QUASI-3D NEARSHORE CURRENT MODELLING: WAVE~INDUCED SECONDARY CURRENT
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ABSTRACT

A profile function technlque combined with a horizontally two-
dimensional current formulation has recently been suggested to describe
the three-dimensional current system in the coastal zone (De Vriend and
Stive, 1987). In this quasi three-~dimensional approach the current is
divided into a primary component, due to the vertically uniform part of
the driving forces, and a secondary component, due to the vertical non-
uni formity of the driving forces. The wave—induced secondary current was
evaluated using a three layer concept, in which the effects of the wave
boundary layer are disregarded for the breaking wave fraction. The
validity of this simplification and the implications for the quasi-3D
formulation are investigated by integrating the boundary layer treatment
of Svendsen et al. (1987) into the three layer concept.

1. INTRODUCTION

The nearshore current system and the assoclated sediment transport field
are spatially of a three-dimensional nature. In nearly all nearshore
wave—-current-morphology models the vertical dimension is only accounted
for in situations where the processes are uniform in one of the horizon-
tal dimensions. Models which deal with nonuniformity in two horizontal
dimensions are traditionally depth—integrated. In general, however,
three-dimensionality is present, with the variations in the two horizon-
tal dimensions of the same order of magnitude and the vertical variation
much stronger. In that case, profile techniques can be very useful. In
2DH wave modelling, for instance, it is common practice to write the
wave potential as the product of a vertical profile function and a
depth—invariant quantity that is actually solved by the model (cf. Berk-
hoff, 1976). Velocity profile techniques have proved quite useful to
describe three—~dimensional nearly-horizontal flows 1in shallow water
(Davies, 1980; De Vriend, 1981). Making use of this "quasi~3D" modelling
technique, De Vriend and Stive (1986) -denoted as DVS in the following-
give a first formulation for a quasi-3D nearshore current model.

Starting from the complete 3D Reynolds equations, integrated over the
waves, and a gradient-type turbulence closure with a scalar turbulence
viscosity, similarity hypotheses are made for all dependent variables
and the turbulence viscosity. This provides the possibility to distin-
guish between the primary and the secondary flow, with the former defi-
ned as the flow in the direction of the depth-averaged velocity and
having the vertical distribution that corresponds with a vertically uni-
form driving force (e.g. a hydrostatic pressure gradient).
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All other flow components are called secondary. If the turbulence
viscosity is given a vertical distribution and its depth-average is
related to current and wave properties, the primary flow velocity and
the associated bottom shear stress can be determined.

This separation procedure yields a primary flow model, consisting of a
profile function, a bottom shear stress relationship and the conventio-
nal depth-integrated equations. Besides, it ylelds equations for the se-
condary flow due to curvature of the primary flow, the corlolis-effect,
wind and wave action. ’

0f the several secondary flow sources, only the one originating from the
wave motion was taken into account in the DVS-model. This is, however,
justified 1if the attention 1s focussed on the surf zone of a nearly
uniform coast, although the formulations as such are so general, that
they allow for more complex situations.

To derive the wave-induced secondary flow, DVS divide the water column
into three layers, viz. a surface layer above the wave trough level, a
middle layer and a bottom layer. The surface layer model 1s reduced to
the formulation of the effective shear stress and the mass flux. For
breaking waves a zero bottom shear stress 1s shown to lead to acceptable
predictions of the current outside the wave boundary layer. This means
that for this part of the current the bottom layer as such was left out
of consideration. Thus, DVS reduced the problem to solving the velocity
in the middle layer from the horizontal momentum balance.

This treatment of the wave boundary layer flow is - although practical
and shown to yleld good results - not consistent in a breaking wave si-
tuation. Recently, Svendsen et al. (1987) proposed a model of the
boundary layer flow under breaking waves which uses a patching technique
for the secondary current and the assoclated shear stress between the
bottom layer and the middle layer. The relevance of this approach for
the quasi-3D model is evaluated in the present paper.

2. THE QUASI-3D CURRENT MODEL

We conslder the nearly horizontal flow, averaged over the oscillatory
wave and turbulent motion, in a 3D coastal region.

