
Residential energy consumption in theory
and practice—the effect of home ownership

Master thesis submitted to Delft University of Technology

in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in Management of Technology

Faculty of Technology, Policy and Management

by

Kim Fernández Gómez
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Abstract

One of the main strategies for reducing energy demand—and thereby carbon emis-
sions—is increasing energy efficiency. In the Netherlands, energy efficiency policy and
energy reduction targets in the residential sector are based on the theoretical energy
consumption of buildings, which often over- or underestimates the measured energy con-
sumption. The difference between the actual energy consumption and the calculated
energy consumption of a building is referred to as the energy performance gap (EPG).
As a consequence of this discrepancy, the estimated energy savings are inaccurate and
the energy-saving targets are unattainable. Narrowing the EPG is necessary to develop
more accurate estimates of energy savings and realistic targets, and to improve the ef-
fectiveness of energy reduction policies and campaigns. Most studies on the EPG have
focused predominantly on data from the social rental housing sector, failing to represent
the national distribution of home ownership type. At the same time, homeowners and
tenants have been shown to behave differently regarding energy consumption.

This thesis investigates the effect of home ownership on the actual natural gas con-
sumption and the EPG by descriptive statistics, correlation analysis, and multiple linear
regression on a representative sample of the Dutch housing stock. The multiple regres-
sion analysis controls for building and occupant characteristics that are expected to
influence the actual gas consumption and the EPG, in order to measure the ceteris
paribus effect of ownership type on the actual gas consumption and the EPG.

The results show that ownership type does not have a practically significant effect on
actual gas consumption or the EPG, while controlling for building and household char-
acteristics. However, without controlling for these factors, there is a moderate positive
correlation between home ownership and actual gas consumption, and a weak positive
correlation between home ownership and the magnitude of overpredictions. This sug-
gests that observed differences in gas consumption or EPG between ownership groups
may be explained by building and household characteristics, rather than by potential
behavioral differences. Specifically, the positive correlation between home ownership
and actual gas consumption can be explained by the larger floor area, type of buildings,
higher income, and larger household size. The positive correlation between home own-
ership and the size of overpredictions is explained by type of building and larger floor
area. Thus, there are no major differences in energy consumption behavior between
homeowners and tenants that cause large differences in their actual gas consumption or
EPG. Nevertheless, the distinction of ownership type may still be of practical use to pol-
icymakers. Targeting homeowners could be an efficient way to promote energy-saving
measures in the largest and highest energy-consuming dwellings.
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1 Introduction

1.1 Climate change and energy efficiency

Nearly 75% of green house gas emissions responsible for global warming have originated from
the energy sector, making this sector key in the mitigation of climate change (International
Energy Agency (IEA), 2021) Climate change has caused severe, irreversible damages to
people and nature, and the impacts have recently appeared worse than previously estimated
(Intergovernmental Panel on Climate Change (IPCC), 2022). Ocean acidification, sea level
rise, and more frequent and intense extreme weather events like droughts, hot extremes and
heavy precipitation are some of the consequences of human-induced climate change. These,
in turn, have lead to numerous adverse impacts, including increased heat-related human
mortality, jeopardized food and water security, and deterioration of ecosystems including
species extinction. But, further damages caused by climate change are expected to be
reduced substantially if global warming is limited to 1.5°C in the near term (by 2040)
(Intergovernmental Panel on Climate Change (IPCC), 2022), and that requires reducing
emissions. At the same time, growing economies and increasing world population contribute
to a rising demand for energy services. Because reducing energy intensity is essential for
decarbonising the energy supply, using energy more efficiently is one of four key measures
in the aim to achieve the 1.5°C limit in the next ten years (International Energy Agency
(IEA), 2021). In addition to climate change, other reasons to invest in energy efficiency
to reduce energy demand are ensuring the security of energy supply, affordability, and
reducing the dependence on foreign fossil fuel imports (European Commission, n.d.). The
latter has received particular attention since the Russian invasion of Ukraine in February
2022 (International Energy Agency (IEA), 2022). In sum, focusing on increasing energy
efficiency is vital.

1.2 Energy efficiency in the residential sector

An important area for improving energy efficiency is the buildings sector, one of Europe’s
largest energy consumers (Visscher et al., 2016). A large part of this consumption is at-
tributable to residential buildings; the residential sector demands over one quarter of the
total EU final energy use (Eurostat, 2022). In the Netherlands, measures and policies to
promote energy efficiency and to decrease energy demand of buildings are based on their
theoretical energy consumption, which is calculated using building characteristics and in-
stallations, and assumptions about its occupants. For example, the theoretical figure is used
for calculating the cost-effectiveness of efficiency measures and for setting energy-saving tar-
gets. It is evident that the theoretical consumption must reflect the real consumption if
these decisions are to be accurate and effective (Laurent et al., 2013; Majcen et al., 2013a;
van den Brom et al., 2017; van den Brom, 2020). However, research has shown that the
theoretical consumption deviates significantly from the real, measured consumption. This
discrepancy is referred to as the energy performance gap (EPG). In some cases, the esti-
mate is off by 100% from the actual consumption (Majcen et al., 2013a). According to
projections, using these inaccurate estimates leads to unattainable energy savings targets,
misleading predictions of energy demand and energy savings after a renovation, and affects
the cost-effectiveness of energy efficiency measures and policies (Laurent et al., 2013; Maj-
cen et al., 2013a). For more effective energy-saving policy and campaigns, studying actual
energy consumption data is essential (Laurent et al., 2013; van den Brom et al., 2017).
In addition, in order to narrow the gap between actual and theoretical consumption, it is
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necessary to understand what factors contribute to it and to what extent. Previous studies
have revealed a number of factors influencing the EPG, including certain building charac-
teristics, occupant behavior, and occupant characteristics (Majcen et al., 2013b; van den
Brom et al., 2017).

However, these studies are either based on data from social housing associations or in
which the social housing stock is over-represented compared to private rental or owner-
occupied dwellings. Social housing is defined as rental homes with a rent below a certain
limit. These houses are usually owned by housing associations, which must let the majority
of their properties to people with incomes below a certain limit. In contrast, the private
housing sector is more expensive; there is no limit on the rent that can be charged (Govern-
ment of the Netherlands, n.d.b). While social housing represents a substantial portion of
the Dutch housing stock (around 30%), it has some limitations to the generalizability. First,
the average income of occupants in the social housing sector is below the Dutch population
average. Second, the social housing data consists exclusively of rental dwellings (van den
Brom et al., 2017). This has been pointed out as a limitation of the research, because
several studies have discovered behavioral differences of tenants and homeowners in energy
consumption (Madlener and Hauertmann, 2011; Aydin et al., 2017). Finding out the influ-
ence of the type of ownership on the EPG may add to the understanding of the relationship
between occupant characteristics and energy consumption. This knowledge may contribute
to modeling a more accurate theoretical energy consumption, allowing for more effective
energy-saving policy and achieving the energy reduction targets.

1.3 The energy performance gap

In the buildings sector, the largest potential for energy savings lies in currently existing
buildings, which are expected to comprise about 75% of the total building stock by 2050
(Visscher et al., 2016). To stimulate energy efficiency improvements in existing buildings,
the Energy Performance Building Directive introduced in 2003 requires EU countries to issue
an energy performance certificate for all buildings (ISSO, 2020). The method of calculation
of the energy performance certificate is specific to each country. In the Netherlands, the
energy performance certificate is known as the energy label. This document contains a
rating of the energy performance of the building, and a theoretical energy consumption of
the building, estimated based on building characteristics and assumptions about occupant
behavior (Visscher et al., 2016; van den Brom, 2020).

While the initial aim of the directive was to create awareness on the energy efficiency
of a building to be bought or rented, it is currently used for a variety of purposes related
to energy savings, including formulating policy goals (Visscher et al., 2016; van den Brom,
2020). At the same time, actual household energy consumption data is collected by energy
suppliers, and research shows a discrepancy between the theoretical and actual energy
consumption—the energy performance gap (Visscher et al., 2016; Majcen et al., 2013a).
Specifically, the research shows that actual energy consumption is higher than calculated in
newer, more efficient buildings, whereas it is lower than expected in buildings with a poor
energy efficiency (Majcen et al., 2013a). For the more efficient buildings, the explanation
for the higher actual energy consumption is a combination of construction faults causing
the building to underperform, and occupant behavior. The occupant behavior is partly due
to the rebound effect; a higher energy efficiency increases energy service demand, thereby
offsetting part of the potential energy savings from the efficiency improvement. For example,
occupants in buildings with a more efficient heating system may be more inclined to increase
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the temperature setting. In contrast, there is evidence that the performance of the less
efficient buildings may be underestimated. Several studies showed that solid walls turned out
to allow less heat transmission than previously assumed, which explains the overestimation
of the energy consumption. In addition, due to their poor insulation, their occupants may
be more frugal in their heating behavior than accounted for in the theoretical models. This
is referred to as the prebound effect (Visscher et al., 2016).

The theoretical calculation of a building’s energy consumption as contained in the energy
label is described in ISSO publication 82.1 and 82.3.1 According to the calculation method
introduced in 2011, the energy label, ranging from A++ as the most energy efficient through
label G being the least energy efficient, is based on the magnitude of the energy index. The
energy index is a function of the floor area, the heat loss area, and an estimate of the
total energy consumption of the dwelling. The latter is based on the insulation, type of
heating system, type of domestic hot water system, type of ventilation system, and air-
tightness of the building, and on assumptions such as an average indoor temperature of
18°C and the number of occupants based on the floor area (van den Brom, 2020). As a
result of the assumptions, the validity of the theoretical energy consumption is limited.
Nevertheless, theoretical energy consumption is often used by in by policymakers, such
as for developing energy-saving targets and policies, monitoring energy performance, and
determining maximum rent and subsidies. In addition, it is used in practice for estimating
the outcomes of energy efficiency renovations (van den Brom, 2020). Thus, for optimal
effectiveness of these policies and renovation measures, it is crucial that the theoretical
energy accurately represents the actual energy consumption of the dwelling, i.e., narrowing
the EPG.

In particular, the EPG with respect to natural gas use is informative to study. This
is because electricity consumption of household appliances, which in practice accounts for
about one third of total electricity consumption, is not included in the calculation of the-
oretical electricity consumption. For natural gas consumption, the only end use excluded
in the theoretical calculation is gas for cooking, which represents less than 3% of total gas
use. Since the theoretical estimate for gas consumption accounts for essentially all types
of actual gas uses, the EPG in gas use measures how much the predicted gas use actually
deviates from the real gas use. In contrast, the EPG in electricity use is for a large part
expected.

1.4 Research questions and objectives

This master thesis adds to the investigation of the factors influencing the EPG. Specifically,
it formulates the following main research question:

How does home ownership influence the energy performance gap in residential gas
consumption?

In order to answer the main question, the research is broken down into the following
sub-questions:

• To what extent does the type of ownership—owner-occupied or rental—predict a) the
actual natural gas consumption and b) the size of the EPG?

1An updated version of the calculation method of the energy label was introduced in 2021 (Government
of the Netherlands, 2020; ISSO, 2020), but since the database of this master thesis contains energy label
data as registered in 2018 (van Zoelen and Gopal, 2019), an earlier version is described.
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• What empirical variables influence the relationship between ownership and the EPG?

• What is the mechanism of the relationship between ownership and the EPG?

The aim of this research is threefold: first, to deliver an analysis of the energy per-
formance gap in a sample of households representative of the Dutch population; second,
to determine to what extent ownership of the dwelling influences the size of the energy
performance gap; third: to investigate the mechanism that could explain the influence
of ownership on the energy performance gap. After realizing these objectives, the findings
could be used for developing more accurate estimates of energy consumption and savings for
policy and practice. In addition, they could serve for designing more effective energy-saving
policy and campaigns, targeted toward the right household groups.
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2 Literature review

2.1 Evidence of the EPG

This thesis aims to fill a knowledge gap regarding the factors that explain the EPG. In the
past, research on the relationship between energy labels and actual energy consumption
has been limited by the lack of accessible energy label data. Early studies are based on
small samples, which can be problematic for the statistical significance of the results. For
example, Guerra Sant́ın and Itard (2012) compared the theoretical with the actual energy
consumption of a few hundred Dutch households. When viewing the comparison by build-
ing performance category, it appeared that, from high to low-performance buildings, the
theoretical consumption was increasingly higher than the real consumption. In fact, the
differences between actual energy consumption over the different performance categories
were found insignificant, although this was attributed to the small sample size.

A large sample of nearly 200,000 Dutch dwellings was first analyzed by Majcen et al.
(2013a). Energy label data (including theoretical energy use) was acquired from Agentschap
NL2 and was merged with actual energy consumption data from Statistics Netherlands (in
Dutch: Centraal Bureau voor de Statistiek, CBS) on an address level, which is collected by
energy suppliers. Despite its size, the sample failed to reflect the national distribution of
ownership types. For example, the percentage of owner-occupied dwellings in the sample
was 20%, while the national figure was 55%. In contrast, social housing comprised 79% of
the ownership types in the sample, while on a national level it was only 33%. As a result,
owner-occupied dwellings were underrepresented, which might introduce bias. Over the
average of the sample, the theoretical gas consumption was much higher than actual gas use,
while the opposite was true for electricity consumption. In the latter case this is expected;
electricity consumption of household appliances, which in practice accounts for about one
third of total electricity consumption, is not included in the theoretical calculation. For
natural gas consumption, the only end use excluded in the theoretical calculation is gas
for cooking, which represents less than 3% of total gas use. The study compared mean
theoretical and actual natural gas consumption (Figure 1) and mean theoretical and actual
natural gas consumption per unit floor area of each energy label (Figure 2), showing that
the mean actual consumption was higher than the theoretical for higher performance labels
(A and B), while it was lower than the theoretical in lower performance labels (D-G).

2In 2014, Agentschap NL was merged with another government organization and is since known as
Netherlands Enterprise Agency (in Dutch: Rijksdienst voor Ondernemend Nederland, RVO) (Government
of the Netherlands, 2014).
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Figure 1: Comparison by energy label of the actual and theoretical natural gas consumption
by Majcen (2016), revealing the EPG. The theoretical consumption increasingly exceeds
the actual consumption toward lower-performance labels, while the opposite occurs toward
higher-performance labels. Error bars represent ±1 standard deviation.

Figure 2: Comparison by energy label of the actual and theoretical natural gas consumption
per m2 floor area by Majcen (2016). Error bars represent ±1 standard deviation. Correcting
for floor area does not change the pattern in the EPG as seen in Figure 1.

Similar findings were obtained in earlier studies of the Netherlands (Guerra Sant́ın and
Itard, 2012; Tigchelaar et al., 2011), and while other EU member states use different models
for calculating theoretical energy consumption, they find similar results as well (Cayre et al.,

6



2011; Hens et al., 2010). Later, very similar results were found in the analysis of a database
of over 1.4 million dwellings from the Dutch social housing sector (van den Brom, 2020).
If the theoretical gas consumption is to be used for policy targets and predicting the cost-
effectiveness of energy efficiency measures, it must represent the actual consumption more
accurately. And for that, the factors contributing to their discrepancy must be identified.

2.2 Explaining the EPG

2.2.1 The rebound effect

As mentioned earlier in subsection 1.3, one of the explanations for the EPG is the rebound
effect (Visscher et al., 2016). Rebound effects cause an increase in energy demand as a result
of higher energy efficiency, partly offsetting the energy savings (Berkhout et al., 2000). The
increase in energy efficiency leads to a lower energy consumption of a particular amount of
energy service use, such as heating or lighting. The resulting money savings can be used
to increase the use of the energy service, e.g., by increasing the temperature setting after
efficiency improvements in heating, such as better insulation. As a consequence, the energy
savings originally predicted by engineers following an efficiency improvement may not be
fully realized (Sorrell, 2015). Considering the engineers’ calculations only and neglecting
rebound effects is problematic when policymakers set targets for the reduction of energy
consumption through energy efficiency improvements, as rebound effects can cause them
to be less effective (Berkhout et al., 2000). Some studies have found correlations between
certain household characteristics and the rebound effect. For example, income appears to
influence the size of the rebound effect, as well as the type of ownership of the dwellings
(rental or owner occupied) (Madlener and Hauertmann, 2011; Aydin et al., 2017).

2.2.2 Type of home ownership

Madlener and Hauertmann (2011) studied the rebound effect in German residential space
heating, and discovered that its size differs significantly between tenants and homeowners;
for homeowners the rebound effect was 12.2%, while for tenants it was 40%. When dif-
ferentiating between low and high income groups within homeowner and tenant groups,
the rebound effect for homeowners was similar in both groups. This suggests that there
is no saturation effect, i.e., the energy service use of homeowners is already satiated and
not limited by affordability. However, low-income tenants showed a rebound effect as high
as 50%, implying that half of the potential energy savings are lost due to increased energy
service use. For high income tenants, the rebound effect was 31%. The lower rebound effect
for higher incomes than for lower is in accordance with the saturation effect, meaning that
for lower income groups, the affordable use of energy services is often further away from
the comfortable level. As a result, increases in efficiency induce an increased use of energy
services, e.g., a higher room temperature. Higher-income groups, on the other hand, are
expected to already consume energy services near the level of comfort, and therefore a lower
rebound effect is expected. While the differences between income levels are explained and
also in accordance with other studies, the explanation for the differences between ownership
type remains unclear. Perhaps, it is in a way related to the absolute income of tenants and
homeowners; the separation between high and low monthly disposable income groups was
drawn at €2,710 for the homeowner group while at €1,920 for the tenant group, suggesting
overall lower incomes in tenants. While the existence of the difference in rebound effects be-
tween ownership type is relevant for policy (Madlener and Hauertmann, 2011), the question
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of where this difference comes from remains unanswered.
Aydin et al. (2017) investigated the rebound effect in residential heating in the Nether-

lands, and also found a significant difference between homeowners and tenants: 26.7% and
41.3%, respectively. The authors indicate that tenants are more inclined to changing be-
havior than homeowners. They relate this difference to the expectation that higher-income
households are less affected by changes in the affordability of heating. The results are
similar to those found in German households by Madlener and Hauertmann (Madlener and
Hauertmann, 2011). However, when analyzing different income levels within the homeowner
group, they find a rebound effect of 40% for the lower quantile and 19% for the upper quan-
tile. In fact, the rebound effect of the lower-income homeowners is approximately the same
as the average rebound effect of tenants. While this difference is in line with the expected
effect of income, it deviates from the German results where homeowners displayed similar
rebound effects regardless of their income level (Madlener and Hauertmann, 2011). Within
the tenant group, Aydin et al. found a similar influence of income on the rebound effect
as in the homeowner group, which is in accordance with the German study (Madlener and
Hauertmann, 2011). From both studies, it appears that income may be related to the in-
fluence of ownership on the rebound effect.

Besides the influence of ownership on the rebound effect, previous studies have also
investigated the influence of ownership type on actual and theoretical gas consumption and
the EPG. A multiple regression analysis of the Dutch Housing Survey 2012 (WoON 2012)
by Majcen et al. (2015) found ownership type to be significant for both theoretical energy
consumption and the EPG, but not for actual energy consumption (all expressed per unit
floor area, and controlling for a number of building and occupant characteristics). However,
in a sample of nearly 49,000 dwellings in the Amsterdam area, the type of ownership was
found insignificant for all three dependent variables, most likely because it consists mainly of
social housing and is therefore not representative for ownership type (Majcen et al., 2015).
In another sample of about 40,000 dwellings, Majcen et al. (2013b) showed that owner-
occupied dwellings correlate with a slightly higher theoretical gas consumption than social
housing (rental) dwellings, although in this sample, social housing was overrepresented as
well. Possibly, since the theoretical calculation does not consider ownership type, it makes
sense that there is in fact not a causal relationship, but rather that it should be mediated
by a third variable, e.g., the size of the house. Regarding actual energy consumption, the
study showed that owner-occupied dwellings consume significantly less volume of natural
gas than social housing dwellings. The author attributes this to possibly better insulation
in owner-occupied dwellings or to different behavior (Majcen et al., 2013b). In order to
understand how exactly ownership type matters for gas consumption and/or the EPG, it is
important to identify the variables that may interfere with this relationship, such that they
can be controlled for in multiple regression analyses.

2.2.3 Other variables explaining the EPG

The two studies that investigated the effect of ownership on the EPG (Majcen et al., 2013b,
2015) also studied and controlled for other factors that contribute to the EPG in the Dutch
residential sector. In the research by van den Brom (2020) the possible causes of the EPG
were investigated as well. Each study has done multiple regression analysis on different
data sets and sample sizes. The most important variables investigated in these three studies
are reviewed here and can be categorized into three types: occupant behavior, occupant
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characteristics, and building characteristics.
Majcen et al. (2013b) studied the influence of several variables on theoretical and ac-

tual gas and electricity consumption using the same large sample as in their previous study
discussed in subsection 2.2 (Majcen et al., 2013a). After supplementing it with additional
databases to add more variables, the total sample size remained at about 40,000 dwellings.
The methods used were descriptive statistics and multiple regression analysis. The study
computed the prediction power of multiple variables on theoretical and actual gas consump-
tion.

