage-based shear retention model works well for RC beams without stirrups. In contrast, 
the other tested shear retention models led to more significant sensitivities [44].  

• The aggregate-sized shear retention model fails to capture shear and mixed-mode failure, resulting 
in stiffer simulations than the experiment [53]. 

• The problem of over-rotation is avoided with the damage-based shear retention model [54]. 
Lang [45], however, states that the damage-based tension model can result in excessive loss of the 
shear retention factor. As a result of these problems with the shear retention model, Slobbe et al. [2] 
point out the advantage of the rotating crack orientation. With this choice, picking a shear retention 
model can be avoided, which avoids the possibility of shear stress locking. 
 



    2 Literature review 

17 

Tensile behavior: 
According to Marzec et al. [55], during flexural shear failure, the tensile parameters' effects dominate 
over the compressive parameters. At the same time, the reverse situation is the case for compressive 
shear failure. Concrete is a material with low tensile strength, where the crack occurs perpendicular to 
the maximum tensile stress and in a brittle manner. The tensile softening behavior is related to the 

mode-I fracture energy 𝐺f
I [56]. Sucharda says [57] fracture energy is vital for NLFEA but extremely 

hard to calculate with experiments. 
 
DIANA FEA offers multiple softening curves, but Hendriks et al. (8) recommend using an exponential-
type or exponential softening diagram. This softening curve is preferable because it simulates more 
localized cracks and, as a result, avoids broad areas of diffuse cracking. The Hordijk softening curve 
[58], an exponential-type softening diagram, is chosen due to the high amount of backing from reports 
with similar cases. The softening curve selected is shown previously in Figure 6.  
 
Each part of the stress-strain relation curve and additional information is given below: 

• In the first part, the concrete acts elastically until the tensile strength 𝑓𝑡, after which the tensile 
softening starts.  

• The elastic part ends at the strain peak 𝜀𝑛𝑛
peak 

. At the ultimate strain 𝜀𝑛𝑛.𝑢𝑙𝑡
cr , the stress in the 

crack 𝑛𝑛
cr  becomes zero, after which the crack is fully open.  

• The area in the graph is equal to 
𝐺f
I

ℎ
. 

• The damage-based reduction model should also be applied when modeling the tensile behavior. 
This model reduces the Poisson’s ratio after the crack. 

The formula for this curve is given below: 
 

𝜎𝑛𝑛
𝑐𝑟 (𝜀𝑛𝑛

𝑐𝑟 )

𝑓𝑡
=

{
 
 

 
 (1 + (𝑐1

𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛⋅𝑐𝑟
𝑐𝑟

)

3

) 𝑒𝑥𝑝 (−𝑐2
𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛⋅𝑢𝑙𝑡
𝑐𝑟 )     ⋯

−
𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 (1 + 𝑐1

3) 𝑒𝑥𝑝(−𝑐2)  , if 0 < 𝜀𝑛𝑛
𝑐𝑟 < 𝜀𝑛𝑛⋅𝑢𝑙𝑡

𝑐𝑟

0                                                   , if 𝜀𝑛𝑛⋅𝑢𝑙𝑡
𝑐𝑟 < 𝜀𝑛𝑛

𝑐𝑟 < ∞

 

Equation [ VIII ] 
 
The following reduced & simplified formula is found for the tensile strength:  

𝑓𝑡 = (0.739
𝐺𝑓
𝐼𝐸

ℎ
)

1

2

,  

Equation [ IX ] 
With: 
h: equivalent length/ crack bandwidth. 
 
Compressive behavior: 
Numerical studies from Hasegawa et al. [59] [60] have shown that accounting only for the concrete 
tensile behavior is sufficient to capture the flexural shear failure for deep RC beams. However, because 
a compressive failure mode is possible, this should not be excluded by modeling only the tensile be-
havior. According to Hendriks et al. [41], the following points are essential about concrete compressive 
behavior: 

• Concrete shows a pressure-dependent behavior. 

• Concrete’s post-peak behavior depends on the boundary conditions. 

• Influence by lateral cracking should cause a reduction of compressive strength. 

• To reduce element size sensitivity, the softening behavior based on the compressive fracture en-
ergy 𝐺𝑐 should be modeled. 
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The parabolic curve recommended by Feenstra [61] to model this behavior is in Figure 11. In addition, 
the formulas for the Feenstra model are also given in Equation [ X ]. 
 

 
Figure 11 Concrete compressive behavior parabolic curve [61] 

 

𝑓 =

{
 
 
 
 

 
 
 
 −𝑓𝑐

1

3

𝛼𝑗

𝛼𝑐
3

, if 𝛼𝑐/3 < 𝛼𝑗 ≤ 0

−𝑓𝑐
1

3
(1 + 4(

𝛼𝑗 − 𝛼𝑐/3

𝛼𝑐 − 𝛼𝑐/3
) − 2(

𝛼𝑗 − 𝛼𝑐/3

𝛼𝑐 − 𝛼𝑐/3
)

2

) , if 𝛼𝑐 < 𝛼𝑗 ≤ 𝛼𝑐/3

−𝑓𝑐 (1 − (
𝛼𝑗 − 𝛼𝑐

𝛼𝑢 − 𝛼𝑐
)
2

) , if 𝛼𝑢 < 𝛼𝑗 ≤ 𝛼𝑐

0, if 𝛼𝑗 ≤ 𝛼𝑢

 

Equation [ X ] 
With: 

Strain at the peak compressive strain: 𝛼𝑐 = −
1

3

𝑓𝑐𝑓

𝐸
−

4

3

𝑓𝑐

𝐸
 

 
Reduction due to interactions: 
The concrete’s compressive strength should be reduced for two types of interactive behaviors. These 
two interactive behaviors are tension-compression and compression-compression behavior.  
 
The first interactional behavior discussed is the tension-compression interaction. According to Vecchio 
et al. [62], for this behavior, the concrete strength and stiffness decrease after it cracks. This behavior 
is also called compressive behavior with lateral cracking. After the cracks, the concrete loses its full 
compressive strength. Excluding the compressive strength reduction around the cracked elements 
caused by cracks would not be conservative for the numerical model with the flexural shear failure mode 
and thus must be included. An example of different reduction models available is shown in Figure 12. 
 

 
Figure 12 Tension-compression interaction reduction model [62] 

 
The reduction model proposed by Vecchio & Collins [62] will be applied, which can be considered with 
the following reduction factor: 
 

𝛽𝜎𝑐𝑟 =
1

1+𝐾𝑐
≤ 1, with 𝐾𝑐 = 0.27 (−

𝛼𝑙𝑎

𝜀0
− 0.37) 

Equation [ XI ] 
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The reduction factor due to lateral cracking can also be used, which Belletti et al. [42] suggest be-
ing 𝛽min=0.6. However, Japan Society of Civil Engineers [63] found that 0.2 can be subtracted from this 
value if there is potential reverse cyclic loading until a significant tensile strain occurs. A 𝛽min of 0.4 will 
be implemented, which is also the lower bound of the reduction factor. According to Salah et al. [64], 
𝛽min=0 would result in over-stiff behavior from the structure. 
 
The second interactive behavior is the compression-compression behavior, also known as the com-
pressive behavior with lateral confinement. During the compression-compression interaction, confine-
ment can be considered but also skipped depending on the numerical model. In this report, confinement 
does not play a significant role in the chosen 2D numerical cases with expected flexural shear failure. 
According to Putter [43], it is recommended to use an unconfined model. However, to know if modeling 
this behavior is necessary, sensitivity analysis will be performed for this in Chapter 4. An unconfined 
numerical model and a numerical model with confinement will be used for sensitivity analysis. The 
confinement model used for the sensitivity analysis is the Shelby & Vecchio model [65]. 
 
Equivalent length: 
Recent studies have suggested that the equivalent length is critical for the shear capacity of RC beams 
without stirrups. DIANA FEA offers three methods to calculate the equivalent length/crack bandwidth: 
the user-specified method, the Rots element-based method, and Govindjee’s projection method. Ac-
cording to Hendriks et al. [41], the user-specified crack width method can be inaccurate while increasing 
the number of modeling factors for the numerical model. On the other hand, the Rots element-based 
method has accuracy problems for distorted or high aspect-ratio elements. Govindjee’s method [66] 
has the least problems and is best suited. This method automatically decides the equivalent length. The 
formula for Govindjee’s projection method is given below: 
 

ℎ𝑔(𝒙) = ([∑  

𝑛

𝑖=1

[𝜕𝒙𝑁𝑖(𝒙)𝜙𝑖]] ⋅ 𝒏(𝒙))

−1

 

Equation [ XII ] 
With: 

𝜙𝑖 =
(𝒙𝑖 − 𝒙𝑐) ⋅ 𝒏(𝒙) − 𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛
 

 
A problem with this method is that directional mesh bias can occur. This problem occurs when the 
localized band direction and mesh lines are not aligned, causing the strain localization to depend on 
the mesh orientation [67]. Through the years, updated versions of these Govindjee’s projection method 
have been created. The newer version also has an added orientation factor, improving this method. 
However, because the new methods are not a part of the current version of DIANA FEA (version 10.5), 
the updated methods will be excluded from this thesis. 
 
2.2.1.2 Reinforcement  

Reinforcement has an elastic-plastic behavior, as shown in Figure 13. This figure shows that the yield 
point is the elastic limit, while hardening starts after the yield point till the ultimate strength. To include 
the non-linear mechanism, the Von Mises plasticity model will be used as the non-linear model. Here 
the ultimate stress will reach before the steel fails. According to Hendriks et al. [41], rupture can be 
modeled by specifying sharp, softening branches. Alternatively, a post-processing check should be 
done if rupture is not modeled. 
 

 
Figure 13 Reinforcement elastic-plastic model [68] 
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Hardening is beyond ideal plasticity and should also be introduced into the model as strain-isotropic 
hardening. Giuliano [74] explains that isotropic hardening is when the material yield surface expands 
under plastic deformation. An alternative to isotropic hardening is kinematic hardening. The difference 
between the two hardening types is the “Bauschinger effect.” Both hardening types are based on the 
strain-hardening hypothesis [69]. In Figure 14, an overview of the two hardening types is given. The 
two stress-strain relation diagrams show the change in the yield surface. 
 

 
Figure 14 Isotropic (left) and kinematic hardening (right) [69] 

 
The concrete-reinforcement interaction is the primary mechanism driving the stress redistribution after 
cracking. This mechanism can be modeled in multiple ways using DIANA FEA. Putter [43] recommends 
using the bond-slip relation as the most dependable. In addition, Yang et al. [5] state that this model 
improves the simulation results. The bond-slip relation describes the slip between concrete and rein-
forcement. DIANA FEA offers several bond-slip relations, which are listed below: 

• The quadratic function proposed by Dörr. 

• Power Law relation proposed by Noakowski. 

• Bond-slip relationship presented by Shima. 

• Bond-slip-strain relationship presented by Shima. 

• CEB-FIB 2010 bond-slip relation. 
 

The Shima bond-slip and CEB-FIB 2010 models are often used. Putter [43] has found that the CEB-
FIB 2010 model works best for RC beams without stirrups-specific cases. He explains that the failure 
load is overestimated due to the higher bond stress at which the stiffness decreases significantly for the 
Shima bond-slip relation. Still, a numerical model sensitivity analysis will be done between the two bond-
slip relations to decide which performs best for the specific cases in this report. Chapter 4.2.1.2, Figure 
54 compares a stress-displacement graph using both models during the model sensitivity analysis. For 
now, the theoretical background of both models is explained below. 
 
The first model discussed is the Shima bond-slip relation [70]. This model is defined by the formula in 
Equation [ XIII ]. This formula is a function of the concrete strength and reinforcement diameter, and a 
curve can be plotted from it. Also, the stiffness of this model is infinite. 
 

𝑡𝑡 = 0.9𝑓𝑐
(
2
3
)
(1 − 𝑒−40

(
𝛥𝑢𝑡
𝐷
)
0.6

) [𝑀𝑃𝑎] 

Equation [ XIII ] 
 

The CEB-FIB 2010 bond-slip curve is unique from the other models because of the unloading and 
reloading behavior. This behavior uses linear stiffness until the opposite stress value is reached. Be-
cause of this, the calculations are done in four phases, shown in Figure 15. Each phase is also de-
scribed in the figure. 
 

 
Figure 15 CEB-FIB 2010 bond-slip curve based on pull-out [47] 
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The following calculations in Table 6 are important for the phases when modeling the bond-slip relation 
because of multiple modeling conditions. Good bond-slip conditions for the pull-out failure will be con-
sidered in this report. 
 

Table 6 FIB bond-slip model bond-stresses considering good conditions [47] 

Bond stresses 
(with good conditions) 

Boundaries 
(Relative displacements) 

Pull-out failure: 
Ribbed bars 

Pull-out failure: 
Smooth bars 

τ0 = τmax (
𝒔

𝒔𝟐
) α 0≤s≤s1   

τ0 = τmax s1≤s≤s2 s1=1mm s1=0.01mm 

τ0= τmax (τmax- τf)
𝒔−𝒔𝟐

𝒔𝟑−𝒔𝟐
 s2≤s≤s3 s2=2mm s2=s1 

τf s3>s s3=cclear s3=s1 

Additional formulas: 

τmax=2.5√fck τmax=0.1√fcm 

α=0.4 α=0.5 

τf=0.4 τmax τf=τmax 

 
The element should have a neglectable initial deformation compared to the continuum element. High 
initial stiffness is introduced as a solution for the normal and shear stiffness. For the stiffnesses, the 
following formula is used: 

• Normal stiffness (Kn)=
100∗𝐸

ℎ
 

• Shear stiffness (Ks)=0.1*Kn 
 

2.2.2 Finite element discretization 

In the earlier section, the constitutive models were discussed. With the information gathered till now, 
the next step is finite element discretization. By discretizing the experimental cases, the experimental 
cases can then be approximated as closely as possible with the help of NLFEA. The discretization will 
be done for the concrete, reinforcement, mesh, loading, and boundary conditions below. 
 
2.2.2.1 Concrete 

Because the RC beam model will be made in 2D, 2D plane-stress elements, also called membrane 
elements, can be used with all nodes in-plane. Shun summarized [71] characteristics of the 2D plane-
stress elements, which are: 

• The elements make use of the XY coordinate system. 

• Transitional displacement takes place in the x-direction and y-direction. 

• Strain components are: 𝜀𝑥𝑥, 𝜀𝑦𝑦 and the shear component 𝛾𝑥𝑦. 

• A small thickness compared to the length and width dimensions. 

• Stresses 𝜎𝑧𝑧 and strains 𝜀𝑧𝑧  perpendicular to the face (z-direction) equals zero. 
 
The specified thickness is vastly different for this type of element. It is enough to specify the thickness 
at one node for uniform-thickness cases. For non-uniform thickness cases, the thickness needs to be 
specified for every node, as shown in Figure 16: 
 

 
Figure 16 Plane-stress element thickness: uniform (left) and non-uniform (right) [71] 
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Hendriks et al. [41] recommend quadratic elements over linear elements giving more deformation 
modes and preventing locking. In addition, Borst et al. [72] state that these elements should be fully 
integrated to avoid spurious modes due to extensive cracking. The element recommended for the 2D 
RC beam model is an eight-node-quadrilateral element. The element that fits this recommended in 
DIANA FEA is CQ16M, displayed in Figure 17. 
 

 
Figure 17 CQ16M plane-stress element [71] 

 
Essential facts and choices about CQ16M are listed below: 

• The polynomial equation for the displacement: 
 

  𝑢𝑖(𝜉, 𝜂) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜉𝜂 + 𝑎4𝜉
2 + 𝑎5𝜂

2 + 𝑎6𝜉
2𝜂 + 𝑎7𝜉𝜂

2 
Equation [ XIV ] 

 

• 𝜀𝑥𝑥  varies linearly in the x-direction and quadratic in the y-direction. 

• 𝜀𝑦𝑦  varies linearly in the y-direction and quadratic in the x-direction. 

• 𝛾𝑥𝑦  varies quadratically in the x-direction and y-direction. 

• This element uses an isoparametric quadratic scheme and makes use of numerical integration. 

• A 3x3 Gaussian integration scheme will be used instead of a 2x2 Gaussian one. Because DIANA 
FEA has a 2x2 reduced integration in the default settings, this must be adjusted. 

• The element pairs well with embedded elements and grid elements for longitudinal reinforcement. 
 

2.2.2.2 Reinforcement  

From the earlier sections, some considerations need to be made before doing the finite element dis-
cretization for the reinforcement. As mentioned in the last section, the bond-slip relation will be modeled 
and can be done in DIANA FEA with truss or beam elements. 
 
The advantage of embedded reinforcement with truss elements is that the reinforcement does not re-
quire a modification in the connectivity of the concrete elements. Hendriks et al. [41] state that slip can 
be modeled explicitly due to the combination of the embedded reinforcement with interface elements. 
However, unfortunately, the truss element cannot be used to model the dowel action, as this element 
only takes up axial stresses. 
 
Beam elements can describe axial forces, shear forces, in-plane moments, and out-of-plane moments. 
These descriptions give axial deformation, shear deformation, curvature, and torsion. However, Shun 
[71] points out that the dimensions perpendicular to the bar length must be minor compared to the bar 
length. An advantage of the beam elements is that it also considers bending stiffness, making it possible 
for the concrete to withstand shear stresses with the dowel effect. Cook et al. [73] found that the beam 
elements limit freedom in meshing due to the characteristic of sharing nodes with continuum elements. 
DIANA FEA offers the following three classes for beam elements: 

• Class-I beam element: from the classical beam theory, it works well for linear and non-linear 
geometrical analysis. 

• Class-II beam element: numerically integrated from the classical beam theory. This element works 
well for linear and non-linear geometrical + physical analysis. 

• Class-III beam element: numerically integrated from the Mindlin beam theory. This element works 
well for linear and non-linear geometrical + physical analysis. This class of beam elements also 
includes shear deformation. 
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Due to this, the element includes shear deformation, consisting of 3 nodes and 9 degrees of freedom. 
The geometrical nonlinearity of the dowel action should be considered. This nonlinearity should be 
considered due to the change in the line of action. According to Slobbe et al. [2], this inclusion works 
well with Class-III beam elements. The displacement variables can be derived from Equation [ XV ]. 
 

𝑢𝑥(𝜉) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉
2

𝑢𝑦(𝜉) = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜉
2

𝜙𝑧(𝜉) = 𝑐0 + 𝑐1𝜉 + 𝑐2𝜉
2

 

Equation [ XV ] 
 
According to Putter et al. [43] [44], the best results for RC beams without stirrup cases are found for the 
beam element combined with CEB-FIB 2010 bond-slip relation for the fixed crack orientation. However, 
convergence difficulties have been found for beam elements during the analysis using the CEB-FIB 
2010 bond-slip relation on the force norm. Compared to the CEB-FIB 2010 bond-slip relation with the 
Shima-bond-slip relation, the Shima-bond-slip relation did not result in many convergence difficulties. 
The analysis found the convergence difficulty is because, unlike the Shima-bond-slip relation, the CEB-
FIB 2010 bond-slip relation requires bond stresses during the increase of the strain. As a result, this 
causes an increase in the residual force. Because many modeling aspects are still undecided for the 
numerical model, choosing based on just this information from the literature review is not ideal. From a 
theoretical perspective, both reinforcement element types have advantages and disadvantages. A nu-
merical model sensitivity analysis will be done with the truss and beam elements. The reinforcement 
element type will be chosen depending on the better results during the sensitivity analysis.  
 
2.2.2.3 Mesh 

The element size must be chosen based on the beam dimensions to avoid element size sensitivity 
problems. Over the years, various element size sensitivity analyses have been performed, and recom-
mendations for the formula have been given. However, whether these recommendations will accurately 
work for all numerical cases in this report is still unknown. The suggestions below highlight information 
over the years, from which an initial element size can be decided. This initial element size, in turn, will 
be optimized with an element size sensitivity analysis for beams with different dimensions. 
 
Correct element sizes benefit the dowel crack initiation and propagation rate, as they depend on the 
element size. Also, the element size cannot be more extensive than 1.5 times the maximum aggregate 

size. In 2020 Hendriks et al. [41] proposed the formula ( 𝑚𝑖𝑛 (
𝑙

50
,
𝑑

6
)) to calculate the element size for 

2D RC beam models. In addition, a second formula for the maximum element size has been given, 

which says ℎ𝑚𝑎𝑥 ≤
𝐿𝑒𝑞

2
. The reasons for the maximum size are the following: 

• Avoid snap-back post-peak behavior caused by the softening materials. 

• Avoid stress distribution jumps to keep it as smooth as possible. 

• Capture damage distribution. 
 

Putter [43] found that elements with the size 
𝑑

20
 gave the best results. It was also shown that cases on 

beams without stirrups over 600mm showed mesh dependence when analyzing with element sizes 
𝑑

20
,
𝑑

30
,
𝑑

40
,
𝑑

60
. The report states the analysis for beams without stirrups should still be done with great care 

due to their sensitivity. Especially in large beams, finer element sizes resulted in overestimating the 
resistance. It should be noted that the largest element size is already tiny.  
Even larger element size could also have been assessed during this report's sensitivity analysis, as the 
most significant size was chosen as the best. Lang [45] did some element size sensitivity analysis, and 

recommendations were made to make the element size smaller than 
𝑑

15
 to simulate the flexural shear 

failure. However, a much smaller element size resulted in a longer computation time with no significant 
improvements, so making the element size smaller is not required. Gedik et al. [74] showed that an 
element size is sufficient between 10 mm and 30 mm. Adhikary et al. [75] parametric study shows that 
an element size smaller than 25 mm no longer improves the result. 
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Because the initial cases will be based on experiments from Stevin lab, special attention is given to a 
report by Teshome [53]. In this report, similar beams were studied and used an element size of 25 mm. 
The recommendations from Lang [45] are also remarkably close to the element size of 25 mm for the 
initial cases. With the information found till now, the initial element size will be chosen to be 25 mm. 
During the element size sensitivity analysis in Chapter 4.2.3.2, the element size will be decreased and 
increased until an optimum element size is found for a specific beam depth. 
 
2.2.2.4 Loading, boundary conditions, and symmetry  

Applying point loads and constraints for the boundary conditions can result in high-stress concentrations 
in the model. The high-stress concentration can affect the numerical model simulations, which should 
be avoided. Hendriks et al. [41] suggest that loading and support plates are a satisfactory solution to 
avoid this. Distributed loads can also be placed on the plate as an alternative instead of applying point 
loads that cause high-stress concentrations. The right boundary conditions are critical because they 
influence specimen stress distribution. Hasegawa [76] says the shear capacity, post-peak behavior, 
and failure type can all be affected. In addition, placing supports over the entire plate length as a bound-
ary condition can cause a crack near the plate. 
 
Symmetry can reduce computational costs for a numerical simulation but has its problems and re-
strictions. A fundamental problem with using symmetry is that it is assumed that failure occurs symmet-
rically. Therefore, symmetry can only be applied if the structure, loads, and constraints are symmetrical. 
The user should also remember that the load gets halved when symmetry is used, and the load is 
applied midspan. Because of these restrictions and an expected non-symmetric failure type (flexural 
shear failure), symmetry will not be applied to the model. An overview of the numerical model with the 
proper loading conditions, boundary conditions, and non-symmetry is shown in Figure 18. 
 

 
Figure 18 Beam boundary conditions: loading plates (top) and loading supports (bottom) 

 

2.2.3 Analysis procedure 

During NLFEA, the force and displacement have a non-linear relation. Due to this, equilibrium cannot 
be reached directly, and the analysis must be done with the correct analysis procedures. The simulation 
is run with the incremental-iterative procedure. According to Putter [44], the procedure's choice can 
affect the result. However, this effect is not as dominant as the constitutive assumptions. 
 
2.2.3.1 Incremental-iterative procedure 

DIANA FEA offers different methods for the incremental-iterative procedure. Lang [45] states that the 
various methods form the global stiffness matrix differently, affecting the excessive change of the prin-
cipal stress-strain. The different methods offered by DIANA FEA are explained by Borst et al. [69] and 
are listed below: 

• Newton-Raphson (NR) iteration scheme: The prediction depends on this scheme's last unknown or 
last found situation. Also, the stiffness is updated after every iteration, which can be time-consum-
ing. 

• Modified Newton-Raphson (MNR) iteration scheme: It is unnecessary to set up the stiffness matrix 
every time for this scheme. Because of this, doing more iterations than the standard version is 
necessary but iterates faster. The prediction depends on the converged equilibrium state.  

• Quasi-Newton-Raphson (QNR) iteration scheme: this scheme does not entirely set up a new stiff-
ness matrix every iteration but uses information from the previous results. This scheme is perfect 
for unconstrained optimization and often combined with the line search method. 

• Linear-Elastic (LE) iteration scheme: as the scheme name says, it uses the linear stiffness matrix. 
Even though this scheme is robust, stability problems can occur at bifurcation points. 
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Hendriks et al. [41] recommend the standard (full) NR iteration scheme as the results were accurate 
and sufficient (if combined with the arc-length control). A disadvantage of the NR type of iteration 
schemes (NR, MNR, and QNR) is its limited radius of convergence. However, this radius can be en-
larged with the line search method. This method improves the incremental displacement vector by scal-
ing the vector to get the point of lowest potential energy along the search direction to represent the 
equilibrium. With this, the current iteration procedure creates a more robust model with increased con-
vergence.  
 
Multiple reports [2] [77] have used the Secant iteration scheme while using the displacement method. 
The scheme can be based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS), Broyden, or Crisfield 
algorithm. The BFGS algorithm will be chosen if the Secant iteration scheme is used, as this algorithm 
has been applied in the previously mentioned reports. Akram et al. [78] researched the two discussed 
schemes and concluded that the full NR iteration scheme is the fastest available, while the Secant 
iteration scheme is the most effective. Both schemes will be used for sensitivity analysis in Chapter 
4.2.2. In Figure 19, the difference between both schemes can be seen. 
 

 
Figure 19 NR iteration scheme (left) and Secant iteration scheme (right) [69] 

 
2.2.3.2 incremental procedure  

Applying the external load depends on how the equilibrium path is sought after with increments. Ac-
cording to Borst et al. [69], this choice helps control the load and get convergence for each step. Apply-
ing the external load can be done in three ways using DIANA FEA and is listed below, with also an 
overview of them in Figure 20: 

• Load control: here, the load is applied directly on the beam in several steps. 

• Displacement control: prescribing the displacements, giving nodal forces that must be summed up 
for the external force. This one is more stable but not recommended for structures with multiple 
loads [41]. 

• Arc-length control: the incremental displacements are constrained to a prescribed value by adapting 
the increment size during iteration. 

 

 
Figure 20 Force, displacement, and arc-length control [79] 

 
Lang [45] recommends using the arc-length control combined with the line search method, as the force-
controlled analysis did not capture the softening behavior. Putter [44] also used the same combination 
to trace the post-peak load paths. The arc-length control method [80] helps find the equilibrium path 
while dealing with limit and bifurcation points. Unfortunately, the load control method stumbles at limit 
points, while the displacement method cannot manage snap-back behavior. However, negative load 
steps can be prescribed to overcome the snap-back problem for the displacement method.  
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Hasegawa [81] did research on the methods for RC beams without stirrups and found the following: 

• Arc-length control with indirect displacement does not get the bifurcation path for flexural shear 
failure. 

• Direct displacement method: branch-switching was captured for the correct bifurcation point. 
However, this method will require the Secant stiffness. 

Yang et al. [82] also report that the arc-length method may fail near or at limiting points for softening 
materials.  
 
2.2.3.3 Convergence criteria 

Complete equilibrium cannot be reached but can be calculated to a sufficient tolerance while accepting 
a small error. For this, the convergence criteria are used. DIANA FEA offers four types of convergence 
criteria, namely: 

• Force norm: the norm can be solved directly for convergence but is not recommended for linear 
elastic regimes. 

• Displacement norm: the norm requires an additional iteration to reach convergence. 

• Energy norm: the norm is composed of internal forces and relative displacements. This norm also 
requires an additional iteration to reach convergence. 

• Residual norm: like the force norm, this norm considers the out-of-balance forces vector and the 
constrained degrees of freedom values. 

