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Differential proteomic analysis 
by SWATH‑MS unravels the most 
dominant mechanisms underlying 
yeast adaptation to non‑optimal 
temperatures under anaerobic 
conditions
Tânia Pinheiro1, Ka Ying Florence Lip2, Estéfani García‑Ríos3, Amparo Querol3, José Teixeira1, 
Walter van Gulik2, José Manuel Guillamón3 & Lucília Domingues1*

Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular 
robustness of strains, providing more economically and sustainable processes. We investigated the 
differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, 
ADY5, a laboratory strain, CEN.PK113‑7D and an industrial bioethanol strain, Ethanol Red, grown 
at sub‑ and supra‑optimal temperatures under chemostat conditions. We employed anaerobic 
conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions 
was performed by sequential window acquisition of all theoretical spectra‑mass spectrometry 
(SWATH‑MS), allowing the quantification of 997 proteins, data available via ProteomeXchange 
(PXD016567). Our analysis demonstrated that temperature responses differ between the strains; 
however, we also found some common responsive proteins, revealing that the response to 
temperature involves general stress and specific mechanisms. Overall, sub‑optimal temperature 
conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the 
cold response involves strong repression of translation‑related proteins as well as induction of amino 
acid metabolism, together with components related to protein folding and degradation while, the 
high temperature response mainly recruits amino acid metabolism. Our study provides a global and 
thorough insight into how growth temperature affects the yeast proteome, which can be a step 
forward in the comprehension and improvement of yeast thermotolerance.

The yeast Saccharomyces cerevisiae is used as a microbial cell factory in a wide range of industrial applications, 
from the production of beer, wine, cider and bread to biofuels and  pharmaceuticals1. However, these industrial 
processes impose severe stresses that impact the efficiency of this cell factory. Among these factors, temperature 
is one of the most relevant variables, with a direct influence on yeast growth and fermentation performance, 
representing a major economic concern in the biotechnology industry. In fact, the industry spends large amounts 
of energy in heating or cooling and, in many cases, the optimum growth temperature is  sacrificed2. Hence, a 
significant cost reduction and productivity increase would be achieved in fermentations with better-adapted yeast 
to ferment at non-optimal temperatures. For these reasons, there is a clear interest in identifying the mechanisms 
that underlie yeast adaptation at high and low temperatures, as this would make it possible to improve or engineer 
yeast strains with enhanced robustness.

In past years, some attempts have been made to elucidate the thermal response of S. cerevisiae3–11. Much of 
the current knowledge has been derived from studies on the effects of abrupt temperature shocks rather than 
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prolonged thermal stress. However, the magnitude of the stress response is highly influenced by the rate of 
change of environmental conditions, which is why it is crucial to distinguish between transient stress responses 
and stress  adaptation12. Studies on transient stress responses are typically conducted in batch cultures, whereby 
stress in the form of a shock is applied, so that cells are more prone to triggering fast and highly dynamic stress 
response  phenomena13. On the other hand, prolonged exposure to nonlethal stimuli leads to acclimation; i.e., 
establishment of a physiological state in which regulatory mechanisms, like gene expression, fully adapted to sub-
optimal environmental  conditions13. This type of studies is carried out in continuous culture experiments, such 
as chemostats, and has the advantage of discriminating the effects of the growth rate and the applied  stressor14. 
Moreover, most of these approaches have used genome-wide transcriptomic  data3,7,9,15. An inspection of the 
transcriptome provides accurate identification of the genes which are active in cells. Nevertheless, strong gene 
expression and high mRNA levels, does not necessarily mean that the corresponding protein is also abundant 
or indeed active in the cell. Although proteomic analysis techniques are not as straightforward as those used in 
transcriptomics, they offer the advantage of studying proteins, which represent the actual functional molecules 
in the  cell16. To our knowledge, there are only two proteomic studies that examine the tolerance mechanisms of 
yeast grown at high  temperature4,5, and one at low  temperature17. However, only the study performed by García-
Ríos et al. was conducted under adapted stress conditions such as  chemostats17.

Yeast thermotolerance is recognized to be a complicated quantitative trait. In addition, the heterogeneity 
among S. cerevisiae strains is significant, with laboratory strains presenting lower thermotolerance than robust 
industrial and natural yeast  strains18,19. Still, studies are generally focused on only one background strain, which 
is not enough to elucidate the intricate mechanism of thermotolerance.

The goal of the present study is to make significant advances in our understanding of yeast response to 
sub- and supra-optimal temperatures. To this end, we used SWATH-MS (sequential window acquisition of all 
theoretical spectra-mass spectrometry), a highly accurate quantification technique, to characterize the proteome 
remodeling of three phenotypically distinct S. cerevisiae strains Ethanol Red (bioethanol strain),—a previously 
selected high temperature tolerant  strain20, ADY5 (wine strain), a previously selected low temperature tolerant 
 strain20, and CEN.PK113-7D (laboratory reference strain). To eliminate interference by specific growth rate, the 
strains were grown at 12 °C, 30 °C and 39 °C, in anaerobic chemostat cultures, at a fixed specific growth rate of 
0.03 h−1, enabling an accurate investigation of the impact of temperature. Anaerobic conditions were chosen to 
mimic the process of industrial fermentation of alcoholic beverages and bioethanol production. Furthermore, 
it also prevents the possible effect of temperature-dependent oxygen solubility and of temperature dependent 
distribution of sugar metabolism over respiration and alcoholic  fermentation13. Using independent culture repli-
cates and stringent statistical filtering, we defined a robust dataset of 259 differential quantified proteins. Beyond 
uncovering the most dominant mechanisms underlying temperature adaptation, the use of three strains with 
different degrees of thermotolerance represents a comprehensive strategy that will allow the identification of key 
strain-dependent and temperature-dependent physiological differences, providing the necessary knowledge for 
the further production of tailored thermotolerant yeasts.

Materials and methods
Yeast strains, cultivation media and inoculum preparation. The yeast strains used in this work 
were S. cerevisiae ADY5 (Lallemand Inc., Canada), a commercial wine strain, S. cerevisiae Ethanol Red (Fermen-
tis, S.I. Lesaffre, France), a commercial bioethanol strain, and the haploid laboratory strain S. cerevisiae CEN.
PK113-7D (Fungal Biodiversity Centre, Utrecht, The Netherlands). The ADY5 and Ethanol Red were selected 
from a screening involving 12 industrial strains, as the most tolerant to 12 °C and 39 °C20, respectively.

Working stocks were prepared by cultivation in YPD medium, containing per L: 10 g Bacto yeast extract, 20 g 
Bacto peptone and 20 g D-glucose. After addition of 30% (v/v) glycerol, culture aliquots were stored in sterilized 
Eppendorf tubes at − 80 °C.

Inocula for the chemostat cultivations were grown aerobically at 220 rpm at 30 °C in 2 L Erlenmeyer flasks 
containing 400 mL of filter sterilized medium containing per L: 5 g  (NH4)2SO4, 3 g  KH2PO4, 0.5 g  MgSO4·7H2O, 
15 g glucose.H2O, 1.0 mL of trace element solution, and 1.0 mL vitamin solution. Trace element and vitamin 
solutions were prepared as described by Verduyn et al.21. The preculture medium was filter sterilized using a 
0.2 μm membrane filter (Supor AcroPak 20, Pall, Port Washington, USA).

