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Abstract—Acoustic classification using single-beam and multi-
beam echosounders has been widely applied in characterizing
seabed sediments. Although previous studies have shown a
better discrimination of fine and coarse sediments using multi-
spectral echosounder data, analysis regarding comprehensive
seabed sediment properties is still needed. In this study, we
used single-beam data of 24 kHz, as well as multi-beam data
of 90 and 300 kHz to investigate the benefits of multi-spectral
backscatter data in describing sediment properties including
median grain size; weight percentages of gravel, sand, and mud;
volume percentages of stones, shell fragments, and living bivalves;
as well as density of acoustically hard animals (molluscs and the
tube-building worm Lanice conchilega). We classified data of each
frequency in an unsupervised manner, using K-means clustering
for the single-beam echo time series and Bayesian classification
for the multi-beam backscatter. Compared with the top-layer
sediment properties, we found classification of 90 and 300 kHz
consistent with variations of median grain size and L. conchilega
density, whereas classification of 24 kHz can also be related
to the percentages of shell fragments and stones. In addition,
one acoustic class of 24 kHz might indicate a higher gravel
content in the subsurface of the study area. Although quantitative
relationships between backscatter and sediment properties are
still difficult to achieve given a limited number of samples,
using multi-spectral backscatter data is a potential approach to
characterize seabed sediments from various perspectives.

Index Terms—seabed sediment, single-beam echosounder,
multi-beam echosounder, backscatter, multi-spectral, acoustic
classification, North Sea

I. INTRODUCTION

Seabed sediment information is essential for various ma-
rine applications, including habitat conservation and planning
of offshore constructions [1, 2]. Compared to bottom sam-
pling, which provides sparsely distributed seabed information,
acoustic remote sensing techniques measure broad-scale sedi-
ment properties more efficiently and cost-effectively. Acoustic
backscatter, the intensity of an acoustic signal scattered from
the seabed, is affected by sediment properties such as interface
roughness and volume heterogeneity [3], making it a useful
tool for seabed mapping.

In the past decades, two acoustic remote sensing techniques
have been widely used to characterize the seabed: single-
beam echosounders (SBES) and multi-beam echosounders
(MBES). SBES acquire an acoustic signal directly below the
echosounder from each ping, whereas MBES form hundreds

of beams in a swath perpendicular to the sailing direction
by emitting one ping, achieving a much larger coverage of
the seabed. Nevertheless, SBES are still extensively used
since they are less expensive and require simpler operations
[4]. With SBES or MBES data, seabed sediments can be
characterized by linking properties like mean grain size to
acoustic backscatter or its derivatives, such as echo shape and
image texture features. Common methods include model-based
and empirical seabed classification.

In model-based methods, physical models based on lab-
oratory measurements are used [5]. The sediment type can
be determined through model inversion given the backscatter
strength from a certain frequency and incident angle [6, 7].
Although bottom samples are not needed in these methods,
absolute backscatter calibration of sonar characteristics is. In
addition, physical models have not considered biological com-
munities, making it difficult to apply model-based methods in
habitat mapping. Empirical methods, on the other hand, require
a few samples from the seabed to establish the relationship
between backscatter and sediment properties, either by super-
vised [8, 9] or unsupervised classification [10, 11]. However,
absolute or relative calibration can be avoided as long as the
relative variation of backscatter measurements can represent
the changes in sediments [12], making data processing much
easier.

Although previous research has demonstrated the success of
classifying seabed sediments using empirical methods, these
studies have usually been restricted to one acoustic frequency.
When the sediment grain size is smaller than the acoustic
wavelength, unambiguous classification of sediment types can
be achieved. Otherwise, fine and coarse sediment might result
in similar backscatter strength [13]. Thus, single-frequency
analysis might not be able to discriminate coarse sediments
like shell fragments [14]. With the recent development of
multi-spectral echosounders, the benefit of combining multiple
frequencies in sediment characterization is being investigated.
Runya et al. [15] found a stronger correlation between the
mean grain size and backscatter strength with MBES data of
30 kHz than 95 and 300 kHz in an area consisting of sediments
from sand to gravel. Brown et al. [16] and Menandro et al. [17]
showed the advantage of lower frequencies in distinguishing
fine sediments due to a deeper penetration. Gaida et al. [12]
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Fig. 1.
sediment layer.

also pointed out that classification of lower frequencies might
indicate rough materials in the shallow subsurface below
the muddy sediment. They further developed a multi-spectral
Bayesian classification method for MBES data. By combining
100 and 400 kHz, they achieved a more complete view of both
the seabed surface and subsurface sediment than the single-
frequency results.