 
The user gives the maximum number of iterations allowed to avoid too many. The iterations stop if 
convergence has been met, the maximum number of iterations is reached, or divergence occurs. Putter 
[43] recommends using at least 100 iterations per step for cases like the ones important for this report. 
Reaching the maximum number of iterations cannot be seen as convergence. Lang [45]  states that 
always getting convergence for each step is unnecessary if reliable results for shear failure have been 
found. Yang et al. [5] do, however, state that lack of convergence can cause unstable propagation of 
the flexural shear crack. This unstable propagation will affect the deformation and stresses in the struc-
ture. The convergence logs generated during the simulation should always be studied to avoid such a 
problem. 
 
The iteration schemes should converge for at least one of the norms to be considered sufficient. The 
following norms have been advised where the convergence of one of the norms is considered sufficient: 

• The energy norm with a tolerance of 0.001 

• The force norm with a tolerance of 0.01 
According to Hendriks et al. [41], using the displacement norm alone is considered inappropriate for the 
analysis.  
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2.3 Design codes 

In the final part of the report, predictions from design codes will also be compared to the numerical 
simulations to compare the predicted shear capacity. The design code is from EC2 guidelines [40] and 
FIB MC2010 [47]. The EC2 guidelines analytical design code evaluates the shear resistance (Vrd,c) 
while including the size effect with the formula in Equation [ XVI ]. 

𝑉𝑅𝑑, 𝑐 =  (𝐶𝑅𝑑, 𝑐  𝑘  (100 𝜌𝑙 𝑓𝑐𝑘)
1

3 + 𝑘1 𝜎𝑐𝑝] 𝑏𝑤𝑑, 

Equation [ XVI ] 
𝑊𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 
𝑉𝑅𝑑, 𝑐 ≥   (𝑣𝑚𝑖𝑛 + 𝑘1  𝜎𝑐𝑝) 𝑏𝑤𝑑 

Equation [ XVII ] 
𝑊ℎ𝑒𝑟𝑒: 

𝑘 = 1 + √
200

𝑑
 

𝜌𝑙 =
𝐴𝑠𝑙

𝑏𝑤𝑑
≤ 0.02 

𝜎𝑐𝑝 =
𝑁𝑒𝑑

𝐴𝑐
 

 
The importance of the factor k has been given in Chapter 2.1.3. A minimum requirement is also given 
in the formulas above for the 𝑉𝑅𝑑, 𝑐. This requirement is meant as a minimum for scenarios where the 
reinforcement ratio is low. 
 
Another second design code chosen for this report is the FIB MC 2010, which is based on a physical-
mechanical model instead of an analytical model. The formulas for the shear strength based on a level 
of approximation (LoA) III for beams without stirrups are given in Equation [ XVIII ]: 
 

𝑉𝑐 = 𝑘𝑣 ⋅ √𝑓𝑐 ⋅ 𝑏𝑤 ⋅ 𝑧, 

Equation [ XVIII ] 
𝑊𝑖𝑡ℎ: 

𝑘𝑣 =
0,4

1 + 1500 ⋅ 𝜀𝑥
⋅

1300

1000 + 𝑘𝑑𝑔 ⋅ 𝑧
 

𝑘𝑑𝑔 =
32

16 + 𝑑𝑔
≥ 0.75 

𝛽 = {

1  if 𝑎𝑣 ≥ 2𝑑ℓ
𝑎𝑣/2𝑑ℓ  if 0.25𝑑ℓ ≤ 𝑎𝑣 ≤ 2𝑑ℓ
0.5  if 𝑎𝑣 ≤ 𝑑ℓ

 

𝜀𝑥 =
1

2𝐸𝑠𝐴𝑠
(
𝑀𝐸𝑑

𝑧
+ 𝑉𝐸𝑑 + 𝑁𝐸𝑑 (

1

2
±
𝛥𝑒

𝑧
)) 

 
Because the design codes are not the focus of this report, a simplified LoA II will be used. The design 
codes are used for comparison purposes with the numerical simulations. It should be remembered that 
the LoA II introduces simplifications, causing a reduction in the model’s accuracy. The following simpli-
fications are done for the LoA II: 

• 𝜀𝑥, which is the strain at the midsection will be assumed to be: 
 

𝜀𝑥 = 
𝑓𝑦𝑘

2𝐸𝑠
 

Equation [ XIX ] 
 
The aggregate size factor kdg is assumed to equal the lower bound factor of 0.75. It was initially believed 
that kdg equals 1.25, which is also recommended. However, with the initial assumption, the results are 
too conservative and have a high failure load percentage difference. 
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2.4 Summary 

This chapter’s section will summarize essential information gathered in the previous sections of this 
Chapter to make numerical modeling choices. In addition, this summary also helps to decide which 
modeling aspect requires sensitivity analysis in Chapter 4. With sensitivity analysis using numerical 
cases, it is hoped to get a robust numerical model, which will be applied to all experimental cases. 
These experimental cases will be given in the next chapter. The numerical model also hopes to account 
for the four shear transfer mechanisms as much as possible to improve its accuracy. Before moving to 
the shear transfer mechanisms, a summation of occurrences during the flexural shear failure is given: 

• Vertical flexural cracks formed. 

• Longitudinal reinforcement and concrete bonds are destroyed. 

• Diagonal cracks developed. 

• A diagonal crack enlarges. 

• Flexural shear failure occurs. 
This failure mode is fundamental and has a significant bearing capacity reduction. This failure mode 
occurs for beams with an effective span-to-depth ratio between 2.5 and 7.0. This condition will be ap-
plied while selecting the experimental cases in Chapter 3. Bažant et al. [23] [24] state that the size effect 
should be accounted for such cases. The size effect on beams will be analyzed by geometrically scaling 
beams and comparing the nominal shear strength.  
 
Now that the failure mode and size effect is summarized, a summation of the four shear mechanisms 
and numerical modeling choices is combined given below: 

• Dowel action: 
o The dowel action's parameters are the element size, reinforcement element, constitutive 

reinforcement model, and reinforcement ratio. Most importantly, the reinforcement ratio will decide 
the contribution of the dowel action. The larger this is, the more significant the contribution. 

o The element size should be small enough to start the dowel crack and its propagation. 
o Truss elements do not include the dowel action. Beam elements are required to model the dowel 

action. In addition, the geometrical nonlinearity of the dowel action must also be included. 

• Aggregate interlock & residual tensile stresses: 
o This aggregate interlock is dominant for a crack width greater than 0.1mm. At the same time, the 

residual tensile stress is dominant if the crack width is smaller than 0.1mm. 
o If the fixed crack orientation is used, the shear retention model has to be included. This model 

can be interpreted as the aggregate interlock. 
o The residual tensile stress is included in the Hordijk fictitious crack model, including localized 

cracks. 
o For the aggregate interlock, the most critical parameters are the aggregate size and concrete 

strength. 
o Like the dowel action, the contribution of these two mechanisms is small for large beams. 

• Concrete compression zone: 
o The importance of this mechanism lies in the beam depth, which influences the uncracked area. 

Understandably, the slenderer the beam is, the smaller the contribution. 
o Compression-compression confinement can also influence this mechanism. 

The inclusion and effects of the four shear transfer mechanisms on the numerical model depend on the 
constitutive case and finite element discretization. Figure 21, Figure 22, and Figure 23 show an over-
view of the obtained reference numerical model and modeling choices from the literature review on the 
next page. The reference model exists of the components: constitutive model, finite element discretiza-
tion model, and analysis procedure.
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Figure 21 Reference numerical model: constitutive model 
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Figure 22 Reference numerical model: finite element discretization 

 

 
Figure 23 Reference numerical model: analysis procedure 
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3 Experimental case selection 
for numerical simulations  

The experimental cases will be chosen based on boundaries for the effective span-to-depth ratio, based 
on different geometries and material configurations to increase the variety in configurations for the 
cases from Chapter 2. The reason for selecting cases depending on the effective span-to-depth ratio is 
that only cases with flexural shear failure are chosen. The boundary archived from the literature review 
in Chapter 2 for the effective span-to-depth ratio is between 2.5 and 7. In addition, the effective depth 
will be restricted to a maximum beam depth of 1200 mm. This restriction is because geometrically large 
beams are very mesh sensitive but are important for the pilot research. In Chapter 4.2.3.2, the element 
size sensitivity analysis will be done for beams with a depth of up to 1200 mm. A basic overview of the 
models and the naming of the dimensions are given in Figure 24: 

 

 
Figure 24 RC beams without stirrups numerical model 

 
All the experimental cases from the reports below will be used to see if the robust numerical model 
found in Chapter 4 can simulate accurate results. Simulations of these cases with enough variety in the 
configurations will show the accuracy and limitations of the numerical model. The initial cases are sum-
marized below, with their properties in Annex II. The first four reports given below are given with their 
original reference. However, they are also summarized in the report by Dunkelberg et al. [83]. These 
cases are based on a single geometrical or material variation. Their simulations can indicate if the 
increase in a single configuration can cause inaccurate results for the numerical model. 
 

3.1 Geometrically scaled beam cases 

This report by Bhal [84] was selected due to its inclusion of geometrically scaled beams. This set of 
experiments will also be used for the size effect analysis as there are geometrically scaled beams re-
quired for the size effect analysis. Some important geometrical and material configurations have the 
following ranges: 

• Effective depth: (300 mm - 1200 mm) 

• Effective span-to-depth ratio: (2.94) 

• Concrete strength: (fc,c: 22.02 MPa - 28.12MPa) 

• Reinforcement ratio: (1.26 %) 
These cases consist of four beams with effective depths: 300mm, 600 mm, 900mm, and 1200mm.  
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A four-point test configuration is used for the beams, as shown in Figure 25. A new geometrical param-
eter (c) is also introduced, which gives the distance between the two-point loads. The four-point exper-
iment setup also applies to the following three reports. 
 

 
Figure 25 Four-point experiment configuration [83] 

 

3.2 Cases with variation in reinforcement ratio 

This report [85] tested twenty-six reinforced HSC beams without stirrups to determine the diagonal 
cracking and ultimate shear capacity. Out of these twenty-six cases, a selection was made for cases 
with only variation in the reinforcement ratio. Some important geometrical and material configurations 
have the following ranges: 

• Effective depth: (184.15 mm - 208.03 mm) 

• Effective span-to-depth ratio: (4.00) 

• Concrete strength: (fc,c: 74.09 MPa - 81.59 MPa) 

• Reinforcement ratio: (1.77 % - 6.64 %) 
All cases have a depth of 254 mm, but the effective depth is slightly different due to the reinforcement 
area. The cases have the following reinforcement ratios: 1.77%, 2.25%, 3.26%, 3.93%, 5.03%, and 
6.64%. This selection gives a broad range for reinforcement ratio variation to assess the accuracy of 
the numerical model.  
 

3.3 Cases with variation in effective span-to-depth ratio 

In Krefeld et al. report [86], over 200 RC beam cases have been tested. However, from these cases, 
the cases with stirrups are neglected. Also, cases with variations in the beam depth, reinforcement ratio, 
concrete class, and distributed loading are disregarded. Only beams with concentrated loading will be 
chosen to stay consistent with the experimental case selection. Finally, the effective span-to-depth ratio 
range will be kept within the boundaries for which the flexural shear failure occurs. With these re-
strictions, some important geometrical and material configurations have the following ranges: 

• Effective depth: (250.44 mm) 

• Effective span-to-depth ratio: (3.40 – 7.05) 

• Concrete strength: (fc,c: 40.54 MPa – 45.62 MPa) 

• Reinforcement ratio: (4.15 %) 
The effective span-to-depth ratios studied will be 3.40, 4.61, 5.83, and 7.05.  
 

3.4 Cases with variation in concrete strength 

Mphonde et al. report [87] will be used to study the numerical model performance for the concrete 
strength variation. This report studied the concrete strength using three different series, for which the 
effective span-to-depth ratio differed for each. The first series was chosen with a constant effective 
span-to-depth ratio of 3.49. It was essential to have a broad range of cases with different concrete 
strengths available due to its role during flexural shear failure for the beam. For the first series of cases 
from the report, some important geometrical and material configurations have the following ranges: 

• Effective depth: (298.45 mm) 

• Effective span-to-depth ratio: (3.49) 

• Concrete strength: (fc,c: 25.29 MPa - 114.10 MPa) 

• Reinforcement ratio: (3.34 %) 
The concrete compressive cube strengths are 25.29 MPa, 45.88 MPa, 50.70 MPa, 90.91 MPa, 99.07 
MPa, 111.85 MPa, and 114.10 MPa. 
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3.5 Cases with variations in geometrical and material 
configurations 

The following experimental cases based on two reports from the Stevin lab were recommended by the 
supervisors and used for analysis. These cases have a detailed analysis for each test, making them 
beneficial for a quality analysis during the numerical model sensitivity analysis in Chapter 4. Each anal-
ysis in this report is supported with sufficient information about the tests, photos of the test, a load time 
curve, a load-displacement curve, and LVDT measurements. With the help of detailed measurements 
in the reports, the damage progression and failure load analysis can be done in more detail. The detail 
in these reports is also why some experimental cases from them are chosen during the (qualitative) 
sensitivity analysis.  
 
Koekkoek et al. [88] report aimed to study the transition between flexure failure and shear failure for RC 
beams without stirrups. From reviewing the report, it was found that some of the experimental beams 
did consist of stirrups. Therefore, beams, where results were affected by the stirrups, will be neglected. 
Some important geometrical and material configurations that were varied have the following ranges: 

• Effective depth: (269.50 mm - 762.50 mm) 

• Effective span-to-depth ratio: (2.54 - 5.49) 

• Concrete strength: (fc,c: 23.70 MPa - 91.10 MPa) 

• Reinforcement ratio: (0.58 % - 1.17 %) 
From the results of these experiments, beam configurations were varied. A three-point test was applied 
here, and Figure 26 can be used to get an overview of the test. 
 

 
Figure 26 Three-point experiment configuration [83] 

 
Garnica et al. [89]  report was a follow-up study to Koekkoek’s work [88], where the experiment analysis 
took place similarly at Stevin Lab. This report varies the same configurations as the earlier one but 
studied only geometrically large beams with the beam depth kept at 800mm or 1200 mm. Beams of 
1200 mm have not been studied during the Koekkoek report. Some important geometrical and material 
configurations that were varied have the following ranges: 

• Effective depth: (765.00 mm - 1160.00 mm) 

• Effective span-to-depth ratio: (3.27 - 3.92) 

• Concrete strength: (fc,c: 81.25 MPa - 89.16 MPa) 

• Reinforcement ratio: (0.27 % - 0.85 %) 
Because the “Garnica and Yang” report is a follow-up to the “Koekkoek and Yang” report, both will be 
referred together further as the “Garnica & Koekkoek” report during this research. Fifty-one cases (37 
+ 14) will be simulated and studied from these two reports. 
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3.6 Experimental cases overview 

An overview of the experimental cases is given in this chapter. Before the selection of the experimental 
cases, the following boundaries are considered: 

• The effective span-to-depth ratio between 2.5 and 7.0 to capture the  flexural shear failure 

• A maximum effective depth of 1200 mm to simulate geometrically large/deep beams 
The selected experiments were with three-point or four-point setups. Besides the boundaries, cases 
with different geometrical and material configurations were used. This approach would allow verifying 
the numerical model for various case configurations. The figure below gives a schema with the experi-
mental cases and the main variation in their configuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

76 experimental cases 

Bhal [84] Ahmad et al. [85] Mphonde et al. [86] 
Koekkoek et al. [87] 
Garnica et al. [88]   

Effective depth ratio 
300 - 1200 mm 

Reinforcement ratio 
1.77 - 6.64 % 

Concrete strength 
25 - 114 MPa 

Effective depth ratio 
300 - 1200 mm 

 
Reinforcement ratio 

1.77 - 6.64 % 
 

Concrete strength 
25 - 114 MPa 

Figure 27 Experimental cases overview 
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4 Numerical modeling, 
analysis, results, and 

sensitivities 

Before analyzing to see whether the numerical model can simulate the flexural shear failure for RC 
beams without stirrups, it is required to have a robust numerical model. Such a model can be obtained 
with sensitivity analysis using a numerical reference model. This model should represent most config-
urations of different RC beams without stirrups subjected to flexural shear failure while reducing as 
much model uncertainty as possible. Castaldo et al. [90] state that some model uncertainty character-
izes the NLFEA. In addition, specific requirements should be met with the numerical model for RC 
beams without stirrups to simulate the flexural shear failure. Neglecting some requirements in the model 
will cause the neglection of a behavior. An example is that neglecting a nonlinear material behavior 
during numerical modeling required to simulate the flexural failure mode will lead to capturing a wrong 
failure mode.  
 
In this chapter, the following topics are addressed: 
1. Reference numerical model: 

The reference numerical model obtained from the literature review is first introduced in the section. 
In addition, information on initial cases for the numerical model sensitivity analysis using DIANA 
FEA is also provided here. These cases are a selection of differently configured (material and 
geometrical configurations) experimental cases from Chapter 3.5. 

2. Sensitivity analysis numerical model: 
The sensitivity analysis for the numerical model is done on various modeling aspects of the 
constitutive model, finite element discretization, and analysis procedure. An analysis of the 
compression-compression confinement, two bond-slip relations in combination with two types of 
crack orientations are done for the constitutive model. Following that, two schemes of the 
incremental iteration procedure are analyzed. Finally, analysis is done on the reinforcement element 
type and element size for the finite element discretization. After the sensitivity analysis, the 
numerical model should be able to capture the correct damage progression, failure mode, and close 
enough failure load compared to the experiment. 

3. Quantitative analysis: 
After the sensitivity analysis with the initial experimental cases simulates satisfactory results, a 
quantitative analysis can be done. This analysis will include all experimental cases from Chapter 3. 
This analysis obtains a general performance overview of the numerical model, and the model's 
limitations are identified. 

4. Size effect analysis: 
During the size effect analysis, a set of geometrically scaled experimental cases will be used to 
show initial expressions on if the numerical method can capture the size effect. These cases will be 
based on experimental cases from Chapter 3.1. 
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4.1 Reference numerical model 

The assumptions and modeling choices from the literature review are the foundation for the reference 
numerical model. The reference numerical model is given in Chapter 2.4 (Figure 21, Figure 22, and 
Figure 23), with the different modeling choices for sensitivity analysis marked with Bold text. In addition, 
the reference numerical model is also given in the tables from Table 7, Table 8, and Table 9 for a more 
ordered overview.  
 

Table 7 Reference numerical model: constitutive model a 

Concrete Modeling choice 

Class Concrete and masonry 

Material model Total-strain crack model 

Crack orientation Fixed 

compressive curve Parabolic 

Reduction model lateral cracking Vecchio and Collins 1993 

Lower bound reduction curve 0.4 

Compressive-compressive confinement Selby and Vecchio 

Tensile curve Hordijk 

Reduction model Poisson’s ratio Damage-based 

Crack-bandwidth Govindjee’s projection method 

Shear retention function Damage-based 

 
Table 8 Reference numerical model: constitutive model b 

Reinforcement Modeling choice 

Class  Reinforcement 

Material model Bond-slip reinforcement 

Non-linear model Von Mises plasticity 

Plastic hardening Total strain-yield stress 

Hardening hypothesis Strain hardening 

Hardening type Isotropic hardening 

Bond-slip interface model CEB-FIB 2010  

Reinforcement type Truss bond-slip  

 
Table 9 Reference numerical model: finite element discretization 

Concrete Modeling choice 

Quadratic element CQ16M 

Integration Full: 3x3 

Reinforcement Modeling choice 

Element Truss element 

Mesh Modeling choice 

Element size Initially 25 mm 

Mesher type Hexa/ Quad 

Seeding method division 

 
Table 10 Reference numerical model: analysis procedure 

Analysis procedure Modeling choice 

Loading method Displacement method 

Command  Structural non-linear 

Load steps Start with 0.5 (linear part) 

User specified Depending on model 

Maximum iterations 100 

Incremental-iterative procedure Full NR  

Line searching On 

Continuation of iteration Off 

Satisfy all specified norms Off 

Convergence norm Energy norm (0.001) and force norm (0.01) 

No convergence Continue  
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The sensitivity analysis  will be done on the following modeling aspects: 

• The use of compression-compression confinement:  
o Modeling aspect choices: “Selby and Vecchio” confinement and unconfined. 
o Motivation: this modeling aspect is critical for beams that fail in compression. Although the flexural 

shear failure is a tensile failure, it would still be interesting to see how this modeling aspect impacts 
concrete behavior during this failure mode.  

• The reinforcement bond-slip relation:  
o Modeling aspect choices: the FIB bond-slip relation or the Shima bond-slip relation. 
o Motivation: according to Yang et al. [32], the crack pattern is more realistic when compared to a 

perfect bond assumption by including a bond-slip in the reinforcement modeling. The bond-slip 
relation allows relative displacement between the reinforcement and concrete, increasing cracks' 
progression. The main difference between the two bond-slip relations mentioned is that the FIB 
bond-slip relation accounts for a decrease in the bond stress if high slip values are increased 
further. The behavior discussed between the two models is shown in Figure 54. Besides decreas-
ing the shear traction, the figure shows that the Shima bond-slip relation has a higher traction 
capacity. 

• The total strain crack models’ crack orientation:  
o Modeling aspect choices: the fixed crack orientation or the rotating crack orientation. 
o Motivation: these two crack modeling choices will be combined with the compression-compres-

sion confinement and bond-slip constitutive modeling aspects. These combinations will result in 
eight different variations for the constitutive model, out of which the best-performing model can 
be chosen while still reviewing only a single aspect. An overview of the combinations is given in 
Figure 28. 

• The reinforcement element type:  
o Modeling aspect choices: truss elements or beam elements. 
o Motivation: both reinforcement elements are combined with the plane stress element used for 

concrete in a numerical model. Interest is shown in these two elements because the beam ele-
ments include bending stiffness, making it possible for the concrete to withstand shear stresses 
with the dowel effect. As a result of using this element, the dowel action can be included. The 
truss elements do not include the dowel action. 

• Incremental-iterative procedure:  
o Modeling aspect choices: the full NR iteration scheme or the Secant-iteration scheme. 
o Motivation: in the past, various sensitivity studies have been done on these two schemes. The 

results, however, have different opinions about the better scheme due to the different numerical 
models and situations for their respective analyses. It would be interesting to determine which 
scheme is the most accurate for RC beams without stirrups to simulate the flexural shear failure. 

• Global element size: 
o Motivation: because beams with different dimensions are used during this research, this can be-

come a crucial factor in deciding the accuracy of the numerical model. As seen later during the 
sensitivity analysis, the element size depends on the beam geometry (depth and length). This 
dependence on geometry is also reflected in many recommendation formulas for the element size 
mentioned in the literature review. Using too small elements is not a correct choice as this can 
result in high computational time. On the other hand, using a large element size reduces the 
model accuracy and can cause jumps between elements caused by a discontinuous stress field. 

 
Four numerical cases are used for numerical model sensitivity analysis. The cases are based on “Gar-
nica & Koekkoek” experiments and have geometrical and material properties variations. The properties 
are found in Table 11 with the names A122B1, B701B2, R804A1, and H601A. Some more cases with 
comparable properties for cases A122B1, R804A1, and H601A  are included in the table to enhance 
the quality of the sensitivity analysis. 
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Sensitvity analysis cases’ properties table: 
 

Table 11 Sensitivity analysis cases properties 

Test Date: 
Length 
L [mm] 

Depth 
H [mm] 

Effective  
span-to-depth  
ratio a [mm] 

Effective depth  
d [mm] 

𝒂
𝒅⁄  

[-] 

fc,cube 
[MPa] 

reinforcement 
ratio ρ [%] 

Rebar  
 [mm] 

A121A3 2015 5000 300 1000 270 3.7 78 1.17 3Ø20 

A122B1 2015 5000 300 1000 271 3.7 79 1.16 3Ø20 

A123A1 2015 5000 300 1000 270 3.7 79 1.16 3Ø20 

B701B2 2015 5000 500 1500 472 3.18 81 0.67 3Ø20 

R804A1 2016 8000 800 3500 755 4.64 85 0.65 3Ø25 

R804B1 2015 8000 800 3500 755 4.64 85 0.65 3Ø25 

H601A 2019 9000 1200 4500 1158 3.89 86 0.57 4Ø25 

H602A 2019 9000 1200 4500 1158 3.89 86 0.57 4Ø25 

 
A visualization of the three-point experimental test setup used for these cases is visible in Chapter 3, 
Figure 26. The initial element size for all cases A122B1, B701B2, and R804A1 is 25 mm. This element 
size is chosen based on the results of Chapter 2.2.2.3, but most importantly, Teshome [53] previously 
used this element size for beams from the “Garnica & Koekkoek” reports. Teshome also used an ele-
ment size of 50 mm, which is too big according to the other recommendations from Chapter 2.2.2.3. 
For case H601A, the element size is 40 mm. The reasoning for not using an element size of 25 mm is 
given in Chapter 4.2.1.1. Finally, in this section, some notes regarding the four experimental cases are 
given below: 

• R804A1,  R804B1, and H601A were done with cyclic loading, which can influence the experimental 
results. 

• A steel plate was added to R804B1, which was unfortunately deformed, causing an additional 
reduction of the global stiffness. This difference in stiffness is visible between experimental cases 
R804A1 and R804B1 (Figure 36), which have the same geometrical and material configurations. 

• Figure 99 from Annex II explains the naming of the experimental cases for the “Garnica & Koekkoek” 
report.  

After the numerical model sensitivity analysis, all the remaining cases mentioned in Chapter 3 are sim-
ulated and analyzed quantitatively. Once an accurate numerical model is found from the sensitivity 
analysis and quantitative numerical simulations, the use of the model can be furthered for the pilot 
research on the size effect.  
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4.2 Sensitivity analysis numerical model 

The sensitivity analysis for the numerical model will be done with the following three modeling sections 
and order: 

• The constitutive model 

• Finite element discretization 

• Analysis procedure 
 

4.2.1 Constitutive model 

Sensitivity analysis of the constitutive model analysis is done on the crack orientation, compressive 
lateral confinement, and bond-slip. The last two modeling aspects mentioned will be applied to the fixed 
and rotating crack orientations creating eight different numerical model combinations, as shown in Fig-
ure 28 below. The red arrows show which models will be compared to each other during the analysis. 
 

 
Figure 28 Constitutive model modeling aspects for sensitivity analysis 

 
4.2.1.1 Crack orientation and compressive-lateral confinement 

In this section, with variations in crack orientations and compressive-lateral confinement effects, the 
following four models are used for simulation: 

• Confined compression-compression behavior fixed crack orientation and the FIB bond-slip relation 
with truss elements using the full NR iteration scheme (FCFTN) 

• Unconfined compression-compression behavior fixed crack orientation and the FIB bond-slip rela-
tion with truss elements using the full NR iteration scheme (FUFTN) 

• Confined rotating crack orientation and the FIB bond-slip relation with truss elements using the full 
NR iteration scheme (RCFTN) 

• Unconfined rotating crack orientation and the FIB bond-slip relation with truss elements using the 
full NR iteration scheme (RUFTN) 

 
Fixed crack orientation with variation in confinement 
Confined variation 
The reinforcement did not yield in any of the four cases for the confined fixed crack orientation numerical 
model (FCFTN). Also, most of the four cases' failure modes resembled the flexural shear failure de-
scription. An in-depth analysis is done below. The force-displacement graph's different marker mean-
ings are introduced first, which also applies to other plots of this chapter. The force-displacement graphs 
consist of dots in the graph, which show the non-converged steps. Also, for cases A122B1 (Figure 29), 
B701B2 (Figure 33), and R804A1 (Figure 37), the failure load is at the plotted black cross, after which 
non-converged steps followed, and the simulation could not be trusted from that point on. Case H601A 
(Figure 38) does not have a black cross to show the failure step as the failure load is at the maximum 
load, after which a steep force decline was noticed. All four numerical cases are discussed next. 
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Figure 29 presents the force-displacement graph for case A121A3. 
 