The medium for anaerobic chemostat cultivation as well as the preceding batch cultivations contained per 
L: 5.0 g  (NH4)2SO4, 3.0 g  KH2PO4, 0.5 g·MgSO4·7H2O, 22.0 g D-glucose·H2O, 0.4 g Tween80, 10 mg ergosterol, 
0.26 g antifoam C (Sigma-Aldrich, Missouri, USA), 1.0 mL trace element solution, and 1.0 mL vitamin solution. 
The medium was filter sterilized using a 0.2 μm Sartopore 2 filter unit (Sartorius Stedim, Goettingen, Germany).

Chemostat cultivations. All chemostat cultivations were carried out at a dilution rate of 0.030 ± 0.002 h-1 
in 7 L bioreactors (Applikon, Delft, The Netherlands) equipped with a DCU3 control system and MFCS data 
acquisition and control software (Sartorius Stedim Biotech, Goettingen, Germany).

The reactor vessels were equipped with norprene tubing, to minimize the diffusion of oxygen into the vessels, 
and were sterilized by autoclaving at 121 °C.

During chemostat operation, the sterile feed medium was pumped into the reactor vessel at a constant 
flowrate using a peristaltic pump (Masterflex, Barrington, USA), such that the outflow rate of the culture broth 
was 120 ± 1 g·h-1. The broth mass in the reactor was maintained at 4.00 ± 0.05 kg, by discontinuous removal of 
culture into a sterile effluent vessel, via a pneumatically operated valve in the bottom of the reactor and a peri-
staltic pump, which were operated by weight control. Therefore, the complete reactor was placed on a load cell 
(Mettler Toledo, Tiel, The Netherlands). Also, the effluent vessel was placed on a load cell of which the signal was 
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continuously logged for accurate determination of the dilution rate of the chemostat and manual adjustment of 
the medium feed rate if needed.

The cultivations were carried out at temperatures of either 12.0 ± 0.1 °C, 30.0 ± 0.1 °C or 39.0 ± 0.1 °C, by 
pumping cooled or heated water through the stainless-steel jacket surrounding the bottom part of the reactor 
vessel, using a cryothermostat (Lauda RE630, Lauda-Königshofen, Germany). The water temperature of the 
cryothermostat was controlled by using the signal of a Pt 100 temperature sensor inside the reactor, for accurate 
measurement and control of the cultivation temperature. Anaerobic conditions were maintained by continu-
ously gassing of the reactor with nitrogen gas at a flowrate of 1 SLM (standard liter per minute) using a mass 
flow controller (Brooks, Hatfield, USA). Also, the feed medium was kept anaerobic by sparging with nitrogen 
gas. The nitrogen gas was sterilized by passing through sterile hydrophobic plate filters with a pore size of 0.2 μm 
(Millex, Millipore, Billerica, USA). The culture broth in the reactor was mixed using one 6-bladed Rushton 
turbine (diameter 80 mm) operated at a rotation speed of 450 rpm. The pH was controlled at 5.00 ± 0.05 by 
automatic titration with 4 M KOH. The bioreactor was inoculated with 400 mL of pre-culture and subsequently 
operated in batch-mode, allowing the cells to grow at the same temperature as the chemostat culture and to 
achieve enough biomass at the start of the chemostat phase. The exhaust gas from the chemostat was passed 
through a condenser kept at 4 °C and then through a Perma Pure Dryer (Inacom Instruments, Overberg, The 
Netherlands) to remove all water vapor and subsequently entered a Rosemount NGA 2000 gas analyzer (Min-
nesota, USA) for measurement of the  CO2 concentration. When the  CO2 level of the exhaust gas during the batch 
cultivation dropped significantly, close to the level after the pre-culture inoculation, this indicated the end of the 
batch phase. Thereafter the culture was switched to chemostat mode. Sampling was carried out during steady 
state conditions, after stable values of the  CO2 level in the exhaust gas and the biomass dry weight concentration 
were obtained. Triplicate samples were taken from each chemostat cultivation approximately every 48 h during 
the steady state for measurement of cell dry weight and proteomics analysis. The steady-state of the chemostat 
cultures was confirmed by the stable  CO2 off gas profile and steady dry-weight  measurements20.

Biomass dry weight was determined by filtration of 5 g of chemostat broth over pre-dried nitrocellulose filters 
(0.45 μm pore size, Gelman laboratory, Ann Arbor, USA), which were wetted with 1 mL demineralized water 
before filtration. After filtration of the broth, 10 mL of demineralized water was used to wash the cells on the 
filters, which were subsequently dried in an oven at 70˚C for two days. Before weighing, the filters were allowed 
to cool down in a desiccator for two hours.

For proteomics analysis 3 × 10 g of chemostat broth was immediately cooled down to around 4˚C after 
sampling by pouring into a tube containing cold steel beads. After cold centrifugation the cell pellets were snap 
frozen in liquid nitrogen and stored at -80˚C until analysis.

Protein extraction and digestion. Cell pellets were then resuspended in 500 µL of UTC lysis buffer, 
containing 8  M urea, 2  M thiourea and 4% 3-[(3- cholamidopropyl)dimethylammonio]-1-propanesulfonate, 
(CHAPS), followed by vigorous stirring at 5 °C during 1 h. After, the samples were treated with 10% (final con-
centration) of trichloroacetic acid (TCA) and incubated at 4 °C overnight. Protein extracts from total cell were 
clarified by centrifugation at 15,000g during 10 min and precipitated according to the TCA/Acetone protocol. 
Briefly, the treated samples were diluted (equal volume of the initial sample) in cold acetone solution, stirred 
and stored at 4 °C during 10 min. Then, the samples were subjected to centrifugation 15,000g for 15 min and 
the supernatants were discarded. The total of the precipitated proteins was taken for one dimensional sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis (1D SDS-PAGE). The samples were loaded but not resolved.

The protein samples were digested with 500 ng of sequencing grade trypsin (V511, Promega Co., Madison, 
WI, USA) and incubated at 37 °C following the protocol described by Shevchenko et al.22. The trypsin digestion 
was stopped by the addition of 10% trifuoroacetic (TFA) and the supernatant, containing the non-extracted 
digests, was removed, leaving behind the sliced gels in the Eppendorf tube, which were dehydrate with pure 
acetonitrile (ACN). The new peptide solutions were carefully combined with the corresponding supernatant 
and dried in a speed vacuum. Next, they were re-suspended in 2% ACN and 0.1% TFA prior to liquid chro-
matography and tandem mass spectrometry (LC–MS/MS) analyses. The volume was adjusted according to the 
intensity of the staining.

LC–MS/MS analyses. Spectral library building. Liquid chromatography and tandem mass spectrometry 
(LC–MS/MS): 5 μL of a pool of all the digested samples were loaded into a trap column (Nano LC Column, 3 μ 
C18‐CL, 75 μm × 15 cm; Eksigent Technologies, Dublin, CA, USA) and desalted with 0.1% TFA at 3µL/min 
during 5 min. The peptides were loaded into an analytical column (LC Column, 3 μm particles size C18-CL, 
75 µm × 12 cm, Nikkyo Technos Co, Tokyo, Japan), equilibrated in 5% ACN and 0.1% formic acid (FA). The 
peptide elution was carried out with a linear gradient of 5% to 35% buffer B (B: ACN, 0.1% FA) in A (A: 0.1% 
FA) at a constant flow rate of 300 nL/min over 240 min. The eluted peptides were analyzed in a mass spectrom-
eter nanoESI-qQTOF (5600 TripleTOF, AB SCIEX). The TripleTOF was operated in information-dependent 
acquisition mode, in which a 250-ms TOF MS scan from 350–1250 m/z, was performed, followed by 150-ms 
product ion scans from 350–1500 m/z on the 25 most intense 2–5 charged ions. The rolling collision energies 
equations were set for all ions as for 2 + ions according to the equation |CE|= (slope) × (m/z) + (intercept), with 
Slope = 0.0575 and Intercept = 9.

