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Abstract
Quantumphase estimation (QPE) is theworkhorse behind anyquantumalgorithmandapromising
method fordetermining ground state energies of strongly correlatedquantumsystems. Low-costQPE
techniquesmakeuse of circuitswhichonlyuse a single ancilla qubit, requiring classical post-processing to
extract eigenvalue details of the system.We investigate choices for phase estimation for aunitarymatrix
with low-depthnoise-free or noisy circuits, varyingboth thephase estimation circuits themselves aswell as
the classical post-processing todetermine the eigenvaluephases.Wework in the scenariowhen the input
state is not an eigenstate of theunitarymatrix.Wedevelop anewpost-processing technique to extract
eigenvalues fromphase estimationdata basedon a classical time-series (or frequency) analysis and contrast
this to an analysis viaBayesianmethods.We calculate the variance in estimating single eigenvalues via the
time-series analysis analytically,finding that it scales tofirst order in thenumberof experiments
performed, and tofirst or secondorder (dependingon the experiment design) in the circuit depth.
Numerical simulations confirm this scaling for both estimators.Weattempt to compensate for thenoise
withboth classical post-processing techniques,finding good results in the presenceof depolarizingnoise,
but smaller improvements in 9-qubit circuit-level simulations of superconducting qubits aimedat
resolving the electronic ground state of aH4-molecule.

1. Introduction

It is known that any problem efficiently solvable on a quantum computer can be formulated as eigenvalue
sampling of aHamiltonian or eigenvalue sampling of a sparse unitarymatrix [1]. In this sense the algorithmof
quantumphase estimation (QPE) is the only quantumalgorithmwhich can give rise to solving problemswith an
exponential quantum speed-up.Despite it being such a central component ofmany quantum algorithms, very
little work has been done so far to understandwhatQPE in the current noisy intermediate scale quantum
(NISQ) era of quantum computing [2]where quantumdevices are strongly coherence-limited. QPE comes in
many variants, but a large subclass of these algorithms (e.g. the semi-classical version of textbook phase
estimation [3, 4], Kitaev’s phase estimation [5], Heisenberg-optimized versions [6]), are executed in an iterative
sequential formusing controlled-Uk gates with a single ancilla qubit [7, 8] (see figure 1), or by direct
measurement of the system register itself [6]. Such circuits are of practical interest in the near termwhen every
additional qubit requires a larger chip and brings in additional experimental complexity and incoherence.

Some of the current literature onQPEworks under limiting assumptions. Thefirst is that one does not start
in an eigenstate of theHamiltonian [9, 10]. A second limitation is that one does not take into account the (high)
temporal cost of runningUk [8] for large kwhen optimizing phase estimation. The size and shallowness of the
QPE circuit is important since, in the absence of error correction or errormitigation, one expects entropy build-
up during computation. Thismeans that circuits with large kmaynot be of any practical interest.
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The scenario where the input state is not an eigenstate of the unitarymatrix used in phase estimation is the
most interesting one from the perspective of applications, andwewill consider it in this work. Such an input
state can be gradually projected onto an eigenstate by the phase estimation algorithm and the corresponding
eigenvalue can be inferred.However, for coherence-limited low-depth circuits onemay not be able to evolve
sufficiently long to project well onto one of the eigenstates. This poses the questionwhat one can still learn about
eigenvalues using low-depth circuits. An important point is that it is experimentally feasible to repeatmany
relatively shallow experiments (or perform them in parallel on differentmachines). Hencewe askwhat the
spectral-resolving power of such phase estimation circuits is, both in terms of the number of applications of the
controlled-U circuit in a single experiment, and the number of times the experiment is repeated. Such repeated
phase estimation experiments require classical post-processing ofmeasurement outcomes, andwe study two
such algorithms for doing this. One is our adaptation of the Bayesian estimator of [10] to themultiple-eigenvalue
scenario. A second is a new estimator based on a treatment of the observedmeasurements as a time-series, and
construction of the resultant time-shift operator. This lattermethod is very natural for phase estimation, as one
interprets the goal of phase estimation as the reconstruction of frequencies present in the output of a temporal
sound signal. In fact, the time-series analysis that we develop is directly related towhat are called Prony-like
methods in the signal-processing literature, see e.g. [11]. The use of this classicalmethod in quantum signal
processing, including in quantum tomography [12], seems to hold great promise.

One can interpret our results as presenting anewhybrid classical-quantumalgorithm forQPE.Namely,when the
number of eigenstates in an input state is small, i.e. scaling polynomiallywith thenumberof qubits nsys, the use of our
classical post-processingmethod shows that there is noneed to run aquantumalgorithmwhichprojects onto an
eigenstate to learn the eigenvalues.We show that one can extract these eigenvalues efficiently by classically post-
processing thedata fromexperimentsusing a single-roundQPEcircuits (see section2) and classically handling

n npoly polysys sys´( ) ( )matrices. This constitutes a saving in the requireddepthof the quantumcircuits.
The spectral-resolutionpower ofQPE can bedefined by its scalingwith parameters of the experiment and the

studied system.Weare able to derive analytic scaling laws for the problemof estimating single eigenvalueswith the
time-series estimator.Wefind these to agreewith thenumerically-observed scaling of both studied estimators. For
themore general situation,withmultiple eigenvalues and experimental error,we study the error in estimating the
lowest eigenvalue numerically. This is assistedby the low classical computation cost of both estimators.Weobserve
scaling laws for this error in terms of the overlap between the ground and starting state
(i.e. the input state of the circuit), the gap between the ground and excited states, and the coherence length of the
system. In the presence of experimental noisewe attempt to adjust our estimators tomitigate the induced
estimation error. For depolarizing-type noisewefind such compensation easy to comeby,whilst for a realistic
circuit-level simulationwefind smaller improvements using similar techniques.

Even thoughour paper focuses onQPEwhere thephases corresponds to eigenvalues of a unitarymatrix, our
post-processing techniquesmay also be applicable tomulti-parameter estimationproblems inquantumoptical
settings. In these settings the focus is ondetermining an optical phase-shift [13–15] throughan interferometric set-
up. There is experimentalwork on (silicon)quantumphotonic processors [16–18]onmultiple-eigenvalue
estimation forHamiltonianswhich could also benefit fromusing the classical post-processing techniques thatwe
develop in this paper.

Figure 1.Circuit for theQPE experiments described in this work. The state Yñ∣ is defined in equation (3). The probability for the
ancilla qubit to return the vectorm of results in the absence of error is given by equation (10). The single-qubit rotation equals

Zexp i 2z b b= -( ) ( )whileH is theHadamard gate.
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2.Quantumphase estimation

QPE covers a family of quantumalgorithmswhichmeasure a system register of nsys qubits in the eigenbasis of a
unitary operatorU [5, 19]

U e , 1j j
i jf fñ = ñf∣ ∣ ( )

to estimate one ormany phasesfj. QPE algorithms assume access to a noise free quantum circuit which
implementsU on our system register conditioned on the state of an ancilla qubit. Explicitly, we require the
ability to implement

U0 0 1 1 , 2c = ñá Ä + ñá Ä∣ ∣ ∣ ∣ ( )

where 0ñ∣ and 1ñ∣ are the computational basis states of the ancilla qubit, and  is the identity operator on the
system register.

Inmany problems in condensedmatter physics,materials science, or computational chemistry, the object of
interest is the estimation of spectral properties or the lowest eigenvalue of aHamiltonian. The eigenvalue
estimation problem for can bemapped to phase estimation for a unitaryU exp i t= -t ( )with a τ chosen
such that the relevant part of the eigenvalue spectrum induces phases within [−π,π).Muchwork has been
devoted to determining themost efficient implementation of the (controlled)-exp i t-( ) operation, using
exact or approximatemethods [19–22]. Alternatively, onemay simulate via a quantumwalk,mapping the
problem to phase estimating the unitary exp iarcsin  l-( ( ) ) for someλ, whichmay be implemented exactly
[23–26]. In this workwe do not consider such variations, but rather focus on the error in estimating the
eigenvalue phases of the unitaryU that is actually implemented on the quantum computer. In particular, we
focus on the problemof determining the value of a single phasef0 to high precision (this phase could
correspond, for example, to the ground state energy of someHamiltonian).

Phase estimation requires the ability to prepare an input, or starting state

a A a, , 3
j

j j j j
2å fYñ = ñ º∣ ∣ ∣ ∣ ( )

with good overlapwith the ground state;A0?0.Note here that the spectrumofUmayhave exact degeneracies
(e.g. those enforced by symmetry)which phase estimation does not distinguish; we count degenerate eigenvalues
as a singlefj throughout this work. The ability to start QPE in a state which already has good overlapwith the
ground state is a non-trivial requirement for the applicability of theQPE algorithm.On the other hand, it is a
well-knownnecessity given theQMA-completeness [27] of the lowest eigenvalue problem5. Formany quantum
chemistry andmaterials science problems it is known or expected that theHartree–Fock state has good overlap
with the ground state, although rigorous results beyond perturbation theory are far and few between (see e.g.
[28]). Beyond this, either adiabatic evolution [20, 29] or variational quantum eigensolvers [30] can provide an
approximate starting state to improve on via phase estimation.