However, research on multi-spectral classification of other
sediment properties, such as the amount of shell fragments
and the occurrence of marine benthos, is lacking. The goal
of this study is to characterize the seabed sediment more
accurately, by accounting for these elements using multi-
spectral backscatter data. To accomplish this, we analyze a
MBES dataset consisting of backscatter data at 90 and 300 kHz
using an unsupervised Bayesian classification method [11]. To
further enlarge the frequency range, we also use SBES data
of 24 kHz. We extract the echo shape features and assign
them to several acoustic classes using K-means clustering. All
classification results are then compared with bottom samples to
investigate the relationship between acoustic classification of
different frequencies and various sediment properties, such as
median grain size, presence of shell fragments, and abundance
of benthos. Additionally, considering the possible penetration
of 24 kHz into the sediment, interpreting the classification
results requires not only surface samples, but the subsurface
properties need to be taken into account [18]. Thus, we
also use samples from a deeper sediment layer to investigate
the possibility of describing subsurface properties with lower
frequencies. Through the comprehensive analysis, we show
the potential of using multi-spectral backscatter for seabed
sediment characterization, which is of great importance for
managing marine habitats.

II. MATERIALS AND METHODS
A. Acoustic Data Acquisition

We obtained the acoustic data north of the Wadden Sea
island Schiermonnikoog in the North Sea in August 2021
(Fig. 1). The area shows gradual bathymetric changes in the
shallower western region, followed by a steep drop and a more
heterogeneous region in the east. The water depth varies from

622010

Study area north of the Wadden Sea island Schiermonnikoog, showing bathymetry, sampling stations, and median grain size (M) from the top

22.1 to 27.6 m. We collected the MBES data, including the two
frequencies 90 and 300 kHz, using a multi-spectral multi-beam
system R2Sonic 2026 (R2Sonic, Austin, TX, USA). The beam
widths are 2.3° and 0.7° for 90 and 300 kHz, respectively. We
adopted a swath coverage of 130°. In addition, we collected
SBES data of 24 kHz using a single-beam system Kongsberg
EA440 (Kongsberg Gruppen, Kongsberg, Norway), with a
beam width of 20°.

B. SBES Data Processing

The original SBES data were stored as RAW files. We
converted them into the EA400 format using the Kongsberg
software EA440 and extracted the echo time series of each
ping using a MATLAB toolbox readEKRaw. Before feature
extraction, we corrected the time series for the sonar settings
and transmission loss of acoustic signals [10]:

I=1.—10log P, +40log R + 2aR — 2G — 10log R, (1)

where [ is the received intensity (dB), I, the corrected
intensity (dB), P, the transmitted power (W), R the range from
the transducer to the detected sea bottom (m), « the absorption
coefficient (dB/m), and G the transmitter or receiver gain (dB).
The last term 10log R accounts for the signal footprint effect,
by assuming that the footprint size is proportional to the depth
below the transducer. Since the echosounder was installed
along the vertical axis, we treated R the same as depth. In
addition, to remove the impact of depth on the echo shape,
we scaled the time series from each ping according to

Rref
R

where t is the received time (s), t,, the normalized time (s),
and R,y the reference depth (m). To validate the effectiveness
of depth correction, we also generated features from simulated
SBES echo time series (see section III-A). The simulation was
based on the APL model [5], with median grain size, water
depth, and sonar parameters (e.g., frequency, pulse length, and
transducer diameter) as input.

We followed the feature extraction process proposed by
van Walree et al. [19] and calculated three features from the

th =

t, 2
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corrected time series (¢,,,I) of each ping: total energy, time
spread, and skewness. Whereas total energy is the integrated
intensity of the time series, time spread measures how fast the
echo intensity drops after reaching the maximum. Skewness
indicates asymmetry, which can be affected by, for example,
an elongated tail and a possible second peak for deeper layers.
All three features can be affected by the seabed sediment
hardness, roughness, the amount of volume scattering, and
the presence of hard materials in the subsurface. To avoid
including noise from the water column, we calculated these
features on the time series from the maximum intensity until
0.045 s. We selected the truncation time based on sufficient
visual inspections.

