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Preface

This thesis marks the apotheosis of my Master’s journey in Hydraulic and Offshore Structures at the
TU Delft, conducted in collaboration with TNO. It explores the territory of unaccounted-for events in
the Maeslant barrier’s closure reliability analysis, a topic that combines engineering, uncertainty, and
the importance of transparent risk assessment in flood defense.
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experts, and developing methods to quantify what is often left unquantified. I am grateful for the
guidance and support of my supervisors: Dr. ir. José Alvarez Antolinez, Dr. ir. Alexander Bakker,
Prof. dr. ir. Raphaél Steenbergen, and Dr. ir. Gina Torres Alves, whose insights and encouragement
were of great value throughout this process. I would also like to thank the experts who contributed
their time and knowledge during the whole process. Their input formed the backbone of this work and
highlighted the value of collaboration in engineering risk analysis.

Finally, after spending much time reading, talking, and thinking about the reliability and safety of one
of the assets of the Dutch flood defense network, a song text from a Dutch band resonated with me.
As Hang Youth said: ”"Geen gelul! De dijken moeten hoger.” T wish any reader of this thesis the best of
luck.

Wouter Waasdorp
Delft, the Netherlands, September 2025



Abstract

The Maeslant barrier is a storm surge barrier and a critical component of the Dutch coastal flood
defense system. Its reliability is formally assessed through a Reliability and Availability (RA) analysis,
which estimates the probability of non-closure during storm events. However, concerns have been
raised regarding the completeness and transparency of this analysis, particularly the potential omission
of relevant failure events. This thesis investigates whether a selected set of previously unaccounted-
for events can be systematically identified and quantified to improve the accuracy of the non-closure
probability.

A three-stage methodology was developed. First, a structured inventory of unaccounted-for events was
constructed using HAZOP, FMEA, What-If, and external event screening techniques, mapped across
four analytical dimensions. Second, the list was filtered based on estimated occurrence probability and
quantifiability, resulting in a shortlist of three events: epistemically uncertain events, non-stationary
component degradation, and the unverified reliability of human interventions. Third, these events were
quantified using structured expert judgment, research into time-dependent fault tree modeling, and
human reliability assessment.

Results indicate that these unaccounted-for events can alter the estimated non-closure probability, ei-
ther increasing it by an order of magnitude or reducing it by up to 50%. Moreover, the analysis revealed
limitations in the current RA analysis, including outdated reliability assumptions, a fragmented inte-
gration of human interventions, and a lack of empirical data. These findings support the need for a
more transparent and adaptable RA framework. The discussion highlights that while completeness in
risk assessment is theoretically unattainable, similar to the limitations of physical laws, models should
strive for an optimal balance between complexity, traceability, and applicability.

Recommendations include developing a centralized component lifecycle database, maintaining a reg-
istry of previously unaccounted-for events, formally integrating the OPSCHEP model into the fault
tree structure, and adopting structured human reliability verification. These changes can improve the
accuracy, transparency, and credibility of the Maeslant barrier’s non-closure probability and serve as a
blueprint for other critical infrastructure systems.
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Introduction

The Netherlands is a low-lying river delta known for its battle against water (Mostert, 2020). To ensure
that the inhabitants of this delta are safe against flooding, an integrated network of dikes, dams, weirs,
and storm surge barriers® is created, which is constantly under construction to ensure safety in the
future. Movable storm surge barriers are a vital component of the Netherlands’ flood defense system.
These structures are designed not only to protect densely populated and economically critical areas from
coastal flooding but also to maintain navigational access and preserve surrounding ecosystems (Walraven
et al., 2022). These structures are able to do this because they consist of movable components that,
under normal circumstances (e.g. no storm surge), remain open. These structures are strategically
located at estuaries and are closed whenever an extreme storm surge is anticipated (L. Mooyaart &
Jonkman, 2017).

One example of a storm surge barrier in the Netherlands is the Maeslant barrier, which is situated on
the Nieuwe Waterweg. This barrier was built as part of the Dutch Deltaworks and has been in use
since 1997 (L. Mooyaart & Jonkman, 2017). The barrier consists of two large gates housed in docks on
opposite sides of the Nieuwe Waterweg. During extreme storm surges, the gates close to prevent water
levels from exceeding the maximum thresholds that the inland dikes can withstand. By doing so, the
Maeslant barrier safeguards approximately 2 million residents and significant areas of South Holland
from potential flooding (Rijkswaterstaat, 2025a).

As sea levels rise and urban areas expand, coastal flood risk grows, prompting the need to strengthen
coastal flood defenses (Hallegatte et al., 2013). The Maeslant barrier can fail in one of three ways:
structurally, through overtopping and by operational errors. For the Maeslant barrier, non-closure 2 is

identified as the primary failure mode (L. Mooyaart et al., 2025).

For storm surge barriers in the Netherlands, the probability of non-closure is estimated with a reliability
and availability (RA) analysis (See section 2.4). The RA analysis generally uses fault and event trees
(see Appendix A). In other sectors, RA analyses are known by various terms, such as probabilistic safety
assessments, quantitative risk analyses, or similar combinations. These analyses are employed across
diverse technological systems, including nuclear power plants, aircraft, space missions, and chemical
facilities, to investigate low-probability, high-consequence events, particularly when data to quantify
such risks are limited (Bier & Cox Jr, 2007) .

The report: “Wettelijke beoordeling Europoortkering I Dijktraject 208" (“Statutory Assessment of
the Europoort Barrier I Dike Section 208”)(Rijkswaterstaat, 2022a), questions the credibility of the

LA storm surge is a temporary and abnormal rise in sea level, primarily caused by strong onshore winds and low
atmospheric pressure during storms. It poses a major flooding risk in low-lying coastal regions (National Ocean Service,
NOAA, 2024).

2In the context of the Maeslant barrier, “non-closure” refers to the failure of the barrier to complete its intended closing
operation when a closure request is issued during storm surge conditions.



RA analysis performed for the Maeslant barrier. Specifically, it states that the analysis cannot be
independently verified due to a: “lack of transparency regarding underlying assumptions, input data,
and modeling approach.” An example of this is the inability of experts to review the OPSCHEP-model
(see subsection 2.4) due to modeling choices (Expert, Rijkswaterstaat & TU Delft 2025). This raises
concerns about the completeness of the risk assessment, i.e. insinuating the possibility of the existence
of events that are unaccounted for in the current failure to close probability calculation of the Maeslant
barrier. From a scientific standpoint, the difficulty of reproduction undermines the credibility of the
conclusions, which is problematic for a safety-critical system such as a movable storm surge barrier.

From a scientific perspective, these concerns expose a deeper methodological challenge: as RA models
become more complex, their credibility increasingly depends on transparency, traceability, and inter-
pretability (Aven, 2016; Mostert, 2018; Paté-Cornell, 1996; van Asselt & Renn, 2011). In safety-critical
infrastructure such as the Maeslant barrier, the inability to clearly justify how risk estimates are derived,
especially when they influence regulatory thresholds, constitutes a substantial risk. It is therefore not
only a practical obligation but a scientific necessity to ensure that RA models remain comprehensible,
justifiable, and open to critical evaluation.

Therefore, this thesis investigates the following question:

e Can a selected set of previously unaccounted-for events be systematically identified and quantified,
and how can they be integrated into the non-closure probability calculation of the Maeslant
barrier?

With the following sub-research questions:

e Which unaccounted events exist?
e How can these events be organized and filtered to produce a short-list for detailed analysis?
e How can these unaccounted events from the Short-list be quantified?

o How can these events be integrated in the non-closure probability calculation of the Maeslant
barrier?

The thesis is structured to answer these questions as follows. Events not currently considered in the
existing RA analysis and that may contribute to the barrier’s non-closure probability were first identified
and compiled into a structured long-list. From this list, the top three most relevant or impactful events
were selected. This is called the Short-list. These top three events were then quantitatively assessed and
analyzed to evaluate their potential contribution to the overall non-closure probability. The structure of
this thesis reflects this approach: Chapter 2 provides a system analysis of the Maeslant barrier, Chapter
3 outlines the methodology for making the Long-list, Short-list, and how to quantify the events on the
Short-list, Chapter 4 presents the results of the lists and their analysis, and of the quantification and
their analysis. Chapter 5 gives a discussion, after which Chapter 6 concludes the research and provides
recommendations.



System analysis

This chapter presents a system analysis of the Maeslant barrier. The analysis follows a logical structure,
beginning with the context and operation of the barrier itself. It then introduces the Reliability and
Availability (RA) framework that Rijkswaterstaat! uses to assess the barrier’s performance. This is
followed by highlighting the limitations in the current RA analysis. These limitations motivate the
need for a more complete and transparent assessment, which is the focus of the following chapters in
which the research question is answered.

2.1. The Maeslant barrier

Movable storm surge barriers are a vital component of the Netherlands’ flood defense system. The first
of its kind in the Netherlands, the Hollandse IJssel Barrier, was completed in 1958. Since then, more
than 50 storm surge barriers have been constructed worldwide (Trace-Kleeberg et al., 2023), including
five in the Netherlands (L. Mooyaart & Jonkman, 2017). The global relevance of such barriers continues
to grow, with at least 11 new projects underway in the United States, two barriers under construction
in Belgium, and multiple similar projects being considered in Singapore (Jan De Nul Group, 2025;
Lee et al., 2023; Orton et al., 2023). In response to rising sea levels and expanding urban areas, the
Netherlands has continued to adapt its flood defense strategy to address both spatial and societal
constraints (Hallegatte et al., 2013).

In the Netherlands, the decision to build movable storm surge barriers was often driven by the infeasibil-
ity of alternative flood defense strategies, like dams and dikes. Furthermore, reinforcing existing inland
dikes, particularly in densely developed areas, was frequently deemed too complex, time-consuming, or
socially disruptive (Rijkswaterstaat, 2024). During the 1980s, this was especially evident in the case
of Rotterdam and Dordrecht, where strengthening existing defenses, mainly dikes, would have taken
decades and required large-scale interventions in historic city centers. As a more practical solution, the
Maeslant barrier was conceived. Construction began in 1991, and the barrier has been operational since
1997 (Jonkman & Merrell, 2024).

The Maeslant barrier is a component of the Dutch Delta Works, a system of dams, locks, dikes, and
storm-surge barriers built in response to the North Sea Flood of 1953. Located at the mouth of the
Rotterdam Harbor, the barrier plays a role in allowing uninterrupted access to one of the world’s busiest
ports while offering high levels of flood protection. Unlike many other barriers that remain closed or
partially block waterways 2, the Maeslant barrier remains fully open under normal conditions and only

IRijkswaterstaat is the executive agency of the Dutch Ministry of Infrastructure and Water Management. It is respon-
sible for the design, construction, management, and maintenance of the main infrastructure facilities in the Netherlands,
including waterways, roads, and flood defenses (Rijkswaterstaat, 2025¢)

2Unlike the Maeslant barrier, which remains fully open under normal conditions, other Dutch storm surge barriers such
as the Oosterschelde barrier and the Hartel barrier impose partial restrictions on waterways. The Oosterschelde barrier,
for example, consists of sluice gates that are normally open but can close during storm surges, blocking navigation, which
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closes during extreme storm surge events (Watson & Finkl, 1992). It protects approximately 2 million
residents and extensive infrastructure in South Holland, making it an indispensable element of the flood
protection strategy in the Netherlands (RijksWaterstaat, 2017).

After more than two decades of service, the Maeslant barrier faces a range of operational and structural
challenges (Haasnoot et al., 2019). Maintaining such a complex system is demanding in both technical
and logistical terms. Moreover, quantifying the reliability of the barrier over time has proven difficult,
especially in light of rising sea levels, aging components, and the likelihood of more frequent closures
(Jonkman & Merrell, 2024). These trends are raising questions about the future dependability of the
structure and the robustness of the models used to assess its performance.

2.2. Technical overview

B 4
% ‘”‘)" ] N _— //
SR
o 9 e / =

o = 5 — = it 3 =T
Yo, O N — = =T

. L A AVAVAVAY AN (1| Bd

. Abutment g ,f;,‘,‘l p]‘.»‘: =

2. Parking dock Swpw L ,ﬂgg&%‘/ B

3. Ball joint & joint foundation /6 \‘\’;'7,‘4;)"‘

4. Threshold — WY

5. Lattice arms e \ /

6. Barrier

7. Motion machinery

8. Operations building

9. Water measurement arrays

— 'u.'..
k) )

Figure 2.1: Schematic image of the Maeslant barrier and its components (Rijkswaterstaat, 2012). The numbers on the
components coincide with the names listed in the legend in the left bottom corner of the figure.

Technically, the Maeslant barrier consists of two floating gates, each measuring 210 meters in length and
22 meters in height, spanning from -17 meters to +5 meters NAP?3 as shown in Figure 2.1, component
number 6. These gates are anchored to the ground by a spherical bearing of 10 meters in diameter,
weighing 680 tons (component number 3 in Figure 2.1) (Rijkswaterstaat, 2025a). When not in use, the
gates are stored in docks on opposite sides of the waterway and rotated to position using large electric
motors connected to gear systems mounted at the top of each gate, called the locomobile (respectively
component numbers 2 and 7 in Figure 2.1).

Once aligned, the gates are flooded with water to sink them to the riverbed, forming a watertight seal.
After the storm surge has passed, water is pumped out of the gate compartments, allowing air to enter
naturally and enabling the gates to refloat and return to their docks. This unique floating-submersion
mechanism enables the barrier to transition, relatively quickly, between open and closed states, while
minimizing disruption to maritime traffic (World Shipping Council, 2023).

is limited to a sluice. Similarly, the Hartel barrier includes vertical lift gates that restrict both the height and width of
the passage (Jonkman et al., 2016).

3Normaal Amsterdams Peil (NAP) is the standard reference level for measuring elevation in the Netherlands, roughly
equivalent to mean sea level (Rijkswaterstaat, 2025b).
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2.3. Operation and control system

The operation of the Maeslant barrier is fully automated and managed by the BOS?, a sophisticated
control system responsible for coordinating the entire Europoort barrier®, which includes the Maeslant
barrier, Hartel barrier, and Hartel sluice®. The BOS integrates data from multiple sources, including
weather forecasts, water levels, and system status, to determine whether closure is necessary during
storm surge events. When the waterlevels of 3 meters above NAP in Rotterdam and 2.9 meters in
Dordrecht (Rijkswaterstaat, 2025a) are predicted, the BOS autonomously initiates the closure process.
During this process, the best moment for closure is estimated. Early detection data from the meteoro-
logical station in Hoek van Holland provides sufficient lead time to prepare and execute the closure.
There are two main types of closures”:
o Peilsluiting (water level closure): A closure that is used when river (Rhine) discharge is within
normal limits. In this case, the barrier can close when the sea water level exceeds the threshold
of 2 meters above NAP without requiring special coordination regarding river flow.

o Kentering sluiting (turn-around or low water slack closure): A closure used when river discharge
is high. . To make sure that the river (Rhine) discharge does not pose problems for the inland
dikes, the closure is timed to coincide with tidal slack (the brief moment when water flow reverses).
This coordination creates a basin in the inland water system.

Once the closure criteria are met, the movement phase is initiated controlled by the BESW(Control
System Maeslant barrier), as shown in Figure 2.2. The gates are maneuvered into position using a
combination of motorized rotation and buoyancy control. During this movement phase, buoyancy is
carefully regulated to ensure the gates remain balanced as they are pushed forward. The locomobile
drives the gates using motorized rotation during the closure sequence. The weight of the locomobile
on the part of the gate that extends into the water causes the gate to lift slightly, making buoyancy
regulation particularly important. Precise adjustments of the gate compartments’ water content are
necessary to keep the gates stable throughout this maneuvering.

4The BOS (Balance of System), referred to here as a decision and support system, encompasses a complex array of
hardware and software components designed to monitor, analyze, and control the operation of the Maeslant barrier. This
includes real-time data acquisition, predictive modeling, automated decision-making algorithms, and secure communi-
cation interfaces that collectively ensure the barrier responds accurately and autonomously to changing environmental
conditions.

5The Europoort barrier is a collective term for a critical segment of the Dutch coastal flood defense system protecting
the Rotterdam region. It includes the Maeslant barrier, the Hartel barrier, and the Hartel sluice (Rijkswaterstaat, 2013).

6The Hartel sluice is operated manually by personnel. While the BOS provides supporting information and coordination,
the actual control of the sluice is not fully automated (Goorden et al., 2022).

"These two types of closures depend on the river discharge measured at Lobit, with a threshold of 6000m> /s. When the
discharge exceeds 6000m:° /s, the closure is classified as a kenteringsluiting; when it is below this threshold, it is considered
a peilsluiting.
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2.4. Reliability and Availability (RA) Analysis

Reliability and Availability (RA) analysis’ are a critical component in the engineering of movable infras-
tructure systems such as the Maeslant barrier. In general, reliability refers to how likely the Maeslant
barrier is to function correctly when needed. Its availability is expressed as the chance of success per
closure request. Availability for the Maeslant barrier refers to the probability that the barrier is fully
operational and ready to respond when needed, which would be low during maintenance and high during
the storm season (Trivedi & Bobbio, 2017).

Formal methodologies, such as those outlined in IEC 60300-3-1 (STANDARD & IEC, 2003), provide
structured approaches for quantifying and modeling these attributes through techniques like Fault Tree
Analysis (FTA) (see Appendix A). In storm surge barriers and other flood defense systems, organisations
such as Rijkswaterstaat rely on RA analysis to ensure that the operational readiness remains within
acceptable risk margins for non-closure and for structural integrity (Bakker, Busnach, et al., 2025; L. F.
Mooyaart et al., 2023; van Maaren, 2018).

Reliability and Availability (RA) analyses rely on various inputs, including manufacturer data, historical
records, estimated repair durations, and assumed failure rates derived from expert judgment. While
these inputs are necessary to construct quantitative models, they can introduce uncertainties due to
limited empirical validation or context-specific variability. Consequently, although RA models are a
valuable tool for system assessment and decision-making, their results should be interpreted within the
context of these underlying assumptions and the inherent unpredictability of real-world operational
environments (Blanchard et al., 1990; Trivedi & Bobbio, 2017).

In the Netherlands, a strict form of risk-based asset management is applied to maintain the required
closing probability of storm surge barriers (Kharoubi et al., 2024). The Maeslant barrier, for example,
must achieve a non-closure probability of 1/100 (Government of the Netherlands, 2024). To meet this
standard, Rijkswaterstaat implemented the “ProBO: Probabilistic Operations and Maintenance” frame-
work, now referred to as “Risk-based Operations and Maintenance” (Kharoubi et al., 2023). ProBO is
not part of the formal RA model but provides a broader asset management structure within which RA
analyses are interpreted and acted upon. It encompasses three dimensions: technical, organizational,
and contractual. The technical dimension includes risk analysis methods such as RA; the organizational
dimension addresses planning, maintenance, and inspections; and the contractual dimension concerns
performance-based service agreements with external parties. These dimensions are supported by the
Deming cycle; Plan, Do, Check, Act, as a continuous improvement process (Kharoubi et al., 2023).
Within this context, RA analysis serves as a critical input for performance evaluation, helping to prior-
itize interventions and ensure long-term reliability.

A RA analysis facilitates ongoing closure reliability monitoring and identifies improvement opportunities
when needed (ProBO, 2017). The RA analysis usually is a highly detailed analysis that employs
techniques like fault trees and event trees to evaluate all significant risks that could impact the structure’s
performance (see subsection A.2). This high level of detail allows for an efficient assessment of the effects
of temporary changes (Bakker et al., 2022). The risks considered in the analysis are pre-defined, and if
something is missing, it can still be added later (ProBO, 2017). This also means that many potential
failure modes in the analysis may not have been observed yet.

In Appendix A, the key principles and computational steps of FTA are explained in detail. This includes
the structure of fault trees, the logic behind gate operations, the treatment of dependencies, and the
use of minimal cut sets. These explanations aim to provide a comprehensive understanding of how FTA
is applied in the context of complex systems.

For the Maeslant barrier specifically, FTA is used to model and quantify the probability of non-closure
by identifying combinations of component and system failures that could lead to operational failure
during a closure request. This includes mechanical failures (e.g., gate movement), control system errors
(e.g., BESW malfunction), and human intervention failures®. The resulting fault tree is used to estimate

8These human intervention failures are not directly in the FTA of the Maeslant barrier but, are later added to the
minimal cutsets exported from the FTA. this is further explained in Section 2.4.
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the overall non-closure probability under the assumption of random, independent failures (Webbers et
al., 2008). In practice, however, the assumption of statistical independence between basic events is
a simplification (Pinto et al., 2009). In complex systems like the Maeslant barrier, certain failures
may share underlying causes or interact in unforeseen ways. While the current FTA includes shared
failure causes, many potential correlations, such as those arising from aging infrastructure or deferred
maintenance, are difficult to quantify and may be underrepresented (Dekker, 2016; Pinto et al., 2009;
Webbers et al., 2008).

OPSCHEP model

Human intervention is a critical component in ensuring the Maeslant barrier meets its required relia-
bility standard, particularly in situations where automated systems fail. To formally account for these
human actions, Rijkswaterstaat developed the OPSCHEP (OKE Project Software for the Calculation
of Human Error Probabilities) model, which contains predefined procedures and operator interventions
that can be initiated during system failures or unexpected conditions (Rijkswaterstaat GPO — afdel-
ing Instandhouding Constructies & Onderhoud (ICO), 2017). These human interventions are modeled
within the RA analysis of the Maeslant barrier as follows; first, the minimal cut sets are calculated
from the FTA (see Section A.3). Second, human interventions are then added, when there is a suit-
able human intervention, to these minimal cut sets to reduce the failure-to-close probability (Expert,
Rijkswaterstaat 2025).

The inclusion of the HAD (Human Action Database) in the RA framework is intended to ensure that
backup procedures are considered in the overall system reliability. These human actions act not only
as reactive measures but also serve as redundancy when the BOS (Decision and Support System), the
BESW (control system Maeslant barrier) or the mechanical components do not function as intended.
However, the effectiveness of these interventions depends on training, procedural rigor, and operational
readiness (Defensie, 2017; Hirotsu et al., 2001). While the HAD framework suggests potential reliability
benefits, further investigation is needed to understand the extent to which these gains are supported by
clearly defined operational standards and their consistent implementation (Rijkswaterstaat, 2022a).

2.4.1. The bathtub curve and preconditions for FTA

As mentioned before, most FTAs are limited by preconditions, the FTA of the Maeslant barrier included.
These preconditions are derived from the operational state of the system, using the bathtub curve
(Figure 2.4). The bathtub curve is a standard reliability model that describes how a system’s or
component’s failure rate evolves over time (Blanchard et al., 1990). It is divided into three phases:

e A decreasing failure rate during the initial early failure period.
e A constant failure rate throughout the useful life phase.

e An increasing failure rate in the wear-out phase.

From a scientific standpoint, this conceptual model is useful but not neutral; it imposes assumptions
that directly influence risk estimation (Jonker & Pennink, 2010). If the actual failure behavior deviates
from the assumed phase (e.g., the system is aging but still modeled as in its useful life), the calculated
probabilities may become misleading. This issue is particularly relevant for complex, aging infrastruc-
ture such as the Maeslant barrier, where transitions between life phases are uncertain and may not be
adequately captured by a stationary failure model. Therefore, understanding which phase the system
is in is not just a modeling formality, but a substantive determinant of whether the RA output is valid
(L. Mooyaart et al., 2025; van Maaren, 2018).

Only the middle phase of the bathtub curve, where the failure rate remains approximately constant
and failures occur randomly, aligns with the foundational assumptions of most FTA’s. FTA typically
assumes that failure probabilities are time-independent and statistically independent, which holds only
if the system is in this stable “useful life” phase.

While it is theoretically possible to model different life phases using more advanced techniques, such as
time-dependent reliability models or non-stationary Fault Tree Analysis (FTA), the current RA frame-
work used for the Maeslant barrier does not implement these approaches. Instead, it is built on the
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Early failure

SEFod Useful Life Period Wear out

Failure rate

Time

Figure 2.4: The standard bathtub curve illustrating the evolution of failure rates over time. The horizontal is depicting
time, and the vertical axis is depicting the failure rate. Where the failure rate is constant is considered to be the useful
life period.

assumption of stationary failure rates, where time-dependent aging effects are either considered negli-
gible or assumed to be mitigated through routine maintenance interventions (Rijkswaterstaat, 2022a).
However, this assumption introduces potential risks: as infrastructure ages, its failure behavior can
deviate from the stable patterns assumed in the model. L. Mooyaart et al. (2025) highlights that the
timing of transitions between life phases is often uncertain and not explicitly captured in static RA
models, also shown in Figure 2.5. This underscores the importance of regularly evaluating whether the
preconditions underlying the model still reflect the physical state and operational context of the system
(van Maaren, 2018).

Early failure
period

Useful Life Period Wear out

Failure rate

Figure 2.5: Bathtub curve uncertainty (Mooyaart, 2025). The horizontal is depicting time, and the vertical axis is
depicting the failure rate. The orange arrows and question marks are depicting the uncertainty in failure rate.

If these dynamics are not reflected in the RA model, the fault tree may underestimate/overestimate
failure likelihoods, leading to a warped sense of reliability. In short, adherence to these preconditions
determines whether the FTA provides a realistic picture of system risk.
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Another key assumption in the reliability assessment of the Maeslant Storm Surge Barrier is that the
probability of non-closure is independent of the characteristics of the storm itself. This simplification is
deemed necessary because the barrier is rarely operated under full storm conditions, making empirical
performance data under such conditions scarce. As a result, failure probabilities are often derived
from expert judgment or generalized failure databases, rather than direct observation. This introduces
significant uncertainty, particularly since the barrier’s operational reliability may be influenced by storm-
specific factors such as wind direction, wave action, or surge dynamics. The assumption of independence
allows for tractable modeling but may obscure critical dependencies that affect real-world performance,
especially in extreme or compound storm events (Bakker, Busnach, et al., 2025). In addition, it is
contradicted by the assumption that the failure-to-close probability decreases when a storm becomes
more severe, due to a lower probability of a wrong closure decision (Expert, Rijkswaterstaat & TU Delft
2025).

2.4.2. Observations on the current FTA

The following observations were identified during the review of the current RA framework and are
reported here as such. First, the analysis of current dominant failure paths showed that the dominant
failure path in the current FTA is associated with software reliability. The software reliability values
used in the model are derived from an outdated estimation technique, the TDT-model (van Otterloo,
2003). This technique, while once standard, has since been criticized in academic literature for its
unreliable estimates (Brandt et al., 2011). A more modern approach called TOPAAS, which is already
in use in Rijkswaterstaat, could provide more accurate assessments (Brandt et al., 2011).

A second observation concerns the current implementation of the OPSCHEP model in relation to the
FTA. At present, these two models are separated (see Section 2.4). This post-hoc combination makes
it difficult to identify truly dominant failure paths, because what appears critical in the FTA alone may
in fact be mitigable through procedures already represented in OPSCHEP.

The current dominant failure path in the FTA originates from the dockdoor steering software on both the
north and south sides of the Maeslant barrier (see Figure 2.6a). As previously discussed, the reliability
of this software is based on an outdated guideline. When the reliability class of this software component
is adjusted to one level higher 9, as shown in Figure 2.6b, the overall failure-to-close probability of the
Maeslant barrier decreases from P =0.7 to P = 0.56.