If, apart from the wave-induced orbital motion, the current involves no
gtrong vertical accelerations, the time-mean pressure can be approxima—
ted by

P *p, - PR &)
in which: p = pressure,

Ph = hydrostatic pressure,

p = mass density of the fluid,

v = vertical component of the wave orbital velocity,

<.+> = average over the waves.

If, in additiom, the Boussinesq-hypothesis 1s adopted to model the
Reynolds stress terms, the wave~ and turbulence-averaged horizontal mo-
mentum equatfons can be written as
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with: x,y = horizontal co-ordinates in a carteslan system,
z = vertical co-ordinate in this system,
u, v, v = wave- and turbulence-mean velocity components,
Pn = ph + pg(z- {zg>) = total hydrostatic pressure,
fe = corlolis coefficient
g = acceleration due to gravity,
zg> = mean water level,
Vi = turbulence viscosity (eddy viscosity),
u,v = horizontal components of the wave orbital velocity.

Together with the corresponding equation of continuity

du 4 Ov . Ow -
= + 35 + o 0 (4)

these equations describe the wave- and turbulence-~averaged current,
which may still be time—dependent on a time-scale much larger than the
wave period or the time-scale of turbulence.

Equations (2) and (3) include the assumption that turbulence and wave
motion are uncorrelated.

Furthermore, outside the bottom boundary layer, the last term in either
momentum equation 1s neglected with regard to the corresponding Reynolds
stress term, since the horizontal and vertical veloclity components of
the orbital velocity are approximately 90 degrees out of phase, whereas
the turbulent velocity components are much less so.

Similarity approach

The basic idea of the current model 1s a similarity approach, assuming
that each dependent variable can be written in the form

- z=zy s
u = i ui(x,y,t) fi( —H-) (5

in which zp denotes the bottom level and h the water depth for zg5 =
{zg>. The quantity uji is independent of z and the vertical distribution
function f4 is invariant, or at most weakly varying, with x and y.

If the series in (5) would be extended to an infinite number of terms,
this approach would correspond with the formal separation of variables.
In the present model, it 1is attempted to define the constituents in such
a way, that a truncated series of only a few terms yields a good approx-
imation of the solution.
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The dependent variables in the current model are the pressure pp (or the
mean water surface elevation {zg>), and the velocity components u, v and
w. Besides, the system requires a turbulence closure, relating v to the
velocity field.

The series (5) for the total hydrostatic pressure simply reduces to

P, = Po(%:¥,t) (6)
which reflects the assumption of hydrostaticity.

The current is split into what will be called a "primary” and a "secon~
dary” current, according to the definition:

2~z

u up + ug with up u(x,y,t) fp(—ﬁ—_ and ug 0 (7)
- 272y, -

v = vp + vy with vp = v(x,y,t) fp(_Tr_Q and v, = 0 (8)

in which the suffix p denotes the primary current, the suffix s the sec~
ondary current and the overbar the depth-averaged value. So, by defini-
tion, the depth-averaged flow is determined entirely by the primary cur-
rent.

It has to be noted that the definitions (7) and (8) are not unique, as
long as the vertical distribution function fp 1s not specified. Besides,
ug and vg remain to be written as a similarity series like (5). These
points will be considered furtheron.

Once the horizontal components of the primary and the secondary flow ve-
locity have been defined, the vertical components follow from the equa-
tion of continulty (4):

awp 6up bvp dwy dug By
w " w oy M wm T T T h )

For simplicity, an algebraic turbulence closure is adopted, relating v
algebraically to the local flow velocity. Besides, vt 18 assumed to be
deseribed by the one-term similarity "series"

- z=2y,
Ve = v (55,t) $lp—) (10)

in which the depth-average V¢ and the vertical distribution function ¢
remain to be specified.