Phase estimation is not limited to simply learning the value off0; itmay obtain information about all phases
fj as long asAj>0.However, the resources required to estimate jf are bounded belowby 1/Aj. To see this, note
that the controlled-unitary c does notmix eigenstates, and so there is no difference (in the absence of error)
between starting with Yñ∣ and themixed state

A . 4
j

j j jår f f= ñáY ∣ ∣ ( )

The latter is then equivalent to preparing the pure state jf ñ∣ with probabilityAj, so ifN preparations of jf ñ∣ are

required to estimatefj to an error ò, the same errormargin requires at leastN/Aj preparations of the state Yñ∣ . As
the number of eigenstates Neig with non-zero contribution to Yñ∣ generally scales exponentially with the system
size nsys, estimatingmore than the first fewfj (ordered by themagnitudeAj)will be unfeasible.

Low-cost (in terms of number of qubits)QPEmay be performed by entangling the system register with a
single ancilla qubit [5, 8, 10, 27]. Infigure 1, we give the general formof the quantum circuit to be used
throughout this paper. An experiment, labeled by a number n=1,K,N, can be split into one ormultiple
rounds r=1,K,Rn, following the preparation of the starting state Yñ∣ . In each round a single ancilla qubit

prepared in the 0 11

2
+ñ = ñ + ñ∣ (∣ ∣ ) state controls c

kr where the integer kr can vary per round. The ancilla

qubit is then rotated by Zexp i 2z r r b b= -( ) ( ) (with the phaseβr possibly depending on other rounds in the
same experiment) and read out in theX-basis, returning ameasurement outcomemrä {0, 1}.We denote the

5
QMA stands forQuantumMerlin Arthur, which is a complexity classwhich contains decision problemswhich are easy to verify on a

quantum computer, though not necessarily easy to solve. This class is the natural quantum counterpart to the complexity classNP of
problems thatmay be verified easily on a classical computer. AQMA-complete problem is one of the ‘hardest possible’ such problems (in
analogywithNP-complete problems); the ability to solve these problems in polynomial timewould allow polynomial-time solving of any
other problem inQMA.
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chosen strings of integers and phases of a singlemulti-round experiment by k and b, respectively.We denote the
number of controlled-U iterations per experiment as K kr

R
r1

n= å = .We denote the total number of controlled-U
iterations over all experiments as

K k . 5
n

N

r

R

rtot
1 1

n

åå=
= =

( )

As the systemregister is held inmemoryduring the entire timeof the experiment, the choice ofK is dictatedby the
coherence timeof theunderlying quantumhardware.Hence,we introduce adimensionless coherence length

K
T

n T
. 6

U
err

err

sys

= ( )

HereTU is the time required to implement a single application of controlled-U in equation (7), andTerr is the
time-to-error of a single qubit, so thatT nerr sys is the time-to-failure of nsys qubits. The idea is thatKerr bounds
themaximal number of applications ofU in an experiment, namelyK�Kerr.

A new experiment starts with the same starting state Yñ∣ . Values of kr andβrmay be chosen independently for
separate experiments n, i.e. we drop the label n for convenience.We further drop the subscript r from single-
round experiments (withR=1).

In the absence of error, onemay calculate the actionof theQPEcircuit on the starting state (defined in
equation (3)).Working in the eigenbasis ofUon the system register, and the computational basis on the ancilla
qubit, we calculate the state following the controlled-rotation c

k1 , and the rotation z 1 b( ) on the ancilla qubit to be

a
1

2
0 e 1 . 7

j
j

k
j

i j1 1å fñ + ñ ñf b+(∣ ∣ )∣ ( )( )

The probability tomeasure the ancilla qubit in theX-basis asm1ä{0, 1} is then

A
k m

cos
2 2

, 8
j

j
j2 1 1 1å

f b p
+

-⎛
⎝⎜

⎞
⎠⎟ ( )

and the unnormalized post-selected state of the system register is

a
k m

e cos
2 2

. 9
j

j
k j

j

1 1 1
j

i
2 1 1å

f b p
f+

-
ñf b+

⎛
⎝⎜

⎞
⎠⎟∣ ( )( )

The above proceduremay then be repeated for r rounds to obtain the probability of a string m ofmeasurement
outcomes of one experiment as

P A
k m

m A, cos
2 2

. 10
j

j
r

R
r j r r

k,
1

2å f
f b p

= +
-

b
=

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( )

Here,f is the vector of phasesfj and A the vector of probabilities for different eigenstates.Wenote that
P m A,k, fb ( ∣ ) is independentof theorder inwhich the roundsoccur in the experiment. Furthermore,when
N 1eig = , P Pm m A,k k, , ff =b b( ∣ ) ( ∣ ) is equal to theproductof the single-roundprobabilities P mk r,r r

fb ( ∣ ), as there
is nodifferencebetweenamulti-roundexperiment and the same rounds repeated across individual experiments.

One canmake a direct connectionwith parameter estimationwork by considering the single-round
experiment scenario infigure 1. TheHadamard gate putting the ancilla qubit in +ñ∣ andmeasuring the qubit in the
X-basis are, in the optical setting, realized bybeam-splitters, so that only thepathdenotedby the state 1ñ∣ will pick
up anunknownphase-shift.When the inducedphase-shift is not uniquebut depends, say, on the state of another
quantumsystem,wemay like to estimate all such possible phases corresponding to our scenario ofwishing to
estimatemultiple eigenvalues.Another physical example is a dispersively coupledqubit-cavitymode systemwhere
the cavitymode occupation numberwill determine thephase accumulation of the coupled qubit [31].

3. Classical data analysis

Two challenges are present in determiningf0 fromQPE experiments. First, we only ever have inexact sampling
knowledge of P m A,k, fb ( ∣ ). That is, repeated experiments at fixed k, b do not directly determine
P m A,k, fb ( ∣ ), but rather sample from themultinomial distribution P m A,k, fb ( ∣ ). From themeasurement
outcomeswe can try to estimate P m A,k, fb ( ∣ ) (and from thisf0) as a hidden variable. Secondly, when N 1eig >
determiningf0 from P m A,k, fb ( ∣ ) poses a non-trivial problem.

Let usfirst consider the case N 1eig = . Let us assume thatwedo single-roundexperimentswith afixed k for each
experiment.Naturally, taking k=1wouldgive rise to the lowest-depth experiments. Ifwe start these experiments
with k=1 in the eigenstate 0f ñ∣ , thenone can easily prove that takingβ=0or

2
b = p for half of the experiments,

suffices to estimatef0with variance scaling as N K1 1 tot=/ / . This result canbederivedusing standardChernoff
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bounds, see e.g. [32, 33], and represent standard samplingor shotnoise behavior.When N 1eig = ,NK-round
experiments eachwith k=1 are indistinguishable fromN×K single-roundexperimentswith k=1.This implies
that the same scalingholds for suchmulti-round experiments, i.e. the variance scales as NK K1 1 tot=( ) .

Once thephasef0 is known to sufficient accuracy, performingQPEexperimentswith k>1 is instrumental in
resolvingf0 inmoredetail, since theprobability of a single-roundoutcomedependsonkf0 [6].Onceoneknowswith
sufficient certainty that m k m k2 1 , 2 10f p pÎ - +[( ) ( ) ) (for integerm), one can achieve variance scaling as

k N1 2/ (conforming to so-called local estimationCramer–Raobounds suggested in [10, 34]). Amethodachieving
Heisenberg scaling,where the variance scales as K1 tot

2/ (see equation (5)), was analyzed in [6, 32]. ThisQPEmethod
can alsobe comparedwith the information-theoretic optimalmaximum-likelihoodphase estimationmethodof [8]
where N Klog~ experiments areperformed, each choosing a random k K1, ,Î ¼{ } to resolvef0with error
scaling as 1/K. Theupshotof these previous results is that,while the variance scaling in termsof the total numberof
unitaries goes like 1/Ktotwhenusing k=1, cleverusageof k>1data can lead to K1 tot

2 scaling.However, asK is
limitedbyKerr innear-termexperiments, this optimalHeisenberg scalingmaynotbe accessible.

When N 1eig > , the above challenge is complicated by the need to resolve the phasef0 from the otherfj.
This is analogous to the problemof resolving a single note from a chord. Repeated single-round experiments at
fixed k and varyingβ can only give information about the value of the function:

g k A e , 11
j

j
ki jå= f( ) ( )

at this fixed k, since

P m m g k

m g k

1

2

1

2
cos Re

1

2
sin Im . 12

k, f b p

b p

= + +

- +

b ( ∣ ) ( ) [ ( )]

( ) [ ( )] ( )

This implies that information fromsingle-round experiments atfixed k is insufficient to resolvef0when N 1eig > ,
as g(k) is then not an invertible function off0 (try to recover a frequency froma sound signal at a single point in
time!). In general, formulti-round experiments using amaximumofK total applications of c , wemay only ever
recover g(k) for k�K. This canbe seen fromexpanding P m A,k, fb ( ∣ ) as a sumof A cos sinj j

m
j

n
jf få ( ) ( ) terms

withm+n�K, which are in turn linear combinations of g(k) for k�K. Aswewill showexplicitly in the next
section 3.1 this allows us to recover up toKfj. However, when N Keig > , these arguments imply thatwe cannot
recover any phases exactly. In this case, the accuracy towhichwe can estimate our targetf0 is determined by the
magnitude of the amplitudeA0 in the inital state Yñ∣ aswell as the gap towards the other eigenvalues. For example,
in the limit A 10  , an unbiased estimation off0 using data from k=1would be

g AArg 1 Im ln e , 13
j

j
i jå= f

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥[ ( )] ( )

and the error in such estimation is

g
A

A O A

A

A

Arg 1
1

sin

1
,

j

N

j j0
0 1

1

0 0
2

0

0

eig



åf f f- = - +

-
=

-
-∣ [ ( )] ∣ ( ) ( )

with our bound being independent of Neig.We are unable to extend this analysis beyond the k=1 scenario, and
insteadwe study the scaling in this estimation numerically in section 4. In the remainder of this section, we
present two estimators formulti-roundQPE. Thefirst is an estimator based on a time-series analysis of the
function g(k) using Prony-like [11]methods that has a low computation overhead. The second is a Bayesian
estimator similar to that of [10], but adapted formultiple eigenphasesfj.