  
Figure 29 A121A3 confined fixed crack orientation sensitivity analysis: force-displacement graph (left) 

and convergence log (right)  
 
The A122B1 with confined fixed crack orientation (FCFTN) numerical simulation does not have the 
same initial stiffness (before the first crack) as the experimental results. This stiffness result is because 
of previous experiments on the cantilever beam. The previous loading effect is not accounted for with 
the numerical model. As a result, the numerical models will show a lower displacement caused by its 
higher stiffness. The numerical stiffness captured after the first crack is like the experimental one. Figure 
30 summarizes how the cases from the reports ( [88] and [12]) were tested during the experiment to 
explain why some experimental cases have lower initial stiffnesses than those found by the numerical 
simulations. In the figure, options one and two are taken after shear failure is reached during testing. 
Option one strengthens the part on which shear failure occurs, and the support is moved to the undam-
aged parts for more tests. For option two, however, instead of fixing the undamaged part, the beam is 
tested at the other undamaged end of the beam. The two initial experimental stiffnesses from case 
R804A1 in Figure 37 also show this point in the result, even though both have the same geometrical 
and material configurations. 
 

 
Figure 30 “Koekkoek and Garnica” experimental testing sequence [88] 

 
For case A122B1 with confined fixed crack orientation, the maximum load is found at the cross plotted 
in the graph, after which the beam fails. There is a low failure load in the case of the fixed crack orien-
tation here. This behavior will also be noticed in some of the other upcoming cases. The fixed crack 
orientation is combined with the damage-based shear retention factor. This factor is based on damage 
due to cracking, where the shear stress reduces as fast as the tensile stresses. Substantial changes in 
the shear retention factor of the fixed crack orientation explain the possible premature failure. For case 
A121A3, the change in the factor is visible in Figure 31, where Gknt represents the change in the shear 
retention factor.  
 

 

 
Figure 31 A121A3 confined fixed crack orientation: before (left) and at failure crack stress (right)  
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In Figure 32, the maximum principal strain is for further analysis. 
 

  
Figure 32 A121A3 confined fixed crack orientation sensitivity analysis: maximum principal strain  

 
The failure mode for case A121A3  is recognized as flexural shear failure. The failure load is captured 
when failure of the beam occurs, and the force decreases. The steps plotted after in the force-displace-
ment graph are non-converged, and its results are not trustable anymore. This case simulation will be 
mentioned later during the following case analysis for more findings. The force-displacement graph for 
case B701B2 with confined fixed crack orientation is shown below: 

 

  
Figure 33 B701B2 confined fixed crack orientation sensitivity analysis: force-displacement graph (left) 

and convergence log (right) 
 
Similarly to case A122B1 with confined fixed crack orientation, case B701B2 with the same numerical 
modeling aspects failure load is at the black cross plotted in the force-displacement graph. Further 
analysis after the failure load is not required due to the unreliable non-converged steps (dots) after this 
load. The failure load has been discussed till now, but the failure mode is also important. The plot of the 
principal strain can be found in the figure below.  

 

  
Figure 34 B701B2 confined fixed crack orientation sensitivity analysis: maximum principal strain 

 
Case B701B2 with confined fixed crack orientation is subjected to dowel failure, indicated by the large 
concentration of cracks along the reinforcement. The difference between flexural shear failure and 
dowel failure can be seen in Figure 35.  
 

 
Figure 35 Flexural shear (left) and dowel failure (right) [12] 
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The flexural shear failure originates from a critical inclined crack that develops two secondary branches. 
The specimen loses its capacity when the unstable secondary branches develop. In contrast, dowel 
failure is characterized by the detachment of the tensile reinforcement from a flexural crack. No sec-
ondary branch develops in the compression zone [12]. From Figure 32 for case A121A3, a small sec-
ondary branch is visible in the compression zone related to the flexural shear failure. 
 
Different potential causes can contribute to the cause of dowel failure. Firstly, due to significant changes 
in the shear retention factor in the elements near the reinforcement. As a result, the numerical model 
cannot solve the excessive change in the factor, the cracks propagate, and (premature) dowel failure 
occurs. Secondly, due to the element size, as crack propagation rate depends on its size. Lastly, due 
to the bond-slip sensitivity from the FIB bond-slip relation and elements used. These reasons may have 
led to further crack propagation along the reinforcement. However, they should be studied further with 
more sensitivity analysis on different modeling aspects to find the cause. The upcoming sensitivity anal-
ysis on other aspects will help with the reasoning for these two cases on the correct damage progres-
sion and failure mode. Next, case R804A1 is analyzed with its force-displacement graph given below. 
 

  
Figure 36 R804A1 confined fixed crack orientation sensitivity analysis: force-displacement graph (left) 

and convergence log (right) 
 
During the experiments in the lab, two specimens were experimented on with the same configurations. 
The numerical model simulation with confined fixed crack orientation has the same pre-cracking and 
post-cracking stiffness as the first experimental R804A1 specimen. However, the specimen tested af-
terward has a lower initial stiffness. This stiffness is due to the testing sequence explained in Figure 37. 
For case R804A1 with confined fixed crack orientation, two crosses are plotted at load steps 184 and 
199, followed by multiple non-converged steps (green dots) plotted along the force-displacement graph. 
Analysis shows failure occurs during the second maximum load (second cross), while diagonal cracks 
formed at the first maximum step. The last segment of the force-displacement graph is not usable for 
analysis due to the convergence difficulties shown by the plotted dots. The principal strain is plotted 
below to analyze the crack pattern for case R801A.  
 

 
Figure 37 R804A1 confined fixed crack orientation sensitivity analysis: maximum principal strain 

 
For R804A1 with confined fixed crack orientation, the most damage is along the reinforcement, indicat-
ing dowel failure instead of flexural shear failure. From previous experience, irregular crack patterns 
(the jumps in the cracking pattern) can be due to a too-small element size. A too-small element size 
does not always simulate the most accurate results, as numerical instabilities can occur. However, this 
statement is not a conclusion and will be addressed during the element size sensitivity analysis. The 
element size of 25 mm will be used until the element size sensitivity analysis. This approach helps keep 
the analysis consistent during comparison with the upcoming sections.  



4 Numerical modeling, analysis, results, and sensitivities 

45 

Finally, the last case (H601A) can be analyzed, with its force-displacement graph given below. 
 

 
Figure 38 H601A confined fixed crack orientation sensitivity analysis: force-displacement graph 

 
Special attention is required for case H601A. For the other cases, acceptable results were found using 
an element size of 25 mm during this and other upcoming sensitivity analyses, even if not yet accurate. 
Unfortunately, case H601A showed element size sensitivity issues (irregular crack patterns due to a 
too-small element size) with an element size of 25 mm during all modeling aspects’ sensitivity analyses. 
This issue resulted in wrong damage progression and over-predictions of the failure load. Because 
none of the modeling aspects' sensitivity analysis results was practical for conclusions due to the issues 
faced, the element size was changed to 40 mm. Hereafter, the modeling aspects sensitivity analysis 
was simulated for case H601A with a new element size. Avoiding changing to an appropriate element 
size would make the simulated results from case H601A mediocre and give inaccurate conclusions on 
a modeling aspect. Only for this case the element size is changed before Chapter 4.2.3.2. For cases 
A122B1, B701B2, and R804A1, an element size of 25 mm is maintained. The element size of 40 mm, 
obtained from a pre-element size sensitivity analysis, also be applied to the other modeling aspects' 
sensitivity analysis only for this case. From the results of the new element size, the correct damage 
progression, failure mode (flexural shear failure), and an acceptable failure load were found with this 
numerical setup. The same pre-cracking and post-cracking stiffness was also found for the simulation 
and experiment. While the force-displacement graph is visible in the figure above, the flexural shear 
failure is visible below. In the initial branch there of the force-displacement graph, overshooting of the 
failure load occurs before the first crack. This overshooting can be due to concrete modeling aspects, 
reinforcement modeling aspects, or a modeling aspect of finite element discretization. The overshooting 
of the initial branch will be addressed during the other modeling aspect sensitivity analysis when more 
information is known to get better observations and a conclusion on this problem. 
 

 
Figure 39 H601A confined fixed crack orientation sensitivity analysis: principal strain 

 
Unconfined variation 
For the following numerical analysis, the concrete compression-compression behavior is unconfined to 
study the modeling aspects' effect on the numerical model. The unconfined numerical model will be 
compared to the confined one from the previous section.  
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The force-displacement graphs of all four cases can be seen in Figure 40, with blue lines showing the 
unconfined results and green lines showing the confined results. 
 

 
Figure 40 Force-displacement graphs: confined and unconfined fixed crack orientation 

 
As for the confined fixed crack orientation (FCFTN)  beams, the same situation occurs for all unconfined 
(FUFTN) beams regarding stiffness. Both numerical model configurations have similar stiffnesses along 
the path of the force-displacement graphs. It is immediately observed from the force-displacement 
graphs above that the unconfined cases “A122B1, B701B2, and R804A1” have a similar displacement 
and failure load as the confined ones. In Annex III, the maximum strain figures are plotted with a com-
parison of the confined and unconfined fixed crack orientation cases. 
 
The same result for the confined and unconfined beams is not the situation for case H601A, as the 
confined numerical model failed earlier. Case H601A confined numerical model and unconfined numer-
ical model in-plane principal stresses are shown at the confined numerical model failure load step and 
step after to study the difference between the numerical models. In the force-displacement graph (Fig-
ure 40), load steps 143 and 144 were plotted with black crosses. 
 

Load step 143: 

 
 

Load step 144: 

  

Load step 143: 

 
 

Load step 144: 

 
Figure 41 H601A in-plane principal stresses: confined (left) and unconfined fixed crack orientation (right) 
 
At load step 143, the stresses are similar for the confined and unconfined numerical simulation. How-
ever, the confined model has sudden high stresses along the reinforcement at step 144. The formation 
of these stresses causes earlier development of the flexural shear crack, leading to the confined nu-
merical model failing earlier than the unconfined one. The force-displacement graph also reflects the 
failure load difference, with a slight difference of 0.03 % between the two numerical models. The results 
suggest that modeling the confinement for cases with flexural shear failure cases is unnecessary. In 
addition, the analysis output and non-converged steps (dots in the force-displacement graph) also sug-
gest that the unconfined state is preferred due to being slightly more accurate for simulations of such 
cases.  
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Below, the maximum principal strain plot is given where the flexural shear failure is recognized for both 
cases. (Because flexural shear failure is not a compressive failure type but a brittle shear-tension failure, 
there is no dependence on concrete crushing). 
 

Confined fixed crack orientation: 

 
 

Unconfined fixed crack orientation 

 

Figure 42 H601A maximum principal strain: confined (left) and unconfined fixed crack orientation 
(right) 

 
Rotating crack orientation with variation in confinement 
Confined variation 
The fixed crack orientation from the previous analysis is changed to the rotating crack orientation for 
this numerical model. This change is made to see if an improvement can be made to the numerical 
model by changing the crack orientation. This section will compare the confined rotating crack orienta-
tions (RCFTN) model to the confined fixed crack orientation (FCFTN). This approach changes one 
modeling aspect between the two numerical models, making an easy comparison possible. The force-
displacement and maximum principal strain graphs are below for cases A121A3 and B701B2 with the 
two confined rotating crack orientations (Figure 43 and Figure 44). The two cases analysis is done 
together as the same difference in response and conclusions are found due to change in the crack 
orientation of the numerical model. 
 

 
Figure 43 A121A3 confined rotating crack orientation sensitivity analysis: force-displacement graph 

 

 
Figure 44 B701B2 confined rotating crack orientation sensitivity analysis: force-displacement graph 

 
The force-displacement graph shows that the failure load and displacement predictions are more accu-
rate with the rotating crack model than the fixed crack orientation model. Even though there are some 
non-converged steps (dots in the force-displacement graph) for the rotating numerical model, these 
steps are after the model has been successfully simulated to failure. The flexural shear failure for both 
models occurs after the first maximum load and is followed by the non-converged steps. Thus, damage 
progression, the failure mode, and the failure load itself is not affected by the non-converged steps.  
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The maximum principal strain for both models is given below: 
 

  
Figure 45 A121A3 confined rotating crack orientation sensitivity analysis: maximum principal strain 

 

  
Figure 46 B701B2 confined rotating crack orientation sensitivity analysis: maximum principal strain 

 
A121A3 and B701B2 confined rotating crack orientations models capture the same failure mode as the 
numerical models with a fixed orientation. However, as expected, the rotating crack orientation model’s 
crack does not simulate the experimental crack (Figure 100 and Figure 101) as accurately as the fixed 
crack orientation model (Figure 29 and Figure 33). The reason for a more accurate crack pattern is that 
the fixed crack orientations’ crack orientation is constant. The fixed orientation is more suitable for brittle 
materials due to the material's cracking behavior. The next analysis is done for case R804A1 with the 
force-displacement graph and non-converged steps log below (Figure 47). 
 

  
Figure 47 R804A1 confined rotating crack orientation: force-displacement graph (left) and converged 

steps log (right) 
 
The result from R804A1 with confined rotating crack orientations cannot be trusted as many conver-
gence difficulties exist before the failure load is reached. The yellow dots in the plot are the non-con-
verged steps, while the black cross shows the first steps before the series of non-converged steps. The 
high number of non-converged steps is due to over-rotation caused by the rotating crack orientation. In 
previous research, Løvli [49] found a direct correlation between over-rotation and the number of non-
converged steps. Stability issues accompany the over-rotation during simulation, and a wrong failure 
mode is also captured instead of the expected flexural shear failure from the experiment. For R804A1 
with confined rotating crack orientations, this can be seen in Figure 48, where there are large strains 
around the reinforcement and concrete cover.  
 

 

 
 

 
Figure 48 R804A1 confined rotating crack orientation: delamination 
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The failure is the delamination of the concrete cover caused by cracking along the reinforcement. In 
addition, the crack runs more vertically than diagonally (diagonal crack) toward the loading point. The 
figure plot is for the first non-converged step (black cross marker) and some steps after with an already 
extremely high maximum principal strain. The element is already dissolved before the maximum load 
is reached. The in-plane principal stress has also been plotted at the delamination location in Figure 49 
to support the claim on excessive over-rotation of the crack orientation. 
 

   
Figure 49 R804A1 confined rotating crack orientation: in-plane principal stress 

 
For case R804A1, the experimental failure mode found in Figure 102 shows that no delamination should 
occur. Just like for case R804A1 with confined rotating crack orientations, the same delamination prob-
lem due to over-rotation was observed from the analysis of case H601A with confined rotating crack 
orientations. Thus, an in-detail analysis will be left out for case H601A as this will be redundant. 
 
Unconfined variation 
For the comparison of the unconfined rotating crack numerical model (RUFTN), the confined rotating 
crack orientation (RCFTN) model will be used. There is a neglectable difference between the results of 
the two models. To keep this section short, cases A121A3 and B701B2 are analyzed together, where 
both simulated acceptable results. The force-displacement graphs with a comparison between the con-
fined and unconfined rotating crack orientation models are shown below for both cases: 
 

 
Figure 50 Force-displacement graphs confined rotating crack orientation: A121A3 (left) and B701B2 

(right) 
 
As seen for cases A121A3 and B701B2 with unconfined rotating crack orientation from  Figure 50, there 
is almost negligible difference between the force-displacement graphs of the confined and rotating un-
confined rotating crack orientation numerical model. for the two cases. The crack of both models is also 
similar. Thus Figure 43 and Figure 44 can be used to visualize the unconfined model crack. Next, case 
R804A1 with unconfined rotating crack orientation is analyzed. Previously this case for the confined 
numerical model resulted in delamination due to over-rotation. For analysis of case R804A1 with an 
unconfined rotating crack orientation, the force-displacement graph is shown in Figure 51. The uncon-
fined numerical model runs more stable than the confined model (also found for the fixed crack orien-
tation). The convergence problems do occur, but at a later stage than the confined numerical model, 
thus simulating a higher failure load.  
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Below, the force-displacement graph and the convergence log are shown. 
 

  
Figure 51 R804A1 unconfined rotating crack orientation: force-displacement graph (left) and conver-

gence log (right) 
 
Unfortunately, just like for case R804A1 with the confined rotating crack orientation numerical model, 
the unconfined model is also subjected to over-rotation before the failure load is reached, thus resulting 
in delamination of the concrete cover. The delamination is visible in Figure 52 below. The results show 
a strong correlation between the non-converged steps and over-rotation.  
 
 

   
Figure 52 R804A1 unconfined rotating crack orientation: delamination 

 
The over-rotation for case H601A gets worse. The difference between case R804A1 and H601A is the 
geometrical size. The results show that the rotating crack orientation numerical model results in over-
rotation for RC beams without stirrups when applied to geometrically large beams (R804A1) and wors-
ens as the beam size increases (H601A). Therefore, this research cannot use the rotating crack orien-
tation without including the compression-compression confinement.  
 
Below is a table summarizing Chapter 4.2.1.1 results for the confined and unconfined fixed crack ori-
entation numerical model for an overview of this section. The results of the rotating crack orientation 
are neglected as results for some cases were loaded with non-converged steps overshooting the norms 
and thus not acceptable. 
 

Table 12 Confinement with the fixed crack orientation sensitivity analysis summary 

Test A121A3 A122B1 A123A1 B701B2 R804A1 R804B1 H601A H602A 

Vexperiment [kN] 145 152 137 202 269 250 306 306 

FCFTN Vnumerical [kN] 109 109 109 168 216 216 322 322 

FCFTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.33 1.40 1.25 1.20 1.25 1.16 0.95 0.95 

FUFTN Vnumerical [kN] 108 108 108 173 216 216 333 333 

FUFTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.34 1.41 1.26 1.17 1.25 1.16 0.92 0.92 
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4.2.1.2 Crack orientation and bond-slip relation  

This section will replace and compare the Shima bond-slip relation with the FIB bond-slip relation in the 
numerical model. Analysis of the modeling aspect will be combined with the fixed crack and rotated 
crack orientation models. The following four numerical models will be used to compare the Shima and 
FIB bond-slip relation: 

• Unconfined compression-compression behavior fixed crack orientation and the FIB bond-slip 
relation with truss elements using the full NR iteration scheme (FUFTN) 

• Unconfined compression-compression behavior rotating crack orientation and the FIB bond-slip 
relation with truss elements using the full NR iteration scheme (RUFTN) 

• Unconfined compression-compression behavior fixed crack orientation and the Shima bond-slip 
relation with truss elements using the full NR iteration scheme (FUSTN) 

• Unconfined compression-compression behavior rotating crack orientation and the Shima bond-slip 
relation with truss elements using the full NR iteration scheme (RUSTN) 

 
Fixed crack orientation with variation in bond-slip relation 
This section will discuss the fixed crack orientation numerical models combined with the Shima bond-
slip relation (FUSTN)  and compare them to the FIB bond-slip (FUFTN) models. Comparing the Shima 
bond-slip relation performance to the FIB bond-slip relation is essential for the interaction between the 
concrete and reinforcement. The comparison is hoped to successfully conclude which bond-slip relation 
is more accurate in representing the experimental results and should be used for the constitutive model. 
The load-displacement graphs for all four cases with both bond-slip relation numerical models are plot-
ted in Figure 53 for comparison. The green line shows the model with the FIB bond-slip relation, while 
the blue line shows the model with the Shima bond-slip relation. 
 

 
Figure 53 Force-displacement graph: FIB and Shima bond-slip relation 

 
In the force-displacement graphs, cases A121A3, B701B2, and R804A1 instantly increased and im-
proved the failure load and displacement with the Shima bond-slip relation. The failure load and dis-
placement simulations with the Shima bond-slip relation are closer to the experimental failure loads. An 
in-depth analysis is performed to determine why there is such a difference by changing the bond-slip 
relation for the numerical model. Because the analysis conclusions for the bond-slip relation of these 
three cases (cases A121A3, B701B2, and R804A1) were almost similar, one of them is picked for a 
detailed explanation in this chapter. During the previous sensitivity analysis, the most explanation was 
done on cases A121A3 and R804A1, so now case B701B2 is chosen for the in-detail sensitivity analy-
sis.  
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Case H601A, in contrast to the other three cases, showed a decrease in failure load and displacement 
with the Shima bond-slip relation. However, the simulated failure load of the Shima bond-slip relation is 
also closer to the experimental failure load for this case. Case B701B2 and case H601A will be primarily 
focused on during this sensitivity. This approach helps avoid overcrowding this section with results from 
all four cases, helps spot differences between case B701B2 and case H601A, and includes all important 
observations/conclusions. However, at the end of the in-depth analysis, a summarizing table will be 
shown with results for all four cases. A sensitivity analysis on case B701B2 is done first.  
 
For case B701B2 (from Figure 53 force-displacement graph), the Shima-bond-slip relation failure load 
is close to the experimental one. In the force-displacement graph, the Shima bond-slip relation also has 
a steeper drop in force. This steeper drop mimics the brittle nature of the flexural shear failure better. A 
‘traction and slip’ relation in Figure 54 is plotted for case B701B2 to understand the difference between 
the bond-slip relation from a theoretical perspective. The plot was made using Shima et al. calculations 
for the Shima bond-slip relation and the CEB-FIB 2010 calculations for the FIB bond-slip relation, found 
in Chapter 2.2.1.2. The same material values were used for the calculations of this plot by entering 
these values in their respective formulas. Three interesting findings are introduced from the figure while 
using the same material configurations for bond-slip relations modeling assumptions. First, the FIB 
bond-slip relation decreases the bond stress at high slip values. Secondly, the  Shima bond-slip relation 
has a higher shear traction capacity. Lastly, a higher initial stiffness for the Shima bond-slip relation is 
another important difference between the two models. 
 

 
Figure 54 B701B2: FIB and Shima bond-slip relation curves 

 
Next, the numerical models’ reinforcement results (Cauchy stresses, total interface traction, interface 
relative displacements) are analyzed. The results of the two bond-slip relation numerical models and 
their respective failure loads found in the force-displacement graph (Figure 53) have been plotted be-
low. The traction and relative displacement results have been zoomed in at the location where the 
failure crack occurs instead of showing the full beam to better spot the differences between the bond-
slip relations. 
 

 

FIB bond-slip: 

 
Shima bond-slip: 

 
Figure 55  B701B2 reinforcement stresses: FIB (top) and Shima bond-slip relation (bottom) 

 

FIB bond-slip 

  

Shima bond-slip 

 
Figure 56  B701B2 interface shear traction: FIB (left) and Shima bond-slip relation (right) 
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FIB bond-slip 

  

Shima bond-slip 

 
Figure 57  B701B2 interface relative displacement: FIB (left) and Shima bond-slip relation (right) 

 
When comparing, there are no apparent differences between the maximum stresses and tractions re-
sults of the two bond-slip relation models. However, the Shima bond-slip relation model has lower rel-
ative displacements at its failure load than the FIB bond-slip relation model, even though the latter failed 
earlier. The maximum shear traction for the bond-slip relations has not been reached at this stage, as 
visible in the figures’ legend. Due to the higher initial stiffness, the Shima bond-slip relation allows for 
less relative displacement between the materials. Because of the lower initial stiffness, a larger relative 
displacement is caused, resulting in faster crack propagation for the FIB bond-slip relation. The numer-
ical model could not deal with the FIB bond-slip relation model's high crack propagation rate at the 
failure load. The behavior is also reflected in the non-converged step after this point. The maximum 
principal strains for case B701B2 are given in Figure 58 below to show the failure mode and strains: 
 

FIB bond-slip: 

 
 

Shima bond-slip: 

 
Figure 58 B701B2 maximum principal strains: FIB (left) and Shima bond-slip relation (right) 

 
During the Shima bond-slip relation sensitivity analysis, the s small secondary branch in the compres-
sion zone is developed, with less concentrated stresses along the reinforcement. Looking at the exper-
imental specimen crack pattern (Annex III, Figure 101), the pattern is mimicked better with the Shima 
bond-slip relation.  
 
The sensitivity analysis results for case H601A (Figure 53) are discussed now. The force-displacement 
graph for this case showed a large overshot in the initial branch using the FIB bond-slip relation. The 
overshooting has been reduced with the Shima bond-slip relation. After the initial overshooting, both 
bond-slip relation numerical models return to a similar location in the force-displacement graph and 
follow an almost identical path. This behavior shows that the overshooting does not impact the simula-
tion for further load steps. The improvement in the branch is related to the activation of the reinforcement 
and concrete interaction after the initial crack. At the initial crack, there is a case of non-convergence 
for both schemes. During other modeling aspects sensitivity analyses, more analysis will be done on 
the cause of the overshooting, as this might depend on more modeling aspects than only the bond-slip 
relation. Unlike the previous numerical case, H601A does not differ much between the Shima bond-slip 
relation and the FIB bond-slip relation in failure load. The reinforcement ratio is only 0.57 % for this 
case, explaining the small difference between the bond-slip relations. Even though the bond between 
the reinforcement and concrete is essential to transfer the stresses between them, the bond-slip rela-
tions' influence decreases as the reinforcement ratio is low. There is less surface area for the bond 
between the two materials. Compared to the case's experimental result, the bond-slip relations slightly 
overpredict the failure load (Shima by 5 kN and FIB by 15 kN). The results show that the Shima bond-
slip relation overpredicts less than the FIB bond-slip relation, with the difference between the two nu-
merical models' failure loads being a marginal 1.04%.  
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Below, the reinforcement stresses, shear tractions, and relative displacement are plotted to analyze the 
bond-slip relation influence. The plots are made at the failure load of each bond-slip relation numerical 
model. 
 

 

FIB bond-slip: 

 
Shima bond-slip: 

 
Figure 59  H601A reinforcement stresses: FIB (top) and Shima bond-slip relation (bottom) 

 

 

FIB bond-slip:  

Shima bond-slip:  
Figure 60  H601A interface shear traction: FIB (top) and Shima bond-slip relation (bottom) 

 

 

FIB bond-slip:  

Shima bond-slip:  
Figure 61  H601A interface relative displacement: FIB (top) and Shima bond-slip relation (bottom) 

 
When the results at the numerical model's respective failure loads are studied, the FIB bond-slip relation 
numerical model relative displacements from the plots are slightly larger. The higher value is logical as 
the FIB bond-slip relation deforms more and has a slightly higher failure load, as seen in the force-
displacement graph. Due to the higher initial stiffness for the Shima bond-slip relation, the shear trac-
tions appear slightly higher. The maximum tractions have not yet been reached for the bond-slip relation 
numerical models with a relative displacement of less than 0.1 mm. The simulation with FIB bond-slip 
relation results in acceptable values.  
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An interesting behavior is noticed by comparing the relative displacement of the bond-slip relations 
between case B701B2 and H601A. If there is not too high of a relative displacement occurring (this 
happens with the FIB bond-slip relation model), the numerical model has an easier time coping with the 
changes in the model during each step for the brittle failure mode cases. Also, this is reflected in the 
small number of non-converged steps. For case H601A, the Shima bond-slip relation, and the FIB bond-
slip relation only have non-converged steps during the initial cracking. The other non-converged steps 
are found after successfully simulating the correct failure mode. These non-converged steps are visible 
with the dots in the force-displacement graph (Figure 53). The slight difference between the bond-slip 
relation models is also due to the low reinforcement ratio for this specific case (H601A), causing the 
reinforcement ratio to contribute less to the beam capacity. Lastly, the maximum principal crack strain 
is given where the simulation of the flexural shear failure is seen for both bond-slip relations.  
 

FIB bond-slip: 

 
 

Shima bond-slip: 

 

Figure 62  H601A maximum principal strains: FIB (top) and Shima bond-slip relation (bottom) 
 
Rotating crack orientation with variation in bond-slip relation 
In this unconfined rotating crack orientation numerical model, the FIB bond-slip relation (RUFTN) is 
replaced with the Shima bond-slip relation (RUSTN) and used to analyze the bond-slip relations. Many 
convergence difficulties were found during the analysis for the numerical simulations of all four cases 
(A121A3, B701B2, R804A1, and H601A) using the Shima bond-slip relation. For case A121A3, the non-
converged steps log and the force-displacement graph has been plotted in Figure 63.  
 