SWATH acquisition. The digested peptides recovered were examined by LC using a NanoLC Ultra 1-D plus 
Eksigent (Eksigent Technologies, Dublin, CA, USA) connected to a TripleTOF 5600 mass spectrometer (AB 
SCIEX, Framingham, MA, USA). Briefly, 5 µL of each digested sample were loaded onto a trap Nano LC pre-col-
umn (3 μm particles size C18-CL, 0.5 mm × 300 μm, Eksigent Technologies) and desalted with 0.1% TFA at 3µL/
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min during 5 min. Then, the digested peptides present in the samples were separated using an analytical column 
(LC Column, 3 μm particles size C18-CL, 75 µm × 12 cm, Nikkyo Technos Co, Tokyo, Japan), equilibrated in 5% 
ACN and 0.1% FA. The peptide elution was carried out with a linear gradient of 5% to 35% of ACN containing 
0.1% FA at a constant flow rate of 300 nL/min over 90 min. The eluted peptides were thereafter analyzed with a 
spectrometer nanoESI-qQTOF (5600 TripleTOF, AB SCIEX) coupled to the NanoLC sysntem. The TripleTOF 
was operated in SWATH mode, in which a 0.050 s TOF MS scan from 350 to 1250 m/z was performed, followed 
by 0.080 s product ion scans from 350 to 1250 m/z in the 32 defined windows (3.05 s/cycle). The rolling collision 
energies equations were set for all ions as for 2 + ions according to the equation |CE|= (slope) × (m/z) + (inter-
cept), with Charge = 2; Slope = 0.0575 and Intercept = 9.

Protein identification and quantification. For spectral library building after LC–MS/MS analysis, 
the generated 5600 TripleTof.wiff data-files were processed using PROTEINPILOT search engine (version 5.0, 
AB SCIEX). The Paragon algorithm of  PROTEINPILOT23 was used to search against the Uniprot database 
(SwissProt-032018.fasta, 556,819 proteins in database) with the following parameters: trypsin specificity, cys-
alkylation (IAM), no taxonomy restricted, and the search effort set to through and FDR correction for proteins. 
The proteins identified were grouped through the PROTEIN-PILOT PRO group algorithm exclusively from 
observed peptides and based on MS / MS spectra. Then, unobserved regions of protein sequence play no role 
for explaining the data.

The resulting Protein-Pilot group file was used by PEAKVIEW (version 2.1, AB SCIEX) to quantify proteins, 
by chromatographic area, in SWATH runs. For every protein, in the spectral library a maximum of 50 peptides 
were quantified among those with a confidence threshold of 95% and a false discovery rate (FDR) lower than 
1%. Shared peptides were also excluded.

For every peptide a maximum of 6 transitions (fragment ions) were quantified. The peptide retention times 
were normalized among samples using high confident peptides of main proteins.

Statistical analysis. The identified and quantified peak intensities of all the conditions (temperature and 
strains) were first transformed by the logarithm with base 2 and, subsequently, calculated the Z-Score, which 
indicated the number of standard deviations that are away from the mean. Each protein is represented in heat-
maps after Z-score normalization, in which positive and negative values means up-regulation and down-reg-
ulation respectively. Further, in order to filter the most differentiable proteins, an elastic-net penalized logistic 
regression (ENLR) model was performed to obtain the estimation of the coefficients. We use the glmnet package 
of R software to adjust the regression  model24 and with the train function of the caret package to obtain a possible 
value for α and λ. The train function of the caret package was used to obtain the values for parameters needed 
for the regression model with Elastic net penalty. Train function sets up a grid of adjustment parameters for a 
number of classification and regression routines, adjusts to each model and calculates an efficiency measurement 
based on resampling. Within this function, tuneGrid parameter was used with an array of data with possible 
adjustment values. This matrix has a range of values that goes from the parameters that the glmnet function 
takes when alpha = 0 to alpha = 1. In this way the train function gives us a possible value for alpha and another 
for lambda. For each of the comparisons, we have applied a regression model with Elastic Net penalty, so we have 
had different parameters for each case.

To validate this methodology, we also performed a PLS-DA classification of the proteins by using the mix-
Omics packet of R  software25. VIP function shows the importance of each of the explanatory variables in the 
projection which allow us to determine which of the variables is more important to predict the response variable. 
When vip value is greater than 1.5, the influence of the explanatory variable on the response variable is very high. 
We have checked that the proteins obtained with the Elastic Net regression model presented vip greater than 1.5.

Venn diagrams of the proteins with different concentrations at low temperature and high temperature were 
created using Venny online software (Venny, http://bioin fogp.cnb.csic.es/tools /venny /index .html), to select the 
common proteins from among the analyses. Principal component analysis (PCA) was performed using StatSoft, 
Inc. (2004) STATISTICA, version 7.0 (www.stats oft.com).

Functional annotation and enrichment analysis. To explore whether certain biological processes are 
enriched among the proteins that were found significantly changed with the temperature, a gene enrichment 
analysis was manually performed using the comprehensive bioinformatics tool for functional annotation Swiss-
Prot/TrEMBL (http://www.unipr ot.org/unipr ot) and evolutionary genealogy of genes: NOGs (http://eggno 
g.embl.de) databases.

Results and discussion
Overview of quantitative proteomic analysis. Our study presents the first proteomic characteriza-
tion of three Saccharomyces strains grown at optimal temperature (i.e., 30 °C) versus low (i.e., 12 °C) and high 
temperature (i.e., 39 °C). This strategy allowed us to assess both the extent of the changes in protein expression 
levels in response to temperature and the degree of variance in the proteome expression profiles in yeasts from 
different ecological niches.

Quantitative proteomic data were obtained using the SWATH mass spectrometry (SWATH-MS) technology 
and resulted in the quantification of 997 unique proteins for all the samples, that is, the three strains cultivated at 
three temperatures with three biological replicates for each condition (27 samples in total). The full set of protein 
quantification data is provided in supplemental Table S1. To uncover the proteins significantly associated with 
temperature response, we employed elastic net regression  analysis26, which is a method that allows the selection 
of highly correlated groups of variables. From the 997 proteins detected, the elastic net was able to significantly 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.statsoft.com
http://www.uniprot.org/uniprot
http://eggnog.embl.de
http://eggnog.embl.de
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reduce the dataset in all the conditions to 259 proteins differentially regulated at high or low temperature versus 
the control temperature condition (30 °C) (Table 1). Only these 259 selected proteins were considered in the 
following analysis.

To obtain an overview of the proteomic variability between the three strains, a Principal Component Analysis 
(PCA) was carried out (Fig. 1).