3.1. Time-series analysis
Let us assume that the function g(k) in equation (11) is a well-estimated function at all points 0�k�K, since
the number of experimentsN is sufficiently large.Wemay extend this function to all points K k K - using
the identity g k g k*- =( ) ( ) to obtain a longer signal6.Wewish to determine the dominant frequenciesfj in the
signal g(k) as a function of ‘time’ k. This can be done by constructing and diagonalizing a time-shiftmatrix T
whose eigenvalues are the relevant frequencies in the signal, as follows.

6
Extending g(k) from0�k�K to K k K - is not required to perform a time-series analysis, however numerically we observe that

this obtains up to order ofmagnitude improvement in estimatingf0.

5
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We first demonstrate the existence of the time-shift matrix T in the presence of N Keig <
separate frequencies. Since wemay not know Neig, let us first estimate it as l.We then define the vectors

k g k g k g k lg , 1 , T= + ¼ +( ) ( ( ) ( ) ( )) , k K K, ,= - ¼ . These vectors can be decomposed in terms of single-
frequency vectors b 1, e , , ej

l Ti ij j= ¼f f( )

k Ag be . 14
j

j
k

j
i jå= f( ) ( )

Wecanmake a l Neig´ matrixBwith the components bj as columns

B e . 15k j
k

,
i j= f ( )

When N leig  , the columns ofB are typically linearly independent7, hence the non-squarematrixB is invertible
and has a (left)-pseudoinverseB−1 such thatB−1B=1. Note however, when N leig > the columns ofB are
linearly-dependent, soB cannot be inverted. IfB is invertible, we can construct the shiftmatrix BDB 1= -T
with D ej ji, i,

i jd= f . By construction, b bej j
i j= fT (as B BD=T ), and thus

k A

A k

g b

g

e

e 1 . 16

j
j

k
j

j
j

k

i

i 1

j

j

å

å

=

= = +

f

f+

( )

( ) ( )( )

T T

This implies that T acts as the time-shift operatormapping g(k) to g(k+1). As the eigenvalues of T are precisely
the required phases ei jf in case N leig  , constructing and diagonalizing T will obtain our desired phases
includingf0.When N leig > , the eigen-equation for T cannot have the solution bj since these are not linearly
independent.

The above proof of existence does not give amethod of constructing the time-shift operator T, as we do not
have access to thematricesB orD. To construct T from the data that we do have access to, we construct the
l K l2 1´ + -( )HankelmatricesG(0),G(1) by

G g i j a K , 17i j
a
, = + + -( ) ( )( )

indexing 0�i�l−1, j K l0 2  - . The kth columnofG( a) is the vector k a Kg + -( ), and so
G G0 1=( ) ( )T .We can thus attempt tofind T as a solution of the (least-squares) problemofminimizing
G G0 1-∣∣ ∣∣( ) ( )T . The rank of the obtained T̃ is bounded by the rank ofG(0).We have that Grank 0( )( ) is atmost

Neig since it is a sumover rank-1matrices. At the same time G l K lrank min , 2 10  + -( ) ( )( ) . This implies that
we require both l Neig and K l N2 1 eig+ - to obtain a shiftmatrix T with Neig eigenvalues. This is only
possible when K Neig , giving an upper bound for the number of frequencies obtainable.WhenG(0) is not full

rank (because N leig < ), this problemmay havemultiple zeros T̃. However, when N leig < each of thesemust

satisfy k kg g 1= +˜ ( ) ( )T for K k K l- < < - .
Then, as long as G Nrank 0

eig( )( ) , equation (14) is invertible by an operatorC

C A C kb ge . 18
k

i k j
k

i j j
k

j k,
i

, ,jå åd=  =f ( ) ( )

It follows that

C k C Ag b b1 e e e , 19
k

j k
k l

j k l
k

l j,
,

,
i i il l jå å+ = =f f f( ) ( ) ( )

and then

C k C kb g g b1 e , 20j
k

k j
k

k j j, ,
i jå å= = + = f˜ ˜ ( ) ( ) ( )T T

so every T̃ obtained in this waymust have eigenvalues ei jf .
The above analysis is completely independent of the coefficientsAj. However, once the eigenvaluesfj are

known, thematrixB (equation (15))may be constructed, and theAjmay be recovered by a subsequent least-
squaresminimization of

BA g 0 . 21-∣∣ ( )∣∣ ( )

This allows us to identify spurious eigenvalues if l Neig> (as these will have a corresponding zero amplitude).
Numerically, wefind no disadvantage to then choosing the largest l permitted by our data, namely l=K.

7
Counterexamplesmay exist, but are hard to construct and have not occurred in any numerics.
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Assuming a sufficient number of repetitionsN these arguments imply that this strategy requires that
K Neig to determine all eigenvalues accurately. However, when K Neig< there still exists a least-squares

solution T̃ thatminimizes G G0 1-∣∣ ˜ ∣∣( ) ( )T .WhenA0? 1/K, we expect that T̃ should have eigenvalues

e ei i0 0»f f˜ that we can take as the estimator forf0; the same is true for any otherfjwith sufficiently largeAj. In
figure 2we show an example of convergence of this estimation formultiple eigenvalues jf as K Neig in the

case where g(k) is known precisely (i.e. in the absence of sampling noise). The error 0 0f f-∣ ˜ ∣when K Neig<
depends on the eigenvalue gap abovef0, as well as the relative weightsAj, as wewill see in section 4.3.

In appendix Bwe derive what variance can be obtainedwith this time-seriesmethod in the case
l N 1eig= = , using single-round circuits with k=1 up toK. Our analysis leads to the following scaling
inN andK:

K N
Var

1
. 22

2
f µ( ) ( )

Wewill compare these results to numerical simulations in section 4.1.

3.1.1. Estimating g(k)
The function g(k) cannot be estimated directly from experiments, butmay instead be created as a linear
combination of P m A,k, fb ( ∣ ) for different values of k andβ. For single-round experiments, this combination is
simple to construct:

g k P P

P P

A A

A A

0 , 1 ,

i 0 , i 1 , . 23
k k

k k

,0 ,0

, ,2 2

f f
f f

= -
- +p p

( ) ( ∣ ) ( ∣ )
( ∣ ) ( ∣ ) ( )

Formulti-round experiments, the combination ismore complicated. In general, P m A,k, fb ( ∣ ) is a linear
combination of real and imaginary parts of g(l)with l K kr r< = å . This combinationmay be constructed by
writing kcos 2 2j

2 f b+( ) and ksin 2 2j
2 f b+( ) in terms of exponentials, and expanding.However,

inverting this linear equation is a difficult task and subject to numerical imprecision. For some fixed choices of
experiments, it is possible to provide an explicit expansion.Here we focus onK-round k=1 experiments with
K/2β=0 andK/2

2
b = p

final rotations during each experiment (choosingK even). The formula for

P m A,k, fb ( ∣ ) is independent of the order inwhich these rounds occur. Let uswrite A, , f( ∣ )m n as the
probability of seeing both K0, , 2Î ¼{ }m outcomeswithmr=1 in theK/2 roundswithβr=0 and

K0, , 2Î ¼{ }n outcomeswith nr=1 in theK/2 roundswithβr=π/2. In otherwords, m, n are the
Hammingweights of themeasurement vectors split into the two types of rounds described above. Then, one can
prove that, for 0�k�K/2:

g k A, , , , 24
m

K

n

K

k
0

2

0

2

å å fc=
= =

( ) ( ) ( ∣ ) ( )m n m n

Figure 2.Convergence of the time-series estimator in the estimation of N 10eig = eigenvalues (chosen at randomwith equally sized
amplitudesAj=1/10)when the exact function g(k) is known at points 0,K,K. The estimator constructs and calculates the
eigenvalues of theK×K time-shiftmatrix T which are shown as the red plusses in the figure.When K Neig (gray dashed line), the
frequencies are attained towithinmachine precision.When K Neig< , it is clear from thefigure that the found eigenvalues provide
some formof binning approximation of the spectrum.
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The proof of this equality can be found in appendix A.
Calculating g(k) frommulti-round (k=1) experiments contains an additional cost: combinatorial factors

in equation (24) relate the variance in g(k) to the variance in A, , f( ∣ )m n but the combinatorial pre-factor
k

l
⎜ ⎟⎛
⎝

⎞
⎠

can increase exponentially in k. This can be accounted for by replacing the least squaresfit used abovewith a
weighted least squares fit, so that one effectively relies less on the correctness of g(k) for large k. To do this, we
construct thematrix T row-wise from the rows g

i
1( ) ofG(1). That is, for the ith row it weminimize

G g . 26i i
0 1-∣∣ ∣∣ ( )( ) ( )t

This equationmay beweighted bymultiplyingG(0) and g
i

1( ) by theweightmatrix

w
1

, 27j k
i

j k

G
, ,

i j,
1

d
s

= ( )( )
( )

where Gi j,
1s ( ) is the standard deviation in our estimate of Gi j,

1( ). Note that themethod ofweighted least-squares is

only designed to account for error in the independent variable of a least squares fit, in our case this isG(1). This
enhanced effect of the sampling errormakes the time-series analysis unstable for largeK.We can analyze how
this weighting alters the previous variance analysis when N 1eig = . If we take this into account (see derivation in
appendix B), we find that

KN
Var

1
, 28f µ( ) ( )

for a time-series analysis applied tomulti-round k=1 experiments.