  
Figure 63 A121A3 rotating crack orientation with Shima bond-slip relation: force-displacement graph 

(left) and convergence log (right) 
 
Also, Figure 64 includes the crack width plot to understand what happened because of the convergence 
problems. It should be noted that the crack width plotted at the load step is large (location shown with 
a cross in the force-displacement graph), and the element is already dissolved. However, plotting at 
this loading step was chosen to demonstrate the delamination. A plot with a small crack width would 
not demonstrate the delamination visually clearly. In addition, the delamination increases to exceedingly 
high crack widths in a few steps.  

 

 
Figure 64 A121A3 rotating crack orientation with Shima bond-slip relation: delamination 
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From analysis, the wrong results were caused by over-rotation, a known problem with the rotating crack 
orientation. The causation of this problem was already discussed for the rotating crack orientation and 
the FIB  bond-slip relation, and the same applies here. There is a strong correlation between the number 
of non-converged steps and over-rotation, visible in Figure 63. The crack width figure shows that the 
Shima bond-slip relation at an early load step already shows an impending delamination failure. The 
plot location is given with a cross on the force-displacement graph. Delamination is the cause of failure 
for all four initial cases, which is the wrong failure mode.  
 
Like with the FIB bond-slip relation, in the case of the rotating crack orientation and the Shima bond-
slip relation, the convergence difficulty increases as the geometrical beam size increases. As the ele-
ment sizes are the same and the over-rotation is in the element, the larger the beams, the more ele-
ments over-rotate. The increase in convergence difficulties results from B701B2 are shown in Figure 
65 and Figure 66 to prove it. The number of non-converged steps has increased, while the step load at 
which the delamination occurred was early in the force-displacement graph. In the crack width plot, a 
considerable maximum crack width is shown to make the delamination visible in the figure. After the 
plots, the conclusion section below (Table 13) will summarize the results between the two bond-slip 
relations for comparison. 

 

 
Figure 65 B701B2 rotating crack orientation with Shima bond-slip relation: force-displacement graph 

(left) and convergence log (right) 
 

 
Figure 66 B701B2 rotating crack orientation with Shima bond-slip relation: delamination 

  



4 Numerical modeling, analysis, results, and sensitivities 

57 

4.2.1.3 Conclusion 

Chapters 4.2.1.1 and 4.2.1.2 are summarized to conclude the sensitivity analysis for the constitutive 
model. Sensitivity analysis investigated the influence of the compression-compression confinement be-
havior and bond-slip relation with the total strain crack models’ crack orientation for the constitutive 
model. The following variations were used for the aspects mentioned: 

• Compression-compression confinement behavior: “Selby and Vecchio” confinement and 
unconfined. 

• Bond-slip relation: FIB bond-slip relation and Shima bond-slip relation. 

• The total strain crack models’ crack orientation: the fixed crack orientation or the rotating crack 
orientation 

Below in Table 13, a summary of the constitutive model sensitivity analysis failure loads is shown where 
the fixed crack orientation was applied. The results of the rotating crack orientation are not shown, as 
the simulated results were awful in multiple cases. The rotating crack orientation model resulted in many 
non-converged steps with high force and energy norm differences. This problem would sometimes oc-
cur long before the failure load was even simulated. Thus, the rotating crack orientation is not an option 
for RC beams without stirrups that fail due to flexural shear failure. 
 

Table 13 Constitutive model sensitivity analysis summary 

Test A121A3 A122B1 A123A1 B701B2 R804A1 R804B1 H601A H602A 

Vexperiment [kN] 145 152 137 202 269 250 306 306 

FCFTN Vnumerical [kN] 109 109 109 168 216 216 322 322 

FCFTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.33 1.40 1.25 1.20 1.25 1.16 0.95 0.95 

FUFTN Vnumerical [kN] 108 108 108 173 216 216 333 333 

FUFTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.34 1.41 1.26 1.17 1.25 1.16 0.92 0.92 

FUSTN Vnumerical [kN] 137 137 137 198 274 274 312 312 

FUSTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.06 1.11 1.00 1.02 0.98 0.91 0.98 0.98 

 
The findings for each modeling aspect during the constitutive model sensitivity analysis are also given 
below: 
Fixed crack orientation or Rotating crack orientation: 

• The fixed crack orientation has a more realistic representation of the (flexural shear) failure crack. 

• The rotating crack orientation can be subjected to delamination of the concrete cover (especially 
for geometrically large beams). The delamination is caused by over-rotation from the rotating crack 
orientation. In addition, a strong correlation was found between over-rotation and a high number of 
non-converged steps. 

• The rotating crack orientation can also be sensitive to dowel failure due to over-rotation of the ele-
ments above the reinforcement. Dowel failure is characterized by the detachment of the tensile 
reinforcement from a flexural crack. For this failure mode, no secondary branch develops in the 
compression zone. 

• The fixed crack orientation can also be sensitive to dowel failure due to excessive change in the 
damage-based shear retention factor. This excessive change in the factor can also lead to prema-
ture failure of the beam and requires very small steps for the sensitive step sizes. 

Confined or unconfined: 

• In a small number of cases, the unconfined numerical model had a higher failure load (for both the 
fixed and rotating crack orientations). However, there is not much difference in failure load between 
the confined and unconfined numerical models. 

• The compression-compression confinement had a sudden concentration of high stresses along the 
reinforcement in one of the four, thus capturing the wrong failure mode (dowel failure).  

• The compression-compression confinement is not a modeling requirement for cases with a brittle 
shear-tension failure mode, such as flexural shear failure. 
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FIB bond-slip relation or Shima bond-slip relation: 

• The Shima bond-slip relation has a higher bond stress capacity and initial stiffness than the FIB 
bond-slip relation with the same material configurations for the modeling assumptions. In addition, 
the later bond-slip relation accounts for a decrease in bond stress at high slip values, which does 
not happen for the Shima bond-slip relation. 

• Due to the higher initial stiffness, the Shima bond-slip relation allows for higher shear tractions at 
less relative displacement between the materials than the FIB bond-slip relation. 

• The lower initial stiffness of the FIB bond-slip model increases the relative displacement, thus hav-
ing a bigger crack (propagation). As the numerical model cannot deal with the rate of changes in 
the model, convergence problems occur. 

• The FIB bond-slip relation is found to be more sensitive to capturing dowel failure mode. The larger 
relative displacement between the concrete and reinforcement causes the reinforcement to detach. 
This detachment is a characterization of dowel failure. 

• The Shima bond-slip relation more accurately captures the flexural shear failure crack pattern. 

• The Shima bond-slip relation with the fixed crack orientation simulates the most accurate results. 
In three cases of four, the Shima bond-slip relation model simulated a higher failure load than the 
FIB bond-slip relation model. In contrast, the Shima bond-slip relation had a lower failure load in 
one case. However, the Shima bond-slip relation showed more accurate results for all four cases 
than the FIB bond-slip model when compared to the experimental results. 

From the analysis and the table overview, the constitutive model sensitivity analysis results in “ uncon-
fined (compression-compression behavior) fixed crack orientation and the Shima bond-slip relation”  as 
the best-performing numerical model.  
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4.2.2 Analysis procedure 

During the sensitivity analysis of the analysis procedure, the full NR iteration scheme is compared to 
the Secant iteration scheme. The advantages and disadvantages of both schemes have already been 
discussed in Chapter 2. The simulated results of the four numerical cases will be displayed below to 
see if there is a difference between the two schemes. The non-converged steps in this section are 
shown with dots in the force-displacement graph and logged on the right in tables for an overview and 
analysis. Only the non-converged steps before failure are displayed in the log, and if no non-converged 
steps are shown for a scheme, it is because the scheme does not consist of non-converged steps. 
Cases First, case A121A3 is analyzed and discussed. The force-displacement graph plotted in the fig-
ure shows the non-converged steps with their out-of-balance force and energy variation. Because the 
Secant iteration scheme did not consist of non-converged before reaching the failure load, no steps are 
included for this iteration scheme in the log. 
 

 

Case A121A3-NR 

Step 22 

Force norm 0.01 

Out-of-balance 
forces 0.028 

Energy norm 0.001 

Energy variation 0.002 
 

Figure 67 A121A3 iteration schemes: Force-displacement graph (left) and non-converged steps (right) 
 
Both schemes have almost equivalent force-displacement path progression till the failure load. More 
important than the non-converged steps are the size of the out-of-balance forces and relative energy 
variation. The force norm considers only the force with a criteria size of 0.01. In addition, the energy 
norm considers both the displacement and force with a criterion of 0.001. For case A121A3 at step 22 
using the full NR iteration scheme, the convergence of both norms is not met using a step size of 0.1. 
However, the overshooting of the norms is by a factor of 1.8 (force norm) and 1 (energy norm) and can 
easily be reduced with smaller load steps or more maximum iterations. Currently, the maximum itera-
tions are set to 100, which is not incredibly high. The experimental and numerical results of the strain 
are provided in Figure 68 for further analysis.  
 

Experiment: 

 
 

NR: 

 
Secant: 

 
Figure 68 A121A3 iteration schemes maximum principal strain: NR (top) and Secant scheme (bottom) 
 
From a comparison between the flexural shear crack pattern and the experimental pattern, the full NR 
iteration scheme does not mimic the cracks for case A121A3. The Secant model does come closer to 
the experimental pattern. A change in element size might improve the crack pattern as it influences its 
accuracy. This statement will be researched more during the element size sensitivity analysis in Chapter 
4.2.3.2. 
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Next, case B701B2 is addressed. First, the force-displacement graph and non-converged steps are 
given. 
 

 

Case B701B2-NR 

Step 19 

Force norm 0.01 

Out-of-balance 
forces 0.221 

Energy norm 0.001 

Energy variation 0.123 
 

Figure 69 B701B2 iteration schemes: Force-displacement graph (left) and non-converged steps (right) 
 
The force-displacement graph does not show a vast difference between the iteration schemes, but the 
full NR iteration scheme does consist of one non-converged step at the initial crack. The results for 
case B701B2 using the full NR iteration scheme at step 19 are unacceptable as the results greatly 
overshoot the norm for this specific step. Reducing the step size at the initial cracks will reduce the 
considerable overshooting of the norm. However, the correct damage progression takes place after the 
load step, and accuracy for case B701B2  was not impacted for the full NR iteration scheme due to the 
already small load step of 0.1. Below, the maximum principal strain is also given for case B701B2: 
 

Experiment: 

 

 

NR: 

 
Secant: 

 
Figure 70 B701B2 iteration schemes maximum principal strain: NR (top) and Secant scheme (bottom) 
 
For the B701B2 case, both models come close to the experimental flexural shear pattern. However, the 
full NR iteration scheme mimics the experimental crack better. In contrast, the cracks along the rein-
forcement are spread and have developed some large diagonal cracks along the reinforcement for the 
Secant iteration scheme. The two cases analyzed until now, A121A3 and B701B2 (Figure 67 and Figure 
69), barely show any difference in their force-displacement graph between the two iteration schemes. 
Next, R804A1 is analyzed, but first, the force-displacement graph is given in Figure 71, and the non-
converged steps in Table 14: 
 

 
Figure 71 R804A1 iteration schemes: force-displacement graph 
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Table 14 R804A1 Non-converged steps: NR and Secant iteration schemes 

Iteration 
scheme 

R804A1 
step 

Force 
norm 

Out-of-balance 
forces 

Energy 
norm 

Energy 
variation 

Secant 33 0.010 0.167 0.001 0.003 

Newton 
- 

Raphson 

31 0.010 0.371 0.001 0.097 

49 0.010 0.166 0.001 0.009 

50 0.010 0.072 0.001 0.001 

84 0.010 0.138 0.001 0.006 

 
For case R804A1, the full NR iteration scheme has a lower failure load than the Secant iteration 
scheme. The higher number of non-converged steps is a disadvantage for the full NR iteration scheme, 
as visible by the dots in the graph. While the Secant iteration scheme consists of only one non-con-
verged step before failure, the full NR iteration scheme consists of four steps. The results of the non-
converged steps are based on analysis with a step size of 0.1. The full NR iteration scheme’s out-of-
balance force and energy variation overshoot the norms at some steps. For load step 31, the energy 
variation result is almost ninety-five times larger than the norm. In addition, the out-of-balance forces 
are thirty-six times larger than the norm. Also, a reduction in the step size did not lead to an improvement 
in the overall result. In the numerical model, the non-converged steps are when the flexural cracks 
open. Even though there is a difference in the number of non-converged steps, both iteration schemes 
followed the same force-displacement path. Their overlapping path in the force-displacement graph is 
visible above. While the Secant iteration scheme is more stable according to the literature review and 
during the simulation does not run into many convergence problems during the simulations compared 
to the full NR iteration scheme, the full NR iteration scheme’s failure load is closer to the experimental 
failure load. Observations show that the Secant iteration scheme slightly overestimates the failure load 
(14kN). Next, the maximum principal strain is shown in Figure 72 for case R804A1. 
 

Experiment: 

 
 

NR: 

 
Secant: 

 
Figure 72 R804A1 maximum principal strain: NR (top) and Secant scheme (bottom) 

 
For case R804A1, the Secant iteration scheme flexural shear failure crack closely matches the experi-
mental result. However, the full NR iteration scheme crack pattern is incorrect, and its pattern has no 
smooth transition. Strains formed from the last crack for the full NR iteration scheme are shown with 
the red circle in the plot. However, unexpectedly irregular cracks are formed due to large strains trans-
ferring from one element to another horizontally or vertically. The wrong failure mode problem seems 
to be caused due to the element properties or its size rather than the full NR iteration scheme only. This 
statement will be researched further during the element size sensitivity analysis. The last case that is 
analyzed for the iteration schemes is H601A, with its force-displacement graph and non-converged 
steps given: 
 

 
Figure 73 H601A iteration schemes: force-displacement graph 
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Table 15 H601A Non-converged steps: NR iteration scheme 

H601A 
step 

Force 
norm 

Out-of-balance 
forces 

Energy 
norm 

Energy 
variation 

22 0.010 0.165 0.001 0.010 

27 0.010 0.090 0.001 0.004 

43 0.010 0.080 0.001 0.003 

103 0.010 0.156 0.001 0.030 

 
H601A with the Secant iteration scheme does not consist of non-converged steps before the flexural 
shear failure is successfully simulated. This reason is why no steps are included in the table. In contrast, 
the full NR iteration scheme consists of four non-converged steps before failure. Some of the results in 
the table are unacceptable from analysis, like with R801A1, for a step size of 0.1. Still, because this 
step size is already small, the accuracy of the numerical model was not influenced by the NR method. 
The method followed a similar force-displacement path as the Secant iteration scheme at these steps. 
The maximum principal strain is also given below: 
 

Experiment:            

 

 

NR: 

 
Secant: 

 
Figure 74 H601A maximum principal strain: NR (top) and Secant scheme (bottom) 

 
While the flexural shear failure gets nicely captured for H601A using the full NR and Secant iteration 
schemes, the latter captures a symmetrical failure. However, flexural shear failure is known to be a non-
symmetrical failure mode due to the mechanical behavior of RC beams taking up several types of non-
linearities. A probable reason for the symmetrical failure is that the Secant iteration scheme fails to 
include material nonlinearity due to the symmetrical modeling of the structure. Changing the step size 
for the Secant method did not fix this issue. The full beam's NR iteration scheme result demonstrated 
correct non-symmetric failure. Only a half beam will be shown in plots during further analysis figures 
unless a symmetric failure occurs. Comparisons for the numerical failure loads and experimental failure 
of the four discussed cases are below in Table 16 for both schemes to give an overview of their perfor-
mance.  
 

Table 16 Iteration schemes sensitivity analysis summary 

Test A121A3 A122B1 A123A1 B701B2 R804A1 R804B1 H601A H602A 

Vexperiment [kN] 152 137 202 269 250 306 306 152 

FUSTN Vnumerical [kN] 137 137 198 274 274 312 312 137 

FUSTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
  [-] 1.06 1.11 1.00 1.02 0.98 0.91 0.98 0.98 

FUFTS Vnumerical [kN] 136 136 202 284 283 301 301 136  

FUFTS 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
  [-] 1.06 1.12 1.00 1.00 0.95 0.88 1.02 1.02 

 
To summarize this modeling aspect, both schemes had almost equivalent failure loads and displace-
ments for cases A121A3 and B701B2. However, when comparing the schemes, the other two cases 
(R804A1 and H601A) showed differences in the force-displacement graphs. The main difference be-
tween the four cases is their geometrical size. Increased sensitivity from the iteration schemes appears 
to occur with increased geometrical size. This table shows that the full NR iteration scheme gives slightly 
more accurate results while mostly successfully capturing the flexural failure crack. This conclusion was 
found, despite the Secant iteration scheme having fewer non-converged steps for all four cases.  
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In addition, there was one case with symmetric failure for the Secant iteration scheme. The symmetrical 
failure is wrong as the flexural shear failure is a non-symmetrical failure mode, even though the simu-
lated crack pattern is accurate. Case R804A1 had problems simulating the flexural shear failure, but 
the failure load was accurate. The findings indicated that the problem is possibly due to the element 
(size) and the iteration scheme used. In Chapter 4.2.3.2, element size sensitivity will demonstrate if the 
correct failure mode for case R804A1 with the full NR iteration scheme can be captured. This case was 
the only case with much better results for the Secant iteration scheme due to the failure mode. During 
the element size sensitivity analysis, more analysis will be done on both schemes as there is not much 
difference between the results. With such a slight difference in this modeling aspect simulations, con-
cluding the appropriate iteration scheme for the numerical model is impossible. In addition, the schemes 
also appear to depend on the geometrical structure size and the finite element discretized model ele-
ments. Besides, the global element size also depends on the geometrical size. With this approach, a 
better conclusion can be found regarding the schemes, and a link between the iteration scheme and 
element size can be identified.  
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4.2.3 Finite element discretization 

The finite element discretization modeling aspects are the last ones for the sensitivity analysis. First, 
the reinforcement element is addressed, and then the element size. 
 
4.2.3.1 Reinforcement element 

During this section's analysis, the truss elements are replaced with beam elements for reinforcement in 
the numerical model. Unfortunately, due to a numerical error during simulation, the Shima bond-slip 
relation combined with beam elements for the reinforcement cannot be reviewed. The problem is purely 
caused due to changes in the reinforcement element. For future research, it would be interesting to see 
if using another concrete element with beam elements would have solved this problem. A change in the 
concrete element is avoided during this research to keep consistency in the concrete element for the 
reference numerical model. Changing the reinforcement and concrete elements together makes it diffi-
cult to study a single modeling aspect (in this case, the reinforcement element) during the sensitivity 
analysis. 
 
The bond-slip relation sensitivity analysis in Chapter 4.2.1.2 shows that the Shima bond-slip relation 
performs better than the FIB bond-slip relation. Still, the FIB bond-slip relation is applied to analyze the 
numerical model for reinforcement element variation due to the numerical problem (error) found with 
the Shima bond-slip relation. There is a possibility that a change in reinforcement element can cause 
better accuracy for the FIB bond-slip relation with beam elements compared to the Shima bond-slip 
relation combined with truss elements. The reinforcement element sensitivity analysis is performed with 
the following numerical models: 

• Unconfined compression-compression behavior, fixed crack orientation, and the FIB bond-slip 
relation with beam elements using the full NR iteration scheme (FUFBN).  

• Unconfined compression-compression behavior, fixed crack orientation, and the FIB bond-slip 
relation with truss elements using the full NR iteration scheme (FUFTN).  

• Unconfined compression-compression behavior, fixed crack orientation, and the Shima bond-slip 
relation with truss elements using the full NR iteration scheme (FUSTN).  

 
Comparing the FIB bond-slip relation with beam elements model and the Shima bond-slip relation with 
truss elements models on the reinforcement elements are challenging to analyze due to the difference 
in two modeling aspects instead of one. Thus first, the FIB bond-slip relation with beam elements model 
will be compared to the FIB bond-slip relation with truss elements model to analyze the influence of a 
change in reinforcement elements between the models. Afterward, the failure load simulation and crack 
pattern accuracy between the three numerical models are compared. During the comparisons of the 
bond-slip relations in Chapter 4.2.1.2, the B701B2 and H601A cases were used for detailed analysis. 
The choice is made to use these two cases again for the in-depth analysis of the reinforcement elements 
to make more accessible cross-references to the Shima bond-slip relation with truss elements. How-
ever, the analysis results of cases A121A3 and R804A1 will also be included at the end of this section. 
The force-displacement graph for case B701B2 is given in Figure 75 for the first case sensitivity analysis 
of the reinforcement type.  

 

 
Figure 75 B701B2 Force-displacement graph: FIB bond-slip relation with truss elements, Shima bond-

slip relation with truss elements, and FIB bond-slip relation with beam elements 
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For the beam elements model, there is an earlier failure than the two truss element models. Because 
of the inclusion of the dowel action contribution to the shear capacity, one would expect that the beam 
elements model would have a higher failure load simulation and a more accurate representation of the 
experimental result. However, this does not happen here, as the failure load is drastically underesti-
mated for the model with beam elements. Besides the force-displacement graph, the reinforcement 
stresses, shear tractions, and relative displacements are also below for further analysis. The plots below 
are located at the failure load step of each numerical model. The shear stresses for both element types 
are included in Annex III, Figure 107. The figure displays that beam elements include these stresses to 
account for the dowel action.  
 

 

Truss element: 

 
Beam element: 

 
Figure 76  B701B2 Reinforcement stresses: FIB bond-slip relation with truss (top) and beam elements 

(bottom) 
 

Truss elements

  

Beam elements

 
Figure 77  B701B2 bond-slip relation interface shear traction: FIB bond-slip relation with truss (left) 

and beam elements (right) 
 

Truss elements

 
 

Beam elements

 
Figure 78  B701B2 bond-slip relation interface relative displacement: FIB bond-slip relation with truss 

(left) and beam elements (right) 
 
While the reinforcement stresses reached for the truss elements model are higher than that of the beam 
elements model, this is expected as the truss elements model also fails after reaching a higher capacity. 
However, the beam elements' shear tractions and relative displacements show much larger values 
while having similar material inputs for the FIB bond-slip relation. To understand better why this happens 
by changing the reinforcement element, a side-by-side overview of all elements used for the numerical 
model is given: 
 

 
Figure 79 Finite element discretization: numerical model elements 
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The reinforcement elements are used together with plane stress elements for concrete. If plane stress 
elements are connected to beam elements directly, then the rotating degree of freedom must be tied to 
the translational degree of freedom for compatibility. DIANA FEA automatically takes care of the proce-
dure. However, unfortunately, the applied interface element between the reinforcement and concrete is 
not ideal as it is not successful at dealing with the rotational degree of freedom. In the force-displace-
ment diagram, there are also more non-converged steps for the beam elements model due to the in-
compatibility between elements. As a result of this problem, high shear tractions and relative displace-
ment between the two materials occur with beam elements for reinforcement. The maximum principal 
strain is given below to review the failure mode and strains: 
 

Experiment: 

 

 

FIB bond-slip relation and truss elements: 

 
FIB bond-slip relation and beam elements: 

 

Shima bond-slip relation and truss elements: 

 
Figure 80  B701B2 strains with the combinations: FIB bond-slip with truss elements (top right), FIB 
bond-slip with beam elements (bottom left), and Shima bond-slip with truss elements (bottom right) 

 
The FIB bond-slip relation combined with the beam elements shows high strains along the reinforce-
ment. The large strains along the reinforcement before the diagonal crack fully developed were observ-
able for the FIB bond-slip model with truss elements but increased with beam elements. The too-large 
relative displacements cause increased strain along the reinforcement. Also, the transition between the 
diagonal crack during failure and detached reinforcement (strains along reinforcement) is not smooth. 
The Shima bond-slip relation combined with truss elements has the best crack pattern and failure load 
simulation of the three numerical models. One way to tackle the incompatibility problem is by replacing 
the plane stress element with a more suitable element or manually tying the rotational degree of free-
dom. The previous sensitivity analysis shows this is also the better bond-slip relation. The next case 
analyzed is H601A, with the force-displacement graph for the case below.  
 

 
Figure 81 H601A Force-displacement graph: FIB bond-slip relation with truss elements, Shima bond-

slip relation with truss elements, and FIB bond-slip relation with beam elements 
 
Case H601A for the model with beam elements has a slightly higher global stiffness following the initial 
crack than the two models with truss elements and the experiment in the force-displacement graph. 
The higher stiffness causes the beam element model to get an increased failure load and decreased 
displacement. While the failure load is acceptable, the wrong stiffness shows that the simulation does 
not accurately represent the experimental result. The force-displacement graph displays the truss ele-
ments giving more reliable results. 
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Below, the reinforcement stresses, tractions, and relative displacement at each numerical model failure 
load are also given. In Annex III, Figure 108, a plot of shear stresses is included to show that the beam 
elements account for the dowel action. 
 

 

Truss element: 

 
Beam element: 

 
Figure 82  H601A Reinforcement stresses: FIB bond-slip relation with truss (top) and beam elements 

(bottom) 
 

 

Truss element:  

Beam element:  
Figure 83  H601A bond-slip relation interface shear traction: FIB bond-slip relation with truss (top) and 

beam elements (bottom) 
 

 

Truss element:  

Beam element:  
Figure 84  H601A bond-slip relation interface relative displacement: FIB bond-slip relation with truss 

(top) and beam elements (bottom) 
 
Like the previous case, the reinforcement stresses are higher for the simulation with truss elements. 
Also, like in the previous case, the shear tractions and relative displacements from the numerical model 
with beam elements are larger than those with the truss elements. However, in the case of H601A, the 
difference is even more pronounced than in values (traction and relative displacement) B701B2. Both 
case properties were compared to find the main configurations that make both cases different. Table 
11 shows that the beam geometry is the biggest difference between the B701B2 and H601A cases. 
With a larger beam, there are more elements. Thus, the effect caused by incompatibility between plane 
stress elements and beam elements is increased.  
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Finally, the maximum principal strain for case H601A is given in Figure 85.  
 

Experiment: 

 

 
 

 

FIB bond-slip relation and truss elements: 

 
FIB bond-slip relation and beam elements: 

 
Shima bond-slip relation and truss elements: 

 
Figure 85  H601A strains with the combinations: FIB bond-slip with truss elements (top) and FIB 

bond-slip with beam elements (middle), and Shima bond-slip with truss elements(bottom) 
 
The figure shows high strains along the reinforcement for the numerical model with beam elements. 
The detachment of the tensile reinforcement is a sign of dowel failure. Beam elements show to be prone 
to high stresses along the reinforcement when combined with regular plane stress elements. For this 
case, if we compare the (FIB and Shima bond-slip relation with) truss element models, the flexural shear 
failure crack pattern is captured for both cases. However, based on the failure load and crack propaga-
tion of the other three numerical cases (A121A3, B701B2, and R804A1), the Shima bond-slip relation 
with truss elements is recommended. The force-displacement graphs are given for cases A121A3 and 
R804A1 in Annex IV, Figure 109, and Figure 110. In addition, in the annex, Table 59 shows an overview 
of the differences in maximum reinforcement stresses and relative displacements using the two element 
types for all cases.  
 
For this section, a summary of all failure loads is in the table below. The table results show more accu-
rate simulations of the (Shima bond-slip relation with) truss elements over the numerical model with 
beam elements. One interesting behavior for the four cases with beam elements was noticed. A pattern 
is observed in the difference in inaccurate estimations depending on the structure size. Using beam 
elements in the numerical model, the geometrically smallest case (A121A3) had the largest underesti-
mation of the failure load. This failure load underestimation was reduced as the beam geometry in-
creased (B701B2). However, after a certain geometry (R804A1 and H601A), the model started overes-
timating the failure load with increased structure geometry. The difference in failure load between the 
element types can be found in the force-displacement graphs of the four cases (Figure 107, Figure 109, 
Figure 110, and Figure 108). 