When the reliability of the dockdoor steering software is adjusted, another recurring failure path emerges
as critical in the analysis. However, this is non-trivial to identify, as its complexity appears to stem
from a combination of lower-level component interactions and conditional dependencies that are not
immediately visible. The navigation through the tree becomes difficult due to branches. These branches
emerge 10-12 layers deep when following a new dominant failure path, and all show almost the same
failure probability, but the differences and their origin are non-trivial to identify.

Upon closer inspection, a recurring component becomes apparent: the failure of a specific motherboard.
This component appears consistently across all the new dominant branches, typically around 20 to 22
layers deep into the fault tree. This motherboard failure acts as a common node, suggesting it plays
a critical role in the system’s vulnerability (once the software reliability is improved). Its repeated
presence across multiple paths indicates that it may be a structural weak point in the current design or
modeling assumptions.

Another observation from the fault tree analysis is the presence of components with potentially unreal-
istic failure probabilities. In several instances, basic events are assigned a failure probability of exactly
P =0, implying absolute reliability, while some others are set to P = 1, indicating certain failure. The
complex modeling of the electrical and computer systems makes it non-trivial to identify the origin of
differences in failure probabilities between seemingly identical components. Without access to clearer
documentation, it is difficult to determine whether these differences are intentional or the result of
inconsistent modeling.

9The reliability of software according to the TDT-model used, is defined by different reliability classes (e.g., A, B, C...).
These classes go from most reliable to least reliable, each having their own failure probability
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(a) Current dominant failure path in the FTA of the Maeslant barrier.
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(b) Dominant failure path with adjusted probabilities (all shifted one class lower).

Figure 2.6: Dominant failure paths in the FTA of the Maeslant barrier: (a) using current reliability assumptions, and
(b) after adjusting software probabilities. The figure is an illustration from the FTA of the Maeslant barrier which is
programmed in Reliability Workbench from Isograph (Ltd., 2025). The circles are basic events, where the “Q” stands for
probability of occurrence of said basic event. The “Q” on top stands for failure probability of the SW of the dock-door.

In summary, these observations suggest that the current FTA includes outdated reliability assumptions,
limited integration of human interventions, and potentially inconsistent treatment of component failure
probabilities. Such issues may obscure the true dominant failure paths and therefore compromise the
transparency and credibility of the analysis. These concerns form the basis for calling for a more
complete and transparent risk analysis in the following section.

2.5. Calling for a more complete and transparent risk analysis

Very extensive, highly detailed fault trees can be difficult to work with and may lack transparency,
particularly when assumptions and data inputs are not explicitly documented or verifiable (Aven, 2016;
Mostert, 2018; Paté-Cornell, 1996; van Asselt & Renn, 2011; Webbers et al., 2008). This concern is not
purely theoretical: Rijkswaterstaat has publicly expressed doubt regarding the operational reliability
of the Maeslant barrier within the broader flood defense system in South Holland, stating that action
is needed in the coming years to address these vulnerabilities (Rijkswaterstaat, 2021, 2022a, 2022b).

The issue of incompleteness in the current RA analysis has been raised by several sources like Bakker,
Busnach, et al. (2025) and Webbers et al. (2008). More broadly, the completeness of risk assessments is
inherently reliant on iterative expert input, multidisciplinary perspectives, and continuous re-evaluation
of underlying assumptions (Pinto et al., 2009). However, observations from the current calculation (see
Section 2.4.2) indicate that the current RA framework used for the Maeslant barrier may not fully align
with the standards for transparency and completeness. These observations note that certain critical
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assumptions are built on outdated reliability estimation techniques and that uncertainties are not always
addressed in a systematic manner. CSK Review Team (2021) states that rare but high-impact failure
modes may not be adequately considered, and that it is “full of mistakes”. This forms the central
scientific problem addressed in this thesis: Can a selected set of previously unaccounted-for events be
systematically identified and quantified, and how can they be integrated into the non-closure probability
calculation of the Maeslant barrier?

In summary, the Maeslant barrier is a highly complex and critical infrastructure asset that depends
on both automated systems and human intervention to operate reliably (Rijkswaterstaat, 2022a). Yet
concerns about model transparency, traceability, and the potential omission of critical events reveal the
need for a more complete approach. These challenges motivate the investigative methods presented in
the following chapter.



Methodology

This chapter outlines a structured methodology to identify and quantify events not yet included in the
Maeslant barrier’s non-closure probability calculation. Building on the gaps in the current RA analysis
(Chapter 2), the approach systematically uncovered, filtered, and quantified relevant events. It began
with a broad inventory of events using HAZOP (Hazard and Operability Analysis), FMEA (Failure
Modes and Effects Analysis), What-If Analysis, and External Event Screening across four analytical
dimensions, supported by expert input. The list was then narrowed based on preliminary probability
estimation and quantifiability, and the selected events were quantified using probabilistic techniques such
as expert judgment, fault tree research, and human reliability analysis. This ensures both conceptual
relevance and analytical rigor.

3.1. Overview of Methodology

The methodology of this research followed a three-stage approach (Figure 3.1). This structure was
designed to systematically address the limitations identified in the current RA model for the Maeslant
barrier. The process began by acknowledging and investigating potential incompleteness! in the existing
analysis. Stage 1 involved the development of a comprehensive long-list of potentially unaccounted
events, using multiple analytical inputs. In Stage 2, this list was refined into a short-list through a
filtering process based on quantifiability and estimated contribution to the non-closure probability. In
Stage 3, the shortlisted events were quantified using methods suited to their characteristics.

Although these stages are presented sequentially, the methodology was applied in an iterative manner.
Insights gained during later stages were used to revisit earlier assumptions and refine the selection
of events. For example, the quantification process in Stage 3 revealed dependencies that required re-
examining the screening criteria of Stage 2. In this way, the methodology ensured that the final set of
quantified events reflects both theoretical completeness and practical feasibility.

Long List Short List Quantification

Figure 3.1: Overview of the Methodology: “Three-Stage Rocket”. The methodology is followed from left to right, with
the dashed arrows indicating the iterative nature of the methodology.

ncompleteness refers to unaccounted events and missing data in the current RA model for the Maeslant barrier.

13
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3.2. Stage 1: Long-List

The objective of this section was to independently identify events that may contribute to the non-closure
probability of the Maeslant barrier but are currently not considered in the existing failure probability
model.

The methods applied in this stage of the study, FMEA, HAZOP, What-If Analysis, and External Event
Screening, are standard approaches outlined in the Red Book for systematically identifying potential
failure events (Schiiller et al., 1997) (see subsection 3.2.1). These methods originate from established
industrial safety practices and have been formalized to ensure completeness and consistency in RA
analyses. Their importance lies in structuring the identification of events in a way that minimizes the
chance of overlooking events. In the context of the Maeslant barrier, using these methods helps to ensure
that both common and less obvious events are captured, laying a strong foundation for a quantitative
analysis.

Each technique was applied using four analytical dimensions, as shown by L. Mooyaart et al. (2025),
with an added 4th axis of operation sequence, to ensure consistency and thoroughness (see Figure 3.2).
Using these dimensions, each identified event exists somewhere on the analytical axis. Normally, the
development of long- and short-lists is done by a team of experts to ensure a broad and thorough
perspective. In this study, the process was carried out independently by a single researcher, the author,
which is less common and brings some limitations, e.g. accommodating multiple roles within the event
identification process where normally these roles are for different experts who try to complete each
other, like a meeting leader, a structural expert, and a software expert.
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Figure 3.2: Four analytical dimensions that were used to systematically identify unaccounted events. Each axis is
representing an analytical dimension. The horizontal-left axis is representing “event type”, the horizontal-right is
representing “mission sequence”, the vertical-top axis is representing “hierarchical level”, and the horizontal-bottom axis
is representing “failure category”.

Through this structured approach, the study develops a list of previously unaccounted-for events, en-
abling a more robust probabilistic modeling of the Maeslant barriers non-closure probability, shown in
figure 3.3. In the following subsections, further explanations of identification methods are given, and
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a step-by-step approach for event identification is provided.
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Figure 3.3: Stage 1 methodology showing how the axis are used with the identification methods. The four identification
methods are used along side the four analytical dimensions ensuring overall coverage.

3.2.1. Event identification methods

The definitions for HAZOP, FMEA and What-if analysis are mostly paraphrased from the Redbook
(Schiller et al., 1997) and for External event screening it is paraphrased from Rijkswaterstaat (ProBO,
2017). By combining these four methods, the analysis aimed to ensure coverage of both systematic and
creative perspectives, as well as internal and external hazards. This triangulation reduced the risk of
overlooking relevant unaccounted events.

Hazard and Operability Study (HAZOP)

HAZOP is a structured and systematic method for identifying potential hazards and operability prob-
lems in technical systems. It was originally developed for the chemical process industry but is now
applied across a wide range of engineering domains, including infrastructure and control systems. The
technique is based on examining system elements against a set of predefined guide words (e.g., “no,”
“more,” “less,” “as well as”) to uncover possible deviations from intended functions (Kletz, 2018). Each
deviation is then analyzed in terms of its possible causes, its consequences for system performance, and
existing safeguards. The output of a HAZOP session is a structured list of deviations, their origins, and
their potential impact on system safety and reliability.

In practice, HAZOP is typically conducted as a group exercise involving experts from different disci-
plines, which allows for both technical detail and cross-functional insight. While the method is quali-
tative, it often forms the foundation for more quantitative analyses, such as fault trees or event trees.
No explicit equations are used in HAZOP, but its structured, tabular format lends itself to systematic
documentation and later translation into probabilistic models.

The main strengths of HAZOP are its ability to (i) systematically identify a comprehensive range
of deviations, including rare or unexpected interactions; (ii) highlight design and operational weak-
nesses early; and (iii) create a documented basis for further analysis. Its limitations are that it (i)
is resource-intensive, requiring significant expert involvement; (ii) depends strongly on the knowledge
and experience of participants; and (iii) does not directly provide quantitative probabilities, requiring
follow-up methods to assign failure likelihoods.

In this research, HAZOP was applied as an event identification method to ensure that both technical and
operational deviations of the Maeslant barrier were captured in a structured way. This was particularly
important given the study’s focus on unaccounted events. By applying HAZOP, a comprehensive initial
set of potential events was generated, forming the foundation for subsequent screening, prioritization,
and quantification steps.

Failure Modes and Effects Analysis (FMEA)
FMEA is a systematic technique for identifying and analyzing potential failure modes of a system,
their causes, and their effects on system performance (International Electrotechnical Commission, 2018;
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Stamatis, 2003). It was originally developed in the aerospace industry in the 1960s and has since
become a widely used reliability engineering tool across sectors such as automotive, manufacturing, and
infrastructure. The process begins by listing system components or functions, identifying how each
might fail (failure modes), and then assessing the consequences of those failures (effects). For each
failure mode, potential causes are also identified and documented.

A key feature of FMEA is the prioritization of risks through scoring. In its traditional form, each failure
mode is assigned three values: a severity (S), occurrence (O), and detection (D) rating. The product
of these values forms the Risk Priority Number (RPN), calculated as:

RPN=Sx0xD (3.1)

The RPN provides a relative measure to compare failure modes and to prioritize mitigation actions.
Modern adaptations of FMEA also include fuzzy logic or probabilistic extensions, but the underlying
principle of structured prioritization remains the same.

The strengths of FMEA are that it (i) provides a structured approach for systematically evaluating
failure modes; (ii) facilitates prioritization by highlighting the most critical issues; and (iii) promotes
interdisciplinary collaboration through its team-based implementation. However, its limitations include
(i) subjectivity in scoring, as ratings often depend on expert judgment; (ii) a tendency to focus on
single-point failures rather than complex interactions; and (iii) limited scalability in very large or highly
interdependent systems.

In this research, FMEA was applied as an event identification method to capture potential failure modes
of key subsystems of the Maeslant barrier. By evaluating their possible causes and consequences, FMEA
contributed to identifying unaccounted events that could influence closure reliability. The structured
prioritization aspect of FMEA also helped in screening events for further quantification, complementing
the broader perspectives offered by other methods.

What-if Analysis

The What-if Analysis is a qualitative risk identification method that relies on systematically asking
structured “what if” questions about deviations, failures, or unexpected conditions in a system (Center
for Chemical Process Safety, 2008). Typical questions include: “What if component X fails to operate?”,
“What if operator Y performs an incorrect action?”, or “What if environmental condition Z occurs?”.
Each question is then analyzed to identify potential causes, consequences, and existing safeguards. The
results are usually documented in tabular form, listing the initiating condition, its potential effects, and
possible corrective actions.

What-if Analysis is particularly suited to the early stages of risk assessment, when system knowledge
may be incomplete but brainstorming by subject matter experts can highlight vulnerabilities. Unlike
structured methods such as HAZOP, it does not rely on predefined guide words; instead, it depends on
the creativity, experience, and diversity of the participants.

The strengths of What-if Analysis are that it (i) is flexible and easy to apply to almost any system; (ii)
encourages wide-ranging brainstorming that can reveal issues not captured by more formal methods;
and (iii) requires fewer resources and less preparation than structured approaches such as HAZOP. Tts
limitations are that it (i) is less systematic, and therefore risks overlooking certain failure mechanisms;
(ii) depends strongly on the expertise and imagination of the participants; and (iii) produces qualitative
rather than quantitative results, requiring follow-up methods for probabilistic evaluation.

In this research, What-if Analysis was applied alongside other event identification methods to capture
a broad range of potential unaccounted events for the Maeslant barrier. Its flexibility allowed the
identification of scenarios that might not emerge through more rigid methods, particularly those related
to unusual operating conditions or rare combinations of events. This ensured that the long-list of
candidate events included a diverse range of possibilities before screening and prioritization.

External Event Screening
External Event Screening is a method used to identify and assess hazards that originate outside the
boundaries of the technical system under study (International Atomic Energy Agency, 2003; Melchers,



3.2. Stage 1: Long-List 17

1999). Such events include natural hazards (e.g., extreme weather, flooding, earthquakes), external
technical failures (e.g., power supply interruptions), or human-induced factors (e.g., shipping accidents,
cyber-attacks). The aim is to determine which external events are credible, how they could affect the
system, and whether they should be included in further reliability analysis.

The screening process typically follows a structured sequence: (i) compile a broad list of potential
external hazards using historical data, literature, and expert judgment; (ii) screen the list based on
relevance, likelihood, and potential impact; and (iii) retain only those events that could plausibly
contribute to the top-event probability. This process avoids overloading the fault tree or risk model
with irrelevant or negligible events, while ensuring that major external influences are not overlooked.

The strengths of External Event Screening are that it (i) explicitly broadens the scope of the analysis
beyond internal technical failures; (ii) ensures that low-frequency but high-consequence events are con-
sidered; and (iii) creates a structured basis for deciding which external factors to model quantitatively.
Its limitations are that it (i) depends on the availability and quality of historical data; (ii) involves
subjective judgments when assessing plausibility; and (iii) may still miss unknown or unprecedented
events.

In this research, External Event Screening was applied to account for hazards to the Maeslant barrier
that originate outside the mechanical and control subsystems, such as environmental or operational
disturbances. By systematically reviewing and filtering potential external hazards, the method ensured
that the long-list of unaccounted events captured influences beyond the internal system boundaries,
which is essential for a comprehensive reliability assessment.

For each technique, an effort was made to systematically map insights to the relevant subsystem (e.g.,
hydraulics, sensors, communications), identify specific failure causes (e.g., mechanical, human, software),
categorize them by physical domain (e.g., electrical, mechanical, hydraulic), and link them to their
corresponding stage in the closure operation sequence. This matrixed approach tried to ensure that
the entire system is looked at and that identified events are not isolated but seen in relation to their
context and system dependencies.

3.2.2. Step-by-Step Procedure for Event Identification

The development of the long-list of unaccounted-for events follows a structured and iterative analysis
process, visualized in Figure 3.3. The first step was to decide what parts of the system will be included
in the analysis; this means both the technical parts (like machines and electronics) and the human roles
(like operators). Once that’s clear, a table was created to help organize the analysis. This table looks
at the system from four angles: which part of the system is involved, what caused the failure, what
kind of component it is, and when in the operation the issue happened. This helps make sure nothing
important is missed and that everything is sorted in a clear way.

With this analytical tool in place, multiple risk identification methods were applied in parallel:

e FMEA: For each component, possible failure modes were identified and assessed using three
criteria: severity (S), occurrence (O), and detectability (D). These are combined into a Risk
Priority Number (RPN = S x O x D). Typical FMEA questions include, but are not limited to:
“How could this component fail?” and “What would be the effect of this failure on the system?”

o« HAZOP: Applied to subsystem-function pairs using structured guide words to explore deviations
from normal operation. Guide words include:

No / Not: complete absence (e.g., no signal)
— More / Less: quantitative deviations (e.g., more flow)

— As Well As: additional elements present

Part Of: incomplete action or flow

— Reverse: reversal of intended direction (e.g., reverse signal)
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— Late / Early: timing deviations

These guide words stimulated systematic thinking about how each function might deviate and
what the implications would be.

e External Event Analysis: Focused on risks originating outside the system boundaries. This in-
cludes natural hazards (e.g., lightning, extreme winds), infrastructure dependencies (e.g., loss of
grid power), and third-party interference (e.g., shipping traffic).

e What-If Analysis: A brainstorming approach structured around hypothetical failure questions.
The analyst explored edge-case scenarios using prompts like: “What if this signal is delayed?”
“What if the backup doesn’t activate?” or “What if environmental conditions differ from those
assumed in the model?” The purpose was to capture complex interactions and rare but plausible
situations.

Each of these methods generated a list of candidate failure events. These were then compiled into a
consolidated event list. During compilation, events are reviewed for duplicates, mapped across the four
analysis axes, and refined for clarity.

Through the combination of these methods and consistent mapping onto a shared analytical framework,
the study produced a reproducible, structured, and exhaustive list of potentially unaccounted or pos-
sibly underestimated failure events. This list formed the foundation for further expert elicitation and
probabilistic modeling to quantify their contribution to the overall non-closure probability.

3.3. Stage 2: Short-list

This study applied a filtering process to identify a short-list of events that are both relevant and suitable
for quantification, see Figure 3.4. This was done by educated estimates and fact-checking through
sources such as de Jong (2024), Rijkswaterstaat (2016), Royal Netherlands Meteorological Institute
(KNMI) (2025), van Maaren (2018), and Webbers et al. (2008). The purpose of this step was to focus
the subsequent quantification effort on the most relevant and feasible events, while avoiding unnecessary
detail that would not contribute meaningfully to the overall reliability analysis.

The first filter was based on order of magnitude: events with an estimated probability of occurrence
significantly lower than the threshold of 1/100 per operational cycle are excluded from further consid-
eration. This aligns with the scope of the existing RA analysis, which focuses on events within this
probability range. Events falling below this threshold, such as those on the order of 1/1000 or less, were
considered out of scope for the current study. These probabilities were estimated by the researcher and
people involved with the Maeslant barrier, after which they are consulted with the supervisor Alexander
Bakker. A method explained in ProBO (2017) and van Maaren (2018).

It is essential to note that, while individual events with low probabilities, such as 1/1000 per occurrence,
may seem negligible in isolation, their combined effect could, in theory, present a significant risk. How-
ever, for this thesis, which focuses on quantifying a few key events, summing an amount of low-impact
individual scenarios was considered outside the scope of the analysis. This category of events could
represent a form of incompleteness in the current RA analysis of the Maeslant barrier and, in principle,
should be taken seriously, but unfortunately, falls out of the scope of this thesis because that is set on a
set of possible high-impact events. The point is that while the Short-list is not 100% complete, it does
capture a substantial portion of the relevant events.

Following this initial screening, the remaining events were evaluated for their potential to be meaning-
fully quantified using available data, expert input, or probabilistic modeling techniques, after which
the possibility of merging events was reviewed. The outcome of this three-step selection process was a
top three list of events, each of which was individually quantified and potentially incorporated into the
existing failure probability model as well, to assess their impact on the non-closure probability of the
Maeslant barrier.
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Figure 3.4: Flowchart of methodology used for creating the Short-list. Starting from the top following the direction of

Step-by-Step Procedure
e Start with Long-list.

the arrows downward.

e Step 1, probability Screening;:

— Estimate the order of magnitude of each event’s occurrence probability, through educated
estimates and fact checking through sources.

— Exclude all events with a probability significantly lower than 1/100 per operational cycle
(e.g., events in the order of 1/1000 or lower).

1st draft of short-list

e Step 2, quantifiability Screening;:

— Assess each remaining event for its potential to be modeled or estimated within the scope of

the thesis.

— Discard events where no quantification method is possible within this study’s time or data

constraints.

e Step 3, merging of events:

— Events that can be merged, to fit the scope of the thesis, are merged.

e Step 4, compile Top 3 Events:

— Select the three most impactful and quantifiable events (as shown in Figure 3.5).

Proceed to Quantification:

By applying these filters, the analysis distilled a broad and diverse long-list into a focused set of three
events that balance relevance, impact, and analytical feasibility. This process ensured that the subse-
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Figure 3.5: top 3 events (red dots) making up the Short-list, existing somewhere on the analytical axis, the blue dots
represent events that exist but are exluded from the Short-list. The axis correspond to the four analytical dimensions,
with the horizontal-left axis representing “event type”, the vertical-top axis representing “hierarchical level”, the
horizontal-right axis representing “mission sequence”, and the vertical-bottom axis representing “failure category”.

quent probabilistic modeling concentrated resources on events most likely to improve the completeness
and credibility of the overall risk assessment.

3.4. Stage 3: quantification

The goal of this stage was to determine the potential contribution of the identified events on the short-list
to the overall non-closure probability of the Maeslant barrier. Given the absence of empirical data for
many of these events, this study relied on a combination of quantification techniques. Depending on the
nature of each event, these include structured expert judgement (SEJ), FTA analysis, and integration of
existing human reliability data. This section outlines the methodology and tools used for quantification,
followed by a detailed presentation of results.

3.4.1. Quantification Methods

In Stage 3, the shortlisted events were quantified using methods tailored to their specific characteristics.
Because the three events differ substantially in nature, ranging from epistemic uncertainty to modeling
assumptions and human reliability, no single quantification approach would have been sufficient. Instead,
multiple methods were applied in parallel, with each chosen to best represent the underlying uncertainty
while remaining feasible within the available data and resources.

Table 3.1 summarizes the mapping between the shortlisted events and the quantification methods ap-
plied.
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Table 3.1: Overview of quantification methods applied to the shortlisted events.

Event type Quantification method Justification

Epistemically  uncertain  Expert judgment elicitation com- Allows the inclusion of previously un-

events bined with probabilistic bound- modeled or underestimated events; ex-
ing perts provide probability ranges that

are formalized into distributions.

Precondition of stationar- Research into how to implement provides a roadmap to capturing time-

ity of FTA not met non-stationarity into the FTA dependent failure rates.

HAD not verified Human  reliability = analysis Provides probabilistic estimates of oper-
(HRA), benchmarked against ator actions; compensates for the lack
literature of verification in the existing HAD by

cross-checking with established HRA
techniques.

This structured mapping ensured that each event was quantified with a method suited to its charac-
teristics, while maintaining consistency across the analysis. The explicit link between event type and
method increases the transparency of the overall methodology and creates a clear rationale for the
probabilistic results presented in Chapter 4.

3.4.2. Epistemic uncertain events probability estimation using SDM

SEJ is a formal methodology for eliciting, aggregating, and applying expert assessments in situations
where empirical data is scarce or incomplete (Cooke, 1991). Depending on its design, SEJ can serve
different purposes, ranging from capturing uncertainty distributions to building consensus among ex-
perts. In this study, a simplified delphi method (SDM) was used to quantify the probabilities of events
not yet represented in the RA model. The focus was not on scoring expert performance but rather
on structuring the elicitation process to ensure traceability, transparency, and reproducibility of the
estimates.

The Delphi method is a structured technique for collecting and refining expert opinions through a
series of iterative questionnaires interspersed with controlled feedback (Linstone & Turoff, 1975). The
method relies on multiple rounds of anonymous input, with experts given the opportunity to revise their
estimates in light of group feedback. This process aims to reduce noise, expose reasoning differences,
and facilitate convergence without confrontation or group pressure. In the context of this study, a
SDM was used to collect a probability estimate for events identified in the Short-list. Although formal
consensus was not the primary goal, the iterative structure helped clarify assumptions and improve the
consistency of judgments across participants.

Cooke’s method? was initially considered as a candidate for the expert judgment process, given its
strengths in calibrating and weighting expert input based on objective performance metrics (Cooke,
1991). However, implementing this method requires verified “seed” questions, reference items with
known outcomes, to evaluate the accuracy and informativeness of expert assessments (Colson & Cooke,
2018). As this study focused on unaccounted-for events for which no outcome data is currently available,
such calibration was not feasible within the scope of the thesis. The “absence” of historical data on
these previously overlooked or emergent events made it difficult to apply performance-based weighting
in a meaningful way.

Given the time constraints and scope of this study, a full multi-round Delphi procedure was not feasible.
Instead, a streamlined three-step process was developed, referred to as the simplified Delphi method

2Cooke’s method, also known as the Classical Model, is a structured expert judgment technique that quantitatively
weighs expert inputs based on their statistical accuracy and informativeness in response to seed questions, reference
problems with known outcomes. Experts who perform better on these calibration questions receive more weight in
the aggregation of probability estimates. This approach helps reduce bias and improve the reliability of expert-based
quantification when empirical data are limited (Cooke, 1991).
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(SDM). Experts first independently identified potential missing or underestimated events with an ex-
planation and their contribution to the overall failure to close probability. These submissions were then
consolidated into a shared list, after which experts provided their contribution estimates for each event.
Unlike traditional Delphi applications, this implementation does not include multiple feedback rounds
but maintains anonymity between experts. The focus was on collecting structured, traceable probabil-
ity estimates on events they consider as not yet accounted for in the current RA analysis, rather than
reaching formal consensus. This simplified approach was chosen to retain methodological robustness
while making the process feasible within the thesis’ practical limitations.

The primary objective of this elicitation session was:
o To identify potential events currently omitted or inadequately accounted for in the RA analysis.

o To quantitatively estimate their potential impact on the barrier’s probability of non-closure.

« To aggregate expert judgments into a probability representing epistemic uncertain events>.

Procedure
The expert elicitation was conducted through the SDM, shown in Figure 3.6:

Expert briefing Initial event Consolidation of
identification expert inputs

Quantitative
probability estimation
(second round)

Aggregation and
analysis

Figure 3.6: Methodology for quantification of epistemically uncertain events probability via SDM. Starting from the
left-top following the directions of the arrows.

Step 1: Expert briefing. Experts were briefed individually using a structured briefing document (see
appendix B.1), clearly outlining the elicitation process, expectations, and examples. Experts were
instructed to:

1. Independently identify 3 to 10 events that they believe are not accounted for or are inadequately
addressed in the current RA analysis.

2. Provide a short explanation for each event.

3. Estimate the lower bound, median, and upper bound of how each event might increase the prob-
ability of barrier non-closure (expressed as percentage increase?).

Step 2: Initial event identification. Each expert completed an Excel template structured as follows
(also shown in appendix B.2):

3in this thesis, the term “epistemically uncertain events” refers to events or phenomena that are currently missing from
the RA model, whether due to being unknown, underestimated, or dormant, and that must be assigned a probabilistic
estimate to be formally integrated into the RA analysis.