The PCA score plot of the first three principal components accounted for 64.8% of the total variance. The use 
of these components in a 2D representation mainly allowed the effective separation of the samples based on the 
strain and growth temperature. The first principal component (PC1) captured the largest variance of the data 
(31.7%) and evidenced inter-strain differences, with a clear differentiation of the laboratory strain CEN.PK from 
the two industrial strains under study. The second PCA axis (PC2) accounted for 19.9% of the total variance and 
clearly separated the strains according to the growth temperature. Thus, our preliminary proteome comparisons 
reveal that there are substantial differences at the molecular level in how the three strains respond to temperature 
changes and that the response to high and low temperature is quite distinct. Still, the third component (PC3) 
suggest that there are some general mechanisms of temperature response in each yeast strain, which probably 
corresponds to general stress response proteins.

Table 1.  Functional classification of differentially regulated protein expressed in ADY5, CEN.PK and Ethanol 
Red at 12 °C and 39 °C.

12˚C 39˚C

Functional category A-Da A-Ua C-Da C-Ua E-Da E-Ua A-Da A-Ua C-Da C-Ua E-Da E-Ua

Protein folding and degradation 6 10 4 8 4 2 2 14 2 4 1 5

Amino acid metabolism 2 3 1 8 2 9 5 2 4 1 4 2

Coenzyme metabolism 2 0 1 2 1 0 0 0 1 0 0 0

Inorganic ion metabolism 2 0 0 2 0 0 0 0 1 0 0 0

Signal transduction 1 0 1 0 1 0 0 0 1 0 0 1

Energy metabolism 2 5 1 7 0 5 2 0 1 0 0 1

Translation 12 1 17 2 5 0 0 3 0 4 0 4

Intracellular trafficking, secretion, 

and vesicular transport
2 1 0 2 0 0 0 2 0 1 0 0

Nucleotide metabolism 2 1 2 4 0 1 2 3 0 1 1 4

Carbohydrate metabolism 0 6 2 8 3 3 1 2 0 0 2 1

Cell cycle control, cell division, 

chromosome partitioning
0 1 0 1 0 0 0 0 0 0 0 0

Transcription 3 0 1 2 1 1 0 2 0 0 0 2

Replication, recombination and 

repair
2 0 1 1 1 0 0 0 0 0 0 0

Lipid metabolism 0 0 2 1 5 1 0 0 0 0 0 1

Secondary metabolites metabolism 0 0 0 1 0 0 0 0 0 0 0 0

Cytoskeleton 1 0 0 0 0 0 0 1 0 0 0 0

Chromatin structure and dynamics 1 0 0 0 0 0 0 0 0 0 0 0

RNA processing and modification 3 0 0 0 0 0 0 1 0 0 0 1

Cell wall biogenesis 0 0 0 0 2 0 0 0 0 0 0 1

Unknown Function 8 8 2 20 4 3 1 11 1 2 2 3

Total 49 36 35 69 29 25 13 41 11 13 10 27

a The number of up (U) – or down (D)- regulated proteins in ADY5 (A), CEN.PK (C) and Ethanol Red (E) 

strains.

Scale bar: 1-5 6-10 11-15 16-20
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Biological mechanisms that govern cellular response to sub‑ and supra‑physiological temper‑
atures. The ability to adapt to non-optimal temperatures is potentially accompanied by changes in protein 
expression. To examine these changes, we evaluated the differentially expressed proteins of CEN.PK, Ethanol 
Red and ADY5 at 12  °C and 39 °C, compared to the respective control temperature (30 °C). Gene ontology 
analysis was performed to determine the main functional categories arising from the up- and down- regulated 
proteins. A total of 19 enriched GO terms (Table 1) were identified revealing the complexity of the cell’s response 
to temperature changes. A significant amount of proteins with unknown function were also identified.

The distribution of the differentially regulated proteins in functional categories differed considerably between 
the two temperature conditions. In fact, in all strains the number of differentially expressed proteins during 
cultivation at low temperature was much higher than at high temperature, indicating greater remodeling of the 
proteome. More specifically, in the ADY5 strain, the number of differentially regulated proteins at 12 °C was 
85, whereas at 39 °C was 54; in the case of Ethanol Red, we identified 54 proteins at low temperature and 37 at 
high temperature; in CEN.PK, the discrepancy was even higher, with 104 differentially regulated proteins at low 
temperature, and only 24 at high temperature.

Regarding the overall response to high and low temperatures, we found some resemblances because similar 
functions are induced or repressed under both experimental settings. The most remarkable groups of regulated 
proteins fell into the translation category, along with protein folding and degradation, and amino acid metabo-
lism, besides a group of proteins of unknown function in S. cerevisiae. In addition, at 12 °C, the transport and 
metabolism of carbohydrates as well as the production and conversion of energy also seem to be important 
categories. It is worth mentioning that at 12 °C there was a strong downregulation of proteins related to protein 
synthesis (translation process), particularly in the ADY5 and CEN.PK strains. Furthermore, the low temperature 
response of these two strains was also characterized by an increase in the levels of several proteins related to 
folding and degradation processes. The specific role of these functions and respective proteins will be explored 
in the next sections.

Strain‑specific responses to sub‑ and supra‑optimal temperature. We further compared the pro-
teome profile of the same strain but at different temperatures (12/30 °C versus 39/30 °C) to evaluate a possible 
stress-specific response. Regarding CEN.PK the comparison between the two temperature conditions showed 
that 92 and 12 proteins were uniquely differentially expressed at low and high temperature, respectively, whereby 
12 proteins were differentially expressed at both conditions (Fig. 2A). The shared proteins are mostly associated 
with translation, amino acid transport and protein folding and degradation.

In the case of Ethanol Red, it was observed that of the 81 identified proteins, 44 were unique to the cold 
response, 27 were unique to the heat response, and 10 were common to both (Fig. 2B). Among the group of 
common proteins, we found proteins that have widespread functions in amino acid metabolism, carbohydrate 
metabolism, lipid metabolism, transcription, nucleotide metabolism and cell wall biogenesis.

In the ADY5 experiments we detected a similar behavior, with 17 proteins being involved in both high and 
low temperature response (Fig. 2C). This group comprises proteins involved in several cellular functions such 
as amino acid metabolism (Gdh1, Ilv6), protein folding and degradation (Cct4, Sis1, Hsp82, Mdj1, Gtt1), RNA 
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Figure 1.  Principal component analysis (PCA) score plot from fold-change values of the differential expressed 
proteins in Ethanol Red, ADY5 and CEN.PK at 12 ˚C and 39 ˚C. (A) PCA Loadings of the second and first 
principal components (PC1 vs PC2); (B) PCA Loadings of the third and first principal components (PC1 vs 
PC3). The explained variances are shown in brackets. To make clear the hidden patterns in the data set, the 
different groups discriminated by each of the components (PC1, PC2 and PC3) were highlighted using colored 
ellipses and dashed lines.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22329  | https://doi.org/10.1038/s41598-020-77846-w

www.nature.com/scientificreports/

processing and modification (Svf1), translation (Map2), carbohydrate metabolism (Ynr071c), nucleotide metabo-
lism (Prs2) and proteins with unknown functions (Crn1, Iml2, Bfr1, Gbp2, Mam33, Ypt32).

It should be noted that the proteins identified as common between low and high temperature response in 
most cases displayed opposite trends, which means that the proteins induced at 12 °C were repressed at 39 °C 
and vice versa. In a previous study on the molecular response to temperature, Strassburg et al. noticed that high 
and low temperatures cause distinct changes at both the metabolic and the transcript  level3. They proposed that 
the yeast’s response to temperature involves two phases. First, there is the general stress response, which, through 
the perception of a stress-induced signal, allows the system to cope with cell damage and death; and second, 
there are specific adaptive responses to prolonged high and low temperature stress. Comparing the profile of 
some genes obtained at heat and cold conditions, they observed an opposite trend of regulation, in agreement 
with our results. Notwithstanding, a minor group of proteins was found to be induced or repressed in both 
temperature regimes. Specifically, for CEN.PK, Hsp60 and Cpr6 are upregulated at 12 °C and 39 °C, compare to 
the control temperature. These results evidenced that, in this strain, non-optimal temperature conditions impair 
protein folding processes.