 
Table 17 Reinforcement element sensitivity analysis: FIB bond-slip & truss elements, Shima bond-slip 

& truss elements, and FIB bond-slip & beam elements 

Test A121A3 A122B1 A123A1 B701B2 R804A1 R804B1 H601A H602A 

Vexperiment [kN] 145 152 137 202 269 250 306 306 

FUFTN Vnumerical [kN] 108 108 108 173 216 216 333 333 

FUFTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.34 1.41 1.26 1.17 1.25 1.16 0.92 0.92 

FUSTN Vnumerical [kN] 137 137 137 198 274 274 312 312 

FUSTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.06 1.11 1 1.02 0.98 0.91 0.98 0.98 

FUBTN Vnumerical [kN] 103 103 103 160 264 264 316 316 

FUBTN 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
 [-] 1.4 1.48 1.32 1.26 1.02 0.95 0.97 0.97 
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4.2.3.2 Element size 

The final sensitivity analysis is for the element size, which is done in this chapter. The global element 
size sensitivity analysis will use the unconfined compression-compression behavior of fixed crack ori-
entation and the Shima bond-slip relation combined with the truss elements model. This analysis is 
essential, especially for cases with large geometry, as these are known to be more sensitive to the 
element size. The analysis will be done in the order from the geometrically largest beam (H601A) to the 
geometrically smallest beam (A121A3). The global element size sensitivity analysis for each case will 
help to determine the optimal element size. Initial assumptions from the literature review for the element 
size are specified first, after which the approach for the element size sensitivity analysis is explained. 
Two studies that made recommendations using DIANA FEA for the simulations recommended the fol-
lowing: 

• According to Putter [43], special attention must be given to beams with a depth greater than 600 
mm, as it found severe mesh dependency and recommended 20 elements over the beam depth.  

• Lang [45] found that less than 15 elements of the beam depth do not successfully capture the 
flexural shear failure. The maximum element size used for simulations will be limited to the finding 
from Lang unless required otherwise. 

 
After the sensitivity analysis, the largest element size that successfully and accurately simulates the 
flexural shear failure will be chosen out of all the sizes. Choosing the largest element size in this way 
helps reduce computational time while providing accurate results. The initial element size was 25 mm 
for cases A121A3, B701B2, and R804A1. For case H601A, the initial element size was 40 mm for 
reasons explained in Chapter 4.2.1. The initial element size used resulted in the following number of 
elements over beam depth: 
 

Table 18 Reference numerical model: number of elements over the beam depth 

Case A121A3 B701B2 R804A1 H601A 

Number of elements of beam depth [-] 12 20 32 30 

 
As an approach for the element size sensitivity analysis, the following approach is used: 
1 Start analyzing simulations with the initial element size. 
2 Add five elements from the initial number of elements over the beam depth and run simulations with 

the smaller element size. 
3 Subtract five elements from the initial number of elements over the beam depth and run simulations 

with the larger element size. 
4 After the simulations are completed, analyze their accuracy. 
5 If element size sensitivity for the different sizes is noticed due to too large elements, subtract five 

elements again. If no element size sensitivity is noticed for the different sizes, add five elements 
again for simulations with larger elements. 

6 Run simulations with the new element size and analyze it. 
7 Repeat steps 5 and 6 or stop with the sensitivity analysis if an optimal element size is found from 

step 6. 
 
Results from Chapter 4.2.2 show that the full NR iteration scheme works slightly better than the Secant 
iteration scheme. However, not much difference was found between both iteration schemes. However, 
both schemes showed different failure loads and damage progression for cases R804A1 and H601A. 
The iteration scheme sensitivity analysis introduced suspicions that both schemes depend on the ele-
ment type and dimensions. Because of this suspicion, element size sensitivity analysis is performed 
initially using both iteration schemes. First, case H601A is analyzed, followed by R804A1, followed by 
B701B2, and finally, A121A3. 
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H601A  element size sensitivity analysis: 
Unlike the other three cases, for case H601A, an element size of 40 mm was used for the modeling 
aspects sensitivity analysis till now instead of 25 mm. The reasoning for this is included in Chapter 
4.2.1. However, the initial results obtained with an element size of 25 mm are also included in the 
sensitivity analysis. For case H601A, all the different element sizes used for the element size sensitivity 
analysis are given in Table 19. Hereafter plots of the force-displacement graphs and crack patterns are 
given in Figure 86 and Figure 87. In the force-displacement graph, a high element sensitivity is discov-
ered for case H601A (which is a geometrically large case).  
 

Table 19 H601A element sizes sensitivity analysis 

Depth [mm] 1200 1200 1200 1200 1200 1200 

Number of elements [-] 48 40 30 25 20 15 

Element size [mm] 25 30 40 48 60 80 

 

 
Figure 86 H601A element size sensitivity analysis: force-displacement graph 

 

Experiment:  

80 mm:  

 

60 mm:  

48 mm:  40 mm:  

30 mm:  25 mm:  

Figure 87 H601A element size sensitivity analysis: crack pattern 
 
The figures above show why the exception was made not to initially use the element size of 25 mm for 
this case. Overpredictions of the failure load and, more importantly, irregular crack patterns would con-
stantly occur during the sensitivity analysis due to the element size of 25 mm. Thus, reliable analysis 
and conclusions for the previous modeling aspects would not be possible with an element size of 25 
mm. A closer analysis was done for the simulation with this element size using the figure below from 
the step at its failure load: 

   
Figure 88 H601A irregular crack pattern: maximum principal strain 
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The plot shows that for an incredibly small element size, huge strains show at the sides of some ele-
ments. These strains are transferred horizontally or vertically to the next element, thus creating hori-
zontal or vertical strains running over several elements. Due to this, the numerical model results in an 
irregular crack pattern instead of a smooth flexural shear failure pattern, as found in experiments. This 
pattern shows that the damage progression has been captured incorrectly. The element sizes 40 mm 
and 30 mm have shown the correct damage progression and captured the flexural shear failure crack 
close to the experimental crack pattern. However, the element size of 30 mm overpredicts the failure 
load by 16 % compared to the experiment. Closer analysis displays signs of forming an irregular crack 
pattern with an element size of 30 mm. At the same time, the element size of 40 mm overpredicts the 
failure load by only 4 % while closely resembling the experimental beam behavior. Based on the current 
findings, the element size of 40 mm is shown to be the optimal element size for beams with this depth. 
 
Also, element sizes 48-, 60-, and 80-mm show that if the crack pattern is analyzed, they were chosen 
too large by capturing the wrong failure load. This failure mode is called dowel failure and can be iden-
tified by dowel cracks along the reinforcement running toward the support. The reason for this failure 
mode is the dependence of the dowel crack propagation on the element size. The larger the element 
size, the more sensitive the crack propagation rate. The element size of 80 mm showed an underpre-
diction in the failure load with a factor of 1.6. For case H601A, the element size is a sensitive modeling 
aspect. A similar element size sensitivity analysis is also done for the Secant iteration scheme to see 
how this analysis scheme performs but also to see if the large element size sensitivity still preserves. 
The force-displacement graph and crack patterns using the Secant iteration scheme are given in Figure 
89 and Figure 90 below: 
 

 
Figure 89 H601A element size sensitivity analysis: force-displacement graph 

 
Experiment: 

  
80 mm: 

 

 

60 mm:

 
48 mm:

 

40 mm:

 
30 mm: 

 

25 mm:

 
Figure 90 H601A element size sensitivity analysis: crack pattern 
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Like the full NR iteration scheme, the Secant iteration scheme also captures the dowel failure for some 
element sizes. However, unlike the full NR iteration scheme, the Secant iteration scheme successfully 
captures flexural shear failure with an element size of 60 mm. Unfortunately, symmetrical failure occurs 
for the simulation with this element size and an element size of 40 mm. However, the simulated result 
for the element size of 60 mm comes closest to the experimental failure load and failure mode out of all 
simulations. The reasoning for the symmetrical failure mode problem and a recommendation to fix this 
problem has been addressed in Chapter 4.2.2. With the Secant iteration scheme, the element size of 
25 mm also fails to capture the correct failure mode while suffering from an irregular crack pattern due 
to too small mesh elements. This simulation shows that, independent of the analysis scheme, an irreg-
ular crack pattern with an overestimation of the failure load can be captured if the element size is too 
small. An overview of all the H601A element size sensitivity analyses by comparing the experimental 
failure load for both iteration schemes is given in Table 20: 
 

Table 20 H601A element size sensitivity analysis summary 

H601A 
Elements 

[-] 
NR: 

V [kN] 
NR:  

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄   [-] 

Secant: 
V [kN] 

Secant:  
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄   [-] 

Experiment - 306 - 306 - 

25 48 397 0.77 405 0.75 

30 40 363 0.84 402 0.76 

40 30 312 1.02 367 0.83 

48 25 213 1.43 208 1.47 

60 20 208 1.47 298 1.03 

80 15 187 1.64 227 1.35 

 
The table shows the high sensitivity of the element size for the numerical simulations. The element 
sizes were chosen based on the beam depth. Because element size sensitivity is a complex topic, as 
seen from the analysis, choosing an element size based on only one case simulation result for beam 
depth is inconvenient. Due to this, a similar element size sensitivity analysis was done on more beams 
with a depth of 1200 mm. The properties for the following cases, "H404A, H121A, H851C, and H852A," 
with a beam size of 1200 mm, are given in Table 40 from Annex II. These cases will be used for further 
element size sensitivity analysis for beams with a depth of 30 mm. The element size sensitivity analysis 
results are in Annex III (Figure 117, Figure 118, and Figure 119) for these cases. Table 21 summarizes 
only the best-performing element sizes used for simulation to avoid overcrowding the graphs with too 
many results. All cases capture the flexural shear failure with an element size of 40 mm, just like case 
H601A. In addition, the full NR iteration scheme gives the best overall result for this element size and 
not the Secant iteration scheme.  
 

Table 21 Element size sensitivity analysis of 1200 mm cases: NR and Secant iteration schemes 

Experiment 
H121A 
V [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  

[-] 

H404A 
V [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  

[-] 

H851C 
V [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  

[-] 

H852A 
V [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  

[-] 

Failure load 341 - 269 - 421 - 406 - 

FUSTN 30 380 0.90 265 1.02 479 0.88 479 0.85 

FUSTS 30 399 0.86 269 1.00 490 0.86 490 0.83 

FUSTN 40 368 0.93 244 1.10 404 1.04 404 1.01 

FUSTS 40 395 0.86 256 1.05 431 0.98 431 0.94 

FUSTN 60 325 1.05 207 1.30 322 1.31 322 1.26 

FUSTS 60 274 1.24 184 1.46 357 1.18 357 1.14 

 
The remaining three cases for the element size sensitivity analysis are addressed next. Too much focus 
on the Secant iteration scheme will not be emphasized for these cases because the full NR iteration 
scheme has proven more dependable for the 1200 mm deep beams. Also, a slightly better performance 
was observed for the full NR iteration scheme during the modeling aspects’ sensitivity analysis. For the 
cases with a depth of 1200 mm, wrongly capturing a symmetric failure is also identified for the Secant 
iteration scheme. The Secant iteration scheme is not more dependable than the full NR iteration scheme 
and thus will not be used for an in-depth analysis. However, the Secant iteration scheme results are 
included in the summary tables below to give an overview of the simulations done. 
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R804A1 element size sensitivity analysis: 
This case is also a geometrically large beam and has a depth of 800 mm. The element sizes 20 mm, 
25 mm,  80/3 mm, 32 mm, and 40 mm was analyzed for this case. The strains and force-displacement 
graph will be placed in Annex III for this case. The same will also be done for the other two cases 
(A121A3 and B701B2). The annex shows the case results in Figure 111 and Figure 112. A summary 
of the failure loads from the element size sensitivity analysis, including a comparison with the experi-
mental failure loads, is given in Table 22. 
 

Table 22 R804A1 element size sensitivity analysis summary 

R804A1 Elements [-] V [kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄  [-] V2 [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  [-] 

Experiment - 269 - 250 - 

FUSTN 20 40 285 0.95 285 0.88 

FUSTS 20 40 293 0.92 293 0.85 

FUSTN 25 32 274 0.98 284 0.91 

FUSTS 25 32 288 0.94 288 0.87 

FUSTN 80/3 30 268 1.01 268 0.93 

FUSTS 80/3 30 266 1.01 266 0.94 

FUSTN 32 25 263 1.03 263 0.95 

FUSTS 32 25 240 1.12 240 1.04 

FUSTN 40 20 248 1.09 248 1.01 

FUSTS 40 20 280 0.96 280 0.89 

 
The simulated plots in Figure 111 shows that element sizes 80/3, 25, and 20 mm cannot be used due 
to capturing either the dowel failure or an irregular crack pattern. However, their failure load predictions 
are acceptable compared to the experimental failure loads. While case R801A1 also captures the dowel 
failure and irregular crack patterns, this case is less sensitive to the element size when predicting the 
failure load than case H601A. During previous modeling aspect sensitivity analysis, an element size 
sensitivity issue was suspected using an element size of 25 mm for the R804A1 case. The element size 
of 25 mm was causing over predictions but, more importantly, an irregular crack pattern. This element 
size was still used, as not all numerical models during sensitivity analysis suffered from this. Keeping 
the same element size helps to avoid changing multiple modeling aspects for a numerical model during 
a section. Numerous modeling aspect changes would make it challenging to review differences caused 
by the central modeling aspect for the sensitivity analysis. 
 
Element sizes 32 mm and 40 mm are sufficiently accurate for this case using the full NR and the Secant 
iteration schemes. These element sizes successfully capture the flexural shear failure while showing a 
logical and expected damage progression. One thing to note is that the two experimental specimens 
(V1 and V2) have a difference of 20 kN in failure load. Thus, the lower accuracy in column V2 is visible 
in the table. Even though the sensitivity in element size is reduced, additional numerical analyses will 
be done on new cases with the same beam depth before the end of this chapter, as was done for case 
H601A. This approach will help get an optimal element size for a specific beam depth using multiple 
cases to increase the quality of the element size recommendation. Similarly, additional cases will be 
analyzed on the element size for cases A121A3 and B701B2. 
 
B702B1 element size sensitivity analysis: 
The third case analyzed on the element size sensitivity is B702B1. The previously used element size 
of 25 mm already captured the damage progression and failure mode. However, performing an element 
size sensitivity analysis can help find the optimum element size for the case. The optimum element size 
should reduce unnecessary computational costs while maintaining an approximate similar numerical 
simulation accuracy. The simulated results can be found in Figure 113 and Figure 114 from Annex III. 
For case B701B2, all the numerical element size configurations successfully capture the flexural shear 
failure. A summary of the different element sizes, number of elements over the beam depth, and simu-
lated failure loads are given in Table 23 to study the accuracy of the failure load simulations. 
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Table 23 B702B1 element size sensitivity analysis summary 

B701B2 Elements [-] V [kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄ [-] 

Experiment - 202 - 

FUSTN 50/3 30 200 1.01 

FUSTS 50/3 30 213 0.95 

FUSTN 20 25 205 0.99 

FUSTS 20 25 208 0.98 

FUSTN 25 20 198 1.02 

FUSTS 25 20 202 1.00 

FUSTN 100/3 15 156 1.29 

FUSTS 100/3 15 222 0.91 

 
The force-displacement graph in the annex and the table above are reviewed. These results show that 
the simulation underpredicts the failure load for the element size of 100/3 due to a too-large element 
size. The too-large element size decreases the accuracy of the simulation. Thus, no further increase in 
element size was performed. Besides analysis for the element sizes of 20 mm and 25 mm, another 
analysis was added with the element size of 50/3. These three element sizes resulted in failure loads 
close to the experimental result. The maximum difference between the three simulated failure loads of 
different element sizes is 6 %. This additional element size sensitivity analysis was performed to show 
the decrease in element size sensitivity with a decrease in the beam dimensions (depth).  
 
A121A3 element size sensitivity analysis: 
Finally, the smallest beam (A121A3) is analyzed for element size sensitivity, for which there were sus-
picions that the element size of 25 mm was already large. However, an element size sensitivity analysis 
for elements of 30mm was also done to see how much the inaccuracy increases with an even larger 
element size. The simulated results are in Annex III, Figure 115, and Figure 116. The summary of this 
simulation using the numerical and experimental failure load can be seen in Table 24 below. 
 

Table 24 A121A3 element size sensitivity analysis summary 

A121A3 
Elements 

[-] 
V 

[kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄ [-] 

V2 
[kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄ [-] 

V3 
[kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄ [-] 

Experiment - 145 - 152 - 137 - 

FUSTN 12 25 158 0.92 158 0.97 158 0.87 

FUSTS 12 25 160 0.91 160 0.95 160 0.85 

FUSTN 15 20 144 1.00 144 1.06 144 0.95 

FUSTS 15 20 139 1.04 139 1.10 139 0.99 

FUSTN 20 15 137 1.06 137 1.12 137 1.00 

FUSTS 20 15 137 1.05 137 1.11 137 1.00 

FUSTN 25 12 137 1.06 137 1.11 137 1.00 

FUSTS 25 12 113 1.28 113 1.35 113 1.21 

FUSTN 30 10 109 1.33 109 1.40 109 1.25 

FUSTS 30 10 136 1.06 136 1.12 136 1.00 

 
First, simulations were done with elements sizes of 20, 25, and 30 mm. As suspected, the element size 
of 30 mm proved too large, causing incorrect damage progression. The table above shows an under-
prediction of the failure load for an element size of 30 mm due to decreased accuracy. The element 
size of 30 mm had 10 elements over the beam depth, which Lang [45]  also did not recommend for the 
flexural shear failure. After analyzing the element sizes 20 and 25, it can be said that they capture the 
correct damage progression and successfully capture the flexural shear failure. However, between el-
ement sizes 20 and 25, it was found that element size 20 delivered the more accurate representation 
of the experiment, as also reflected in Table 24. Next, tests were done with reduced element sizes of 
12 mm and 15 mm to determine if the size could be optimized even more over an element size of 20 
mm. The maximum principal strain plots are in Figure 115.  
 



4 Numerical modeling, analysis, results, and sensitivities 

75 

Element size 15 had the most accurate result with a correct crack progression, an almost similar crack 
pattern to the experiment, and an accurate failure load prediction for all three experimental specimens. 
Interestingly, like the previous cases, tiny element sizes can start overpredicting and show signs of an 
irregular crack pattern. In this case, after element sizes 25, 20, and 15 mm simulated comparable re-
sults, the element size of 12 mm overpredicted the failure load due to being too small. This result shows 
that tiny element sizes increase the computational cost and decrease the accuracy after a particular 
small element size. Next, an additional element size sensitivity analysis will be done for other cases 
with a similar beam depth using element sizes 15 and 20 mm. This analysis will make it clear which 
element size is more optimal. 
 
Additional cases element size sensitivity analysis: 
Previously additional element size sensitivity analysis was done for multiple experimental beams with 
a depth of 1200 mm. Case H601A showed considerable sensitivity, and choosing an element size for 
a beam with a depth based on only one simulation is not ideal. As the beam depths (R804A1, B701B2, 
and A121A3) decreased, the element size sensitivity appeared to decrease. However, because of the 
considerable sensitivity of the element size, more sensitivity analysis will still be done for cases with a 
depth of 800 mm, 500 mm, and 300 mm. With this approach, choosing an element size based on one 
numerical simulated case per beam depth is avoided. Previously for the three cases, accurate results 
with acceptable computational time were simulated with the following element sizes: 

• R804A1 with element sizes of 32 and 40 mm 

• B701B2 with element sizes of 20 and 25 mm 

• A121A3 with element sizes of 15 and 20 mm 
The additional case with their beam depths is also given below: 

• R803A1 with a beam depth of 800 mm 

• B502A2 with a beam depth of 500 mm 

• A751B1 with a beam depth of 300 mm 
Below are three tables (Table 25, Table 26, and Table 27), which summarize the additional cases' 
element size sensitivity analysis results. In addition, figures of the simulated results are placed in Annex 
III (Figure 120, Figure 121, and Figure 122).  
 

Table 25 R803A1 element size sensitivity analysis summary 

R803A1 Elements [-]  V [kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄  [-] V2 [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  [-] 

Experiment - 279 - 308 - 

FUSTN 20 40 294 0.95 294 1.05 

FUSTN 25 32 296 0.94 296 1.04 

FUSTN 80/3 30 274 1.02 274 1.13 

FUSTN 32 25 313 0.89 313 0.98 

FUSTN 40 20 282 0.99 282 1.09 

 
Table 26 B502B2 element size sensitivity analysis summary 

B502A2 Elements [-]   V [kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄  [-] V2 [kN] 

𝑽𝒆𝒙𝒑
𝑽𝒏𝒖𝒎
⁄  [-] 

Experiment - 174 - 173 - 

FUSTN 20 25 178 0.98 178 0.98 

FUSTN 25 20 171 1.02 171 1.02 

FUSTN 100/3 15 183 0.95 183 0.95 

 
Table 27 A751B1 element size sensitivity analysis summary 

 
 
 
 
 
 
 

A751B1 Elements [-]   V [kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
⁄  [-] 

Experiment - 107 - 

FUSTN 12 25 125 0.86 

FUSTN 15 20 116 0.92 

FUSTN 20 15 109 0.98 
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Because the numerical sensitivity analysis results and problems due to the sensitivity have already 
been addressed, a detailed explanation will be left out for the additional cases. However, the main 
points that are found for the element size sensitivity analysis for these cases are the following: 

• None of the cases was subjected to failure due to reinforcement yielding. 

• For the additional cases, not all simulations with element sizes that could capture the flexural shear 
failure previously resulted in this failure mode again. 

• Case A751B1 captures the flexural shear failure for element sizes 15 mm and 20 mm accurately. 
However, considering computational cost, an element size of 20 mm is preferred for beams with a 
depth of 300 mm. There is no need to increase the computational time if no significant improvement 
is found in the simulation. 

• For case B502B2 in Figure 121 force-displacement graph two experimental specimen results are 
shown. While one specimen has the same initial stiffness as the numerical model, the other has a 
lower initial stiffness. The lower initial stiffness is due to a previous experiment on the beam, as 
explained in Figure 30. However, what is essential is that the post-initial crack stiffness of both 
experiments resembles each other and is accurately replicated by the numerical simulation. The 
same reasoning can be used for the case of R803A1 if the force-displacement graph is reviewed in 
Figure 122. 

• Case B502B2, unfortunately, does not capture the flexural shear failure with all element sizes used 
in the analysis. The element size of 20 mm is subjected to the wrong failure mode due to the element 
size being too small. The element size of 25 mm is good enough to simulate the flexural shear 
failure for beams with a depth of 500 mm. A larger element size with five fewer elements over the 
beam depth also captures the right failure load. However, a slight underestimation of the failure load 
was noticed for the larger element sizes during the analysis of case B701B2. This underestimation 
of the failure load is due to a decrease in accuracy caused by the increased element size. 

• Just as it was noticed for case R804A1, for R803A1, the best-performing element size was 40 mm. 
According to the literature, beams with depths greater than 600 mm are known for increased ele-
ment size sensitivity. The flexural shear failure for element size 40 successfully captures the correct 
failure mode and resembles the experimental cracks. The 80/3 mm and 32 mm element sizes also 
accurately capture the failure load. However, when describing the crack pattern, these two element 
sizes have element size sensitivity problems causing irregular crack patterns. 

 
Element size sensitivity analysis: summary 
There is a lack of element size recommendations from previous studies regarding geometrically large 
beams, with many suggesting further research for such beams [45] [43]. The mesh sensitivity analysis 
found that the 800 mm and 1200 mm beams, considered large, get the most accurate representation 
of the experiment with an element size of 40 mm. Figure 91 will be used as a guideline to estimate the 
element size for the remaining cases for this research. These element sizes will be adopted as the 
standard size for upcoming beams with a depth of up to 1200 mm.  

  

Beam 
depth 
[mm] 

Element 
size  

[mm] 

Number of  
elements over  
beam depth 

[-] 

300 15 20 

500 20 20 

800 40 20 

1200 40 30 
 

Figure 91 Optimal element size predictor (left) and element size prediction for different depths (right) 
 
In Figure 91, markers show the number of elements over beam height. The green line does not go 
through the plotted marker for the beam with a depth of 300 mm. The plotted dot for this beam depth 
shows an element size recommendation of 20 mm. However, the green line is plotted like this because 
the element size of 15 mm gave as accurate results as for element size of 20 mm during the mesh 
sensitivity analysis. The only reason the element size of 20 mm got initially chosen as the optimal one 
was the lower computational time. 
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Also, an overview of the improvement in result for the initial cases when applying the element size 
predictor is shown in Table 28. 
 

Table 28 Sensitivity analysis cases with element size predictor 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
⁄ : Initial element size Element size predictor 

A121A3 1.06 1.00 

A122B1 1.11 1.06 

A123A1 1.00 0.95 

B701B2 1.02 0.99 

R804A1 0.98 1.09 

R804B1 0.91 1.01 

H601A 0.98 0.98 

H602A 0.98 0.98 

 
The RTD guidelines recommend calculating the element size depending on a minimum number of ele-
ments over the beam length and depth. For all the cases till now, the element size calculated over the 
beam length was not governing. The elements over the beam length were larger than those recom-
mended over the beam depth, and the smaller size of these two was chosen as the governing one. The 
formula over the beam length advised by the RTD guidelines is 50 elements over the beam length. 
However, the elements over the beam length will also be accounted for in the upcoming cases from the 
following simulations, as this element size may be the governing one for some cases.  
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4.3 Quantitative analysis 

This section quantitively compares numerical simulations to experimental results. The numerical model 
is based on the model found after sensitivity analysis on multiple modeling aspects in Chapter 4.2. The 
numerical model is an unconfined (compression-compression) fixed crack orientation and the Shima 
bond-slip relation combined with truss elements using the full NR iteration scheme. This model can also 
be found summarized in the figures from Annex IV. A quantitative analysis is done for all cases from 
Chapter 3, with their properties specified in Annex II. From the quantitative analysis, the numerical 
model consistently gave satisfactory results for most cases, with a few exceptions. A few cases did not 
successfully result in the correct failure mode.  
 
The geometrically smaller beams resulted in the correct failure mode for every simulation. However, a 
typical wrong failure mode that would often be captured was the dowel failure for geometrically large 
beams. As found during the modeling aspect sensitivity analysis of the fixed crack model, the dowel 
failure mode is caused by an excessive change in the damage-based shear retention factor. During 
simulations, the change in the shear retention factor should be closely monitored. Sensitive steps for 
the change in the factor are especially before and during failure and can be located from the force-
displacement graph. The excessive change in the damage-based shear retention factor is controlled by 
reducing the step size of the analysis procedure when close to the failure load during the simulation. 
Even though it can be cumbersome to decrease the step size to tiny steps as there is an increase in 
the computational time, the flexural shear failure gets successfully captured.  
 
The reduction of the step size approach did not work for only one case, namely case H301A, where the 
step size was reduced to 0.001. This experiment was found in Garnica et al. report [89], and the case 
properties, including results, can be found in Annex II. Further research was done on this case, and 
interesting findings were found in the report. After the experiment on case H301A was performed at 
Stevin lab, another experiment on a case with the same material properties and dimensions was per-
formed. This case is called H302A and resulted in dowel failure during the experiment. Analyzing its 
failure mode, this overlapped with the numerical simulation. The same failure mode for the numerical 
simulation and case H302A during the experiment can be seen in Figure 92. Compared to H302A ex-
perimental results, the numerical model found the correct damage progression, failure load, and failure 
mode. Another remark on case H301A is that this experiment was stopped midway through the testing 
and, after that, resumed. Case H302A was performed without interruptions, making this a more reliable 
experiment.  
 