4e.g. a 5% increase on a probability of P=0.01 results in P = 0.0105
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Rank | Event Title Brief Explanation | Lower Bound (%) | Median (%) | Upper Bound (%)
1 Example event | Brief explanation 0.3% 0.5% 0.7%
2 Example event | Brief explanation 0.1% 0.25% 0.4%

Table 3.2: Initial event identification template.

Step 3: Consolidation of expert inputs. All individual responses were aggregated, anonymized, and
combined into a unified event list. Duplicate or similar events were merged into a single coherent
description. This consolidated event list was redistributed to all experts.

Step 4: Quantitative probability estimation (second round). Experts provided refined probability es-
timates for each event listed in the consolidated Excel sheet, including their confidence levels. The
structured format used for this second round is shown in appendix B.3

Step 5: Aggregation and analysis. Responses from the second round were aggregated to derive mean-
ingful probabilities.

Once all expert responses were collected, they were systematically analyzed to ensure consistency and
traceability. Each individual estimate was incorporated into a consolidated dataset, from which a
combined probability was derived. This aggregated probability represents the estimated contribution
of epistemically uncertain events to the overall non-closure probability.

The Structured Expert Judgment (SEJ) exercise produced ranges of percentage increases (§;) to the
baseline failure-to-close probability. Because individual expert responses varied, the estimates for the
lower, median, and upper bounds were aggregated by simple averaging across experts. This equal-weight
aggregation was chosen to ensure methodological transparency and to avoid the need for calibration or
weighting schemes that were outside the scope of this study. The averaged values of §; formed the input
for the subsequent quantification step.

To illustrate a combination of all listed events, the averaged values were integrated using a product-of-
success formulation. Starting from the baseline probability Py = 0.01, each event modifies this baseline
as P,=PR-(1+ ;). Assuming independence among events, the overall success probability is given by

n

Psuccoss7 total = H[l _PO . (1 + 51)] y
i=1

with the failure-to-close probability defined as its complement. This procedure was applied separately to
the lower, median, and upper bound estimates, producing an aggregated range of overall failure-to-close
probabilities.

Several limitations and assumptions apply to this aggregation: (i) the independence assumption between
EUE and HAD may not hold in practice, as interactions could exist between technical and human
reliability factors; (ii) the method relies on averaged expert judgments rather than calibrated or weighted
responses, which introduces subjectivity; and (iii) the approach treats the aggregated estimates as point
probabilities, without fully propagating uncertainty distributions. (iv) If the events exclude each other
this method does not hold. (v) All events are assumed to weigh equally throughout the failure tree
regardless their position. These simplifications mean that the aggregated outcomes should be regarded
as indicative only.

3.4.3. Non-stationary FTA

A limitation of the current RA framework is that the FTA assumes stationary failure rates for all basic
events. In practice, this means that component failure probabilities are treated as constant over time,
which does not reflect ageing, degradation, or wear mechanisms in long-lived systems (Rijkswaterstaat,
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2022a; Vesely et al., 1981). To address the shortlisted event “precondition of stationarity not met,” this
thesis explored how a non-stationary formulation of the FTA could be developed.

Methodologically, the approach would involve identifying components of the Maeslant barrier subject
to degradation (e.g., mechanical subsystems prone to fatigue or electronic elements affected by obsoles-
cence) and replacing their constant probabilities with time-dependent models. Embedding such models
into the FTA would allow minimal cut sets and top-event probabilities to evolve over the life cycle of
the system.

This type of extension has been discussed more broadly in the reliability literature as a way to improve
the realism of probabilistic risk assessments for complex systems (Rausand & Hgyland, 2004; Zio, 2009).
Conceptually, it provides a roadmap for integrating degradation mechanisms into FTA, thereby enabling
more accurate risk estimates when long-term data are available.

In practice, however, the implementation of this approach requires detailed lifetime or degradation
datasets to estimate the Weibull (or other distribution) parameters. At present, such data for the
Maeslant barrier are not available. Consequently, a full non-stationary quantification could not be
carried out within this thesis. Instead, the contribution here is to outline a methodological framework
and demonstrate, in an exploratory manner, how the FTA structure could incorporate non-stationary
reliability once sufficient data become available.

This approach highlights both the importance of moving beyond stationary assumptions in critical
infrastructure risk assessments and the data requirements for doing so. The methodology thus provides
a foundation for future work aimed at improving the completeness and credibility of the RA model for
the Maeslant barrier.

3.4.4. Verification of the HAD in RA Analysis

This section outlines the methodology developed to explore how verifying HAD could influence the non-
closure reliability of the Maeslant barrier. The HAD represents a structured set of human interventions
modeled within the RA framework, particularly in scenarios where automated systems such as the BOS,
BESW or mechanical components fail, from now called “machine failure”. While these human actions are
currently included in the RA model through the OPSCHEP model (see subsection 2.4), their assumed
reliability is not always supported by empirical verification or standardized training assessments (expert,
Rijkswaterstaat 2025). To address this gap, a probabilistic scenario-based approach was designed to
quantify the potential reliability gains associated with different levels of operator training and procedural
validation. The focus was on operational human actions during closure events, as these are most critical
to the barrier’s real-time performance and overall non-closure probability, and as these are performed
by the operators of the Maeslant barrier.

To highlight the importance of verifying human reliability assumptions, this study draws on practices
from other high-reliability sectors such as the defense industry and nuclear energy industry. These in-
dustries have long recognized the critical role of human performance in system safety and have developed
structured approaches to validate operator readiness, procedural adherence, and training effectiveness
(Defensie, 2017; Hirotsu et al., 2001; Preischl & Hellmich, 2016). By examining how these sectors
implement and verify human reliability measures, valuable insights can be gained into how the HAD
framework for the Maeslant barrier might be strengthened. The following subsection outlines these
cross-industry practices and highlights key lessons that inform the proposed methodology.

Verification in other industries

To better understand the potential benefits of verifying the HAD in the context of the Maeslant barrier,
this section examines how human reliability is validated in other high-reliability sectors, specifically,
the defense and nuclear energy industries. These sectors offer mature frameworks for ensuring that
human interventions are not only modeled but also empirically supported through structured training,
performance monitoring, and procedural standardization.

In the defense sector, particularly within the Dutch Ministry of Defence, human actions are embedded
in rigorously defined operational protocols. Personnel undergo standardized training programs where
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every critical action is practiced under realistic conditions and evaluated against strict performance
criteria. Deviation from these procedures is not permitted, and operational readiness is continuously
assessed through drills and simulations (Defensie, 2017). As a result, the reliability of human actions
is not assumed but verified, making the associated human reliability data defensible.

Similarly, the nuclear industry has long recognized the significance of human error in both operational
and maintenance contexts. Studies by Hirotsu et al. (2001) and Heo and Park (2010) show that while
operational errors are less frequent, maintenance-related human errors account for a substantial portion
of incidents. This has led to the development of structured HRA (Human Reliability Anlysis) methods,
such as the THERP (Technique for Human Error Rate Prediction), which provide probabilistic estimates
of human error based on task complexity and context (Swain & Guttmann, 1983). More recent work
by Preischl and Hellmich (2013, 2016) demonstrates how empirical data from licensee event reports in
German nuclear power plants can be used to derive context-specific and verifiable HEPs (Human Error
Probabilities).

These industries demonstrate that human reliability can be systematically verified through a combi-
nation of structured training, performance data, and continuous validation. Most importantly, these
practices are underpinned by rigorous documentation, which ensures that procedures, performance
metrics, and training outcomes are traceable. This level of transparency is essential for verifying as-
sumptions in probabilistic models and for maintaining accountability in safety-critical systems (Verma
et al., 2010).

Methodology for quantifying the impact of operator training on HAD reliability

Building on insights from other industries, this section introduces a probabilistic scenario-based method-
ology to evaluate how the quality of operator training influences the contribution of the HAD to the
Maeslant barrier’s non-closure probability. This approach modeled human reliability as a distribution
that varies with training level. The goal was to quantify how improvements in training and procedural
rigor could reduce the likelihood of failure during critical human interventions and vice versa.

The methodology began by assuming that the current non-closure probability of the Maeslant barrier,
Ppase =0.01, implicitly includes a nominal HEP based on THERP estimates (Swain & Guttmann, 1983).
This baseline served as a reference point for comparing alternative training scenarios. To model the
influence of training quality, three levels were considered: highly trained, nominally trained, and badly
trained. For each level, kernel density estimators (KDEs) were constructed using task-specific HEPs
and the conditional probability of machine failure, which triggers the need for human intervention.

To analyze the distribution of HEP’s KDE. KDE is a non-parametric technique that estimates the proba-
bility density function of a random variable by smoothing individual data points using a kernel function,
typically Gaussian. This method offers several advantages over histograms, including smoother visual-
izations, better resolution of multimodal structures, and flexibility in representing complex distributions
without binning artifacts (Chen, 2017). However, KDEs are sensitive to bandwidth selection, which can
lead to over- or under-smoothing, and they suffer from boundary bias and computational inefficiency in
high dimensions (Gramacki, 2018). Their ability to transparently represent uncertainty and variation
makes them a suitable choice for this study (Team, 2020).

The selection of human actions from THERP was based on a mapping of typical operator tasks during
Maeslant barrier closure to corresponding THERP task categories. These include simple detection,
routine operations, decision-making under time pressure, and execution of complex procedures. Each
task type has a range of HEP values reflecting different training levels, from low (e.g., 0.001 for simple
detection by a highly trained operator) to high (e.g., 0.6 for complex diagnosis by an untrained operator)
(see table E.1). This mapping ensured that the modeled human reliability reflected the operational
reality of the Maeslant barrier while remaining grounded in established probabilities.

Monte Carlo sampling was then applied to each KDE to generate 10 thousand realizations of added
non-closure probability due to human error. These distributions were normalized such that the nom-
inal scenario aligns with the baseline Py,s.. This ensured that all scenarios are directly comparable,
regardless of differences in absolute probability levels. Normalization in this context adjusted the KDE
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outputs so that the central tendency of the reference scenario matches a predefined standard, allowing
the model to isolate and compare the effects of different training levels. This approach captured not
only the shift in expected reliability due to training but also the uncertainty range around each scenario.

Step-by-Step Methodology

Define baseline Select human error Construct KDE's by
scenario scenario's scenario
. . . Visualize and
Monte carlo sampling Normalize to Baseline
compare

Figure 3.7: Impact of human training methodology flowchart. Starting from the left-top following the directions of the
arrows.

1. Define Baseline Scenario: The non-closure probability Pp.se = 0.01 is considered to incorporate a
nominal HEP across relevant human tasks, based on THERP estimates (see table E.1).

2. Construct KDEs by Scenario: For three training scenarios (trained, nominal, and untrained), ker-
nel density estimators are fitted to the task-level added non-closure probabilities (i.e., Pyiachine fail X
Pugp).

3. Monte Carlo Sampling: From each KDE, 10 thousand samples are drawn to create representative
distributions of added failure probability due to human intervention for each training level.

4. Normalize to Baseline: The mean of the nominal scenario is scaled to match P,ae = 0.01. The
same scaling factor is applied to the sampled distributions for the highly trained and less trained
cases, maintaining their relative differences while ensuring comparability with the baseline RA
model.

5. Visualize and Compare: The resulting distributions are then visualized to show how improved or
degraded training influences the overall risk profile, capturing both mean shifts and uncertainty
bands.

This methodology enables a robust understanding of how human reliability, driven by training quality,
affects overall system reliability. The use of KDEs and probabilistic sampling captures the full spread
of potential human error behavior and how it translates into operational risk.

3.5. Integration in to the non-closure probability calculation

In addition to quantifying individual events, a methodological step was developed to explore how their
combined effect on the non-closure probability of the Maeslant barrier could be estimated. The approach
assumes independence between the epistemically uncertain events (EUE) and the HAD verification, and
combines them through a product-of-success formulation:

Piotal = 1 — (1 = Prur) - (1 — Puap)

This formulation provides a simple way to estimate an aggregated failure-to-close probability by consid-
ering the joint contribution of multiple sources of uncertainty. It was applied using the lower, median,
and upper bounds derived from the SDM for the EUE, combined with a range of plausible HAD values.

Several limitations and assumptions apply to this aggregation: (i) the independence assumption between
EUE and HAD may not hold in practice, as interactions could exist between technical and human
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reliability factors; (ii) the method relies on averaged expert judgments rather than calibrated or weighted
responses, which introduces subjectivity; and (iii) the approach treats the aggregated estimates as point
probabilities, without fully propagating uncertainty distributions. (iv) If the events exclude each other
this method does not hold. (v) All events are assumed to weigh equally throughout the failure tree
regardless their position. These simplifications mean that the aggregated outcomes should be regarded
as indicative only.

It is therefore important to stress that the aggregated results derived in this way are not decision-
grade estimates. They serve purely as an illustrative exercise to show how different uncertainties
might interact when combined, highlighting the sensitivity of the overall non-closure probability to
assumptions about human reliability and epistemic gaps in the RA model. As emphasized in the
reliability literature, aggregation of expert judgments and multiple uncertainty sources requires careful
treatment of dependencies and weighting schemes before results can be used to inform operational or
policy decisions (Cooke, 1991; Rausand & Hgyland, 2004).

In summary, the methodology presented in this chapter offers a structured and transparent approach to
identifying and quantifying previously unaccounted-for events in the Maeslant barrier’s RA analysis. By
combining established event identification techniques with expert elicitation and probabilistic modeling,
the study addresses key limitations in the current framework, particularly those related to epistemic
uncertainty and human reliability. This multi-stage process lays the foundation for a more complete
and evidence-informed assessment of the barrier’s non-closure probability, which is further explored in
the results and analysis presented in the following chapter.

3.6. Limitations and assumptions

The following limitations and assumptions underpin the methodology applied in this study:

e The long-list of potential unaccounted events was developed by the author alone, rather than
through a multidisciplinary panel, which may have limited the breadth and diversity of perspec-
tives.

e Probability estimates for infrequent or unobserved events were based primarily on expert elicita-
tion due to the scarcity of empirical operational data.

o The structured expert judgment process was implemented in a reduced form (SDM), with only
one feedback round, which may have constrained the potential for convergence of expert views.

e The human reliability assessment used THERP task categories mapped to Maeslant barrier oper-
ations without full-scale empirical validation for this specific context.

e Only events with an estimated order-of-magnitude probability near or above 1/100 per opera-
tional cycle were retained for quantification, excluding lower-probability scenarios even if their
cumulative effect could be relevant.

o The aggregation calculation uses several assumptions mentioned in Section 3.4.2 and Section 3.5.
Therefore, results are meant to demonstrate sensitivity to combined uncertainties, not to serve as
operational or decision-grade risk estimates.

These points are discussed in greater detail in Section 5.2.



Results and Analysis

This chapter presents the outcomes of the three-stage methodology used to identify and quantify pre-
viously unaccounted-for failure mechanisms in the Maeslant barrier’s RA analysis. It begins with the
development of a long-list of potential failure events currently not accounted for, followed by a struc-
tured filtering process to create a short-list of the most relevant and quantifiable scenarios. The final
three events, epistemically uncertain events, non-stationary failure behavior, and the verification of the
HAD, are each analyzed using tailored probabilistic methods.

4.1. Long-list

The resulting long-list of potential failure events is presented in Table 4.1 and presented with full
descriptions in Appendix C. It consists of 58 events distributed across five categories: HAZOP (4
events), FMEA (5 events), What-If Analysis (8 events), External Event Screening (32 events), and
outside the preconditions (9 events) (see subsection 4.1.2). These events were categorized according
to the four analytical dimensions outlined in Figure 3.2. It is important to note that overlap across
methods was limited. For example, the seiche-related failure was only identified during the FMEA. This
occurred because the method’s component-focused structure guided attention to specific vulnerabilities
that were not directly prompted by the broader External Event Screening categories. This illustrates
the value of using multiple techniques; different analytical lenses lead to different discoveries.

While the method was applied consistently and systematically, it is important to note that the single
researcher, the author, conducted the analysis without subject-matter expertise in the operational or
technical domains of the Maeslant barrier. As such, the Long-list should be viewed as an exploratory
output, a basis for further expert review rather than a definitive catalog of failure scenarios. Where
needed, expert input was sought informally to clarify uncertainties or validate assumptions.

4.11. Incompleteness

Both existing literature and interview findings highlight a limitation in the Reliability and Availability
(RA) analysis: inherent incompleteness. Previous studies, such as Bakker, Rovers, and Mooyaart (2025),
van Maaren (2018), and Webbers et al. (2008), acknowledge that RA models, while systematic, cannot
capture all potential failure modes and contextual factors. This observation was reinforced by multiple
interviewees, who pointed out that real-world complexities, human factors, and unforeseen interactions
often fall outside the scope of standard RA frameworks. As a result, while RA analysis provides
valuable insights, it should be interpreted as a partial representation of system risk rather than a fully
comprehensive assessment. The long-list highlights this as well.

4.1.2. Preconditions

While performing the analysis according to the methodology (see section 3.2), events occurred that
exist outside of the preconditions of the current RA analysis (see subsection 2.4.1); this is visualized in
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Table 4.1: Long-list of potential unaccounted events for the Maeslant barrier (full descriptions in Appendix C).
Method Event ID and Name
FMEA 1.1 Seiche sea-side 1.2 Incorrect landing 1.3 Trouble  with
BESW
1.4 Wrong buoyancy 1.5 Wrong buoyancy
(heavy) (light)
HAZOP 1.6 Maintenance done 1.7 Weather station 1.8 Incorrect closure

wrong

1.9 Disobedience
ship/harbor

data wrong

type

External Events

1.10 Temporal
pound events

1.13 Hailstorm

com-

1.16 Earthquake

1.19 Flooding

1.22 Oscillating waves

1.25 Underground fail-
ure

1.28 Fire inside object

1.31 Hazardous release
int.

1.34 Meteor /satellite

1.37 Infestation

1.40 Power outage

1.11 Long drought
1.14 Heavy rain

1.17 Snow accumula-
tion

1.20 Elevated water
levels

1.23 Large waves

1.26 Coastal land loss
1.29 External impact
1.32 Explosion nearby
1.35 Aircraft crash
1.38 Cable/pipe dam-

age

1.41 Sea-current shift

1.12 High wind speeds

1.15 High
tures

1.18 Extreme cold

tempera-

1.21 Prolonged water

1.24 Soil movement

1.27 Fire nearby

1.30 Hazardous release
ext.

1.33 Explosion inside

1.36 Turbine part de-
tachment

1.39 Debris impact

What-if Analysis

1.42
(SLR)

1.45 Ship blocking

1.48 Common cause re-
dundancy

More closures

1.43 Outdated climate
knowledge

1.46 Political hinder
1.49 RA

ness

incomplete-

1.44 Pandemic

1.47 Knowledge loss

Outside Preconditions

2.1 Too much detail

2.4 Lessons not imple-
mented

2.7 Weather indepen-
dence wrong

2.2 Maintenance win-
dow missed

2.5 Preventive replace-
ment missed

2.8 Stationarity not
met

2.3 Lack of structure

2.6 Parts used differ-
ently

2.9 HAD not verified

Figure 4.1.
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Event that falls outside of

/ the preconditions

O Preconditions

Figure 4.1: Visualization of events that exist outside of the preconditions of the current RA analysis of the Maeslant
barrier. The dots represent events, where the red dotted line represent the boundary of the preconditions in which the
events can exist inside or outside.

Input from multiple stakeholders confirmed that both inside and outside preconditions are critical
factors that must be considered in any comprehensive analysis of the Maeslant barriers’ reliability.
Respondents consistently emphasized that overlooking these preconditions would result in an incomplete
understanding of potential failure mechanisms. Therefore, the decision was made to add an extra
category in the Long-list, named: “Outside preconditions.” All events that exist outside of these
preconditions have been placed in this category.

One of these events is the assumptions of constant failure rate of components within the RA analysis.
Multiple stakeholders indicated that, in practice, the preconditions required to maintain a constant
failure rate are not always fully met. Factors such as resource constraints, operational pressures, and
unexpected system complexities can result in deferred maintenance, incomplete component replace-
ments, or delayed renovations. This introduces periods where the system may shift out of the flat part
of the bathtub curve, increasing the risk of age-related failures and challenging the validity of the FTA
assumptions in real-world conditions.

In summary, the long-list development process underscores both the strengths and limitations of the
current RA framework. By applying a structured, multi-method approach, this study was able to
uncover a diverse range of potential failure events, some of which fall outside the assumptions and
preconditions of the existing analysis. The inclusion of these “outside preconditions” events highlights
the importance of continuously revisiting and expanding the boundaries of risk models to reflect real-
world complexities. While the list is not exhaustive, it serves as a robust foundation for further expert
validation and prioritization. The next step is to systematically filter this long-list into a focused
short-list of events that are both relevant and quantifiable, as outlined in the following section.
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4.2. Short-list

In this section, the Long-list, see Table 4.1 and Appendix C, was structurally shortened to a top 3

short-list.

An overview of the event selection and shortlisting process is provided in Table 4.2, summarizing how
each event was assessed across the filtering stages. The table shows which events were excluded, inte-
grated, or retained for quantification, leading to the final top three. A more detailed explanation of the
rationale behind each decision is provided in the remainder of this section.

Event Order of Magnitude Retained | Ability to Quantify Outcome Final Top 3
1.1 Seiche (sea-side) No - -
1.2 Incorrect landing No - -
1.3 Trouble with control system Yes Excluded (sensitive nature) -
1.4/1.5 Wrong buoyancy No - -
1.6 Maintenance done wrong Yes Integrated into 1.44, 2.2, 2.5, 2.8 -
1.7 Weather station error No - -
1.8 Incorrect closing type No - -
1.9 Disobedience of ship No - -
1.10 Temporal compound events Yes Integrated into 1.49 -
1.11-1.42 External events No - -
1.43 Outdated climate knowledge Yes Integrated into 1.49 -
1.44 Pandemic Yes Integrated into 1.6, 2.2, 2.5, 2.8 -
1.46 Political hinder Yes Integrated into 1.49 -
1.47 Generational knowledge loss Yes Integrated into 1.49 -
1.48 Missed common cause Yes Integrated into 1.49 -
1.49 Incompleteness of RA analysis Yes Retained for quantification Yes
2.1 Unverifiability of RA analysis - Excluded (too broad); partial ad- -
dressed by 2.9

2.2 Maintenance not on time - Integrated into 1.6, 1.44, 2.5, 2.8 -
2.3 Unstructured RA analysis - Integrated into 1.49 -
2.4 No new knowledge in RA - Integrated into 1.49 -
2.5 Preventive replacement not met - Integrated into 1.6, 1.44, 2.2, 2.8 -
2.6 Misinterpretation of data - Excluded (too broad/complex) -
2.7 Wrong assumption in RA - Excluded (too broad/complex) -
2.8 Stationarity not met - Integrated into 1.6, 1.44, 2.2, 2.5 Yes
2.9 HAD not verified - Retained for quantification Yes

Table 4.2: Comprehensive overview of event selection and integration across filtering stages. Green color representing
retention, red color representing exclusion and yellow color representing integration onto other event.

4.2.1. Order of magnitude deletion
This section evaluates the order of magnitude of occurrence for each identified event, organized according
to the categories defined in the Long-list. The numbering corresponds to the numbers in appendix C.

FMEA

o 1.1 Seiche (sea-side): Based on de Jong (2024), it was concluded that the occurrence rate of a

moderate seiche, exceeding 0.25 meters, is observed to occur roughly once every 0.7 to 1.1 years.

But the Maeslant barrier is designed to withstand critical seiche events with an annual probability
of occurrence of 10~7 per year, corresponding to a design amplitude of approximately 1.00 meter.
As a result, this scenario is considered negligible and has been excluded from further analysis.

e 1.2 Incorrect landing: Based on input an expert of Rijkswaterstaat, it was concluded that the
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occurrence rate is lower than 1 in 1,000 events. As a result, this scenario is considered negligible
and has been excluded from further analysis.

e 1.3 Trouble with control system (BESW): Based on input from an expert of Rijkswaterstaat, it was
concluded that the occurrence rate could not be disclosed. Consequently, this scenario remains
under consideration at this stage of the analysis.

o 1.4/5 Wrong buoyancy above threshold (Too heavy/light): Based on input from an expert of
Rijkswaterstaat, it was concluded that the occurrence rate is lower than 1 in 100 events and could
be lower than 1 in 1,000. As a result, this scenario is considered negligible and has been excluded
from further analysis.

HAZOP
¢ 1.6 Maintenance done wrong: Based on input from two experts from Rijkswaterstaat and the TU
Delft, it was concluded that the occurrence rate could not yet be determined. Consequently, this
scenario remains under consideration at this stage of the analysis.

o 1.7 Prediction/data weather station done wrong: Based on input from an expert from the TU
Delft and Rijkswaterstaat and general KNMI reliability data Royal Netherlands Meteorological
Institute (KNMI) (2025), the probability of a critical error in weather prediction or data reporting
is estimated to be between 0.001 and 0.01 per critical event. This reflects the generally high
reliability of meteorological forecasting in the Netherlands, while acknowledging the inherent
uncertainty during extreme weather events. Therefore, this scenario is considered negligible and
excluded from further analysis.

e 1.8 Incorrect choice of closing type: Based on input from two experts from Rijkswaterstaat and
TNO, and considering the high level of expertise embedded within the Maeslantkering operational
team, the likelihood of selecting an incorrect type of closure is effectively negligible. This scenario
can therefore be excluded from further analysis.

1.9 Disobedience of ship/Harbor: Based on observations during functionality closures and input
from an expert from Rijkswaterstaat, it is acknowledged that disobedience by ships or harbor
authorities, motivated by economic interests, can cause delays in the closure process. While
strict protocols are enforced during actual storm surge events, a small but non-zero probability of
delay remains. This probability is estimated to be approximately 0.001 per critical closure event,
reflecting the generally high compliance but recognizing the potential for exceptional cases. Given
the low estimated probability and the robust enforcement mechanisms in place, this scenario will
be excluded from further analysis.

External events:
e 1.10 Temporal compound events: The impact of this finding cannot yet be quantified with sufficient
certainty and is therefore retained in the analysis for further consideration.

e 1.11 to 1.40: are either already accounted for within existing operational procedures or have a
probability of occurrence that is considered too low to warrant further analysis.

e 1.41 Shift in sea-current: The consequences and likelihood of this event occurring in the near
future are uncertain but deemed negligible; therefore, it will not be considered in further analysis.

What if analysis:
o 1.42 Increased closing due to SLR (sea level rise): Although this could present a problem in the
future, experts of Rijkswaterstaat indicate that it does not currently pose a significant risk (the
sea has not risen significantly); therefore, it will not be included in further analysis.

o 1.43 Outdated understanding of climate change/the lack of implementation of new knowledge: In
collaboration with an expert from Rijkswaterstaat, this event has been identified as a relevant
case for possible quantitative assessment.

e 1.44 Pandemic: In consultation with an expert from TNO, aiming at the manpower shortage, this
has been identified as a relevant subject for quantitative evaluation.
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e 1.45 Ship blocking: Although a vessel stranding within the barrier area is theoretically possible,
strict traffic control and closure protocols (Rijkswaterstaat, 2016) make this scenario extremely
unlikely. Given the low probability and lack of historical precedent, it is excluded from further
analysis.

e 1.46 Political hinder: A shift in political perspective could lead to reduced trust in Rijkswater-
staat’s expertise, potentially complicating structural maintenance efforts. As such, changes can
occur abruptly; this scenario remains relevant and is retained in the analysis.

e 1.47 Generational knowledge loss: In consultation with multiple experts from Rijkswaterstaat and
TNO, this event has been identified as having significant potential impact and is retained in the
analysis.

e 1.48 Missed common cause of redundant systems: In consultation with an expert from Rijkswa-
terstaat, this event has been identified as having significant potential impact and is retained in
the analysis.

e 1.49 Icompleteness of RA analysis: This event cannot be reliably quantified based on available
sources and interviews alone but, in consultation with multiple interviewees, has been assessed as
significant and will therefore remain included in the analysis.