3.1.2. Classical computation cost
In practice, the time-series analysis can be split into three calculations; (1) estimation of P m A,k, fb ( ∣ ) or

A, , f( ∣ )m n , (2) calculation of g(k) from these probabilities via equation (23) or equation (24), and
(3) estimation of the phasesf from g(k). Clearly (2) and (3) only need to be done once for the entire set of
experiments.

The estimation of the phasesf requires solving two least squares equations, with cost O l K2( ) (recalling that l
is the number of frequencies to estimate, andK is themaximumknown value of g(k)), and diagonalizing the
time-shiftmatrix T with costO(l3). For single-round phase estimation this is the dominant calculation, as
calculating g(k) from equation (23) requires simplyK additions. As a result this estimator proves to be incredibly
fast, able to estimate one frequency from a set ofN=106 experiments of up toK=10 000 in<100 ms, and
l=1000 frequencies fromN=106 experiments withK=1000 in<1 min.However, formulti-round phase
estimation the calculation of g(k) in equation (24) scales asO(K4). This then dominates the calculation, requiring
30 s to calculate 50 points of g(k). (All calculations performed on a 2.4 GHz Intel i3 processor.)Wenote that all
the above times are small fractions of the time required to generate the experimental datawhenN?K, making
this a very practical estimator for near-term experiments.

3.2. Efficient Bayesian analysis
When the starting state is the eigenstate 0f ñ∣ , the problemof determiningf0 based on the obtainedmulti-
experiment data has a natural solution via Bayesianmethods [10, 35]. Herewe extend such Bayesian
methodology to a general starting state. For computational efficiencywe store a probability distribution over
phasesP(f) using a Fourier representation of this periodic function P(f) (see appendix C). This technique can
also readily be applied to the case of Bayesian phase estimation applied to a single eigenstate.

A clearly information-theoretic optimal Bayesian strategy is to choose thef and A based on the data
obtained in someN experiments [8]. After theseN experiments, leading to qubitmeasurement outcomes
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1={ } , one can simply choose A, fwhichmaximizes the posterior distribution:
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Apossible way of implementing this strategy is to (1) assume the prior distribution to be independent ofA andf
and (2) estimate themaximumby assuming that the derivative with respect toA andf vanishes at this
maximum.

Instead of thismethodwe update our probability distribution overf andA after each experiment. After
experiment n the posterior distribution P A,n f( ) via Bayes’ rule reads

P
P

P
PA

m A

m
A,

,
, . 30n n

k,
1f

f
f= b

-( )
( ∣ )

( )
( ) ( )

To calculate the updates wewill assume that the distribution over the phasesfj and probabilitiesAj are
independent, that is

P P PA A, . 31n n
j

N

n
j

j
red

0

1eig

f f=
=

-

( ) ( ) ( ) ( )

As prior distributionwe take P P PA A,0 prior priorf f=( ) ( ) ( )with aflat prior P
N

prior
1

2

eigf =
p( )( ) , given the

absence of amore informed choice.We take P A e A A
prior

20
2 2= - - S( ) ( ) / , withA0 andΣ

2 approximatemean and

covariancematrices.We need to do this to break the symmetry of the problem, so that 0f̃ is estimatingf0 and
not any of the otherfs.We numerically find that the estimator convergence is relatively independent of our
choice ofA0 andΣ

2.
The approximation in equation (31) allows for relatively fast calculations of the Bayesian update of Pn

j
jf( ),

and an approximation to themaximum-likelihood estimation of P An
red ( ). Details of this computational

implementation are given in (C1).

3.2.1. Classical computation cost
In contrast to the time-series estimator, the Bayesian estimator incurs a computational cost in processing the
data from each individual experiment. On the other hand, obtaining the estimate 0f̃ forf0 is simple, once one
has the probability distribution Pj 0 f= ( ):

Parg d e .j
0

0 iòf f f= f=( )˜ ( )

Akey parameter here is the number of frequencies#freq stored in the Fourier representation ofP(f); each
update requiresmultiplying a vector of length freq# by a sparsematrix. Our approximation scheme for
calculating the update toAmakes thismultiplication the dominant time cost of the estimation. Aswe argue in
(C1) one requires Kfreq tot# to store a fully accurate representation of the probability vector. For the single-
round scenariowith kr=1, henceKtot=N, wefind a large truncation errorwhen#freq=N, and so the
computation cost scales asN2. In practice wefind that processing the data fromN<104 experiments takes
seconds on a classical computer, but processingmore than 105 experiments becomes rapidly unfeasible.

3.3. Experiment design
Based on the considerations abovewe seek to compare some choices for themeta-parameters in each
experiment, namely the number of rounds, and the input parameters kr andβr for each round.

Previous work [10, 36], which took as a starting state the eigenstate 0f ñ∣ , formulated a choice of k andβ, using
single-round experiments and Bayesian processing, namely

k K Pmin
1.25

, , , 32
P

n
j

err
0

0
n
j 0

0
s

b f b= ~ =
f

=

=

⎛
⎝
⎜⎜
⎡
⎢
⎢⎢

⎤
⎥
⎥⎥

⎞
⎠
⎟⎟ ( ) ( )

( )

Roughly, this heuristic adapts to the expected noise in the circuit by not using any k such that the implementation
ofUk takes longer thanT nerr sys. It also adapts k to the standard-deviation of the current posterior probability
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distribution over 0f : a small standard-deviation after the nth experiment implies that k should be chosen large to
resolve the remaining bits in the binary expansion off0

8.
In this workwe use a starting state which is not an eigenstate, and as suchwemust adjust the choice in

equation (32). As noted in section 3, to separate different frequency contributions to g(k)weneed good accuracy
beyond that at a single value of k. The optimal choice of the number of frequencies to estimate depends on the
distribution of theAj, whichmay not bewell known in advance. Following the inspiration of [10], we choose for
the Bayesian estimator

k K

K K

1, ,

min
1.25

, . 33
P

err

n
j 0

0
s

Î ¼

=
f=

⎛
⎝
⎜⎜
⎡
⎢
⎢⎢

⎤
⎥
⎥⎥

⎞
⎠
⎟⎟

{ }

( )
( )

We thus similarly boundK depending howwell one has already converged to a value forf0 which constitutes
some saving of resources. At largeNwe numerically find little difference between choosing k at random from
{1,K,K} and cycling through k=1,K, K in order. For this Bayesian estimator we drawβ at random from a
uniformdistribution [0, 2π).Wefind that the choice ofβhas no effect on thefinal estimation (as long as it is not
chosen to be a single number) For the time-series estimator applied to single-round experiments, we choose to
cycle over k=1,K, K so that it obtains a complete estimate of g(k) as soon as possible, taking an equal number
of experiments with final rotationβ=0 andβ=π/2 at each k. Here againK�Kerr, so that we choose the
same number of experiments for each k�K. For the time-series estimator applied tomulti-round experiments,
we choose an equal number of roundswithβ=0 andβ=π/2, taking the total number of rounds equal
toR=K.

4. Results without experimental noise

Wefirst focus on the performance of our estimators in the absence of experimental noise, to compare their
relative performance and check the analytic predictions in section 3.1. Althoughwith a noiseless experiment our
limit forK is technically infinite, we limit it to amake connectionwith the noisy results of the following section.
Throughout this sectionwe generate results directly by calculating the function P m A,k, fb ( ∣ ) and sampling
from it. Note that P m A,k, fb ( ∣ ) only depends on Neig and not on the number of qubits in the system.

4.1. Single eigenvalues
To confirm that our estimators achieve the scaling bounds discussed previously, we first test themon the single
eigenvalue scenario N 1eig = . Infigure 3, we plot the scaling of the average absolute error in an estimation f̃ of a
single eigenvaluef ä [−π,π), defined so as to respect the 2π-periodicity of the phase:

min , 2 Arg e , 34i f f p f fá - - - ñ = á ñf f-≔ (∣ ˜ ∣ ∣ ˜ ∣) ∣ ( )∣ ( )( ˜ )

as a function of varyingN andK. Here áñ represents an average over repeatedQPE simulations, and theArg
function is defined using the range [−π,π) (otherwise the equality does not hold).

We see that both estimators achieve the previously-derived bounds in 3.1 (overlayed as dashed lines), and
both estimators achieve almost identical convergence rates. The results for the Bayesian estimationmatch the
scaling observed in [10]. Due to theworse scaling inK, themulti-round k=1 estimation significantly
underperforms single-round phase estimation. This is a key observation of this paper, showing that if the goal is
to estimate a phase rather than to project onto an eigenstate, it is preferable to do single-round experiments.