To alleviate random fluctuations of the backscattering pro-
cess, we averaged these features over 30 consecutive pings.
We also conducted a principal component analysis (PCA) to
reduce the number of features and remove possible statistical
correlations among the features. Afterwards, we clustered
the first two principal components (PCs) using the K-means
clustering algorithm [20], with the optimal number of classes
selected using silhouette coefficients [21].

C. MBES Data Processing

We first cleaned the MBES data for bathymetric outliers
using the QPS software Qimera. We then divided the data
into different frequencies and converted them to the generic
sensor format (GSF). With the received echo level extracted
from the GSF files, we applied backscatter correction to obtain
an averaged backscatter strength (in dB per m? at 1 m) per
beam, which can represent the actual seabed properties. We
removed the impact of sonar characteristics, including the
source level, time varying gain, and beam pattern effect. The
two-way transmission loss and seawater absorption were also
accounted for.

In this study, we avoided the backscatter angular normal-
ization used in many empirical classification methods [22-
24], because such normalization might induce unexplained
uncertainties [25]. Instead, we considered individual beams
using Bayesian classification developed by Simons and Snellen
[11]. Since the backscatter strength per beam is the result of
averaging over many independent scatter pixels (the ensonified
area of a transmitted pulse), it can be assumed to fulfill
the central limit theorem, and hence to follow a normal
distribution. The histogram of the backscatter strength from a
single incident angle and frequency can then be modeled as a
summation of m Gaussian distributions, assuming m sediment
types in the surveyed area. The optimal m is determined by
fitting an increasing number of Gaussians to satisfy the x?
statistical test.

To ensure the robustness of classification, we chose several
reference incident angles between 40° and 60° based on their
x? test results and consistency in the fitted Gaussian distribu-
tions. The average percentage distribution of the boundaries
between fitted Gaussians at these angles defines the expected
presence of classes, which was then applied to other incident
angles. In addition, we excluded incident angles smaller than

20°, since there are too few scatter pixels, and hence the
central limit theorem cannot be satisfied.

D. Ground Truth Samples

We selected 13 sampling stations for both sediment and
macrofauna analysis. We took three boxcore samples at each
location, with two replicates for macrofauna analysis and a
third sample for sediment. The depth of each replicate is
between 20 and 25 cm. The macrofauna replicates were sieved
on board through a 1 mm mesh to extract the fauna. Fauna
were stored in a 4% formalin solution before the laboratory
analysis. Acoustically hard animals, such as molluscs and
the tube-building sand mason worm Lanice conchilega, were
identified to species level, while other animals only to class or
order level. All animals were counted to obtain their density
(individuals per m?). The sediment sample was analyzed
to determine properties such as median grain size (dsg in
mm) and weight percentage of gravel, sand, and mud. The
median grain size is also commonly expressed in ¢ units as
M, = —log, dso. Additionally, volume percentages of shell
fragments (> 10 mm), living bivalves, and stones (> 4 mm)
were determined.

We adopted a two-layer strategy for the sample analysis.
The macrofauna replicates were analyzed separately for depths
smaller and larger than 10 cm. For the sediment sample, we
treated the top 5 cm as the first layer. The second layer ranged
from 5 to 20 cm, or to a visible change in the subsurface
sediment. For simplicity, we will refer to the two layers in all
samples as the top layer and the deeper layer. To explicitly
investigate differences between the two layers, we applied
PCA to all sample properties for each layer. We then compared
the primary feature, the first PC, of both layers.

III. RESULTS AND DISCUSSION

A. SBES Feature Extraction

With the range of M, in our study area, we calculated the
expected total energy, time spread, and skewness from the
simulated echo time series (Fig. 2). We also used varying water
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Fig. 2. Simulated total energy, time spread, and skewness using the APL
model for different water depths (Left) before and (Right) after depth
correction.
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depth (from 10 to 50 m) to show the influence of depth on
these features. Total energy and time spread were originally
susceptible to water depth, but our depth correction could
remove this dependence, making both features discriminative
for different sediment types and independent of depth (see
the two upper right subplots in Fig. 2). On the other hand,
skewness was not affected by water depth. It is common in
some studies to derive the volume backscatter strength from
the SBES data by accounting for the ensonified water volume.
This can be suitable for detecting fish and crabs [26, 27].
Since we focused on the sediment properties, we considered
more the acoustic backscatter from the seabed. The ensonified
footprint geometry can be calculated rigorously when the sonar
characteristics are clearly known [28]. Otherwise, we can use
the depth correction described in this paper to achieve effective
comparisons among regions.