Although it is acknowledged that the combined occurrence of multiple low-probability events, each
with a likelihood on the order of 1/1000, could, in aggregate, pose a significant threat, such compound
scenarios fall outside the scope of this thesis. Given the focus on quantifying three events of highest
relevance, these low-probability events were not considered for further analysis.

Outside preconditions:

All events classified as outside preconditions cannot be fully quantified based solely on available sources
and expert input. The complexity and uncertainty surrounding these events make it difficult to establish
reliable probability estimates at this stage. As a result, these events are retained in the analysis for
further consideration to ensure that potential risks are not overlooked.

4.2.2. Ability/Interest to quantify deletion

This section selects events based on the suitability of the remaining for quantification, with all event
numbers corresponding to those listed in appendix C. The events still under consideration are listed
below. While all identified events are relevant, some fall outside the scope of this thesis for quantitative
probability assessment. For these cases, a brief explanation is provided alongside each event in the list.

e 1.3 Trouble with control system: Due to the sensitive nature of this event, it will not be subject
to further quantification or analysis.

e 1.6 Maintenance done wrong: Although originating from different categories, this event can be
integrated with events 1.44, 2.2, 2.5, and 2.8

e 1.10 Temporal compound events: Due to insufficient available data, quantifying this event falls
outside the scope of this thesis.

o 1.43 Outdated understanding of climate change/the lack of implementation of new knowledge:
Considered in isolation, this event is not sufficiently significant to warrant inclusion within the
scope of this thesis.

e 1.44 Pandemic: Although originating from different categories, this event can be integrated with
events 1.6, 2.2, 2.5, and 2.8

e 1.46 Political hinder: Quantifying the probability of political changes that could alter funding
streams and incentives related to the Maeslant barrier falls outside the scope of this thesis.

e 1.47 Generational knowledge loss: Considered in isolation, this event is not sufficiently significant
to warrant inclusion within the scope of this thesis. Additionally, Rijkswaterstaat is working
internally to mitigate this knowledge loss (Expert, Rijkswaterstaat 2025).
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e 1.48 Missed common cause of redundant systems: According to experts from Rijkswaterstaat and
the TU Delft, this represents a significant issue but should not be considered in isolation; therefore,
it is incorporated into event 1.49.

e 1.49 Incompleteness of RA analysis: This event is regarded as highly significant according to an
expert of Rijkswaterstaat, as well as findings from Webbers et al. (2008) and van Maaren (2018).
It encompasses events 1.10, 1.43, 1.46, 1.47, 1.48, 2.3, and 2.4; therefore, it will be included for
quantification.

e 2.1 Unverifiability of the RA analysis: This event is too broad in scope to be quantified within the
framework of this thesis; however, event 2.9 represents a scaled-down version that could address
its key aspects.

e 2.2 Precondition of on-time maintenance not met: Although originating from different categories,
this event can be integrated with events 1.6, 1.44, 2.5, and 2.8

e 2.3 Unstructured RA analysis: On its own, this event is too vague to quantify; however, it
contributes to the broader context of event 1.49 and will therefore be encompassed within that
event.

e 2.4 No implementation of new knowledge in the RA analysis: This event is too indistinct to be
quantified independently but is relevant to the scope of event 1.49 and will thus be incorporated
into its assessment.

e 2.5 Precondition of preventive replacement not met: Although originating from different categories,
this event can be integrated with events 1.6, 1.44, 2.2, and 2.8

e 2.6 Misinterpretation of component data: Although this is recognized as a significant issue by
multiple interviewees, it is too complex and broad to be quantified within the scope of this thesis
and is therefore not included for quantification.

e 2.7 Wrong assumption in RA analysis: This is considered an important problem; however, due to
its complexity and the fact that it extends beyond the scope of this thesis, it will not be quantified.

e 2.8 Precondition of stationarity not met: Although originating from different categories, this event
can be integrated with events 1.6, 1.44, 2.2, and 2.5

e 2.9 HAD not verified: Given the availability of sufficient data and the importance attributed to
this event by multiple interviewees, it will be included for quantitative assessment.

The events selected for further analysis are consolidated and described in a ranked summary of the top
three most suitable events.

It is acknowledged that, in principle, all identified events could be meaningfully quantified given sufficient
data, time, and resources. However, certain events have been excluded from quantification in this study
because their analysis would require a depth beyond the scope of this thesis. This does not imply that
these events are irrelevant or unquantifiable.

42.3. Top 3

The top three events represent a focused selection of scenarios from the Long-list of potential unac-
counted events. They were chosen based on their relevance, potential impact on closure reliability, and
the feasibility of quantifying them within the scope of this thesis.

1. Epistemically uncertain events'

2. Precondition of stationarity of FTA not met

Mn this thesis, the term “epistemically uncertain events” refers to events or phenomena that are currently missing from
the RA model, whether due to being unknown, underestimated, or dormant, and that must be assigned a probabilistic
estimate to be formally integrated into the RA analysis.
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3. Unverified? reliability of human intervention (HAD: Human Action Database)

The positioning of these events along analytical dimensions is shown in Figure 4.2. The spread demon-
strates that the Top 3 cover a variety of perspectives and mechanisms, ensuring input from multiple
angles rather than being concentrated in one type of uncertainty.

Hierarchical
level

A
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Event type [« (1) >

S Y . -
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Figure 4.2: Positions of the Top 3 short-listed events (red dots) on the analytical axis. The numbers correspond to the
top 3 listed events, with: 1. Epistemically uncertain events, 2. Precondition of stationarity of FTA not met, and 3.
Unverified HAD. The axis correspond to the four analytical dimensions, with the horizontal-left axis representing “event
type”, the vertical-top axis representing “hierarchical level”, the horizontal-right axis representing “mission sequence”,
and the vertical-bottom axis representing “failure category”.

In conclusion, the shortlisting process distilled a broad and diverse set of potential failure events into
a compact set of three. Together, epistemically uncertain events, the violation of the FTA stationarity
assumption, and the unverified reliability of the HAD represent a balanced cross-section of analytical
dimensions, forming a foundation for the quantification in the next section.

4.2.4. Relation of Top 3 Events to the Bathtub Curve

The three shortlisted events can also be interpreted in relation to the phases of the bathtub curve
introduced in Section 2.4.1. This perspective illustrates that the unaccounted events identified in this
study span all phases of the system life cycle.

o Epistemically uncertain events correspond to the early failure phase, since they represent phenom-
ena that only become visible once sufficient knowledge or operational evidence accumulates.

e Violation of stationarity in the FTA aligns with the wear-out phase. Several components exhibit
non-stationary degradation mechanisms, whereas the current model assumes constant failure rates.

e Unverified HAD is most relevant for the useful life phase. Human intervention reliability is
assumed constant, but without verification, these values remain uncertain and can behave unpre-
dictably, similar to random failures.

By linking the Top 3 events to the bathtub curve, it becomes clear that each phase of the curve is repre-
sented in the unaccounted events. This demonstrates that missing uncertainties are not concentrated in

2In this thesis, the term unverified refers to the fact that the Human Action Database (HAD) has not been validated
against empirical performance data or systematic testing. The reliability values it contains are therefore based on assump-
tions and expert judgment, without independent confirmation that they reflect real-world operator performance under
relevant conditions.
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a single failure phase, but distributed across the full life cycle of the system. It further underscores the
importance of integrating these events into the RA framework to ensure a comprehensive representation
of closure reliability.

4.3. Quantification Results

This section presents the quantitative results for the three most critical unaccounted-for failure mecha-
nisms identified in the shortlisting process: (1) epistemically uncertain events, (2) non-stationary failure
behavior, and (3) the verification of the Human Action Database (HAD). Each of these was assessed
using a tailored probabilistic method, as outlined in Chapter 3, to estimate their potential contribution
to the Maeslantbarrier’s non-closure probability.

4.3.1. Epistemically Uncertain events

A total of nine experts were contacted for participation in the SDM. These individuals were selected
based on their experience with the Maeslant barrier or RA analysis in comparable infrastructure systems.
Of the nine, four experts submitted complete first-round responses (shown in appendix D), and all four
experts provided refined estimates in the second round. The second-round responses formed the basis
for the quantitative analysis presented here. The experts demonstrated a wide range of perspectives
(see Figure 4.3), for example, on events involving human decision-making, model assumptions, and
maintenance-related uncertainties. While some events, such as “storm conditions” and “human error”,
were consistently rated as significant, others showed greater variability, reflecting differing interpreta-
tions of system behavior and failure probabilities.

The aggregated ranges in Figure 4.3 and Table D.6 show that while individual expert estimates varied
significantly, the aggregated values seem to provide a more stable foundation for further modeling. The
average lower bound across all events was approximately 1.4%, with a median of 5% and an upper
bound of 13%. This spread could highlight the epistemic uncertainty inherent in the expert judgment
process. Notably, events such as “storm conditions”, “decision-making errors”, and “model error due
to incomplete data” consistently received higher median and upper-bound estimates, suggesting that
these are perceived as impactful contributors to non-closure risk.

One concern raised during the SDM was the uncertainty surrounding the Maeslant barrier’s performance
during an actual normative storm event. The barrier has never been deployed under such conditions
(Expert, Rijkswaterstaat & TU Delft 2025), leaving a gap in empirical validation. Several experts
expressed concern about this lack of operational experience, with one expert even assigning an upper
bound of 100% to the added failure probability associated with storm conditions. This estimate, while
not representative of the group average of 63%, shows signs of unease among domain experts. It could
reflect a fear that the current RA model may not capture the dynamic and potentially compounding
effects of a normative storm on the Maeslant barrier’s performance. The idea that such an estimate
was deemed plausible by an experienced professional highlights a need for addressing these concerns
through a more transparent integration of storm-related uncertainties into the RA framework.

Notably, one of the interviewed experts expressed a contrasting view compared to the rest of the panel,
arguing that human decision-making may actually contribute positively to the reliability of the Maeslant
barrier’s closure. The expert provided negative probability ranges in their responses, suggesting that
certain human decisions could reduce the overall failure to close probability (see Table D.4). As a result,
some of the aggregated lower bounds in the dataset are negative, which is not physically meaningful in
probabilistic terms but does highlight the presence of fundamentally different mental models® among
the experts (see Table D.6).

The top 10 highest-rated events from the SDM predominantly reflect uncertainty stemming from a
lack of knowledge (see Figure 4.4). The emphasis placed by experts on these knowledge gaps signals a
distress regarding the reliability of current assessments and shows a need for targeted implementation
efforts, not only to address the identified uncertainties but also to restore expert confidence in the the
RA analysis.

3An expert’s internal understanding of how the Maeslant Barrier operates and fails, shaping their judgments during
elicitation.
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Figure 4.3: Aggregated ranges from the performed SDM. The horizontal axis shows the value of percentage increase in
failure-to-close probability of P =0.01. The vertical axis shows the listed events from the SDM. The blue and red bars
represent the range and the median. The red bar in particular represents the average of all listed events. All
explanations of the listed events on the vertical axis are given in Appendix D.
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Figure 4.4: Aggregated ranges top 10 events listed by experts in the SDM. With the sum of all aggregated ranges and
aggregated average in red. the horizontal axis shows the value of percentage increase in failure-to-close probability of
P =0.01. The vertical axis shows the top 10 listed events from the SDM. The blue and red bars represent the range and
the median. The dashed line represents 100% increase in failure-to-close probability. All explanations of the listed events
on the vertical axis are given in Appendix D.
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The responses also show a lack of convergence between individual expert judgments. The wide spread
in lower and upper bounds for several events, particularly those involving human decision-making
and model assumptions, indicates differences in interpretation and confidence levels. This divergence
suggests that the experts were operating with varying (mental) models of the system and its failure
mechanisms. A more refined elicitation process, such as a multi-round Delphi method with structured,
anonymous feedback and discussion, could help bridge these gaps. By allowing experts to reflect on the
reasoning of their peers without direct confrontation, such a process fosters deeper understanding and
may lead to more consistent and robust probability estimates.

A further complication in interpreting the expert input is that the summed median of all averaged
event estimates exceeds 100% (see Figure 4.4), which is not physically meaningful in the context of
the failure to close probability of the Maeslant barrier. This overestimation shows the challenge of
aggregating epistemic uncertainty across multiple events without accounting for potential overlap or
interdependence. One pragmatic way to incorporate this uncertainty into the FTA is to consolidate the
expert input into a single epistemically uncertain event. By taking the median of the complete average,
5%, this event can be added as a basic node in the FTA with a failure probability of P = 0.05, as
shown in Figure 4.5. This approach allows the uncertainty to be formally represented without inflating
the overall risk estimate. A similar method was applied in the analysis of the Mareike sluice (Expert,
Rijkswaterstaat & TU Delft 2025), where an epistemically uncertain event was introduced based on
the judgment of a single expert. In contrast, this analysis benefits from a broader expert base, making
the 5% estimate a bit more representative of collective uncertainty. The addition of this event in this
way increases the probability of non-closure given by the FTA from P =0.07 to P =0.12. No definitive
meaning can be concluded from this increase because of the OPSCHEP that needs to be added, as
described in section 2.4.2.

Maeslantkering Epistemically
sluit niet of keert uncertain events
niet
Q_MK2_KEERT NIET EUE
Q=0,1163
Q=0,05

Figure 4.5: Adding of epistemically uncertain events as a basic event in the current FTA of the Maeslant barrier, done
in Reliability Workbench (Ltd., 2025)

Aggregating by taking the product of success

A more comprehensive approach for interpreting the ranges obtained from the SDM is to estimate the
overall failure-to-close probability of the Maeslant barrier considering all the events as described in
Section 3.4.2. This was applied to three sets of values for §;: lower-bound, median, and upper-bound
estimates derived from the SDM. The resulting aggregated failure probabilities were:

Pfailure—to—close7 total € [030770317a0335]

This is significantly higher than using only the averaged range of alle events as one event with a lower
bound 1.4%, a median of 5% and an upper bound of 13% resulting in:

Plailure-to-close, total € [0.0100,0.0105,0.0113]



4.3. Quantification Results 40

These results show that: when aggregating the expert-elicited uncertainty contributions from all iden-
tified events, the overall failure-to-close probability of the Maeslant barrier increases, from the baseline
of P =0.01 to a range between approximately P =0.307 and P = 0.335. This is based on a probabilistic
model that assumes independence among events and applies the SDM estimates as multiplicative risk
factors. The implication is that the actual non-closure probability may be underestimated by more
than a factor of 30. This result should not be taken literally, due to the assumption of independence,
and the method of the SDM, as discussed in Section 3.4.2 and further discussed in Section 5.2.

In stage 2 (see Section 4.2), several events were merged into a broader category of epistemically uncertain
or incomplete events. Upon comparison, a number of these merged or short-listed events show clear
overlap with those mentioned in the SDM. For instance, “outdated climate knowledge” aligns with
“outdated natural boundary conditions”, and “generational knowledge loss” corresponds to “lessons
learned forgotten”. Similarly, “missed common cause” relates to “redundancy”, “unstructured RA
analysis” matches with data gaps and “incomplete risk-based assessment”, and “no new knowledge in RA
analysis” reflects both “incomplete data” and “lessons learned forgotten”. “Temporal compound events”,
merged under this broader category, were also mentioned by experts as “underestimated phenomena”
and “other identifiable events left out”. While temporal compound events have been identified as a
relevant risk (Bakker, Rovers, & Mooyaart, 2025), they are not yet included in the current analysis.

These overlaps are not limited to the category of incompleteness or epistemic uncertainty. Several
expert-identified events also align with the other two short-listed events. For instance, “HAD not veri-
fied” corresponds closely with SDM-identified events such as “human error”, “incorrect maintenance”,
“decision making”, “working in storm season”, and “sensor detection”. Similarly, the short-listed event
“precondition of stationarity of FTA not met” reflects concerns raised in the SDM about preconditions

in RA analysis, “model error due to incomplete data”, “invalid failure categorization due to data gaps”,
“lack of insights into aging effects”, and “systems reaching their limit”.

Taken together, these overlaps confirm that the events identified earlier in the research are validated
by expert judgment. The convergence between the short-listed items and SDM findings reinforces the
relevance of the selected events and strengthens confidence in the methodology used to uncover them.

While the SDM used in this study provides valuable insights, it also has clear limitations. The ab-
sence of calibration questions and performance-based weighting means that expert input was treated
uniformly, regardless of individual accuracy or informativeness. This limits the statistical robustness of
the aggregated estimates and makes it difficult to quantify uncertainty with confidence. Furthermore,
because there is no convergence, there has not been enough room for discussion and new estimates
between and from the experts.

In earlier consultancy work, Horvadt & Partners argued that unaccounted-for events do not require
explicit modeling, as their effects are implicitly captured through conservative estimates applied to
other failure modes (Horvadt & Partners, 2025). However, the author argues that this reasoning is
fundamentally flawed. Relying on conservatism as a blanket justification introduces a false sense of
completeness and undermines the transparency and traceability of the RA analysis. While conservative
estimates may buffer against known uncertainties, they do not account for unknown or emergent failure
mechanisms, particularly those outside the structure of the existing fault tree. Moreover, conservatism
is often applied with minimal empirical justification and relies heavily on expert judgment* (Expert,
Rijkswaterstaat 2025), making it difficult to assess whether the degree of overestimation is appropriate
or sufficient.

4.3.2. Non-stationary FTA

After research into the existing model, it became apparent that non-stationarity has, to some extent,
already been incorporated into the current analysis. Specifically, for components identified as having
entered the wear-out phase, an expert-derived B-Weibull function® is used to recalculate their failure

4At Rijkswaterstaat, this refers to an expert assigning a value or estimate based on their knowledge and experience,
often without strict reproducibility or formal calculation.

5The B-Weibull distribution is a modified form of the standard Weibull distribution used in reliability engineering to
model time-to-failure data. It introduces a threshold parameter B, representing the minimum time before failures can
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probabilities and update them yearly (Expert, Rijkswaterstaat 2025). This approach introduces a degree
of time dependence into the model, allowing for increasing failure rates as components age. However,
this implementation remains limited in scope and is applied selectively, based on expert judgment. As
a result, the RA model still largely operates under the assumption of stationarity, and the integration
of non-stationary behavior is not reproducible. Moreover, component lifetimes are estimated without
integrating condition monitoring or operational data (Expert, Rijkswaterstaat 2025).

To address these shortcomings, this thesis proposes a more robust and structured approach: the de-
velopment of a centralized component lifecycle database. This database would systematically collect
degradation-related data for critical components, including, but not limited to:

e Expert-judged component lifecycles
e Observed component lifecycles

¢ Operational stress histories

o Maintenance records

e Environmental exposure metrics

From this database, time-varying failure rate functions such as B-Weibull or other parametric models
can be calibrated for each component. This creates a transparent, reproducible, and data-driven foun-
dation for incorporating non-stationary behavior into the RA framework, but also a foundation to check
the expert-judgment derived component lifetime. One expert interviewed for the SDM independently
proposed such a database, further validating its feasibility (see Table D.3).

Importantly, a modeling approach that uses data and feedback does not inherently lead to a more
negative risk assessment. While current expert-derived component failure rate estimates are generally
conservative (Bakker et al., 2022), real-time data may reveal components are performing better than
expected, e.g., due to reduced operational stress or improved maintenance practices. This could lower
the estimated non-closure probability and enable more cost-effective asset management by focusing
efforts where degradation is actually occurring. If condition monitoring and operational data were sys-
tematically collected and analyzed, it could reveal that certain components are performing better than
expected, with longer-than-assumed lifespans. This would have a positive effect on the overall reliabil-
ity of the structure, potentially reducing the estimated non-closure probability. Therefore, integrating
real-time data into the RA framework not only improves accuracy but also opens the possibility for
more efficient and risk-informed asset management.

The implementation of non-stationary failure modeling can be operationalized using existing tools such
as Isograph’s Reliability Workbench, which is already in use for the Maeslant barrier’s RA analysis (Ltd.,
2025). Reliability Workbench supports advanced fault tree modeling, including the assignment of time-
dependent failure distributions such as the B-Weibull function (Ltd., 2025). This functionality allows
analysts to simulate how component reliability evolves over time and to assess the cumulative impact
of aging on system-level failure probabilities. By linking component-specific B-Weibull parameters,
derived from the proposed lifecycle database, to fault tree events, the model can dynamically reflect
degradation trends and maintenance effects.

To illustrate this capability, a simplified fault tree model is constructed, shown in Figure 4.6, using three
basic events representing the distinct phases of the bathtub curve: early life failure, constant failure,
and wear-out. These events were connected via an OR gate, indicating that system failure occurs
if any of the three modes are triggered. Each event is assigned a different failure distribution: the
early life phase was modeled using a Weibull distribution with a shape parameter f < 1, capturing the

occur. The probability density function is given by:
_B\P ! ()P
f(t):E<IT> e("), for t > B,

where f§ is the shape parameter, 71 is the scale parameter, and B is the threshold time. This allows modeling of components
with delayed failure onset, such as those with a burn-in period (Nguyen-Schifer, 2016).
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decreasing failure rate typical of infant mortality; the constant failure phase uses a constant failure rate,
representing random failures; and the wear-out phase was modeled with a Weibull distribution where
B > 1, reflecting increasing failure rates due to aging. A time-dependent analysis within the software
can then be used to show the failure rate over time of the component. This is done by assigning a
chance of zero to the life phase that is not considered in that timeframe.

Component
failure

Early life failure Constant failure Wear-out phase
rate
‘ EV1 ‘ \ EV2 ‘ ‘ EV3 \

Figure 4.6: Component modeling in a non-stationary FTA, done in Reliability Workbench (Ltd., 2025)

4.3.3. Verifying HAD

To assess how different levels of training affect the Human Action Database (HAD) contribution to
the overall non-closure probability of the Maeslant barrier, a probabilistic scenario comparison was
performed as described in Section 3.4.4. This approach builds on the assumption that the current base
non-closure probability of Py,se = 0.01 already includes the nominal human error contribution, based
on a representative Human Error Probability (HEP).

The resulting probability distributions for human intervention reliability differ significantly across the
three training scenarios. The baseline case yields a median non-closure probability of P = 0.01 with
a relatively narrow spread, while the trained scenario shifts the distribution downward, producing
consistently lower values of non-closure probability across the range. In contrast, the untrained scenario
produces a broader distribution, with the upper tail extending to P = 0.35, indicating substantially
higher potential non-closure probabilities.

Figure 4.7 visualizes these distributions, showing limited overlap between the trained and untrained sce-
narios. The trained case clusters tightly around lower probabilities, whereas the untrained case is both
wider and shifted upward, reflecting greater uncertainty and increased likelihood of adverse outcomes.
Together, these distributions illustrate how assumptions about operator training levels translate into
markedly different reliability estimates within the HAD framework.
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Non-Closure Probability per Training Scenario
(Mean = 95% Confidence Interval)
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Figure 4.7: Distributions of HAD contribution to non-closure probability under different operator training levels. The
horizontal axis shows the failure-to-close probability and the vertical axis shows the different training levels ranging from
low, nominal and high. The bars in the graph represent the range and the median. The legend in the right-bottom
corner shows the median values of the failure-to-close probability resulting from the different training levels.

This analysis demonstrates that the assumed human error rate embedded in the existing non-closure
estimate substantially influences the overall risk profile, when computed as simplistically as this. The
new failure to close probabilities range from:

Pfailure—to—close, total € [00043001a009]

If the actual training and verification processes deviate from nominal assumptions, the barrier’s failure-
to-close probability may be over- or underestimated. This underlines the importance of investing in
verified training protocols, standard operating procedures, and regular operator assessments to reduce
uncertainty in HAD performance.

The decision to use the THERP handbook as the foundation for estimating human error probabilities in
this study is further validated by findings from the OPSCHEP model used by Rijkswaterstaat (Expert,
Rijkswaterstaat 2025). Upon reviewing the documentation of OPSCHEP, it became clear that the
human error probabilities embedded in the model are themselves derived from the THERP methodology
(Rijkswaterstaat GPO — afdeling Instandhouding Constructies & Onderhoud (ICO), 2017). By adopting
the same foundational data, consistency is assured with established national practices. Moreover, the
use of THERP allows for transparent error modeling, using widely available documentation.

During the SDM, several experts expressed concerns regarding the current status of the Human Action
Database (HAD). A theme was the lack of empirical validation of the reliability values, which are
presently based on assumptions rather than systematic performance data. Experts also noted that
the database does not sufficiently reflect context-dependent factors such as stress, time pressure, and
operational complexity, all of which can strongly influence human error probabilities (see Section 4.3.1).
In addition, as described in Section 2.4.2, the documentation of the HAD implementation in the FTA
is incomplete, making it difficult to trace how reliability values were originally derived. These concerns
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underline the wide range of uncertainty reflected in the probability estimates reported above, and
illustrate why HAD verification remains a critical open issue in the RA framework.

The nuclear- and defense industry demonstrate that human reliability can be systematically verified
through a combination of structured training, empirical performance data, and continuous validation
(Defensie, 2017; Khalaquzzaman et al., 2010). Applying similar principles to the Maeslant barrier,
such as scenario-based training, performance audits, and integration of operational feedback, could
significantly enhance the credibility of the HAD component within the RA framework. Applying similar
principles to the Maeslant barrier, such as scenario-based training, performance audits, and integration
of operational feedback, could significantly enhance the credibility of the HAD component within the RA
framework. The next subsection explores how this insight is translated into a probabilistic methodology
tailored to the Maeslant barrier context.

Furthermore, research in the nuclear industry has shown that a significant proportion of human errors
stem not from operational mistakes, but from maintenance-related issues (Heo & Park, 2010; Hirotsu
et al., 2001). For the Maeslant barrier, it became apparent that these errors often remain latent and
undetected until the affected component is called upon during a critical moment (Expert, Rijkswater-
staat 2025). An example is the failure of a water pump that had undergone maintenance but was not
functionally verified afterward. The fault only became apparent when the pump was needed, revealing
a gap in the verification process (Expert, Rijkswaterstaat 2025). This exposes a systemic issue: mainte-
nance activities are assumed to restore full functionality, yet in practice, verification from the operators
is often limited (Expert, Rijkswaterstaat 2025). Without structured post-maintenance testing or con-
dition monitoring, as done in the nuclear- and defense industry, such latent failures could propagate
unnoticed through the system.

4.4. Aggregated results

By combining the failure-to-close probabilities from both epistemically uncertain events (EUE) and the
Human Action Database (HAD) verification, the total aggregated risk increases slightly beyond the
individual contributions. Using the formula from section 3.5:

Table 4.3: Combined Failure-to-Close Probabilities from EUE and HAD Sources. Follwing the mathodology explained in
Section 3.5. The vertical-left column shows the failure-to-close probability from the HAD and the horizontal-top colomn
shows the failure-to-close probabilities from the EUE.

