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Abstract
A curve is a continuously bending line with no an-
gles that can be found anywhere in the real world,
forming shapes and outlines. They are also the
building blocks of historic watermarks, imprinted
images on paper that may be used to identify its
manufacturers. Their shapes consist of curves as
bent wires are used in their production process. Of-
ten, the processing of scans of those curves may
introduce gaps or a degraded quality which could
be corrected by reconstructing the curves in those
gaps. Curve reconstruction is a fundamental prob-
lem with many research applications, one of which
is the reconstruction of curves for binarised scans
of historic watermarks. In this paper, a data gen-
eration approach is proposed for the simulation
of the watermark curves domain through singular
automatically generated curves and human-drawn
sketches which are then used along binarised wa-
termark scans. I propose a hybrid method com-
bining machine-learning and analytical approaches
for curve reconstruction, aiming to leverage their
advantages together. The method is compared
to its components separately. Quantitative results
against them demonstrate the superiority of the
pure machine learning approach, as well as the need
for more research into potentially better analytical
components and a more realistic domain simula-
tion.

1 Introduction
Historic watermarks are images embedded into paper that
are generally unnoticeable but become visible when shed-
ding light through them. They serve primarily to identify
manufacturers of paper. Historians find use in watermarks
to recover information about the examined document’s con-
text, like its approximate manufacturing period and place of
production. When encountering a new document with a wa-
termark, it is thus crucial to match it to a similar watermark
whose meta-information is already known to identify the arte-
fact [1]. Hence, museums around the world store sizeable
archives of them that have to be searched manually. This pro-
cess is time-consuming, hindering cooperation with other in-
stitutions, and, therefore, this necessitates a universal water-
mark similarity-matching system that would enable historians
to work together across the globe and reduce the time needed
for this task tremendously.

In the context of watermark similarity matching a key part
of the task is binarisation, a technique aiming to identify
which parts of the scan are watermark segments and which
- background. However, most such techniques are imperfect
and would produce outlines with gaps (holes in the watermark
curves wrongly classified as background) and noise (parts of
the image wrongly classified as belonging to the watermark).
This is why there is a need for a curve reconstruction module
that can correct these discrepancies.

This paper aims to analyse what techniques can serve to re-
construct the watermark curves’ shapes after the binarisation

techniques are applied. It aims to answer the question:

“How can curve-reconstruction and hole-filling
algorithms and models for binarised images aid
watermark harmonisation to improve similarity
matching and reduce user input?”

To this end, a system must find how missing curve segments
from the binarised image can be detected and reconnected. It
must be able to approximate all types of curves. Such a mod-
ule must be able to differentiate between curves and noise.
It must also attempt to reconnect and adjust curves based on
the way humans visually perceive shapes, connectedness, and
smoothness as watermarks generally involve smooth curved
shapes due to the bent wires used to imprint them.

In this paper, several methods that address this problem
are presented, analysed, and compared to assess whether any
approach would be effective in the watermarks domain.

2 Background
A curve is the image of an interval to a topological space
by a continuous function. Watermark curves are continuous
and planar. They can be non-bent (curves for which there
exists a given direction for which the approximating points’
projections would remain in the same order), bent (curves
for which the afore-mentioned direction does not exist), self-
intersecting, open (has endpoints) and closed (has no end-
points).

The system developed should be able to reconstruct curves
of all types, as watermark outlines have a wide variety and of-
ten combine multiple such curves. To represent them, hence,
a valuable basis would be Bézier curves [2], B-splines [3;
4], and NURBS curves [5] for open curves of all types and
Catmull-Rom, also known as Cubic Hermite, splines [6] for
closed ones, as watermark curve segments are continuous and
polynomially-defined.

Bézier curves are parametric curves whose parts are influ-
enced by control points that attract parts of the curve closer to
them with differing force and area of influence. The process
of generating them can be visualized using the de Casteljau
algorithm [7], which recursively breaks down the curve into
linear interpolations between control points. At each step,
points are linearly interpolated. This breaking down contin-
ues until only a single point remains, which traces out the
Bézier curve as a parameter t varies from 0 to (defining the
t values of the curve, tracing it from end to end).

B-splines (Basis Splines) and NURBS (Non-Uniform Ra-
tional B-splines) are extensions of Bezier curves that offer
greater flexibility and control. B-splines are constructed from
several polynomial segments, each influenced by a subset of
control points (thus also requiring a knot vector). They are
useful to get local control so that augmenting a given con-
trol point would influence only a section of the curve, un-
like Bézier curves where changes can affect the entire curve.
NURBS expand on this by adding weights to control points
to model more complex shapes.