In a second study, the same authors investigated the correlation of similar variables
on the theoretical and actual gas consumption per m2 floor area and on the EPG per m2

floor area, this time using two different data sets (Majcen et al., 2015). First, a data
set provided by Rekenkamer Amsterdam, which after cleaning resulted in a sample size
of nearly 49,000 dwellings in the Amsterdam area. Second, the data set from the Dutch
Housing Survey 2012 (In Dutch: WoonOnderzoek Nederland (WoON) 2012), a sample
of about 4,800 representative Dutch dwellings. Both data sets were coupled with energy
consumption data from CBS. Correlation and multiple regression analysis allowed to control
for variables that explain the variation in the dependent variables.

The third study investigated the EPG in a database from 2014 of the social housing
sector, supplemented with data from CBS, resulting in a sample size of over 1.4 million
dwellings. Gas consumption was expressed per m2 of floor area, and different occupant
characteristics were grouped into ‘household categories’, which were then used as dummy
variables in multiple linear regression. Another analysis looked for the occupant character-
istics and building characteristics that correlated with the highest and lowest 10% groups
of energy usage for a high-efficiency label (B) and a low-efficiency label (E), as to show
more clearly which ones correlate with higher-than-expected or lower-than-expected energy
consumption.

Occupant characteristics Salary per occupant and total salary of the household was
an insignificant predictor of theoretical gas consumption in the Agentschap NL database
(Majcen et al., 2013b). In the WoON 2012 and Amsterdam samples, a correlation was
found between theoretical gas consumption per m2 floor area, and the amount of spendable
income. This was attributed to the likeliness of higher-income households occupying better-
performing dwellings, i.e., with a lower theoretical gas consumption. In addition, higher-
income households have lower actual gas use per m2 and a smaller EPG in the WoON 2012
data set (Majcen et al., 2015). In contrast, the analysis of the Agentschap NL database
indicated that per €10,000 increase of annual total income, absolute actual gas consumption
increases by 8 m3 (Majcen et al., 2013b).

The number of occupants was significant for actual gas consumption, but not for theo-
retical consumption. In the theoretical calculation, the number of occupants is estimated
based on floor area and thus it is not an independent factor in the calculation (Majcen
et al., 2013b). However, the analysis of the WoON database showed a negative correlation
of theoretical gas use per m2 with increasing number of occupants. In the Amsterdam sam-
ple larger number of occupants correlated with higher actual gas use per m2, but this was
not observed in the WoON 2012 sample. In the social housing database, single occupants
occur more frequently in low energy-consuming groups (per unit floor area), while house-
holds of two or more members are found more often in the highest 10% gas-consuming group.
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Building characteristics In the Agentschap NL sample, floor area was found to be
a good predictor of both theoretical and actual gas consumption, and larger floor areas
corresponded to a larger EPG—the theoretical gas consumption is higher than the actual
consumption. This may be explained by the assumption made in the theoretical calculation,
that the entire area of the dwelling is heated, while in practice it is less likely that in large
houses, all rooms are equally heated (Majcen et al., 2013b). Analysis of the Amsterdam
sample indicated that even after correcting for floor area, i.e., expressing actual energy
consumption per unit floor area, this variable is a good predictor: larger dwellings have
a lower natural gas consumption per m2. However, this correlation was not observed in
the WoON 2012 sample, which is more representative for the Dutch housing stock (Majcen
et al., 2015).

The age of the building was also found to be a significant predictor of both theoretical
and actual gas consumption per m2 floor area: older buildings correlate with higher gas
consumption, and the strength of the correlation for the theoretical consumption is double
that of the actual consumption (Majcen et al., 2013b, 2015). Older dwellings also correlate
with and predict a larger EPG per m2 floor area, while controlling for some other building
characteristics: the type of building and the type and efficiency of the heating installation
(Majcen et al., 2015). In addition, van den Brom et al. (2017) found that, within the
high-efficiency label A, older buildings occur more frequently in the group of the 10%
highest actual energy consumers than newer buildings. At the same time, it is recognized
that often for older buildings, less documentation on building characteristics is available.
Consequently, their theoretical energy consumption (and the energy label) is more often
based on estimates and assumptions, limiting its accuracy (van den Brom, 2020). This
could partly explain the observed effect of building age, despite correcting for energy label
or other building characteristics.

In the analysis on the Amsterdam sample and the Agentschap NL sample, the correla-
tion of the label with the theoretical consumption is stronger than with actual consumption,
and the other way around in the WoON 2012 sample. In any case, the label was a signifi-
cant predictor for both actual and theoretical consumption and for the EPG (Majcen et al.,
2013b, 2015). A stronger correlation of the label with theoretical consumption makes sense
since actual consumption is influenced by more factors besides the label compared to theo-
retical consumption, e.g., occupant behavior. Within actual consumption, as the efficiency
of the label is increased, the strength of the predictor increases as well (Majcen et al.,
2013b). The analysis by van den Brom et al. (2017) was done per label, in other words, the
label was not investigated as a characteristic itself.

The type of dwelling predicts both theoretical and actual gas consumption with similar
power, suggesting little influence on the EPG (Majcen et al., 2013b). The study of the
smaller samples showed that gallery apartments have the lowest theoretical and actual gas
consumption, and also the lowest EPG (absolutely and relatively) (Majcen et al., 2015).
In the social housing study, the distribution of housing type among the lowest and highest
energy consumers was found to be significantly different both in high- and low-efficiency
label categories. Specifically, single-family houses are more frequent in the high-consuming
groups, while apartments occur more frequently in the lower consumption group (van den
Brom et al., 2017). This can be explained by the larger building envelope of single-family
houses.

More efficient installation systems of a dwelling, e.g, high-efficiency boilers, correlate
with lower theoretical and actual gas consumption, as expected (Majcen et al., 2015). How-
ever, the installation type is a worse predictor of actual gas consumption than of theoretical
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gas consumption. In the study using the Agentschap NL database, the accuracy of this
result is limited by the lack of data on hot tap water systems (Majcen et al., 2013b).
Lower-efficiency installations correlate with a larger EPG, which could mean that their effi-
ciency is underestimated in the theoretical calculation (Majcen et al., 2013b, 2015). At the
same time, some installations contribute to lower energy usage despite their low efficiency,
such as a gas fire, which only heats individual rooms (Majcen et al., 2013b). The social
housing analysis confirmed this finding as well (van den Brom et al., 2017).

Additional building characteristics that were found significant were the number of rooms,
the value of the house, and the degree of insulation. Larger number of rooms leads to a larger
EPG, according to WoON 2012 data, but this was not observed in the Amsterdam sample,
possibly due to poorly represented dwellings with large numbers of rooms (Majcen et al.,
2015). Dwellings with a value of over 100,000 (in 2009), are found to consume higher volumes
of natural gas both theoretically and in reality (Majcen et al., 2013b). Finally, insulated
buildings are found more frequently in the lower 10% gas consuming social dwellings, while
poorly or non-insulated buildings occur most often in the 10% highest gas-consuming group
of social homes, as expected (van den Brom et al., 2017).

Occupant behavior Behavior includes factors like the setpoint temperature, number of
rooms that are heated, the occupancy time of the house, etc. It refers to lifestyle and habits
(Majcen et al., 2015). Previous studies have shown that the effect of occupant behavior on
the EPG is complex, in part because it is related to other factors, such as climate or building
characteristics (Guerra Sant́ın, 2010). For example, the type of thermostat influences the
heating time. In addition, the rebound effect, which results from (changes in) behavior, is
also believed to influence the EPG (Visscher et al., 2016); the energy efficiency condition of
the building influences the demand for energy services, e.g., a higher heating efficiency leads
occupants to use a higher temperature setting (Majcen, 2016). While difficult to quantify,
it is suggested that occupant behavior accounts for a large part of the variability in actual
gas demand and is key in the explanation of the EPG (Majcen, 2016).

In conclusion, knowing that ownership matters for the size of the rebound effect means
that it may also be of influence on the EPG, since the rebound effect is partly responsible
for the EPG (Visscher et al., 2016). Many other factors of influence to the EPG have been
studied, but the influence of ownership has not yet been clearly researched as a consequence
of using data of predominantly rental dwellings. Studying the EPG in a sample with a more
representative distribution of owner-occupied and rental dwellings and thereby assessing the
importance of ownership type on the size of the EPG would fill this gap in the literature.

2.3 Theoretical framework

In this section, the possible relationships between variables as revealed by the literature
review in subsection 2.2 are derived and the resulting conceptual model is supported by
theory. The theoretical framework is the basis of and guides the subsequent research. From
this theoretical framework, hypotheses are formulated as tentative answers to the research
questions, which this thesis will test, and subsequently accept or reject.
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2.3.1 Conceptual model

Figure 3 shows the proposed conceptual model of the relationship between ownership type
and actual and theoretical energy consumption, and the EPG as a result. The relationships
are explained according to the numbering of the arrows in Figure 3.

Figure 3: Diagram of the relationships between ownership type, occupant characteristics,
building characteristics, and occupant behavior and the dependent variables actual energy
consumption, theoretical energy consumption and energy performance gap. It is expected
that ownership type affects actual energy consumption and the EPG through building
characteristics and behavior.

1. Some occupant characteristics are expected to determine building characteristics. For
example, the household’s income may determine the size of the house, the value of
the house, the type of building (such as apartment or detached house).

2. Occupant characteristics are also expected to determine ownership type. For example,
income can determine whether an occupant qualifies for social housing. Another
example is type of employment. For people that are employed it may be easier to
get a mortgage than for freelancers, and therefore may be more likely to become
homeowners. The same applies to household size: single-person households are less
likely to be able to afford to buy a home compared to couples.

3. Ownership type is expected to determine building characteristics. It is expected that
(social) rental houses are more often smaller in size, and more often apartments or
terraced houses rather than (semi-)buildings.

4. Ownership type is also expected to influence occupant behavior. As shown in the
literature review, tenants have been shown to display larger rebound effects than
homeowners (Madlener and Hauertmann, 2011; Aydin et al., 2017). Since rebound
effects are behavioral changes in energy consumption depending on energy efficiency
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changes, it may be expected that homeowners and tenants have different energy con-
sumption behavior. At least, the energy consumption behavior of tenants seems to
be more sensitive to changes in energy efficiency than that of homeowners, hence the
higher rebound effect in rental dwellings. Another way in which ownership type can
influence occupant behavior is through the concept of “all-in” rent. In the Nether-
lands, all-in rent refers to the rent paid by tenants that includes the use of utilities
and is independent of the actual consumption Government of the Netherlands (n.d.a).
As a result, energy consumption is not limited or influenced by money, and tenants
may consume energy more excessively without financial consequences. Evidence for
this was found by Maruejols and Young (2011): Canadian households for which the
landlord pays the energy bills have higher temperature settings during the day, and
are less likely to turn down the thermostat when no one is home. These households
were also found to have a higher energy consumption per unit floor area. Similar
findings were reported by Levinson and Niemann (2004) for rental apartments in the
United States.

5. Occupant behavior is also determined by other occupant characteristics. For example,
income has been shown to determine behavior (Guerra Sant́ın, 2010). Households with
higher incomes tend to keep higher indoor temperatures and seem less concerned about
saving energy. Also, the age of the occupant can influence the indoor temperature
choice: elderly occupants tend to have higher indoor temperatures. A higher level
of education of occupants was found to be related to fewer hours of heating at the
highest chosen temperature (Guerra Sant́ın, 2010).

6. Occupant behavior is determined by building characteristics. Occupants in detached
houses choose lower indoor temperatures compared to apartments (Lindén et al.,
2006). The type of thermostat in the house also influences the heating behavior
(Guerra Sant́ın and Itard, 2010; de Groot et al., 2008). Programmable thermostats
lead to more hours of heating than manual thermostats. Moreover, the energy per-
formance of the dwelling influences heating behavior: more insulation leads to higher
indoor temperature demands. This could be interpreted as a rebound effect (Haas
et al., 1998; Shipworth et al., 2010).

7. Besides through occupant behavior, occupant characteristics also influence actual en-
ergy consumption directly. For example, the number of people in the household is
a household characteristic that directly influences energy use: the more occupants
in the household, the higher the energy consumption. This can occur for example
because each individual member uses hot water for showering. Also, more occupants
may lead to more rooms needing to be heated.

8. Occupant behavior is believed to influence actual energy consumption and play a key
role in the EPG (Majcen et al., 2015; Guerra Sant́ın, 2011; Gill et al., 2010). Behavior
includes factors like the setpoint temperature, number of rooms that are heated, the
occupancy time of the house, etc. It refers to lifestyle and habits (Majcen et al., 2015).

9. Building characteristics also influence actual energy consumption directly. For exam-
ple, the energy efficiency aspects such as insulation, as well as the building type (i.e.,
apartment, terraced, detached, etc.), size, type of heating installation, etc.
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10. Building characteristics determine the theoretical energy consumption according to
the calculation method of the energy label in ISSO publication 82.3 and described by
Majcen (2016).

11. and 12. Together, theoretical energy consumption (Qtheoretical) and actual energy
consumption (Qactual) determine the EPG, according to Equation 1.

EPG = Qtheoretical −Qactual (1)

As can be seen in Figure 3, ownership type is not expected to have a direct (causal)
effect on actual energy consumption or the EPG. Rather, it is expected to affect actual
energy consumption and the EPG through building characteristics and behavior. While it
is certain that there are differences in building characteristics between the ownership types,
differences in behavior seem to be less known.

Differences in energy consumption behavior have been found in Canada and the United
States for tenants with utility-included rent (Maruejols and Young, 2011; Levinson and
Niemann, 2004). In the United States, over a quarter of rental apartments include utility
costs in their rent (Levinson and Niemann, 2004). Although it exists in the Netherlands
too, it is not clear how often “all-in” rent occurs (Government of the Netherlands, n.d.a).
Nevertheless, all-in rent is discouraged in the Netherlands, because it prevents tenants from
verifying whether the yearly rent increases are justified (Rent Tribunal, n.d.). This makes
it more probable that all-in rent in the Netherlands is mostly uncommon. As a result, the
effect of utility-included rent on energy consumption in the Netherlands could be limited.
In any case, it is not clear to what extent—if at all—potential different behavior influences
differences in actual energy use between ownership types.

Differences in the rebound effect of tenants and homeowners have been identified in
Germany and the Netherlands, by Madlener and Hauertmann (2011) and Aydin et al.
(2017), respectively. In the Netherlands, the rebound effect in tenants was 26.7% while in
homeowners it was 41.3%. Since the rebound effect is believed to be part of the explanation
for the EPG, it may be that different ownership types lead to different sizes of EPG,
through differences in behavior resulting from different extents of rebound effects. Because
of the (potentially) less conserving behavior of tenants and their larger rebound effects, it
is expected that tenants have a higher energy consumption than homeowners and a larger
EPG, when other influencing factors are corrected for.

2.3.2 Theory

Theory is needed in order to support the conceptual model and guide the research. Theory
may help explain what determines consumer demand—in this case demand for natural gas
and related energy services.

For this thesis, the neoclassical theory of consumer demand forms a good basis for
the conceptual model. There are three important assumptions in this theory. First, the
unit of analysis in this theory is the representative consumer, who makes their decisions
independently from others. Second, the consumer is instrumentally rational, meaning that
they seek the highest possible utility, limited by their income—the consumer is insatiable.
Third, marginal utility diminishes, which means that for each additional unit of a commodity
that is consumed, the added amount of utility gained is smaller. This theory is in accordance
with the rebound effect: as explained in subsection 2.2, higher energy efficiency has a similar
effect on the demand for an energy service as lowering its price, since less energy is needed
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to achieve the same energy service. The money saved from higher energy efficiency is then
spent on more of that energy service or on other commodities, to continue maximizing
utility and being only limited by income. At the same time, with regard to energy and
energy services, it does not seem realistic that the consumer is insatiable, as described
previously in subsection 2.2. There may be a maximum demand for energy services, after
which utility decreases with increasing consumption. For example, a consumer may prefer
a certain indoor temperature setting in their house, and any temperature higher or lower
than that will decrease their utility, even if they could afford to increase the use of heating.
In that case, maximum utility is not being limited by income. This is contrary to the second
assumption of the neoclassical theory. Nevertheless, this theory helps to understand the
relationship between income, consumer behavior, the rebound effect and energy demand,
and is at the same time a reminder that in this case, other factors besides income and price
likely play a role as well.

2.3.3 Hypotheses

From the theoretical framework hypotheses are developed that are tentative answers to
the research sub-questions presented in subsection 1.4, and are tested and evaluated in the
remainder of the report.

• To what extent does the type of ownership—owner-occupied or rental—predict a) the
actual natural gas consumption and b) the size of the EPG?
When building characteristics and occupant characteristics are controlled for, rental
dwellings have a higher gas consumption and a higher EPG than owner-occupied
dwellings.

• What empirical variables influence the relationship between ownership and the EPG?
Building characteristics, such as building type and floor area, contribute to differences
in ownership type as well as the EPG.

• What is the mechanism of the relationship between ownership and the EPG
Because of the (potentially) less conserving behavior of tenants and their larger re-
bound effects, it is expected that tenants have a higher energy consumption than
homeowners and a larger EPG, when other influencing factors are corrected for.
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3 Data

The database used in this research is the Dutch Housing Survey 2018 (in Dutch: Woonon-
derzoek Nederland, WoON, 2018). This database is owned by the Ministry of the Interior
and Kingdom Relations (BZK) and Statistics Netherlands (CBS) (2019a,b), and is the re-
sult of a large housing market research project that is carried out every three years in the
Netherlands. In this thesis, two modules of the database are used: the housing module and
the energy module.

3.1 WoON 2018 housing module

The housing module is the main module of the WoON database and contains data of over
67,000 dwellings regarding occupant characteristics, occupant behaviour and preferences
related to housing, and building characteristics. These data have been collected through a
survey, a technical inspection of the dwelling, and from other databases. The variables used
in this thesis include natural gas consumption in 20173, electricity consumption in 2017,
floor area, definitive energy label (from RVO database), preliminary energy label (from
RVO database), ownership structure, disposable income, highest level of education, type of
building, number of household members, main income source, value of the house, age group
of the building and the type of heating and domestic hot water (dhw) installations.

3.2 WoON 2018 energy module

The energy module consists of a sample from the housing module of 4,506 dwellings and
contains additional energy-related technical and survey data on this sample. The energy
module data set can be coupled to the housing module through the respondent numbers.
The variables from the energy module used in this thesis are the energy index, the energy
label (from technical inspection), the indoor temperature setting on weekdays and the
occupancy time of the house on weekdays.

3.3 Cleaning data

The raw data sets were cleaned to prepare them for analysis, guided by previous work by
Majcen (2016) and van den Brom (2020). From the housing module, cases with unrealistic
floor areas were removed. For Dutch social housing cases, floor areas under 15 m2 and
above 300 m2 were removed (van den Brom, 2020), and for non-social housing cases floor
areas of over 1000 m2 were deleted (Majcen, 2016). Also, dwellings with collective systems
for heating and domestic hot water—district and block heating—were removed, as their
reported energy use is considered unreliable (Majcen, 2016; van den Brom, 2020). In addi-
tion, dwellings with more than one heating installation system are deleted (Majcen, 2016),
as well as dwellings lacking access to domestic hot water (only 19 cases). Also, cases with
more than one household living on the same address were removed—about 3% of the total
number of observations. This was done because the gas consumption is reported for the
address, whereas many occupant characteristics are related only to the household respond-
ing to the survey. With a single household living at each address, the gas consumption of
the address can be related to the corresponding household and its characteristics. Also,

3The natural gas consumption recorded in the data set is standardized, meaning that it takes into account
the weather conditions of the year by being corrected for annual degree days in 2017. This allows for a fair
comparison of the gas consumption between different years (van den Brom, 2020; Stuart-Fox et al., 2019).
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cases with rare types of building, such as farms or dwellings with attached shop or office,
were excluded for simplicity, since these represented only 3% of the total housing module.
Furthermore, because many cases missed the value for the energy label, the missing value
was replaced by the value reported in the variable representing the preliminary energy label.
The preliminary energy label is not the definitive registered label of the building, but it is a
preliminary estimate based on the technical inspection of the building performed in WoON
2018 (Stuart-Fox et al., 2019).