HAD \ EUE | 0.307 0.317 0.335

0.004 0.310 0.319 0.337
0.010 0.313 0.322 0.342
0.090 0.365 0.375 0.393

The aggregated results presented in Table 4.3 illustrate how the combined failure-to-close probability
of the Maeslant barrier evolves when accounting for both EUE and uncertainties in human intervention
reliability (HAD). The table shows that even small increases in the HAD-related failure probability
can meaningfully elevate the total risk. For instance, when the HAD contribution is as low as 0.004,
the combined failure probability ranges from P = 0.310 to P = 0.337, depending on the EUE estimate.
However, when the HAD contribution increases to 0.09, the total risk rises significantly, reaching up to
P =0.393. This is illustrative, due to the assumptions on the aggregation of the SDM ranges. Therefore,
this result should not be taken literally but indicative.



Discussion

This thesis investigated whether previously unaccounted events could be systematically identified, quan-
tified and integrated into the Maeslant barrier’s non-closure probability calculation. The approach was
exploratory: structured identification and quantification were applied to broaden the scope of the cur-
rent RA, but the resulting estimates are indicative rather than definitive. This limitation arises from
both methodological constraints, such as the SDM, and the reliance on human reliability data drawn
from other high-risk domains such as the nuclear and defense industries.

More broadly, the research demonstrates how structured methods can produce insights while also re-
vealing tensions between model-based outputs and expert perspectives. Such tensions are valuable, as
they expose blind spots in both approaches and highlight areas where further evidence is required. The
estimates reported here should therefore be understood as signposts rather than final answers, pointing
toward potential risk drivers and priority areas for future investigation, while keeping the overarching
goal in view: safeguarding flood safety through credible and transparent reliability assessments.

5.1. Comparison with other studies

Compared to previous studies on the reliability of the Maeslant barrier, such as those by Webbers
et al. (2008), and L. Mooyaart et al. (2025), this thesis takes a distinctly exploratory and integrative
approach by explicitly targeting unaccounted-for events. While earlier work has acknowledged the
limitations of fault tree assumptions (e.g. Bakker, Busnach, et al. (2025)) and the challenges of modeling
human interventions, it often remained without quantitative outcome. This study tries to systematically
identify and quantify these events. Moreover, whereas the current analyses relies on expert judgment,
that is almost never reproducible, this thesis applies SDM to show differing mental models and quantify
uncertainty ranges. The inclusion of negative probability estimates and the lack of convergence among
experts, as observed in this study, not only highlight a broader fragmentation of opinions not addressed
in earlier work but also suggest that the elicitation instructions may not have been sufficiently explicit to
prevent such issues. Additionally, the proposed integration of OPSCHEP into the fault tree and the use
of time-dependent modeling tools like Reliability Workbench represent methodological advancements
beyond the (almost) static assumptions of the current RA analyses (Ltd., 2025). In doing so, this thesis
not only complements but also challenges existing literature by advocating for a more transparent,
adaptive, and data-informed RA analysis.

5.2. Limitations and assumptions

As outlined in Section 3.6, this study operates under several methodological constraints and modeling
assumptions. Here, these are discussed in more detail, including their potential influence on results and
implications for future work.

A limitation of this study is that the identification of previously unaccounted-for events was conducted
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solely by the author. While the applied techniques are standard in RA analyses, they are typically
carried out by multidisciplinary teams to capture diverse perspectives and minimize bias. The absence of
such a collaborative setting may have constrained the breadth of identified events and increased the risk
of overlooking certain failure modes. Although informal expert input was used to validate assumptions,
the lack of a structured group elicitation process reduces the robustness and reproducibility of this stage.
As such, the resulting long-list should be viewed as a preliminary foundation for further expert review
rather than a definitive inventory.

A further limitation arises from the shortlisting process, in which only three events were selected for
quantification. This restriction was dictated by the scope and time constraints of the thesis, including
the limited period available for expert engagement, data collection, and probabilistic modeling. While
this focused approach enabled in-depth analysis of the selected cases, it also meant that many potentially
relevant events were excluded, most often because their estimated probability of occurrence was below
the inclusion threshold of approximately 1/100 per operational cycle, due to limited data availability, or
because modeling them would have been too complex within the available timeframe. These omissions
do not imply irrelevance; in a complete and transparent risk assessment, all identified events should
ultimately be reviewed, validated, and, where appropriate, integrated into the RA analysis.

Another limitation of this study lies in the SDM used to quantify epistemically uncertain events. Due to
time and resource constraints, a simplified, Delphi method was used. Experts were asked to estimate how
much each event might increase the failure-to-close probability using 5%-95% ranges and a median value.
However, without standardized seed questions or performance-based weighting, as in Cooke’s method
Cooke (1991), the reliability of individual inputs could not be assessed. Moreover, asking for percentage
contributions to a probability, rather than estimates in absolute or measurable units, was unconventional
and may have introduced ambiguity. Previous studies on expert elicitation caution that the format
of probability questions can strongly influence both accuracy and consistency of responses (Colson &
Cooke, 2018; Morgan & Henrion, 1990; O’Hagan et al., 2006). In particular, relative probability formats
can lead to greater interpretation variability between experts, especially when baseline probabilities
are not explicitly defined. The responses showed a notable lack of convergence, with wide variability
in how events were interpreted and quantified. Some experts even submitted negative probability
ranges, reflecting fundamentally different mental models of the system. This divergence highlights the
difficulty of aggregating expert opinions without structured consensus-building and may have introduced
additional uncertainty into the final estimates.

Beyond these methodological concerns, it became clear that the SDM, in its current form, can only serve
a signal or exploratory function. This is due to the structural separation between human intervention
and technical failure in the existing RA analysis of the Maeslant barrier, and the mere complexity of said
RA analysis. The question posed to experts, how much the failure-to-close probability increases due to
specific events, lacked the precision needed to align with the granularity of the fault tree model. While
this relative framing was chosen to simplify expert engagement, it may have sacrificed specificity and
traceability; without clearly defining whether the increase was relative to the total system probability,
a specific subsystem, or an individual cut set, experts may have interpreted the question differently.
Literature on expert elicitation highlights that probability questions should mirror the architecture
and logic of the underlying model to improve comparability and integration (Colson & Cooke, 2018;
Morgan & Henrion, 1990; O’Hagan et al., 2006). In the context of the Maeslant barrier fault tree, a
more compatible approach might involve eliciting absolute probabilities for individual basic events or
minimal cut sets, ideally framed in measurable units such as “failures per closure request” or “probability
per operational cycle” Another alternative would be to present experts with relevant portions of the
fault tree and request conditional probabilities given the state of parent nodes. While such approaches
demand more time, model familiarity, and cognitive effort from participants, a staged hybrid process,
starting with broad probability ranges to identify high-impact events, followed by targeted elicitation
at the fault tree level, could balance feasibility and precision. Although the expert responses in this
study offer valuable insights, they remain subjective and are based on varying interpretations of the
RA framework. The aggregation level of the SDM results is therefore too high to draw definitive
conclusions. Before any integration into the RA model can be considered, the interaction between
the expert-identified events and the fault tree must be made explicit. Only then can these insights
evolve from exploratory signals into actionable inputs. As such, the SDM results should be interpreted
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as indicative rather than definitive, and future work should adopt a more rigorous, model-aligned
elicitation protocol to improve their direct applicability to the RA model.

This study also faced several data-related limitations that influenced both the identification and quan-
tification of unaccounted-for events. Many of the failure probabilities used in the current RA model
are based on expert judgment or outdated assumptions, with limited empirical validation. In particu-
lar, the lack of a centralized, structured dataset on component degradation, maintenance history, and
operational performance constrained the ability to model time-dependent failure behavior accurately.
Similarly, the absence of detailed, verifiable data on human interventions in the Maeslant barrier limited
the HAD analysis. While some expert-derived probabilities were used to approximate these uncertain-
ties, the lack of real-world performance data introduces a degree of speculation into the results.

The aggregation approach adopted comes with several limitations that shape how the results should be
interpreted. First, the assumption of independence between EUE and HAD, and between the events
of SDM is unlikely to hold strictly, since technical reliability and human reliability often interact in
practice and the events mentioned in the SDM show overlap. Second, reliance on averaged expert judg-
ments, without calibration or weighting, introduces an element of subjectivity into the estimates. Third,
the treatment of aggregated values as point probabilities neglects the propagation of uncertainty distri-
butions. Fourth, the method breaks down if the events are mutually exclusive. Finally, the approach
assumes that all events carry equal weight in the failure tree, regardless of their position or relative in-
fluence. Taken together, these simplifications mean the results should be regarded as illustrative rather
than definitive. The outputs are not decision-grade estimates but rather an exploratory exercise to
demonstrate how different uncertainties combine and how sensitive the overall non-closure probability
is to assumptions about human reliability and epistemic gaps in the RA model. As highlighted in the
reliability literature, proper aggregation of expert judgment and uncertainty requires explicit treatment
of dependencies and weighting before results can credibly support operational or policy decision-making
(Cooke, 1991; Rausand & Hgyland, 2004).

In addition, another important consideration in the context of RA analysis is the extent to which com-
pleteness should be pursued. It is said that completeness in physical laws is unattainable, as demon-
strated by the inherent limitations in formal systems and the presence of assumptions and constraints.
In physics, every law is subject to boundary conditions and idealizations, which limit its applicability
to real-world scenarios (Weingartner, 2005). Therefore, rather than striving for absolute completeness,
it may be more appropriate to aim for an optimal level of complexity, one that balances generality,
transparency, and applicability. In the context of RA analysis, this implies that models should ex-
plicitly state their assumptions and constraints, and focus on traceability and adaptability rather than
exhaustive coverage. Such an approach acknowledges the limitations of modeling complex systems and
supports the development of reliable and interpretable risk assessments.

The divergence between the events identified in this study and those currently incorporated in the RA
analysis of the Maeslant barrier could be attributed to both structural and procedural factors. The
existing RA analysis is built around a predefined fault tree structure, which is currently maintained by
a single individual. While this ensures consistency, it also introduces the risk of tunnel vision, where
assumptions and modeling choices remain unchallenged over time.

5.3. Interpretation of results

Beyond the expected outcomes of the quantification exercises, several findings emerged that were not
anticipated at the outset of this study. These findings are valuable because they expose structural
weaknesses in the current RA framework and suggest directions for improvement.

First, the epistemically uncertain events (EUE) were found to exert a larger influence on the non-closure
probability than expected (see Section 4.3.1). Experts have shown concern by assigning large influences
on omitted events. This demonstrates that the omission of epistemically uncertain events from the
current RA framework may not be a marginal issue, but could be a source of underestimation.

Second, the Human Action Database (HAD) verification results showed that assumptions about training
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levels drive differences in non-closure probability (see Section 4.3.3). The spread between the trained
and untrained scenarios spans nearly two orders of magnitude, underscoring how sensitive the RA is to
human performance assumptions. This outsized effect illustrates the risks of relying on an unverified
database: without empirical validation, the reliability of human intervention remains one of the largest
unknowns in the analysis.

Third, the fault tree analysis revealed that once software reliability values were updated, certain hard-
ware components re-emerged as dominant contributors (see Section 2.4.2). In particular, a specific
motherboard appeared repeatedly as a common node deep within the new dominant failure paths. This
was unexpected, as earlier analyses emphasized software as the critical driver. One take could be that
the result suggests that current model assumptions may be masking vulnerabilities in hardware and
system interactions, which only become visible under different parameterizations. Another take could
be that the software and computer reliability is marked as most important while modern computers
and software can be made extremely reliable, looking at the capabilities of, for example, the European
Space Agency (ESA) (European Space Agency, 2025).

It is also important to note that the experts consulted in this study expressed greater concern about
certain vulnerabilities than is reflected in the current FTA. Whereas the FTA highlights software and
computer components as dominant contributors, experts emphasized broader systemic and human-
related uncertainties, particularly those linked to operator performance and unverified HAD values.
This divergence suggests that the present RA framework may underestimate areas of concern that
practitioners perceive as critical, further reinforcing the need to align model assumptions with expert
judgment and operational realities.

Taken together, these findings challenge several aspects of current RA practice. The reliance on out-
dated software reliability data risks, and extensiveness within modeling, misdirecting attention toward
components that may not be the true weak points. The incomplete integration of OPSCHEP into
the FTA structure obscures the role of human interventions in mitigating technical failures (see Sec-
tion 2.4.2). And the absence of systematic treatment of epistemic uncertainty means that potentially
important events remain outside the scope of the model. Each of these issues undermines the credibility
of the RA and highlights the need for a more comprehensive, data-driven, and integrated approach.

5.4. Implications for the Legal 1/100 Standard

As described in Section 2.4, a central benchmark in the Dutch flood defense system is the legal require-
ment that the Maeslant barrier achieves a non-closure probability of at most 1/100 per closure request
(Government of the Netherlands, 2024). The results of this thesis indicate that the inclusion of previ-
ously unaccounted-for events may influence whether this requirement is actually satisfied. The findings
regarding, EUE and HAD demonstrate that the margin between the modeled non-closure probability
and the legal requirement is sensitive to methodological choices and assumptions. While the current
RA framework may report compliance, the omission of the events studied here introduces a risk of
underestimation.

Therefore, the influence on the legal 1/100 requirement is twofold. First, the actual non-closure prob-
ability may already be closer to or above the threshold than official analyses suggest. Second, the
credibility of compliance claims is weakened if uncertainties remain outside the formal RA model.

5.5. Societal impact

The Maeslant barrier is not only an engineering asset but also a cornerstone of societal security in the
Netherlands. Its performance directly influences the safety of over two million residents, the protection
of critical infrastructure, and the continuity of economic activities in one of the country’s most densely
populated and economically vital regions (Jonkman & Merrell, 2024; Rijkswaterstaat, 2025¢). Any
compromise in its reliability would have cascading social, economic, and political consequences, from
displacement of communities and loss of livelihoods, to disruptions in trade and transport through the
Port of Rotterdam (Hallegatte et al., 2013).

The uncertainty and incompleteness identified in this study’s review of the RA analysis have implications
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that extend beyond technical accuracy. A perceived lack of transparency or confidence in the barrier’s
reliability can erode public trust in flood defense governance (Mostert, 2020; Terpstra, 2011), complicate
policy decisions, and provoke public debate about investment priorities. In a country where water safety
is part of the societal contract between citizens and government (van Buuren et al., 2016), maintaining
that trust is as critical as the physical integrity of the barrier itself.

Addressing the identified gaps, such as by improving data traceability, integrating human reliability
verification, and maintaining a registry of unaccounted-for events, strengthens not only the analytical
framework but also the accountability of the institutions responsible for flood protection. These mea-
sures provide policymakers with defensible, evidence-based risk assessments (Kasperson et al., 1988),
give communities confidence that safety systems adapt to new knowledge, and support long-term re-
silience planning in the face of climate change (Haasnoot et al., 2019; IPCC, 2022).

In this sense, the societal impact of this thesis lies in reframing reliability analysis not merely as a
technical task, but as a public responsibility whose outcomes influence social stability, economic security,
and collective preparedness for extreme events.

5.6. Future work

First, additional empirical data on human reliability during barrier operations, particularly under stress
conditions, is required to replace assumptions with evidence-based estimates. Second, the incorporation
of time-dependent effects into fault tree models should be expanded beyond selective expert judgment.
Third, the SDM would benefit from refinement, ideally through iterative or multi-round SEJ formats
to improve calibration and convergence.

Beyond methodological development, the primary challenge lies in translating these insights into prac-
tice. This includes embedding them into decision support systems, maintenance strategies, and policy
frameworks without introducing unnecessary complexity. The objective is not to construct perfect mod-
els, but to develop models that clearly communicate their limitations. This approach supports trust,
adaptability, and improved engineering practice.

While the dedication and expertise of the engineers currently responsible for the Maeslant barrier should
be acknowledged and commended, the complexity of the existing RA analysis limits the effectiveness of
incremental improvements. This study shows that issues, such as undocumented assumptions, limited
transparency in the OPSCHEP integration, and the omission of certain failure modes, are rooted in
the structure of the current model itself rather than in isolated data or parameter choices. In such a
framework, small adjustments may correct individual branches or input values, but they cannot address
the deeper architectural limitations, meaning that the same problems may persist in future updates.

As difficult as the conclusion may seem, it is the opinion of the author that the most effective path
forward is to reduce complexity by taking a step back and developing a new RA model from the
ground up. This is a significant undertaking, but it would allow the integration of all lessons learned
to date, adoption of a modular and transparent architecture, and early embedding of human reliability
modeling and non-stationary effects. Such a redesign should also incorporate clear documentation
of all assumptions, open access to the modeling logic where possible, and a framework for periodic
review and update as new empirical data become available. Although the initial effort and resource
investment would be considerable, the payoff would be a model that is easier to audit, more adaptable
to future climate and operational changes, and capable of sustaining stakeholder trust over the long
term. This approach would also align the Maeslant barrier’s RA process with best practices from other
high-reliability sectors, where model rebuilds are periodically undertaken to prevent the accumulation
of opaque assumptions and outdated structures.



Conclusions and Recommendations

6.1. Conclusions

This thesis set out to investigate if a selected set of previously unaccounted-for events can be sys-
tematically identified and quantified, and how they can be integrated into the non-closure probability
calculation of the Maeslant barrier. The study was structured into three stages, identification, short-
listing, and quantification. The conclusions below are organized around the research questions posed
in this study.

6.1.1. RQl: Which unaccounted events exist?

A comprehensive long-list of potential events was developed using four complementary methods: HA-
ZOP, FMEA, What-if analysis, and External Event Screening. Each method contributed a different
perspective, structured hazard analysis, failure mode logic, creative scenario exploration, and rare-event
consideration, together ensuring broad coverage. This approach demonstrated that unaccounted events
can be systematically identified.

6.1.2. RQ2: How can these events be organized and filtered to produce a short-list

for detailed analysis?
The Long-list was reduced to a short-list through screening criteria that emphasized (i) expected con-
tribution to the non-closure probability and (ii) quantifiability within the scope of this study. This
process distilled the list into three priority events:

1. Epistemically uncertain events (EUE),
2. Precondition of stationarity of FTA not met,

3. Unverified reliability of human intervention (HAD: Human Action Database).

These three events span all phases of the reliability bathtub curve, ensuring coverage of early-life, useful-
life, and wear-out uncertainties. The shortlisting process therefore provided a balanced cross-section of
missing events.

6.1.3. RQ3: How can these unaccounted events from the short-list be quantified?
Each shortlisted event was quantified using methods suited to its characteristics. Epistemically un-
certain events were explored through structured expert judgment (SEJ) using the SDM framework,
revealing wide uncertainty ranges and fragmentation of expert opinion. For the non-stationary FTA,
an illustrative methodology was developed that would allow time-dependent modeling once degradation
data become available; current data gaps prevent full application. The HAD verification was examined
through scenario-based training levels, demonstrating that the quality of training strongly shifts the
non-closure probability. Together, these quantifications were exploratory, not definitive, but they show
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the pathways by which such events can be brought into the RA framework.

6.1.4. RQ4: How can these events be integrated in the non-closure probability

calculation of the Maeslant barrier?
Using a simple independence-based aggregation, indicative combined probabilities were calculated for
EUE and HAD. These showed that even modest increases in HAD-related uncertainty could mean-
ingfully elevate total risk, from baseline estimates around P = 0.31 to as high as P =0.39. While the
aggregation relied on strong assumptions (e.g., independence, linearity) (see Section 3.6 and Section 5.2),
the exercise demonstrates how multiple unaccounted events can interact to shift the system-level risk
estimate.

6.1.5. Overall insights

This study leads to several insights regarding the current RA framework of the Maeslant barrier:

o Epistemic uncertainty is not marginal; knowledge gaps and unmodelled phenomena can have an
influence on overall reliability outcomes, and experts express concern regarding these events.

e Human reliability is a sensitive factor in the analysis. The results indicate that training quality
in particular may have a stronger effect on non-closure probability than currently represented in
the RA model. Moreover, because human intervention is not explicitly embedded within the FTA
structure, it cannot be scrutinized with the same transparency as technical components, which
further complicates validation.

e The contrast between model outcomes and expert concerns suggests that current RA practices may
convey greater confidence than is justified, particularly where outdated data sources or simplifying
assumptions are applied.

Taken together, these findings suggest that the RA of the Maeslant barrier is incomplete rather than
incorrect. By systematically identifying and exploring unaccounted events, this thesis shows that the
present reliability estimate may understate the true range of uncertainty. More broadly, the work
illustrates the need for a reliability framework that is transparent about its assumptions, adaptive to
new evidence, and continuously updated as data and methods improve.

6.2. Recommendations

In light of the findings presented in this thesis, several recommendations are proposed to improve the
completeness, transparency, and reliability of the Maeslant barrier’s RA framework. These recommen-
dations aim to address the identified gaps in the current analysis and support the development of a
more robust and adaptive risk assessment process, particularly as the system continues to age and faces
increasing environmental and operational pressures.

To strengthen the empirical foundation of SEJ, it is recommended that Rijkswaterstaat initiate the
development of a dataset documenting previously unaccounted-for events that were later incorporated
into FTAs across storm surge barriers and other critical infrastructure. Such a dataset would enable
the application of more rigorous SEJ methodologies, including Cooke’s method. This approach would
allow for a more defensible quantification of epistemically uncertain events and their contribution to
the Maeslant barrier’s non-closure probability. Moreover, the resulting framework could be generalized
across Rijkswaterstaat’s infrastructure, offering a systematic and transparent way to “put a number on
uncertainty” and enhance the credibility of risk assessments organization-wide.

To address the limitations of the current stationarity assumption in fault tree modeling, a centralized
component lifecycle database is recommended. This database should include expert-judged and observed
component lifetimes, operational stress histories, maintenance records, and environmental exposure data.
Such a resource would enable the systematic application of non-stationary failure models and support
the validation of previous failure probabilities determined through expert judgment.

The current RA model includes human interventions via the Human Action Database (HAD), but lacks
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transparency on formal verification of training levels, procedural adherence, and operational readiness.
It is recommended that Rijkswaterstaat adopt structured human reliability verification practices from
high-reliability sectors such as nuclear energy and defense. This includes scenario-based training, post-
maintenance functional testing, quality control, and more regular performance audits. Quantifying the
impact of training quality on non-closure probability, as demonstrated in this thesis, shows the possible
increase in reliability.

Another recommendation is the integration of the OPSCHEP model directly into the FTA. Currently,
the interaction between these two components is limited, which restricts the ability to easily trace
how human interventions influence dominant failure paths. By embedding OPSCHEP into the FTA
structure, it should become possible to identify dominant failure paths more transparently and address
them more effectively. Additionally, it is recommended to revise the current reliability assessment of
the software systems within the FTA. The existing evaluation is outdated and does not reflect the
capabilities of modern software reliability assessment tools. Updating this component would not only
improve the accuracy of the RA model but also ensure that software-related risks are appropriately
represented in the overall non-closure probability.

Finally, recommendations can be made for subsequent student projects. The Structured Decision-
Making (SDM) approach used in this thesis can be refined with clearer elicitation instructions and
perhaps calibration exercises to avoid unrealistic outcomes. Quantification can be extended by piloting
non-stationary reliability models if suitable data become available, or by developing simulation-based
approaches to human reliability. Above all, future work should prioritise clarity and traceability over
complexity. A reliability model that is understandable to both experts and practitioners will ultimately
have greater impact than one that is technically sophisticated but opaque. This reflects earlier obser-
vations that transparency and communicability are essential for risk models to inform decision-making
effectively (Aven, 2016; Mostert, 2018; Paté-Cornell, 1996; van Asselt & Renn, 2011).

Taken together, these recommendations point to a common direction: future RA of the Maeslant barrier
should be more transparent, adaptive, and empirically grounded. Only by combining improved data
collection with methodological advances can the RA evolve into a tool that is both technically credible
and societally robust.

This thesis has shown that even in a system as thoroughly engineered as the Maeslant barrier, blind spots
can still exist, events and uncertainties that escape the current RA framework. Through structured
identification and expert elicitation, this thesis explores how epistemic uncertainty and unverified human
reliability could significantly influence the estimated non-closure probability. The recommendations
made, ranging from integrating OPSCHEP into the fault tree to adopting structured human reliability
verification and building a component lifecycle database, are not just technical upgrades but steps
toward a more transparent and resilient risk assessment. The persistent unrest surrounding the RA
analysis, echoed in both expert feedback and the SDM results, underscores the need for this shift. And
if software reliability continues to dominate the failure paths, it could be a possibility to look beyond the
traditional circles. Organizations like the European Space Agency have decades of experience building
software that simply cannot fail (European Space Agency, 2025). If they are to land probes on comets,
why not involve them in safeguarding Dutch flood defenses? After all, the stakes are just as high. This
thesis doesn’t claim to have all the answers, but it is a step toward finding them.
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Appendix A

A.l. Fault Tree Analysis

FTA is a deductive, top-down method that systematically investigates the causes of system-level failures.
Originally developed for the aerospace and nuclear industries (Andrews & Lunt, 2012), FTA remains
a fundamental technique within reliability and safety engineering. It focuses on modeling the logical
relationships between basic component failures and a critical system failure, known as the top event.
Using Boolean logic gates such as AND and OR, the fault tree identifies how combinations of failures
at the component level can propagate upward to cause the top event.

The FTA process begins by clearly defining the top event, which represents the failure scenario of
interest. For example, in the case of a storm surge barrier, the top event could be defined as “the
barrier fails to close during a storm.” From this point, the immediate causes that could lead directly to
the top event are identified. Each of these causes is then recursively decomposed into more basic failure
events until no further breakdown is practical. This stepwise expansion creates a logical tree structure
that visualizes how failures interact within the system.

Within the fault tree, different types of logic gates represent various combinations of failures. An OR
gate indicates that the top event will occur if any of the input events occur. For example, a hydraulic
system failure could happen if a hydraulic pump fails or there is a hydraulic fluid leak. In contrast,
an AND gate indicates that the top event will occur only if all input events occur simultaneously. For
instance, a mechanical obstruction in a barrier system might require both the presence of debris and
the failure of a sensor to detect that debris. More complex gates, such as Priority AND and Inhibit
gates, exist but are used less frequently in standard analyses.

Once the fault tree is constructed, a quantitative analysis can be performed to estimate the probability
of occurrence of the top event. Probabilities are assigned to the basic events based on empirical data,
historical records, or expert judgment. In Fault Tree Analysis, basic event combinations are typically
modeled using Boolean logic gates. For statistically independent events:

e An AND gate represents a scenario where all input events must occur for the output event to
occur. The probability is the product of the individual event probabilities:

Panp = P(A) x P(B)

e An OR gate represents a scenario where at least one of the input events must occur for the output
event to occur. The probability is calculated as:

Por = 1—(1-P(A)) x (1-P(B))
For example, consider two independent failure events within a hydraulic system: a pump failure with

58



A.2. Tllustration of Fault Tree vs. Event Tree Analysis 59

a probability of P =0.01, and a fluid leak with P = 0.02. The probability of system failure through an
OR gate is:

Pagstom = 1 — (1—=0.01)(1—0.02) = 1 — (0.99 x 0.98) = 1 —0.9702 = 0.0298

Thus, the probability of hydraulic system failure in this example is approximately 2.98% (IEC, 2006). It
is important to note that this method assumes each basic event appears only once in the fault tree and
that all events are statistically independent. In more complex systems, such as storm surge barriers, ba-
sic events often appear in multiple branches, which can cause simple calculations to overestimate failure
probabilities. To address this, Boolean algebra and minimal cut set analysis are used to identify unique
combinations of failures and ensure that the probability of occurrence of the top event is calculated
accurately (Rauzy, 2001) (see subsubsection A.4).