   
Figure 92 H302A dowel failure: simulation (left) and experiment (right) 

 
The numerical simulations' accuracy can be analyzed on their safety by the percentage difference be-
tween the experimental and simulated failure loads. Also, using the results of this method, an overview 
of the accuracy can be given in histograms. The quantitive numerical simulations of cases are also 
displayed in Annex II for the different experimental cases. The percentile result for the numerical model 
is specified in the histogram of Figure 93 on the next page. A similar histogram is also made for the 
design codes EC2 and FIB MC 2010. The results for the FIB MC2010 are based on an LoA II, introduced 
in Chapter 2.3. The design code percentile differences are specified in Figure 94, with the legend from 
Figure 93 also applied to the design code figure. 
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Legend: 

  percentage difference between 0% and 10% 

 
  percentage difference between 11% and 20% 

 
  percentage difference > 20% 

 
# Bar label: number of experiments 

 

 
Figure 93 Quantitive analysis percentile difference: Numerical model (top left) 

 

  
Figure 94 Quantitive analysis percentile difference: EC2 (bottom left), and FIB MC2010 (bottom right) 
 
According to the percentile differences, the numerical model simulations are satisfactory, with only 3 
simulated cases over a 20% difference. All these 3 cases consisted of low reinforcement ratios and 
being geometrically large. The EC2 resulted in better predictions compared to the FIB MC2010. How-
ever, if for the FIB MC2010 the LoA III were applied instead of the simplified LoA II, the physical-me-
chanical model results from FIB MC2010 would be improved. The simplified LoA was used as the de-
sign codes are not the focus of this study, and not all required data for LoA III were available. The 
numerical method and design codes have the following average  failure load percentage differences 
with the experiment: 

• Numerical simulations: 6% 

• EC2 predictions: 14% 

• FIB MC2010 predictions: 19% 
The plot in Figure 95 below gives an overview of the experimental failure load compared to the numer-
ical simulations: 
 

 

Markers: 
 

 0<d≤300 
 

 300<d≤ 500 
 

 500<d≤ 800 
 

 800<d≤ 1200 
 

 

Figure 95 Simulated and experimental failure loads 
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The numerical analysis comparison in Figure 95 shows that the smaller case simulations are close to 
the experimental result. However, as the beam size increases, the difference between the compared 
models in failure load does increase in some cases. The largest failure loads are for beams with a depth 
of 1200 mm and can be recognized from the plus markers. These were also the largest geometrical 
beams out of all simulated cases. While the numerical results stay close to the plotted midline, some 
under and overestimations exist. An alternative method called the DPC method was also used for a 
similar comparison. The results of this method can be found in Annex VI. In the annex, six cases were 
unacceptable in their failure load predictions according to the DPC method and in the annex. A short 
analysis is also done on the design codes predictions. The plot Figure 96 below has been made to give 
an overview of the experimental failure load to the design code predictions:  
 

  
 

Figure 96 “EC2 and experimental” (left) and “FIB MC2010 Simulated experimental failure loads” 
(right) 

 
The analytical result from the Eurocode sometimes underestimates the failure load with high differences 
from the experiment. The results of these predictions can be explained due to the safety threshold 
introduced in the analytical design code to keep the calculations safe. The physical-mechanical model 
from FIB MC2010 shows large over and underestimations for the geometrically large beams. Most re-
sults found for geometrically small beams are underestimated. Overestimation of the failure load can 
be dangerous and was looked at more in-depth. Three cases (E401B1, E402B, and H301A) are sub-
jected to the highest overestimations. All three cases have one thing in common, they are all large 
beams (1200 mm) and have low reinforcement ratios (0.41 %, 0.41 %, and 0.27 %, respectively). These 
beams should be looked at more in-depth without the simplified LoA. Using LoA III will improve results 
as the simplifications are eliminated.  
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4.4 Size effect analysis 

Finally, this section performs numerical simulations for the size effect analysis. These results will give 
an initial expression of whether the numerical method can capture the size effect. The size effect is 
investigated on RC beams without stirrups by scaling them geometrically. The cases are based on 
experiments from Bhal [84] and have an effective depth of 300 mm, 600 mm, 900 mm, and 1200 mm. 
The four cases were also part of the quantitative analysis, and their simulations are accurate compared 
to experimental results. Detailed information regarding the four experimental cases from this report can 
be found in Annex II. In addition, the overview of the experimental setup is given in Figure 25. 
 
The simulated failure load and displacement of the Bhal experiments increase when the beams' geo-
metrical size is increased. This behavior is shown in the force-displacement graph in Annex VII (Figure 
134). However, the nominal shear strength is required to know if the size effect is captured. A log-log 
scale plot with the nominal shear strength and the effective depth is plotted to study the size effect. The 
log-log plot can be seen in Figure 97 for the Bhal cases. This figure will show how accurately the nu-
merical model captures the size effect compared to the experiment and multiple analytical models. Each 
analytical model used for comparison was explained during the literature review.  
  

 

Legend: 

 Numerical  

 
Experimental   

 SEL type II Equation [ VI ] 

 MSEL Equation [ IV ] 

 EC2 Equation [ XVI ] 

 FIB MC2010 Equation [ XVIII ] 
 

Figure 97 Size effect analysis: nominal shear strength and effective depth 
 
The markers in the figure above show the nominal shear strength values. For the experiment and nu-
merical model, these markers have been connected with a second-order curve fitted line to show better 
the decreasing relation. The numerical model's decrease in the nominal shear strength can be seen in 
the figure with increased effective depth and constant values for all other geometrical and material 
configurations. This decrease in nominal shear strength proves the inclusion of the size effect for the 
set of geometrically scaled beams. However, it is important to know if the size effect is captured accu-
rately with the numerical method by comparing this to the experimental result.  
 
The experimental nominal shear strengths (red square markers) do not entirely align with the curve 
fitting. There are small jumps from the markers below and above the fitted line. Looking at the fitted line 
of the numerical method and experimental result, the nominal shear strength of the numerical simulation 
(blue circle markers) closely follows the experimental results. While the small beams have the same 
approximate nominal shear strength, there is a slightly increasing underestimation of the value as the 
beam depth increases. This underestimation of nominal shear strength indicates a slightly higher size 
effect found with simulations compared to the experiments. However, this underestimation is within 
acceptable boundaries as the relative difference in numerical and experimental nominal shear strength 
for the largest beam (d = 1200 mm) is 3%. There is a possibility that the size effect can be overestimated 
more for geometrically scaled beams bigger than the one from this set. Future research on even larger 
beams can make this remark clearer. The relative difference in the nominal shear strength between the 
smallest (d = 300 mm) and largest beams (d=1200 mm) is 17 %. 
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Results of the numerical model and experiments for the decreasing nominal shear strength as the beam 
size increases show that the numerical model has captured the size effect. Next, the SELs and design 
code predictions are analyzed. The Bažant SEL (purple cross markers) predictions show that this model 
best captures the size effect. However, the disadvantage of the SEL should also be considered, as the 
geometrical parameters to calculate the size effect are unknown in advance. The MSEL predictions 
(black triangle markers) also show promising results, even though they are not as accurate as Bažant 
SEL. The nominal shear strength results closely follow the experimental results and numerical simula-
tions with this SEL. There is a case of underestimation of the nominal shear strength for the design 
codes (EC2 and FIB MC2010 with LoA II). Analytical models have a conservative region included, 
causing lower predictions. The FIB MC2010 with LoA II is predicting the size effect well. The decrease 
in the nominal strength with an increase in beam depth is like the experimental and numerical one. 
Unfortunately, the EC2 underestimates the size effect as the beam size increases. For geometrically 
scaled beams deeper than 1200 mm, this will lead to exaggerated predictions of the nominal shear 
strength.  
 
Another aspect of capturing the size effect is being consistent with the failure mode pattern of the geo-
metrically scaled beams. The crack pattern for all four cases is extrapolated on one beam for compari-
son in Figure 98. The figure shows that the correct failure mode (flexural shear failure) has been cap-
tured in all cases, but most importantly, the patterns do not differ much.  
 

 
Figure 98 Size effect analysis: geometrically scaled beams crack pattern 

 
 
Before moving to the chapter conclusion, more analysis is done on the behavioral influence on the 
beam caused by the effective depth. An important observation was the relationship between the in-
creasing effective depth and the reinforcement stresses. As the beam depth increases, the tensile 
stresses in the reinforcement decrease. Beams with lower tensile strains are linked to a more brittle 
response during failure.  

  
The analysis shows that the numerical method captures the size effect with varying effective depths by 
geometrically scaling the beams. According to the literature review, reinforcement ratio, effective span-
to-depth ratio, and concrete strength are other possible factors influencing the size effect. The influence 
of a parameter on the size effect is studied as done previously, using log-log curves for the nominal 
shear strength over the effective depth with fictitious beams. The results can be found in Annex VIII.   
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4.5 Discussion and conclusion 

Numerous sensitivity analysis was done on different modeling aspects to get the best numerical model. 
During the analysis, the correct damage progression, failure mode, and failure load were required to be 
found or, at the very least, be acceptable. For this, sensitivity analysis was performed on a selection of 
cases using the following modeling aspects: 

• The use of compression-compression confinement  

• The reinforcement bond-slip relation 

• The total strain crack models’ crack orientation 

• The reinforcement element type 

• Incremental-iterative procedure 

• Global element size 
The tables below summarize the most important numerical model’s failure load simulations. After all 
sensitivity analyses for the modeling aspects were performed, the suggested numerical model in the 
table's final row was obtained. 
 
Table 29 Compression-compression confinement 

sensitivity analysis summary 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
: Confined Unconfined 

A121A3 1.33 1.33 

A122B1 1.40 1.41 

A123A1 1.25 1.26 

B701B2 1.20 1.17 

R804A1 1.25 1.25 

R804B1 1.16 1.16 

H601A 0.95 0.92 

H602A 0.95 0.92 
 

Table 30 Total strain crack models’ crack orienta-
tion sensitivity analysis summary 

𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
: Fixed Rotating 

A121A3 1.33 1.20 

A122B1 1.40 1.26 

A123A1 1.25 1.13 

B701B2 1.20 0.94 

R804A1 1.25 1.28 

R804B1 1.16 1.19 

H601A 0.95 Delamination 

H602A 0.95 Delamination 
 

 
Table 31 Bond-slip relation sensitivity analysis 

summary 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
: FIB Shima 

A121A3 1.33 1.06 

A122B1 1.40 1.11 

A123A1 1.25 1.00 

B701B2 1.20 1.02 

R804A1 1.25 0.98 

R804B1 1.16 0.91 

H601A 0.95 0.98 

H602A 0.95 0.98 
 

 
Table 32 Iteration scheme sensitivity analysis sum-

mary 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
: Full NR Secant 

A121A3 1.06 1.06 

A122B1 1.11 1.12 

A123A1 1.00 1.00 

B701B2 1.02 1.00 

R804A1 0.98 0.95 

R804B1 0.91 0.88 

H601A 0.98 1.02 

H602A 0.98 1.02 
 

 
Table 33 Reinforcement element sensitivity analy-

sis summary 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
: Truss Beam 

A121A3 1.06 1.40 

A122B1 1.11 1.48 

A123A1 1.00 1.32 

B701B2 1.02 1.26 

R804A1 0.98 1.02 

R804B1 0.91 0.95 

H601A 0.98 0.97 

H602A 0.98 0.97 
 

 
Table 34 Global element size sensitivity analysis 

summary 
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
: Initial Predictor 

A121A3 1.06 1.00 

A122B1 1.11 1.06 

A123A1 1.00 0.95 

B701B2 1.02 0.99 

R804A1 0.98 1.09 

R804B1 0.91 1.01 

H601A 0.98 0.98 

H602A 0.98 0.98 
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Using sensitivity analysis, a numerical model is obtained that can accurately simulate the flexural shear 
failure for RC beams without stirrups. Previously a summary of the constitutive model modeling aspects 
findings was given in Chapter 4.2.1.3. A summary of the constitutive model numerical choices is given 
in the two tables below: 
 

Table 35 Robust numerical model: concretes’ constitutive mode 

Aspect Modeling choice 

Element class Regular plane stress (quadratic) 

Class Concrete and masonry 

Material model Total-strain crack model 

Crack orientation Fixed 

compressive curve Parabolic 

Reduction model lateral cracking Vecchio and Collins 1993 

Lower bound reduction curve 0.4 

Compressive-compressive confinement Unconfined 

Tensile curve Hordijk 

Reduction model Poisson’s ratio Damage-based 

Crack-bandwidth Govindjee’s projection method 

Shear retention function Damage-based 

 
Table 36 Robust numerical model: reinforcements’ constitutive model 

Aspect Modeling choice 

Shape type Line 

Class  Reinforcement 

Material model Bond-slip reinforcement 

Non-linear model Von Mises plasticity 

Plastic hardening Total strain-yield stress 

Hardening hypothesis Strain hardening 

Hardening type Isotropic hardening 

Bond-slip interface model Shima 

Reinforcement type Truss bond-slip 

 
The findings for the modeling aspects from sensitivity analysis will be specified below. The findings 
mentioned below are an extension of the conclusion found for the constitutive model to avoid repeating 
the constitutive model results. The critical findings for the remaining sensitivity analysis are the follow-
ing: 
Newton Raphson iteration scheme or Secant iteration scheme: 

• The full NR iteration scheme has more convergence problems than Secant's during the initial crack. 
However, this should not be a problem as the overshot of the (force and energy) norms are analyzed 
for the non-converged steps in the convergence log generated by DIANA FEA. 

• Both iteration schemes simulate the same result for geometrically small beams. However, with an 
increase in the beam size, the simulated cases become more sensitive to the iteration scheme 
used, and the difference between simulated results can increase. 

• Most of the time, the full NR iteration scheme captures the flexural shear failure more accurately. 

• Both iteration schemes require different load steps and sometimes different element sizes for opti-
mal results.  

• Secant's iteration scheme can symmetrically give the flexural shear failure for some simulations. 
The Secant iteration scheme fails to include material nonlinearity due to the symmetrical modeling 
of the structure, causing this type of failure. 
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Beam element or Truss element: 

• The beam elements applied can withstand shear stresses with the dowel effect, but this benefit is 
missing for truss elements. 

• Incompatibility between the beam and plane stress elements is found due to the extra rotational 
degree of freedom of the beam element, which the plane stress element does not have. The inter-
face element must tie this rotational degree of freedom to the transitional degree of freedom. How-
ever, the interface element automatically used by DIANA  FEA is not ideal for such a tying of de-
grees of freedom. Thus, higher shear tractions, relative displacements, and more convergence 
problems occur for beam elements. 

• The numerical model with truss elements reaches higher reinforcement stresses than beam ele-
ments because the latter model often fails at lower loads.  

• The numerical model with beam elements sometimes overpredicts the stiffness after the initial 
cracks. There were also high strains along the reinforcement for these cases, making the numerical 
model with beam elements more sensitive to dowel failure. 

The global element size: 
During element size sensitivity analysis, a larger element size sensitivity was found for geometrically 
large beams. Because the crack propagation rate depends on the element size, the wrong failure mode 
was often captured. While it is well known that too-large element sizes can decrease the simulation 
accuracy, some interesting findings are also addressed for too-small element sizes. When the element 
size is too-small, huge strains appear at the sides of some elements. These large strains are transferred 
horizontally or vertically from element to element, thus creating horizontal or vertical crack patterns. As 
a result, the numerical model simulates an irregular crack pattern instead of a smooth flexural shear 
failure pattern. Thus, besides increasing unnecessary computational costs, a too-small element size 
should not be chosen to avoid capturing irregular crack patterns. The optimal element size from the 
sensitivity analysis for different beam depths is given in Figure 91 in an element size predictor and Table 
38 below. The element size predictor should be used for calculations over the beam depth to predict 
the element size for beams. In addition, a formula advised by the RTD guidelines (50 elements over the 
beam length) should also be considered. However, this element size is not expected to be the governing 
as the element size predictor's element size is almost always smaller. The smaller element size from 
the formulas is chosen as the governing element size and applied to the numerical model. 
 
The best numerical model from all the sensitivity analyses is an unconfined (compression-compression) 
fixed crack orientation and the Shima bond-slip relation with truss elements using the full NR iteration 
scheme. Figures from Annex V and tables in this chapter (Table 35, Table 36, Table 37, Table 38, and 
Table 39) provide a complete overview of the numerical model configurations. Some of the tables are 
given below: 
 

Table 37 Robust numerical model: finite element discretization a 

Elements Modeling choice 

Concrete Element Quadratic element 

Concrete Integration 3x3 

Reinforcement Element Truss element 

 
Table 38 Robust numerical model: finite element discretization b 

Mesh Modeling choice 

Element size 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ({
ℎ
20⁄ , 𝑖𝑓 ℎ ≤ 800 𝑚𝑚

40 𝑚𝑚, 𝑖𝑓 800 ≤ ℎ ≤ 1200 𝑚𝑚
} , 𝐿 50⁄  ) 

Mesher type Hexa/ Quad 

Seeding method division 
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Table 39 Robust numerical model: analysis procedure 

Analysis procedure Modeling choice 

Loading method Displacement method 

Command  Structural non-linear 

Load steps Start with 0.5 (linear part) 

User specified Depending on model 

Maximum iterations 100 

Incremental-iterative procedure Full NR 

Line searching On 

Continuation of iteration Off 

Satisfy all specified norms Off 

Convergence norm Energy norm (0.001) and force norm (0.01) 

No convergence Continue  

 
Following the sensitivity analysis, a quantitative analysis is performed for all experimental cases men-
tioned in Chapter 3, which are 76 cases. The properties for all the cases can be found in Annex II. The 
numerical model from different modeling aspects’ sensitivity analysis consistently gave satisfactory re-
sults for most cases, with a few exceptions. A few cases did not successfully result in the correct failure 
mode. For these cases, the dowel failure mode is caused by an excessive change in the damage-based 
shear retention factor. During analysis, the change in the shear retention model should be closely mon-
itored, especially close to the sensitive steps. Sensitive load steps are especially before and during 
failure. Reducing the load step to tiny steps close to the sensitive load steps increases the computa-
tional time greatly but avoids capturing the dowel failure. As a result, the flexural shear failure will be 
successfully captured.  
 
The percentage difference between the simulation and experimental failure load was used to get an 
overview of the simulated failure load accuracy compared to the experimental failure loads from the 
quantitative analysis. Most of the cases were at a low percentile difference. From the quantitative anal-
ysis, the following percentages were found: 

• 0 % ≤ percentage difference ≤ 10 %: 62 cases 

• 10 % < percentage difference ≤ 20 %: 11 cases 

• Percentage difference > 20 %: 3 cases 
In addition, the average failure load percentage difference was 6 % for all cases for the numerical 
simulations, while the EC2 average difference was 14 %. 
 
Lastly, the pilot research on the size effect was performed. An initial expression of whether the numer-
ical method can capture the size effect is obtained from this analysis. After simulating the geometrically 
scaled beams, this was followed by analyzing the changes in the nominal shear strength. An increase 
in the beam size led to a decrease in the nominal shear strength, which shows that the numerical model 
successfully captures the size effect. The nominal shear strength decrease between the largest and 
smallest cases caused by the size effect is 17 %. The same nominal shear strength was found for the 
geometrically smaller beams when comparing the numerical simulation with the experimental result. 
However, the nominal shear strength is slightly underestimated in the simulations as the beam size 
increases. This result indicates an overestimation of the size effect with the numerical method. How-
ever, the size effect prediction from the numerical method is acceptable, with a relative difference of 
only 3 % with the experimental result for the largest beam (H601A). An analysis with some size effect 
theories showed that Bažant SEL and MSEL show almost similar nominal shear strength as the exper-
imental result. Lastly, it was also important that an almost identical crack pattern was captured for the 
size effect. The crack patterns of the four cases have been merged into one figure (Figure 98), which 
shows that all the cases successfully captured the flexural shear failure. 
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5 Conclusion and 
recommendations 

5.1 Conclusion 

This research investigates whether, using sensitivity analysis, a numerical model can be obtained that 
accurately simulates flexural shear failure for RC beams without stirrups. During this research, first, 
sensitivity analysis was performed to reduce the model uncertainty for multiple modeling aspects. After 
that, a quantitative analysis with many cases followed to verify if the numerical model previously ob-
tained is accurate for such simulations. Below, the important findings from this research are given. 
 
The modeling aspects: 
Sensitivity analysis was done on multiple modeling aspects for the numerical model with four experi-
mental cases. All four cases had different geometrical sizes, while some material parameters differed. 
Having differences in the case configuration increases the sensitivity analysis quality. The different find-
ings for each aspect are discussed below: 
1. The total strain crack models’ crack orientation: 
The sensitivity analysis shows that the rotating crack orientation can suffer from delamination of the 
concrete cover due to over-rotation of the crack. The delamination is recognized by cracking of the 
concrete cover along the reinforcement. Over-rotation has also been shown to correlate strongly with a 
high number of non-converged steps. In addition, the fixed crack orientation has a more realistic repre-
sentation of the experiment failure mode. 
2. The use of compression-compression confinement: 
This modeling aspect is kept unconfined for the numerical model because compression-compression 
confinement is not a modeling requirement for cases with a brittle shear-tension failure mode. In addi-
tion, for one of the four sensitivity analysis cases, a slightly lower failure load was found for the confined 
numerical model. In this case, high stresses were suddenly introduced along the reinforcement. 
3. The reinforcement bond-slip relation:  
The main difference between the Shima bond-slip relation and FIB bond-slip relation is the inclusion of 
a decrease in bond stress at high slip values for the latter relation. Also, the Shima bond-slip relation 
has a higher bond capacity and initial stiffness when using similar material configurations for the mod-
eling assumptions. Due to the FIB bond-slip relation's lower initial stiffness, a bigger relative displace-
ment occurs between the concrete and reinforcement. As a result, the cracks are larger with this bond-
slip relation, and the simulation also underestimates the failure load. In addition, due to the higher rela-
tive displacement between the materials of the FIB bond-slip model, this model is more sensitive to 
capturing dowel failure as the tensile reinforcement detaches. Overall, the Shima bond-slip model cap-
tures the correct failure mode and failure load more accurately. 
4. Incremental-iterative procedure:  
The full NR and Secant iteration scheme for geometrically small beams simulate almost the same re-
sults. However, the simulations' differences increase as the beam's geometrical size increases. Analy-
sis shows the full NR iteration scheme can have more convergence problems during the initial crack. 
However, its simulations after the initial cracks are more representative of the experiment. In addition, 
in a few cases, the Secant iteration scheme gave symmetrical flexural shear failure due to failing to 
include material nonlinearity. 
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5. The reinforcement element type:  
The beam elements used consider bending stiffness, making it possible for the concrete to withstand 
shear stresses with the dowel effect, which truss elements do not. These reinforcement elements are 
combined with plane stress elements for concrete, where the beam elements also have a rotational 
degree of freedom besides the transitional ones. For plane stress elements and beam elements to be 
compatible, the interface element must tie the extra degree of freedom to the transitional degree of 
freedom. However, the interface element DIANA FEA applies fails to do this successfully, causing in-
compatibility issues. As a result, simulations with beam elements have been shown to consist of simu-
lations with more convergence problems and higher relative displacements than truss elements. Due 
to the higher relative displacements, a numerical model with beam elements between the materials can 
be more sensitive to dowel failure. In addition, comparisons between the experiment and numerical 
simulations with beam elements show that the stiffness was slightly overpredicted after the initial cracks. 
6. Global element size:  
The global element size is a modeling aspect whose sensitivity has been observed to increase as the 
beams’ geometrical size increases. More experimental cases were added to the sensitivity analysis for 
the element size due to the high sensitivity of this modeling aspect. A too-large element size can de-
crease the accuracy of the simulations, and wrong failure modes can be captured as the crack propa-
gation rate depends on the element size. While choosing a too-small element size can increase the 
computational time without improving the analysis quality, the numerical model can also capture irreg-
ular crack patterns. The irregular crack patterns are caused due to large strains at the end of the ele-
ments. Next, the large strains are horizontally or vertically transferred to the neighboring elements, thus 
causing an irregular crack pattern. From the sensitivity analysis, the following element size formula is 
recommended for beams up to a depth of 1200 mm: 
 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ({
ℎ
20⁄ , 𝑖𝑓 ℎ ≤ 800 𝑚𝑚

40 𝑚𝑚, 𝑖𝑓 800 ≤ ℎ ≤ 1200 𝑚𝑚
} , 𝐿 50⁄  ) 

Equation [ XX ] 
 
The modeling aspects sensitivity analysis found that the best numerical model is an unconfined (com-
pression-compression) fixed crack orientation and the Shima bond-slip relation with truss elements us-
ing the full NR iteration scheme. 
 
The quantitative analysis: 
After the sensitivity analysis was completed, a quantitative analysis was conducted for all 76 experi-
mental cases. The model provided satisfactory results with the numerical model obtained from sensi-
tivity analysis, except for a few cases where dowel failure occurred due to an excessive change in the 
shear retention factor. Load steps close to failure should be monitored closely and reduced to small 
steps (0.001) to avoid capturing dowel failure. A downside of this approach is the high computational 
time, but it does result in the correct failure mode. The failure mode percentage differences were 0 - 10 
% for 62 cases, 10 - 20 % for 62 cases, and larger than 20 % for 3 cases. In addition, the average 
failure load percentage difference was 6 % for the numerical simulations, while the best-performing 
design code had an average of 14 %. The failure load percentage difference overview shows that a 
numerical model was successfully obtained using sensitivity analysis to simulate the flexural shear fail-
ure for RC beams without stirrups. 
 
The pilot research: 
With the pilot research, it was hoped to find out if numerical analysis can capture the size effect for the 
RC beams without stirrups that fail due to flexural shear failure. This pilot research gave an initial ex-
pression of the possibility. Analysis shows the numerical model nominal shear strength decreases as 
the beam geometrical size increases. The simulated nominal shear strength difference was 17 % be-
tween the geometrically smallest and largest beam. Compared to the experimental results, the numer-
ical simulation slightly overestimated the size effect as the beams’ geometrical size increased with a 
nominal shear strength difference of 3% for the largest beam (depth = 1200 mm). All four cases suc-
cessfully captured almost identical flexural shear failure patterns, showing that the size effect has been 
successfully captured with these results.  
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5.2 Future research recommendations 

Some pitfalls were met during the research, and questions outside this thesis's scope were identified. 
These points can be addressed in future research, improving the numerical model for simulations of the 
flexural shear failure for RC beams without stirrups. In addition, recommendations for the size effect 
are made to decrease ambiguity around this topic.  
 
After the sensitivity analysis, the numerical model showed reliable results, and no further sensitivity 
analysis on modeling aspects was required to simulate cases accurately. However, some recommen-
dations are still given regarding the model for the future: 
1. In a few cases, the current numerical model would capture the dowel failure instead of the flexural 

failure and required large decreases in the load step size where the change in the shear retention 
factor was large to simulate the correct failure mode. Instead of increasing the computational time 
a lot, a more in-depth study can be done for a more appropriate shear retention model. 

2. The global element size sensitivity analysis was performed for beams up to a depth of 1200 mm 
during this study. The analysis showed that this is still a complex topic, and the element size should 
be researched further for even larger beams than those used in this research. 

3. The beam element combined with plane stress elements ran into some compatibility problems 
during the sensitivity analysis. The use of plane stress elements was already decided on for 
concrete. Thus no beam element with different concrete elements was simulated. However, further 
research with shell or plane stress elements with a rotational degree of freedom can identify the 
use of a better element for concrete for such numerical models. 

4. Finally, the percentage difference was higher for simulations for geometrically large beams with a 
low reinforcement ratio than the other experimental. It would be interesting to see if another 
numerical model configuration can improve the results for such cases. In addition, simulations 
should be analyzed for cases with much lower reinforcement ratios than those used during the 

research ( = 0.26 %) to see if the model maintains high accuracy for such simulations. 
 
Recommendations regarding (the pilot research on) the size effect are also made below: 
1. An initial expression is found on whether the numerical method can capture the size effect for RC 

beams without stirrups that fail due to flexural shear failure. A conclusion can be found on this 
question with numerical simulations on a larger scale and more variety in the RC beams without 
stirrups geometrical and material configurations. 

2. For the experimental (Bhal) cases, with an increasing beam size, a marginal overestimation of the 
size effect was noticed, with a nominal shear strength relative difference of 3% for the geometrically 
largest beam. In future research, it would be interesting to see if this relative difference increases 
to unacceptable percentages for much larger beams.  
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Annex 

Annex I Critical shear displacement theory 

The opening of a critical flexural shear crack is taken as the lower bound for the shear capacity. Dis-
placement of an existing flexural crack can be used as a criterion for the unstable opening of the critical 
flexural shear crack. 
This theory is based on three shear transfer mechanisms, namely: 

• Aggregate interlock 

• Concrete compressive zone 

• Dowel action 
The residual tensile stresses have been neglected in this theory because they are considered to have 
a neglectable influence. 