From the energy module, cases that indicate the inability to open windows and/or doors
as a possible method to ventilate the dwelling were removed. This was done because in the
documentation of the energy module it is emphasized that it is unusual that a dwelling lacks
the possibility to open windows and/or doors (Cremers, 2017). Also, all cases are removed
that indicate no possible method of ventilation, for the same reason.

Finally, in both modules, responses such as “unknown” or “refuses” were treated as
missing data and cases with missing data were removed from the data sets. The decision
to delete cases with missing data was justified by evaluating the representativeness of the
resulting samples and thereby ensuring that deleting cases with missing data did not in-
troduce bias to the samples. Specifically, the relative frequencies of different variables were
compared to national data. The evaluation of the representativeness is described in subsec-
tion 3.5.
The cleaning steps resulted in a final estimation sample of the housing module containing
41,971 cases. The cleaned housing module estimation sample was coupled to the cleaned
energy module data set based on the respondent number, and the resulting energy module
estimation sample consisted of 2,010 observations.

3.4 Accuracy of the energy label

As indicated in Sections 3.1 and 3.2, the energy label contained in the energy module has
been obtained from a technical inspection of the dwellings carried out for the purpose of
the Dutch Housing Survey, and are therefore up to date and reflecting the actual energy
performance of the dwelling. This is however not necessarily the case for the energy labels
recorded in the housing module, because they originate from the Netherlands Enterprise
Agency (in Dutch: Rijksdienst voor Ondernemend Nederland, RVO) energy label database.
The RVO database does not necessarily contain up-to-date labels, because these labels are
only required to be updated when a house is sold or rented. When comparing the labels
from the housing module and the energy module of the dwellings in the coupled energy
module sample (N = 2,010), it appears that merely 41% of the observations have matching
energy labels, i.e. the label recorded in the RVO database is equal to that obtained from
the technical inspection by WoON 2018. For 68% of cases that do not match, the label
recorded in the RVO database is of poorer performance than the label obtained by the
technical inspection. This may possibly indicate that often a house with a low-performance
label in the RVO database would qualify for a higher performance label at the time of
WoON 2018, for example because it has been retrofitted while not being sold or rented to
a new tenant, and therefore not having to be updated in the RVO database.

In addition, as described in subsection 3.3, missing data of the energy label in the housing
module, i.e., the energy labels provided by RVO, were replaced by the preliminary energy
label. The estimate of the preliminary label is simplified compared to the actual energy
label definition and it often deviates from the definitive label (Stuart-Fox et al., 2019),
thus introducing inaccurate labels for part of sample. At the same time, using only the
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observations with the definitive label would introduce bias as well, because the resulting
sample is not representative for the national housing stock in other aspects (Stuart-Fox
et al., 2019). In addition, it would reduce the sample size.

In sum, it may be important to keep in mind that the energy labels in the housing
module are often not up to date, and/or not accurately estimated.

3.5 Representativeness

Overall, the WoON database is a representative sample of the whole Dutch housing stock
(Janssen-Jansen, 2019). This subsection analyses the representativeness of the cleaned
estimation samples used in the analyses of this thesis: the housing module sample (N =
41,971), and the energy module sample (N = 2,010). Their representitaveness is evaluated
based on a number of occupant and building characteristics.

This thesis focuses on the the relationship between ownership structure and energy
consumption data and therefore the representation of the Dutch distribution of ownership
structure is especially important to draw conclusions on the national level based on the
analysis. The distribution of ownership structure in the housing module sample is 65%
owner occupied, 27% social rental, and 9% private rental4. In the energy module sample
the distribution is similar: 65% owner occupied, 26% social housing, 9% private rental. This
distribution is not far from the distribution in the whole Dutch household population in
2018: approximately 58%, 30%, and 12%, respectively, according to Statistics Netherlands
(CBS) (2018). The comparison is visualized in Figure 4.

Figure 4: Comparison of the shares of dwellings with different ownership types in the housing
module sample, the energy module sample, and the total Dutch housing stock (Statistics
Netherlands (CBS), 2018). Both samples are representative for the national distribution of
ownership structure.

4Percentages do not add up to 100 due to rounding.
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The representativeness of the sample was also assessed based on the energy label (Fig-
ure 5). For that, cases with energy label A+ or A in the energy module were grouped
together as energy label A, as done by Majcen et al. (2013a). This was done because only
a few cases had a label A+ (1.4% of the energy module). The housing module did not
contain any A+ labels, and neither module contained cases of A++ labels. The samples
were compared to energy label data from 2018 by Environmental Data Compendium (2020).
This data consists of about 640,000 houses, but the source of the energy label data is the
RVO, meaning that the labels may not be up to date, as explained in subsection 3.4. As can
be seen in Figure 5, the labels where the sample data deviates the most from the national
data are the highest efficiency labels, A and A+. The most efficient energy labels comprise
around 11% and 16% in the housing and energy sample, respectively, while in the national
they represent almost 30%: double to triple the frequency as in the samples. The opposite
occurs for the lowest efficiency labels, F and G, in the case of the housing module sample:
the relative frequency in the housing module is approximately double that of the national
data. In the energy module sample the relative frequencies of the lower efficiency labels are
more similar to the national data, especially label F. The different distributions in the two
samples may be explained by the different sources of the energy label in both data sets, as
explained in subsection 3.4. The majority of dwellings in both samples, about 32%, have
an energy label C. In the national data, about a quarter of all dwellings have this label.
The remaining labels B, D and E have representative relative frequencies in both samples.

Figure 5: Comparison of the shares of energy labels in the housing module sample, the
energy module sample and in the total Dutch housing stock in 2018 (Environmental Data
Compendium, 2020). In both samples, high energy performance dwellings with labels A
or A+ are underrepresented. Poor energy performance dwellings with labels F or G are
overrepresented in the housing module, while well represented in the energy module.

Construction period (Figure 6a) and type of building (Figure 6b) were also compared to
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national data to assess the representativeness of the sample. Overall, both building char-
acteristics in both samples are very similar to the national situation. As seen in Figure 6a,
houses built between 1945 and 1974 are slightly more uncommon in the energy module sam-
ple than in the housing module sample and the national data, whereas houses built between
1975 and 1994 are most common in the energy module. In Figure 6b, terraced and semi-
detached houses are not distinguished. This is because in the samples, mid-terraced and
end-terraced houses are indistinguishable in the category “terraced”, while semi-detached
houses are in a separate category “semi-detached”. At the same time, in the national data of
CBS from 2009 presented by Majcen et al. (2013a), end-terraced houses are separated from
mid-terraced houses, while semi-detached houses are indistinguishable from end-terraced
houses. In any case, detached houses are well-represented in both samples. Apartments
are slightly underrepresented in the samples, while terraced or semi-detached houses are
slightly overrepresented.

(a) (b)

Figure 6: Comparison of the shares of households in the housing module sample, energy
module sample, and total Dutch housing stock according to the period of construction
(Statistics Netherlands (CBS), 2022b) (a) and the type of building (Majcen et al., 2013a)
(b). The samples reflect the national distribution quite well for both characteristics.

Besides building characteristics, the representativeness of the samples based on some
occupant characteristics was analysed as well. Table 1 shows the distribution of disposable
income of occupants. The distributions in the two samples is similar to each other. The
higher percentiles are well-represented by the samples, whereas lower incomes are underrep-
resented. The average disposable income in 2017 in both the housing module sample and the
energy module sample are similar to each other (about €42,000 and €43,000, respectively)
but higher than the national average (about €38,000).

The average number of household members in the housing module sample completely
reflects the national average in 2018—2.2 (van Duin et al., 2018). However, it must be noted
that in the sample, when the number of household members of 5 or higher, the reported
response is 5. As a result, the average may be biased towards a lower value than in reality,
as 6 or more household members are counted in the computation of the mean as 5 members
as well. In any case, the response of “5 or more household members” accounts for less
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Table 1: Comparison of the percentiles of disposable income (in 1000 €) in the sample and
in the Netherlands in 2017 (Statistics Netherlands (CBS), 2021).

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%

Housing module 18.0 22.7 27.1 31.8 37.0 42.8 49.6 57.6 70.5
Energy module 18.2 23.9 28.2 33.4 38.1 43.8 50.4 59.4 72.4
National 15.1 19.8 24.3 28.8 34.1 40.8 48.4 57.6 72.4

than 5% of the total responses in the sample. In the energy module sample, the average
number of household members is slightly lower: 2.0. Dwellings occupied by people aged
65 or older (single or couple) occur more frequently in both the housing module sample
and the energy module sample than in the national population (31%, 45% and 15%, re-
spectively). This may be due to people aged 65+ showing higher response rates than most
younger groups in the WoON 2018 research (Janssen-Jansen, 2019). The overrepresentation
of occupants aged 65+ occured in previously studied databases as well van den Brom (2020).

Some of the differences between the samples and the national data could possibly be
corrected for by using survey weights, which are provided in the WoON datasets. Never-
theless, it has been shown that both samples are in many aspects a good representation of
the population.

21



4 Method

Descriptive statistics, correlation and simple and multiple linear regression were used to
analyze the data sets. The statistical software and language used for this thesis were
RStudio (version 2022.02.0) and R.

4.1 Correlation

To establish whether ownership type and actual gas consumption, and ownership type and
the EPG are correlated, the point-biserial correlation coefficients were computed. This type
of correlation coefficient is applied when one of the variables is dichotomous and the other
one is measured on the interval or ratio scale. The correlation coefficients can take on a
value between −1.00 and +1.00. A value of ±.00 and ±.29 is referred to as none (.00) to
weak correlation, a value between ±.30 and ±.69 indicates a moderate correlation, and a
value between ±.70 and ±1.00 means a strong or perfect (1.00) correlation (Jackson, 2013).
The point-biserial correlation coefficients were computed in R by the cor.test function.

4.2 Simple linear regression

Simple linear regression is used to model the relationship between home ownership and
the dependent variables—the actual gas consumption and the EPG—in the population,
i.e., the Dutch housing stock (Equation 2). Like correlation analysis, the simple regression
can indicate whether ownership type has a statistically significant effect on the dependent
variables. In addition, the simple regression model quantifies by how much the dependent
variables are affected by the ownership types.

y = β0 + β1owner + u (2)

In Equation 2, the independent variable owner indicates whether or not the dwelling is
owner occupied. The variable y represents the dependent variables actual gas consumption
or the EPG. The parameter β0 is the intercept, i.e., the value of y when the value of owner
is equal to 0, i.e., when the dwelling is rental. The population parameter β1 measures the
change in y with respect to owner. The error term u accounts for the remaining variation
in y. The population parameters β0 and β1 are estimated by the estimation method of
ordinary least squares using the lm function in R (Heiss, 2020). The stargazer package is
used for generating output tables (Hlavac, 2022). .

4.3 Multiple linear regression

The method for the analysis of the ceteris paribus effect of ownership type on gas consump-
tion and the EPG is multiple linear regression, since there are multiple variables affecting
the dependent variables that may correlate with the ownership type as well. Another goal
of this analysis is to identify the variables that show predictive power of the actual gas con-
sumption and the EPG. The extent to which the independent variables in the model explain
the variation in the dependent variable is referred to as the goodness-of fit of the model,
and it is measured by the coefficient of determination, R2. The value of R2 represents the
fraction of the variation in y that is explained by the regressors included in the model.
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4.3.1 Model and estimation method

The relationship in the population can be modeled in the form of Equation 3. The model
represents the relationship between the dependent variable and the independent variables
of a population, for example, the Dutch housing stock. The unit of analysis is a dwelling
with a certain unique address. This means that the variables should represent properties
of the dwelling, such as characteristics of the building or characteristics of the occupants of
the dwelling.

y = β0 + β1x1 + β2x2 + β3x3 + ...+ βkxk + u (3)

In Equation 3, y is the explained variable and x1 through xk are the explanatory vari-
ables. β0 is the intercept, i.e., the value of y when all explanatory variables take on a value
of 0. The population parameters β1 through βk measure the change in y with respect to x1
through xk, respectively, holding other factors constant—ceteris paribus. Finally, the error
term u accounts for the remaining variation in y.

This thesis is concerned with the role of ownership type in explaining the variation in
the dependent variables. Thus, the model equation can be specified as in Equation 4.

y = β0 + β1owner + β2private+ xδ + u (4)

In Equation 4, the variables owner and private represent the ownership type of owner
occupied and private rental, whereas the category for social rental dwellings is excluded
to avoid perfect collinearity—it is the reference category. The notation xδ is the vector
representing other explanatory variables besides owner and private, such as building char-
acteristics and other occupant characteristics. The exact variables are described in Table A1
in Appendix A. The dependent variables, y, are the actual gas consumption and the EPG.
Gas consumption is studied in absolute terms (m3 natural gas per year) and relative to the
floor area of the dwelling, i.e. m3 natural gas per m2 per year. The latter is referred to
as the specific gas use, analogous to the concept of specific energy use. Specific energy use
refers to the amount of energy required to achieve a unit of energy service, e.g. the number
of megajoule needed to heat a m2 of a home per year (Blok and Nieuwlaar, 2021). The
advantage of this quantity is that it reflects a kind of efficiency: the lower the amount of
natural gas needed for a certain amount of energy service, the higher the efficiency in terms
of gas use. In addition, it corrects for the variation in floor area (van den Brom, 2020). The
exact dependent variables are described in Table A1 in Appendix A as well.

The population parameters are estimated by the method of ordinary least squares (OLS)
using the lm function in R (Heiss, 2020). The stargazer package is used for generating
output tables (Hlavac, 2022).

4.3.2 Dummy variables

To prepare the variables for the regression analyses, the qualitative variables, i.e., nominal or
ordinal variables, were first transformed into binary (dummy) variables (Wooldridge, 2012;
Heiss, 2020). This was done by creating a separate, binary variable for each category of the
qualitative variable. When a certain category applied to an observation, its corresponding
binary variable was assigned the value 1, whereas it was assigned the value 0 when it did
not apply.

For simplicity and to limit the number of variables in the analysis, some categories were
not converted to a dummy variable each, but grouped together into one dummy variable.
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For example, for the ordinal variable from WoON 2018 representing the construction year
class of the building, the categories “1945-1959” and “1960-1969” were grouped into one
dummy variable 45to69. Table 2 shows how multiple categories were grouped into one
dummy variable. In the regression analysis, one of the dummy variables for each original
variable is left out to avoid perfect collinearity. This dummy variable is referred to as
the reference category and is chosen to enable a certain interpretation of the regression
coefficients.

Table 2: Formation of the dummy variables from the categorical variables for cases where
categories were grouped together into a single dummy variable. See Table A1 in Appendix A
for the variable descriptions.

Dummy variables and
reference category (ref.)

Categories in WoON 2018 Variable in WoON 2018

H
o
u
si
n
g
m
o
d
u
le

noUniversity (ref.) Primary school Highest level of education
of respondent or their partnerLower secondary school (in Dutch:

vmbo, havo-, vwo-onderbouw, mbo 1)
Higher secondary school (in Dutch:
havo, vwo, mbo 2-4)
Bachelor’s degree (in Dutch: hbo-,
wo-bachelor)

university Master’s or doctoral degree (in Dutch:
hbo-, wo-master, doctor)

before45 (ref.) Before 1945 Construction period of the
dwelling45to69 Between 1945 and 1959

Between 1960 and 1969
70to89 Between 1970 and 1979

Between 1980 and 1989
90to09 Between 1990 and 1999

Between 2000 and 2009
after09 In 2010 or later
boiler (ref.) Gas-fueled boiler (in Dutch: CV-ketel) Type of heating installation
wood Wood-fueled heating installation (in

Dutch: houtgestookte CV-ketel, hout-
kachel, houthaard, inzethaard)
Pellet-fueled heating installation (in
Dutch: pellet CV-ketel, pelletkachel)

gasHeater Gas furnace or gas fireplace (in Dutch:
gaskachel, gashaard)

heatPump Heat pump
otherHeat Other type of installation

E
n
er
g
y

m
o
d
u
le

away* (ref.) Almost never at home between 9:00 and 12:00 Occupancy of the dwelling
on weekdays by at least one
occupant

Almost never at home between 12:00 and 15:00
Almost never at home between 15:00 and 18:00

home* Almost always at home between 9:00 and 12:00
Almost always at home between 12:00 and 15:00
Almost always at home between 15:00 and 18:00

depends* Not almost never or almost always at home between
9:00 and 12:00
Not almost never or almost always at home between
12:00 and 15:00
Not almost never or almost always at home between
15:00 and 18:00

Note: ∗ All three categories must be TRUE simultaneously.

Besides the dummy variables, also the binary variables that already existed in the data
sets were converted to zeros and ones. Assigning the values 0 and 1 is in principle arbitrary,
but it allows for a more intuitive interpretation of the regression parameters.
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4.4 Estimating the theoretical energy consumption

As opposed to WoON 2012 (van den Brom, 2020), WoON 2018 does not include the the-
oretical energy consumption of the dwellings as a variable. Therefore, estimates of the
theoretical gas consumption were used in this thesis. According to the calculation method
of the energy label in ISSO publication 82.3 and described by Majcen (2016), theoretical
gas use, Qgas,t, and theoretical electricity use, Qelectricity,t, are determined by long calcu-
lations including numerous variables related to building characteristics. However, in this
thesis Qgas,t was instead approximated based on the energy index contained in the energy
module.

As described by Majcen (2016), according to ISSO publication 82.3, the energy index
(EI) is calculated by Equation 5.

EI =
Qtotal,t

155 ·Afloor + 106 ·Aloss + 9560
(5)

In Equation 5, Afloor is the floor area of the dwelling in m2 and Aloss is the heat loss area
in m2 (van den Brom, 2020). Qtotal,t is the total theoretical primary energy consumption
in MJ, which is the sum of the energy consumption by gas and the energy consumption by
electricity (Equation 6).

Qtotal,t[MJ] = Qgas,t[m
3] · 35.17

[
MJ

m3

]
+

Qelectricity,t[kWh] · 3.6
[

MJ
kWh

]
0.39

(6)

In Equation 6, the theoretical energy consumption by natural gas is calculated as the
theoretical consumption of gas in m3, Qgas,t, multiplied by the assumed higher heating
value of natural gas: 35.17 MJ/m3. The theoretical energy consumption by electricity is
calculated as the theoretical consumption of electricity in kWh, Qelectricity,t, converted to
MJ, divided by the assumed efficiency of the electricity network, 0.39. To avoid long and
complex calculations to determine Qgas,t according to the ISSO publication 82.3 (Majcen,
2016), Qgas,t was estimated using Equation 6 and by estimating Qtotal,t, and Qelectricity,t.
By combining and rearranging Equations (5) and (6), the expression for the theoretical gas
consumption, Qgas,t becomes Equation 7.

Qgas,t =
1

35.17
·
(
EI · (155 ·Afloor + 106 ·Aloss + 9560)−Qelectricity,t ·

(
3.6

0.39

))
(7)

For the variables in Equation 7 that were not readily available in the WoON 2018 data
sets, an estimate was used. Specifically, Aloss, was estimated as the sum of the total surface
areas of (straw) roof, ground floor, glass, facade, walls, panels and doors of each house.
These surface areas are included in the energy module and are obtained from the technical
inspection. Together they approximately form the heat loss area of a building, according to
the description of the heat loss area by Netherlands Enterprise Agency (RVO) (2021). The
mean of the resulting estimates of Aloss for each building type is shown in Table 3.

The other estimated variable is Qelectricity,t, which was estimated using the actual elec-
tricity consumption contained in the housing module of WoON 2018, and assuming the
same ratio of theoretical to actual electricity consumption for each energy label as found
by Majcen (2016). The ratios for each energy label used to estimate Qelectricity,t are shown
in Table 4, as well as the mean of the resulting estimated Qelectricity,t per energy label. The
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Table 3: Mean estimated heat loss area for each building type.

Building type Mean Aloss (m
2)

Apartment 109
Terraced 203
Semi-detached 290
Detached 431

exact numbers used for calculating the ratios based on Majcen (2016) can be found in Ta-
ble C1 in Appendix C.

Table 4: The ratio between actual and theoretical electricity consumption by Majcen (2016),
and the resulting estimated theoretical electricity consumption, Qelectricity,t, per energy label.

Label A B C D E F G
Ratio 0.45 0.40 0.36 0.34 0.34 0.56 0.40
Qelecticity,t (kWh/year) 1255 1186 1051 1003 1019 1586 1419

With the estimated theoretical gas consumption, Qgas,t, by Equation 7, and the actual
gas consumption in the data set provided by the energy network operators, Qgas,a, the EPG
of the dwellings in the energy module was calculated by Equation 8.

EPG = Qgas,t −Qgas,a (8)

Equation 8 implies that the EPG is positive when the theoretical gas consumption is
larger than the actual gas consumption. This phenomenon is referred to as overprediction in
the literature. The opposite, underprediction, occurs when the theoretical gas consumption
is smaller than the actual gas consumption, and the EPG is negative (Majcen et al., 2015)
(Table 5). Because over- and underprediction seem to have different causes, it may be
important to distinguish them in the analyses (Majcen et al., 2015).