Fault Tree Analysis offers several important advantages. It provides a clear and logical visualization
of failure mechanisms and helps prioritize risk mitigation strategies by identifying dominant failure
paths. Tt is widely supported by engineering standards such as TEC 61025 (IEC, 2006) and various
reliability engineering software tools. However, the method is not without limitations. It often assumes
that failures are statistically independent unless explicitly modeled otherwise, an assumption that may
not always hold in complex real-world systems (Dekker, 2016). Furthermore, fault trees can become
too complex and difficult to manage for large systems involving hundreds or thousands of components
(Andrews & Moss, 2002). Accurate fault tree construction also heavily depends on the quality of the
failure rate data available, which is often incomplete or uncertain (Andrews & Moss, 2002).

Despite these limitations, FTA remains an indispensable tool for analyzing and improving the reliability
of critical infrastructure. In systems like storm surge barriers, where failure consequences are severe,
Fault Tree Analysis not only helps identify technical vulnerabilities but also supports decision-making
in design, maintenance planning, and operational risk management (O’Connor & Kleyner, 2012).

A.2. Tllustration of Fault Tree vs. Event Tree Analysis

To clarify the distinction between Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), Figure A.1
presents a side-by-side schematic (Vesely et al., 1981). These methods are both fundamental tools in
reliability and availability analysis but serve different purposes:

o Fault Tree Analysis (FTA): A deductive method that starts with a top-level undesired event (e.g.,
system failure) and works backward to identify the combinations of component failures or faults
that could cause it.

o Event Tree Analysis (ETA): An inductive approach that starts from an initiating event (e.g., BOS
malfunction) and explores possible outcomes based on the success or failure of subsequent safety
functions or responses.

FTA focuses on uncovering root causes, while ETA evaluates potential consequences. Together, they
offer a complementary view of system reliability.
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Barrier fails to . BESW does not |HAD Intervention
BOS activates . Outcome
close activate does not work
_True  Noclosure or
partial closure
True
True False

—— Closure
Valves fail Obstruction False
Closure

Mechanic Human
failure failure

Figure A.1: Comparison between a Fault Tree (left) and Event Tree (right) schematic for illustrating system failure and
response outcomes.

A.2.1. Example: FTA of a Storm Surge Barrier Failure

The following calculation is intentionally kept very simple and serves solely to illustrate the absolute
basics of Fault Tree Analysis (FTA). It provides a straightforward example to demonstrate how basic
events combine through logical gates to influence the probability of a top event. This example should be
viewed as purely illustrative and not representative of the full complexity in real-world FTA applications
such as storm surge barriers.

)

The following fault tree illustrates the top event “Barrier fails to close during storm,’
primary causes ( A.2):

along with its

Barrier fails to close

n

Hydraulic Mechanical
system failure obstruction

[ (2

Pump failure Hydraulic leak Debris blockage Sensor failure

Figure A.2: FTA illustrating the top event: “Barrier fails to close during storm” along with its primary causes.

Assume the following basic event failure probabilities:
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o Pump failure: Pyymp = 0.01
e Hydraulic leak: P, = 0.02
e Debris blockage: Pyehris = 0.03

e Sensor failure: Psensor = 0.01
The probability of Hydraulic system failure (OR gate) is calculated as:

Phydraulic =1- (1 7Ppump)(1 7Pleak)

Phydrautic = 1 — (1—0.01)(1—0.02) = 1 — (0.9 x 0.98) = 1 —0.9702 = 0.0298

The probability of Mechanical obstruction (AND gate) is calculated as:

Pobstruction = Pdebris X Psensor

Pobstruction = 0.03 X 0.01 = 0.0003

Finally, the probability of the Top Event (OR gate) is:

PtOp =1- (1 - Phydraulic)(l - Pobstruction)

Piop = 1 — (1—0.0298)(1—0.0003) = 1 — (0.9702 x 0.9997) = 1 —0.9699 = 0.0301

Thus, the overall probability of the barrier failing to close during a storm event is approximately 3.01%.

A.3. Minimal Cut Sets

While the above probability calculation gives a basic overview of how event probabilities propagate
through the fault tree, another useful concept in Fault Tree Analysis is that of minimal cut sets. A
minimal cut set is the smallest combination of basic events that, if they occur together, will lead to the
top event.

For the example fault tree shown above, the minimal cut sets are:

e Pump failure
e Hydraulic leak

« Debris blockage, Sensor failure

This means that either a pump failure alone, a hydraulic leak alone, or the combination of a debris
blockage and sensor failure can cause the barrier to fail to close. These sets are minimal in the sense
that removing any event from the set would no longer lead to the top event.

A.4. Common Cause Failure (CCF) Analysis

In reliability modeling, it is often assumed that component failures occur independently. However, in
real-world systems, multiple components may fail simultaneously due to a shared underlying cause—
such as a power outage, environmental stress, or a software malfunction. These are referred to as
common cause failures (CCFs). To account for such dependencies, several modeling approaches have
been developed, including the Beta Factor model, the Multiple Greek Letter (MGL) model, the Alpha
model, and the Beta-Binomial Failure Rate (BFR) model.

To illustrate how CCFs are handled in a fault tree, consider a group of four components: A, B, C,
and D. If these components are susceptible to a shared failure mechanism, we must consider not only
their individual failures but also all combinations of joint failures caused by the common cause. These
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combinations include pairs (e.g., AB, AC), triplets (e.g., ABC), and even all four failing together
(ABCD).

In the fault tree, each original basic event (e.g., A) is replaced by an OR gate that includes both its
individual failure and all CCF combinations that involve it. For example, the event A is replaced by an
OR gate with the following inputs: A (individual), AB, AC, AD, ABC, ABD, ACD, and ABCD. This
ensures that all possible ways A could fail—including due to a shared cause—are captured.

The following parameters are typically used in CCF modeling:

e Q;: Total unavailability of each basic event in the CCF group.

e Qi: Unavailability of the CCF event of order k, i.e., a common cause failure involving k compo-
nents.

e n: Number of basic events in the CCF group.

This structured approach allows analysts to more accurately estimate system failure probabilities in the
presence of shared vulnerabilities, ensuring that the fault tree reflects both independent and dependent
failure mechanisms (Inc., 2025).

A.5. Example: FTA of a Storm Surge Barrier Failure with Common
Cause Failure

Barrier fails to close

Or

Hydraulic Mechanical
system failure obstruction

e A
[ Pump failure } Hydraulic leak Debris blockage ‘ Sensor failure \
\. J

e A
Power supply

failure (CCF)
\ J

Figure A.3: FTA illustrating the top event: “Barrier fails to close during storm” along with its primary causes.

Assume the following basic event failure probabilities:

o Pump failure: Ppump = 0.01
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e Hydraulic leak: P, = 0.02
e Debris blockage: Pyehris = 0.03
¢ Sensor failure: Pionsor = 0.01

o Power supply failure (common cause): Ppower = 0.005

We assume that the power supply failure can simultaneously cause both the pump and the sensor to fail.
To model this, we use the B-factor model, where a fraction B of the failure probability is attributed to
the common cause. Let § =0.3.

The adjusted independent failure probabilities become:
Pyump,ind = (1 = B) - Poump = 0.7-0.01 = 0.007
Psensor,ind = (1 - B) “Psensor = 0.7-0.01 = 0.007

The probability of Hydraulic system failure (OR gate):
Phydraulic =1- (1 - Ppump,ind)(1 _Pleak)
=1—(1-0.007)(1—-0.02) =1—(0.993-0.98) =1 —0.97314 = 0.02686
The probability of Mechanical obstruction (AND gate):

Pobstruction = Pdebris 'Psensor,ind =0.03-0.007 = 0.00021

Now we include the common cause failure path:

Pcor = Poower B? = 0.005-0.09 = 0.00045

Finally, the probability of the Top Event (OR gate over three disjoint paths):

Prop = 1 — (1 = Phydrautic) (1 = Pobstruction) (1 — Pocr)
=1—(1-0.02686)(1—0.00021)(1 —0.00045)
=1-—(0.97314-0.99979-0.99955)
=1-0.97249 = 0.02751

Thus, the overall probability of the top event increases slightly to approximately 2.75% when accounting
for the common cause failure.
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Expert Elicitation: Assessing
Incompleteness in RA Analysis for the
Maeslantbarrier

Structured Delphi method
Waasdorp, W.J. (Wouter)

Delft university of technology and TNO

Introduction

The Maeslantbarrier is a critical component of the Dutch flood defense system. Located
near the mouth of the Rotterdam Harbor, it is a movable storm surge barrier designed to
protect over two million people and vital economic infrastructure in South Holland from
extreme storm surges. Itis a key part of the broader Delta Works system and plays a
dual role: maintaining open access to one of the world’s busiest ports during normal
conditions and providing full closure protection during severe storms.

To ensure this essential infrastructure functions as intended, a Reliability and
Availability (RA) analysis is conducted. This RA analysis assesses the likelihood that the
barrier will perform its intended function, namely, closing successfully when required. It
supports long-term asset management, regulatory compliance, and maintenance
planning by identifying critical failure paths and estimating non-closure probabilities.

Despite, or perhaps due to, the high level of detail in the current RA framework, there
remains a risk of incompleteness, particularly in the identification and quantification of
all potential failure modes. The objective of this expert session is to explore this
residual uncertainty. We aim to identify events that may have been overlooked or
insufficiently represented in the existing RA model for the non-closure probability,
and quantify their contribution to the overall non-closure probability.

Objectives

The primary objectives of this expert session are as follows:

e Identify potential events that may currently be missing from, or
underrepresented in, the existing Reliability and Availability (RA) analysis of the
Maeslantbarrier.

o Estimate the likelihood and potential impact of these events on the barrier’s non-
closure probability, based on expert insight and experience.

e Translate expert judgments into quantitative probability distributions that can be
incorporated into a probabilistic framework for further analysis.



Procedure

The expert session will follow a structured, three-step process:

Step 1: Individual Event Identification

Each expert will independently identify between 3 and 10 potential events that
contribute most to the probability of failure per request (request of closing of the
Maeslantbarrier). For each event, experts are asked to provide a brief description
and a preliminary estimate of the event’s potential influence on the barrier’s non-
closure probability.

Step 2: Consolidation of Events

Allindividual submissions will be compiled into a single anonymized list. This
consolidated list will ensure that duplicate or similar events are grouped, while
preserving the diversity of expert perspectives.

Step 3: Probability Estimation

Experts will then be asked to individually provide probability estimates for each
event in the consolidated list. These estimates will be used to construct
aggregated probability distributions for each event, which can be integrated into
a probabilistic model for further analysis.

Instructions to Experts

Please follow the steps below when preparing your input:

1.

Work independently

Identify potential events on your own without consulting other experts during this
stage. This ensures the integrity and independence of the individual judgments.
Describe each event clearly

For each identified event, provide a brief but clear description. Include a short
explanation of why you believe this event is relevant or potentially
underestimated in the current RA analysis. If no event comes to mind try to think
of the question: “If the Maeslant barrier fails to close when needed, what are the
ten most likely causes and what are their probabilities?”

Estimate its impact

For each event, provide an initial estimate, expressed as a percentage (%), of
how much you believe it could realistically increase the probability of the
Maeslantbarrier failing to close when required. This can be a rough, order-of-
magnitude estimate based on your experience.

Submit your responses by [insert deadline]

Please return your completed input by 10-06-2025, so that we can proceed with
compiling and analyzing the results.

Example

To guide your input, here is a simple illustrative example of what is expected:



Rank Event Brief Percentage Percentage Percentage

explanation lower bound Medium upper
(5%) bound
(95%)
1 Maintenance Maintenance ~0.2% ~0.5% ~0.75%
scheduling delayed beyond
error recommended
timelines.

This table format can be used as a reference for your own event descriptions and
estimates.

For the 5% lower and 95% upper bounds, consider the numbers you cannot imagine the
probability being lower or higher than.

For the order of magnitude percentage estimate think of: 1, 1/2, 1/5, 1/10, 1/20, 1/50,
1/100 etc.

Submission instructions

Please complete the Excel file titled Expert_Elicitation_(NAME)_(DATE).x(sx, which has been
provided separately. This file is designed to collect your input on potentially overlooked or
underestimated events related to the non-closure probability of the Maeslantbarrier. Once
completed, kindly email the file to: wouter.waasdorp@tno.nl

Deadline for submission: 70-06-2025.

If you have any questions or require clarification, feel free to reach out in advance.
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List of potentially overlooked events in the current failure to close
probability calculation of the Maeslant barrier

The listis set up in a structured way according to the methodology. The events not taken
into account in the current failure-to-close analysis of the Maeslant barrier can be
divided into two groups: those that occur within the preconditions and those that occur
outside the preconditions. The events that exist within the preconditions are split up
into 4 categories, namely: Failure Modes and Effects Analysis (FMEA), Hazard and
Operability Analysis (HAZOP), External Event Screening, and a What-If Analysis. These
are the methods used to list events in a structural manner, and make the list more
complete. For the set of events outside the preconditions, no structured methods were
used.

Inside preconditions

FMEA

1.1 Seiche sea-side: During the lowering of the barrier a seiche at the sea-side is
created. In the calculation, it only seemed possible at higher decays than observed.
Knowledge about this is missing, possibly hindering the operation.

1.2 Incorrect landing: The gates are lowered to the threshold (drempel) in the wrong
way. The control system is not suitable for storm and water current conditions. 20
lowering types are programmed, meaning that the operating system chooses the
wrong lowering type for the closing situation.

1.3 Trouble with control system (BESW): After the renewal of the control system, the
control system is not working as desired (specifics are classified, and | got denied
the information). The added failure probability has not been verified.

1.4 Wrong buoyancy above threshold (Too heavy): The gates are balanced too heavily
on the threshold, after which it cannot be raised quickly enough in the event of rising
waters on the inland side.

1.5 Wrong buoyancy above threshold (Too light): the gates are balanced too lightly
above the threshold, causing too much water to flow into the system.

HAZOP

1.6 Maintenance done wrong:. The introduction of wrong fuel, misplacement of
electrical components, or other human maintenance errors could cause unforeseen
problems. If this is implemented in too much detail the chances of missing certain
events can get bigger.

1.7 Prediction/data weather station is wrong: Causing an incorrect chain of decisions
or lack of it.

1.8 Incorrect choice of closing type: Due to the incorrect closing type decision within
the circumstances, unexpected water levels in the river or the sea, the barrier is
unable to close. This is due to the changing nature of the system for which the
barrier and the BOSS is designed(Like at the Rampspol barrier where the system is
behaving very differently than what it was designed for)
(kenteringsluiting/peilsluiting).



1.9 Disobedience of ship/Harbor: Due to the economic interest of the harbor or a ship,
there is disobedience causing delays in the process of closing. This has been
observed during functionality closures.

External events

1.10 Temporal compound events: These should be taken into account due to
climate change (Bakker et al. 2025). Climate change increases the chance of closing
operations of the Maeslant barrier in short periods of time, which leaves less room
for maintenance needed due to the previous closing.

1.11 Long periods of drought: These can, for example, lead to subsidence or too low
water levels.

1.12 High wind speeds: These can cause damage to structures or materials, and

delay/hinder corrective actions.

.13 Hailstorm: causing physical damage, as predicted by TNO (Botzen et al. 2010).

.14 Heavy rain: causing leakage, flooding, or water ingress.

.15 High ambient temperatures: affecting operations or equipment.

.16 Earthquakes: or tremors causing structural damage.

.17 Snow accumulation: causing overloading or roof collapse.

.18 Extreme cold: affecting materials and equipment, including freezing of

components.

1.19 Flooding: originating from outside the object or occurring within the object due
to system failure.

1.20 Elevated water levels: due to tide, storms, or astronomical phenomena that
have not been taken into account in the design.

1.21 Prolonged water presence: causing material degradation, on the inside and the

outside of the structure.

.22 Oscillating waves: in enclosed or semi-enclosed water bodies.

.23 Large waves: caused by underwater disturbances.

.24 Large-scale movement of soil: impacting structures.

.25 Sudden failure of underground spaces: related to point 1.24

.26 Loss of coastal land: affecting nearby infrastructure.

.27 Fire originating near the object: such as nearby building fires.

.28 Fire starting within the object: due to technical faults.

.29 Impact by external objects: such as ships-, vehicles- or shipping container

accidents.

.30 External release of hazardous materials: affecting the object.

.31 Internal release of hazardous substances.

.32 Explosion nearby: impacting the object.

.33 Explosion: within the object.

.34 Meteor or satellite fragment impact.

.35 Crash of aircraft: on or near the object.

.36 Parts of turbines: detaching and impacting surroundings.

.37 Infestation: by pests, fungi, or bacteria.

.38 Damage to cables and pipes: due to digging work.

.39 Waste or debris: impacting infrastructure or operations.

.40 Power outage: affecting systems and operations.

.41 Shiftin sea-current: giving consequences that are unknown.
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What if analysis

1.42 Increased closing due to SLR (sea level rise): From Non-linear extreme value
analysis, it is derivable that the closing due to storm frequency of the Maeslant
barrier is going to increase compared to stationary sea levels. Water levels might
change or might differ from current design sea levels.

1.43 Outdated understanding of climate change/ the lack of implantation of new
knowledge: Our understanding of climate change has increased drastically.
Therefore, there is the possibility that the design is not ready for the number of
closings in the near future.

1.44 Pandemic: A pandemic could cause a shortage of manpower to operate the
barrier. (This is a reality for a lot of barriers, even until now)

1.45 Ship blocking: Unforeseen circumstances could cause a ship to strand in the
middle of the barrier ( as happened with the Evergreen in the Suez Canal).

1.46 Political hinder: A different to now political view could lead to disbelieve in the
experts at Rijkswaterstaat, increasing difficulty in the structural maintenance.

1.47 Generational knowledge loss: The engineers that worked on the Maeslant
barrier when it was built are not in operation anymore. This, together with the
scattered documentation on the Maeslant barrier, could lead to a knowledge loss
with unknown consequences.

1.48 Missed common cause of redundant systems: For example, north power
supply not independent of south power supply.

1.49 Incompleteness of RA analysis: cases like non redundant energy supply and
gravitational pull of Greenland icesheets give rise to the question: What
assumptions taken in the analysis could, as well, be incorrect?

Outside preconditions

2.1 Too much detail: Due to the high level of detail and the unverifiability of the RA
analysis, the RA analysis is prone to mistakes, big or small.

2.2 Precondition of on-time maintenance is not met: Due to problems in society or
the closing of maintenance window.

2.3 Current analysis done without structure: Raising the chances of missing events.

2.4lessons learned: after close to 30 years of operation are not implemented in the
analysis, causing the structure to still be in the ‘teething problem/infant mortality’
phase.

2.5 Precondition of preventive replacement is not met.

2.6 Differently used parts: Parts used for the structure are used differently than what
they are made for. An example is that the pumps are designed to be wet all the time,
yet they are only used once a month.

2.7 Wrong assumption of independence in weather phenomena: The failure to close
probability is not independent of the weather conditions as assumed (wrong
assumption, goes hand in hand with point 1.49)

2.8 Precondition of stationarity (bathtub curve) is not met: Due to the precondition of
optimal performance according to the bathtub curve, where there is a constant
failure rate, the RA analysis is considered stationary. If this precondition is not met,
non-stationarity could play a role in the reliability and availability of the barrier.



2.9 Human Action Database (HAD) not verified: no clear evidence of verification was
found in the portion of data available for this study. Specifically, there was no
detailed information on whether training guidelines or standards for human
intervention are in place or being followed. Additionally, the dataset offered little
insight into how operational teams are structured or how the necessary skills are
established and maintained to support critical operations.
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Table D.1: Combined Table of input from SEJ 1st round

Rank | Failure Mode Description Low Medium | High
1 Decision making The wrong decision is made by the operators while in operation 5% 10% 15%
1 Working in storm sea- | It can be too much for people to oversee 1% 5.50% 10%

son leads to wrong de-
cision
1 Human error probabil- | Do the people have the right background, education, and training? 1% 5.50% 10%
ity ... Knowledge strategy is failing
1 Forecasts for Rotter- | BOS incorrectly selects closure timing due to software error and 1% 5.50% 10%
dam/Dordrecht incor- | complex water level pattern. Seiche or pipe surge influences the
rect due to human er- | decision.
ror
1 Sensor/Data Fault Un- | Sensor data leads to incorrect decisions; may go undetected if 0.20% 1% 5%
detected redundancy/diagnostics are insufficient.
2 Structural integrity The effects of losing sand is unknown 5% 10% 15%
2 Sinking of the floating | Failures during test storms can damage the barrier permanently | 0.00000001% | 0.0001% | 0.001%
sector gate in rare cases. Estimated storm frequency: 1072 /year.
2 Dormant phenomena Condition of retaining structures, condition of drainage, condition 1% 5.5% 10%
of cofferdam, condition of HWK, damaged anchor rods corrosion,
Wear on Hempaquick hinge Hinge control is failure-prone, ground-
water behavior may be abnormal
2 Obstacles on  the | - 1% 5% 10%
threshold are
(wrongly) not  be-
ing inspected.
2 Stalling of dock door In stormy weather, the catch can end up on the wrong side of 1% 5.5% 10%

the rail. Limit switches not triggered due to excessive load during
opening caused by heavy waves and drop control system failure
due to
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Rank | Failure Mode Description Low Medium High
2 Configuration parame- | Can lead to undesirable and unexpected behavior think of sinking 1% 5.5% 10%
ters not updated/de- | matrices, fenders, and trim correction
signed
2 Tolerances Deformation of the KW may be underestimated, truss arms bounc- 1% 5.5% 10%
ing on the sill
2 The system is reaching | Very high flows will only be partially held back by the barrier dur- 1% 5.5% 10%
its limits ing certain storms, the barrier will not fully submerge. Multiple
failing valves also limit its use
2 Natural boundary con- | Sea level rise of more than 25 cm Correlation between wind setup 1% 5.5% 10%
ditions and discharge at Lobith greater than expected Longer storm dura-
tions seiches, new insights into, for example, probability distribu-
tions or suction forces. This can have both positive and negative
effects stiffness of the retaining wall is sometimes quite low
2 Redundancy Locomobile and “Pennebaan” single point of failure 1% 5.5% 10%
2 Structural failure There is sometimes leeway here because a conservative approach 1% 5.5% 10%
is taken when estimating mechanisms. Better to be a bit safer
than on the edge. Better to allow some margin than to calculate
endlessly. Structurally, the barrier consists of parallel and series
systems. Assumptions have been made for this. Verifying these is
worthwhile.
2 Departure fails due to | Truss arms and sill make contact due to contact between consoles 1% 5.5% 10%
and seats Resonance of water in the dock entanglement of cables
from shore to locomotive
2 Submerging fails due | Incorrect matrix causing valves not to open incorrect matrix caus- 1% 5.5% 10%
to ing the barrier to submerge too unevenly or too quickly brief out-
lier in inclinometers Unjustified or incorrect human intervention
Too much sediment on the bottom
2 Floating fails due to Unjustified or incorrect human intervention pre-tension not re- 1% 5.5% 10%

duced in time due to pre-tension reduced asymmetrically due to
retaining wall floats up too unevenly due to
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Rank | Failure Mode Description Low Medium High
2 Readiness for second | Docking (tolerances), closing dock gate, to rest position 1% 5.5% 10%
peak fails due to
3 Invalid failure charac- | Failures are modeled using assumed or outdated data; field behav- 0.5% 2% 6%
terization due to data | ior (e.g., wear-out) diverges from model assumptions
gaps
3 Model error due to in- | Failure behavior of components is incorrectly modeled due to un- 0.3% 1.5% 4%
complete data availability of detailed degradation or diagnostic data.
3 Incomplete risk-based | RBI principles not fully embedded; inspection frequency or 0.2% 1% 3%
inspection implementa- | method not adjusted to risk profile, leading to insufficient PF
tion interval knowledge.
3 Lack of insight into | Long-term degradation mechanisms (e.g., fatigue, corrosion under 0.3% 1% 4%
ageing effects insulation, seal aging) not well understood or incorporated into
performance modeling.
3 Ignoring stronger ev- | The RA analysis seems to have a more important role in decision- 1E-9% 0.001% 1%
idence than the RA | making than real evidence (damages, test results, etc). Given the
analysis. weaknesses of RA analysis (based on not-representative data), this
likely results in decision errors (P=1). Whether decision errors
result in a flood is not that likely (P=10-5). Very uncertain about
this risk.
3 Preconditions of RA | Assumptions from the RA (Risk Assessment) are not being fol- 1% 5.5% 10%
analysis not met lowed Probo not properly executed Spare parts are a bit of an
issue
3 99 points Represents all findings related to the closures. Some have been 1% 5.5% 10%
resolved, some have not and/or seem to be floating (unresolved)
The question is whether analysis capacity within RWS is sufficient
3 Lessons learned forgot- | For example, BesW Many problems were encountered with syn- 1% 5.5% 10%

ten

chronization, timing, and communication. These aspects are often
underestimated in the sector. The risk is that these are not prop-
erly accounted for in design and testing.
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Rank | Failure Mode Description Low Medium High
3 Calculation methods Model accuracy not included in the calculations, Affects MHW 1% 5.5% 10%
(Mean High Water) and flood probabilities and risks Cutsets are
truncated at 3 levels, which may lead to underestimation This was
corrected for Hartel Forecast inaccuracy for Rotterdam is increas-
ing
3 Failure probability | Example: Influence of temperature on failure rate not included 1% 5.5% 10%
analysis Failure data is outdated Failure-predictive indicators are no longer
being analyzed, which means impending failures go unnoticed
4 Storm conditions it’s unknown how the MK functions in a normative storm 15% 20% 25%
4 Underestimated phe- | Mystery force: Integral calculation has never been finished 1% 5.5% 10%
nomena
5 Incorrect Maintenance | Errors or shortcuts in maintenance activities introduce or leave 0.1% 7.55% 15%
Execution latent faults that impair future performance. errors made during
maintenance that were not discovered during testing
5 Unavailability due to | Parts of the barrier are unavailable during “not-storm season” Ev- 0.0004% 0.04% 0.4%
maintenance ery 25 years an important item of for instance the locomobile not
on site (1/25), probability of storm being in the summer (1/100)
5 Maintenance  season | Too little time to restore the barrier, or job done improperly (/un- 1E—4% 0.02% 0.1%
too short der stress), resulting in a higher failure probability. Because there
is no report on the HAT I do not know the current estimate on
this. Current probability of a failure to close (1/100) x percentage
hardware failure (50%) / conservatism (factor 10) x maintenance
error percentage (50%) x factor for more stress (2)
- Other  unidentifiable | Inherent incompletenes of current RA-analysis due to things that 5% 10% 15%

events left out

are not yet identifyable. Happened in the past as well where
“new” phenomona’s have been identified. How do we know we
have everything?
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Table D.2: Table of input from SEJ 2nd round 1st respondent

Rank

Failure Mode

Description

Remark

Low

Medium

High

Decision making

The wrong decision is made by
the operators while in operation

0.1%

1%

10%

Working in storm sea-
son leads to wrong de-
cision

It can be too much for people to
oversee

Als je overweegt om in het storm-
seizoen risicovol werk uit te gaan
voeren dan neem je een risico:
werk niet op tijd klaar of storm
komt onverwacht of is hoger
dan verwacht of geen tijd meer
om iets te herstellen (voorbeeld:
black-out test: risico op schade
is best groot: niet doen dan zou
je zeggen). Om juiste besluiten
te nemen heb je een hoop ken-
nis nodig. Meer gebruik maken
van event-trees. Maar: miss-
chien heeft RWS hier al een sys-
teem voor.