4.2. Example behaviorwithmultiple eigenvalues
The performance ofQPE is dependent on both the estimation technique and the systembeing estimated. Before
studying the systemdependence, wefirst demonstrate that our estimators continue to perform at all in the
presence ofmultiple eigenvalues. Infigure 4, we demonstrate the convergence of both the Bayesian and time-
series estimators in the estimation of a single eigenvaluef0=−0.5 of afixed unitaryU, given a starting state 0Y ñ∣
which is a linear combination of 10 eigenstates jf ñ∣ .Wefix 0.50 0

2fá Y ñ =∣ ∣ ∣ , and draw other eigenvalues and
amplitudes at random from [0,π] (making theminimium gapfj−f0 equal to 0.5).We perform 2000QPE
simulationswithK=50, and calculate themean absolute error ò (equation (35), solid), Holevo variance

e 1i 2á ñ -f -∣ ∣˜ (dashed), and rootmean squared error rms (dotted), given by

8
Note that this strategy is the opposite of textbook phase estimation inwhich one necessarily learns the least-significant bit off0 first by

choosing the largest k. One chooses the next smallest k andβ so that the nextmeasurement outcome gives the nextmore-significant bit etc.
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min , 2 Arg e . 35rms
2 2 i 2 f f p f fá - - - ñ = á ñf f-≔ (∣ ˜ ∣ ∣ ˜ ∣) ∣ ( )∣ ( )( ˜ )

Weobserve that both estimators retain their expected N 1 2 µ - , with one important exception. The Bayesian
estimator occasionally (10%of simulations) estimatesmultiple eigenvalues nearf0.When this occurs, the
estimations tend to repulse each other,making neither a good estimation of the target. This is easily diagnosable
without knowledge of the true value off0 by inspecting the gap between estimated eigenvalues.While using this
data to improve estimation is a clear target for future research, for nowwe have opted to reject simulationswhere
such clustering occurs (in particular, we have rejected data points where min 0.05j0f f- <( ¯ ¯ ) ). That this is
required is entirely system-dependent: wefind the physicalHamiltonians studied later in this text to not
experience this effect.We attribute this difference to the distribution of the amplitudesAj—physical
Hamiltonians tend to have a few largeAj, whilst in this simulation theAjwere distributed uniformly.

In the inset tofigure 4, we plot a histogramof the estimated eigenphases afterN=104 experiments. For the
Bayesian estimator, we showboth the selected (green) and rejected (blue) eigenphases.We see that regardless of
whether rejection is used, the distribution appears symmetric about the target phasef0. This suggests that in the
absence of experimental noise, both estimators are unbiased. Proving this definitively for any class of systems is
difficult, but we expect both estimators to be unbiased providedA0?1/K.WhenA0�1/K, one can easily

Figure 3.Estimator performance for single eigenvalues with single andmulti-round k=1QPE schemes. Plots show scaling of the
mean absolute error (equation (35))with (top) the number of experiments (atfixedK=50), with (middle)K for afixed total number
of experiments (N=106), and (bottom)withKwith afixed number (100) of experiments per k=1,K, K (i.e. N K200= ). Data is
averaged over 200–500QPE simulations, with a new eigenvalue chosen for each simulation. Shaded regions (top) and error bars
(middle, bottom) give 95% confidence intervals. Dashed lines show the scaling laws of equation (22) (fitted by eye). The top-right
legend labeling the different estimation schemes is valid for all three plots.
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construct systems forwhich no phase estimation can provide an unbiased estimation off0 (following the
arguments of section 3).We further see that the scaling of the rms error òrms and theHolevo variancematch the
behavior of themean absolute error ò, implying that our results are not biased by the choice of estimator used.

4.3. Estimator scalingwith two eigenvalues
The ability ofQPE to resolve separate eigenvalues at smallK can be tested in a simple scenario of two eigenvalues,
f0 andf1. The input to theQPE procedure is then entirely characterized by the overlapA0 with the target state

0f ñ∣ , and the gap 0 1d f f= -∣ ∣.
Infigure 5, we study the performance of our time-series estimator in estimatingf0 afterN=106

experiments withK=50,measured again by themean error ò (equation (35)).We show a two-dimensional plot
(averaged over 500 simulations at each pointA0, δ) and log–log plots of one-dimensional vertical (lower left) and
horizontal (lower right) cuts through this surface. Due to computational costs, we are unable to perform this
analysis with the Bayesian estimator, or for themulti-round scenario.We expect the Bayesian estimator to have
similar performance to the time-series estimator (given their close comparison in sections 4.1 and 4.2).We also
expect the error inmulti-roundQPE to follow similar scaling laws inA0 and δ as single-roundQPE (i.e. multi-
roundQPE should be suboptimal only in its scaling inK ).

The ability of our estimator to estimatef0 in the presence of two eigenvalues can be split into three regions
(marked as (a), (b), (c) on the surface plot). In region (a), we have performed insufficient sampling to resolve the
eigenvaluesf0 andf1, andQPE instead estimates theweighted average phase A A0 0 1 1f f+ . The error in the
estimation off0 then scales by how far it is from the average, and howwell the average is resolved

A K N1 . 360
1 1 2 dµ - - -( ) ( )

In region (b), we begin to separatef0, from the unwanted frequencyf1, and our convergence halts

A . 370
1 2 dµ - - ( )

In region (c), the gap is sufficiently well resolved and our estimation returns to scalingwell withN andK

A K N . 380
1 1 1 2 µ - - - ( )

The scaling laws in all three regions can be observed in the various cuts in the lower plots offigure 5.We note that
the transition between the three regions is not sharp (boundaries estimated by hand), and isK andN-dependent.

4.4.Many eigenvalues
To show that our observed scaling is applicable beyond the toy 2-eigenvalue system,we now shift to studying
systems of random eigenvalues with N 1eig > . In keepingwith our insight from the previous section, in figure 6

Figure 4. Scaling of error for time-series (dark green) andBayesian (red) estimators with the number of experiments performed for a
single shot of a unitarywith randomly drawn eigenphases (parameters given in text). Three errormetrics are used asmarked
(described in text—note that themean squared error andHolevo variance completely overlap for the time-series estimator). Data is
averaged over 2000 simulations. The peak nearN=3000 comes fromdeviation in a single simulation and is not of particular interest.
With this exception, error bars are approximately equal towidth of the lines used. (Inset) histogramof the estimated phases after
N=104 experiments. Blue bars correspond toBayesian estimates that were rejected (rejectionmethod described in text). These have
beenmagnified 10×to bemade visible.
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wefixf0=0, and study the error ò as a function of the gap

min . 39
j

j
1

0d f f= -
>

(∣ ∣) ( )

WefixA0=0.5, and draw the other parameters for the system froma uniformdistribution:fj∼[δ,π],Aj∼[0,
0.5] (fixing A A1j

N
j1 0

eigå = -= ).We plot both the average error ò (line) and the upper 47.5% confidence interval

Figure 5.Performance of the time-series estimator in the presence of two eigenvalues. (Top) surface plot of the error afterN=106

experiments forK=50, as a function of the overlapA0 with the target state 0f ñ∣ , and the gap 0 1f f-∣ ∣. Plot is divided by hand into
three labeled regions where different scaling laws are observed. Each point is averaged over 500QPE simulations. (bottom) log–log
plots of vertical (bottom left) and horizontal (bottom right) cuts through the surface, at the labeled positions. Dashed lines in both
plots are fits (by eye) to the observed scaling laws. Each point is averaged over 2000QPE simulations, and error bars give 95%
confidence intervals.

Figure 6.Performance of the time-series estimator in the presence ofmultiple eigenvalues. Error bars show 95%confidence intervals
(data points binned from4×106 simulations). Shaded regions showupper 2σ interval of data for each bin.
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[ò, ò+2σò] (shaded region) for various choices of Neig.We observe that increasing the number of spurious
eigenvalues does not critically affect the error in estimation; indeed the error generally decreases as a function of
the number of eigenvalues. Thismakes sense; at large Neig themajority of eigenvalues sit in region (c) offigure 5,
andwe do not expect these to combine to distort the estimation. Then, the nearest eigenvalue minj j0f¹ has on
average an overlap A N1j eigµ , and its average contribution to the error in estimatingf0 (inasmuch as this can
be split into individual contributions) scales accordingly.We further note that theworst-case error remains that
of two eigenvalues at the crossover between regions (a) and (b). In appendixDwe study the effect of confining
the spurious eigenvalues to a region , maxd f[ ].We observe that whenmost eigenvalues are confined to regions
(a) and (b), the scaling laws observed in the previous section break down, however theworst-case behavior
remains that of a single spurious eigenvalue. This implies that sufficiently longK is not a requirement forQPE,
even in the presence of large systems or small gaps δ; it can be substituted by sufficient repetition of experiments.
However, we do require that the ground state is guaranteed to have sufficient overlapwith the starting
state—A0>1/K (as argued in section 3). AsQPEperformance scales better withK than it does withN, a
quantum computer with coherence time T2 is still preferable to two quantum computers with coherence timeT
(assuming no coherent link between the two).

5. The effect of experimental noise

Experimental noise currently poses the largest impediment to useful computation on current quantumdevices.
Aswe suggested before, experimental noise limitsK so that for K Kerr the circuit is unlikely to produce
reliable results. However, noise on quantumdevices comes in various flavors, which can have different
corrupting effects on the computation. Some of these corrupting effects (in particular, systematic errors)may be
compensated for with good knowledge of the noisemodel. For example, if we knew that our system applied
U e ti = - +( ) instead ofU e ti= - , one could divide 0f̃ by (t+ò)/t to precisely cancel out this effect. In this
studywe have limited ourselves to studying and attempting to correct two types of noise: depolarizing noise, and
circuit-level simulations of superconducting qubits. Given the different effects observed, extending our results
to other noise channels is a clear direction for future research. In this sectionwe do not studymulti-roundQPE,
so each experiment consists of a single round. A clear advantage of the single-roundmethod is that the only
relevant effect of any noise in a single-round experiment is to change the outcome of the ancilla qubit,
independent of the number of systemqubits nsys.