 
Based on the Walraven model [13], the simplified formula below is used for rectangular RC beam cross-
sections: 

𝑉𝑎𝑖 = 𝑓𝑐0.56  𝑠𝑐𝑟  𝑏  
0.03

𝑤𝑏 − 0.01
(−978𝛥2 + 85𝛥 − 0.27) 

Equation [ XXI ] 
With: 
𝑤𝑏 ≥ 0.04𝑚𝑚 

𝑓𝑐 ≤ 60𝑀𝑃𝑎 
 
Based on the Morsch formula [19],  [6] derived the following simplified formulation for 𝑉𝑐: 

𝑉𝑐 =
2

3

𝑧𝑐

𝑧
𝑉 =

𝑑 − 𝑠𝑐𝑟

𝑑 + 0.5𝑠𝑐𝑟
 

Equation [ XXII ] 
 
The following was found for the dowel action by [91]: 

𝑉𝑑 =
𝛥

0.08
𝑉𝑑𝑚𝑎𝑥 

Equation [ XXIII ] 
𝑊𝑖𝑡ℎ: 

𝑉𝑑𝑚𝑎𝑥 = 1.64  𝑏𝑛  𝜙√𝑓𝑐𝑘
3

 

𝑏𝑛 = (𝑏 − 𝑛𝜙) 
 
Since it is assumed that the maximum dowel force has been reached, the following formula can be 
derived: 

𝑉𝑑 = 𝑉𝑑max = 1.64  𝑏𝑛  𝜙√𝑓𝑐
3

 

Equation [ XXIV ] 
 
The total shear force at the opening of the critical flexural shear crack equals: 

𝑉 = 𝑉𝑐 + 𝑉𝑎𝑖 + 𝑉𝑑 =
𝑑 − 𝑠𝑐𝑟

𝑑 + 0.5𝑠𝑐𝑟
+ 𝑓𝑐0.56  𝑠𝑐𝑟  𝑏  

0.03

𝑤𝑏 − 0.01
(−978𝛥2 + 85𝛥 − 0.27) + 1.64  𝑏𝑛  𝜙√𝑓𝑐

3
 

Equation [ XXV ] 
 

For an unknown applied force, iterations must be performed for 𝑉𝑎𝑖. 𝑉𝑎𝑖 depends on 𝑤𝑏, which in turn 

depends on 𝑀. The crack with the smallest 
𝑀

𝑉𝑑
 ratio is the critical crack.  
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Annex II Experimental cases  

Experimental case naming from “Garnica & Koekkoek” reports: 
 

 
Figure 99 “Garnica & Koekkoek” cases naming pattern 

 
Sensitivity analysis initial cases:  

Table 40 Element size sensitivity analysis cases properties 

Test Date: 
length L 

 [mm] 
depth H 
 [mm] 

a 
[mm] 

Effective depth 
d [mm] 

𝒂
𝒅⁄  

[-] 

fc,cube 
[MPa] 

reinforcement 
ratio ρ [%] 

Rebar  
 [mm] 

H404A 2018 9000 1200 4000 1158 3.45 82.04 0.42% 3Ø25 

H121A 2018 9000 1200 3000 1145 2.6 84.12 1.14% 8Ø25 

H851C 2018 9000 1200 4500 1150 3.91 82.99 0.85% 6Ø25 

H852A 2018 9000 1200 4500 1150 3.91 82.99 0.85% 6Ø25 

A751B1 2015 5000 300 800 274.5 2.91 78.5 0.37 603.19 

B502A3 2015 5000 500 1700 472.5 3.6 81.9 0.59 829.38 

B502B1 2015 5000 500 1700 472.5 3.6 81.9 0.59 829.38 

R803A1 2015 8000 800 3500 762.5 4.59 83.3 0.82 1884.96 

R803B1 2016 8000 800 3500 762.5 4.59 83 0.82 1884.96 
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“Garnica & Koekkoek” cases 
Table 41 “Garnica & Koekkoek” cases properties and experimental results 1 

Test 
[#] 

Date 
(year) 

L 
 [mm] 

H 
 [mm] 

t 
 [mm] 

ls 
 [mm] 

A 
[mm] 

d 
[mm] 

𝒂

𝒅
 

[-] 

C 
[mm] 

fc,cube 
[MPa] 

Ρ 
[%] 

Rebar 
 [mm] 

fyk 
 [MPa] 

V experimental 
[kN] 

A121A3 2015 5000.00 300.00 300.00 500.00 1000.00 269.50 3.70 no 77.70 1.17 3Ø20 550.00 144.60 
A122B1 2015 5000.00 300.00 300.00 500.00 1000.00 270.50 3.70 no 78.50 1.16 3Ø20 500.00 152.30 
A123A1 2015 5000.00 300.00 300.00 500.00 1000.00 270.00 3.70 no 79.20 1.16 3Ø20 500.00 136.50 
A123A2 2015 5000.00 300.00 300.00 500.00 800.00 270.00 2.96 no 80.10 1.16 3Ø20 500.00 139.00 
A122B2 2015 5000.00 300.00 300.00 500.00 750.00 270.50 2.77 no 78.50 1.16 3Ø20 500.00 139.10 
A902B2 2015 5000.00 300.00 300.00 500.00 1000.00 276.00 3.62 no 78.50 0.90 1Ø12+2Ø20 500.00 124.20 
A902A1 2015 5000.00 300.00 300.00 500.00 995.00 276.00 3.61 no 78.50 0.90 1Ø12+2Ø20 500.00 120.70 
A901B1 2015 5000.00 300.00 300.00 500.00 880.00 274.00 3.21 no 78.50 0.90 1Ø12+2Ø20 500.00 127.50 
A902A3 2015 5000.00 300.00 300.00 500.00 800.00 276.00 2.90 no 78.50 0.90 1Ø12+2Ø20 500.00 149.40 
A901A3 2015 5000.00 300.00 300.00 500.00 750.00 274.00 2.74 no 78.50 0.90 1Ø12+2Ø20 500.00 145.00 
A901B2 2015 5000.00 300.00 300.00 500.00 750.00 274.00 2.74 no 78.50 0.90 1Ø12+2Ø20 500.00 124.20 
A752A2 2015 5000.00 300.00 300.00 500.00 850.00 273.00 3.11 no 78.50 0.74 3Ø16 500.00 119.00 
A751B1 2015 5000.00 300.00 300.00 500.00 800.00 274.50 2.91 no 78.50 0.73 3Ø16 500.00 106.70 
A751A2 2015 5000.00 300.00 300.00 500.00 750.00 274.50 2.73 no 78.50 0.73 3Ø16 500.00 118.40 
A601B1 2015 5000.00 300.00 300.00 500.00 700.00 275.50 2.54 no 78.50 0.58 1Ø10+2Ø16 500.00 106.40 
C901B1 2015 5000.00 300.00 300.00 500.00 1250.00 271.50 4.60 no 23.70 0.91 1Ø12+2Ø20 500.00 101.70 
C901A3 2015 5000.00 300.00 300.00 500.00 1000.00 271.50 3.68 no 23.70 0.91 1Ø12+2Ø20 500.00 84.10 
C751A2 2015 5000.00 300.00 300.00 500.00 1000.00 270.00 3.70 no 23.70 0.74 3Ø16 500.00 84.50 
C751A3 2015 5000.00 300.00 300.00 500.00 1000.00 270.00 3.70 no 23.70 0.74 3Ø16 500.00 86.70 
B701B2 2015 5000.00 500.00 300.00 500.00 1500.00 471.50 3.18 no 81.10 0.67 3Ø20 500.00 202.40 
B702B1 2015 5000.00 500.00 300.00 500.00 1450.00 471.50 3.08 no 81.70 0.67 3Ø20 500.00 164.90 
B702A1 2015 5000.00 500.00 300.00 500.00 1250.00 471.50 2.65 no 81.70 0.67 3Ø20 500.00 183.20 
B501B1 2015 5000.00 500.00 300.00 500.00 1800.00 471.50 3.82 no 81.80 0.59 1Ø16+2Ø20 500.00 165.70 
B501A2 2015 5000.00 500.00 300.00 500.00 1750.00 471.50 3.71 no 81.80 0.59 1Ø16+2Ø20 500.00 166.40 
B502A3 2015 5000.00 500.00 300.00 500.00 1700.00 472.50 3.60 no 81.90 0.59 1Ø16+2Ø20 500.00 173.60 
B502B1 2015 5000.00 500.00 300.00 500.00 1700.00 472.50 3.60 no 81.90 0.59 1Ø16+2Ø20 500.00 173.20 
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Table 42 “Garnica & Koekkoek” cases simulated results 1 

Test 
[#] 

V numerical 
[kN] 

Failure mode 
[-] 

DPC numerical 
[-] 

DPC conclusion 
[-] 

A121A3 136.52 Flexural shear failure 1.06 Sufficient 
A122B1 136.52 Flexural shear failure 1.12 Sufficient 
A123A1 136.52 Flexural shear failure 1.00 Sufficient 
A123A2 144.42 Flexural shear failure 0.96 Sufficient 
A122B2 138.77 Flexural shear failure 1.00 Sufficient 
A902B2 130.46 Flexural shear failure 0.95 Sufficient 
A902A1 130.46 Flexural shear failure 0.93 Sufficient 
A901B1 143.02 Flexural shear failure 0.89 Sufficient 
A902A3 143.02 Flexural shear failure 1.04 Sufficient 
A901A3 129.76 Flexural shear failure 1.12 Sufficient 
A901B2 129.76 Flexural shear failure 0.96 Sufficient 
A752A2 121.91 Flexural shear failure 0.98 Sufficient 
A751B1 106.70 Flexural shear failure 1.00 Sufficient 
A751A2 125.87 Flexural shear failure 0.94 Sufficient 
A601B1 111.89 Flexural shear failure 0.95 Sufficient 
C901B1 90.16 Flexural shear failure 1.13 Sufficient 
C901A3 88.02 Flexural shear failure 0.96 Sufficient 
C751A2 85.91 Flexural shear failure 0.98 Sufficient 
C751A3 85.91 Flexural shear failure 1.01 Sufficient 
B701B2 187.63 Flexural shear failure 1.08 Sufficient 
B702B1 181.12 Flexural shear failure 0.91 Sufficient 
B702A1 178.85 Flexural shear failure 1.02 Sufficient 
B501B1 170.38 Flexural shear failure 0.97 Sufficient 
B501A2 179.77 Flexural shear failure 0.93 Sufficient 
B502A3 170.60 Flexural shear failure 1.02 Sufficient 
B502B1 170.60 Flexural shear failure 1.02 Sufficient 
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Table 43 “Garnica & Koekkoek” cases predicted results 1 

Test 
[#] 

V 
EC2 
[kN] 

DPC EC2 
[-] 

DPC EC2 conclu-
sion 
[-] 

V 
MC 2010 

[kN] 

DPC MC 2010 
[-] 

DPC 
MC 2010 

[-] 

A121A3 117.48 1.23 Insufficient 100.66 1.44 Insufficient 
A122B1 117.92 1.29 Insufficient 108.11 1.41 Insufficient 
A123A1 118.14 1.16 Sufficient 108.42 1.26 Insufficient 
A123A2 118.64 1.17 Sufficient 109.04 1.27 Insufficient 
A122B2 117.92 1.18 Insufficient 108.11 1.29 Insufficient 
A902B2 110.05 1.13 Sufficient 109.93 1.13 Sufficient 
A902A1 110.05 1.10 Sufficient 109.93 1.10 Sufficient 
A901B1 109.43 1.17 Sufficient 109.27 1.17 Sufficient 
A902A3 110.05 1.36 Insufficient 109.93 1.36 Insufficient 
A901A3 109.43 1.33 Insufficient 109.27 1.33 Insufficient 
A901B2 109.43 1.13 Sufficient 109.27 1.14 Sufficient 
A752A2 102.23 1.16 Sufficient 108.94 1.09 Sufficient 
A751B1 102.20 1.04 Sufficient 109.44 0.97 Sufficient 
A751A2 102.20 1.16 Sufficient 109.44 1.08 Sufficient 
A601B1 94.92 1.12 Sufficient 109.77 0.97 Sufficient 
C901B1 82.03 1.24 Insufficient 75.45 1.35 Insufficient 
C901A3 82.03 1.03 Sufficient 75.45 1.11 Sufficient 
C751A2 76.24 1.11 Sufficient 75.10 1.13 Sufficient 
C751A3 76.24 1.14 Sufficient 75.10 1.15 Sufficient 
B701B2 153.83 1.32 Insufficient 170.21 1.19 Insufficient 
B702B1 154.25 1.07 Sufficient 170.84 0.97 Sufficient 
B702A1 154.25 1.19 Insufficient 170.84 1.07 Sufficient 
B501B1 147.91 1.12 Sufficient 170.94 0.97 Sufficient 
B501A2 147.91 1.12 Sufficient 170.94 0.97 Sufficient 
B502A3 148.23 1.17 Sufficient 171.31 1.01 Sufficient 
B502B1 148.23 1.17 Sufficient 171.31 1.01 Sufficient 
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Table 44 “Garnica & Koekkoek” cases properties and experimental results 2 

Test 
[#] 

Date 
(year) 

L 
 [mm] 

H 
 [mm] 

t 
 [mm] 

ls 
 [mm] 

A 
[mm] 

d 
[mm] 

𝒂

𝒅
 

[-] 

C 
[mm] 

fc,cube 
[MPa] 

Ρ 
[%] 

Rebar 
 [mm] 

fyk 
 [MPa] 

V experimental 
[kN] 

R501A1 2015 5000.00 500.00 300.00 500.00 2500.00 455.00 5.49 no 80.50 1.15 5Ø20 (2 layers) 500.00 276.80 

R501B1 2015 5000.00 500.00 300.00 500.00 1500.00 455.00 3.30 no 75.80 1.15 5Ø20 (2 layers) 500.00 210.20 

R502B1 2016 5000.00 500.00 300.00 500.00 1750.00 465.00 3.76 no 77.10 0.68 3Ø20 500.00 154.90 

R502A2 2016 5000.00 500.00 300.00 500.00 1600.00 465.00 3.44 no 75.60 0.68 3Ø20 500.00 163.90 

R804A1 2016 8000.00 800.00 300.00 500.00 3500.00 755.00 4.64 no 85.10 0.65 3Ø25 500.00 269.40 

R804B1 2015 8000.00 800.00 300.00 500.00 3500.00 755.00 4.64 no 85.10 0.65 3Ø25 500.00 249.90 

R801A1 2015 8000.00 800.00 300.00 500.00 2000.00 762.50 2.62 no 84.00 0.64 3Ø25 500.00 213.10 

R801B1 2015 8000.00 800.00 300.00 500.00 2000.00 762.50 2.62 no 91.10 0.64 3Ø25 500.00 204.80 

R803A1 2015 8000.00 800.00 300.00 500.00 3500.00 762.50 4.59 no 83.30 0.82 6Ø20 (2 layers) 500.00 279.30 

R803B1 2016 8000.00 800.00 300.00 500.00 3500.00 762.50 4.59 no 83.00 0.82 6Ø20 (2 layers) 500.00 307.90 

R802A1 2015 8000.00 800.00 300.00 500.00 2000.00 755.00 2.65 no 75.80 0.83 6Ø20 (2 layers) 500.00 219.40 

R802B1 2015 8000.00 800.00 300.00 500.00 2000.00 755.00 2.65 no 75.80 0.83 6Ø20 (2 layers) 500.00 270.20 

E401B1 2018 9000.00 800.00 300.00 500.00 2500.00 765.00 3.27 no 86.74 0.41 3Ø20 500.00 158.70 

E402A 2018 9000.00 800.00 300.00 500.00 2500.00 765.00 3.27 no 89.16 0.41 3Ø20 500.00 190.00 

E402B 2018 9000.00 800.00 300.00 500.00 3000.00 765.00 3.92 no 89.16 0.41 3Ø20 500.00 164.00 

H401A 2018 9000.00 1200.00 300.00 500.00 4500.00 1158.00 3.88 no 81.25 0.42 3Ø25 500.00 264.00 

H402A 2018 9000.00 1200.00 300.00 500.00 4500.00 1158.00 3.88 no 84.12 0.42 3Ø25 500.00 322.00 

H403A 2018 9000.00 1200.00 300.00 500.00 4500.00 1158.00 3.88 no 81.67 0.42 3Ø25 500.00 350.00 

H404A 2018 9000.00 1200.00 300.00 500.00 4000.00 1158.00 3.45 no 82.04 0.42 3Ø25 500.00 269.00 

H301A 2018 9000.00 1200.00 300.00 500.00 4000.00 1160.00 3.45 no 86.58 0.27 3Ø20 500.00 222.70 

H601A 2019 9000.00 1200.00 300.00 500.00 4500.00 1158.00 3.89 no 86.40 0.57 4Ø25 500.00 306.00 

H602A 2019 f9000.00 1200.00 300.00 500.00 4500.00 1158.00 3.89 no 86.08 0.57 4Ø25 500.00 306.00 

H851C 2018 9000.00 1200.00 300.00 500.00 4500.00 1150.00 3.91 no 82.99 0.85 6Ø25 500.00 421.00 

H852A 2018 9000.00 1200.00 300.00 500.00 4500.00 1150.00 3.91 no 82.99 0.85 6Ø25 500.00 406.00 

H121A 2018 9000.00 1200.00 300.00 500.00 3000.00 1145.00 2.60 no 84.12 1.14 8Ø25 500.00 341.00 

H123A 2018 9000.00 1200.00 300.00 500.00 4500.00 1145.00 3.93 no 82.99 1.14 8Ø25 500.00 445.00 
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Table 45 “Garnica & Koekkoek” cases simulated results 2 

Test 
[#] 

V numerical 
[kN] 

Failure mode 
[-] 

DPC numerical 
[-] 

DPC conclusion 
[-] 

R501A1 254.49 Flexural shear failure 1.09 Sufficient 
R501B1 232.20 Flexural shear failure 0.91 Sufficient 
R502B1 186.71 Flexural shear failure 0.83 Insufficient 
R502A2 182.06 Flexural shear failure 0.90 Sufficient 
R804A1 247.82 Flexural shear failure 1.09 Sufficient 
R804B1 247.82 Flexural shear failure 1.01 Sufficient 
R801A1 206.05 Flexural shear failure 1.03 Sufficient 
R801B1 206.05 Flexural shear failure 0.99 Sufficient 
R803A1 282.04 Flexural shear failure 0.99 Sufficient 
R803B1 282.04 Flexural shear failure 1.09 Sufficient 
R802A1 286.87 Flexural shear failure 0.76 Insufficient 
R802B1 286.87 Flexural shear failure 0.94 Sufficient 
E401B1 154.02 Flexural shear failure 1.03 Sufficient 
E402A 154.02 Flexural shear failure 1.23 Insufficient 
E402B 170.61 Flexural shear failure 0.96 Sufficient 
H401A 275.08 Flexural shear failure 0.96 Sufficient 
H402A 275.08 Flexural shear failure 1.17 Sufficient 
H403A 275.08 Flexural shear failure 1.27 Insufficient 
H404A 243.88 Flexural shear failure 1.10 Sufficient 
H301A 198.41 Dowel failure 1.12 Sufficient 
H601A 321.04 Flexural shear failure 0.95 Sufficient 
H602A 321.04 Flexural shear failure 0.95 Sufficient 
H851C 403.64 Flexural shear failure 1.04 Sufficient 
H852A 403.64 Flexural shear failure 1.01 Sufficient 
H121A 361.00 Flexural shear failure 0.94 Sufficient 
H123A 518.17 Flexural shear failure 0.86 Insufficient 
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Table 46 “Garnica & Koekkoek” cases predicted results 2 

Test 
[#] 

V 
EC2 
[kN] 

DPC EC2 
[-] 

DPC EC2 conclu-
sion 
[-] 

V 
MC 2010 

[kN] 

DPC MC 
2010 

[-] 

DPC 
MC 2010 

[-] 

R501A1 178.50 1.55 Insufficient 165.15 1.68 Insufficient 
R501B1 174.56 1.20 Insufficient 160.26 1.31 Insufficient 
R502B1 150.03 1.03 Sufficient 164.26 0.94 Sufficient 
R502A2 148.94 1.10 Sufficient 162.66 1.01 Sufficient 
R804A1 227.68 1.18 Insufficient 241.29 1.12 Sufficient 
R804B1 227.68 1.10 Sufficient 241.29 1.04 Sufficient 
R801A1 227.28 0.94 Sufficient 241.24 0.88 Sufficient 
R801B1 234.15 0.87 Sufficient 251.23 0.82 Insufficient 
R803A1 246.09 1.13 Sufficient 240.23 1.16 Sufficient 
R803B1 245.76 1.25 Insufficient 239.80 1.28 Insufficient 
R802A1 236.65 0.93 Sufficient 227.72 0.96 Sufficient 
R802B1 236.65 1.14 Sufficient 227.72 1.19 Insufficient 
E401B1 198.79 0.80 Insufficient 245.65 0.65 Insufficient 
E402A 200.81 0.95 Sufficient 249.06 0.76 Insufficient 
E402B 200.81 0.82 Insufficient 249.06 0.66 Insufficient 
H401A 277.37 0.95 Sufficient 303.12 0.87 Sufficient 
H402A 280.94 1.15 Sufficient 308.43 1.04 Sufficient 
H403A 277.90 1.26 Insufficient 303.90 1.15 Sufficient 
H404A 278.36 0.97 Sufficient 304.59 0.88 Sufficient 
H301A 245.42 0.91 Sufficient 313.19 0.71 Insufficient 
H601A 314.12 0.97 Sufficient 312.58 0.98 Sufficient 
H602A 313.70 0.98 Sufficient 312.00 0.98 Sufficient 
H851C 351.52 1.20 Insufficient 305.21 1.38 Insufficient 
H852A 351.52 1.15 Sufficient 305.21 1.33 Insufficient 
H121A 388.14 0.88 Sufficient 306.56 1.11 Sufficient 
H123A 386.21 1.15 Sufficient 304.50 1.46 Insufficient 

 

  



 Annex 

ix 

Bhal cases 
Table 47 Bhal cases properties and experimental results 

Test 
[#] 

Date 
(year) 

L 
 [mm] 

H 
 [mm] 

t 
 [mm] 

ls 
 [mm] 

A 
[mm] 

d 
[mm] 

𝒂

𝒅
 

[-] 

C 
[mm] 

fc,cube 
[MPa] 

Ρ 
[%] 

Rebar 
 [mm] 

fyk 
 [MPa] 

V experimental 
[kN] 

d_350 1905 1800.00 350.00 300.00 300.00 881.25 300.00 2.94 no 22.02 1.26 2Ø24 426.00 70.99 
d_650 1905 3600.00 650.00 300.00 300.00 1762.50 600.00 2.94 no 28.12 1.26 4Ø24 426.00 119.48 
d_950 1905 5400.00 950.00 300.00 300.00 2643.75 900.00 2.94 no 26.11 1.26 6Ø24 426.00 166.38 

d_1250 1905 7200.00 1250.00 300.00 300.00 3525.00 1200.00 2.94 no 23.95 1.26 8Ø24 426.00 187.10 
 

Table 48 Bhal cases simulated results 

Test 
[#] 

V numerical 
[kN] 

Failure mode 
[-] 

DPC numerical 
[-] 

DPC conclusion 
[-] 

d_350 70.80 Flexural shear failure 1.00 Sufficient 

d_650 122.44 Flexural shear failure 1.02 Sufficient 

d_950 155.55 Flexural shear failure 0.93 Sufficient 

d_1250 181.00 Flexural shear failure 0.97 Sufficient 

 
Table 49 Bhal cases predicted results 

Test 
[#] 

V 
EC2 
[kN] 

DPC 
EC2 
[-] 

DPC EC2 con-
clusion 

[-] 

V 
MC 2010 

[kN] 

DPC MC 2010 
[-] 

DPC 
MC 2010 

[-] 

d_350 53.38 0.75 Insufficient 45.33 1.57 Insufficient 

d_650 92.71 0.78 Insufficient 76.60 1.56 Insufficient 

d_950 129.72 0.78 Insufficient 99.46 1.67 Insufficient 

d_1250 165.53 0.88 Sufficient 116.91 1.60 Insufficient 
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Ahmad et al. cases 
Table 50 Ahmad et al. cases properties and experimental results 

Test 
[#] 

Date 
(year) 

L 
 [mm] 

H 
 [mm] 

t 
 [mm] 

ls 
 [mm] 

A 
[mm] 

d 
[mm] 

𝒂

𝒅
 

[-] 

C 
[mm] 

fc,cube 
[MPa] 

Ρ 
[%] 

Rebar 
 [mm] 

fyk 
 [MPa] 

V experimental 
[kN] 

rho_1.7 1905 2070.61 254.00 300.00 152.40 832.10 208.03 4.00 406.40 74.09 1.77 2#5+1*#3 414.00 47.18 
rho_2.2 1905 2070.61 254.00 300.00 152.40 832.10 208.03 4.00 406.40 81.59 2.25 3*#5 414.00 44.96 
rho_3.3 1905 2058.42 254.00 300.00 152.40 826.01 206.50 4.00 406.40 78.34 3.26 3*#6 414.00 45.85 
rho_3.9 1905 2032.00 254.00 300.00 152.40 812.80 203.20 4.00 406.40 74.09 3.93 2*#8 414.00 58.30 
rho_5.0 1905 2019.81 254.00 300.00 152.40 806.70 201.68 4.00 406.40 81.59 5.03 2*#9 414.00 51.68 
rho_6.6 1905 1879.60 254.00 300.00 152.40 736.60 184.15 4.00 406.40 78.34 6.64 4*#7 414.00 54.71 

 
Table 51 Ahmad et al. cases simulated results 

Test 
[#] 

V numerical 
[kN] 

Failure mode 
[-] 

DPC numerical 
[-] 

DPC conclusion 
[-] 

rho_1.7 44.06 Flexural shear failure 0.93 Sufficient 

rho_2.2 47.54 flexural shear failure 1.06 Sufficient 

rho_3.3 48.54 flexural shear failure 1.06 Sufficient 

rho_3.9 50.70 flexural shear failure 0.87 Sufficient 

rho_5.0 47.44 flexural shear failure 0.92 Sufficient 

rho_6.6 43.46 flexural shear failure 0.79 Insufficient 

 
Table 52 Ahmad et al. cases predicted results 

Test 
[#] 

V 
EC2 
[kN] 

DPC EC2 
[-] 

DPC EC2 con-
clusion 

[-] 

V 
MC 2010 

[kN] 

DPC MC 
2010 

[-] 

DPC 
MC 2010 

[-] 

rho_1.7 56.50 1.20 Insufficient 47.33 1.00 Sufficient 
rho_2.2 60.79 1.35 Insufficient 49.67 0.91 Sufficient 
rho_3.3 59.64 1.30 Insufficient 48.36 0.95 Sufficient 
rho_3.9 57.84 0.99 Sufficient 46.38 1.26 Insufficient 
rho_5.0 59.39 1.15 Sufficient 48.35 1.07 Sufficient 
rho_6.6 53.61 0.98 Sufficient 43.76 1.25 Insufficient 
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Krefeld et al. cases 
Table 53 Krefeld et al. cases properties and experimental results 

Test 
[#] 

Date 
(year) 

L 
 [mm] 

H 
 [mm] 

t 
 [mm] 

ls 
 [mm] 

A 
[mm] 

d 
[mm] 

𝒂

𝒅
 

[-] 

C 
[mm] 

fc,cube 
[MPa] 

Ρ 
[%] 

Rebar 
 [mm] 

fyk 
 [MPa] 

V experimental 
[kN] 

dtsr_3.4 1905 1828.80 304.80 300.00 457.20 850.90 250.44 3.40 127.00 40.87 4.15 2*#10 366.00 60.70 
dtsr_4.6 1905 2438.40 304.80 300.00 457.20 1155.70 250.44 4.61 127.00 40.54 4.15 2*#10 366.00 59.92 
dtsr_5.8 1905 3048.00 304.80 300.00 457.20 1460.50 250.44 5.83 127.00 45.62 4.15 2*#10 366.00 63.76 
dtsr_7.0 1905 3657.60 304.80 300.00 457.20 1765.30 250.44 7.05 127.00 40.13 4.15 2*#10 366.00 49.98 
dtsr_7.0 1905 3657.60 304.80 300.00 457.20 1765.30 250.44 7.05 127.00 43.08 4.15 2*#10 366.00 53.94 
dtsr_7.0 1905 3657.60 304.80 300.00 457.20 1765.30 250.44 7.05 127.00 43.08 4.15 2*#10 366.00 53.94 