1%

5%

20%

Human error probabil-
ity

Do the people have the right
background, education, and
training? ... Knowledge strategy
is failing

Mensen kunnen fouten maken
bij onderhoud. De zijn latente
fouten hierbij zijn het meest
vervelend (vorm van onmerkbaar
falen). Daarnaast is de mens
hard nodig om herstelacties uit
te voeren.

5%

10%

20%

Forecasts for Rotter-
dam/Dordrecht incor-
rect due to human er-
ror

BOS incorrectly selects closure
timing due to software error and
complex water level pattern. Se-
iche or pipe surge influences the
decision.

0.5%

1%

10%
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Rank | Failure Mode Description Remark Low | Medium | High
1 Sensor/Data Fault Un- | Sensor data leads to incorrect de- | - 1% 10% 20%
detected cisions; may go undetected if re-
dundancy/diagnostics are insuffi-
cient.
2 Structural integrity The effects of losing sand is un- | - 5% 10% 15%
known
2 Sinking of the floating | Failures during test storms can | “Dit is een lastige. We hebben 5% 25% 50%
sector gate damage the barrier permanently | al een aantal keren “geluk”
in rare cases. Estimated storm | gehad. Er zijn echter nog geen
frequency: 1072 /year. gebeurtenissen opgetreden die
direct tot niet-beschikbaarheid
hebben geleid. Kans op in slaap
sussen is best groot. Zonder ker-
ing wordt de maatgevend hoog-
waterstand (MHW) ongveer eens
perl00 jaar overschreden”
2 Dormant phenomena Condition of retaining structures, | - 1% 10% 15%
condition of drainage, condition
of cofferdam, condition of HWK,
damaged anchor rods corro-
sion, Wear on Hempaquick hinge
Hinge control is failure-prone,
groundwater behavior may be ab-
normal
2 Obstacles on  the | - Het gaat om obstakels op de 1% 10% 15%

threshold are
(wrongly) not  be-
ing inspected.

drempel (=sill) die onder het sed-
iment liggen. We houden reken-
ing met 2 meter sediment lokaal
op de drempel
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Rank | Failure Mode Description Remark Low | Medium | High
2 Stalling of dock door In stormy weather, the catch | De openmelding wordt gemaakt 1% 10% 15%
can end up on the wrong side | m.b.v. 3 magneetschakelaars.
of the rail. Limit switches not | Deze schakelaars zitten op de
triggered due to excessive load | dokdeur. Als ze een “stoel op
during opening caused by heavy | de kesp” passeren wordt het sig-
waves and drop control system | naal gemaakt. De afstand tussen
failure due to schakelaar en stoel mag niet te
groot worden want dan werkt het
niet meer. De bovenkant van de
stoel kan op en neer en bhoort in
de hoogste positie te worden vast-
gezet. Dat is weleens mis gegaan
2 Configuration parame- | Can lead to undesirable and un- | - 1% 5% 30%
ters not updated/de- | expected behavior think of sink-
signed ing matrices, fenders, and trim
correction
2 Tolerances Deformation of the KW may | Afgelopen jaren is een FEM 1% 10% 30%

be underestimated, truss arms
bouncing on the sill

model ontwikkeld waarmee de
vervormingen kunnen worden
berekend. In theorie kun je dan
ook de ruimte (tolerantie) bereke-
nen tussen vakwekarmen en de
kesp. Hoever dit model is en of
er al mee gerekend is weet ik niet
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Rank | Failure Mode Description Remark Low | Medium | High
2 The system is reaching | Very high flows will only be par- | In de risicoanalyse is reken- 0% 1% 10%
its limits tially held back by the barrier | ing gehouden met faalmecha-
during certain storms, the bar- | nismen die tot een mindere
rier will not fully submerge. Mul- | prestatie lijden. De kans op zo’n
tiple failing valves also limit its | mechanisme en de bijbehorende
use prestatie kun je met elkaar ver-
menigvuldigen (simpel gezegd).
Een slechte prestatie met een
kleine kans kan even goed zijn als
een grote prestatie met een grote
kans
2 Natural boundary con- | Sea level rise of more than 25 cm | - 1% 10% 30%
ditions Correlation between wind setup
and discharge at Lobith greater
than expected Longer storm du-
rations seiches, new insights into,
for example, probability distribu-
tions or suction forces. This can
have both positive and negative
effects stiffness of the retaining
wall is sometimes quite low
2 Redundancy Locomobile and “Pennebaan” | - 0.1% 1% 5%
single point of failure
2 Structural failure There is sometimes leeway here | - 0.02% 0.1% 1%

because a conservative approach
is taken when estimating mech-
anisms. Better to be a bit safer
than on the edge. Better to allow
some margin than to calculate
endlessly. Structurally, the bar-
rier consists of parallel and series
systems. Assumptions have been
made for this. Verifying these is
worthwhile.
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Departure fails due to

Truss arms and sill make contact
due to contact between consoles
and seats Resonance of water in
the dock entanglement of cables
from shore to locomotive

0.1%

1%

5%

Submerging fails due
to

Incorrect matrix causing valves
not to open incorrect matrix
causing the barrier to submerge
too unevenly or too quickly brief
outlier in inclinometers Unjusti-
fied or incorrect human interven-
tion Too much sediment on the
bottom

0.1%

5%

10%

Floating fails due to

Unjustified or incorrect human
intervention pre-tension not re-
duced in time due to pre-tension
reduced asymmetrically due to
retaining wall floats up too un-
evenly due to

1%

5%

10%

Readiness for second
peak fails due to

Docking (tolerances), closing
dock gate, to rest position

0.1%

1%

2%

Invalid failure charac-
terization due to data

gaps

Failures are modeled using as-
sumed or outdated data; field be-
havior (e.g., wear-out) diverges
from model assumptions

Ik zou willen pleiten voor een
“landelijk” programma waarbij je
faaldata gaat updaten a.d.h.v.
de praktijk. RWS heeft heel
veel objecten, dus heel veel
data. Idem aandacht voor
de storingsvoorspellende groothe-
den. Hiermee kun je faalgedrag
en faalmoment voorspellen. Zie
ook volgende punt

1%

10%

20%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Model error due to in-
complete data

Failure behavior of components
is incorrectly modeled due to un-
availability of detailed degrada-
tion or diagnostic data.

1%

10%

20%

Incomplete risk-based
inspection implementa-
tion

RBI principles not fully em-
bedded; inspection frequency or
method not adjusted to risk pro-
file, leading to insufficient PF in-
terval knowledge.

1%

5%

10%

Lack of insight into
ageing effects

Long-term degradation mecha-
nisms (e.g., fatigue, corrosion un-
der insulation, seal aging) not
well understood or incorporated
into performance modeling.

5%

20%

40%

Ignoring stronger ev-
idence than the RA
analysis.

The RA analysis seems to have a
more important role in decision-
making than real evidence (dam-
ages, test results, etc). Given the
weaknesses of RA analysis (based
on not-representative data), this
likely results in decision errors
(P=1). Whether decision errors
result in a flood is not that likely
(P=10-5). Very uncertain about
this risk.

Ra analyse zou je moeten toet-
sen aan wat je in de praktijk
waarneemt, je moet kijken naar
de kans op falen gegeven een
sluitvraag. Als je echt een grote
kans op menselijke beslisfouten
hebt dan zal dit getal stuk groter
moeten zijn

5%

10%

20%

Preconditions of RA
analysis not met

Assumptions from the RA (Risk
Assessment) are not being fol-
lowed Probo not properly exe-
cuted Spare parts are a bit of an
issue

10%

15%

30%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

99 points

Represents all findings related to
the closures. Some have been
resolved, some have not and/or
seem to be floating (unresolved)
The question is whether analysis
capacity within RWS is sufficient

10%

20%

40%

Lessons learned forgot-
ten

For example, BesW Many prob-
lems were encountered with syn-
chronization, timing, and com-
munication. These aspects are
often underestimated in the sec-
tor. The risk is that these are not
properly accounted for in design
and testing.

10%

20%

40%

Calculation methods

Model accuracy not included in
the calculations, Affects MHW
(Mean High Water) and flood
probabilities and risks Cutsets
are truncated at 3 levels, which
may lead to underestimation
This was corrected for Hartel
Forecast inaccuracy for Rotter-
dam is increasing

Het is niet gezegd dat deze groter
wordt, maar ALS deze groter
wordt is dat een vervelende waar
je iets mee moet

5%

10%

40%

Failure
analysis

probability

Example: Influence of temper-
ature on failure rate not in-
cluded Failure data is outdated
Failure-predictive indicators are
no longer being analyzed, which
means impending failures go un-
noticed

5%

10%

20%

Storm conditions

it’s unknown how the MK func-
tions in a normative storm

15%

20%

25%
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Rank | Failure Mode Description Remark Low | Medium | High
4 Underestimated phe- | Mystery force: Integral calcula- | Onder bescheiden condities lijkt 1% 10% 20%
nomena tion has never been finished het mee te vallen. De combinatie
met golven en wind is nog niet
uitvoerig onderzocht
5 Incorrect Maintenance | Errors or shortcuts in main- | - 5% 20% 40%
Execution tenance activities introduce or
leave latent faults that impair fu-
ture performance. errors made
during maintenance that were
not discovered during testing
5 Unavailability due to | Parts of the barrier are unavail- | Kan, er is een eis opgenomen; | 0.1% 1% 5%
maintenance able during “not-storm season” | zomerseizoen, kans op niet
Every 25 years an important | beschikbaarheid niet meer dan
item of for instance the locomo- | eens per 10 jaar. Omgerekend
bile not on site (1/25), probabil- | eens per 10 jaar mar de kering
ity of storm being in the summer | 3 maanden niet beschikbaar zijn
(1/100) in de zomermaanden. (nalezen
in contract BD-001)
5 Maintenance  season | Too little time to restore the | - 1% 5% 10%
too short barrier, or job done improperly

(/under stress), resulting in a
higher failure probability. Be-
cause there is no report on the
HAT I do not know the cur-
rent estimate on this. Current
probability of a failure to close
(1/100) x percentage hardware
failure (50%) / conservatism (fac-
tor 10) x maintenance error per-
centage (50%) x factor for more
stress (2)
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Other  unidentifiable
events left out

Inherent incompletenes of cur-
rent RA-analysis due to things
that are not yet identifyable.
Happened in the past as well
where “new” phenomona’s have
been identified. How do we know
we have everything?

1%

5%

10%
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Table D.3: Table of input from SEJ 2nd round 2nd respondent

Rank | Failure Mode Description Remark Low Medium | High
1 Decision making The wrong decision is made by | - 1% 3% 10%
the operators while in operation
1 Working in storm sea- | It can be too much for people to | - 0.2% 1% 5%
son leads to wrong de- | oversee
cision
1 Human error probabil- | Do the people have the right | - 2% 5% 10%
ity background, education, and
training? ... Knowledge strategy
is failing
1 Forecasts for Rotter- | BOS incorrectly selects closure | - 0.2% 1% 5%
dam/Dordrecht incor- | timing due to software error and
rect due to human er- | complex water level pattern. Se-
ror iche or pipe surge influences the
decision.
1 Sensor/Data Fault Un- | Sensor data leads to incorrect de- | - 0.2% 1% 5%
detected cisions; may go undetected if re-
dundancy/diagnostics are insuffi-
cient.
2 Structural integrity The effects of losing sand is un- | - 2% 5% 10%
known
2 Sinking of the floating | Failures during test storms can | - 0.01% 0.2% 2%

sector gate

damage the barrier permanently
in rare cases. Estimated storm
frequency: 1072 /year.
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Rank | Failure Mode Description Remark Low Medium | High
2 Dormant phenomena Condition of retaining structures, | - 0.5% 2% 6%
condition of drainage, condition
of cofferdam, condition of HWK,
damaged anchor rods corro-
sion, Wear on Hempaquick hinge
Hinge control is failure-prone,
groundwater behavior may be ab-
normal
2 Obstacles on  the | - - 1% 2% 5%
threshold are
(wrongly) not  be-
ing inspected.
2 Stalling of dock door In stormy weather, the catch | - 1% 2% 5%
can end up on the wrong side
of the rail. Limit switches not
triggered due to excessive load
during opening caused by heavy
waves and drop control system
failure due to
2 Configuration parame- | Can lead to undesirable and un- | - 2% 6% 10%
ters not updated/de- | expected behavior think of sink-
signed ing matrices, fenders, and trim
correction
2 Tolerances Deformation of the KW may | - 0.1% 0.5% 2%
be underestimated, truss arms
bouncing on the sill
2 The system is reaching | Very high flows will only be par- | - 0.3% 1.5% 4%

its limits

tially held back by the barrier
during certain storms, the bar-
rier will not fully submerge. Mul-
tiple failing valves also limit its
use
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Natural boundary con-
ditions

Sea level rise of more than 25 cm
Correlation between wind setup
and discharge at Lobith greater
than expected Longer storm du-
rations seiches, new insights into,
for example, probability distribu-
tions or suction forces. This can
have both positive and negative
effects stiffness of the retaining
wall is sometimes quite low

0.2%

1%

3%

Redundancy

Locomobile and “Pennebaan”
single point of failure

1%

2%

5%

Structural failure

There is sometimes leeway here
because a conservative approach
is taken when estimating mech-
anisms. Better to be a bit safer
than on the edge. Better to allow
some margin than to calculate
endlessly. Structurally, the bar-
rier consists of parallel and series
systems. Assumptions have been
made for this. Verifying these is
worthwhile.

0.01%

1%

2%

Departure fails due to

Truss arms and sill make contact
due to contact between consoles
and seats Resonance of water in
the dock entanglement of cables
from shore to locomotive

0.1%

1%

5%
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Rank | Failure Mode Description Remark Low Medium | High
2 Submerging fails due | Incorrect matrix causing valves | - 0.5% 2% 3%
to not to open incorrect matrix
causing the barrier to submerge
too unevenly or too quickly brief
outlier in inclinometers Unjusti-
fied or incorrect human interven-
tion Too much sediment on the
bottom
2 Floating fails due to Unjustified or incorrect human | - 0.5% 2% 6%
intervention pre-tension not re-
duced in time due to pre-tension
reduced asymmetrically due to
retaining wall floats up too un-
evenly due to
2 Readiness for second | Docking (tolerances), closing | - 0.5% 2% 6%
peak fails due to dock gate, to rest position
3 Invalid failure charac- | Failures are modeled using as- | - 0.5% 2% 6%
terization due to data | sumed or outdated data; field be-
gaps havior (e.g., wear-out) diverges
from model assumptions
3 Model error due to in- | Failure behavior of components | - 0.3% 1.5% 4%
complete data is incorrectly modeled due to un-
availability of detailed degrada-
tion or diagnostic data.
3 Incomplete risk-based | RBI principles not fully em- | - 0.2% 1% 3%

inspection implementa-
tion

bedded; inspection frequency or
method not adjusted to risk pro-
file, leading to insufficient PF in-
terval knowledge.

punoi pug r4s woij indut Jo sa[qel. 'z'd

66



Rank

Failure Mode

Description

Remark

Low

Medium

High

Lack of insight into
ageing effects

Long-term degradation mecha-
nisms (e.g., fatigue, corrosion un-
der insulation, seal aging) not
well understood or incorporated
into performance modeling.

0.3%

1%

4%

Ignoring stronger ev-
idence than the RA
analysis.

The RA analysis seems to have a
more important role in decision-
making than real evidence (dam-
ages, test results, etc). Given the
weaknesses of RA analysis (based
on not-representative data), this
likely results in decision errors
(P=1). Whether decision errors
result in a flood is not that likely
(P=10-5). Very uncertain about
this risk.

0.001%

0.01%

1%

Preconditions of RA
analysis not met

Assumptions from the RA (Risk
Assessment) are not being fol-
lowed Probo not properly exe-
cuted Spare parts are a bit of an
issue

1%

4%

10%

99 points

Represents all findings related to
the closures. Some have been
resolved, some have not and/or
seem to be floating (unresolved)
The question is whether analysis
capacity within RWS is sufficient

%

7%

7%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Lessons learned forgot-
ten

For example, BesW Many prob-
lems were encountered with syn-
chronization, timing, and com-
munication. These aspects are
often underestimated in the sec-
tor. The risk is that these are not
properly accounted for in design
and testing.

%

7%

7%

Calculation methods

Model accuracy not included in
the calculations, Affects MHW
(Mean High Water) and flood
probabilities and risks Cutsets
are truncated at 3 levels, which
may lead to underestimation
This was corrected for Hartel
Forecast inaccuracy for Rotter-
dam is increasing

0.2%

1%

5%

Failure probability
analysis

Example: Influence of temper-
ature on failure rate not in-
cluded Failure data is outdated
Failure-predictive indicators are
no longer being analyzed, which
means impending failures go un-
noticed

0.3%

1%

4%

Storm conditions

it’s unknown how the MK func-
tions in a normative storm

%

%

%

Underestimated phe-
nomena

Mystery force: Integral calcula-
tion has never been finished

%

%

%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Incorrect Maintenance
Execution

Errors or shortcuts in main-
tenance activities introduce or
leave latent faults that impair fu-
ture performance. errors made
during maintenance that were
not discovered during testing

0.1%

0.3%

1.5%

Unavailability due to
maintenance

Parts of the barrier are unavail-
able during “not-storm season”
Every 25 years an important
item of for instance the locomo-
bile not on site (1/25), probabil-
ity of storm being in the summer
(1/100)

0.04%

0.04%

0.04%

Maintenance  season
too short

Too little time to restore the
barrier, or job done improperly
(/under stress), resulting in a
higher failure probability. Be-
cause there is no report on the
HAT I do not know the cur-
rent estimate on this. Current
probability of a failure to close
(1/100) x percentage hardware
failure (50%) / conservatism (fac-
tor 10) x maintenance error per-
centage (50%) x factor for more
stress (2)

2%

5%

™%

Other  unidentifiable
events left out

Inherent incompletenes of cur-
rent RA-analysis due to things
that are not yet identifyable.
Happened in the past as well
where “new” phenomona’s have
been identified. How do we know
we have everything?

0.3%

1%

4%
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Table D.4: Table of input from SEJ 2nd round 3rd respondent

Rank

Failure Mode

Description

Remark

Low

Medium

High

Decision making

The wrong decision is made by
the operators while in operation

Although I think wrong decisions
in the operation are likely, I
don’t think this is very likely to
result in a coastal flood. Rather,
my estimate is that the current
analysis is conservative regarding
closure decisions. Based on an
old analysis, T expect the current
contribution to be approximately
5%, my estimate is that this is
almost neglegible, thus: -5% of
the current estimate of approx.
1/100 per request.

-10%

-5%

0%

Working in storm sea-
son leads to wrong de-
cision

It can be too much for people to
oversee

I have some difficulties with the
event description, what is wrong?
I expect that the undesired event
is something like: maintenance
is executed while a storm is ap-
proaching, which can either be
in summer or winter. My es-
timate for unavailability due to
maintenance in summer was 4%
of 1/100. To include winter I in-
crease this with 1%.

0.05%

5%

40%

Human error probabil-
ity

Do the people have the right
background, education, and
training? ... Knowledge strategy
is failing

People having the “right” back-
ground, education and training is
relevant for both operation and
maintenance. Previously I esti-
mated 2% for maintenance prob-
lems due to stress. This seems to
have a higher impact (x2)

0.04%

4%

20%
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Rank | Failure Mode Description Remark Low Medium High
1 Forecasts for Rotter- | BOS incorrectly selects closure | - 1% 5.5% 10%
dam/Dordrecht incor- | timing due to software error and
rect due to human er- | complex water level pattern. Se-
ror iche or pipe surge influences the
decision.
1 Sensor/Data Fault Un- | Sensor data leads to incorrect de- | - 0.2% 1% 5%
detected cisions; may go undetected if re-
dundancy/diagnostics are insuffi-
cient.
2 Structural integrity The effects of losing sand is un- | I have too little information to % % %
known judge this risk
2 Sinking of the floating | Failures during test storms can | - 0.00000001% | 0.0001% | 0.001%
sector gate damage the barrier permanently
in rare cases. Estimated storm
frequency: 1072 /year.
2 Dormant phenomena Condition of retaining structures, | - % % %
condition of drainage, condition
of cofferdam, condition of HWK,
damaged anchor rods corro-
sion, Wear on Hempaquick hinge
Hinge control is failure-prone,
groundwater behavior may be ab-
normal
2 Obstacles on  the | - Leidraad Kunstwerken: 10-2 per 0.01% 1% 5%

threshold are
(wrongly) not  be-
ing inspected.

request. I estimate that this
is a factor 100 smaller for the
Maeslant barrier due to its “vac-
uum” function (floating above
sediment) and its size
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Rank | Failure Mode Description Remark Low Medium High
2 Stalling of dock door In stormy weather, the catch | Iestimate that the dock door can -10% -10% 0%
can end up on the wrong side | likely be removed in case of emer-
of the rail. Limit switches not | gency. I expect the current esti-
triggered due to excessive load | mate to be conservative here. I
during opening caused by heavy | assume 10% of the current esti-
waves and drop control system | mate to be due to failures of the
failure due to dock door.
2 Configuration parame- | Can lead to undesirable and un- | - 1% 5.5% 10%
ters not updated/de- | expected behavior think of sink-
signed ing matrices, fenders, and trim
correction
2 Tolerances Deformation of the KW may | I recognize the importance of 0% 0.01% 1%
be underestimated, truss arms | this, and addressing this could
bouncing on the sill improve maintenance. However,
I think this is very unlikely to re-
sult in a coastal flood
2 The system is reaching | Very high flows will only be par- | I think this is very unlikey to re- 0% 0% 0%
its limits tially held back by the barrier | sult in a flood
during certain storms, the bar-
rier will not fully submerge. Mul-
tiple failing valves also limit its
use
2 Natural boundary con- | Sea level rise of more than 25 cm | This is - principally - not in- % % %

ditions

Correlation between wind setup
and discharge at Lobith greater
than expected Longer storm du-
rations seiches, new insights into,
for example, probability distribu-
tions or suction forces. This can
have both positive and negative
effects stiffness of the retaining
wall is sometimes quite low

cluded in the current RA - anal-
ysis, it would need a different ap-
proach, like Bakker et al. (2025).
At this moment, this is impossi-
ble for me to estimate.
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Rank | Failure Mode Description Remark Low Medium High
2 Redundancy Locomobile and “Pennebaan” | - 1% 2% 3%
single point of failure
2 Structural failure There is sometimes leeway here | I think conservatism should only % % %
because a conservative approach | be allowed to keep modelling ef-
is taken when estimating mech- | forts low. I am not able to quan-
anisms. Better to be a bit safer | tify this as a risk.
than on the edge. Better to allow
some margin than to calculate
endlessly. Structurally, the bar-
rier consists of parallel and series
systems. Assumptions have been
made for this. Verifying these is
worthwhile.
2 Departure fails due to | Truss arms and sill make contact | What is meant here? Not clear % 7% 7%
due to contact between consoles | how this results in a coastal
and seats Resonance of water in | flood.
the dock entanglement of cables
from shore to locomotive
2 Submerging fails due | Incorrect matrix causing valves | What I find relevant here is that 0.2% 20% 40%

to

not to open incorrect matrix
causing the barrier to submerge
too unevenly or too quickly brief
outlier in inclinometers Unjusti-
fied or incorrect human interven-
tion Too much sediment on the
bottom

initial damages and issues are
not being used to improve the
current sinking matrix.  This
makes this risk relatively likely,
at least more likely than in the
current estimate. The current
RA analysis does assume some-
thing for failing to submerge, but
is this enough? I assume that
the ballast system currently ac-
counts for approximately 20% of
the total failure probability. I ex-
pect this to be doubled by the
current approach.
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Rank | Failure Mode Description Remark Low Medium High
2 Floating fails due to Unjustified or incorrect human | But how does this result in a % % %
intervention pre-tension not re- | flood?
duced in time due to pre-tension
reduced asymmetrically due to
retaining wall floats up too un-
evenly due to
2 Readiness for second | Docking (tolerances), closing | But how does this result in a % % %
peak fails due to dock gate, to rest position flood?
3 Invalid failure charac- | Failures are modeled using as- | I think this is a major deficiency % % 7%
terization due to data | sumed or outdated data; field be- | of the current analysis, and a ma-
gaps havior (e.g., wear-out) diverges | jor motivation to rebuild the RA
from model assumptions analysis. I can’t put a number
on it...
3 Model error due to in- | Failure behavior of components | - 1% 5.5% 10%
complete data is incorrectly modeled due to un-
availability of detailed degrada-
tion or diagnostic data.
3 Incomplete risk-based | RBI principles not fully em- | Another issue related to this: it 7% % %
inspection implementa- | bedded; inspection frequency or | is not know how well RBI prin-
tion method not adjusted to risk pro- | ciples are applied at those struc-
file, leading to insufficient PF in- | tures from which the data orig-
terval knowledge. inate. Therefore, impossible to
quantify.
3 Lack of insight into | Long-term degradation mecha- | - 1% 5.5% 10%

ageing effects

nisms (e.g., fatigue, corrosion un-
der insulation, seal aging) not
well understood or incorporated
into performance modeling.

punoi pug r4s woij indut Jo sa[qel. 'z'd

L01



Rank

Failure Mode

Description

Remark

Low

Medium

High

Ignoring stronger ev-
idence than the RA
analysis.

The RA analysis seems to have a
more important role in decision-
making than real evidence (dam-
ages, test results, etc). Given the
weaknesses of RA analysis (based
on not-representative data), this
likely results in decision errors
(P=1). Whether decision errors
result in a flood is not that likely
(P=10-5). Very uncertain about
this risk.

0.00000001%

0.001%

1%

Preconditions of RA
analysis not met

Assumptions from the RA (Risk
Assessment) are not being fol-
lowed Probo not properly exe-
cuted Spare parts are a bit of an
issue

I don’t think the influence of
ProBo is easy to quantify. I am
not able to, at least.

%

%

%

99 points

Represents all findings related to
the closures. Some have been
resolved, some have not and/or
seem to be floating (unresolved)
The question is whether analysis
capacity within RWS is sufficient

See above

%

%

%

Lessons learned forgot-
ten

For example, BesW Many prob-
lems were encountered with syn-
chronization, timing, and com-
munication. These aspects are
often underestimated in the sec-
tor. The risk is that these are not
properly accounted for in design
and testing.