5.1.Depolarizing noise
Avery simple noisemodel is that of depolarizing noise, where the outcome of each experiment is either correct
with some probability p or gives a completely randombit with probability p1 - .We expect this probability p to
depend on the circuit time and thus the choice of k�0, i.e.

p p k e . 40k Kerr= = -( ) ( )

Figure 7.Convergence of Bayesian and time-series estimators in the presence of depolarizing noise andmultiple eigenvalues, both
with andwithout noise compensation techniques (described in text). Fixed parameters for all plots are given in text. Shaded regions
denote a 95% confidence interval (data estimated over 200QPE simulations). The black dashed line shows theN−1/2 convergence
expected in the absence of sampling noise. Data for the Bayesian estimatorwas not obtained beyondN=104 due to computational
constraints.
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Wecan simulate this noise by directly applying it to the calculated probabilities P mk, fb ( ∣ ) for a single round

P m P m p k
p k1

2
. 41k k, ,f f +

-
b b( ∣ ) ( ∣ ) ( ) ( ) ( )

Infigure 7, we plot the convergence of the time-series (blue) andBayesian (green) estimators as used in the
previous section as a function of the number of experiments, with fixed K K50 2err= = fixed,A0=0.5,
N 10eig = and δ=0.5.We see that both estimators obeyN−1/2 scaling for some portion of the experiment,
however this convergence is unstable, and stops beyond some critical point.

Both the Bayesian and time-series estimator can be adapted rather easily to compensate for this
depolarizing channel. To adapt the time-series analysis, we note that the effect of depolarizing noise is to send
g k g k p k( ) ( ) ( )when k>0, via equation (23) and equation (41). Our time-series analysis was previously
performed over the range k K K, ,= - ¼ (getting g k g k*- =( ) ( ) for free), and over this range

g k g k p k . 42( ) ( ) (∣ ∣) ( )

g(k) is no longer a sumof exponential functions over our interval K K,-[ ], as it is not differentiable at k=0,
which is the reason for the failure of our time-series analysis. However, over the interval [0,K] this is not an issue,
and the time-series analysismay still be performed. If we construct a shift operatorTusing g(k) from
k=0,K, K, this operator will have eigenvalues e Ki 1j errf- . This then implies that the translation operatorT can
be calculated using g(k)with k>0, and the complex argument of the eigenvalues ofT give the correct phasesfj.
We see that this is indeed the case infigure 7 (orange line). Halving the range of g(k) that we use to estimatef0

decreases the estimator performance by a constant factor, but this can be compensated for by increasingN.
Adapting the Bayesian estimator requires simply that we use the correct conditional probability,

equation (41). This in turn requires that we either have prior knowledge of the error rateKerr, or estimate it
alongside the phasesfj. For simplicity, we opt to choose the former. In an experimentKerr can be estimated via
standardQCVV techniques, andwe do not observe significant changes in estimator performancewhen it is
detuned.Our Fourier representation of the probability distribution off0 can be easily adjusted to this change.
The results obtained using this compensation are shown infigure 7: we observe that the data follows aN−1/2

scaling again.

5.2. Realistic circuit-level noise
Errors in real quantum computers occur at a circuit-level, where individual gates or qubits get corrupted via
various error channels. Tomake connection to current experiments, we investigate our estimation performance
on an errormodel of superconducting qubits. Full simulation details can be found in appendix E.Our error
model is primarily dominated byT1 andT2 decoherence, incoherent two-qubitflux noise, and dephasing during
single-qubit gates.We treat the decoherence timeTerr=T1=T2 as a free scale parameter to adjust throughout
our simulations, whilst keeping all other error parameters tied to this single scale parameter for simplicity. In
order to apply circuit-level noise wemust run quantum circuit simulations, for whichwe use the quantumsim
densitymatrix simulator first introduced in [37].We then choose to simulate estimating the ground state energy
of four hydrogen atoms in varying rectangular geometries, withHamiltonian taken in the STO-3G basis
calculated via psi4 [38], requiring n 8sys = qubits.Wemake this estimation via a lowest-order Suzuki-Trotter

approximation [39] to the time-evolution operator e ti- . To prevent energy eigenvalues wrapping around the

circle we fix t 1 Trace 2nsys= [ ] ( )† 9. The resultant 9-qubit circuit ismade using theOpenFermion
package [9].

In lieu of any circuit optimizations (e.g. [23, 40]), the resulting circuit has a temporal length per unitary of
T 42 sU m= (with single- (two-) qubit gate times 20 ns (40 ns)). Thismakes the circuit unrealistic to operate at
current decoherence times for superconducting circuits, andwe focus on decoherence times 1−2 orders of
magnitude abovewhat is currently feasible, i.e.Terr=5−50 ms.However onemay anticipate that the ratio
TU/Terr can be enlarged by circuit optimization or qubit improvement. Naturally, choosing a smaller system,
less than 8 qubits, or using errormitigation techniques could also be useful.

We observe realistic noise to have a somewhat different effect on both estimators than a depolarizing
channel. Compared to the depolarizing noise, the noisemay (1) be biased towards 0 or 1 and/or (2) its
dependence on kmaynot have the formof equation (40).

Infigure 8, we plot the performance of both estimators at four different noise levels (and a noiseless
simulation to compare), in the absence of any attempts to compensate for the noise. Unlike for the depolarizing
channel, where aN−1/2 convergence was observed for some time before the estimator became unstable, here we

9
This normalization is not good for large systems since itmakes t exponentially small in system size. A scalable choice for normalization is to

first determine upper and lower bounds on the eigenvalues of present in the starting state, assume that they occur in a somenumerical
windowW. GivenW (which is atmost npoly sys( )), one setsU Wexp i p= -( ). The implementation of thisU in Trotterized formwith
sufficient accuracy determinesTU.
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see both instabilities and a loss of theN−1/2 decay to beginwith. Despite this, we note that reasonable
convergence (towithin 1%−2%) is achieved, even at relatively low coherence times such asKerr=10.
Regardless, the lack of eventual convergence to zero error is worrying, andwe now shift to investigating howwell
it can be improved for either estimator.

Adjusting the time-series estimator to use only g(k) for positive k gives approximately 1−2 orders of
magnitude improvement. Infigure 9, we plot the estimator convergencewith thismethod.We observe that the
estimator is no longer unstable, but theN−1/2 convergence is never properly regained.Wemay study this
convergence in greater deal for this estimator, as wemay extract g(k) directly fromour density-matrix
simulations, and thus investigate the estimator performance in the absence of sampling noise (crosses on
screen).We note that similar extrapolations in the absence of noise, or in the presence of depolarizing noise

Figure 8.Performance of Bayesian (solid) and time-series (dashed) estimators in the presence of realistic noise without any
compensation techniques. Shaded regions denote 95% confidence intervals (averaged over 100–500QPE simulations). The time-
series analysis requires N K2> experiments in order to produce an estimate, and so its performance is not plotted forN<100.

Figure 9.Performance of time-series estimatorwith compensation techniques (described in text). Shaded regions denote 95%
confidence intervals (averaged over 200QPE simulations). Final crosses show the performance in the absence of any sampling noise
(teal cross is at approximately 10−10), i.e. in the limit N ; ¥ dashed lines are present to demonstrate this limit. (Inset) plot of error
without sampling noise as a function of the decoherence timeTerr.Y-axis corresponds to y-axis onmain plot (as color-coded).
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(when compensated) give an error rate of around 10−10, whichwe associate tofixed-point error in the solution
to the least squares problem (this is also observed in the curvewithout noise infigure 9). Plotting this error as a
function ofKerr shows a power-law decay - K Terr err µ µa a- - with 1.9 2a = » .We do not have a good
understanding of the source of the obtained power law.

The same compensation techniques that restored the performance of the Bayesian estimator in the presence
of depolarizing noise do notwork nearly aswell for realistic noise.Most likely this is due to the fact that the actual
noise is not captured by a k-dependent depolarizing probability. Infigure 10we plot the results of using a
Bayesian estimator when attempting to compensate for circuit-level noise by approximating it as a depolarizing
channel with a decay rate (equation (40)) of K T T nUerr err sys= . This can be comparedwith the results of figure 8
where this compensation is not attempted.We observe a factor 2 improvement at lowTerr, however theN

−1/2

scaling is not regained, and indeed the estimator performance appears to saturate at roughly this point.
Furthermore, atTerr=50 ms, the compensation techniques do not improve the estimator, and indeed appear
tomake itmore unstable.

To investigate this further, infigure 10 (inset)weplot a Bayes factor analysis of the Bayesian estimators with
andwithout compensation techniques. The Bayes factor analysis is obtained by calculating the Bayes factors

F
P m M

P m M
, 43

n

n

nexpt 0
=

( ∣ )
( ∣ )

( )

Figure 10.Performance of single-round BayesianQPEwith four sets of realistic noise using a compensation technique described in
the text. Shaded regions are 95% confidence intervals over 200–500QPE simulations. (Inset) a Bayes factor analysis for the data below.
Line color and stylematches the legend of themain figure.

Table 1. Table comparingmetrics of interest between the two studied estimators. Allmetrics are implementation-specific, andmay be
improvable.

Time-series estimator Bayesian estimator

Speed (scaling) O(K ) O(N2)
Speed (timing) Processes large datasets inmilliseconds Takes hours to process 105 experiments

Accuracy N K A1 2 1
0

1 2 dµ - - - - demonstrated. N K1 2 1 µ - - demonstrated A0
1 2 dµ - - expected.

Number of eigenvalues estimated 100−200with relative ease Limited to 2−5

Improve accuracy via classical

approximation

Not obvious Can get speedup via choice of prior (not attempted

in this work)
Account for error Limited ability Limited ability
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whereM is the chosen Bayesianmodel (including the prior knowledge), andM0 is a referencemodel, and
P m M( ∣ ) is the probability of observingmeasurementm givenmodelM. As a referencemodel we take that of
randomnoise—P m M 0.50 =( ∣ ) .We observe that at largeTerr the Bayes factor with compensation falls below
that without, implying that the compensation techniquesmake themodel worse.We also observe that
at very small Terr, the estimatormakes worse predictions than randomnoise ( Flog 0<( ) ). Despite our best
efforts we have been unable to further improve the Bayesian estimator in noisy single-roundQPE
experiments.