Table 5: Definitions of over- and underprediction.

Overprediction Qgas,t > Qgas,a EPG > 0
Underprediction Qgas,t < Qgas,a EPG < 0
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5 Results and Discussion

5.1 Descriptive statistics

Descriptive statistics are used in 5.1.1 to identify the EPG in the energy module sample and
evaluate the quality of the estimated theoretical gas consumption, and in 5.1.2 to compare
the different ownership types in terms of the other variables, and identify similarities and
differences. Descriptive statistics on the whole housing module and energy module samples
can be found in Appendix B.

5.1.1 The energy performance gap in WoON 2018 energy module

Figure 7 demonstrates the presence of energy performance gaps in the energy module sam-
ple, by comparing the mean theoretical and actual (specific) gas consumption per energy
label. The theoretical gas consumption was approximated as described in subsection 4.4.

(a) (b)

Figure 7: Comparison of the mean theoretical and actual gas consumption (a) and of the
mean theoretical and actual specific gas consumption (b). The theoretical gas consumption
is approximated as described in subsection 4.4. Error bars represent the 95% confidence
interval.

In accordance with the results by Majcen et al. (2013a), standardizing the gas consump-
tion to the consumption per square meter floor area does not narrow the relative gaps, as
can be seen when comparing Figures 7a and 7b; the patterns in the two graphs are nearly
identical. This means that the sizes of the energy performance gap cannot be attributed
to potentially different average dwelling sizes per energy label category, as was initially
expected by Majcen et al. (2013a). A comparison of mean floor area per label category can
be found in Appendix B.

As previously found by Majcen et al. (2013a) as well, the variation in actual gas con-
sumption over the different energy labels is much smaller than the variation of the theoretical
gas consumption. Furthermore, a similar pattern with regard to the EPG as reported by
Majcen et al. (2013a) and shown in Figures 1 and 2 can be recognized: at low-performance
energy labels, the EPG is the largest and most positive and increasingly narrows towards
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higher-performance labels. However, Majcen et al. (2013a) found that around energy label
C, the pattern reverses and the average EPG becomes negative, i.e., the mean actual gas
consumption exceeds the theoretical gas consumption. This is not the case in Figure 7,
where the mean actual gas consumption is not exceeded by theoretical gas consumption
in any label. This may possibly indicate that the theoretical gas consumption is overes-
timated by the approach in subsection 4.4 through the use of the approximations. For
example, the estimated heat loss area could have been systematically overestimated if the
way it was defined is incorrect. Nevertheless, it may also be the consequence of studying
different populations, since the sample used by Majcen et al. (2013a) consisted primarily
of social housing. This explanation is supported by the findings of Tigchelaar et al. (2011).
Tigchelaar et al. (2011) analyzed the WoON 2006 database (approximately 4,700 house-
holds) and showed that the mean ratio of actual to theoretical specific gas use was 0.88 for
the highest efficiency label, A, and gradually decreased per energy label towards 0.53 for the
lowest efficiency label, G. The mean ratios of actual to theoretical specific gas use found by
Tigchelaar et al. (2011) are in fact very similar to what is found in Figure 7. Since WoON
2006 is considered a representative data set for the Dutch housing stock (although for the
year 2006), like WoON 2018, it is possible that the difference between Figures 7a and 7b
and Figures 1 and 2 are caused by the different composition of the samples, and that the
estimates of the theoretical gas consumption according to subsection 4.4 are in fact close to
the real theoretical values.

5.1.2 Comparison of the ownership types

The comparison of owner-occupied dwellings, private rental dwellings and social rental
dwellings with respect to each variable is useful to identify differences or similarities in the
gas use and the EPG and to understand where these potential differences may come from.

Continuous variables Tables 6 and 7 contain the mean and standard deviation of the
continuous variables per ownership type, for the housing and energy module samples, re-
spectively. In both samples, the average actual yearly gas use is largest in owner-occupied
dwellings, lower in private rental dwellings, and the lowest in social rental dwellings. This is
expected when comparing the average dwelling size, which is the largest for owner-occupied
dwellings and smallest for social rental dwellings. Whereas actual gas use increases with
floor area, specific actual gas use, i.e. gas use per unit floor area, decreases with increasing
floor area. This is believed to occur because a smaller percentage of the floor area is heated
in large homes compared to smaller homes, for example by heating less rooms (Majcen
et al., 2013b).

As expected, average disposable income and value of the house are highest for owner-
occupied dwellings and smallest for social housing.

Table 7 corresponding to the energy module sample contains additional variables re-
lated to energy. The average energy index is similar for all ownership types, while the
average estimated heat loss area of owner-occupied dwellings is substantially larger than
rental dwellings. Like actual gas use, the average theoretical gas use is also largest for
owners-occupied dwellings and smallest in social housing, although in all three cases it is
substantially higher than the actual gas use. Consequently, the mean EPG for all ownership
types is positive, meaning that on average gas use is overpredicted, as could also be seen
in Figure 7a. However, the size of the EPG does differ per ownership type. It is the most
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overpredicted in owner-occupied dwellings and least overpredicted in social rental dwellings,
both absolutely and relative to average actual gas use.

The average temperature settings during the day on weekdays between 9:00 and 18:00
and during the evening and night on weekdays between 18:00 and 9:00 are similar for
all ownership types. On average, temperature setting behavior seems therefore similar in
homeowners and tenants, although the standard deviation is larger in rental dwellings.
This means that the temperature settings in rental dwellings are spread over a wider range
around the mean than in owner-occupied dwellings, where the values are closer to the mean,
i.e., among rental dwellings the temperature setting varies more.

Table 6: Summary statistics of the continuous variables within each ownership type category
(housing module sample). See Table A1 for variable definitions and units.

Owner occupied Private rental Social rental

Variable Mean St. dev. Mean St. dev. Mean St. dev.

gasA 1566.9 800.2 1247.3 770.7 1043.2 491.9
gasSpecA 12.2 6.0 14.5 10.5 12.4 6.3
floorArea 135.4 60.6 97.5 53.6 87.5 25.0
dispInc 5.1 3.2 3.2 2.9 2.6 1.2
value 27.2 14.2 20.2 12.4 15.7 5.7

Number of observations = 41,971

Table 7: Summary statistics of the continuous variables within each ownership type category
(energy module sample). See Table A1 for variable definitions and units.

Owner occupied Private rental Social rental

Variable Mean St. dev. Mean St. dev. Mean St. dev.

gasA 1590.0 791.2 1233.1 691.0 1035.8 497.8
gasSpecA 11.9 6.0 13.0 7.5 12.4 6.1
floorArea 140.2 54.8 101.7 44.4 87.0 25.6
dispInc 5.2 2.5 3.5 3.5 2.5 1.1
value 29.7 13.8 20.7 10.4 16.3 5.9
EI 1.6 0.5 1.7 0.5 1.6 0.4
ALoss 270.7 142.0 156.5 90.5 136.8 60.6
gasT 2460.3 1333.7 1802.5 1027.4 1513.1 638.9
gasSpecT 18.0 7.8 18.3 7.6 17.8 6.7
EPG 870.2 1006.7 569.4 922.3 477.3 586.3
tempDay 19.0 2.0 19.1 2.8 19.1 2.7
tempNight 18.3 1.5 18.0 2.9 18.1 2.5

Number of observations = 2,010

Categorical variables Tables 8 and 9 show how the categories of the categorical vari-
ables—i.e. the dummy variables—are distributed within each ownership type, in the housing
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and energy module, respectively.
In terms of household size, single-person households occur relatively more frequently

in social housing (51.5% of social housing in the housing module consists of single-person
households) than in private rental dwellings (44.2% of private rental dwellings in the hous-
ing module), and least relatively frequently in owner-occupied dwellings (21.9% of owner-
occupied dwellings in the housing module). Four-person households are more common in
owner-occupied dwellings than in rental dwellings.

Regarding energy labels in the energy module sample, poorest energy performance labels
E through G are relatively the most frequent in private rental houses and the least relatively
frequent in social housing. The relative frequency of highest energy performance labels A
and B is similar in owner-occupied dwellings and social housing, and lower in private rental
dwellings. An explanation for this could be that homeowners and housing associations
have more incentive to increase the energy performance of their properties than private
owners of rental properties. In owner-occupied dwellings, the homeowners benefit from the
improvements themselves, in addition to adding value to the house. On the other hand,
housing associations are pushed by the government to improve the energy performance of
social housing, and need to comply with agreements regarding energy efficiency (House of
Representatives of The Netherlands, 2008). In contrast, private owners of rental properties
may have less interest in improving the label of their properties since they do not benefit
from the improvements directly.

The distributions with respect to apartments and (semi-)detached houses are very dif-
ferent in owner-occupied houses and rental dwellings. Whereas more than 40% of owner-
occupied dwellings in the housing module are either semi-detached or detached houses and
only 13% are apartments, nearly 60% of private rental dwellings and 74% of social housing
are apartments and only a few percent of rental dwellings are (semi-)detached houses.

Also construction periods are differently distributed within the different ownership types.
Nearly 70% of social housing was built between 1945 and 1989. Private rental properties
were most frequently built before 1945. At the same time, private rental dwellings were
also relatively more often built after 2010 than owner-occupied dwellings or social housing.

The distribution of occupants with or without university education is similar in owner-
occupied and private rental dwellings, and different to social housing: over 20% of owner-
occupied and private rental dwellings are occupied by at least one university-educated oc-
cupant. This is only the case for less than 6% of social rental dwellings. This may be
explained by the expectation that people without university education may have a lower
income and therefore be more likely to occupy a social rental dwelling.

The relative frequencies of the main sources of income of the household also differ de-
pending on the ownership type. The main source of income of the majority of households
in owner-occupied dwellings, nearly 66% of the owner-occupied dwellings in the housing
sample, is employment. Only about 4% of this group receives state benefits as the main
source of income. In contrast, more than 20% of social housing occupants receive state
benefits an less than 40% receives income from employment.

Regarding heating and dhw installations, owner-occupied dwellings and social housing
are very similar: in the housing module, more than 95% have a boiler as a heating installa-
tion and more than 92% have a boiler as a dhw installation. Private rental dwellings more
often have a gas furnace or gas fireplace as a heating installation and a geyser or electric
boiler for dhw.

As can be seen in Table 9, less than 5% of respondents in social rental dwellings indicate
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that there is usually no one at home on weekdays between approximately 9:00 and 18:00,
whereas in owner-occupied dwellings and private dwellings this answer is relatively more
common: about 8%. This could perhaps be related to the higher relative frequencies of
employment in owner-occupied and rental dwellings, compared to social housing.
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Table 8: Distribution of the dummy variables within each ownership type (housing module
sample). See Table A1 for variable definitions.

Category Owner occupied (%) Private rental (%) Social rental (%)

n1 21.9 44.2 51.5
n2 41.9 35.3 31.6
n3 13.6 10.7 9.0
n4 16.7 6.3 5.3
n5more 5.9 3.5 2.6

A 10.8 12.0 10.7
B 17.5 11.5 18.4
C 31.4 21.9 36.3
D 10.6 9.9 17.3
E 6.6 10.9 9.8
F 11.8 8.9 4.6
G 11.3 24.9 3.0

apartment 13.0 58.9 47.3
terraced 46.1 29.0 49.6
semiDetached 20.5 5.3 2.9
detached 20.4 6.7 0.2

before1945 18.0 34.2 7.6
45to69 19.5 17.4 31.8
70to89 33.0 24.4 37.7
90to09 25.3 16.7 18.1
after10 4.1 7.3 4.9

noUniversity 78.7 79.6 94.3
university 21.3 20.4 5.7

noIncome 0.4 1.8 0.7
employed 65.8 57.8 38.6
benefits 3.9 13.6 21.2
retired 29.9 26.8 39.5

boiler 96.3 90.7 95.7
wood 0.5 0.3 0.1
gasHeater 1.6 6.3 2.4
heatPump 1.0 1.6 1.0
otherHeat 0.7 1.1 0.8

dhwGasBoiler 92.7 86.2 92.2
dhwElecBoiler 1.7 5.0 2.0
dhwGeyser 2.6 6.3 2.9
dhwSolar 1.8 0.9 1.6
dhwHeatPump 0.9 1.1 0.9
dhwOther 0.3 0.4 0.4

Number of observations = 41,971
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Table 9: Distribution of the dummy variables within each ownership type (energy module
sample). See Table A1 for variable definitions.

Category Owner occupied (%) Private rental (%) Social rental (%)
n1 20.8 42.4 55.9
n2 53.8 41.9 31.2
n3 10.6 9.9 6.9
n4 11.4 2.3 2.7
n5more 3.3 3.5 3.3

A 16.8 15.1 14.6
B 18.1 17.4 20.2
C 32.6 27.3 35.8
D 16.1 16.3 15.8
E 8.5 12.2 8.3
F 5.5 8.1 4.0
G 2.4 3.5 1.2

apartment 15.8 57.0 48.2
terraced 40.0 34.3 48.9
semiDetached 20.3 5.8 2.7
detached 24.0 2.9 0.2

before1945 19.4 27.9 10.8
45to69 16.5 14.0 27.2
70to89 32.4 29.1 37.6
90to09 27.4 21.5 19.1
after10 4.2 7.6 5.4

noUniversity 68.2 74.4 91.5
university 31.8 25.6 8.5

noIncome 0.2 2.9 0.6
employed 52.5 41.3 26.8
benefits 3.6 7.6 24.1
retired 43.8 48.3 48.6

boiler 97.9 95.3 97.9
wood 0.2 0.0 0.4
gasHeater 0.4 1.7 0.4
heatPump 0.9 2.9 1.2
otherHeat 0.7 0.0 0.2

dhwGasBoiler 94.0 90.7 95.4
dhwElecBoiler 0.8 1.2 1.2
dhwGeyser 1.4 2.9 0.4
dhwSolar 2.5 2.3 1.9
dhwHeatPump 0.8 2.9 1.0
dhwOther 0.5 0.0 0.2

away 8.3 8.1 4.8
home 42.3 30.2 37.6
depends 49.4 61.6 57.6

Number of observations = 2,010
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5.2 Correlation of actual gas use and the EPG with home ownership

The previous section showed that owner-occupied dwellings consume on average more gas
than rental dwellings, and that the average EPG is also more positive in owner-occupied
dwellings than in rental dwellings, both absolutely and relatively (Tables 6 and 7). To fur-
ther quantify the potential correlation between gas use and EPG and ownership, correlation
analysis and simple linear regression were used.

Point-biserial correlation coefficients were computed to assess the linear relationship
between home ownership (versus tenancy) and actual gas consumption and between home
ownership and the EPG, using the dummy variable owner and the continuous variables
gasA and EPG. As mentioned in subsection 4.4, the phenomena of overprediction (EPG >
0) and underprediction (EPG < 0) can be distinguished and should be analyzed separately.
For that, the energy module was divided into cases of overprediction and underprediction,
leading to two separate subsamples.

There is a moderate positive correlation between owner-occupied dwellings and actual
gas consumption in the energy module sample, r(2,008) = .32, p < .001 and a similar re-
sult was obtained in the housing module sample, r(41,969) = .30, p < .001. This result
means that—without controlling for any other factors—owner-occupied dwellings have a
larger actual gas consumption than rental dwellings. A weak positive correlation was found
between owner-occupied dwellings and the EPG in case of overprediction, r(1,707) = .20,
p < .001, meaning that the overprediction of gas consumption in owner-occupied dwellings
is larger than in rental dwellings. In contrast, no significant correlation was found between
owner-occupied dwellings and the EPG in case of underprediction, r(299) = -.05, p = .43.
In this case, the EPG is neither significantly smaller or larger for owner-occupied dwellings
than for rental dwellings. The lack of a correlation with the EPG in case of underprediction,
in contrast to a positive correlation in case of overprediction, may be explained by previous
findings by Majcen et al. (2015). They show that overprediction and underprediction are
two different phenomena with very different explanatory factors. Specifically, the size of
the EPG in case of overprediction is largely explained by building characteristics, whereas
in case of underprediction building characteristics are insignificant for predicting the size of
the EPG, and behavioral factors play the main role (Majcen et al., 2015). Therefore, the
positive correlation of ownership with the EPG in case of overprediction and no correla-
tion in case of underprediction may suggest that building characteristics, such as building
type or floor area (Tables 6 and 7), rather than behavioral aspects are most important in
determining the differences in actual gas use and EPG observed between homeowners and
tenants.

A simple linear regression analysis was done on the dependent variables gasA and EPG,
with the dummy variable owner as the single regressor. The simple regression shows similar
information to the correlation analysis, but in addition it shows how much more gas is con-
sumed by owner-occupied dwellings compared to rental dwellings, and how much larger the
EPG is in owner-occupied dwellings in case of overprediction compared to rental dwellings.
As shown in Table 10, owner-occupied dwellings consume significantly more gas than rental
dwellings (social or private). Specifically, owner-occupied dwellings consume 474 m3 per
year more than rental dwellings in the housing module sample and 505 m3 more in the
energy module sample. Owner-occupied dwellings have a significantly larger EPG in case
of overprediction than rental dwellings, by 350 m3 per year. These differences are quite sub-
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stantial, given that the average actual gas consumption in both samples was about 1,400 m3

per year (Tables B1 and B2), and the average EPG in cases of overprediction was about 940
m3 per year (Table B3). As shown by the correlation analysis as well, there is no significant
difference in EPG in case of underprediction between owner-occupied and rental dwellings.

In sum, the correlation and simple regression analyses showed a moderate correlation
between ownership and actual gas use and a weak correlation between ownership and the
EPG in case of overprediction; owner-occupied dwellings consume substantially more gas
than rental dwellings and also exhibit substantially larger overpredictions. However, these
analyses are not determining causation. In fact, ownership type is not expected to directly
cause a difference in actual gas consumption or the EPG. Yet, these results could suggest
that the correlation between ownership type and actual gas use and between ownership type
and the EPG in case of overprediction is mainly caused by differences in building charac-
teristics between the types of ownership, rather than by potential differences in behavior
in homeowners and tenants. This is because underpredictions, for which no correlation is
found, are less determined by building characteristics, and mostly by occupant behavior
(Majcen et al., 2015). In contrast, overpredictions, for which a weak correlation is found,
are mostly determined by building characteristics (Majcen et al., 2015). The potential
importance of building characteristics is also indicated by the results of subsection 5.1.
Descriptive statistics showed that, for example, owner-occupied dwellings are much more
often semi-detached or detached than rental dwellings, and owner-occupied dwellings are
on average larger than rental dwellings.

Table 10: Simple regression coefficients of the actual gas consumption and the EPG with
home ownership. The standard errors are given in parentheses. See Appendix A for variable
definitions and units.

Dependent variable:

gasA gasA EPG EPG
Overpredictions Underpredictions

owner 474.318∗∗∗ 505.123∗∗∗ 350.125∗∗∗ −52.346
(7.450) (33.797) (42.041) (66.687)

Constant 1,092.619∗∗∗ 1,084.902∗∗∗ 704.378∗∗∗ −348.500∗∗∗

(5.990) (27.378) (34.517) (49.673)

Observations 41,971 2,010 1,709 301
R2 0.088 0.100 0.039 0.002
Adjusted R2 0.088 0.100 0.038 −0.001

Note: ∗∗∗p<0.01

5.3 Explaining the correlation with multiple regression

In subsection 5.2 it was shown that there is a correlation between ownership and gas use
and between ownership and EPG in case of overprediction. Tables 6 to 9 in subsection 5.1
revealed differences between the ownership types that are likely to explain at least part of
this correlation. This subsection aims to answer the question: do the building and occupant
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characteristics fully explain the correlation between ownership and gas use, and ownership
and EPG, or could differences in behavior between ownership types play an important ex-
planatory role? In order to answer this question, multiple linear regression was applied
to control for building characteristics, which were expected to cause (part of) the correla-
tion between ownership type and actual gas use or the EPG. In addition, other variables
that were expected to influence the actual gas consumption directly were controlled for as
well, namely occupant characteristics such as disposable income, the number of occupants,
whether occupants are usually away or at home during the day, etc. This was previously
depicted in the conceptual model (Figure 3).

In 5.3.1 and 5.3.2, the multiple regressions on actual (specific) gas use using the housing
module sample and the energy module sample, respectively, are discussed. In 5.3.3, the
EPG is used as the dependent variable for the multiple regression analysis. As described in
section 3, the energy module sample (N = 2,010) is a subset of the housing module sample
(N = 41,971) containing several additional energy-related variables, such as the estimated
theoretical gas consumption and the EPG. Besides the sample size and the number of
variables, another important difference between the two samples is the source and accuracy
of the energy labels, as explained in subsection 3.4. Because the variable of actual gas
consumption is available in the housing module sample, it is also in the energy module
sample and therefore, the multiple regression analysis on actual gas use was done using
both samples.