Turbulence model

The Boussineaq hypothegis combined with an algebralic relationship be-
tween the turbulence viscosity and the flow velocity has often been ap-
plied with success in models of large-scale steady or slowly varyiong
flow in shallow water. Also DVS rely on this approach. They adopt the
traditional steady current distributlon and adapt it to the effects of
the oscillatory wave motion on the bottom layer and of the breaking wave
induced turbulent motion on the upper layer. The depth average value is
determined by the current and the breaking wave dissipation. Here, we
rely on a simpler formulation which 1s discussed furtheron.
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Division of the flow equations

Substitution of the definitions (7) and (8) into the x~momentum equation
(2) yields
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Subgtitution into the y-momentum equation (3) ylelds a similar result.
Integration of eq. (11) from the bottom to a point above the highest wa=-
ter surface elevation yields, after some elaboration:
du . T3 .- du , = du -, 1.3 , ., 0
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in which Thpy and Tpg  are the bottom shear stress componments related to

the primary and the secondary flow, respectively, and Wy is the x-compo-

nent of the wind shear stress at the water surface. Sxx and Sxy are com-
ponents of the radiation stress.

Elimination of the pressure gradient term from (11) and (12) leads to an
equation that can be elaborated to

? T 2 *

3 up x , 0 U bsx

3z Vv T tar Cvs t et EYT
5

wx ? ~o w2 1 asxx d s 1 aSxy
a5 T ax (W2 ) T oy (O) ~mp ey

- 3T _ , = 2 - 3G, - 0§
+ (fp 1) (B'E fcv) + (fp fpa) (u '5'i+ v 37) + other terms (13)

The "other terms"” in this equation coucern the vertical non-uniformity
of the advection of secondary flow momentum by the primary and the sec—
ondary current, the advection of primary flow momentum by the secondary
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current and the horizontal diffusion of primary and secondary flow mo-
mentum. For the time being, all these terms will be disregarded.

From Eq. (13) a further specification of the primary and the secondary
current is possible. The primary current is defined such, that

T
du bpx

Y () + = 0 (14)
The direction of the primary bottom shear stress is assumed to coincide
with the depth-averaged flow direction. Hence eq. (l4) describes the
vertical distribution function of the primary flow and establishes the
relationship between the primary bottom shear stress and the depth-aver-
aged velocity. This makes the y-equivalent of this equation redundant.
Since the turbulence viscosity is given a vertical distribution and its
depth~average is related to the current and wave properties, the primary
flow velocity and assoclated bottom shear stress can be determined. The
evaluation by DVS leads to a primary flow model, consisting of a profile
function, a bottom shear stresgs relationship and the conventional depth-
integrated equations.

For the secondary flow the following equation may be derived after
substitution of (14) into (13).

T
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According to this equation, there are four sources of secondary flow,

viz.

® the wind shear stress at the water surface, which gives rise to a
current velocity with a vertical distribution that deviates from the
primary current distribution and, 1if the coriolis—effect is impor-
tant, even to a velocity direction that varies along the vertical
(Ekman, 1905)

® the vertical non~uniformity of the wave-induced forces, related to
the mass flux above the wave through level and the returnflow or un-—
dertow below this level (Dyhr-Nielsen and Sérensen, 1970)

® the vertical non—uniformity of the main flow acceleration, in time
and due to the coriolis~effect (also see Kalkwijk and Booij, 1986)

® the vertical non-uniformity of the advective accelerations of the
main flow, including the well-known curvature-induced secondary flow
(Boussinesq, 1868), but also the deformation of the current profile
due to downstream accelerations.

In complex coastal areas, each of these secondary currents can have an
important effect on the morphological evolution. Therefore, each of them
deserves full attention when developing a mathematical model of coastal
morphology. Practical restrictions, however, allowed DVS to evaluate
only one of them, viz. the wave-induced secondary flow. In fact, this
means that they focussed their attention on the surf zone of a nearly
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uniform coast, although their formulations are so general, that they
basically allow for more complex situations.

3. WAVE~INDUCED SECONDARY CURRENT

In order to describe the wave-induced secondary current, DVS divide the
water column in three layers: a surface layer above wave trough level, a
middle layer, and a bottom layer. Following Stive and Wind (1986) the
surface layer is accounted for via an effective shear stress at trough
level, compensating for the momentum decay above it.