 
Table 54 Krefeld et al. cases simulated results 

Test 
[#] 

V numerical 
[kN] 

Failure mode 
[-] 

DPC numerical 
[-] 

DPC conclusion 
[-] 

dtsr_3.4 57.33 Flexural shear failure 0.94 Sufficient 
dtsr_4.6 57.24 flexural shear failure 0.96 Sufficient 
dtsr_5.8 56.14 Flexural shear failure 0.88 Sufficient 
dtsr_7.0 51.40 Flexural shear failure 1.03 Sufficient 
dtsr_7.0 51.40 Flexural shear failure 0.95 Sufficient 
dtsr_7.0 51.40 Flexural shear failure 0.95 Sufficient 

 
Table 55 Krefeld et al. cases predicted results 

Test 
[#] 

V 
EC2 
[kN] 

DPC 
EC2 
[-] 

DPC EC2 
conclusion 

[-] 

V 
MC 2010 

[kN] 

DPC MC 
2010 

[-] 

DPC 
MC 2010 

[-] 

dtsr_3.4 55.57 0.92 Sufficient 44.31 1.37 Insufficient 

dtsr_4.6 55.42 0.92 Sufficient 44.13 1.36 Insufficient 

dtsr_5.8 57.64 0.90 Sufficient 46.82 1.36 Insufficient 

dtsr_7.0 55.23 1.11 Sufficient 43.91 1.14 Sufficient 

dtsr_7.0 56.55 1.05 Sufficient 45.50 1.19 Insufficient 

dtsr_7.0 56.55 1.05 Sufficient 45.50 1.19 Insufficient 
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Mphone et al. cases 
Table 56 Mphone et al. cases properties and experimental results 

Test 
[#] 

Date 
(year) 

L 
 [mm] 

H 
 [mm] 

t 
 [mm] 

ls 
 [mm] 

A 
[mm] 

d 
[mm] 

𝒂

𝒅
 

[-] 

C 
[mm] 

fc,cube 
[MPa] 

Ρ 
[%] 

Rebar 
 [mm] 

fyk 
 [MPa] 

V experimental 
[kN] 

fc_25 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 25.29 3.34 3*#8 414.00 65.27 
fc_45 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 45.88 3.34 3*#8 414.00 82.83 
fc_50 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 50.70 3.34 3*#8 414.00 83.46 
fc_90 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 90.91 3.34 3*#8 414.00 90.04 
fc_90 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 91.26 3.34 3*#8 414.00 90.36 

fc_100 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 99.07 3.34 3*#8 414.00 94.12 
fc_115 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 111.85 3.34 3*#8 414.00 98.51 
fc_115 1905 2133.60 336.55 300.00 152.40 1041.40 298.45 3.49 50.80 114.10 3.34 3*#8 414.00 100.71 

 
Table 57 Mphone et al. cases simulated results 

Test 
[#] 

V numerical 
[kN] 

Failure mode 
[-] 

DPC numerical 
[-] 

DPC conclusion 
[-] 

fc_25 60.46 Flexural shear failure 0.93 Sufficient 
fc_45 76.26 Flexural shear failure 0.92 Sufficient 
fc_50 78.64 Flexural shear failure 0.94 Sufficient 
fc_90 85.17 Flexural shear failure 0.95 Sufficient 
fc_90 85.17 Flexural shear failure 0.94 Sufficient 

fc_100 90.05 Flexural shear failure 0.96 Sufficient 
fc_115 95.27 Flexural shear failure 0.97 Sufficient 
fc_115 95.27 Flexural shear failure 0.95 Sufficient 

 
Table 58 Mphone et al. cases predicted results 

Test 
[#] 

V 
EC2 
[kN] 

DPC 
EC2 
[-] 

DPC EC2 con-
clusion 

[-] 

V 
MC 2010 

[kN] 

DPC MC 
2010 

[-] 

DPC 
MC 2010 

[-] 

fc_25 62.07 0.95 Sufficient 45.94 1.42 Insufficient 

fc_45 66.10 0.80 Insufficient 50.48 1.64 Insufficient 

fc_50 68.34 0.82 Insufficient 53.06 1.57 Insufficient 

fc_90 83.02 0.92 Sufficient 71.05 1.27 Insufficient 

fc_90 83.13 0.92 Sufficient 71.19 1.27 Insufficient 

fc_100 85.43 0.91 Sufficient 74.17 1.27 Insufficient 

fc_115 88.96 0.90 Sufficient 78.81 1.25 Insufficient 

fc_115 89.55 0.89 Sufficient 140.66 1.27 Insufficient 

 
  



 Annex 

xiii 

Annex III Numerical model sensitivity analysis  

A121A3 

 

A122B1 

 

A123A1 

 
Figure 100 Case A121A3: experimental flexural shear failure  

 
B701B2: 

 
Figure 101 Case B701B2: experimental flexural shear failure  

 
R804A1 

 

R804B1 

 
Figure 102 Case R804A1: experimental flexural shear failure  

 
H601A 

 

H602A 

 
Figure 103 Case H601A: experimental flexural shear failure  

 

 
Figure 104 A121A3 maximum principal strain fixed crack orientation: confined (left) and unconfined 

(right) 
 

 
Figure 105 B701B2 maximum principal strain: confined (left) and unconfined (right) 
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Figure 106 R804A1 Shima bond-slip-strain relation: force-displacement graph 

 

 

Beam elements: 

 
Truss elements: 

 
Figure 107 B701B2 Reinforcement shear stresses FIB bond-slip with beam (top) and truss elements 

(bottom) 
 

 

Beam elements:  

Truss elements:  

Figure 108 H601A reinforcement shear stresses: FIB bond-slip with beam (top) and truss elements 
(bottom) 

 

 
Figure 109 A121A3 Force-displacement graph: FIB bond-slip relation with truss elements, Shima 

bond-slip relation with truss elements, and FIB bond-slip relation with beam elements 
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Figure 110 R804A1 Force-displacement graph: FIB bond-slip relation with truss elements, Shima 

bond-slip relation with truss elements, and FIB bond-slip relation with beam elements 
 

Table 59 Maximum reinforcement stress (top) and shear traction (bottom) 

Cases: 
A121A3 
FUFTN 

A121A3 
FUFBN 

B701B2 
FUFTN 

B701B2 
FUFBN 

R804A1 
FUFTN 

R804A1 
FUFBN 

H601A 
FUFTN 

H601A 
FUFBN 

Reinforcement stress 
[Mpa] 

376 314 399 352 441 501 387 418 

Shear traction [Mpa] 8 10 9 10 9 11 8 10 

 
Experiment:

 

 

20: 

 

25:

 

80/3:

 
32: 

 

40: 

 
Figure 111 R804A1 element size sensitivity analysis: crack pattern 

 

      
Figure 112 R804A1 element size force-displacement graph: NR (left) and Secant scheme (right) 
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Experiment: 

 

 

 

NR 50/3: 

 

NR 25: 

 
NR 20: 

 

NR 100/3: 

 
Figure 113 B702B1 element size sensitivity analysis: crack pattern 

 

  
Figure 114 B702B1 element size force-displacement graph: NR (left) and Secant scheme (right) 

 
Experiment: 

 

 

12: 

 

15:  

 

20: 

  
25:  

 

30: 

  
Figure 115 A121A3 element size sensitivity analysis: crack pattern 

 
 

  
Figure 116 A121A3 element size force-displacement graph: NR (left) and Secant scheme(right) 
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Figure 117 H121A element size and iteration schemes sensitivity analysis 

 

 
Figure 118 H404A element size and iteration schemes sensitivity analysis 

  

 
Figure 119 H851C element size and iteration schemes sensitivity analysis 

 
 

 
Figure 120 A751B1 element size sensitivity analysis 
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5  
Figure 121 B502A3 element size sensitivity analysis 

 

 
Figure 122 R803A1 element size sensitivity analysis 

 
The tables' vertical rows with experiment 1, experiment 2, and experiment 3 indicate beams with 
equivalent properties tested more than once. 

 
Table 60 Sensitivity analysis cases with d: 300mm, 500mm, and 800 mm 

Newton 
Raphson 

A121 
A3 

V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

B70 
1B2 

V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

R804 
A1 

V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

A751 
B1 

V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

B502 
A3 

V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

R803 
A1 

V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

Num 136.52  187.63  247.82  106.70  170.60  282.04  

Exp 1 144.60 1.0592 202.40 1.0787 269.40 1.0871 108.70 1.0187 173.60 1.0176 279.30 0.9903 

Exp 2 152.30 1.1156   249.90 1.0084   173.20 1.0152 307.90 1.0917 

Exp 3 136.50 0.9999           

 
Table 61 Sensitivity analysis cases with d 1200 mm 

Newton 
Raphson 

H601A V [kN] 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 H121A V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

H404A 
V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 H815C V [kN] 

𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
 

Numerical 321.04  367.93  244.88  403.64  

Experiment 1 306.00 0.9532 341.00 0.9268 269.00 1.1025 421.00 1.0430 

Experiment 2 306.00 0.9532     406.00 1.0058 
 



 Annex 

xix 

Annex IV Robust numerical model 

 
Figure 123 Robust numerical model: constitutive model 
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Figure 124 Robust numerical model: finite element discretization 
 

 
 

Figure 125 Robust numerical model: analysis procedure 
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Annex V Sensitivity analysis with the DPC system 

The numerical simulations will be compared with the experimental results to grade the simulations' reliability. Collins 
(91) introduced a Demerit Point Classification (DPC) to classify predictions. The advantage of this classification is ac-
curacy considerations for a calculation model to grade the models’ safety. An overview of the DPC system can be found 
in the table below: 
  

Table 62 Collin's DPC system classification 
Range Demerit penalty Classification 

𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
≤ 𝟐 10 Extreme dangerous 

𝟏. 𝟏𝟕𝟗 ≤
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
< 𝟐 5 Dangerous 

𝟎. 𝟖𝟔𝟗 ≤
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
< 𝟏. 𝟏𝟕𝟗 0 Safe 

𝟎. 𝟓 ≤
𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
< 𝟎. 𝟖𝟔𝟗 1 conservative 

𝑽𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝑽𝒏𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍
< 𝟎. 𝟓 2 Extreme conservative 

 

The demerit penalty will be used to calculate the value of safety for 0 ≤
𝑉𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑉𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙
< 2. The closer the result is to one, 

the better the numerical model performs. These values will be plotted as a function of four parameters: the effective 
depth, the effective span-to-depth ratio, the concrete strength, and the reinforcement ratio. 
 
The boundaries in the plots will be 0.869 and 1.179. These plots will give an overview in case one parameter of the four 
causes dangerous or conservative results. Suppose the numerical simulations are in extremely dangerous or extremely 
conservative regions. In that case, the chosen numerical model will be seen as unacceptable. Further sensitivity analysis 
will be done for the numerical model. The plots will be scattered, as the discrepancy ratio variation supplies a clear 
safety overview.  
The legend for this system is given below: 
 

Table 63 Collin's DPC system boundaries 

DPC 
Legend  

< 
0.8035 

0.8363 0.869 0.9018 0.9345 0.9673 1 1.0448 1.0895 1.1343 1.179 1.2238 
> 

1.2685 
             

 
Sensitivity analysis initial cases: 
The experimental results and numerical simulations comparison for the best numerical model has also been plotted with 

the 
𝑽𝒆𝒙𝒑

𝑽𝒏𝒖𝒎
, against the four parameters which will be used to grade the size effect. This graph shows if a parameter can 

cause a numerical model to result in unsatisfactory results when graded by the DPC system. The report's two parame-
ters, “effective depth and reinforcement ratio, " vary the most.  
 

  

  
Figure 126 Robust numerical model with DPC boundaries 

 
In addition, similar plots have been added below for the other alternative numerical setup that did not perform as well 
as the chosen numerical one when graded with the DPC system. The plots in the annex clearly show that one of the 
four parameters can cause the specific numerical model to simulate inaccurate results.  
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Figure 127 FCFTN with DPC boundaries 

 

  

  

 
Figure 128 FUFBN with DPC boundaries 
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Figure 129 FUFTN with DPC boundaries 

 

 
 

  

 
Figure 130 FUSsTN with DPC boundaries 
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Figure 131 FUSTS with DPC boundaries  
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Annex VI Quantitative analysis with the DPC system 

In this annex, the DPC system is addressed, for which the four graphs in Figure 132 are plotted against four parameters 
to analyze the result.  
 

  

  
Figure 132 Quantitative analysis with DPC boundaries 

 
For all numerical cases based on the failure load, 92% gave an acceptable according to the DPC system. According to 
the DPC system, the following cases were unacceptable: Rho_6.6, R502B1, R802A1, E402A, H403A, and H123A. From 
the numerical analysis, the six cases did result in the expected damage progression and failure mode.  
 
The three cases subjected to an overestimated failure load are R502B1, R802A1, and H123A of the failure load. In case 
R802A1, stress-locking is noticed for the model due to the fixed crack orientation. This phenomenon is noticeable from 
the force-displacement graph, where a too-stiff behavior is noticed. The global stiffness from the numerical model leads 
to a much steeper (positive) slope compared to the experimental model and can be seen in the picture below: 
 

 
Figure 133 R802A1: force-displacement graph 

 
In Figure 133, the experimental force drops to zero between 2 mm and 2.5 mm displacement due to unloading and 
reloading. Even though stress-locking is a known problem for the fixed crack orientation, this only happens in one case 
during the quantitative analysis. The other two overestimating models, namely R502B1 and H123A, are not subjected 
to stress-locking. There is still an overestimation for these models, of 17% and 16% for each, respectively. This overes-
timation is because of the damage-based shear retention model, which overestimates the aggregate interlock contribu-
tion. A remedy to fix this overestimation is an alternative shear retention model. 
 
The remaining three numerical models were subjected to underestimating the failure load. However, their numerical 
analysis shows a good damage progression. After an in-depth analysis of the Rho_6.6 model, no problems were found 
with the numerical model. However, if all the cases from Ahmad et al. used for this study are analyzed, the following 
results in Table 64 are found. 
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Table 64 Ahmad et al. cases experimental and simulated failure loads 
Test [#] ρ [%] V experimental [kN] V numerical [kN] h [mm] d [mm] 

rho_1.7 1.77 47.18 44.06 254 208 

rho_2.2 2.25 44.96 47.54 254 208 

rho_3.3 3.26 45.85 48.54 254 207 

rho_3.9 3.93 58.30 50.70 254 203 

rho_5.0 5.03 51.68 47.44 254 202 

rho_6.6 6.64 54.71 43.46 254 184 

 
From Table 64 above, there is no proper trend for the experimental failure load, with no clear sign if the failure load is 
decreasing or increasing due to an increasing reinforcement ratio. The numerical simulations show an increase in failure 
load until a reinforcement ratio of 3.9 %. After this increase, a decrease in the failure load is noticed. A logical explanation 
for this can be the following: Even though there is a constant beam depth, the effective depth varies to keep a sufficient 
concrete cover while increasing the reinforcement ratio. The reduction of the effective depth caused a lower failure load 
even though the reinforcement ratio was increasing. This study was meant to study only the change in the reinforcement 
ratio. However, due to changes in the effective depth, this study is not ideal for studying only this parameter. In future 
research, more on this can be researched. A second reason for such results can be that after reaching a percentage of 
a high reinforcement ratio, an increased reinforcement ratio does not increase the failure load. However, more on this 
can only be said after further research.  
 
Finally, the other two cases for which the results are underestimated can be addressed, which are H403A and E402A. 
H403A is analyzed first. Two more experiments with similar beam properties to H403A were performed at Stevin Lab, 
namely H401A and H402A. The numerical failure load is sufficient for cases H401A and H402A. In contrast, the H403A 
failure load differs significantly from the result of these two cases. If the failure load from H401A is compared with H403A, 
a 75% overestimation is noticed for the latter case. This overestimation indicates that the error is in the experiment 
instead of the numerical model. During experiments, external factors can potentially hugely influence the failure load. 
These factors are, for example, gravel proportion or the gravel size and explain why an experiment with the same case 
properties is repeated multiple times. The same conclusion as in this case is made regarding case E402A. 
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Annex VII Size effect analyses  

 

 
Figure 134 Bhal cases force-displacement graph: effective depths 

 

 
Figure 135 Force-displacement graph: reinforcement ratio 0.63 % 

 

 
Figure 136 Force-displacement graph: reinforcement ratio 1.88 % 
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Figure 137 Force-displacement graph: reinforcement ratio 2.52 % 

 

 
Figure 138 Force-displacement graph: effective span-to-depth ratio 2.50 

 

 
Figure 139 Force-displacement graph: effective span-to-depth ratio 2.72 
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Figure 140 Force-displacement graph: concrete strength 50 MPa 

 

 
Figure 141 Force-displacement graph: concrete strength 75 Mpa 

 

 
Figure 142 Force-displacement graph: concrete strength 100 MPa 
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Table 65 Reinforcement ratio variation slopes 

Reinforcement ratio 0.63 % 1.26 % 1.88 % 2.52 % 

0.3 m  < d < 0.6 m -0.65 -0.58 -0.56 -0.54 

0.6 m  < d < 0.9 m -0.45 -0.44 -0.41 -0.39 

0.9 m  < d < 1.2 m -0.26 -0.31 -0.26 -0.24 
 

Table 66 Effective span-to-depth ratio variation slopes 

Effective span-to-depth ratio 2.50 [-] 2.72 [-] 2.94 [-] 

0.3 m  < d < 0.6 m -0.43 -0.6 -0.58 

0.6 m  < d < 0.9 m -0.31 -0.39 -0.44 

0.9 m  < d < 1.2 m -0.18 -0.18 -0.31 

 
Table 67 Concrete strength variation slopes 

Concrete strength 25 MPa 50 MPa 75 MPa 100 MPa 

0.3 m  < d < 0.6 m -0.58 -0.92 -1.06 -1.16 

0.6 m  < d < 0.9 m -0.44 -0.58 -0.63 -0.65 

0.9 m  < d < 1.2 m -0.31 -0.24 -0.19 -0.15 
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Annex VIII Size effect analysis geometrically scaled fictitious cases  

Variation in reinforcement ratio 
An analysis is done with different reinforcement ratios on the four Bhal beams to study this potential influence on the 
size effect. During the numerical model sensitivity analysis, the range of cases with varying reinforcement ratios for all 
the cases (Chapter 3) was between 0.26 % and 6.64 %. Different reinforcement ratios were chosen within this calibrated 
range for the size effect analysis, as the results were within an acceptable percentage difference. The chosen reinforce-
ment ratios for the size effect analysis have a significant enough difference between them to better observe the differ-
ences in the size effect. The selected reinforcement ratios are: 

• 0.63 % (0.5 * 1.26 %) 

• 1.26 % (initially used for the configuration of the Bhal experiments) 

• 1.88 % (1.5 * 1.26 %) 

• 2.52 % (2.0 * 1.26 %) 
The fifth reinforcement ratio within the calibrated experiments range would have been 3.15 (2.5 * 1.26 %). However, 
such high reinforcement ratios were not analyzed because there was not much difference between the ratios of 1.88 % 
and 2.52 % in the size effect analysis. In Annex VII, the force-displacement graphs are given for each reinforcement 
ratio configuration. Next, the nominal shear strength of all the different reinforcement ratios is plotted against the effective 
depth in a log-log plot in Figure 143. 
  

 
Figure 143 Size effect analysis with variation in the reinforcement ratio 

 
With the increase of the reinforcement ratio, the nominal shear strength also increases for the exact beam sizes. How-
ever, the speed with which the reinforcement ratio decreases for geometrically scaled beams is essential to find the 
influence of the parameter on the size effect. If the results had been analyzed according to the SEL figure (Figure 8), all 
the nominal shear strength values would be in the second section (the nonlinear fracture mechanics influenced by the 
size effect). The analysis of Figure 143 indicates a slightly steeper slope for cases with lower reinforcement. This slope 
difference signifies a more pronounced decrease in the nominal shear strength as the reinforcement ratio decreases for 
RC beams without stirrups. This result concludes that a more significant size effect exists for beams with lower rein-
forcement ratios. However, these slope differences for the same beam size are minimal and almost neglectable. An 
increased reinforcement ratio leads to better control of the cracks. 
 
Comparing the reinforcement ratios of 1.88 % to 2.52 % shows interesting behavior. After a high enough reinforcement 
is reached for the configuration, a further increase in the reinforcement ratio does not weaken the size effect more. 
Reinforcement ratios much smaller than 0.63 % may get influenced much more by the size effect. Table 65 from Annex 
VII specifies the slopes for each configuration. The tables can be studied for a broader understanding of the effect of 
the reinforcement ratio on the size effect. 
 



 Annex 

xxxii 

Other behavioral changes from the increase in the reinforcement ratio are also analyzed. The force-displacement graph 
analysis in Annex VII showed that the reinforcement ratio affects the beams' global stiffness. The global stiffness in-
creases as the reinforcement ratio increases, as the additional reinforcement helps better distribute the load. The same 
elastic stiffness for all beams makes sense, as the concrete has not yet cracked during this phase. With the rise in global 
stiffness, the failure load also increases, but the beam deforms less. The two examples in Figure 144 demonstrate the 
increase in stiffness. The first example (left) is for the smallest beam with a depth of 300mm, while the second (right) is 
for the largest beam with an effective depth of 1200 mm. The small beam has a relative failure load increase of 24 % 
and a relative displacement decrease of 55 % between the maximum and minimum reinforcement ratio. The differences 
are 43 % and 60 % for the larger one, respectively, showing a more significant capacity gain. This higher increase in 
capacity for the larger beam is because the large beams with low reinforcement are influenced more by the size effect. 
The effect is weakened for the case with high reinforcement. 
   

 
Figure 144 Force-displacement graph: d = 300 mm (left) and d = 1200 mm (right) 

 
Variation in effective span-to-depth ratio 
The third parameter that will be studied for its influence on the size effect is the effective span-to-depth ratio. As previ-
ously stated, the parameter must be limited to an effective span-to-depth ratio between 2.5 and 7.0 to capture the flexural 
shear failure. Moving out of this range results in another expected failure mode, which is not considered in this report. 
The initial effective span-to-depth ratio (2.94) is already at the center of the beam for the size effect analysis. Therefore, 
considering the effective span-to-depth boundary, the following ratios are chosen when calculated from the left side of 
the beam: 

• 2.94 (initial and maximum ratio) 

• 2.72 (2.94 −
2.94−2.50

0.5
) 

• 2.50 (minimum ratio) 
An overview of the effective span-to-depth ratio locations is shown in Figure 145. In addition, nominal shear strengths 
for the effective span-to-depth ratio variation are plotted in Figure 146, with the analysis of its influence followed by it. 
 

 
Figure 145 Effective span-to-depth ratio variation 
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Figure 146 Size effect analysis with variation in the effective span-to-depth ratio 

 
In the previous section, an increase in the reinforcement ratio results in a slightly flatter but almost neglectable slope 
difference. However, this is the reverse situation for the effective span-to-depth ratio. There is an increase in the steep-
ness of the curves’ slope with an increase in the ratio. Unlike the reinforcement ratio, the slope difference is more 
noticeable from the log-log plot. This difference indicates that the effective span-to-depth ratio has a more significant 
influence. It should also be noted that the different effective span-to-depth ratios have a difference of just 0.22 (0.50, 
0.72, and 0.94), which is not much. With this observation, it can be concluded that the increase in the effective span-to-
depth ratio increases the size effect. Table 66 can be viewed from Annex VII to indicate better this parameter's influence 
on the size effect with the help of the slope measurements for each ratio. 
 
Besides increasing the size effect due to an increasing effective-span-to-depth ratio, this parameter is also a deciding 
factor in the failure mode and crack pattern, as previously explained. In addition, the failure load increases as the effec-
tive span-to-depth ratio increases (moves more central of the beam). This response is seen in the force-displacement 
graphs for every effective span-to-depth ratio in Annex VII. The failure load increases, but the displacement significantly 
increases, as seen in Figure 147. This simulated result makes sense from a structural mechanics perspective when the 
force distribution of the 'vergeet-mij-nietjes/forget-me-not' formulas are applied. The beam capacity will be more signifi-
cant when loaded at the midspan than when loaded away from it. This result is because a beam loaded at the midspan 
will be more evenly distributed over the beam's cross-section, resulting in lower stress concentrations. The relative 
difference in failure load is 4 % for the smallest beam and 8% for the largest beam. The relative difference in displace-
ment between the effective span-to-depth ratio of 2.5 and 2.94  is 17 % for both plotted beams.  
  

 
Figure 147 Effective span-to-depth ratio: force-displacement graph 

 
Variation in concrete strength 
The concrete strength is the final parameter studied for its influence on the size effect. During the numerical model 
sensitivity analysis and comparisons with experimental results, the range of simulated models had concrete strengths 
from 22MPa to 114 MPa. Over the entire range mentioned, reliable results were found with the robust numerical model. 
Because the results were sufficient according to the failure load percentage difference between the numerical simula-
tions and experimental results, a wide range of concrete strengths can be applied to the analysis in this section. The 
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concrete strengths used for the size effect analysis are 25 Mpa, 50 Mpa, 75 Mpa, and 100 Mpa. For further analysis, 
the nominal shear strength for geometrically scaled beams with different concrete strengths is in Figure 148 (left).  
 

 
Figure 148 Size effect analysis with variation in the concrete strength 

 
Increasing the concrete strength increases the nominal shear strength for the same beam sizes. Differences in the 
slopes for the different concrete strengths are also visible. The slopes become steeper consistently as the concrete 
strength increases for the three smallest beams (effective depth is 300 mm, 600 mm, and 900 mm). The results show 
an increase in the size effect as the concrete strength increases. A similar type of increase in steepness of the slope 
was noticed for the effective span-to-depth ratio. The increased size effect with increased concrete strength is reduced 
as the beam sizes increase for the three smallest beam sizes.  
 
The beam size of 1200 mm requires a separate analysis as a different behavior is noticed here. While the beam with 
concrete strength seems to continue its steep slope for the nominal shear strength, this is not the case for the higher 
concrete strength ones. With a higher concrete strength, the large beams show an increasing material randomness 
sensitivity influencing the nominal shear strength. The energetic size effect dominated the previous beam configurations, 
but the energetic-statistical size effect is now noticed. Bažant et al. have also acknowledged this size effect as SEL type 
I, for which the size effect is found using a formula and asymptotic matching. The statistical size effect influence is 
evident for the two highest concrete strength beams. However, it can also be expected for the other LSC beams. It 
should be noted that for this behavior, larger beams than the ones simulated must be done. The switch from the ener-
getic size effect to the statistical-energetic size effect can be seen in Figure 148 on the right with the orange and purple 
blocks. A better overview of the slope change for the nominal shear strength of all the geometrically scaled beams can 
be found in Table 67 from Annex VII. 
 
The force-displacement graph results in Annex VII show an increase in failure load as the concrete strength increases. 
The failure load increase between the lowest and highest concrete strength is between 28 % and 42% for the different 
beam sizes. The increase in concrete strength affects the beam’s brittleness. The more brittle the beam, the wider the 
cracks at failure. This relationship between concrete strength and brittleness is essential, especially with large beams. 
As the flexural shear failure is already brittle, it is not easy to study the brittleness of the beams. However, an experiment 
was done after the maximum load was reached using the displacement method. Three small and equal load steps were 
applied for each beam configuration with different concrete strengths applied. A more gradual decrease in force means 
a more brittle behavior. This experiment gave the following results: 

• The beam with d = 300 mm drops 19 kN more for a concrete strength of 100 MPa  compared to one with a concrete 
strength of 25 MPa 

• The beam with d = 1200mm  drops 54 kN more for a concrete strength of 100 MPa  compared to one with a concrete 
strength of 25 MPa 

The numerical simulation analysis shows that the beams with a more brittle response from increased concrete strength 
exhibit a more substantial size effect. The energetic-statistical size effect is also visible for large beams with HSC. The 
different force-displacement curves of this example are plotted in Figure 149.  
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Figure 149 Concrete strength: force-displacement graph 
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Annex IX Python code: three-point numerical model 

Example: R804A1_40 
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Annex X Python code: four-point numerical model 

Example: d_350_75 
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