5.3.1 Actual energy consumption (housing module sample)

The interpretation of the regression coefficients shown in Table 11 can be understood when
looking at the corresponding regression equation of gasA (Equation 9). For the categorical
variables, the interpretation of a regression coefficient is the amount of additional gas use of
a dwelling in that category compared to a dwelling in the reference category, ceteris paribus.
For example, according to Table 11, a dwelling with energy label G per year consumes about
442 m3 of gas more than a dwelling with label A (reference category), in the case that all
the other variables are fixed, i.e., equal floor area, the same period of construction, etc. For
the continuous variables, the coefficient is the amount of additional yearly gas use per unit
of the continuous variable, e.g., a dwelling consumes per year about 2.6 m3 more gas for
each additional square meter of floor area, ceteris paribus.

gasA = 330.460+24.442·owner+78.169·private+45.749·n2+...+169.369·dhwOther (9)

Ownership type In terms of actual gas consumption in m3, owner-occupied dwellings
consume significantly more gas than social rental dwellings, even with building character-
istics and other occupant characteristics held fixed. This may suggest that the correlation
found in subsection 5.2 is being caused by more than the building and occupant charac-
teristics controlled for in the regression. However, as indicated previously, large sample
sizes can lead even very small differences to be statistically significant that may not be
meaningful in practice. Owner-occupied dwellings consume only about 24 m3 more gas
per year than social housing. In terms of practical significance, this is a relatively small
difference given the average natural gas use in 2017 of approximately 1,400 m3 (Table B1).
This result is in disagreement with previous multiple linear regression results by Majcen
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Table 11: Estimates of the regression coefficients by OLS on the actual gas use in the
housing module sample. The standard errors are given in parentheses. See Table A1 in
Appendix A for variable definitions, units and reference categories.

Dependent variable:

gasA gasSpecA

owner 24.442∗∗∗ (7.848) −0.024 (0.080)
private 78.169∗∗∗ (11.380) 1.640∗∗∗ (0.117)

n2 45.749∗∗∗ (7.165) 0.159∗∗ (0.073)
n3 125.434∗∗∗ (10.328) 0.841∗∗∗ (0.106)
n4 142.888∗∗∗ (10.589) 0.967∗∗∗ (0.109)
n5more 224.531∗∗∗ (14.594) 1.544∗∗∗ (0.150)

university 13.306∗ (7.912) −0.004 (0.081)

employed −99.600∗∗∗ (37.300) −0.896∗∗ (0.382)
benefits −31.513 (38.081) 0.154 (0.390)
retired 18.363 (37.400) −0.343 (0.383)

dispInc 16.380∗∗∗ (1.171) 0.074∗∗∗ (0.012)

floorArea 2.619∗∗∗ (0.068) −0.045∗∗∗ (0.001)

value 7.994∗∗∗ (0.294) 0.029∗∗∗ (0.003)

B 102.805∗∗∗ (12.634) 0.993∗∗∗ (0.130)
C 164.833∗∗∗ (13.858) 1.346∗∗∗ (0.142)
D 316.390∗∗∗ (15.895) 2.670∗∗∗ (0.163)
E 315.063∗∗∗ (17.805) 2.896∗∗∗ (0.183)
F 383.920∗∗∗ (17.855) 3.191∗∗∗ (0.183)
G 441.898∗∗∗ (19.831) 3.796∗∗∗ (0.203)

terraced 213.025∗∗∗ (7.849) 0.912∗∗∗ (0.080)
semiDetached 427.895∗∗∗ (10.719) 2.403∗∗∗ (0.110)
detached 783.695∗∗∗ (12.136) 4.912∗∗∗ (0.124)

45to69 71.026∗∗∗ (12.100) 0.065 (0.124)
70to89 41.844∗∗∗ (13.403) −0.747∗∗∗ (0.137)
90to09 −176.256∗∗∗ (15.475) −2.523∗∗∗ (0.159)
after10 −152.806∗∗∗ (21.758) −2.445∗∗∗ (0.223)

wood −342.538∗∗∗ (46.155) −1.934∗∗∗ (0.473)
gasHeater −203.775∗∗∗ (25.009) −1.495∗∗∗ (0.256)
heatPump −26.062 (52.079) 0.759 (0.534)
otherHeat −39.290 (35.736) −0.365 (0.366)

dhwElecBoiler 92.077∗∗∗ (20.984) 1.369∗∗∗ (0.215)
dhwGeyser 158.770∗∗∗ (21.121) 1.540∗∗∗ (0.216)
dhwSolar −49.331∗∗ (22.026) −0.102 (0.226)
dhwHeatPump 35.962 (55.841) 1.088∗ (0.572)
dhwOther 169.369∗∗∗ (50.514) 1.398∗∗∗ (0.518)

Constant 330.460∗∗∗ (41.640) 14.550∗∗∗ (0.427)

Observations 41,971 41,971
R2 0.447 0.219
Adjusted R2 0.447 0.219
Residual Std. Error (df = 41935) 568.331 5.826
F Statistic (df = 35; 41935) 969.063∗∗∗ 336.361∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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et al. (2013b). They found that owner-occupied dwellings consume significantly—though
relatively little—less gas than social rental dwellings by about 49 m3 per year. Despite con-
trolling for the energy label in the multiple regression, the authors suggest that this result
may be explained by “better insulation in owner-occupied dwellings” (Majcen et al., 2013b,
p. 466). Alternatively, “different behavior” is suggested as a possible explanation (Majcen
et al., 2013b, p. 466). The discrepancy between the results by Majcen et al. (2013b) and
Table 11 regarding ownership could be due to the overrepresentation of social housing in
the sample studied by Majcen et al. (2013b).

Private rental dwellings consume significantly more gas than owner-occupied and social
rental dwellings, while holding the other variables fixed. The difference of about 78 m3 gas
per year between private rental dwellings and social housing is somewhat more substan-
tial, but still relatively small. The same applies to the difference of about 54 m3 of gas
consumption per year between private rental and owner-occupied dwellings.

A possible explanation for private rental dwellings having a higher gas consumption
ceteris paribus than owner-occupied dwellings is that sometimes the rent paid by tenants
includes the use of utilities and is independent of the actual consumption. This is referred
to in the Netherlands as “all-in” rent (Government of the Netherlands, n.d.a). As a result,
energy consumption is not limited or influenced by money. This might cause differences in
energy consumption behavior between tenants of private rental properties and homeowners,
leading to a higher energy use by tenants. This explanation is supported by previous studies.
Maruejols and Young (2011) found that Canadian households for which the landlord pays
the energy bills have a higher specific energy use than those who pay their own energy bills.
In addition, they found differences in occupant behavior. Households that do not directly
pay for heat have higher temperature settings during the day, and are less likely to turn down
the thermostat when no one is home. Another study compared the energy consumption of
utility-included rental apartments and metered rental apartments in the United States, and
found that the energy consumption in heat-included apartments is higher, ceteris paribus
(Levinson and Niemann, 2004). In the United States, over a quarter of rental apartments
include utility costs in their rent (Levinson and Niemann, 2004). It is unclear how common
the all-in rent is in the Netherlands. Given the weak effect, it is possible that utility-included
rent in the Netherlands is not as common, thereby limiting its effect on the results in this
sample. This is supported by the fact that all-in rent is discouraged in the Netherlands,
because it prevents tenants from verifying whether the yearly rent increases are justified
(Rent Tribunal, n.d.). Yet, this explanation would also support the results by Majcen et al.
(2013b). They found that private rental dwellings were insignificant compared to social
housing, i.e., there is no difference in gas use between social or private rental dwellings, and
both types of rental dwellings consume more gas than owner-occupied dwellings.

However, utility-included rent may not explain why private rental dwellings consume
more gas than social rental dwellings. Still, there could be certain behavior that differs be-
tween the social housing occupants and the private rental occupants. The underlying reason
for the possible difference in behavior could be related to income. As seen in Table 6, the
average disposable income in private rental dwellings is more than 20% higher than in so-
cial rental dwellings. The higher average income in private rental dwellings is expected:
private rental dwellings are often more expensive than social housing, because they lack the
rent price limit that social rent has. Perhaps, the lower income of social rental occupants
causes more frugal behavior in energy use. Alternatively, there may be certain building
characteristics private rental dwellings have in common, that lead to a higher gas use, that
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are not captured in the energy label or by the other building characteristics included in
the regression model. These could perhaps be related to the difference in ownership of
social and private rental houses: social housing is mostly owned by housing associations,
whereas private rental dwellings are owned by private owners. Private owners may feel less
responsibility for the energy efficiency of their properties than housing associations, which
have been pushed by the government to improve the energy performance of their properties
(House of Representatives of The Netherlands, 2008).

In terms of actual specific gas use, owner-occupied dwellings and social housing are not
significantly different. This is in accordance with the results by Majcen et al. (2015), who
showed that ownership type is insignificant for actual gas consumption per m2. However,
private rental specific gas use is significantly higher than in social housing, i.e. private rental
dwellings consume more gas per m2 than social dwellings and owner-occupied dwellings,
while all other factors are constant. Nevertheless, the difference is relatively modest: 1.64
m3/m2 relative to the average 12.4 m3/m2 (Table B1). The larger specific gas use of private
rental dwellings may have similar explanations as to why the absolute gas use in m3 is also
larger in private rental dwellings, namely behavioral differences caused by the payment of
utility-included rent, behavioral differences caused by differences in income, or differences
in building characteristics that have not been captured in the control variables.

Household size With increasing number of occupants and all other factors constant,
both absolute and specific gas use increase. This is expected as larger households may
use more dhw and/or heat more rooms. However, the size of the differences is relatively
modest. According to Milieu Centraal (n.d.a), the difference in yearly gas use between a
single-person household and a household of two or more members ranges between 140 m3

and 200 m3, depending on the type of building (apartment or mid-terraced), age category
(old or new) and size category (small, medium or large) of the building. Possibly, the smaller
effects can be explained by the ceteris paribus interpretation of the regression coefficients.
The coefficients represent the unique contribution of the different household sizes to the
gas consumption. In contrast, the expected figures could contain the contribution of other,
related factors, e.g., the actual floor area. This could explain why the expected difference in
gas use depending on the number of occupants is larger than the corresponding regression
coefficients.

Employment, income and education Households for which the main source of income
is employment consume significantly less gas (nearly 100 m3 per year or 0.9 m3/m2 per year)
than people with no source of income (i.e., people with income exclusively from properties or
allowances). An explanation for this could be that employed people are more likely to spend
less time at home than unemployed people, and therefore need less heating. Other main
sources of income, state benefits or pension, are insignificant. The household’s disposable
income is significant for the (specific) gas use of the house, with all other factors equal. Per
10,000 EUR/year of additional disposable income, the gas use increases by approximately 16
m3, and the specific gas use by 0.071 m3/m2. Both these coefficients are relatively very small
compared to the average (specific) gas use in the sample (Table B1) and considering the units
of the disposable income. While statistically significant, this variable could be considered
practically insignificant. Whether the respondent or their partner has a university education
or not is significant at a significance level of 0.10. Considering the large sample size, this is
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considered insignificant.

Building size and value Both floor area and the value of the house are statistically sig-
nificant. Each additional square meter of floor area adds 2.6 m3 of yearly gas consumption,
with all other factors constant. Each additional 10,000 EUR of value of the house increases
gas use with approximately 8 m3 per year. Both these effects are also quite small.

Energy label As expected, absolute and specific gas use increase considerably with lower-
performance energy labels. A dwelling labeled B—second-best energy performance—uses
approximately 103 m3 more gas per year than a dwelling labeled A, and a dwelling labeled
G consumes nearly 442 m3 more than a dwelling labeled A, while other factors are constant.
An exception in the increasing pattern can be observed for label E, whose coefficient for the
absolute gas use is similar to that of label D. However, in the case of specific gas use, the
coefficient of label E does lie between those of labels D and F, as expected. Therefore, the
inconsistency in the case of actual gas use may be related to the fact that the average floor
area of label E dwellings in the sample is surprisingly small, as can be seen in Figure B1a.
This may also explain why the average actual gas use in label E dwellings is lower compared
to more energy-efficient dwellings (Table B5).

Type of building and construction year For the type of building, the results are also
according to the expectations. Apartments (reference category) have the lowest gas use,
likely because they are surrounded by other dwellings, limiting their heat loss. Terraced
houses are only partially attached to other, similar dwellings, and have a higher gas con-
sumption than apartments. Semi-detached houses have an even higher gas consumption,
and detached houses have a yearly gas consumption of 784 m3 higher compared to apart-
ments. This is a considerable amount given than the average yearly gas consumption of
the sample is approximately 1,400 m3 (Table B1). The same can be said about the spe-
cific gas consumption, which is 4.9 m3/m2 higher per year for detached homes compared
to apartments, while the average specific gas use in the sample is 12.4 m3/m2 per year
(Table B1).

The period of construction is significant for the absolute gas consumption. Buildings
built after 1989 have a substantially lower gas use than older buildings. The lower gas
consumption of newer buildings must be explained by other factors than differences in
energy label or any other control variable used in the analysis, because of the ceteris paribus
interpretation of the multiple regression model. However, according to van den Brom (2020),
older buildings are often less well documented regarding building characteristics than newer
buildings. As a result, their energy labels rely on estimates and assumptions and are
therefore more likely to be less accurate than those of newer buildings. As a consequence
of the possible inaccuracy in the labels of older buildings, the regression coefficients may be
influenced as well. Alternatively, the significance of the building year may perhaps be caused
by building characteristics related to the construction year that are not taken into account in
the energy label. These characteristics are then not controlled for in the regression analysis,
such that they may influence the gas consumption. However, buildings built between 1945
and 1989 have a slightly higher gas consumption than older houses built before 1945. An
explanation for this is that the energy labels in the housing module sample may be outdated,
since they are only updated when a house is sold or rented (subsection 3.4). This means
that in some cases, older, poor-performance buildings may have been retrofitted without
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their energy label being improved. Consequently, the old buildings from before 1945 could
in reality have a better label than the regression analysis controls for. As a result, the
regression analysis finds that buildings built before 1945 consume less gas than buildings
built after 1945 and until 1989, ceteris paribus.

Heating and dhw installation Only some space heating and dhw installations are
significant compared to a gas-fueled boiler. As expected, wood- and pellet-fueled heating
installations result in a considerably lower gas consumption. This is probably because space
heating is the most important use for natural gas in Dutch households.

Surprisingly, heat pumps as heating and/or dhw installation are not significant for (spe-
cific) gas use. This could be caused by the relatively small number of subjects in these
categories, 433 and 374, respectively (Table B5). This can lead to less precise estimates
(Wooldridge, 2012). An alternative explanation is that perhaps, dwellings with heat pumps
often had the heat pump installed during 2017 or even in 2018, while the actual gas con-
sumption in the sample is that of the year 2017. This is possible because the type of heating
and dhw installation of the respondents is based on the survey which was answered partly
in 2018 (Janssen-Jansen, 2019). As a result, the gas consumption data would not or only
partly reflect the effect of a heat pump on gas use, which shows as insignificant in the re-
gression analysis. In fact, according to Statistics Netherlands (CBS) (2022a), at the end of
2017 there were about 52,000 more heat pumps in use in the Dutch residential sector than
at the beginning of the year, representing an almost 30% increase. During 2018, the number
of heat pumps in use increased with about the same rate. This could also help explain why
the mean actual gas consumption of all dwellings with a heat pump in the housing module
sample (Table B5) is not much lower than the overall mean actual gas consumption of the
sample (Table B1).

Dwellings with a solar boiler combined with a regular gas-fueled boiler as a dhw instal-
lation consume significantly less gas compared to a dwellings with just a regular gas-fueled
boiler. The difference, about 50 m3 less, is quite small compared to the average gas use,
but considerable compared to the average gas use for dhw, 270 m3 (Milieu Centraal, n.d.b).
However, electric boilers and geysers would be expected decrease gas consumption, but have
significant positive correlation coefficients. While geysers use gas to heat water, they do not
maintain a storage tank of water at a hot temperature constantly like boilers, but rather
heat it directly when used. The unexpected result may be caused by the relatively small
number of observations in these categories (Table B5).

Practical significance and goodness-of-fit As expected, most regressors are highly
significant (p < 0.001), since they were selected based on previous results (Majcen, 2016).
Also, the high significance of the variables can be explained by the large sample size. Large
sample sizes can lead even weak correlations to meet significance levels that could not be
detected in smaller samples. Thus, using larger samples reduces the chance of accepting the
null hypothesis hypothesis when in reality it should be rejected, i.e., reducing the probability
of committing a Type II error (Sekaran and Bougie, 2016). At the same time, it is important
to consider practical significance. Coefficients may be statistically significant, but when
interpreting their size they may not be useful in practice (Sekaran and Bougie, 2016).

The model explains 44.7% of the variation in gas consumption and 21.9% of the variation
in specific gas consumption, which is very close to the R2 values of previous work by
Majcen et al. (2013b, 2015). They attribute the limited explanatory power of the regression
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model to behavior and preferences of the occupants, which are believed to affect actual gas
consumption (Majcen et al., 2013b). Also for actual specific gas use, occupant behavior
appears to explain the most variance (Majcen et al., 2015). Aside from these missing
explanatory variables, the low goodness-of-fit may also result from the assumption that the
variables are linearly related, and could perhaps be improved by using alternative functional
forms for the independent variables (Wooldridge, 2012). While indeed the model is far from
a perfect linear fit, with microeconomic data it is common to achieve low values of R2.
Although a low R2 means that there are more factors that affect the dependent variable
that have not been accounted for, it does not influence the reliability of the estimated effects
of the independent variables (Wooldridge, 2012).

5.3.2 Actual gas consumption (energy module sample)

Table 12 shows the results of the multiple regression analysis on the energy module sample
(N = 2,010) using most of the same variables as used in the regression on the housing model
sample (5.3.1). A difference in the energy module regression is the use of the energy label
obtained through the technical inspection of WoON 2018, rather than the energy labels
stored in the RVO database. In addition, some variables that are unique to the energy
module were included as well: the dummy variables representing whether someone is usually
home during weekdays between approximately 9:00 and 18:00 (home) or whether it varies
(depends); tempDay, the average set temperature on weekdays between approximately 9:00
and 18:00, and tempNight, the average set temperature on weekdays between approximately
18:00 and 9:00. Even though tempDay and tempNight represent a behavioral aspect, it is
included in the regression model because, as previously seen in subsection 5.1, there were no
substantial differences in the average temperature setting between the different ownership
types. In addition, point-biserial correlation coefficients show that tempDay is not correlated
with owner, r(2,008) = -.03, p = .126, and tempNight only extremely weakly: r(2,008) =
.07, p = .002. As a result, these variables were expected not to influence the difference in
actual gas use or EPG between the different ownership types, and they could therefore be
used as another control variable that is expected to partly determine actual gas use and the
EPG.

Ownership type As opposed to the model of the housing module sample in 5.3.1, Ta-
ble 12 shows that neither ownership type is significant for gas consumption in m3 in the
energy module sample. For specific gas use, only private rental dwellings are significant
when the significance level is 0.1. Given the sample size, this result is considered insignifi-
cant. The insignificance implies that the differences in gas use between the ownership types
identified in subsection 5.2 are accounted for by the control variables. Consequently, the
presence of significant behavioral differences between ownership types is unlikely, according
to this model.

The disagreement of the two analyses may be explained by sample size. While statis-
tically significant, the effects in the housing module sample were relatively weak. It may
therefore be that the weak effects are too small to be statistically significant for a smaller
sample size, like the energy module sample. While the energy module sample itself is not
particularly small, it contains many (dummy) variables. As a result, it may occur that
in some categories there are actually very few observations. For example, as shown in Ta-
ble B6, there are only 10 dwellings with no income, 4 dwellings with a wood- or pellet-fueled
heating installation, and 18 dwellings with a electric boiler for dhw. These numbers are
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generally too small based on the rule of thumb that requires a minimum of 30 subjects
in each category (Sekaran and Bougie, 2016). Thus, given that a larger sample size ap-
proaches the real population more than a smaller sample size, it can be argued that there
is in fact a statistically significant difference in actual gas use between ownership types in
the population, although with limited practical significance.

Control variables As expected, the energy label is also significant in the energy module
and the coefficients display the expected pattern. An exception is label B, which is insignif-
icant compared to label A. This suggests that whether a dwelling has label A or B does not
matter for the gas consumption. It could therefore be that the the difference in energy label
in these dwellings comes from the better performance in terms of electricity rather than in
terms of natural gas, e.g., through photovoltaics. The type of building is also significant
and shows the expected pattern: lowest for apartments and highest for detached houses.
Both building type and energy label have a substantial practical significance as well.