The velocity in the bottom layer can contribute substantially to the
total sediment transport. Because of the natural irregularity of a
mobile bottom, however, DVS argue that a detailed description of this
velocity hardly makes sense, unless it is needed to assess the influence
on the velocity 1in the middle 1layer. Therefore, the bottom layer
velocity due to non-breaking waves is assumed to be similar to Longuet-
Higgins' (1953) conduction solution. For breaking waves, Stive and Wind
(1986) show that assuming a zero bottom shear stress leads to acceptable
predictions of the secondary current outside the wave boundary layer.
So, in the initial formulation of the quasi-3D model the bottom layer
was left out of consideration for this part of the current. As a next
step the velocity in the middle layer is solved, both for the breaking
and the non-breaking fraction of the waves. In either cases a prescribed
shear stress at the trough level provides an upper boundary conditionm,
whereas the lower boundary condition follows from the zero shear stress
approximation (breaking waves) or from matching with the bottom layer
solution (non~breaking waves).

The above treatment of the wave boundary layer flow 1is rather inconsis-
tent where 1t concerns the breaking wave situation. Recently, Svendsen
et al. (1987) proposed an approach which solves the boundary layer flow
under breaking waves. On the basis of the horizontal momentum balance
for the boundary layer a solution was sought, which uses boundary condi-
tions based on patching the flow between middle and bottom layer. This
method of patching 1is used in the following evaluation of the three-
layer approach, so that the relevance of this method for the quasi-3D
model can be determined. It is noted that in the following ~ as in DVS -
we consider a random wave fileld with breaking and non-breaking wave
fractions, between which we assume no interaction, so that their respec-
tive contributions to the secondary current may be superimposed. Being
specifically interested in the secondary flow we restrict our attention
to the case of waves normally incident to the coast.

The surface layer {s accounted for via the effective shear stress at
trough level, which compensates for the momentum decay above it. Follo-
wing DVS 1t 1s the sum of viscous dissipation at the surface in non-
breaking waves and the momentum loss above the wave trough level due to
breaking.
Wi

b khy D
— sinh(2kh) + (% ) <

T(t) = p v <

t (16)
where v¢ is the kinematic viscosity,
k the wave number,

¢ the wave phase speed,
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D the mean energy dissipation due to wave breaking,
up the near-bottom oscillatory velocity amplitude.

The other integral property of the surface layer is its mean mass flux m
which DVS estimate at
_ ~ 7khy E
m=(1+Q )= (17
where 6b is the breaking wave fraction and
E 1is the mean energy density of the wave field.

In the middle layer the prevailing local horizontal mean momentum balan-
ce in cross—shore direction reads:

9

Kz >
oU 9 ~ ~
ey (\’t -a—z-) = % (<U2> - <W2>) + g 5

x

(18)

where U is now the only secondary flow component present, induced by the
waves In cross-shore direction, and 3<{zg>/9x 1s the only pressure gra-
dient term present, due to the set—down/set-up. For simplicity we intro-

duce
Kz >
s

a(x,2) = — (02> - W) + g

(19)

x
In the bottom boundary layer there is an additional term in the prevai-
ling momentum balance equation, viz. the wave-induced Reynolds stress:

3 au y _ 9 ~ o~

5= O 55 ) = e+ (@) (20)
The boundary conditions for the above momentum equations are

o the shear stress condition at trough level

A _ 1(t) .
th— ) at z Zt,

v

® the patching conditions at the top of the bottom boundary layer, re-
quiring continuity in U and 1 at z = Z,3
o the no-slip condition at the bottom: U™= 0 at z = zy

In addition, we have the integral condition of continuity, which for the
two lower layers reduces to

z

t

| Uvdz = - n/p (21)
Zp
In order to solve the above set of equations and boundary conditions we
need to specify the turbulence viscosity distribution. For simplicity we
adopt a uniform distribution in both the bottom and the middle layer,
where -~ following Svendsen et al. (1987) — the bottom layer value is se-
veral orders of magnitude smaller (for the middle layer see DVS):

\Y c

tb £
Mh (%Jl/3 for z > z

2 32
ub/m for z € z, 22)

Ve 3

Furthermore, we adopt the finding of Stive and Wind (1986) that a is
virtually constant over depth:
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alx,z) * ofx) (23)

Solution procedure

Taking account of the shear stress coanditioun at trough level, the solu-
tion for the middle layer momentum balance reads:

v= vy + () - 5o [ (o)t - 3G, ) (24

in which U(z;) and o are still unknown.
Taking account of the no-slip condition at the bottom, the solution for
the bottom layer reads:

= Ib) - a —y )2
U By (= zb) + T Y (z zb) + U_(2) (25)
where U, is the conduction solution for the wave-induced flow in the ab-
sence of a pressure gradient (Longuet—Higgins, 1953). In equation (25)
Tp and o are still unknown.