We applied all corrections described in section II-B to the
SBES measurements. Features from the corrected echo time
series showed regional patterns in the study area (Fig. 3).
While total energy indicated a relatively homogenous seabed
in the west, time spread and skewness showed gradual vari-
ations. Near the steep drop in the middle of the area, total
energy and skewness had higher values than in the west, which
might be due to coarser sediment. In contrast, time spread was
the lowest here, possibly indicating less volume scattering or
smaller seabed roughness. For the eastern deeper seabed, all
three features showed heterogeneous patterns, with different
areas highlighted with the highest values.

We also compared these three features calculated from our
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Fig. 4. Comparison between SBES features from the measurements and model
calculations with a depth of 25 m.

measurements near all sampling stations and model simu-
lations generated with similar M, as the samples (Fig. 4).
Although their values were not comparable without absolute
sonar calibration, the trend of total energy with M, was
generally consistent for the measurements and the model.
Total energy increased with median grain size at first due to
the enlarging acoustic impedance. However, for even coarser
sediments, total energy became lower, possibly because more
acoustic signals were scattered with a fixed beam width of
SBES [7]. The trend of measured time spread and skewness
deviated from the model to some extent. Since model sim-
ulations only had M, as input, we might need to consider
more seabed properties, such as presence of benthos and
subsurface characteristics, when interpreting features from our
measurements.

B. Acoustic Seabed Classification

Based on the silhouette coefficients and the x? statistical
test, we selected 3, 4, and 4 classes for data of 24 kHz
(SBES), 90 kHz (MBES), and 300 kHz (MBES) in this study.
Acoustic classification of both SBES and MBES data indicated
a generally homogenous sediment of the western shallower
seabed (Fig. 5). In the east, SBES data were clearly divided
into two classes, in which class 3 corresponded especially to
regions with the highest time spread. With a much higher point
density and thus a better spatial resolution than the SBES data,
MBES classification revealed more detailed variations on the
eastern seabed. In general, class 3 and 4 indicated similar
spatial distributions for 90 and 300 kHz. Class 3 covered
slightly different areas between 90 kHz and 300 kHz.

Differences in acoustic classification for data with various
frequencies might indicate their different responses with the
same sediment or different penetration abilities. For SBES
data of 24 kHz, classification was possibly affected by the
subsurface properties given sufficient penetration. On the other
hand, we involved different incident angles for SBES and
MBES classification. While SBES acquired data from the
nadir, our MBES data covered a larger swath reaching 65° on
both the port and starboard sides. Combining these data from
different frequencies might help us achieve more complete
interpretations of the study area, but brought some difficulty in
independently analyzing the influence of acoustic frequencies.

C. Comparison between Acoustic Classes and Top-layer
Ground Truth

To investigate if acoustic classification could represent the
actual variation of sediments, we compared acoustic classes
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e
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Fig. 5. Acoustic classification of SBES and MBES data.
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the positive impact of median grain size on backscatter more conveniently.

with PCA results of the sample properties. We first constrained
the comparison to the top sediment layer. Even with a deeper
penetration into the sediment, surface roughness and volume
heterogeneity of the top layer can still affect the acoustic
backscatter. With the sample property vectors projected on the
span of the first and second PC, we saw the primary variation
in sediments contributed by dsg, L. conchilega density, and
gravel content (Fig. 6). In addition, percentages of sand, stone,
gravel, and shell fragments were highly correlated. Mollusc
density, L. conchilega density, and dsy also showed positive
correlations.

We also constructed PCA biplots of the first and second
PC, with acoustic classification of the samples indicated by
colors (Fig. 6). Class 1 of 24, 90, and 300 kHz were generally
consistent with an aggregation of samples with fine sediments
and less benthos. For 90 and 300 kHz, the gradient of
acoustic classes was especially along with changes of dso and
L. conchilega density, showing the correspondence between
MBES classification and the primary sediment properties. Ad-
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Fig. 7. Pearson correlation coefficients between SBES features and top-layer
sediment properties.

ditionally, difference between 90 and 300 kHz was relatively
small, considering that our study area only included fine to
coarse sand. As an important benthic species in the North
Sea, L. conchilega builds tubes with sand and shell fragments,
which can protrude out of the sediment for several centimeters,
thereby increasing the local seabed roughness [29-31].