The average temperature setting during the day on weekdays between 9:00 and 18:00,
and during the evening and night between 18:00 and 9:00 are both significant for gas use.
Specifically, for each degree Celsius added to the average temperature during the day or
night, the yearly gas consumption is increased by 26.7 m3 or 27.4 m3, respectively. These
effects are quite small, relative to the average annual gas use and the expected impact of
temperature settings. The similarity of the coefficients for day and night may be explained
by the longer period defined as “night” compared to the period defined as “day”. The longer
period could compensate for the lower expected temperature setting during the night.

Regarding type of heating and dhw installation, the results differ from the housing
module sample. In the energy module, dwellings with a heat pump consume a considerable
amount of gas less than dwellings with a boiler, while controlling for the other factors.
Although this is the expected result, the number of subjects in this category is small, 23.
This could explain the low precision of this coefficient when comparing the housing module
and energy module regressions in Tables 11 and 12, respectively.

Dwellings with a gas-fueled furnace or fireplace (gasHeater) also have a significantly
lower gas use. This could be because there is a heater in one or some rooms only, instead of
a central heating system with a boiler that can heat the entire dwelling. The installations
corresponding to wood, otherHeat, dhwElecBoiler and dhwSolar are insignificant for gas use
compared to a the reference categories boiler and dhwBoiler, although solar and electric
installations would be expected to lower the gas consumption. The unexpected result is
attributed to the smaller sample size, which causes there to be very few subjects in these
categories (Table B6). A geyser as a dhw installation gives a significantly higher gas con-
sumption, like was also the case in the housing module sample (Table 11). Surprisingly,
dwellings with a heat pump for dhw consume significantly more gas compared to dwellings
with a boiler for dhw. However, the average gas use of dwellings with a heat pump for
dhw is lower than for any other dhw installation (Table B6). Therefore, it may be that
the regression coefficient is not accurate. This may be the case because it is likely that
heatPump and dhwHeatPump are correlated, i.e., dwellings with a heat pump as heating
installation are likely to also have a heatpump as a dhw installation, and vice versa. As
a result, some of the effect of dhwHeatPump may actually be accounted for by heatPump,
which has a very large negative coefficient.

Also, the coefficients for disposable income, value of the house and floor area are signif-
icant and positive, in accordance with the regression on the housing module sample. Like
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in the housing module, the effects of these variables are relatively modest, with limited
practical significance.

The number of occupants is much less significant than in the housing module sample.
This may also be attributed to the smaller sample size and the fewer subjects per category.
For example, in the housing module there are are 2,021 households of five or more members
(Table B5), whereas in the energy module sample there are only 67 (Table B6).

Regarding the year of construction, it can be seen that houses built after 1989 signifi-
cantly consume less gas than older buildings, which was also the case in the housing module
sample (Table 11). One reason why building age may have an effect despite controlling
for energy label is the potential inaccuracy of the energy labels of older buildings. Older
buildings often lack documentation on building characteristics, resulting in more estimates
and assumptions when calculating the energy label. Also, perhaps the energy label does not
account for certain building characteristics that do influence efficiency in terms of natural
gas and that are common in older buildings.

The dummy variables university, employed, benefits and retired are insignificant, similar
to the housing module sample. Also, the occupancy of the dwellings during the day does
not have a significant effect.

Practical significance and goodness-of-fit Overall, there are less statistically signifi-
cant variables than in the housing module regression, which is explained by the relatively
small effects of these variables combined with a smaller sample size in the energy module.
Still, some statistically significant variables have limited practical significance.

The R2 of 0.529 and 0.279 of the energy module regression models for actual gas use
and actual specific gas use, respectively, are higher in the energy module analysis than
in the housing module. This could be due to the addition of the variables tempDay and
tempNight—occupant behavior is expected to explain a large part of the variance in actual
gas use (Majcen et al., 2015). Also, the more accurate energy labels in this sample could
contribute to a better fit.
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Table 12: Estimates of the regression coefficients by OLS on the actual gas use in the energy
module sample. The standard errors are given in parentheses. See Table A1 in Appendix A
for variable definitions, units and reference categories.

Dependent variable:

gasA gasSpecA

owner −21.223 (34.488) −0.070 (0.346)
private 52.327 (48.180) 0.810∗ (0.484)

n2 52.384∗ (31.725) 0.378 (0.318)
n3 113.910∗∗ (49.542) 1.298∗∗∗ (0.497)
n4 98.149∗ (54.116) 0.706 (0.543)
n5more 44.713 (73.008) 0.554 (0.733)

university 15.474 (30.192) 0.176 (0.303)

employed 71.657 (170.560) 0.616 (1.712)
benefits 206.256 (174.244) 2.420 (1.749)
retired 96.350 (170.622) 0.781 (1.712)

dispInc 30.414∗∗∗ (6.075) 0.128∗∗ (0.061)

floorArea 2.957∗∗∗ (0.341) −0.055∗∗∗ (0.003)

value 7.211∗∗∗ (1.291) 0.033∗∗ (0.013)

B 42.282 (43.142) −0.276 (0.433)
C 238.403∗∗∗ (43.739) 1.440∗∗∗ (0.439)
D 426.135∗∗∗ (52.691) 3.243∗∗∗ (0.529)
E 577.759∗∗∗ (60.221) 3.924∗∗∗ (0.604)
F 615.177∗∗∗ (69.619) 4.181∗∗∗ (0.699)
G 937.401∗∗∗ (94.344) 5.547∗∗∗ (0.947)

terraced 197.338∗∗∗ (32.648) 1.054∗∗∗ (0.328)
semiDetached 428.501∗∗∗ (44.581) 3.303∗∗∗ (0.447)
detached 677.604∗∗∗ (49.640) 4.901∗∗∗ (0.498)

45to69 −60.156 (40.468) −1.251∗∗∗ (0.406)
70to89 37.544 (40.437) −0.806∗∗ (0.406)
90to09 −130.317∗∗∗ (46.997) −2.221∗∗∗ (0.472)
after10 −212.540∗∗∗ (73.261) −3.379∗∗∗ (0.735)

wood 115.145 (268.714) 2.578 (2.697)
gasHeater −577.770∗∗∗ (179.782) −3.994∗∗ (1.804)
heatPump −1,496.727∗∗∗ (389.083) −8.420∗∗ (3.905)
otherHeat −162.776 (174.933) −0.677 (1.756)

dhwElecBoiler −83.927 (127.435) 2.435∗ (1.279)
dhwGeyser 437.600∗∗∗ (112.624) 3.616∗∗∗ (1.130)
dhwSolar −3.286 (79.180) 0.192 (0.795)
dhwHeatPump 1,579.825∗∗∗ (406.001) 10.068∗∗ (4.075)
dhwOther 631.629∗∗∗ (212.506) 2.565 (2.133)

home 28.341 (56.294) 0.791 (0.565)
depends 13.732 (51.489) 0.614 (0.517)

tempDay 26.688∗∗∗ (7.209) 0.199∗∗∗ (0.072)
tempNight 27.382∗∗∗ (7.851) 0.221∗∗∗ (0.079)

Constant −897.380∗∗∗ (223.486) 5.476∗∗ (2.243)

Observations 2,010 2,010
R2 0.529 0.279
Adjusted R2 0.520 0.265
Residual Std. Error (df = 1970) 525.594 5.275
F Statistic (df = 39; 1970) 56.758∗∗∗ 19.594∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.3.3 The energy performance gap

After studying actual energy consumption, also the EPG was investigated. The EPG in
terms of gas use is the difference between the actual gas consumption and the theoretical
gas consumption of a dwelling, as in Equation 8. The literature review showed that the
EPG may be caused partly by the (p)rebound effect, in addition to other causes such an
the over- or underestimation of building performance (Visscher et al., 2016). At the same
time, it also appears that the rebound effect varies in size depending on different occupant
characteristics, such as income and also ownership type (Madlener and Hauertmann, 2011;
Aydin et al., 2017). Therefore, it was hypothesized that ownership type may also have an
effect on the EPG, although indirectly through differences in behavior.

As indicated in Table 5, a positive EPG is referred to as overprediction, and a negative
EPG is referred to as underprediction. Because over- and underprediction have appeared
to be two distinct phenomena with different explanatory factors (Majcen et al., 2015), a
regression was run on the cases of overprediction and a separate regression was run on the
cases of underprediction5, both with the EPG as the dependent variable (Table 13).

Ownership type Like in the regression of actual gas consumption in the energy module
sample, the ownership types are insignificant for the EPG, both in cases of underprediction
and overprediction. This result is in disagreement with the hypothesis that the EPG is
larger for tenants than for homeowners, even though previous studies found that tenants
show higher rebound effects than homeowners. This suggests that the influence of rebound
effects on the EPG is only limited. Nevertheless, van den Brom (2020) found that the
rebound and prebound effects were responsible for up to 30% of the cases of lower-than-
expected savings after an energy efficiency renovation. Thus, it may also be that the small
sample sizes of the over- and underprediction subsets are responsible for the insignificance,
similar to the regression of actual gas use in the energy module sample (5.3.2). In any case,
even the statistically significant differences found in the housing module sample are very
small and therefore have a low practical significance (5.3.1). This means that most likely
there are not any major differences in energy consumption behavior between homeowners
and tenants that cause large differences in their actual gas consumption or EPG.

This result, together with the findings in 5.3.1 and 5.3.2, are in accordance with the
suggestion made in subsection 5.2 based on the correlation analysis: the correlations between
ownership type and actual gas use and between ownership type and the EPG in case of
overprediction are mainly caused by differences in building characteristics between the types
of ownership, rather than by potential differences in behavior in homeowners and tenants.
Specifically, subsection 5.1 showed that, for example, owner-occupied dwellings are much
more often semi-detached or detached than rental dwellings, and owner-occupied dwellings
are on average larger than rental dwellings. Both detached building type and floor area
were also shown to be significant predictors of actual gas use and overpredictions. In the
same way, disposable income and the number of occupants could additionally explain the
correlation between ownership and actual energy use.

5For the regression on the cases of underprediction, the dummy variables gasHeater, dhwOther and G were
omitted, because there were no observations in the underprediction subset with these types of installations
and label. Also, dhwHeatPump was omitted because it correlated perfectly with heatPump, i.e., all the
observations with a heat pump as a heating installation also had a heat pump as a dhw installation and vice
versa.
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Control variables The number of occupants is significant for overpredictions: overpre-
dictions are significantly, but moderately smaller for dwellings with two or more occupants,
compared to one occupant. The coefficients are between approximately 100 m3 and 200 m3,
which is somewhat considerable compared to the mean overprediction in the sample of 940
m3 (Table B3).

University education and income source are insignificant for both overpredictions and
underpredictions.

With increasing floor area, the overprediction significantly increases. This could occur
because an assumption in the theoretical gas consumption calculation is that the entire floor
area of a dwelling is heated (Majcen et al., 2015), whereas for larger dwellings it is more
likely that this is not the case, e.g., occupants of larger dwellings may not heat all of their
rooms.

In accordance with previous studies, overprediction is increasingly larger for decreasingly
energy-efficient labels (Majcen et al., 2013a, 2015; Tigchelaar et al., 2011). The difference
in overprediction ranges from 222 m3 for enery label B compared to A, to 2,051 m3 for
energy label G compared to A. This was also reflected in Figure 7.

For types of building, detached dwellings show significantly larger overpredictions than
the other types (apartments, terraced, and semi-detached dwellings), by about 268 m3.
While occupants in detached houses have been shown to choose lower indoor temperatures
compared to apartments (Lindén et al., 2006), average setpoint temperatures during the day
and night are controlled for in the regression. Therefore, lower setpoint temperatures of de-
tached houses than assumed in the theoretical calculation could not be an explanation their
larger overpredictions. However, it may still be the case that for example, similar to choos-
ing lower temperatures, occupants of detached dwellings choose to heat fewer spaces. At
the same time, detached dwellings show significant and large underpredictions as well, com-
pared to other types of buildings. This may suggest that the gas consumption of detached
dwellings is very difficult to predict accurately by the theoretical energy consumption.

The construction year is insignificant for both overpredictions and underpredictions, i.e.,
the EPG is not significantly different for different construction periods, ceteris paribus.

Disposable income is insignificant for the overpredictions, but significant in case of un-
derprediction: the underprediction becomes larger (i.e. the EPG more negative) with in-
creasing disposable income. In other words, in cases where actual gas consumption is higher
than theoretical gas consumption, higher income means a larger difference between actual
and theoretical gas use. Possibly, this is the case because as seen in the regression mod-
els of actual gas consumption (Tables 11 and 12), disposable income positively correlates
with actual gas consumption. It may be that households with higher income use gas less
frugally than people with lower income, while the other factors are equal. Since income is
not taken into account in the theoretical gas use, this could lead to higher gas use in higher
income households than theoretically predicted. This result is in accordance with the neo-
classical theory of consumer behavior described in subsection 2.3, in which the consumer
maximizes its consumption as long as it is allowed by its income. Nevertheless, the effect
of income on the size of the underprediction is relatively small, −49 m3 per 10,000 EUR
of yearly additional disposable income, compared to the mean underprediction of −378 m3

(Table B4).
Dwellings with a geyser as a dhw installation show very large underpredictions compared

to other types of installations. This result may be unreliable since the underprediction
subset contains only 3 dwellings with this type of dhw installation. The same applies to the
significance of dhwOther in overpredictions, of which there were only 7 subjects.
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The temperature setting during the day between approximately 9:00 and 18:00 is signifi-
cant for overpredictions: each additional degree Celsius reduces the EPG in overpredictions
by 28 m3. The temperature during the evening and night as a similar effect, although
smaller, and with a lower level of significance (p < 0.1). Majcen et al. (2015) also found a
negative effect of temperature with the size of overpredictions (in m3/m2).

Goodness-of-fit The models explain 60% of the variance in the EPG in the case of over-
prediction and only 18.5% in case of underprediction. This is similar to what was found
by Majcen et al. (2015) with the EPG per m2 as the dependent variable: underpredictions
were explained much less well by the regression model than overpredictions. This may be
attributed to behavioral aspects playing a larger role in underpredictions.

Appendix C contains additional regression tables for different dependent variables: the
theoretical (specific) gas use, similarly to what was done by Majcen et al. (2015) (Table C3),
the EPG per m2 floor area (Table C4), and the EPG and EPG per m2 for the whole energy
module sample, i.e. over- and underpredictions combined (Table C5).

5.4 Limitations

There are several limitations to this thesis, relating to the data as well as to the analysis.
Regarding the data, as described in subsection 3.3, missing data of the energy label in the
housing module, i.e., the energy labels provided by RVO, were replaced by the preliminary
energy label. The estimate of the preliminary label is simplified compared to the actual
energy label definition and it often deviates from the definitive label (Stuart-Fox et al.,
2019), thus introducing inaccurate labels for part of sample. At the same time, using only
the observations with the definitive label would introduce bias as well, because the resulting
sample is not representative for the national housing stock in other aspects (Stuart-Fox et al.,
2019). In addition, it would reduce the sample size.

The definitive label in the housing module also has a limitation: it may not be up
to date. These energy labels originate from the Netherlands Enterprise Agency (in Dutch:
Rijksdienst voor Ondernemend Nederland, RVO) energy label database. The RVO database
does not necessarily contain up-to-date labels, because these labels are only required to be
updated when a house is sold or rented. It may therefore be possible that a house with
a low-performance label in the RVO database has been retrofitted by the same owner and
would qualify for a higher performance label at the time of WoON 2018. Nevertheless, the
energy label (and the energy index) contained in the energy module have been obtained
from a technical inspection of the dwellings carried out for the purpose of the Dutch Housing
Survey, and are therefore up to date and reflecting the actual energy performance of the
dwelling.

Another limitation of the data is related to how the survey categories were defined in
WoON 2018. For example, the categories for the survey question regarding the type of
building in the housing module do not differentiate between a mid-terraced house and an
end-terraced house, or between an apartment on a middle floor and an apartment at the
top floor. These differentiations could be relevant when studying gas use, since they are
expected to matter for the heat loss area of the buildings. Nevertheless, the way the cat-
egories of control variables are defined should not affect the regression coefficients of the
variable of interest, as long as they are not correlated with it. To illustrate, differentiating
mid-terraced from end-terraced houses will most likely not influence the regression coeffi-
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Table 13: Estimates of the regression coefficients by OLS of the EPG in case of overpre-
diction or underprediction. The standard errors are given in parentheses. See Table A1 in
Appendix A for variable definitions, units and reference categories.

Dependent variable:

EPG
Overpredictions Underpredictions

owner −60.222 (38.241) 60.738 (94.361)
private −56.393 (54.923) −88.565 (118.576)

n2 −109.054∗∗∗ (34.545) 150.726 (96.748)
n3 −203.717∗∗∗ (55.311) 51.568 (132.535)
n4 −150.117∗∗ (61.273) 118.853 (137.753)
n5more −164.719∗∗ (80.013) −324.902 (208.546)

university −16.284 (32.829) 70.851 (91.341)
employed −28.107 (193.284) 452.376 (420.546)
benefits −136.842 (197.055) 426.513 (432.699)
retired −13.404 (192.993) 581.946 (422.511)

dispInc −2.472 (6.720) −48.528∗∗∗ (17.010)

floorArea 8.229∗∗∗ (0.363) 2.332∗ (1.324)

value −1.850 (1.413) −2.230 (4.007)

B 222.192∗∗∗ (50.819) 111.718 (100.721)
C 426.151∗∗∗ (52.144) 98.245 (99.149)
D 734.467∗∗∗ (60.905) 15.774 (170.263)
E 996.599∗∗∗ (67.570) −141.847 (267.099)
F 1,369.525∗∗∗ (76.981) 492.551 (318.904)
G 2,051.172∗∗∗ (99.871)

terraced −3.278 (36.112) −20.132 (98.346)
semiDetached −12.348 (48.430) −61.228 (142.898)
detached 267.857∗∗∗ (53.715) −448.599∗∗∗ (164.428)

45to69 15.314 (42.953) 55.466 (154.714)
70to89 −24.857 (43.693) −15.278 (139.057)
90to09 −36.087 (51.963) −49.945 (150.812)
after10 136.319 (89.751) 9.012 (172.978)

wood −425.848 (314.835) 217.265 (590.054)
gasHeater 215.406 (183.696)
heatPump 930.234∗∗ (394.555) −218.792 (163.995)
otherHeat −164.108 (186.884) −496.033 (746.359)

dhwElecBoiler 198.214 (140.024) 235.139 (433.437)
dhwGeyser −204.095∗ (123.071) −786.627∗∗ (333.303)
dhwSolar −13.442 (88.289) −39.081 (215.753)
dhwHeatPump −518.522 (449.709)
dhwOther −617.889∗∗∗ (215.763)

home −38.017 (61.770) −173.658 (162.093)
depends −7.058 (56.398) −52.573 (148.181)

tempDay −27.960∗∗∗ (7.845) −16.501 (22.130)
tempNight −16.456∗ (8.821) 1.763 (21.988)

Constant 403.060 (253.966) −543.707 (549.330)

Observations 1,709 301
R2 0.600 0.185
Adjusted R2 0.590 0.078
Residual Std. Error 531.762 (df = 1669) 551.886 (df = 265)
F Statistic 64.097∗∗∗ (df = 39; 1669) 1.721∗∗∗ (df = 35; 265)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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cient of ownership types, because it is not expected that the type of terraced house—mid
or end—is related to whether the terraced house is owner occupied or rental.

Limitations of the analyses in this thesis should be considered when interpreting the
results. First of all, regarding the representativeness of the samples, some of the differ-
ences in distributions between the samples and the national housing stock could possibly
be corrected for by using survey weights, which are provided in the WoON datasets. Nev-
ertheless, it has been shown that both samples are in many aspects a good representation
of the population.

Second, the theoretical energy use was estimated, rather than obtained from existing
data. Although the estimated theoretical gas use was similar to the theoretical gas use shown
in previous studies, the estimation of the theoretical energy consumption—and therefore of
the EPG—in this thesis was based on assumptions and approximations, and these values
should therefore not be seen as the exact theoretical energy use or EPG. At the same
time, estimating the theoretical gas use has allowed to analyze the EPG in the WoON 2018
dataset, which seems has not been done before in the previous analysis of this relatively
recent WoON dataset (Stuart-Fox et al., 2019).