6.Discussion

In this work, we have presented and studied the performance of two estimators for QPE at lowK for different
experiment protocols, different systems (in particular those with one versusmany eigenvalues), and under
simplistic and realistic noise conditions. These findings are summarized in table 1. From our numerical
studies, we observe scaling laws for our time-series estimator; we find it first-order sensitive to the overlapA0

between starting state and ground state, second-order sensitive to the gap between the ground state and the
nearest eigenstates, and second-order sensitive to the coherence time of the system. The Bayesian estimator
appears to perform comparably to the time-series estimator in all circumstances, and thus should obey similar
scaling laws.

We further observe that realistic noise has aworse effect onQPE than a depolarizing channel, for which the
effects can largely bemitigated.We have numerically explored (but not reported)multi-roundQPE in the
presence of noise. Since each experiment hasmultiple outputs, it is harder to adapt the classical data analysis to
the presence of noise and our results for realistic noise have not been convincing so far. Since the performance of
multi-round noiselessQPE is already inferior to single-round noiselessQPE, we do not advocate it as a near-
term solution, although, for noiseless long circuits it does have the ability to project onto a single eigenstate,
which single-roundQPE certainly does not.

Despite our slightly pessimistic view of the effect of errors on the performance of QPE, we should note that
the obtained error of 10−3 at T n T13 Uerr sys» orKerr=13would be sufficient to achieve chemical accuracy in
a small system.However, as the energy of a system scales with the number of particles, if we require a
Hamiltonian’s spectrum to fit in ,p p-[ ), we will need a higher resolution forQPE,making error rates of 10−3

potentially too large. This could potentially be improved by improving the compensation techniques
described in the text, applying errormitigation techniques to effectively increaseTerr, or by usingmore well-
informed prior distributions in the Bayesian estimator to improve accuracy. All of the above are obvious
directions for future work in optimizingQPE for theNISQ era. Another possible direction is to investigate
QPE performance in other errormodels than the two studied here. Following [6], we expect SPAM errors to
be as innocuous as depolarizing noise. However, coherent errors can be particularly worrying as they imitate
alterations to the unitaryU. The time-series estimator is a clear candidate for such a study, due to its ease in
processing a large number of experiments and its ability to be studied in the absence of sampling noise.We
also expect that it is possible to combine the time-series estimator with theHeisenberg-limited scaling
methods of [6, 32] so as to extend these optimalmethods to themultiple-eigenvalue scenario with N 1eig >
eigenvalues, and that thesemethods could be extended to analog or ancilla-freeQPE settings such as described
in [6].

In this workwe do not compare the performance ofQPEwith purely classicalmethods. Let us assume that
we have a classical efficient representation of the starting stateΨ and one can efficiently calculate Tr k YñáY∣ ∣
for k=1,K,KwithK=O(1) (for fermionic Gaussian starting states and fermionicHamiltonians this is
possible as a single fermionic term in k can be estimated as the Pfaffian of somematrix). Then, if there are at
mostK=O(1) eigenstates in this initial state, the time-seriesmethodwould allow us to extract these eigenvalues
efficiently. Thus in this setting and under these assumptionsQPEwould not offer an exponential computational
advantage.
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AppendixA.Derivation of the identity in equation (25)

Onefirst writes for 0�k�K/2:

A k

m m n n A

exp i 1 i 1
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j j i
k m n
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1

1 2 1 2
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where m m n n A, , , , ,K K1 2 1 2 f¼ ¼( ∣ ) is the probability for a specific series of outcomesm1,K,mK/2 forβ=0
and n1,K, nK/2 forβ=π/2. To see that the above is true, note that it is quickly true for N 1eig = by using
equation (23) for g(1). By linearity on the left and right-hand side it then holds generally.

Since the order of the outcomes of the rounds does notmatter, i.e. m m n n A, , , , ,K K1 2 1 2 f¼ ¼( ∣ ) only
depends on theHammingweights m= ∣ ∣m and n= ∣ ∣n , we can symmetrize the coefficient over permutations

of the rounds and replace m m n n A, , , , ,K K1 2 1 2 f¼ ¼( ∣ ) by K K
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wheremi is the ith bit of a bitstringwithHammingweight m (and similarly ni), and SK/2 is the symmetric group
of permutations.We can expand this last expression as
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The sum m m: is evenl1
åp ¼p p( ) ( ) can bewritten as a sumover permutations such that m m l1 ¼p p( ) ( ) hasHamming

weight p2 with p l0, 1, 2= ¼⌊ ⌋. Then one counts the number of permutations of aK/2-bitstring of
Hammingweight m such that some segment of length l hasHammingweight p2 which equals
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. All together this leads to ,kc ( )m n in equation (25). It is not clear

whether one can simplify this equality or verify it directly using other combinatorial identities or (Chebyshev)
polynomials.

Appendix B. Variance calculations for time-series estimator

For the case of estimating a single eigenvalue using single-roundQPEwith the time-series estimator,
one can directly calculate the error in the estimation. In this situation, ourmatricesG0 andG1 are column
vectors

G g K g K g K, 1 , , 1 , B1T
0 = - - + ¼ -( ( ) ( ) ( )) ( )

G g K g K g K1 , 2 , , . B2T
1 = - + - + ¼( ( ) ( ) ( )) ( )
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The least-squares solution for T is then
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For a single frequency, g k e ki= f( ) , and immediately ei= fT . However, we estimate the real and imaginary
components of g(k) separately. Let uswrite in terms of our independent components
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Let us expand out our real and imaginary components of T:
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Substituting in for gk
a, wefind that everything precisely cancels when k K¹ !
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If gK
a is estimatedwithN shots, we expect gVar

K N
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As described in section 3.1.1, formulti-round experiments we weight the least-squares inversion

as per equation (27). This weighting adjusts the gk
a values in equations (B8), (B9) so that
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zero when k K< . The sum over k in equation (B5) then lends an extra factor ofK to the variance, reducing
it to
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AppendixC. Fourier representation for Bayesian updating

For simplicity, we first consider when the starting state is a simple eigenstate jf ñ∣ . After eachmulti-round

experiment we would like to update the probability distribution P(fj=f), i.e. P Pn
P

P n
m

m 1
k,f f= f

-
b( ) ( )( ∣ )

( )
.

Wewill represent the 2π-periodic probability distribution Pn(f) by a Fourier series with a small number of
Fourier coefficients freq# which are updated after each experiment, that is, we write
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We thus collect the coefficients as a freq# -component vector p. The Fourier representation has the advantage
that integration is trivial i.e. P pd 2 0ò f f p=

p
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-
( ) so that the probability distribution is easily normalized. In

addition, the current estimate f̃ is easy to obtain:

p parg e arg i . C2P
i

2 1f = á ñ = +f˜ ( ) ( ) ( )

Another observation is that theHolevo phase variance is easily obtained from this Fourier representation as
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Note that this is theHolevo phase variance of the posterior distribution of a single simulation instance. By
comparison, infigure 4we have calculated the same quantity over repeat simulations. However, in general we
find the two to be equivalent.

The other advantage of the Fourier representation is that a single-round in an experiment is the application
of a sparsematrix onp. One has P P m P k Pcos 2 2k r r,

2
r r

f f f f g f = +b( ) ( ∣ ) ( ) ( ) ( ), where γ=βr+mrπ

which is equivalent to
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The coefficients of the updatematricesM0,1(kr) can be simply calculated using the double angle formulae and
employing
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ThematricesMa(n) are then calculated from the above equations.When j>k, we have
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When j�k, we have to account for the sign change in j ksin f-(( ) ):
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For amulti-round experiment withR rounds, one thus applies such sparsematrices to the vector pR times.
Note that each roundwith given kr requires atmost krmore Fourier components, hence an experiment with at
mostK controlled-U applications adds atmostK Fourier components. Thus, when the total number of unitary
rotations summed over all experiments K k freqn r rtot = å å > # , our representation of the distribution is no
longer accurate.When K freqtot  # on the other hand, it will be accurate.

C.1. Bayesian updating formulti-eigenvalue starting state
In this sectionwe detail themethod bywhichwe store the distributions Pn

j
jf( ) and P An

red ( ) of equation (31) and
perform the Bayesian update of equation (30).We do so by representing themarginal probabilities Pn

j
jf( ) by a

Fourier series with a small number of Fourier coefficients which are updated after each experiment as shown in
the previous section.We assume that there aremost Neig coefficientsAj>0 and thus Neig fj.

Fromour independence assumption, individual updates ofP j(fj)may be calculated by integrating out the
other unknown variables in equation (30):
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Expanding the conditional probability of equation (10) and rewriting leads to the form
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and B P AA Adj n j1
redò= - ( ) . Herewe have used that Pd 1l n

l
l1ò f f =- ( ) . One can concisely writeBj as the

components of a vector B. Computing equation (30) then involves creating an ‘update’ distribution for eachfj,
calculating the integral of each distribution, and then forming the newdistribution fromaweighted sum from
the ‘update’ distributions.