Finally, Catmull-Rom splines are similar but for them, the
curve passes through the control points and the tangents are
calculated using adjacent points. Their benefit is that they do
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not require knot and weight vectors so they are simpler for
curve generation.

3 Related Work
In 2023, Bant, ă et al. propose a watermark similarity-
matching system trained and tested with scanned historic wa-
termarks from the German Museum of Books and Writings
[8]. The proposal involves a pipeline including a harmon-
isation, feature extraction, and similarity matching module.
Harmonisation includes denoising and binarisation. Denois-
ing takes an image as an input and attempts to increase the
contrast between the watermark and the background, blur out
noise, and remove lines. Binarisation segments the water-
mark as a white foreground and the rest as a black back-
ground. Then, a feature extraction module condenses this
representation into a vector, and finally, a similarity matching
module matches those vectors to one another based on a simi-
larity metric. A significant drawback of this approach is a so-
called binarisation post-processing sub-module where users
receive the system’s output and correct it manually by recon-
structing curves and deleting noise in the binarised image.
Requiring a user to draw is, however, unreliable and time-
consuming. Thus, automating that section of the pipeline and
limiting user input would significantly ease the potential users
of such a system.

To aid the binarisation for watermark similarity matching,
there is a need to automatically reconnect curve segments in
the binarised images. This curve reconstruction can be done
with three distinct approaches.

The first, curve approximation, includes sampling points
from the curve and creating a fit for them. Graph-based meth-
ods, a sub-category of these approaches, structure the points
in graphs and then apply given criteria to filter the outline
[9]. A prominent example of feature-size criteria methods,
another sub-category, is the Crust algorithm [10]. It takes as
input a set of points in an image and splits the image into re-
gions so that each region includes only one of those points
and for any given region none of the points in it lies closer
to another centre of a region than the one it is already in.
This is the so-called Voronoi diagram with Voronoi vertices
[11]. Then, the Delaunay triangulation [12] is computed on
the union of the points and Voronoi vertices, which subdi-
vides their convex hull into triangles whose circumcircles do
not contain any of these points. Then, for each edge of the
Delaunay triangulation if its two endpoints are in the origi-
nal set of points this edge is added to the final curve. This
technique is relevant for the case of watermarks as it allows
for the reconstruction of multiple curves with non-uniformly
sampled points from the curves which would be suitable for
the problem case where curve segments of unknown lengths
are missing. Its sampling condition, however, requires a sam-
pling angle of at least 150 degrees between adjacent edges so
it is not suitable for sharp edges and requires saturated sam-
pling of smooth regions with bends.

Improvements to this method exist that can reduce the an-
gle condition to less than 90 degrees as small as 60 degrees
(HNN-Crust or Half Nearest Neighbour Crust) [13]. HNN-
Crust achieves this by sampling more sparsely where possible

and connecting non-endpoints to both the nearest neighbour
and the half-nearest neighbour which is the closest sample
in the half-space H which is partitioned by the perpendicu-
lar bisector of the edge to the nearest neighbour and does not
contain the nearest neighbour point.

Other curve approximation methods focus on noisy sam-
pling fitting, sharp corners, minimising the total curve length
(travelling salesman problem), and non-manifoldness (self-
intersections of the curve) [9]. Relatively new HVS-based
approaches (attempting to reconstruct the Human Visual Sys-
tem) aim to emulate how human eyes perceive and group vi-
sual elements, basing themselves on subsets of the six Gestalt
laws: similarity, continuation, closure, proximity, figure/-
ground, and symmetry & order [14]. Examples of them in-
clude the DISCUR [15]. It can reconstruct multiple open
or closed simple curves with sharp bends. Nevertheless, this
heavily relies on an appropriate sampling of interior curves.
Additionally, it requires a high sampling density of sharp
bends which is difficult to obtain in the watermarks problem.
VICUR, an improved variant, is also based on proximity and
continuation [16]. Nevertheless, a major drawback to it is
that it is highly sensitive to the user-tuned parameters. Non-
uniform sampling can, hence, not be a good initialisation for
such approaches.

The second approach, curve welding, attempts to extract
information from the curve shapes themselves and tries con-
necting closely oriented segments. Such approaches also may
rely on Gestalt laws [14] for how humans perceive connec-
tivity but mostly rely on proximity and orientation of curve
endpoints, ignoring other curve information.