In relation to Ethanol Red, of the proteins described above, Prs2 was the only one that presented the same 
regulation patterns in the two temperature regimes. Prs2 is a member of the ribose-phosphate pyrophosphokinase 
family and is required for nucleotide, histidine and tryptophan synthesis. The ability to synthetize tryptophan 
is vital for yeast survival under several environmental stresses. Previous studies have reported that tryptophan 
uptake at low temperature is a rate-limiting step for S. cerevisiae growth. Low temperature increases the rigidity of 

Figure 2.  Venn diagram indicating the overlap of differentially expressed proteins between 12 °C and 39 °C 
conditions, compared to the respective control temperature (30 °C), in CEN.PK (A), Ethanol Red (B) and ADY5 
(C). The standard name of the proteins common to both temperature settings are provided in the text boxes. 
Proteins are colored according to significant change as follows: red (increased at 39 °C and decreased at 12 °C), 
blue (decreased at 39 °C and increased at 12 °C), green (increased at both temperatures), or black (decreased at 
both temperatures). Image prepared using the Veny 2.1 (Oliveros, J.C. (2007–2015) Venny. An interactive tool 
for comparing lists with Venn’s diagrams. https ://bioin fogp.cnb.csic.es/tools /venny /index .html).

https://bioinfogp.cnb.csic.es/tools/venny/index.html
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the plasma membrane, which results in the slower lateral diffusion of membrane proteins, less active membrane-
associated enzymes, and a major reduction in membrane  transport27. Sensitivity of tryptophan uptake at low 
temperature has been related to a dramatic conformational change in  Tat2p28. Disorders that affect the stability 
of the membrane have strong auxotrophic requirements for  tryptophan29,30. It has been proposed that tryptophan 
itself provides protection against membrane interruptions. We then speculate that the overexpression of Prs2, 
in Ethanol Red strain, is mainly related to the requirement of tryptophan and the maintenance of a robust cell 
membrane to endure thermal stress.

Finally, in the ADY5 experiment, the set of proteins with an identical regulation pattern includes the Hsp82, 
Mdj1, Ilv6 and Prs2, whose levels were increased, and Gdh1 whose level was diminished. Hsp82 is one of the 
most highly preserved and synthesized heat shock proteins of eukaryotic cells; while Mdj1 is a mitochondrial 
Hsp40 involved in many key functions including folding of nascent peptides and cooperation with mt-Hsp70 
in mediating the degradation of misfolded  proteins31. Hsp82 and Mdj1 proteins have a well-known role in 
heat-response, and their increment has been reported previously by Shui et al.4. On the other hand, nothing 
is known about the role of these two proteins in the cold-response. Furthermore, the presence of two proteins 
involved in amino-acid metabolism (Ilv6 and Gdh1), in the set of proteins with an identical regulation at sub- 
and supra-optimal temperatures, was also detected. The first enzyme is an acetolactate synthase, which catalyzes 
the first step of branched-chain amino acid biosynthesis; and the second is a glutamate dehydrogenase, which 
participates in the synthesis of glutamate from ammonia and alpha-ketoglutarate32. The branched-chain amino 
acids, such as isoleucine, have already been related to temperature response. Indeed, it has been demonstrated 
for Bacillus subtilis that isoleucine-deficient strains show a cold-sensitive  phenotype32. In addition, isoleucine 
has been described as part of a set of amino acids typically abundant in thermophilic organisms, contributing to 
a high thermal stability of  proteins33. Likewise, Mara and co-authors observed that overexpression of Gdh1 had 
detrimental effects on yeast growth at 15 °C34. The GDH pathway is involved in the recycling of NADH-NAD by 
controlling the levels of α-ketoglutarate. The downregulation of Gdh1 may be a strategy to assure NADH-NAD 
homeostasis, which is essential to ensure an appropriate cellular response to environmental changes.

Taken together, these findings suggest that, in addition to a general thermal response, the strains elicit different 
protein sets in order to respond to each environmental condition—high or low temperature.

Comparative analysis of differentially expressed proteins at supra‑optimal temperature in the 
three Saccharomyces strains. As in the comparison made of each strain at both temperatures, significant 
differentially expressed proteins were plotted in a Venn diagram to identify common expression changes in the 
three strains at 39 °C (Fig. 3). The 259 proteins were detected in all strains, however there are not always signifi-
cant differences in the pattern of expression compared to the respective control temperature (30 °C). Only cases 
where there is a significant increase or decrease will be discussed.

Only three proteins were commonly over-represented in the three Saccharomyces strains—Hsp60, Cpr6 and 
Ydj1—all belonging to the heat shock proteins-family. This result reinforces the view that protein folding is critical 
for high temperature adaptation and wide-spread among different yeast  backgrounds35.

In relation to Ethanol Red/CEN.PK, the disparity between the two strains is evident since they do not share 
any proteins other than those mentioned above. Likewise, ADY5/CEN.PK only have one common protein 
(Mht1), downregulated in both strains. This homocysteine S-methyltransferase catalyzes the conversion of 
S-adenosylmethionine (AdoMet) to methionine, regulating the methionine/AdoMet  ratio36. The repression of 
this protein allows to keep the amount of methionine reduced, which is essential since methionine suppresses 

Figure 3.  Venn diagram representing the differentially expressed proteins identified in the three Saccharomyces 
strains cultivated at 39˚C, in anaerobic chemostat cultures. Proteins are colored according to significant change 
as follows: green (increased in both strains), or black (decreased in both strains). Image prepared using the Veny 
2.1 (Oliveros, J.C. (2007–2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. https ://bioin 
fogp.cnb.csic.es/tools /venny /index .html).

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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the synthesis of adenylyl sulfate (APS). APS plays an important role in yeast thermotolerance, increasing toler-
ance to high  temperatures37.

In contrast, the overlap observed between Ethanol Red and ADY5 was larger, with 9 shared proteins (Fig. 3). 
Most of these proteins are related with nucleotide metabolism. Of particular interest is the downregulation of 
Ade1 and upregulation of Fur1. These two proteins are involved in distinct pathways of nucleotide biosynthe-
sis: the de novo pathway and the salvage pathway, respectively. The de novo pathway synthesizes nucleotides 
from amino acids, carbon dioxide and ammonia; whereas the salvage pathway uses preformed nucleosides and 
nucleobases that are imported or present inside the  cell38. Our data suggest that at supra optimal temperatures, 
nucleotide biosynthesis may shift to use the salvage pathway. The de novo pathway has a high requirement for 
energy compared to the salvage  pathway39. As the cell would be in state of low energy and NADH reserves 
during temperature adaptation, a reduced demand of these resources could be beneficial. Moreover, the over-
expression of Prs2 and Prs5 is also expected since they are key enzymes of 5-phosphoribosyl-1-pyrophosphate 
(PRPP) synthesis—a compound required for the both de novo and salvage synthesis of nucleotides as well as 
for the synthesis of histidine, tryptophan and  NAD39. Besides that, both strains show increased expression of 
proteins related to cellular quality control pathways, namely Hrb1, Cct4 and  Iml240–42. The downregulation of 
a putative epimerase-1 (Ynr071c) was also a common feature between the industrial strains. However, little is 
known about this protein.