Patching the velocities and the shear stresses at z = zz yields

- T(b) - [+1 - 2
U(zz) v (Zi zb) + 5 y (zz Zb) + Us(zl) (26)
th tb

and
T(b) _ () _ ~ o~
i o (zt zb) u w|z£ (27)
Finally, the integral condition of continuity requires:

e Zy

[ (eq. 24) dz + [ (eq. 25) dz = - m/p (28)
%y 2y

The unknowns U(zl), 7(b) and o can be solved from equations (26) through
(28); e.g. for a we can derive:

Loy 82 - Locarq - i 1
[3 (d,-8) +dt5(dt 6)_2 82(d, 6)+2dt6 N 5]=
Ve Yty iy Vb Yeb
T(t) s(dt—s)z G(dt—d) 5 62— a(dt~5) % 82
+ + -qwlz, [—+ T+
P Yt Vb Ytb th M3
+ U, (z,) [C4,-8) + & 8] + u/p, (29)
where dt = 2. "2y,
§ = 2z "2y,
and a GIZ =%k Gg & [e”1(sin(l) + cos(l)) - je~% %] (30)

L
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Fig. 1 Results (after DVS) for NSTS conditions Nov. 20, 1978 at Torrey
Pines beach (measurements after Guza and Thornton, 1985);
profile of bottom elevation below MSL (d), cross-shore current
(U), variance of horizontal orbital velocity (“var) and rms wave
height (Hypg) versus distance normal to shore (x). Data points:

measured valgeg- Curves: computational results.

u
U, (z,) = % = [3 + e"2-2¢~1(3c0s(1) )] (31)
Finally, it 1is noted that the conditions imposed here determine the so-—
lution exactly and uniquely. The depth-integrated momentum equation is
consistent with this solution and adds no new information to the system.
If, nevertheless, this latter equation 1is used, e.g. to determine the
mean surface slope a<zg>/dx (and thus a), one of the other conditions
should be dropped.

Results

In discussing results from the above formulations two aspects are dis-
tinguished. Firstly, the secondary flow distribution as such is Iinvesti-
gated; its sensitivity for important parameters is analyzed and a compa-
rison is made with the results obtained by DVS. The second aspect con-
cerns the bottom shear stress due to the secondary current; from the
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present results it is possible to check whether neglecting this shear
stress - as in DVS - 1is justified. The following presentation is res~
tricted to the conditions during an NSTS campaign at Torrey Pines after
Guza and Thornton (1985). This campaign has yielded one of the few field
data sets known to the authors suitable for the present purposes. The
comparison of DVS of their theoretical results and these field measure~
ments (see Figure 1) gives a general indication to which level we are
able to check the accuracy of the secondary flow results.

Results for the secondary current from the present formulation at two
characteristic elevations, viz. at the top of the bottom layer and at
0.4 times the water depth, are given in Figure 2. In addition to a
comparison with the formulation of DVS, results are given for a
different setting of the parameters that are not well known and to which
the model results are expected to be sensitive. These concern the
patching helght & and the friction coefficlent ¢_; the latter determines
the thickness of the oscillatory wave boundary aner & and the turbu-
lence viscosity in the bottom layer.

The initial parameter setting was chosen as realistic as possible, with
the patching level at the edge of the oscillatory wave boundary layer,

§ = 8y, and the friction coefficient based on the sediments grain
roughness, cf = 0.0l, The sensitivity of the vresults for these
parameters is investigated by taking the patching height at twice the
boundary layer thickness above the fixed bed in one case and by taking
cg = 0,02, {mplying a roughness increase by an order of magnitude, in
the other case.