The final approach, machine learning, formulates the task
as an Image-to-image translation problem. This would re-
quire the input of an image that would be in one domain
space (in this case curves with gaps) and translated into an
image of another domain space (curves without gaps). Mod-
els that generate output like that are called generative mod-
els. They treat the output pixels as conditionally indepen-
dent from all others given the input image [17]. Using such a
model would enable a method to abstract itself from individ-
ual inputs and user-defined parameters and sampling and will
depend merely on the dataset collection. In generative adver-
sarial networks (GANs), a generative model is faced against
an adversary discriminator which learns to determine whether
a sample is from the target distribution or not [18]. Prior re-
search has conditioned GANs on all types of multimedia like
text and images [19; 20; 21]. This could be done in a paired
or unpaired manner. In the former, the input is presented as
pairs of input and target images. This gives substantial and
conditioned information to the system to draw conclusions
for the classification sets. An example of this class of models
is Pix2Pix [17]. The key advantage of these methods is that
they can identify defining features from a class very accu-
rately because they are presented pairs of data. Nevertheless,
acquisition of such data may not always be possible. In the
latter sub-category, unpaired approaches, the input is just a set
of images and the model must learn to differentiate the char-
acteristics of classes, like in CycleGAN [22]. It can handle
large amounts of data and quickly give results. Nevertheless,
a key drawback of such methods is that the classes one aims
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Figure 1: Example of a traced watermark, a watermark that has
been manually traced with a pencil (left) and an example of an un-
traced watermark, a raw scan of the watermark on the paper as is
naturally seen, usually with increased intensity contrast for better
visibility (right)

to differentiate between need to have significant differences
that can be detected through the analysis of the set fed to the
system. This poses significant challenges in the learning of
slight differences in similar classes, as could be the case for
curves with and without gaps in the same conditions (bina-
rised images).

None of these techniques have been examined in the con-
text of curve reconstruction for binarised historic watermark
scans. This paper will study the effectiveness of some of them
and see how their advantages can be combined.

4 Methodology
To see how curve reconstruction can be applied to aid the
historic watermark similarity-matching process, the problem
was extracted from the domain of binarised historic water-
marks to more general cases to see how robust the method
would be on all curve types. The abstraction to general cases
is detailed in Section 4.1. Then algorithms were selected and
applied to those abstract cases for parameter optimisation as
detailed in Section 4.2. Finally, a comparative quantitative
evaluation metric was chosen to compare the approaches and
draw conclusions about the final method. This is explained
thoroughly in Section 4.3.

4.1 Dataset Creation
Watermarks are mostly imprinted using bent wires (hence,
smooth and mostly continuous curves). Additionally, they are
often traced with pencil by historians, making them similar to
sketches (see Fig. 1). Hence, an assumption was made that
abstracting from the problem to view general singular curve
cases and sketches would be useful for creating a robust curve
reconstruction algorithm.

Curves may exhibit many kinds of behaviour as explained
above. To accommodate for curves of varying complexity
that represent all of these characteristics two datasets of sin-
gular curves were, hence, created. The first included only
open curves. 20 numbers between 0 and 100 were generated
and then this was used as the number of randomly-generated
control points for the curve. Then, open Bézier curves were
produced from the control points. Each class of a generated

Figure 2: Example of an automatically-generated open curve (curve
with endpoints) with automatically-generated gaps (left) and its
original form before the gaps generation (right). The white pixels
of the image denote the curve and the black ones - the background.
This curve is a part of the dataset of open curves used for method
tuning and validation.

Figure 3: Example of an automatically-generated closed curve
(curve without endpoints) with automatically-generated gaps (left)
and its original form before the gaps generation (right). The white
pixels of the image denote the curve and the black ones - the back-
ground. This curve is a part of the dataset of closed curves used for
method tuning and validation.

number of control points got 50 generated samples, making
the final number of open curves 1000 (see example in Fig.
2). This was chosen to ensure the representation of all curve
behaviour permutations while also not making the training of
a machine learning model too slow.

After this, 1000 closed curves were generated in the same
way but using Catmull-Rom splines (see example in Fig. 3).

Then, since some watermarks are often traced, and drawn
by people with a pencil, a dataset of human sketches was
taken from TU Berlin and used as a more advanced and simi-
lar domain to the watermarks [23]. 20,000 images were taken
from there and reformatted to be the same size as the open and
closed curves (see example in Fig. 4). These 20,000 images
were the entire set taken.