Detailed analysis of differential proteins at supra‑optimal temperature for the Ethanol Red Saccharomyces 
strain. Ethanol Red is a strain commercially available that has been developed for the industrial ethanol pro-
duction. Most of the large-scale production of bioethanol is typically carried out at high temperatures (above 35 
°C)43 and was previously selected as the most  thermotolerant20. Given that, we decided to analyze more deeply 
the proteomic alterations of this strain in response to the high temperature.

Our study uncovered some significant elements of the Ethanol Red response to high temperature (Fig. 4). The 
first component involves proteins from the amino acid metabolism. Indeed, we observed repression of proteins 
involved in arginine biosynthesis, such as Arg1, Arg5, Arg6 and Arg8, and induction of a protein that catalyze 
the degradation of arginine—ornithine transaminase (Car2). Interestingly, a similar change was recently reported 
for the thermotolerant yeast Kluveromyces marxianus grown at 45 °C in chemostat culture, and therefore could 
represent an acquired thermotolerance  strategy44. The reduction of arginine biosynthesis and the acceleration of 
the conversion of ornithine to proline—catalyzed by the enzyme Car2 ensures both glutamate conservation and 
proline production. In fact, proline is the main metabolite of arginine metabolism. Under anaerobic conditions, 
the degradation of arginine leads to intracellular proline accumulation. This increase in proline has been con-
nected with stress protection, being involved in protein and membrane stabilization, lowering the Tm of DNA 
and scavenging of reactive oxygen  species45. Moreover, glutamate and proline are precursor metabolites required 
for the tricarboxylic acid pathway (TCA). It is worth noting that the TCA has been shown not to function com-
pletely as a cycle under oxygen deprivation but to be restricted to an oxidative branch leading to 2-oxoglutarate 
and a reductive branch leading to  oxaloacetate46,47. Furthermore, the Ethanol Red also increases the expression 
of several proteins belonging to the nucleotide metabolism.

This strain also exhibited a modest downregulation of 6-phosphoglucogalactonase (Sol3) enzyme, which is 
involved in the so-called oxidative phase in the pentose phosphate pathway (ox-PPP). This downregulation at the 
second step of the pentose phosphate pathway is a key to shifting the glucose metabolism in favor of glycolysis 
over pentose phosphate pathway. Many of the adaptive responses of yeast to high temperature put a significant 
additional energy burden on the cells. The increase in temperature causes an increase in the demand for ATP, 
which can also exert control over the glycolytic  flux48.

Another notable feature of this strain in relation to the supra-optimal temperature response mechanisms was 
the overexpression of Erg13—a protein involved in early ergosterol biosynthesis—and the Gsy1—a glycogen 
synthetase. Both proteins were also upregulated at sub-optimal temperature. It has been found that the ability 
of yeast to tolerate stress is closely related to ergosterol levels. In fact, an increase in the ergosterol content of cell 
membrane helps to minimize the deleterious effects and maintain a normal membrane  permeability49. Several 
studies have reported that the activation of the ergosterol pathways makes yeast cells more resistant/tolerant to a 
variety of stresses, including low temperature, low-sugar conditions, oxidative stress and  ethanol50,51. The impor-
tance of ergosterol in yeast temperature tolerance has also been demonstrated. It was observed that the compro-
mise of the ergosterol synthesis by mutation in the biosynthesis genes—erg10, erg11, erg19 and erg24—makes S. 
cerevisiae more sensitive to low  temperature49. Moreover, Caspeta et al. also identified Erg3, a desaturase in late 
biosynthesis of ergosterol, as an efficient target to increase the thermotolerance capacity of  yeast52. Ergosterol 
requires molecular oxygen for production and hence it was one of the anaerobic growth factors supplemented to 
the chemostat medium as it is well known that S. cerevisiae has to import sterols under anaerobic  conditions53. 
Interestingly, one of the functions attributed to mitochondria under anaerobic conditions is related with sterol 
 uptake54. Still, Krantz et al. also detected upregulation of ERG13 under anaerobic conditions and concluded that 
this gene is exquisitely sensitive to addition of even trace amounts of oxygen and that the upregulation could be 
provoked by addition of water  only55.

Regarding the increased expression of Gsy1, glycogen has also been reported to be involved with tolerance 
toward several stresses, such as heat, osmotic and oxidative stress, entry into stationary phase and  starvation56. 
The precise role of glycogen in the yeast response to high temperature remains unknown.

In addition, this industrial strain has increased the expression of proteins involved in different translation 
stages: Ded81 and Ses1 (elongation) and Sup35 (termination), and of proteins related to rRNA processing com-
ponents (Nop58 and Rix1), which can be a strategy to make the translation process more efficient.
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Comparative analysis of differential proteins at sub‑optimal temperature in the three Saccha-
romyces strains. Likewise, the proteomic response of the three Saccharomyces strains grown at low tem-
perature was compared (Fig. 5). Contrary to that observed at high temperature, no common proteins were found 
among the three strains, which seems to suggest that a higher disparity between these strains exists in relation 
to cold-response. However, when directly comparing one strain to another, the number of common proteins is 
higher than that observed with high temperature.

Response of Ethanol Red versus CEN.PK. CEN.PK and Ethanol Red shared 13 proteins, belonging to different 
functional categories such as protein folding, amino acid and carbohydrate metabolism, transcription and repli-
cation, recombination and repair. Although most of these common proteins showed a consistent up- or- down-
regulation in both strains, differences in the expression levels were observed. Surprisingly, two of these pro-
teins—Ecm15 and Doa1—exhibited opposite patterns of expression in the two strains. Ecm15 is a non-essential 
protein of unknown function and is believed to play a role in the biogenesis of the yeast cell wall; while Doa1 is 
a protein involved in the ubiquitin recycling process, vacuolar degradation pathway and DNA damage  repair57. 
Ubiquitin homeostasis is required for the maintenance and growth of the cell. In the case of DNA damage, 
ubiquitin should be readily available for post-translational modification of proteins involved in the detection, 
repair and/or tolerance of  damage58. Therefore, the increased expression of the Doa1 protein in CEN.PK and 
consequent increase in ubiquitin levels reflects the need for a higher protein turnover, typical of stressed cells. In 

Figure 4.  A schematic illustration of the major pathways involved in the unique response of Ethanol Red 
to supra-optimal growth temperature (39 °C). Under anaerobic conditions, the TCA pathway operates as 
an oxidative branch and a reductive branch. Broken grey lines represent the point at which the cycle may be 
interrupted. The precise step of interruption in yeast cells is not yet identified. The proteins are highlighted in 
green (upregulated) or red (downregulated), indicating their enhancement or repression compared to the levels 
observed at control temperature (30 °C). In this figure only the proteins are shown which were significantly 
altered exclusively in the Ethanol Red strain. Altered proteins common to other strains are not shown.
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contrast, the Ethanol Red strain reduces the expression of this ubiquitin protein. Thus, we can interpret that this 
opposite expression pattern of both strains is related to their different tolerance at low temperatures.