Inspection of the various results In Figure 2 leads to the conclusion
that at these levels the difference between the present formulation and
that of DVS is not significant compared with the sensitivity of the
present formulation to the patching height and the friction cecoefficient.
The near bottom secondary current velocity 1is apparently the most
sensitive quantity, but a comparison with the available measured data,
ylelds no definitive conclusions.

A more detalled comparison between the present and DVS's formulation for
the initial parameter setting involving the full vertical distribution
of the secondary current 1s given in Figure 3 for two specific locati-
ons, viz. at x = 190 m, approximately the location with a maximum in the
energy dissipation, and at x = 105 m, a location where virtually all wa~-
ves are breaking. As expected from the above results, the differences
above the bottom layer are small. Of course, only the present model can
be realistic close to the bottom, since it takes account of the no=-slip
condition at the fixed bed level.

The other set of results, with a possible impact on the sediment
transport, concerns the bottum shear stress due to the secondary
current. Results for the bottom shear stress and related terms from
Equation (27) are presented in Figure 4.

It appears that the bottom shear stress t(b) closely corresponds with
the difference between the set-up dominated term pod and the radiation
stress decay dominated term 71(t). The maximum acfual difference is
approximately 20%. The effect in the total set-up is a few percent only,
so that the usual neglect of the bottom shear stress in e.g. the depth-
averaged cross—shore momentum balance is justified.
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2 Results for NSTS conditions Nov. 20, 1978 at Torrey Pines beach;
profile of bottom elevation below MSL (d), cross-shore current’
(U) for DVS and present model and rms wave height (H, .) versus
distance normal to shore (x).
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However, the impact on the mean bottom shear stress direction im a
uniform longshore current situation may be larger, since even a small
secondary bottom shear stress will cause a deviation from the longshore
direction due to its large angle with the primary shear stress
direction.

As an example, let us consider a wave-induced longshore current along a
uniform beach. The primary bottom shear stress is given by

D
Tp(b) ~= sind (32)
where O is the angle of wave incidence with the shore normal x-direction
(positive shoreward). According to the above findings the secondary
bottom shear stress amounts some 10% of the trough shear stress

1, (b) % 0.1 T(£) = (0:05 + 0.7 Xy D 33

With kh = 0.2 as a typlcal value the angle al of the total shear stress
vector with the shore normal follows from

b
tan ol = Tp(b) * Ta(®) eind v 10:07 tano (34
T_(b) cos6 <0.07 )
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Fig. 3 Vertical distributions of the wave-induced secondary (cross~
shore) current according to DVS (top) and present model (bottom;
c, =001, 6 = 6§ ) Ffor NSTS conditions Nov. 20, 1978 at Torrey
anes beach. at ¥ = 190 m (left) and x = 150 m (right).
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Fig. 4 Results for NSTS condition Nov. 20, 1978 at Torrey Pines beach;
profile of bottom elevation below MSL (d), shear stress at
trough (t(t)) and bottom level (t(b)) and local radiation stress
gradient (a dy), and rms wave height (Hppg) versus distance
normal to shore (x).

For wave incidence angles of 5° and 30°, we than find that the deviation
angle of the total shear stress vector from the alongshore direction is
49° and B83° seawards, respectively. Obviously, these filgures are
important when defining bottom boundary conditions for nearshore
sediment transport computations.
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4, CONCLUSIONS

In a quasi-3D nearshore current model the wave-induced secondary current
distribution above the bottom boundary layer may well be predicted from
a three layer approach in which the surface layer is accounted for by an
effective shear stress and a mass flux condition and in which the
dynamics of the bottom layer are virtually neglected.

However, a realistic distribution of the wave-induced secondary current
clase to the bottom, can only be found if the bottom layer dynamics are
taken into account via a momentum balance which includes the set~up
induced pressure gradient, e.g. following the approach suggested by
Svendsen et al. (1987). Furthermore, it appears that the secondary
bottom shear stress in the latter case can cause a substantial deviation
of the total shear stress direction from the alongshore direction. Hence
it cannot be disregarded in sediment transport computations.
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