Finally, 311 binarised watermark images were taken from

Figure 4: Example of a sketch with automatically-generated gaps
(left) and its original form before the gaps generation (right). The
white pixels of the image denote the sketch curves and the black
ones - the background. This mermaid sketch is part of the dataset of
sketches used for method training.
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Figure 5: Example of a binarised watermark scan with
automatically-generated gaps (left) and its original form before the
gaps generation (right). The white pixels of the image denote the
watermark and the black ones - the background (hence, binarised).
This watermark is part of the dataset of sketches used for method
training.

the German National Museum of Books and Writings. They
included only traced watermarks, containing a single symbol,
as only they could be reliably automatically binarised with the
system proposed by Bant, ă et al. [8]. They were processed by
the proposed pipeline, cropped around the white pixels, and
fitted to be the same size as the other images (see example
Fig. 5).

For each of those four categories gaps were generated.
This, however, had to be done in a manner that would still
enable the system to reliably reconstruct the general curve
shape, as deleting keypoints (e.g. knots, endpoints, bends,
local extrema) would significantly impede the reconstruction
process. In those cases, even humans would hardly accurately
be able to reconstruct those parts otherwise. This is done to
examine how the method would perform under optimal con-
ditions. To do this, each curve was skeletonized (made as
thin as possible without affecting its continuity) and Hessian
corner detection was applied to identify the keypoints.

Hessian corner detection is a method used to detect corners
in an image using the Hessian matrix, a matrix of second-
order partial derivatives of the image. Then, a radius was
defined around each of the identified corners for curve pixels
to be preserved. In this case, a radius of five pixels was used
as images were of sizes 496×369 and five pixels is enough to
create a visible area around a given keypoint. All other curve
pixels were deleted to represent the gaps. Examples of gener-
ated curves and their corresponding equivalents with gaps are
visible in Figures 1, 2, 3, and 4 for all the classes. Finally, all
of these pairs of images were split into 85% training and 15%
testing sets using the stratified sampling technique, meaning
that the split was done not on the whole set of all samples
but on every sub-class (in this case, every sub-folder). All of
these datasets are accessible in the project repository1.

4.2 Algorithms Choice
For the final method, a hybrid approach between machine-
learning and analytical approaches was devised. To exem-
plify how it affects an input and how curve reconstruction
fares with it, a butterfly sketch was chosen (see Fig. 6).

1https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
q4/Skrodzki Castaneda/vpetkov-Automated-processing-of-
scanned-historic-watermar.git

Figure 6: Example of a sketch that will be used to follow the effects
of the hybrid approach on an image input. The input, image of the
sketch with gaps, can be found on the left and its ground truth with
no gaps can be found on the right.

Figure 7: Example of an input, fed to the hybrid approach (up) and
the output that the Pix2Pix step of this method produces (down).

Pix2Pix and cycleGAN were selected for the machine-
learning methods as they represent the two classes of image-
to-image translation problems: paired [17] and unpaired [22],
respectively. Then, repeated reconstruction (in five iterations)
using a model trained was performed to maximise results.
Due to unnoticeable changes qualitatively, cycleGAN was not
adopted for the final approach and only Pix2Pix was selected
as the first step of the hybrid method (with five iterations per-
formed). It resizes the image to 256 × 256 for ease of pro-
cessing. Its effect on the input can be seen in Fig. 7.

Then, the predicted output is fed into the analytical mod-
ule. For it, experiments were done with Crust and VICUR.
For VICUR, uniform point sampling with respect to the pixel
distances was performed before the technique was applied.
This, unfortunately, exhibited very poor results and coarse
approximation on training images. Therefore, CRUST was
prioritised for the final approach despite its inability to con-
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Figure 8: Output that the Pix2Pix step of the hybrid approach pro-
duces for the example from Fig. 6 (left) and output after this result
is processed by the Crust step of the method (right).

nect self-intersections. 250 pixels are sampled in total with
each connected component contributing proportionally to its
size. Within the segments, pixels are sampled uniformly to
represent their parts of the image optimally. The algorithm’s
impact can be seen in Fig. 8.

Finally, to do minimal shape optimisation, a simplistic
welding method was devised. Reconstructable curves mostly
require segment endpoints to have similar alignment and
proximity. Additionally, two segment endpoints can be com-
bined to be joined if they are not connected and lie in the
image sectors defined by a certain angle offset on both di-
rections of the point tangent in the opposite direction of the
segment the points lie on (in this case 60 degrees on both
sides). This is done by lies within sector in Algorithm 1.
The final parameters used for the simplistic approach were
40 pixels distance, 60 degrees orientation threshold and 60
degrees sector threshold.