Calculating the distribution P An
red ( ) is complicated slightly by the restriction that A A1, 0j j j å = ,

meaning thatwe cannot assume the distribution of individualAj terms is uncorrelated. Themarginal probability
distribution equals
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where the jth component qn j1-( ) is the integral

q P P md . C11n j j n
j

j
r

k r j1 1 ,r rò f f f= b- -( ) ( ) ( ∣ ) ( )

AsA only enters our estimation through the vector B BB , , N0 eig
= ¼( ), we only need approximate this value.

Assumingwe know themarginal probabilities Pn(fj) for all experiments n=1,K,N, we can estimateB after all
experiments by themaximum likelihood value A max( )
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Evaluating this equation for upN=1000 experiments, taking freq 10 000# = frequency components of
N 2eig = eigenvalues takes less than a second on a laptop using amethod such as sequential least-squares
programming [41]. However, beyond this it becomes fairly computationally intensive. Thus, afterN>100
experiments have been performed, we switch to a local optimizationmethod.We determine the optimalBn after
n experiments from its prior value Bn 1- via a single step of an approximateNewton’smethod, that is, we take
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Weapproximate the second term for each step as coming fromonly from the added term, i.e.
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butwe approximate this at the nth step
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This approximation allowsH to be updatedwithout summing over each experiment.
With the above implemented, we observe that our estimator can process data fromN=10 000 experiments

to estimate N 2eig = eigenvalues withN=20 000 Fourier components within approximately twominutes on a
laptop. Unfortunately, thismethod scales asN2, as the number of frequencies required for accurate estimation
grows as the total number of unitaries applied.

As themean, variance and integration calculations only require the first few frequencies of the distribution, it
may be possible to reduce this cost by finding approximation techniques for higher frequency components.

AppendixD. Convergence of the (noiseless) time-series analysis in case ofmultiple
eigenvalues

In this sectionwe present an expansion offigure 6, namely figureD1, by drawing the spurious eigenvaluesfj
from a range closer to the target eigenvaluef0. This negates the drop in estimation error observed in figure 6 that
was caused by themajority of eigenvalues lying in region (c) offigure 5.We observe that for certain gaps δ,
multiple eigenvalues confined to a thin region , maxd f[ ] can have aworse effect on our ability to estimatef0 than
that of a single eigenvalue at δ. However, this loss in accuracy does not get critically worse with the addition of
more eigenvalues. Neither is it worse than theworst-possible estimationwith two eigenvalues.
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Appendix E.Details of realistic simulation

In this appendixwe give details of themethod for the realistic noisy circuit simulation of section 5.2. Our
density-matrix simulator is fairly limited in terms of qubit number, and sowe opt to simulateH4 in the STO-3G
basis. Thismolecule has 8 spin orbitals and thus requires 9 qubits for theQPE simulation (with the additional

FigureD1.Variations of figure 6, but with eigenstatesfj drawn from a range 0, maxf[ ] as labeled. Error bars are 95% confidence
intervals for each point, shaded regions denote top 2σ interval (i.e. region containing the top 2.5%−50%of the population).
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qubit being the ancilla).We choose 10 rectangularmolecular geometries for theH4 system, parametrized by a
horizontal distance dx and a vertical distance dy (i.e. the fourH atoms are in the positions d d2, 2, 0x y ( )).
We calculate theHartree–Fock and full-CI solutions to the ground state using the psi4 package [38]with the
openfermion interface [9]. This allows to calculate the true ground state energy E0 for each geometry, and the
overlapA0 between the ground state and theHartree–Fock state, whichwe choose as our starting state Yñ∣ . Due
to symmetry and particle number conservation, Yñ∣ has non-zero overlapwith only 8 eigenstates of the full-CI
solution, separated from the ground state by aminimumgap δ. (When dx=dy, the true ground state ofH4 is
actually orthogonal to theHartree–Fock state, and sowe do not include any such geometries in our calculation.)
The full error in our calculation of the energy (at afixed geometry) is then a combination of three separate
contributions: basis set error (i.e. from the choice of orbitals), Trotter error, and the estimator error studied in
this work (which includes error from experimental noise). The Trotter error òTrotter is reasonably large due to
our use of only thefirst-order Suzuki-Trotter approximationU e ei

H t ti ii =  »- - . Higher-order Suzuki-
Trotter expansions require longer quantum circuits, which in turn increase the estimator error from
experimental noise. Balancing these two competing sources of error is key to obtaining accurate calculations and
a clear target for future study. In table E1, we list some parameters of interest for each studied geometry.We

normalize the gap and the Trotter error by the Frobenius norm Trace 2F
nsys  =  [ ]† , as we chose an

evolution time t 1 F=   , making this the relevant scale for comparisonwith scaling laws and errors
calculated in the text.

E.1. Errormodel and error parameters
Throughout this workwe simulate circuits using an errormodel of superconducting qubits first introduced in
[37]. This captures a range of different error channels with parameters either observed in experimental data or
estimated via theory calculations. All error channels used are listed in table E2, andwewill nowdescribe them in
further detail.

Table E1.Parameters of theH4 geometries used in the text. Terms are

described in appendix E. Trace 2F
nsys =∣∣ ∣∣ [ ]† .

dx [Å] dy [Å] E0 A0 δ/ F  FTrotter  

0.4 0.5 −0.26 0.98 0.09 3.7×10−4

0.6 0.7 −1.46 0.94 0.17 3.1×10−3

0.8 0.9 −1.84 0.88 0.24 0.016

1.0 1.1 −1.96 0.80 0.23 0.017

1.2 1.3 −1.98 0.71 0.18 0.013

1.6 1.7 −1.94 0.55 0.09 6.0×10−3

0.2 1.8 0.32 0.996 0.67 2.0×10−4

0.4 1.6 −1.80 0.993 1.14 2.6×10−3

0.6 1.4 −2.15 0.98 1.27 0.014

0.8 1.2 −2.09 0.96 0.73 0.021

Table E2. Standard parameters of errormodels used in densitymatrix
simulation. Table adapted from [37]with all parameters taken from therein
(with the exception of the 1/fflux noise, which ismade incoherent as
described in text).

Parameter Symbol

Standard

value Scaling

Qubit relaxation time T1 30 μs λ

Qubit dephasing time T2 30 μs λ

Single-qubit gate time Tsq 20 ns 1

Two-qubit gate time T2q 40 ns 1

In-axis rotation error paxis 10−4 λ−1

In-plane rotation error pplane 5×10−4 λ−1

Incoherent flux noise A 1 0
2mF( ) λ−1

Measurement time Tmeas 300 ns 1

Depletion time Tdep 300 ns 1

Readout infidelity òRO 5×10−3 λ−1

Measurement induced

decay

p p,d,i d,f 0.005, 0.001 5 λ−1
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Transmon qubits are dominated primarily by decoherence, which is captured viaT1 andT2 channels [4].
TypicalT1 andT2 times in state-of-the-art devices are approximately 10−100 μs. As other error parameters are
derived from experimental results on a device withT1=T2≈30 μs, we take these as a base set of parameters
[42, 43]. Single-qubit gates in transmon qubits incur slight additional dephasing due to inaccuracies or
fluctuations inmicrowave pulses.We assume such dephasing isMarkovian, inwhich case it corresponds to a
shrinking of the Bloch sphere along the axis of rotation by a value p1 axis- , and into the perpendicular plane by a
value p1 plane- .We take typical values for these parameters as p 10axis

4= - , p 5 10plane
4= ´ - [37].

Two-qubit gates in transmon qubits incur dephasing due to 1/fflux noise. Assuming that the phase in an
ideal C-phase gate G diag 1, 1, 1, ei= f( )) is controlled by adjusting the time of application, this suggests a
model for the applied gate which is

G

1 0 0 0
0 1 0 0
0 0 e 0
0 0 0 e

, E1flux i

i 1 2

flux

flux

d = d f

d f+

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( ) ( )

( )

where δflux is drawn from anormal distribution around 0with standard deviationσflux. One can estimate
σflux≈0.01 rad for a typical gate length of 40 ns [37]. The noise is in general non-Markovian, as δfluxfluctuates
on longer timescale than a single gate. However, tomake the simulation tractable, we approximate it as
Markovian. The Pauli transfermatrix of this averaged channel [44] reads

G P Gd , E2flux flux fluxò d d dL = L[ ] ( ) [ ( )] ( )

where the Pauli transfermatrix of a channelG is given by G GTri j i j, s sL =[ ] [ ].
During qubit readout, we assume that the qubit is completely dephased and projected into the

computational basis.We then allow for aTmeas=300 ns period of excitation and de-excitation (including that
fromT1-decay), duringwhich the qubit state is copied onto a classical bit. This copying is also assumed to be
imperfect, with a probability òRO of returning thewrong result. The qubit then has an additionalTdep=300 ns
waiting period before itmay participate in gates again (to allow resonator depletion [42]), over which additional
excitation and de-excitationmay occur. Though simple, this description is an accuratemodel of experimental
results. Typically experiments do not observemeasurement-induced excitation to the 1ñ∣ state, but do observe
measurement-induced decay [37]. Typical values of such decay are 0.005 prior to the copy procedure, and 0.015
after.

Though reasonably accurate, this errormodel does fail to capture some details of real experimental systems.
In particular, we do not include leakage to the 2ñ∣ state, which is a dominant source of two-qubit gate error.
Furthermore, we have not included cross-talk between qubits.

To study the effect of changing noise levels while staying as true as possible to our physically-motivated
model, we scale our noise parameters by a dimensionless parameterλ such that the contribution from each error
channel to the simulation remains constant. In table E2we show the power ofλ that each error term is
multiplied by during this scaling.We reportTerr≔ T1=T2 in themain text instead ofλ tomake connection to
parameters regularly reported in experimental works.
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