Third, the functional form of the regression models is questionable, since a linear model
has been assumed. A linear model may not be the most appropriate form for these relation-
ships, because in some cases, other types of relationships, e.g., logarithmic or exponential
could seem more plausible. For example, the relationship between actual gas use and
floor area could possibly be rather logarithmic than linear, since it makes sense that larger
dwellings heat less rooms than smaller dwellings, i.e. they heat a smaller percentage of the
dwelling. As a result, the relationship is not linear and gas use grows less fast as floor area
increases. Improving the functional form of the models may also improve the goodness-of-fit
(R2 values) of the models predicting actual gas consumption and the EPG, since they are
far from a perfect linear fit. Also, using more of the available and relevant variables in the
WoON database in the model could improve the goodness-of-fit, particularly the variables
related to behavior in energy use. Nevertheless, a low R2 does not influence the reliability
of the estimated effects of the independent variables (Wooldridge, 2012).

Finally, more insights into the predictive power of the different variables can be gained
by using standardized coefficients. Standardized means that the variables are entered rel-
ative to the mean and standard deviation. Standardized coefficients are more suitable to
compare to each other, i.e., the larger coefficients are the ones with most predictive power,
since the effects are being measured in terms of standard deviations instead of the original
units of the dependent variable, e.g. m3 gas (Wooldridge, 2012).

Nevertheless, the limitations regarding the analyses in this thesis are at the same time
opportunities for improvement of this study. In addition, the following considerations are
recommended for further or similar research projects. First, defining over- or underpredic-
tions as the theoretical gas consumption being simply unequal to the actual gas consumption
may be too strict. It is very unlikely that the yearly actual gas consumption will exactly
match the theoretical gas consumption. In practice, i.e., when predicting energy savings
or for policy making, this is probably also not necessary. The prediction could be “good
enough” if, for example, it only deviates 5% from the actual energy consumption. That
way, the interpretation of over- and underprediction and their explanatory factors may be
more meaningful.

Second, the WoON 2018 data base and especially the energy module contain numer-
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ous interesting variables regarding occupant characteristics, and behavior, motivations, and
preferences regarding energy. This thesis only included a few of them, and therefore it is
recommended to further explore these interesting data.

While these limitations must be kept in mind when interpreting the results and drawing
conclusions, this thesis offered several additions to the existing literature. First of all, the
large sample size of data used in this thesis and its representativeness of the Dutch housing
stock are an advantage compared to most of the previously analysed data sets (Majcen
et al., 2013a,b; van den Brom, 2020). In particular, the distribution of the ownership type
is well represented in this thesis, while previous studies have mainly used data exclusively
from the social housing sector (van den Brom, 2020) or in which social housing is much
overrepresented (Majcen et al., 2013b, 2015). In addition to the large sample size and
its representativeness, the data is relatively recent, compared to other, similar data sets
previously used, e.g., WoON 2012 (Majcen et al., 2015). An additional advantage of using
energy data from the year 2017 is that 2017 can be considered a relatively normal year
and could therefore be representative for a year without disruptions, such as the COVID-19
pandemic in 2020-2021 or the Russian invasion of Ukraine in 2022, that may impact the
economy and the use of energy. Also, the large number and the variety of variables used in
the analyses of this thesis and especially the presence of behavioral data is valuable, since
it has been recognized that studies investigating energy-related behavior are mostly found
only for small sample sizes (van den Brom, 2020).
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6 Conclusion

The conclusion of this thesis answers the research questions by summarizing the main
findings in subsection 6.1 and reflects on the meaning and implications of the findings in a
broader context in subsection 6.2.

6.1 Answering the research questions

The objectives of this thesis were to deliver an analysis of the actual gas use and the
energy performance gap in a sample of households representative of the Dutch population;
to determine to what extent ownership of the dwelling influences the size of the energy
performance gap; and to investigate the mechanism that could explain the influence of
ownership on the energy performance gap.

A large, representative, and relatively recent data set of the Dutch housing stock, WoON
2018, was analyzed by descriptive statistics and multiple linear regression to explain the
variance in actual gas consumption of households and in the difference between actual gas
consumption and theoretical gas consumption—the energy performance gap. The results
of these analyses provide the answers to the sub-questions of this research.

To what extent does the type of ownership—owner-occupied or rental—predict the actual
natural gas consumption and the energy performance gap?

A moderate positive correlation was identified between home ownership and actual gas
consumption, This means that, without taking any other influencing factors into account,
owner-occupied dwellings have a higher yearly gas consumption than rental dwellings.

Multiple regression analysis allowed to control for influencing factors, such as building
characteristics and other occupant characteristics, that influence the gas consumption of a
household. Within rental dwellings, social housing and private rental dwellings were distin-
guished. In the larger sample (N = 41,971), the type of ownership was significant at a 1%
significance level for the yearly natural gas use of a household. Specifically, owner-occupied
dwellings consumed more gas than social rental dwellings, and private rental dwellings con-
sumed more gas than owner-occupied dwellings, ceteris paribus. A suggested explanation
for the higher gas use of private rental dwellings was the so-called “all-in” rent, which elim-
inates tenants’ financial incentive to conserve energy, leading to higher energy consumption
(Government of the Netherlands, n.d.a; Levinson and Niemann, 2004; Maruejols and Young,
2011). However, despite the statistical significance of the ownership categories, their effects
were relatively weak compared to the average actual gas consumption in the sample of 1,400
m3/year. In fact, a similar analysis on a smaller sample (N = 2,010) indicated that neither
ownership type was statistically significant for actual gas consumption, ceteris paribus. This
was attributed to the smaller sample size, in combination with the weak effects identified
in the larger sample.

Also, a weak positive correlation was found between home ownership and the energy
performance gap in case of overprediction. This means that for cases where the theoretical
gas consumption exceeds the actual gas consumption, the gap is larger in owner-occupied
dwellings ccompared to rental dwellings. Multiple regression analysis of the energy perfor-
mance gap showed, however, that ownership type was insignificant, ceteris paribus, both
for overpredictions and underpredictions.

In sum, the multiple regression analyses showed that when occupant characteristics and
building characteristics are controlled for, owner-occupied dwellings do not correlate with
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a higher gas consumption anymore. Furthermore, private rental dwellings do (practically)
not have an effect on actual gas consumption and the EPG either, ceteris paribus.

What empirical variables influence the relationship between ownership and the energy per-
formance gap?

While there is a correlation between homeowners and higher gas use and larger over-
predictions, there is no (practical) effect of ownership type when building and occupant
characteristics are controlled for. This means that there are most likely no major behav-
ioral differences that could cause an effect of ownership type on actual gas use or the EPG.
Rather, the correlation is probably influenced by differences in building characteristics and
other household characteristics. Differences in building and occupant characteristic be-
tween the types of ownership were investigated using descriptive statistics. By in addition
considering their explanatory effect on actual gas use and/or the energy performance gap,
potential factors are identified that could explain the correlation. For actual gas consump-
tion these are the household size (number of occupants), building type (apartment, terraced,
semi-detached or detached), floor area, and disposable income. For the energy performance
gap the potential factors are building type and floor area.

What is the mechanism of the relationship between ownership and the energy performance
gap?

When building and occupant characteristics are controlled for, there is no (practical)
effect of ownership type on actual gas consumption or on the EPG. This means that be-
havioral differences probably do not cause an effect of ownership type on actual gas use
or the EPG. A number of building characteristics and other household characteristics were
identified that could potentially explain the correlations through the following mechanisms.

A higher number of occupants increases the gas use of a dwelling. Larger households are
likely to consume more hot water, e.g., for showering. Also, they might need to heat more
rooms, since more rooms are likely to be occupied simultaneously. At the same time, owner-
occupied dwellings more often contain larger households. Nearly eighty percent of owner-
occupied dwellings contain households of two people or more, whereas in rental dwellings
only about half contain two or more occupants. Hence, larger household sizes contribute to
the higher gas consumption of owner-occupied dwellings.

Detached and semi-detached dwellings have the largest heat loss areas compared to other
building types like terraced or apartments, because they are not surrounded by (similar)
dwellings. Due to the higher thermal losses, these types of building need to consume more
gas for heating. At the same time, previous research found that occupants of detached
dwellings choose lower indoor temperatures (Lindén et al., 2006). This may indicate more
conserving behavior of occupants of detached dwellings. This in turn may cause them to
deviate more from the assumptions in the theoretical calculation, thereby leading to larger
overpredictions. Almost half of all owner-occupied dwellings are either semi-detached or
detached houses, whereas only a few percent of rental dwellings are in these categories.
The higher gas requirement for heating of (semi-)detached buildings therefore contributes
to a higher gas consumption in owner-occupied dwellings. At the same time, the potentially
more conserving behavior of occupants in detached dwellings than assumed in the theoretical
calculations may lead to larger overpredictions of owner-occupied dwellings.

A larger floor area increases the volume of the house, i.e., the space to be heated. As a
consequence, larger houses need to consume more gas to heat their spaces. Also, larger floor
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areas increase the size of overpredictions. This is because an assumption in the theoretical
calculation is that the entire floor area is heated, whereas in reality homes with larger floor
areas are less likely to heat all their rooms and spaces. This causes the gas consumption to
be more overestimated as floor area increases. Owner-occupied houses are on average larger
than rental dwellings, thereby requiring a higher gas consumption for heating the dwelling,
and increasing overpredictions.

Higher disposable incomes lead to slightly higher gas consumption, because households
with higher income may use gas less frugally than people with lower incomes. For example,
they may choose higher indoor temperatures and heat more rooms. Average disposable
income is higher in owner-occupied dwellings than in rental dwellings, which allows home-
owners to afford a higher energy use.

How does home ownership influence the energy performance gap in residential gas consump-
tion?
The main research question can be answered based on the answers to the sub-questions.
To summarize, ownership does not have a practically significant effect neither on actual gas
consumption or the EPG, ceteris paribus. However, there is a positive correlation between
home ownership and actual gas consumption, and between home ownership and the size of
overpredictions. These correlations have been found to be caused most likely by a number
of building characteristics and household characteristics, rather than through behavioral
differences, as initially hypothesized. Specifically, the correlation between home ownership
and actual gas consumption can be explained by the larger floor area, type of buildings,
higher income, and larger household size. The correlation between home ownership and the
size of overpredictions is explained by type of building and larger floor area.

6.2 Reflection

Despite its limitations, this thesis provides an analysis of actual gas consumption and the
EPG on a large, representative and relatively recent sample of Dutch households. It has
shown the effect on actual gas consumption and the energy performance gap of multiple oc-
cupant characteristics, building characteristics and some behavioral aspects, using a large,
representative sample of the Dutch housing stock. The findings in this report add to the
understanding of the factors that determine the variation in the consumption of natural
gas in the residential sector and in the energy performance gap. Understanding the energy
performance gap and analysing actual residential energy consumption data is necessary
to improve theoretical consumption calculations. Policymakers set energy saving targets,
develop energy-saving plans and monitor the energy-saving progress based on theoretical en-
ergy consumption (van den Brom, 2020), but the discrepancy between actual and theoretical
energy consumption has shown that these energy reduction targets cannot be met based on
actual energy consumption (Majcen et al., 2013a). Combining actual energy consumption
data with the theoretical models can narrow the energy performance gap, providing more
reliable outcomes (van den Brom, 2020). Furthermore, knowing which type of household
characteristics contribute to higher or lower energy consumption can also improve the effec-
tiveness of energy-saving policies and campaigns, if the right audience is targeted. Besides
policy-making, theoretical energy consumption is also used in practice by contractors and
consultants, for instance to predict the effectiveness of renovation measures, to estimate
their energy savings and to calculate their payback times. Understanding the energy per-
formance gap and the factors that may affect it, can help practitioners take into account
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the possible inaccuracy of the predicted effects of renovation measures. More certainty on
the payback time may increase the willingness of homeowners and housing associations to
take renovation measures (van den Brom, 2020).

Occupants have been shown to explain a large part of the variation in actual energy
consumption, but previous research has mostly been done on social rental housing data
van den Brom (2020); Majcen (2016). At the same time, homeowners and tenants have
been shown to behave differently with respect to energy use in some cases (Levinson and
Niemann, 2004; Aydin et al., 2017; Madlener and Hauertmann, 2011; Maruejols and Young,
2011). This thesis has shown that there is no practically significant effect of ownership type
itself on actual gas consumption or on the energy performance gap, when other occupant and
building characteristics are controlled for. Thus, it shows that distinguishing owners and
(social or private) tenants in policy is not necessary to improve the effectiveness of energy
saving policies and campaigns. However, it has also shown that there is a correlation
between home ownership and higher natural gas consumption, which can be explained
by factors like the larger average size, higher frequency of (semi-)detached homes, and
larger household sizes of home owners. In addition, home ownership is the most frequently
occurring ownership type in the Netherlands. Thus, the distinction of ownership type may
still be of practical use to, for example, municipalities. Targeting homeowners could be an
efficient way to promote energy-saving measures in the largest, most common, and highest
energy-consuming dwellings.
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A Variable definitions

Table A1: Description of the variables used in the regression analysis.

Name Description [units]

D
e
p
e
n
d
e
n
t

v
a
ri
a
b
le
s

gasSpecA Actual specific gas use, i.e. actual gas consumption of a dwelling

in 2017 per unit floor area [m3·m−2·year−1]
gasSpecT Estimated theoretical specific gas use, i.e. estimated theoretical gas consumption per

unit floor area [m3·m−2·year−1]

gasA Actual gas consumption of a dwelling in 2017 [m3]

gasT Estimated theoretical gas consumption of a dwelling [m3]

EPG Difference between theoretical and actual gas consumption (Equation 8) [m3]

EPGm2 Difference between theoretical and actual specific gas consumption [m3·m−2·year−1]

In
d
e
p
e
n
d
e
n
t
v
a
ri
a
b
le
s

social (ref.) = 1 if social rental dwelling, 0 otherwise
owner = 1 if owner-occupied dwelling, 0 otherwise
private = 1 if private rental dwelling, 0 otherwise

floorArea Floor area of the dwelling [m2]
n1 (ref.) = 1 if household consists of a single person, 0 otherwise
n2 = 1 if household consists of two people, 0 otherwise
n3 = 1 if household consists of three people, 0 otherwise
n4 = 1 if household consists of four people, 0 otherwise
n5m = 1 if household consists of two people, 0 otherwise
A (ref.) = 1 if energy label A, 0 otherwise
B = 1 if energy label B, 0 otherwise
C = 1 if energy label C, 0 otherwise
D = 1 if energy label D, 0 otherwise
E = 1 if energy label E, 0 otherwise
F = 1 if energy label F, 0 otherwise
G = 1 if energy label G, 0 otherwise
apartment (ref.) = 1 if flat or apartment, 0 otherwise
terraced = 1 if mid-terraced or end-terraced house, i.e. a single-family house

attached to other similar houses on both sides (mid-terraced)
or one side (end-terraced), 0 otherwise

semiDetached = 1 if semi-detached dwelling, i.e. a single-family house attached to
a different type of building, 0 otherwise

detached = 1 if single-family house detached from other buildings, 0 otherwise
before1945 (ref.) = 1 if building constructed before 1945, 0 otherwise
45to69 = 1 if building constructed between 1945 and 1969, 0 otherwise
70to89 = 1 if building constructed between 1970 and 1989, 0 otherwise
90to09 = 1 if building constructed between 1990 and 2009, 0 otherwise
after10 = 1 if building constructed in 2010 or after, 0 otherwise
noUniversity (ref.) = 1 if neither respondent or their partner has university education

(master’s degree or doctoral degree) school, 0 otherwise
university = 1 if respondent and/or their partner has university education

(master’s degree or doctoral degree), 0 otherwise
noIncome (ref.) = 1 if household has no source of income (i.e., has income exclusively from properties

or allowances), 0 otherwise
employed = 1 if main source of income is employment, 0 otherwise
benefits = 1 if main source of income are state benefits, 0 otherwise
retired = 1 if main source of income is pension, 0 otherwise
dispInc Disposable income [ 10,000 EUR / year]
value Value of the house in 2017 [10,000 EUR]
boiler (ref.) = 1 if heating installation is a gas-fueled boiler, 0 otherwise
wood = 1 if heating installation fueled by wood or pellets, 0 otherwise
gasHeater = 1 if heating installation is a gas furnace or gas fireplace, 0 otherwise
heatPump = 1 if heating installation is a heat pump, 0 otherwise
otherHeat = 1 if heating installation is neither a boiler, wood-fueled, heater, or

heat pump, 0 otherwise
dhwGasBoiler (ref.) = 1 if dhw installation is a gas-fueled boiler, 0 otherwise
dhwSolar = 1 if dhw installation is a gas-fueled boiler combined with a solar boiler,

0 otherwise
dhwGeyser = 1 if dhw installation is a gas-fueled geyser, 0 otherwise
dhwElecBoiler = 1 if dhw installation is an electric boiler, 0 otherwise
dhwHeatPump = 1 if dhw installation is a heat pump, 0 otherwise
dhwOther = 1 if dhw installation is neither a (solar or electric) boiler, geyser or heat

pump, 0 otherwise
away (ref.) = 1 if occupant is almost never at home on weekdays between approximately

9:00 and 18:00, 0 otherwise
home = 1 if occupant almost always at home on weekdays between approximately

9:00 and 18:00, 0 otherwise
depends = 1 if occupant neither almost always or almost never at home on weekdays

between approximately 9:00 and 18:00, 0 otherwise
tempDay Average indoor temperature setting on weekdays between approximately

9:00 and 18:00 [°C]
tempNight Average indoor temperature setting on weekdays between approximately

18:00 and 9:00 [°C]
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B Descriptive statistics on whole samples

B.1 Dwelling size

Because average dwelling size (floor area) has been reported to vary among different energy
labels (Majcen et al., 2013a), they are visualized for the housing module sample and the
energy module sample in Figures B1a and B1b, respectively. Specifically, in the study by
Majcen et al. (2013a), label A dwellings are on average considerably larger than dwellings
with any of the other labels. This is not the case in the housing or energy module sample
Figure B1. In the housing module sample (Figure B1a), label E consists of considerably
smaller dwellings compared to other labels. In the energy module sample (Figure B1b),
dwellings with a label G are considerably larger on average than dwellings with higher
efficiency labels. Moreover, the average floor areas found in the WoON 2018 samples are
generally larger than those found in Majcen et al. (2013a). In Figure B1a, the mean areas
vary between 94.9 m2 and 130.3 m2, and in Figure B1b, between 117.5 m2 and 153 m2,
whereas those found by Majcen et al. (2013a) vary between 90.2 m2 and 105.1 m2. This,
and the different distribution, may be explained by the large overrepresentation of social
housing in the sample used by Majcen et al. (2013a) (almost 80% of the sample), since
social housing is more likely to be smaller in size than private rental or owner-occupied
dwellings. The disagreement between Figure B1a and Figure B1b may be attributable
to the possible inaccuracy of the energy labels in the housing module sample and their
discrepancies between the two samples (subsection 3.4).

(a) (b)

Figure B1: Mean floor area per label in the housing module sample (a) and in the energy
module sample (b).

B.2 Continuous variables

Tables B1 and B2 show the summary statistics of the continuous variables of the housing
module sample and the energy module sample, respectively.

As mentioned in subsection 4.4, the phenomena of overprediction (EPG > 0) and under-
prediction (EPG < 0) can be distinguished and should be analyzed separately. For that, the
energy module was divided into cases of overprediction and underprediction, leading to two
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Table B1: Summary statistics of the ratio scaled variables of the housing module sample.
See Table A1 for variable descriptions and units.

Variable N Mean St. Dev. Min Max

gasA 41,971 1,399.3 764.0 1 9,196
gasSpecA 41,971 12.4 6.6 0.01 132.4
floorArea 41,971 119.3 57.2 14 1,000
dispInc 41,971 4.2 3.0 −101.3 126.4
value 41,971 23.5 13.4 1.7 272.2

Table B2: Summary statistics of the ratio scaled variables of the energy module sample.
See Table A1 for variable descriptions and units.

Variable N Mean St. Dev. Min Max

gasA 2,010 1,416.4 758.5 25 7,438
gasSpecA 2,010 12.1 6.2 0.2 113.5
floorArea 2,010 123.2 53.6 15 617
dispInc 2,010 4.3 2.6 −0.3 42.9
value 2,010 25.5 13.4 4.3 131.8
EI 2,010 1.6 0.5 −1.4 3.5
ALoss 2,010 226.4 136.6 15.5 2,362.6
gasT 2,010 2,159.4 1,241.1 −4,269.4 14,134.6
gasSpecT 2,010 18.0 7.5 −23.3 132.6
EPG 2,010 743.0 925.9 −6,326.4 9,858.2
tempDay 2,010 19.0 2.3 0.0 26.0
tempNight 2,010 18.2 2.0 0.0 26.0
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separate samples. The summary statistics of the continuous variables in the overprediction
and underprediction samples are shown in Tables B3 and B4, respectively.

Tables B5 and B6 show the mean and standard deviation of the actual (specific) gas
consumption per category in the housing module sample and energy module sample, re-
spectively, as well as the frequency (count) of the categories. For example, there are 27,136
owner-occupied dwellings in the housing module sample, and their average actual gas use
is 1567 m3 per year (Table B5).