In this algorithm compute image gradients(image)
computes the Sobel gradient (or first derivatives in
the x and y direction) of the image. The method
compute orientations(gradx, grady) computes the angle
of orientation of each pixel on the image by taking the 2-
quadrant arctan

(
grady

gradx

)
which returns the angle orientation

within the range [−π
2 ,

π
2 ]. Then extract endpoints takes

the image, skeletonises its curves, and identifies points with
specific geometric configurations of neighbours that corre-
spond to endpoints and then returns their coordinates. Then,
combine connected endpoints(endpoints) checks which
endpoints are connected (checks if there exists a path of
neighbouring white pixels) to one another on the image and
groups them, returning a list of lists of pixel coordinate pairs.
anglebetween calculates the angle between the two points’
orientations and euclidean distance - the Euclidean dis-
tance.

Finally, the Bezier curve is constructed using these param-
eters by taking the 2 endpoints and making 2 control points
using the formulas P1 = P0 + α · T0 and P2 = P3 − β · T1

where P0 and P3 are the endpoints and T0 and T1 are the
corresponding tangent vectors. α and β denote the weights
of the tangent vectors for P1 and P2, respectively (they con-
trol the distance of the control points from the endpoints).
num points denotes the number of points the curve will re-
turn, calculated by constructing a linear space from 0 to 1 and

dividing it into this many sub-parts before using those values
as t values for the Bézier curve.

Algorithm 1 Curve Segment Welding Algorithm

Require: image, distance threshold, orientation threshold,
sector angle
gradx, grady ← compute image gradients(image)
orientations← compute orientations(gradx, grady)
endpoints← extract endpoints(binary image)
segments← combine connected endpoints(endpoints)
pairs to join← ∅
for each pair pair 1 in segments do

for each endpoint pointx in pair 1 do
for each non-visited pair pair 2 in segments do

for each endpoint pointy in pair 2 do
angle← angle between(orientation(
pointx), orientation(pointy))
distance← euclidean distance(pointx,
pointy)
lies within sector ← is within sector(
pointx, pointy, tangent, sectorangle)
if pointy is not visited already and

distance<distance threshold and
angle<orientation threshold and
lies within
then

add the pair with minimal angle differ-
ence (pointx, pointy) to the
pairs to join

end if
end for

end for
end for

end for
reconstruct each pair by building a cubic Bézier curve be-
tween the endpoints with no kinks for a smooth transition
between their orientations (α=5, β=1, num points=100) if
it would not intersect more than 2 pixels from the existing
curves
display reconstructed curve

The output of the hybrid approach is then found after this
third and final step.

4.3 Evaluation Metric Choice
Five metrics were used to evaluate how effective the approach
is in curve reconstruction.

The first metric, intersection over union (IoU), considers
what area is precisely coloured as part of the union of the
ground truth and output [24]. This metric was selected as
it indicates exact overlapping. It does not, however, reflect
pixels approximately correctly matched by the system but not
exactly. Equation (1) below, where A and B are the two curve
sets identified showcases how it can be calculated.

IoU =
Area of Intersection

Area of Union
=
|A ∩B|
|A ∪B|

(1)

The second metric, Hausdorff distance, denotes what is the
maximal distance in pixels between the reconstructed curve
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and ground truth [25]. This is useful as it showcases how
mismatched the curves may be. This metric can be calcu-
lated with the equation (2) below where d(a, b) denotes the
Euclidean distance between two points and A and B denote
the sets of points of the curves of the predicted output and the
ground truth.

H(A,B) = max

{
max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(b, a)

}
(2)

The final three metrics reflect that when an algorithm is ap-
plied it produces a prediction image where some pixels are
visibly correct to a human but not fully identical to those of
the ground truth reconstructed curve. To reflect that such re-
sults shall be considered correct, I consider a pixel from the
ground truth to be captured correctly if there exists a pixel
within a certain radius (five pixels in this case) from it in
the predicted image that is also white. This is what we re-
fer to as true positives (denoted as TP). Similarly, if such
a pixel does not exist in this radius we have a false nega-
tive(denoted as FN). False positives (denoted as FP) are pixels
in the predicted image that don’t correspond to curve pixels
in the ground truth. For this project, the precision, recall, and
F1 score [26] were examined and calculated, as per equations
(3), (4), and (5), respectively:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 · Precision · Recall
Precision + Recall

(5)

5 Experimental Setup, Results, and
Discussion

The final hybrid method was trained on a set of 800 sketches
and watermarks for time efficiency (to last only a few hours
and not days). The set included all of the watermark train-
ing images and the rest were sketch images randomly drawn
from the dataset. Then the model to use for the Pix2Pix was
generated and used for the hybrid approach. For results re-
producibility, this model was stored and is accessible in the
project repository2.