Another key metabolic change common to both laboratory and bioethanol strain lays on carbohydrate 
metabolism. Both strains increased the expression of hexokinase 1 (Hxk1), which catalyzes the primary step in 
the glycolytic pathway and reduced the expression of glyceraldehyde-3-phosphate dehydrogenase (Tdh2), which 
catalyzes the sixth step of glycolysis. Despite being the first step of glycolysis, hexokinase is not the major point 
of regulation. Glucose 6-phosphate is a branch point between glycolysis, glycogen synthesis and the oxidative 
arm of the pentose phosphate  pathway59. The ox-PPP is the main producer of cellular NADPH and is thus critical 
for the antioxidant defense of cells. It is described that in the presence of oxidants, glucose is channeled towards 
the ox-PPP through a rearrangement of the carbon distribution. More specifically, the redirection of glycolytic 
flux through the ox-PPP can be achieved by targeting glycolytic enzymes downstream of Pfk1, such is the case of 
Tdh2, in which it has already been demonstrated that inhibition leads to a rerouted flux to the PPP, by allowing 
the accumulation of metabolites upstream of the inhibition  point60.

Both strains increased the expression of the acetylornithine aminotransferase (Arg8)—a protein involved 
in the synthesis of arginine. This amino acid is known to have a significant cryoprotective activity, increasing 
freezing tolerance in yeast cells. The mechanisms underlying this protective property of Arg are not yet known, 
but it is possible that it acts as an ion coating on the surface of membrane components, avoiding denaturation 
by the  NH2 group in the  molecules61. Besides, arginine has been shown to reduce cellular oxidative stress, being 
considered as an effective protectant for proteins, DNA and phospholipids, contributing to maintain intracel-
lular  homeostasis62.

It is also worth mentioning that CEN.PK had a significant increase in Hsp104 protein at 12 °C although 
the fold-change was lower in relation to that observed with Ethanol Red. The Hsp104 is considered one of the 
most crucial thermotolerance-related protein of S. cerevisiae, increasing the chances of survival after exposure 
to extreme heat or high concentrations of  ethanol63,64. In addition, Hsp104 induction was also observed during 
late cold response by Schade and his  collaborators9. It acts as an ATP dependent chaperone that has the distinct 
ability to solubilize and refold proteins that are already aggregated, allowing other chaperones to have access to 
otherwise inaccessible surface of the  aggregates65.

Response of ADY5 strain versus CEN.PK strain. Likewise, a set of twelve proteins, mainly associated with trans-
lation related processes, cell cycle control, nucleotide and amino acid metabolism, were found to be commonly 
changed in CEN.PK and ADY5 in response to the sub-physiological temperature condition.

To go further, we looked more closely at the common proteins and found three aspects of great interest. First, 
inspection of the regulation pattern of this set of proteins showed that a glutamate dehydrogenase (Gdh1) 
exhibited significant changes in both strains, but in opposite directions. Low temperature diminished the con-
centrations in the wine strain but increased it in the laboratory strain. As mentioned earlier, overexpression of 
this protein may be detrimental at low temperatures due to a NADH–NAD  imbalance34. However, a downward 
shift in the growth temperature also induced an oxidative stress response. It is typically assumed that under 
anaerobic conditions organisms are spared of the toxic effects of oxidative stress; nevertheless, it has been noted 
that there are other factors besides oxygen that may induce an oxidative stress response. Gibson et al. (2008) 
detected an increase in transcription of several antioxidant-encoding genes during small-scale fermentation 
with S. cerevisiae in anaerobic  conditions66. These authors suggested that the response to oxidative stress may 
have been triggered by a catabolite repression or the influence of other stresses such as ethanol toxicity. Likewise, 

Figure 5.  Venn diagram representing the differentially expressed proteins identified in the three Saccharomyces 
strains cultivated at 12 ˚C, in anaerobic chemostat cultures. Proteins are colored according to significant change 
as follows: green (increased in both strains), black (decreased in both strains), or orange (opposite expression 
trends).
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we observed an increase in the expression of antioxidant proteins implicated in glutathione synthesis. Gdh1 is 
involved in glutamate synthesis, which is thought to be part of the defense against oxidative stress through the 
glutathione system, preventing cold-induced reactive oxygen species (ROS)  accumulation34. This double and 
apparently contradictory role of Gdh1 in the cold growth of yeast strains has already been observed by Ballester-
Tomás et al.67 and emphasizes the complexity of its responses.

The downregulation of the concentration of Bfr2, which is known for its cold-shock response, was also strik-
ing. Bfr2 is involved in protein trafficking to the Golgi and previous studies have demonstrated that its mRNA 
levels increase rapidly over fivefold in response to cold shock (when the temperature is changed from 30 to 10 
°C)68. However, this protein may be involved in the recovery from cold shock and the transition back to higher 
temperatures rather than in survival or adaptation to lower temperatures. This finding underlines that the adapta-
tion to the growth environment and response to shock are distinct mechanisms and straightforward conclusions 
from one to the other are not always possible.

Another interesting feature is the downregulation of Ptc2 in the CEN.PK strain compared to ADY5, a phos-
phatase protein known to negatively regulate the high-osmolarity glycerol (HOG) pathway, along with Ptc1 and 
 Ptc369. The HOG pathway is a preserved MAPK cascade in S. cerevisiae, which among other functions, is criti-
cal for tolerance to different stresses, such as osmotic, citric acid stress and heat  stress70. Additionally, Panadero 
et al. showed that the HOG pathway is clearly activated in response to a downshift in temperature from 30 °C to 
12 °C, participating in the transmission of the cold signal and on the regulation of the expression of a subset of 
cold-induced  genes71. So, the downregulation of Ptc2, which directly dephosphorylates Hog1 MAPK and limits 
the maximal activation of the HOG  pathway70, may be related to this need to activate this pathway.

Response of ADY5 strain versus Ethanol Red strain. Finally, the comparison of the proteomic profile of the two 
industrial strains revealed an overlap of 9 proteins, related to the functional categories of carbohydrate metabo-
lism, translation, amino acid and nucleotide metabolism.

One of the most interesting features that has emerged from this comparison is the induction of Prs2. It should 
be noted that this protein was also identified as significantly altered in the response to supra-optimal tempera-
tures of both strains, Ethanol Red and ADY5 (Fig. 3). Therefore, these results suggest that this phosphoribosyl-
pyrophosphate synthetase is vital for cellular response to either sub- and supra-physiological temperatures, being 
essential for the thermotolerance capacity of these two industrial strains.

Apart from this, we found an enzyme of the lower part of glycolysis, Tdh3, which is one of three isoforms of 
glyceraldehyde-3-phosphate dehydrogenase protein (GAPDH). However, the yeast response does not seem to be 
so straightforward. For instance, the Ethanol Red strain increased Tdh3 expression, but reduced Tdh2 expression. 
Likewise, García-Rios et al.11 observed an overexpression of the Tdh3 protein in two wine yeast strains of the 
genus Saccharomyces cultivated at 15 °C. The yeast Tdh2 and Tdh3 GAPDH isoenzymes share extensive sequence 
homology but appear to have distinct roles in regulating glycolytic flux under oxidative stress  conditions72.

Comprehensive proteome analysis of the wine strain at sub‑optimal temperature. The ability to ferment at low 
temperatures (between 10–15 °C) is of paramount importance in the wine industry, since it increases produc-
tion and retains flavor volatiles, improving the sensory qualities of the wine. In fact, ADY5 strain was previously 
selected as the best low temperature adapted  strain20. The main responses observed exclusively in this strain at 
sub-optimal growth temperature are represented in Fig. 6.