Table B3: Summary statistics of the ratio scaled variables of the overpredictions (EPG >
0). See Table A1 for variable descriptions and units.

Variable N Mean St. Dev. Min Max

gasA 1,709 1,356.0 712.5 25 7,438
gasSpecA 1,709 11.2 5.3 0.2 113.5
floorArea 1,709 125.4 54.3 15 617
dispInc 1,709 4.3 2.6 −0.3 42.9
value 1,709 25.8 13.3 5.8 125.9
EI 1,709 1.7 0.5 0.6 3.5
ALoss 1,709 231.8 136.8 15.5 2,362.6
gasT 1,709 2,296.4 1,250.5 556.9 14,134.6
gasSpecT 1,709 18.8 7.4 4.6 132.6
EPG 1,709 940.4 830.8 0.4 9,858.2
tempDay 1,709 18.9 2.2 0.0 24.0
tempNight 1,709 18.1 1.9 0.0 24.0

Table B4: Summary statistics of the ratio scaled variables of the underpredictions (EPG <
0). See Table A1 for variable descriptions and units.

Variable N Mean St. Dev. Min Max

gasA 301 1,759.3 907.2 586 7,314
gasSpecA 301 17.1 7.9 4.9 58.7
floorArea 301 110.1 47.0 15 383
dispInc 301 4.4 2.8 0.3 24.1
value 301 23.5 13.3 4.3 131.8
EI 301 1.3 0.4 −1.4 2.7
ALoss 301 195.8 131.4 15.6 814.2
gasT 301 1,381.8 835.7 −4,269.4 5,114.2
gasSpecT 301 13.2 6.3 −23.3 45.9
EPG 301 −377.5 574.6 −6,326.4 −0.8
tempDay 301 19.6 2.4 0.0 26.0
tempNight 301 18.8 2.4 0.0 26.0
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B.3 Categorical variables

Table B5: Summary statistics of the actual (specific) gas consumption per category in the
housing module sample (N = 41,971). See Table A1 for variable descriptions.

Actual gas use
(m3 · year−1)

Actual specific gas use
(m3 · m−2 · year−1)

Category Count Mean St. Dev. Mean St. Dev
owner 27136 1566.94 800.22 12.18 5.96
social 11243 1043.20 491.89 12.43 6.28
private 3592 1247.31 770.68 14.54 10.54
n1 13318 1146.50 694.49 12.59 7.64
n2 16189 1472.28 788.07 12.27 6.12
n3 5087 1506.43 715.88 12.67 6.21
n4 5356 1581.98 693.59 12.32 5.49
n5more 2021 1726.52 847.24 12.77 6.33
A 4553 1049.74 589.75 8.79 4.78
B 7241 1276.94 688.77 10.38 5.28
C 13399 1305.75 640.45 11.86 5.41
D 5176 1563.94 819.77 14.01 6.83
E 3274 1330.02 652.26 14.58 6.56
F 4033 1742.44 838.29 14.99 6.88
G 4295 1800.06 986.70 15.74 9.08
apartment 10961 917.88 515.94 12.35 8.16
terraced 19136 1320.68 533.37 12.09 5.36
semiDetached 6085 1676.84 630.77 12.54 5.47
detached 5789 2278.86 1027.65 13.73 7.77
before1945 6971 1657.25 910.96 15.13 8.40
45to69 9508 1480.94 763.16 14.43 6.68
70to89 14071 1409.27 719.58 12.22 5.58
90to09 9508 1198.29 654.18 9.50 4.66
after10 1913 979.00 548.24 9.14 6.11
noUniversity 34829 1360.91 727.99 12.50 6.59
university 7142 1586.44 896.62 12.21 6.58
noIncome 239 1376.88 873.67 13.85 8.23
employed 24277 1409.31 736.62 12.25 6.42
benefits 3930 1166.02 609.88 13.64 8.20
retired 13525 1449.47 835.22 12.43 6.29
boiler 40153 1400.63 757.59 12.40 6.47
wood 155 1496.50 1112.41 12.26 11.60
gasHeater 920 1334.16 729.35 15.09 7.84
heatPump 433 1332.10 957.46 11.31 8.93
otherHeat 310 1463.57 1096.01 13.04 8.93
dhwGasBoiler 38627 1392.54 748.72 12.34 6.34
dhwElecBoiler 872 1530.18 1059.92 14.62 10.60
dhwGeyser 1265 1535.38 826.20 15.34 7.76
dhwSolar 686 1372.63 838.39 11.04 7.58
dhwHeatPump 374 1304.40 899.81 10.97 8.85
dhwOther 147 1589.67 1089.22 13.40 7.46
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Table B6: Summary statistics of the actual (specific) gas consumption per category in the
energy module sample (N = 2,010). See Table A1 for variable descriptions.

Actual gas use
(m3 · year−1)

Actual specific gas use
(m3 · m−2 · year−1)

Category Count Mean St. Dev. Mean St. Dev.
owner 1319 1590.03 791.16 11.88 5.98
social 519 1035.80 497.79 12.37 6.08
private 172 1233.08 690.99 13.00 7.47
n1 637 1093.74 579.11 11.97 6.47
n2 944 1553.56 807.67 12.05 6.12
n3 193 1542.45 672.73 12.72 6.03
n4 169 1663.75 825.98 12.29 5.51
n5more 67 1563.72 637.42 11.94 5.49
A 323 1161.69 704.38 9.42 5.55
B 374 1157.05 591.05 9.72 4.26
C 663 1386.83 654.49 12.04 5.16
D 322 1571.48 776.39 14.35 8.24
E 176 1773.20 764.00 14.98 5.30
F 108 1819.43 832.22 15.68 6.17
G 44 2383.77 1336.10 16.32 5.40
apartment 556 934.60 502.66 11.66 7.00
terraced 840 1324.47 527.58 11.99 4.93
semiDetached 292 1734.71 680.26 12.86 7.91
detached 322 2199.34 940.85 12.48 5.57
before1945 360 1637.62 893.16 14.57 8.14
45to69 383 1472.20 711.47 13.82 5.78
70to89 673 1460.49 713.37 12.25 5.44
90to09 497 1248.18 710.84 9.47 4.31
after10 97 930.47 523.09 8.69 5.15
noUniversity 1503 1345.33 697.91 12.13 6.37
university 507 1626.98 882.45 12.04 5.48
noIncome 10 1042.90 504.43 9.97 5.22
employed 902 1431.21 763.89 11.81 5.60
benefits 185 1183.12 574.75 14.00 7.54
retired 913 1453.07 779.38 12.03 6.32
boiler 1963 1420.10 759.69 12.12 6.14
wood 4 1267.75 540.77 13.64 7.13
gasHeater 10 1224.00 740.34 12.75 7.65
heatPump 23 1167.26 578.04 9.87 4.98
otherHeat 10 1509.20 955.03 12.39 9.53
dhwGasBoiler 1891 1406.04 744.81 12.05 5.98
dhwElecBoiler 18 1317.56 764.49 15.59 13.63
dhwGeyser 26 1990.00 1122.84 15.70 8.09
dhwSolar 47 1517.43 887.07 11.56 7.18
dhwHeatPump 21 1236.43 554.38 10.39 4.81
dhwOther 7 2192.00 1233.63 13.18 5.85
away 149 1142.92 652.44 10.71 5.12
home 805 1555.77 783.74 12.44 6.55
depends 1056 1348.69 733.25 12.05 5.95
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C Theoretical gas use

Table C1 displays the values of the theoretical and actual electricty that were read from
Figure 10 of Chapter 2 of Majcen (2016). The ratio was used to estimate theoretical
electricity consumption, Qelectricity. Table C2 shows the mean and standard deviation of
the theoretical (specific) gas consumption per category in the energy module sample, as well
as the frequency (count) of the categories. For example, there are 1,319 owner-occupied
dwellings in the energy module sample, and their average theoretical gas use is 2,460 m3

per year. Tables C3 to C5 contain additional regression tables for different dependent
variables: the theoretical (specific) gas use, similarly to what was done by Majcen et al.
(2015) (Table C3), the EPG per m2 floor area (Table C4), and the EPG and EPG per m2

for the whole energy module sample, i.e. over- and underpredictions combined (Table C5).

Table C1: Actual and theoretical electricity consumption read from Figure 10 of Chapter
2 of Majcen (2016). The ratio is used to estimate theoretical electricity consumption,
Qelectricity.

Label A B C D E F G
Theoretical electricity use (kWh/year) 1300 1050 1000 1000 1000 1000 1100
Actual electricity use (kWh/year) 2900 2650 2750 2900 2900 1800 2750
Ratio 0.45 0.40 0.36 0.34 0.34 0.56 0.40
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Table C2: Summary statistics of the theoretical (specific) gas consumption per category (N
= 2,010). See Table A1 for variable descriptions.

Theoretical gas use
(m3 · year−1)

Theoretical specific gas use
(m3 · m−2 · year−1)

Category Count Mean St. Dev. Mean St. Dev

owner 1319 2460.26 1333.70 18.01 7.81
social 519 1513.06 638.90 17.80 6.74
private 172 1802.49 1027.44 18.25 7.59
n1 637 1756.69 906.06 18.50 7.20
n2 944 2379.55 1388.17 18.00 8.01
n3 193 2149.08 996.26 17.26 6.71
n4 169 2419.83 1250.69 17.20 6.30
n5more 67 2259.16 1459.64 16.82 8.40
A 323 1306.44 729.18 10.21 4.09
B 374 1610.29 814.07 13.15 3.31
C 663 2037.55 852.42 17.20 3.33
D 322 2530.41 989.17 22.61 7.38
E 176 3114.34 1146.29 25.77 4.11
F 108 3506.15 1394.00 29.33 4.87
G 44 5083.87 2678.38 34.76 6.14
apartment 556 1346.01 599.59 16.39 7.00
terraced 840 2005.50 785.68 18.02 6.54
semiDetached 292 2580.40 999.19 18.79 9.54
detached 322 3583.58 1759.60 19.86 8.20
before1945 360 2775.23 1650.92 23.52 9.07
45to69 383 2507.53 1229.56 22.98 6.62
70to89 673 2122.49 997.64 17.22 4.79
90to09 497 1709.23 949.37 12.75 4.38
after10 97 1061.92 469.96 9.73 3.85
noUniversity 1503 2041.28 1123.58 17.91 7.69
university 507 2509.58 1484.53 18.18 7.06
noIncome 10 1605.88 629.15 15.32 7.92
employed 902 2142.66 1150.34 17.48 6.90
benefits 185 1665.11 827.85 19.14 7.57
retired 913 2282.16 1369.41 18.26 8.07
boiler 1963 2167.58 1235.35 18.05 7.47
wood 4 2327.32 679.88 24.18 9.49
gasHeater 10 2568.41 1071.79 24.98 9.48
heatPump 23 1283.60 1596.14 8.50 4.45
otherHeat 10 2091.39 1198.09 15.71 5.60

C-2



Table C3: Estimates of the regression coefficients by OLS on the theoretical gas consumption
[m3] and theoretical specific gas use [m3·m−2]. The standard errors are given in parentheses.
See Table A1 for variable definitions, units and reference categories.

Dependent variable:

gasT gasSpecT

owner −31.565 (32.706) 0.074 (0.263)
private −68.850 (45.691) −0.235 (0.368)

n2 −21.128 (30.086) −0.289 (0.242)
n3 −109.478∗∗ (46.983) −0.733∗ (0.378)
n4 −80.995 (51.321) −1.303∗∗∗ (0.413)
n5more −202.076∗∗∗ (69.237) −1.536∗∗∗ (0.558)

university 18.669 (28.633) 0.272 (0.231)

employed 115.853 (161.749) −0.157 (1.302)
benefits 92.457 (165.243) 0.009 (1.331)
retired 204.378 (161.808) 0.276 (1.303)

dispInc 7.660 (5.761) −0.018 (0.046)

floorArea 11.663∗∗∗ (0.324) −0.047∗∗∗ (0.003)

value 4.309∗∗∗ (1.224) 0.025∗∗ (0.010)

B 413.304∗∗∗ (40.914) 2.382∗∗∗ (0.329)
C 804.300∗∗∗ (41.480) 5.834∗∗∗ (0.334)
D 1,338.400∗∗∗ (49.969) 10.863∗∗∗ (0.402)
E 1,763.502∗∗∗ (57.110) 13.558∗∗∗ (0.460)
F 2,174.142∗∗∗ (66.023) 16.773∗∗∗ (0.532)
G 3,258.829∗∗∗ (89.470) 22.617∗∗∗ (0.720)

terraced 242.002∗∗∗ (30.962) 2.211∗∗∗ (0.249)
semiDetached 416.979∗∗∗ (42.278) 4.236∗∗∗ (0.340)
detached 835.413∗∗∗ (47.076) 6.871∗∗∗ (0.379)

45to69 −40.312 (38.377) −0.660∗∗ (0.309)
70to89 −33.239 (38.348) −1.282∗∗∗ (0.309)
90to09 −150.982∗∗∗ (44.569) −1.618∗∗∗ (0.359)
after10 −85.349 (69.477) −2.437∗∗∗ (0.559)

wood −343.156 (254.833) −0.367 (2.052)
gasHeater −243.267 (170.495) −0.608 (1.373)
heatPump −349.466 (368.984) −0.870 (2.971)
otherHeat −280.777∗ (165.896) −2.068 (1.336)

dhwElecBoiler 20.667 (120.852) 1.268 (0.973)
dhwGeyser 70.850 (106.806) 1.012 (0.860)
dhwSolar −82.640 (75.089) −0.218 (0.605)
dhwHeatPump 136.355 (385.028) −0.999 (3.100)
dhwOther 92.121 (201.529) −0.675 (1.623)

home −12.107 (53.386) 0.247 (0.430)
depends 24.560 (48.830) 0.282 (0.393)

tempDay −9.277 (6.836) −0.111∗∗ (0.055)
tempNight 2.554 (7.446) −0.001 (0.060)

Constant −523.621∗∗ (211.941) 17.114∗∗∗ (1.707)

Observations 2,010 2,010
R2 0.842 0.721
Adjusted R2 0.839 0.716
Residual Std. Error (df = 1970) 498.443 4.014
F Statistic (df = 39; 1970) 268.854∗∗∗ 130.816∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C4: Estimates of the regression coefficients by OLS of the EPG per m2 in case
of overprediction or underprediction. The standard errors are given in parentheses. See
Table A1 for variable definitions, units and reference categories.

Dependent variable:

EPGm2
Overpredictions Underpredictions

owner −0.122 (0.279) −0.029 (0.788)
private −0.244 (0.401) −0.775 (0.991)

n2 −1.106∗∗∗ (0.252) 1.477∗ (0.808)
n3 −1.967∗∗∗ (0.404) 0.346 (1.107)
n4 −1.762∗∗∗ (0.447) 1.942∗ (1.151)
n5more −1.883∗∗∗ (0.584) −0.963 (1.742)

university −0.004 (0.240) 0.138 (0.763)

employed −0.377 (1.411) 4.063 (3.513)
benefits −1.442 (1.439) 3.982 (3.615)
retired −0.717 (1.409) 5.374 (3.530)

dispInc −0.047 (0.049) −0.287∗∗ (0.142)

floorArea −0.005∗ (0.003) 0.042∗∗∗ (0.011)

value −0.007 (0.010) −0.007 (0.033)

B 1.215∗∗∗ (0.371) 1.417∗ (0.841)
C 2.883∗∗∗ (0.381) 1.199 (0.828)
D 5.584∗∗∗ (0.445) 0.419 (1.422)
E 7.445∗∗∗ (0.493) 0.233 (2.231)
F 10.518∗∗∗ (0.562) 5.610∗∗ (2.664)
G 14.556∗∗∗ (0.729)

terraced 0.054 (0.264) 0.762 (0.822)
semiDetached 0.300 (0.354) 0.338 (1.194)
detached 2.176∗∗∗ (0.392) −2.734∗∗ (1.374)

45to69 0.485 (0.314) 1.349 (1.292)
70to89 −0.117 (0.319) 0.591 (1.162)
90to09 0.152 (0.379) 1.071 (1.260)
after10 0.875 (0.655) 1.890 (1.445)

wood −1.921 (2.299) 1.215 (4.929)
gasHeater 2.016 (1.341)
heatPump 5.846∗∗ (2.881) −2.405∗ (1.370)
otherHeat −0.475 (1.365) −6.465 (6.235)

dhwElecBoiler 1.461 (1.022) −3.048 (3.621)
dhwGeyser −1.642∗ (0.899) −5.972∗∗ (2.784)
dhwSolar −0.028 (0.645) −0.615 (1.802)
dhwHeatPump −5.375 (3.284)
dhwOther −3.869∗∗ (1.575)

home 0.007 (0.451) −2.695∗∗ (1.354)
depends −0.024 (0.412) −2.033 (1.238)

tempDay −0.256∗∗∗ (0.057) 0.029 (0.185)
tempNight −0.166∗∗∗ (0.064) −0.150 (0.184)

Constant 13.567∗∗∗ (1.854) −9.404∗∗ (4.589)

Observations 1,709 301
R2 0.472 0.203
Adjusted R2 0.460 0.098
Residual Std. Error 3.883 (df = 1669) 4.610 (df = 265)
F Statistic 38.273∗∗∗ (df = 39; 1669) 1.931∗∗∗ (df = 35; 265)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
C-4



Table C5: Estimates of the regression coefficients by OLS on the EPG and EPG per m2

in the whole energy module sample. The standard errors are given in parentheses. See
Table A1 for variable definitions, units and reference categories.

Dependent variable:

EPG EPGm2

owner −10.343 (42.096) −0.004 (0.272)
private −121.177∗∗ (58.809) −0.118 (0.381)

n2 −73.511∗ (38.724) −1.253∗∗∗ (0.251)
n3 −223.388∗∗∗ (60.471) −1.879∗∗∗ (0.391)
n4 −179.144∗∗∗ (66.055) −2.131∗∗∗ (0.427)
n5more −246.789∗∗∗ (89.115) −1.738∗∗∗ (0.577)

university 3.195 (36.853) −0.108 (0.238)

employed 44.197 (208.187) −1.072 (1.347)
benefits −113.799 (212.684) −2.083 (1.376)
retired 108.028 (208.263) −1.493 (1.348)

dispInc −22.754∗∗∗ (7.416) −0.009 (0.048)

floorArea 8.706∗∗∗ (0.416) −0.006∗∗ (0.003)

B 371.022∗∗∗ (52.660) 0.626∗ (0.341)
C 565.897∗∗∗ (53.389) 2.182∗∗∗ (0.345)
D 912.265∗∗∗ (64.315) 4.903∗∗∗ (0.416)
E 1,185.744∗∗∗ (73.506) 6.863∗∗∗ (0.476)
F 1,558.965∗∗∗ (84.978) 9.597∗∗∗ (0.550)
G 2,321.427∗∗∗ (115.157) 14.168∗∗∗ (0.745)

terraced 44.663 (39.851) 0.168 (0.258)
semiDetached −11.522 (54.416) 0.284 (0.352)
detached 157.810∗∗∗ (60.591) 2.242∗∗∗ (0.392)

45to69 19.844 (49.395) 0.433 (0.320)
70to89 −70.784 (49.358) −0.178 (0.319)
90to09 −20.665 (57.365) 0.082 (0.371)
after10 127.191 (89.423) 0.246 (0.579)

wood −458.301 (327.995) −2.374 (2.122)
gasHeater 334.504 (219.444) 1.953 (1.420)
heatPump 1,147.260∗∗ (474.919) 6.027∗∗ (3.073)
otherHeat −118.001 (213.525) −0.991 (1.382)

dhwElecBoiler 104.594 (155.549) 1.389 (1.007)
dhwGeyser −366.749∗∗∗ (137.470) −0.663 (0.890)
dhwSolar −79.354 (96.648) 0.001 (0.625)
dhwHeatPump −1,443.469∗∗∗ (495.569) −4.517 (3.207)
dhwOther −539.507∗∗ (259.388) −3.468∗∗ (1.678)

value −2.903∗ (1.576) −0.006 (0.010)

home −40.448 (68.713) 0.319 (0.445)
depends 10.828 (62.848) 0.256 (0.407)

tempDay −35.965∗∗∗ (8.799) −0.242∗∗∗ (0.057)
tempNight −24.827∗∗∗ (9.584) −0.131∗∗ (0.062)

Constant 373.759 (272.789) 13.538∗∗∗ (1.765)

Observations 2,010 2,010
R2 0.529 0.418
Adjusted R2 0.520 0.406
Residual Std. Error (df = 1970) 641.546 4.151
F Statistic (df = 39; 1970) 56.791∗∗∗ 36.229∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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