The evaluation was run using the hybrid approach, com-
pared to the Pix2Pix and Crust steps alone to assess the sys-
tem and weigh its advantages and disadvantages. Each of
those methods was evaluated on the training and testing set.

For the training set, for runtime reasons, 100 sketches from
the sketches training set were randomly selected, as well as
50 watermarks from their respective training set. Then the
method was run on all of them and scores were generated for
the sketches class alone, watermarks class alone, as well as
the total set of both classes. The scores for each of them in-
cluded the intersection over union (IoU), Hausdorff distance,
Precision, Recall, and F1 score as detailed in Section 4.3.

2https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
q4/Skrodzki Castaneda/vpetkov-Automated-processing-of-
scanned-historic-watermar.git

Similarly, for the testing set, 102 sketches were taken and
all 48 watermarks from the testing set to have 150 samples
total in both cases. For reproducibility, each of the files taken
for the evaluation, its generated pixel coordinates for the
Crust step, as well as its evaluation scores have been recorded
and are accessible in the project repository.

5.1 Results
The results of the hybrid, Pix2Pix, and Crust methods can be
seen in Figures 9, 10, and 11, respectively.

When it comes to the first metric, intersection over union,
all three methods show poor results for all sample categories
with none of them surpassing a 50% overlap. This is, how-
ever, to be expected as the full overlap of the predicted output
with the ground truth is nearly impossible even for a human.
Thus, all techniques used rather aimed at approximation and
not exact overlap.

Next, the Hausdorff distance metric reflects how far in
pixels the most mismatched point of the curve is. Here,
the watermarks class has significantly better scores than the
sketches, meaning that the system is less likely to distort the
curve with them, possibly due to their compactness and abun-
dance of keypoints that led to those parts being more pre-
served in the gap generation process than with the sketches.
The hybrid approach and Pix2Pix score similarly on this met-
ric, whereas Crust has much higher distances, hinting at its
inaccuracy when used alone.

Finally, when it comes to the last three metrics they are
very much interrelated. On the one hand, recall shows
whether the system introduces too much additional noise and
false parts to the curve. Precision, on the other hand, exam-
ines how well the approximation of the ground truth worked.
The F1 score in the end strikes a balance between them.

Recall scores across all three approaches remain similar
with the minimal score recorded being 0.97. This means that
less than 3% of the reconstructed curve was too far from the
original curves, or in other words, represented noise. There-
fore, all techniques used were successful in curve approxima-
tions without introducing erroneous artefacts.

Precision scores can be considered the most defining dif-
ference in the three approaches. In the Crust method, none of
the categories surpasses 0.5, meaning that less than half of the
ground truth curve is matched by the predicted output. This
renders Crust not particularly useful for curve reconstruction
of watermark scans. As for the hybrid approach, precision for
the training samples is expectedly slightly higher than for the
testing ones. The hybrid approach achieves as much as 71%
precision for sketches from the training set and 66% for those
in the testing set, meaning that for sketches it accurately ap-
proximates more than two-thirds of the original sketch. Nev-
ertheless, results for watermarks are slightly worse with 58%
and 54% for the training and testing set respectively. This ren-
ders the hybrid approach also not particularly useful in curve
approximation in the watermarks domain.

Most importantly, however, results from Pix2Pix alone
show that 83% of the watermark ground truth is correctly
matched by the Pix2Pix method alone for the samples of the
testing set and the system achieves as much as 91% precision
for watermarks from the training set. This qualifies Pix2Pix
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alone as a viable curve reconstruction approach for the water-
marks. Regarding sketches, however, it shows similar but a
bit better results from the hybrid approach, just below 75%.

The effects of the three approaches can also be observed on
an example watermark of an outline and three letters in Fig.
12. There, Crust fails to approximate both the watermark out-
line and the letters. The hybrid approach manages to rectify
this by having a fully reconstructed outline but missing size-
able letter segments. The pure Pix2Pix approach, on the other
hand, manages to reconstruct everything almost fully, when
compared to the ground truth. This example only demon-
strates the potential of this method in this domain.

Considering the above, the F1 score only confirms what
the precision score already pointed out: the proposed hybrid
approach fails to reliably reconstruct the watermark curves.
This can be explained by several shortcomings.

5.2 Discussion
Firstly, the assumption was made that analytical curve re-
construction approaches can be helpful to machine learning
methods. Nevertheless, during the choice of a suitable an-
alytical approach some of Crust’s key downsides were dis-
regarded in the hopes of accurate results. Those included
the step’s inability to connect non-manifold edges and deal
with self-intersections, as well as the minimum required an-
gle. This likely disconnected areas correctly connected by
Pix2Pix already and/or wrongly connected them.