The response of ADY5 to suboptimal temperatures was characterized by a downregulation of several trans-
lation-related proteins. For instance, several protein components of the 40S and 60S ribosomal subunit were 
strongly  downregulated73. Furthermore, we also noticed the downregulation of translation initiation factors, 
which influence the translation rate. Yeast adaptation to temperature downshift is dependent of the duration and 
magnitude of the temperature  change7. Although several studies have shown an increase in translation-related 
 proteins7,17,74, this only happens in the initial and mid phases of cold adaptation. Sahara et al. observed that after 
8 h of exposure to 10 °C, this machinery is significantly  downregulated7. Similarly, Murata et al. noticed repres-
sion of key genes involved in protein synthesis in yeast cells exposed at 4 °C for 6 to 48 h10. Notwithstanding, 
this strain presents some interesting molecular mechanisms to overcome the stressors and cell modifications 
caused by low temperature.

It is worth mentioning the previously reported correlation between low temperature robustness and resist-
ance to oxidative stress in S. cerevisiae. Indeed, the fitter strains to fight against oxidative stress were found to 
display better growth and fermentation performance at low  temperature19. In the present work, the ADY5 strain 
increased the expression of a set of proteins belonging to the ROS detoxification systems, including Gtt1 (glu-
tathione transferase), Trx2 (thioredoxin) and Tsa1 (thioredoxin peroxidase). Of these, cytoplasmic thioredoxin 
2 is considered one of the most important redox controls together with the glutathione/glutaredoxin  system75. 
Considering that these three proteins have only been identified as significantly altered in the ADY5 strain, it can 
be assumed that they may represent a specific response of the wine strain.

In the category of cell rescue and defense, it is also notable that heat shock proteins are induced, such as 
Hsp12, Hsp82 and Sse2, which play an equally important role in the response to low temperature in S. cerevi‑
siae76. Of particular interest was the expression of Hsp12, which has been reported as massively induced in yeast 
cells under several stress conditions (e.g. heat shock, osmotic stress, oxidative stress or high concentrations of 
alcohol)77. Moreover, Hsp12 is also induced when the cells are exposed to 0 °C78 and 4 °C10. Hsp12 seems to 
play a role in cryotolerance of S. cerevisiae, presenting similarities with trehalose  activity79. In fact, Hsp12 acts 
at the plasma membrane level, protecting it against desiccation and maintaining the integrity of the yeast cells 
in the freezing  stage76.
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In addition, we also found a remarkable proteomic reprograming in proteins implicated in carbohydrate 
metabolism and energy production. Of particular interest was the upregulation of two alcohol dehydrogenases, 

Figure 6.  A schematic illustration of the major pathways involved in the unique response of ADY5 to sub-
optimal growth temperature (12 °C). Under anaerobic conditions, the TCA pathway operates as an oxidative 
branch and a reductive branch. Broken grey lines represent the point at which the cycle may be interrupted. The 
precise step of interruption in yeast cells is not yet identified. The proteins are highlighted in green (upregulated) 
or red (downregulated), indicating their enhancement or repression compared to the levels observed at control 
temperature (30 °C). In this figure are represented only the proteins significantly altered exclusively in ADY5 
strain. The proteins common to other strains were not represented.
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involved in the last step of ethanol synthesis—Adh1 and Adh3. This may represent a strategy of S. cerevisiae 
ADY5 to deal with the redox imbalance produced due to the slower kinetics of alcohol dehydrogenases at low 
 temperature17. By increasing the concentration of the main alcohol dehydrogenases, Adh1 and Adh3, the strain 
overcomes the slower conversion of acetaldehyde into ethanol, avoiding the accumulation of NADH and the 
blockage of glycolytic flux. Besides, it has been reported that cells of S. cerevisiae lacking the Adh3 gene have 
decreased fitness at low temperature, while its overexpression enhanced cold  growth80. This may be related with 
the fact that this protein is part of ethanol-acetaldehyde redox shuttle, being involved in the transfer of redox 
equivalents from the mitochondria to the cytosol. It is known that low temperatures can compromise the oxida-
tion of mitochondrial NADH, having a strong impact on the intracellular compartmentalization of NAD  pools81. 
Therefore, increased expression of proteins like Adh3 may be critical for growth at low temperatures as it helps 
maintain the optimal balance between the reduced and oxidized forms of nicotinamide adenine dinucleotides.

Furthermore, three proteins from the TCA pathway—Lpd1, Kgd2 and Sdh3—were also found among the 
upregulated proteins of this strain. The lipoamide dehydrogenase (Lpd1) is a common component of the mul-
tienzyme complexes pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (OGDH) and glycine 
decarboxylase (GCV)82. Among the several functions of this enzymatic complex, its involvement in one-carbon 
metabolism is particularly interesting since it is a key pathway that provides single carbon units for the biosynthe-
sis of purines, thymidylates, serine, methionine and N-formylmethionyl  tRNA83, and part of these components 
are involved in the cold response. Kgd2 proteins is also a component of OGDH; while Sdh3 is a subunit of suc-
cinate dehydrogenase complex, which is supposed to be inactive under anaerobic  conditions47. Binai et al. (2014) 
also observed an upregulation of this mitochondrial protein under anaerobic calorie restriction  conditions84. 
The upregulation of Sdh3 can be related with the dual function of this protein in the respiratory chain and as a 
translocase of the TIM22 complex, which is responsible for the insertion of large hydrophobic proteins, typically 
transporters (carrier proteins), into the inner membrane 85. The involvement of this complex in yeast response to 
sub-optimal temperatures has been previously reported by the mutation in Tim18p, a component of the TIM22 
complex, which caused a cold-sensitive  phenotype86.

Conclusions
Adaptation and tolerance of yeast strains to temperatures beyond an optimum range is crucial for economic and 
eco-efficient production processes of new and traditional fermentations.

Our broad approach highlights the complexity of the proteome remodeling associated with growth tempera-
ture perturbation, as well the importance of studying different strains to come to meaningful biological conclu-
sions. The variability of responses of the three strains examined shows that no general rules can be assumed for 
different S. cerevisiae strains, and that the temperature-response is highly dependent of their genetic and envi-
ronmental background. Overall, proteomic data evidenced that the cold response involves a strong repression of 
translation-related proteins as well as induction of amino acid metabolism, along with components involved in 
protein folding and degradation. On the other hand, at high temperature, the amino acid biosynthetic pathways 
and metabolism represent the main function recruited. Although the changes in the biological processes are, 
in some cases, similar among strains, differences in the number, type and even in the expression patterns of the 
proteins were observed and are probably behind the differences in thermotolerance of the strains. Regarding 
sub-optimal temperature response, the ADY5 strain exhibited a strong activation of antioxidant proteins reveal-
ing its importance for low temperature tolerance even under anaerobic conditions. Conversely, at supra-optimal 
temperatures, Ethanol Red increased the expression of proteins involved in ergosterol and glycogen synthesis, 
along with Hsp104p, which are known to play a crucial role in heat adaptation.

Our approach and results evidenced the advantages of carrying out a proteomic-wide expression analysis 
in industrial strains and in an experimental context similar to industrial conditions since it will be valuable for 
later application in the productive sector. Thus, this study identifies potential proteins involved in yeast thermo-
tolerance that can be useful for the biotechnological industry either through the selection of proper strains or 
through the development of yeast strains with improved performance at sub- and-supra optimal temperatures.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 
 PRIDE87 partner repository with the dataset identifier PXD016567.
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