In contrast, classification of 24 kHz did not vary with dsq
only. For SBES features, although total energy was highly
correlated with dso and L. conchilega density, there was also
moderate correlation with shell fragments (Fig. 7). This latter
correlation, albeit higher, was also found for time spread.
Considering the wavelengths of 24, 90, and 300 kHz, which
are 63, 17, and 5 mm, it is possible that acoustic signals of
24 kHz are more sensitive to variations in coarse materials
such as shell fragments (> 10 mm) and stones (> 4 mm).
In addition, modeled time spread barely showed the impact of
more volume scattering in finer sediments for 24 kHz (Fig. 4),
probably indicating that SBES features were mainly affected
by the seabed roughness that can be altered by the amount of
shell fragments and stones.

Considering a higher spatial resolution of MBES data, clas-
sification for 90 and 300 kHz might be more consistent with
the small-scale information represented by boxcore samples
[32]. Compared to MBES, although our SBES data had limited
seabed coverage, we could still achieve a general distribution
of the sediment properties.

D. Indication on Subsurface Properties

Different classification between 24 kHz and the other
two higher frequencies might also be attributed to acoustic
backscatter of 24 kHz below the subsurface. To investigate the
possible influence of subsurface properties, we compared the
first PC from the top and deeper sediment layer (Fig. 8). Since
L. conchilega tubes have a vertically elongated shape, which
can be longer than 10 cm, and very few of them were found
in the deeper layer, we assumed they contributed similarly to
both sediment layers and excluded them from this analysis.
Considering other sample properties, both layers of our study
area were similar to each other in general. Difference between
them could be found in samples BC16, BC25, and BC27.
Although these samples had little difference in dso between
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the top and deeper layer, BC16 and BC25 showed much higher
gravel content in the deeper layer, which was also consistent
with areas showing high values of the SBES feature time
spread.

In addition, we saw a clear gradient of acoustic classes of 24
kHz along the first PC from the deeper-layer sample properties,
to which the percentages of gravel, shell fragments, stones, and
dso mostly contributed (Fig. 9). Thus, class 3 of 24 kHz might
indicate a subsurface layer with coarse materials in the eastern
region of our study area. To confirm this, the penetration depth
of acoustic signals in such a sandy environment needs to be
investigated more thoroughly.

IV. CONCLUSION

Acoustic remote sensing is an important tool for charac-
terizing seabed sediments. In this study, we used SBES and
MBES data of three frequencies, 24, 90, and 300 kHz, to
investigate the benefits of multi-spectral backscatter data in
describing comprehensive sediment properties in an area near
the western Wadden Sea islands in the North Sea.

For the SBES echo time series of 24 kHz, we applied cor-
rections to remove the impact of water depth and some sonar
characteristics. The resulting SBES features (total energy, time
spread, and skewness) were validated to be distinguishable for
different sediment types based on the APL model simulations.
We further classified these features using K-means clustering.

We also classified MBES backscatter data of 90 and 300
kHz in an unsupervised way by Bayesian classification, which
accounts for the statistical variations of the backscatter strength
within a beam. To investigate the impact of various sediment
properties, we considered median grain size; weight percent-
ages of gravel, sand, and mud; volume percentages of stones,
shell fragments, and living bivalves; as well as density of
acoustically hard animals L. conchilega and molluscs from 13
boxcore samples. These sample properties were also analyzed
for the top and deeper sediment layer separately to achieve a
better understanding of the study area.

By comparing acoustic classification results with the top-
layer sample properties, we found MBES classification of 90
and 300 kHz consistent with the variation of median grain
size and L. conchilega density, but the difference between 90
and 300 kHz was small. In contrast, SBES classification of 24
kHz could also be affected by the presence of shell fragments
and stones. Additionally, we did not see apparent layering of
sediments in our study area by comparing the PCA results
between top- and deeper-layer sample properties. The main
difference might be a higher gravel content of the subsurface
sediment in the eastern region. Considering the clear gradient
of acoustic classification of 24 kHz with variations in the
deeper-layer properties, it is possible that acoustic signals of
24 kHz reached the subsurface or were reflected by suspended
coarse materials in the sediment, but further study of the
penetration depth is needed to support this finding.

Limited by the data itself, it is relatively difficult to solely
assess the impact of acoustic frequencies without involving
different incident angles and spatial resolutions. Nevertheless,
in this study, acoustic classification of SBES and MBES
data for various frequencies can represent different sediment
properties, making it a potential approach to use multi-spectral
backscatter data for better seabed characterization. With a
good selection of the frequency range, the multi-spectral strat-
egy is valuable for monitoring marine habitats from different
perspectives in the long term.
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