Secondly, a key shortcoming in the whole system is that the
outcomes of the methods are all context-dependent. There-
fore, any promising results of the methods above can be
viewed as such only in the context of reconstructing curves
in the given domain. The key assumptions that were made
here included that there is barely any noise around the orig-
inal curve which is highly unlikely in a realistic scenario of
a watermark similarity matching system. Additionally, it was
assumed that the keypoints of a given curve (endpoints, local
extrema, self-intersection knots, and inflection points) would
remain in the input unchanged and gaps would be made only
between them. This assumption is also highly unrealistic but
the lack of a viable existing system for watermark similarity
matching left no alternative to that.

Thirdly, the set of binarised watermarks used for training
and evaluation was too small to make statistically reliable
conclusions based on them. For images of such complex-
ity and size of 256 × 256, thousands of training images are
recommended. This could not be done, however, due to the
need for manual annotation to cover the wide variety of water-
marks that exist, specifically untraced ones. To compensate
for this, sketches and automatically-generated curves were
used. Additionally, it is recommended to train only on wa-
termarks to achieve optimal results for their class since the
ultimate aim of the system is to handle only watermarks.

Finally, the quantitative analysis is context-dependent and
ignores the human factor of recognising shapes and similar-
ities. For example, a section of a curve might be visually
approximately correct to a human, but if it is six pixels dis-
tanced from its original correspondent segment then the pre-
cision metric defined for a radius of five pixels would incor-
rectly detect it as mismatched.

IoU Hausdorff Precision Recall F1
Sketches 0.13 39.22 0.66 0.97 0.77

Watermarks 0.12 22.89 0.54 1.00 0.68
Total 0.13 34.00 0.62 0.98 0.74

Sketches 0.14 33.15 0.71 0.98 0.81
Watermarks 0.12 20.86 0.58 1.00 0.71

Total 0.14 29.06 0.66 0.99 0.78
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Figure 9: Evaluation results of the hybrid method on the training
and testing set of sketches and watermarks. In bold are the highest
scores of this method. Metrics used are: intersection over union
(IoU) which ranges from 0 to 1 where 0 denotes no overlap of the
curves and 1 - full overlap; Hausdorff distance (Hausdorff) which is
in pixels and ranges from 0 to the maximal possible size within the
images, in this case, 256, where the higher the distance, the higher
the mismatch; precision, recall, and F1 score, which range from 0
to 1 where 1 is the best possible result, and 0 - the worst.

IoU Hausdorff Precision Recall F1
Sketches 0.21 29.30 0.75 0.99 0.84

Watermarks 0.19 16.00 0.83 1.00 0.89
Total 0.20 25.04 0.78 0.99 0.85

Sketches 0.21 31.88 0.74 0.98 0.83
Watermarks 0.21 13.90 0.91 1.00 0.95

Total 0.21 18.85 0.87 0.99 0.92
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Figure 10: Evaluation results of the pure Pix2Pix method on the
training and testing set of sketches and watermarks. In bold are
the highest scores of this method. Metrics used are: intersection
over union (IoU) which ranges from 0 to 1 where 0 denotes no over-
lap of the curves and 1 - full overlap; Hausdorff distance (Haus-
dorff) which is in pixels and ranges from 0 to the maximal possi-
ble size within the images, in this case, 256, where the higher the
distance, the higher the mismatch; precision, recall, and F1 score,
which range from 0 to 1 where 1 is the best possible result, and 0 -
the worst.

IoU Hausdorff Precision Recall F1
Sketches 0.09 46.34 0.49 0.97 0.63

Watermarks 0.07 38.64 0.22 0.98 0.35
Total 0.09 43.89 0.40 0.97 0.54

Sketches 0.09 51.37 0.46 0.97 0.61
Watermarks 0.07 34.15 0.24 0.98 0.37

Total 0.08 38.89 0.30 0.98 0.44
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Figure 11: Evaluation results of the pure Crust method on the train-
ing and testing set of sketches and watermarks. Metrics used are:
intersection over union (IoU) which ranges from 0 to 1 where 0
denotes no overlap of the curves and 1 - full overlap; Hausdorff
distance (Hausdorff) which is in pixels and ranges from 0 to the
maximal possible size within the images, in this case 256, where the
higher the distance, the higher the mismatch; precision, recall, and
F1 score, which range from 0 to 1 where 1 is the best possible result,
and 0 - the worst.

7



Figure 12: Visual comparison of the three approaches for an ex-
ample binarised watermark scan. The input watermark with gaps
can be found up, the outputs of the Crust, hybrid, and Pix2Pix ap-
proaches on this image input can be found in the middle row, next to
one another, from the left to the right, respectively, and the ground
truth without gaps those results could be compared to is below them.

6 Responsible Research
ChatGPT3 was used to aid certain aspects of the program-
ming. It was used to get ideas on which techniques may be
effective for the problem, or what certain techniques meant,
as well as what papers might be useful to read considering the
problem. ChatGPT was also sometimes used for code gener-
ation for simple algorithms. It is important to note that all
queries used for programming were to get an idea of how to
approach a problem. Any code that was provided by Chat-
GPT was heavily altered to fit the context of this project. No
code that was generated by ChatGPT was used in an unaltered
form.

An open-source GitHub repository was used to gain insight
into Pix2Pix, CycleGAN and their fundamentals4. Some
code from this repository was used but a lot of it had to be
adjusted to fit the curve reconstruction problem.

Similarly, another open-source GitHub repository5 was ex-
perimented with to gain insight into multiple analytical curve
reconstruction methods. Most notably, an executable file im-
plementing VICUR and Crust was incorporated into the final
method proposed.

Finally, watermark images have been provided in digitized
form by the German Museum of Books and Writing for this
project. Due to their age, the documents can also no longer be

3https://openai.com/blog/chatgpt
4https://github.com/bnsreenu/python for microscopists
5https://gitlab.com/stefango74/curve-benchmark/-

/tree/master?ref type=heads

copyrighted. It has been, thus, assumed that the museum has
acquired these documents in an ethically responsible manner
since it is an esteemed organization.

The same holds for the open-source sketches dataset 6, col-
lected by TU Berlin. The assumption is made that they do not
contain any sensitive or personal information and that the cre-
ators of the sketches consented to their work being published
online.

7 Conclusions and Future Work
In this paper, a new method for curve reconstruction in
scanned historic watermarks was presented. It combined
a conditional generative adversarial network (Pix2Pix) with
an analytical feature-size criteria algorithm (Crust) and a
Gestalt-law-based simplistic endpoints welding method. The
system was developed and trained on the basis of a simulated
environment of binarised grayscale images of automatically
generated singular open and closed curves of varying com-
plexity, human-drawn sketches of varying real-world shapes,
as well as binarised watermarks scans to emulate the vari-
ety of shapes and curves in watermarks. The system was
then trained on sketches and watermarks and tested on the
same categories. The quantitative results on intersection over
union, Hausdorff distance, precision, recall, and F1 score
are then compared with the results of the machine learning
and analytical components separately. The analysis shows
promising results for the performance of conditional gener-
ative adversarial networks in the area of watermarks curve
reconstruction but the proposed hybrid approach does not im-
prove those scores.

This exemplifies the need for more research into the analyt-
ical component, as Crust is very simple and performs poorly.
A possible substitute for it could be HNN-Crust [13], its im-
proved version with a lower minimum angle. Methods that
could be further integrated include GathanG [27] which can
handle self-intersections, sharp bends, open curves, multiple
components, and non-uniform curve sampling but not noise
and outliers. An alternative that can deal with these is Peel
[28], although it can not handle sharp bends and has a higher
runtime complexity of O(n2). An interesting potential ap-
plication can also be genetic algorithms like the Firefly al-
gorithm [29] and generalised iterative methods like LSPIA
[30] and NewtonGA [31]. Such methods start with an ini-
tial rough curve approximation and then iteratively move its
control points and adjust its parameters until certain conver-
gence criteria are met. Such approaches are, nevertheless,
very sensitive to their initialisation and largely focus on sin-
gular curves which is undesirable in the given domain.

Additionally, more conditional generative adversarial net-
works can be leveraged against Pix2Pix to identify the best
option from them for the watermarks domain.

Above all, more accurate dataset representation can be per-
formed to abstract the method tuning and results from the
initial assumptions made about the lack of noise in input
curves, preservation and identification of curve keypoints,
and sketches interchangeability with watermarks. That can be

6https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
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done by manually annotating a set of a few thousand water-
mark scans and running them through a finalised watermark
similarity matching system to obtain their binarised curve
equivalents with noise where keypoints might be sometimes
fully omitted.

Finally, a prolific qualitative analysis of the effectiveness
of curve reconstruction methods can be done through a user
study to recognise the human perspective on the problem.
This is vital as the method is to be introduced in recogni-
tion and similarity matching modules that aid humans, a task
otherwise performed manually and visually.
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