See above

%

%

%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Calculation methods

Model accuracy not included in
the calculations, Affects MHW
(Mean High Water) and flood
probabilities and risks Cutsets
are truncated at 3 levels, which
may lead to underestimation
This was corrected for Hartel
Forecast inaccuracy for Rotter-
dam is increasing

1%

5.5%

10%

Failure
analysis

probability

Example: Influence of temper-
ature on failure rate not in-
cluded Failure data is outdated
Failure-predictive indicators are
no longer being analyzed, which
means impending failures go un-
noticed

1%

5.5%

10%

Storm conditions

it’s unknown how the MK func-
tions in a normative storm

Oh, so true! So difficult to quan-
tify.. I estimate 20%, but very
wide uncertainty bounds...

0.02%

20%

100%

Underestimated phe-
nomena

Mystery force: Integral calcula-
tion has never been finished

I think this is part of some of my
intitial estimates.

%

%

%

Incorrect Maintenance
Execution

Errors or shortcuts in main-
tenance activities introduce or
leave latent faults that impair fu-
ture performance. errors made
during maintenance that were
not discovered during testing

I think these are included in the
data

0%

0%

0%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Unavailability due to
maintenance

Parts of the barrier are unavail-
able during “not-storm season”
Every 25 years an important
item of for instance the locomo-
bile not on site (1/25), probabil-
ity of storm being in the summer

(1/100)

0.0004%

0.04%

0.4%

Maintenance
too short

season

Too little time to restore the
barrier, or job done improperly
(/under stress), resulting in a
higher failure probability. Be-
cause there is no report on the
HAT I do not know the cur-
rent estimate on this. Current
probability of a failure to close
(1/100) x percentage hardware
failure (50%) / conservatism (fac-
tor 10) x maintenance error per-
centage (50%) x factor for more
stress (2)

0.00001%

0.02%

0.1%

Other  unidentifiable
events left out

Inherent incompletenes of cur-
rent RA-analysis due to things
that are not yet identifyable.
Happened in the past as well
where “new” phenomona’s have
been identified. How do we know
we have everything?

We don’t :-). In general, this is
a limitation of almost every ap-
proach, and an RA analysis is
probably the only way to deal
with that. Important note: The
idea is that if there is a functional
decomposition everything within
that function is addressed. The
current RA analysis is not set-up
like that. I don’t know how to
quantify this

0.3%

1%

4%
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Table D.5: Table of input from SEJ 2nd round 4th respondent

Rank | Failure Mode Description Remark Low | Medium | High
1 Decision making The wrong decision is made by | - 0.5% 10% 20%
the operators while in operation
1 Working in storm sea- | It can be too much for people to | - 0.5% 1% 1.5%
son leads to wrong de- | oversee
cision
1 Human error probabil- | Do the people have the right | - 2% 5% 8%
ity background, education, and
training? ... Knowledge strategy
is failing
1 Forecasts for Rotter- | BOS incorrectly selects closure | - 4% ™% 10%
dam/Dordrecht incor- | timing due to software error and
rect due to human er- | complex water level pattern. Se-
ror iche or pipe surge influences the
decision.
1 Sensor/Data Fault Un- | Sensor data leads to incorrect de- | - 0.1% 0.5% 1%
detected cisions; may go undetected if re-
dundancy/diagnostics are insuffi-
cient.
2 Structural integrity The effects of losing sand is un- | - 5% 6% 8%
known
2 Sinking of the floating | Failures during test storms can | - 0.1% 0.5% 1%

sector gate

damage the barrier permanently
in rare cases. Estimated storm
frequency: 1072 /year.

punoi pug r4s woij indut Jo sa[qel. 'z'd

111



Rank | Failure Mode Description Remark Low | Medium | High
2 Dormant phenomena Condition of retaining structures, | - 5% ™% 10%
condition of drainage, condition
of cofferdam, condition of HWK,
damaged anchor rods corro-
sion, Wear on Hempaquick hinge
Hinge control is failure-prone,
groundwater behavior may be ab-
normal
2 Obstacles on  the | - . 0.1% 1% 2%
threshold are
(wrongly) not  be-
ing inspected.
2 Stalling of dock door In stormy weather, the catch | - 2% ™% 10%
can end up on the wrong side
of the rail. Limit switches not
triggered due to excessive load
during opening caused by heavy
waves and drop control system
failure due to
2 Configuration parame- | Can lead to undesirable and un- | - 1% 3% 5%
ters not updated/de- | expected behavior think of sink-
signed ing matrices, fenders, and trim
correction
2 Tolerances Deformation of the KW may | - 2% 8% 10%
be underestimated, truss arms
bouncing on the sill
2 The system is reaching | Very high flows will only be par- | - 2% 4% 6%

its limits

tially held back by the barrier
during certain storms, the bar-
rier will not fully submerge. Mul-
tiple failing valves also limit its
use
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Natural boundary con-
ditions

Sea level rise of more than 25 cm
Correlation between wind setup
and discharge at Lobith greater
than expected Longer storm du-
rations seiches, new insights into,
for example, probability distribu-
tions or suction forces. This can
have both positive and negative
effects stiffness of the retaining
wall is sometimes quite low

2%

%

10%

Redundancy

Locomobile and “Pennebaan”
single point of failure

0.5%

5%

6%

Structural failure

There is sometimes leeway here
because a conservative approach
is taken when estimating mech-
anisms. Better to be a bit safer
than on the edge. Better to allow
some margin than to calculate
endlessly. Structurally, the bar-
rier consists of parallel and series
systems. Assumptions have been
made for this. Verifying these is
worthwhile.

1%

5%

10%

Departure fails due to

Truss arms and sill make contact
due to contact between consoles
and seats Resonance of water in
the dock entanglement of cables
from shore to locomotive

0.5%

5%

7%
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Rank | Failure Mode Description Remark Low | Medium | High
2 Submerging fails due | Incorrect matrix causing valves | - 0.5% 2% 3%
to not to open incorrect matrix
causing the barrier to submerge
too unevenly or too quickly brief
outlier in inclinometers Unjusti-
fied or incorrect human interven-
tion Too much sediment on the
bottom
2 Floating fails due to Unjustified or incorrect human | - 1% 5% 10%
intervention pre-tension not re-
duced in time due to pre-tension
reduced asymmetrically due to
retaining wall floats up too un-
evenly due to
2 Readiness for second | Docking (tolerances), closing | - 1% 5% 25%
peak fails due to dock gate, to rest position
3 Invalid failure charac- | Failures are modeled using as- | - 1% 5% 10%
terization due to data | sumed or outdated data; field be-
gaps havior (e.g., wear-out) diverges
from model assumptions
3 Model error due to in- | Failure behavior of components | - 0.5% 5% 10%
complete data is incorrectly modeled due to un-
availability of detailed degrada-
tion or diagnostic data.
3 Incomplete risk-based | RBI principles not fully em- | - 0.5% 2% 5%

inspection implementa-
tion

bedded; inspection frequency or
method not adjusted to risk pro-
file, leading to insufficient PF in-
terval knowledge.
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Lack of insight into
ageing effects

Long-term degradation mecha-
nisms (e.g., fatigue, corrosion un-
der insulation, seal aging) not
well understood or incorporated
into performance modeling.

0%

2%

%

Ignoring stronger ev-
idence than the RA
analysis.

The RA analysis seems to have a
more important role in decision-
making than real evidence (dam-
ages, test results, etc). Given the
weaknesses of RA analysis (based
on not-representative data), this
likely results in decision errors
(P=1). Whether decision errors
result in a flood is not that likely
(P=10-5). Very uncertain about
this risk.

1%

1.5%

2%

Preconditions of RA
analysis not met

Assumptions from the RA (Risk
Assessment) are not being fol-
lowed Probo not properly exe-
cuted Spare parts are a bit of an
issue

2%

5%

10%

99 points

Represents all findings related to
the closures. Some have been
resolved, some have not and/or
seem to be floating (unresolved)
The question is whether analysis
capacity within RWS is sufficient

1%

5%

10%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Lessons learned forgot-
ten

For example, BesW Many prob-
lems were encountered with syn-
chronization, timing, and com-
munication. These aspects are
often underestimated in the sec-
tor. The risk is that these are not
properly accounted for in design
and testing.

1%

5%

10%

Calculation methods

Model accuracy not included in
the calculations, Affects MHW
(Mean High Water) and flood
probabilities and risks Cutsets
are truncated at 3 levels, which
may lead to underestimation
This was corrected for Hartel
Forecast inaccuracy for Rotter-
dam is increasing

1%

5%

10%

Failure probability
analysis

Example: Influence of temper-
ature on failure rate not in-
cluded Failure data is outdated
Failure-predictive indicators are
no longer being analyzed, which
means impending failures go un-
noticed

1%

5%

10%

Storm conditions

it’s unknown how the MK func-
tions in a normative storm

10%

20%

25%

Underestimated phe-
nomena

Mystery force: Integral calcula-
tion has never been finished

1%

5%

10%
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Rank

Failure Mode

Description

Remark

Low

Medium

High

Incorrect Maintenance
Execution

Errors or shortcuts in main-
tenance activities introduce or
leave latent faults that impair fu-
ture performance. errors made
during maintenance that were
not discovered during testing

1%

2%

5%

Unavailability due to
maintenance

Parts of the barrier are unavail-
able during “not-storm season”
Every 25 years an important
item of for instance the locomo-
bile not on site (1/25), probabil-
ity of storm being in the summer
(1/100)

0.01%

1%

2%

Maintenance  season
too short

Too little time to restore the
barrier, or job done improperly
(/under stress), resulting in a
higher failure probability. Be-
cause there is no report on the
HAT I do not know the cur-
rent estimate on this. Current
probability of a failure to close
(1/100) x percentage hardware
failure (50%) / conservatism (fac-
tor 10) x maintenance error per-
centage (50%) x factor for more
stress (2)

0.01%

1%

2%

Other  unidentifiable
events left out

Inherent incompletenes of cur-
rent RA-analysis due to things
that are not yet identifyable.
Happened in the past as well
where “new” phenomona’s have
been identified. How do we know
we have everything?

1%

5%

10%
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Event Lower bound | Median | Higher bound

Decision making -2.1% 2% 10%

Working in storm season leads to wrong decision 0.4% 3% 17%
Human error probability 2.3% 6% 15%

Forecasts for Rotterdam/Dordrecht incorrect due to human error 1.4% 4% 9%
Sensor/Data Fault Undetected 0.4% 3% 8%
constructional integrity 3.5% 6% 9%

Sinking of the floating sector gate 1.3% 6% 13%
Dormant phenomena 1.9% 6% 10%

Obstacles on the threshold are (wrongly) not being inspected. 0.5% 4% 7%
Stalling of dock door -1.5% 2% 8%

Configuration parameters not updated/designed 1.3% 5% 14%
Tolerances 0.8% 5% 11%

The system is reaching its limits 0.8% 2% %

Natural boundary conditions 1.1% 6% 14%
Redundancy 0.5% 3% 5%

Structural failure 0.4% 2% 4%

Departure fails due to 0.2% 2% 5%

Submerging fails due to 0.5% 8% 16%

Floating fails due to 0.7% 6% 12%

Readiness for second peak fails due to 0.5% 3% 11%
Invalid Failure Characterization due to Data Gaps 0.8% 6% 12%
Model Error due to Incomplete Data 0.6% 6% 11%
Incomplete Risk-Based Inspection Implementation 0.6% 3% 6%
Lack of Insight into Ageing Effects 1.8% 8% 17%
Ignoring stronger evidence than the RA analysis 1.5% 3% 6%
Preconditions of RA analysis not met 4.3% 8% 17%

99 points 5.5% 13% 25%

Lessons learned forgotten 5.5% 13% 25%

Calculation methods 2.1% 5% 18%

Failure probability analysis 2.1% 5% 11%

storm conditions 5% 20% 63%

Underestimated phenomena 1% 8% 15%

Incorrect Maintenance Execution 2% ™% 16%
Unavailability due to maintenance 0.0% 1% 2%
Maintenance season too short 0.8% 3% 5%

Other unidentifiable events left out 0.8% 4% 8%

Sum of ranges 49.2% 193% 459%

Average of ranges 1.4% 5% 13%

Table D.6: Averaged ranges per scenario with equal weighting given to all the experts




Appendix E

E.1. HEP tables

Table E.1: THERP human error probabilities for different task types.

Task Type Low HEP Nominal HEP High HEP
Simple detection 0.0010 0.010 0.03
Simple operation (e.g., button press) 0.0004 0.003 0.01
Routine operation 0.0010 0.010 0.10
Decision-making under time pressure 0.0100 0.100 0.30
Complex procedure execution 0.0100 0.200 0.50
Diagnosis of unfamiliar problem 0.0500 0.200 0.60
Omission of step in procedure 0.0030 0.010 0.10

Table E.2: Added Non-Closure Probabilities as calculated according to the methodology in Section 3.4.4

Machine Fail- Task Type HEP Level HEP Value | Added  Non-Closure
ure Probabil- Probability
ity

0.00 Simple detection Low HEP 0.0010 0.000000
0.00 Simple detection Low-Mid HEP 0.0055 0.000000
0.00 Simple detection Nominal HEP 0.0100 0.000000
0.00 Simple detection Mid-High HEP 0.0200 0.000000
0.00 Simple detection High HEP 0.0300 0.000000
0.00 Simple operation Low HEP 0.0004 0.000000
0.00 Simple operation Low-Mid HEP 0.0017 0.000000
0.00 Simple operation Nominal HEP 0.0030 0.000000
0.00 Simple operation Mid-High HEP 0.0065 0.000000
0.00 Simple operation High HEP 0.0100 0.000000
0.00 Routine operation Low HEP 0.0010 0.000000
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Machine Fail- Task Type HEP Level HEP Value | Added  Non-Closure
ure Probabil- Probability
ity

0.00 Routine operation Low-Mid HEP 0.0055 0.000000
0.00 Routine operation Nominal HEP 0.0100 0.000000
0.00 Routine operation Mid-High HEP 0.0550 0.000000
0.00 Routine operation High HEP 0.1000 0.000000
0.00 Decision-making under time pressure Low HEP 0.0100 0.000000
0.00 Decision-making under time pressure | Low-Mid HEP 0.0550 0.000000
0.00 Decision-making under time pressure | Nominal HEP 0.1000 0.000000
0.00 Decision-making under time pressure | Mid-High HEP 0.2000 0.000000
0.00 Decision-making under time pressure High HEP 0.3000 0.000000
0.00 Complex procedure execution Low HEP 0.0100 0.000000
0.00 Complex procedure execution Low-Mid HEP 0.1050 0.000000
0.00 Complex procedure execution Nominal HEP 0.2000 0.000000
0.00 Complex procedure execution Mid-High HEP 0.3500 0.000000
0.00 Complex procedure execution High HEP 0.5000 0.000000
0.00 Diagnoses of unfamiliar problem Low HEP 0.0500 0.000000
0.00 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.000000
0.00 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.000000
0.00 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.000000
0.00 Diagnoses of unfamiliar problem High HEP 0.6000 0.000000
0.00 Omission of step in procedure Low HEP 0.0030 0.000000
0.00 Omission of step in procedure Low-Mid HEP 0.0065 0.000000
0.00 Omission of step in procedure Nominal HEP 0.0100 0.000000
0.00 Omission of step in procedure Mid-High HEP 0.0550 0.000000
0.00 Omission of step in procedure High HEP 0.1000 0.000000
0.05 Simple detection Low HEP 0.0010 0.000050
0.05 Simple detection Low-Mid HEP 0.0055 0.000275
0.05 Simple detection Nominal HEP 0.0100 0.000500
0.05 Simple detection Mid-High HEP 0.0200 0.001000
0.05 Simple detection High HEP 0.0300 0.001500
0.05 Simple operation Low HEP 0.0004 0.000020
0.05 Simple operation Low-Mid HEP 0.0017 0.000085
0.05 Simple operation Nominal HEP 0.0030 0.000150
0.05 Simple operation Mid-High HEP 0.0065 0.000325
0.05 Simple operation High HEP 0.0100 0.000500
0.05 Routine operation Low HEP 0.0010 0.000050
0.05 Routine operation Low-Mid HEP 0.0055 0.000275
0.05 Routine operation Nominal HEP 0.0100 0.000500
0.05 Routine operation Mid-High HEP 0.0550 0.002750
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Machine Fail- Task Type HEP Level HEP Value | Added  Non-Closure
ure Probabil- Probability
ity

0.05 Routine operation High HEP 0.1000 0.005000
0.05 Decision-making under time pressure Low HEP 0.0100 0.000500
0.05 Decision-making under time pressure | Low-Mid HEP 0.0550 0.002750
0.05 Decision-making under time pressure | Nominal HEP 0.1000 0.005000
0.05 Decision-making under time pressure | Mid-High HEP 0.2000 0.010000
0.05 Decision-making under time pressure High HEP 0.3000 0.015000
0.05 Complex procedure execution Low HEP 0.0100 0.000500
0.05 Complex procedure execution Low-Mid HEP 0.1050 0.005250
0.05 Complex procedure execution Nominal HEP 0.2000 0.010000
0.05 Complex procedure execution Mid-High HEP 0.3500 0.017500
0.05 Complex procedure execution High HEP 0.5000 0.025000
0.05 Diagnoses of unfamiliar problem Low HEP 0.0500 0.002500
0.05 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.006250
0.05 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.010000
0.05 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.020000
0.05 Diagnoses of unfamiliar problem High HEP 0.6000 0.030000
0.05 Omission of step in procedure Low HEP 0.0030 0.000150
0.05 Omission of step in procedure Low-Mid HEP 0.0065 0.000325
0.05 Omission of step in procedure Nominal HEP 0.0100 0.000500
0.05 Omission of step in procedure Mid-High HEP 0.0550 0.002750
0.05 Omission of step in procedure High HEP 0.1000 0.005000
0.10 Simple detection Low HEP 0.0010 0.000100
0.10 Simple detection Low-Mid HEP 0.0055 0.000550
0.10 Simple detection Nominal HEP 0.0100 0.001000
0.10 Simple detection Mid-High HEP 0.0200 0.002000
0.10 Simple detection High HEP 0.0300 0.003000
0.10 Simple operation Low HEP 0.0004 0.000040
0.10 Simple operation Low-Mid HEP 0.0017 0.000170
0.10 Simple operation Nominal HEP 0.0030 0.000300
0.10 Simple operation Mid-High HEP 0.0065 0.000650
0.10 Simple operation High HEP 0.0100 0.001000
0.10 Routine operation Low HEP 0.0010 0.000100
0.10 Routine operation Low-Mid HEP 0.0055 0.000550
0.10 Routine operation Nominal HEP 0.0100 0.001000
0.10 Routine operation Mid-High HEP 0.0550 0.005500
0.10 Routine operation High HEP 0.1000 0.010000
0.10 Decision-making under time pressure Low HEP 0.0100 0.001000
0.10 Decision-making under time pressure | Low-Mid HEP 0.0550 0.005500
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Machine Fail- Task Type HEP Level HEP Value | Added  Non-Closure
ure Probabil- Probability
ity

0.10 Decision-making under time pressure | Nominal HEP 0.1000 0.010000
0.10 Decision-making under time pressure | Mid-High HEP 0.2000 0.020000
0.10 Decision-making under time pressure High HEP 0.3000 0.030000
0.10 Complex procedure execution Low HEP 0.0100 0.001000
0.10 Complex procedure execution Low-Mid HEP 0.1050 0.010500
0.10 Complex procedure execution Nominal HEP 0.2000 0.020000
0.10 Complex procedure execution Mid-High HEP 0.3500 0.035000
0.10 Complex procedure execution High HEP 0.5000 0.050000
0.10 Diagnoses of unfamiliar problem Low HEP 0.0500 0.005000
0.10 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.012500
0.10 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.020000
0.10 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.040000
0.10 Diagnoses of unfamiliar problem High HEP 0.6000 0.060000
0.10 Omission of step in procedure Low HEP 0.0030 0.000300
0.10 Omission of step in procedure Low-Mid HEP 0.0065 0.000650
0.10 Omission of step in procedure Nominal HEP 0.0100 0.001000
0.10 Omission of step in procedure Mid-High HEP 0.0550 0.005500
0.10 Omission of step in procedure High HEP 0.1000 0.010000
0.15 Simple detection Low HEP 0.0010 0.000150
0.15 Simple detection Low-Mid HEP 0.0055 0.000825
0.15 Simple detection Nominal HEP 0.0100 0.001500
0.15 Simple detection Mid-High HEP 0.0200 0.003000
0.15 Simple detection High HEP 0.0300 0.004500
0.15 Simple operation Low HEP 0.0004 0.000060
0.15 Simple operation Low-Mid HEP 0.0017 0.000255
0.15 Simple operation Nominal HEP 0.0030 0.000450
0.15 Simple operation Mid-High HEP 0.0065 0.000975
0.15 Simple operation High HEP 0.0100 0.001500
0.15 Routine operation Low HEP 0.0010 0.000150
0.15 Routine operation Low-Mid HEP 0.0055 0.000825
0.15 Routine operation Nominal HEP 0.0100 0.001500
0.15 Routine operation Mid-High HEP 0.0550 0.008250
0.15 Routine operation High HEP 0.1000 0.015000
0.15 Decision-making under time pressure Low HEP 0.0100 0.001500
0.15 Decision-making under time pressure | Low-Mid HEP 0.0550 0.008250
0.15 Decision-making under time pressure | Nominal HEP 0.1000 0.015000
0.15 Decision-making under time pressure | Mid-High HEP 0.2000 0.030000
0.15 Decision-making under time pressure High HEP 0.3000 0.045000
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0.15 Complex procedure execution Low HEP 0.0100 0.001500
0.15 Complex procedure execution Low-Mid HEP 0.1050 0.015750
0.15 Complex procedure execution Nominal HEP 0.2000 0.030000
0.15 Complex procedure execution Mid-High HEP 0.3500 0.052500
0.15 Complex procedure execution High HEP 0.5000 0.075000
0.15 Diagnoses of unfamiliar problem Low HEP 0.0500 0.007500
0.15 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.018750
0.15 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.030000
0.15 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.060000
0.15 Diagnoses of unfamiliar problem High HEP 0.6000 0.090000
0.15 Omission of step in procedure Low HEP 0.0030 0.000450
0.15 Omission of step in procedure Low-Mid HEP 0.0065 0.000975
0.15 Omission of step in procedure Nominal HEP 0.0100 0.001500
0.15 Omission of step in procedure Mid-High HEP 0.0550 0.008250
0.15 Omission of step in procedure High HEP 0.1000 0.015000
0.20 Simple detection Low HEP 0.0010 0.000200
0.20 Simple detection Low-Mid HEP 0.0055 0.001100
0.20 Simple detection Nominal HEP 0.0100 0.002000
0.20 Simple detection Mid-High HEP 0.0200 0.004000
0.20 Simple detection High HEP 0.0300 0.006000
0.20 Simple operation Low HEP 0.0004 0.000080
0.20 Simple operation Low-Mid HEP 0.0017 0.000340
0.20 Simple operation Nominal HEP 0.0030 0.000600
0.20 Simple operation Mid-High HEP 0.0065 0.001300
0.20 Simple operation High HEP 0.0100 0.002000
0.20 Routine operation Low HEP 0.0010 0.000200
0.20 Routine operation Low-Mid HEP 0.0055 0.001100
0.20 Routine operation Nominal HEP 0.0100 0.002000
0.20 Routine operation Mid-High HEP 0.0550 0.011000
0.20 Routine operation High HEP 0.1000 0.020000
0.20 Decision-making under time pressure Low HEP 0.0100 0.002000
0.20 Decision-making under time pressure | Low-Mid HEP 0.0550 0.011000
0.20 Decision-making under time pressure | Nominal HEP 0.1000 0.020000
0.20 Decision-making under time pressure | Mid-High HEP 0.2000 0.040000
0.20 Decision-making under time pressure High HEP 0.3000 0.060000
0.20 Complex procedure execution Low HEP 0.0100 0.002000
0.20 Complex procedure execution Low-Mid HEP 0.1050 0.021000
0.20 Complex procedure execution Nominal HEP 0.2000 0.040000
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0.20 Complex procedure execution Mid-High HEP 0.3500 0.070000
0.20 Complex procedure execution High HEP 0.5000 0.100000
0.20 Diagnoses of unfamiliar problem Low HEP 0.0500 0.010000
0.20 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.025000
0.20 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.040000
0.20 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.080000
0.20 Diagnoses of unfamiliar problem High HEP 0.6000 0.120000
0.20 Omission of step in procedure Low HEP 0.0030 0.000600
0.20 Omission of step in procedure Low-Mid HEP 0.0065 0.001300
0.20 Omission of step in procedure Nominal HEP 0.0100 0.002000
0.20 Omission of step in procedure Mid-High HEP 0.0550 0.011000
0.20 Omission of step in procedure High HEP 0.1000 0.020000
0.25 Simple detection Low HEP 0.0010 0.000250
0.25 Simple detection Low-Mid HEP 0.0055 0.001375
0.25 Simple detection Nominal HEP 0.0100 0.002500
0.25 Simple detection Mid-High HEP 0.0200 0.005000
0.25 Simple detection High HEP 0.0300 0.007500
0.25 Simple operation Low HEP 0.0004 0.000100
0.25 Simple operation Low-Mid HEP 0.0017 0.000425
0.25 Simple operation Nominal HEP 0.0030 0.000750
0.25 Simple operation Mid-High HEP 0.0065 0.001625
0.25 Simple operation High HEP 0.0100 0.002500
0.25 Routine operation Low HEP 0.0010 0.000250
0.25 Routine operation Low-Mid HEP 0.0055 0.001375
0.25 Routine operation Nominal HEP 0.0100 0.002500
0.25 Routine operation Mid-High HEP 0.0550 0.013750
0.25 Routine operation High HEP 0.1000 0.025000
0.25 Decision-making under time pressure Low HEP 0.0100 0.002500
0.25 Decision-making under time pressure | Low-Mid HEP 0.0550 0.013750
0.25 Decision-making under time pressure | Nominal HEP 0.1000 0.025000
0.25 Decision-making under time pressure | Mid-High HEP 0.2000 0.050000
0.25 Decision-making under time pressure High HEP 0.3000 0.075000
0.25 Complex procedure execution Low HEP 0.0100 0.002500
0.25 Complex procedure execution Low-Mid HEP 0.1050 0.026250
0.25 Complex procedure execution Nominal HEP 0.2000 0.050000
0.25 Complex procedure execution Mid-High HEP 0.3500 0.087500
0.25 Complex procedure execution High HEP 0.5000 0.125000
0.25 Diagnoses of unfamiliar problem Low HEP 0.0500 0.012500
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0.25 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.031250
0.25 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.050000
0.25 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.100000
0.25 Diagnoses of unfamiliar problem High HEP 0.6000 0.150000
0.25 Omission of step in procedure Low HEP 0.0030 0.000750
0.25 Omission of step in procedure Low-Mid HEP 0.0065 0.001625
0.25 Omission of step in procedure Nominal HEP 0.0100 0.002500
0.25 Omission of step in procedure Mid-High HEP 0.0550 0.013750
0.25 Omission of step in procedure High HEP 0.1000 0.025000
0.30 Simple detection Low HEP 0.0010 0.000300
0.30 Simple detection Low-Mid HEP 0.0055 0.001650
0.30 Simple detection Nominal HEP 0.0100 0.003000
0.30 Simple detection Mid-High HEP 0.0200 0.006000
0.30 Simple detection High HEP 0.0300 0.009000
0.30 Simple operation Low HEP 0.0004 0.000120
0.30 Simple operation Low-Mid HEP 0.0017 0.000510
0.30 Simple operation Nominal HEP 0.0030 0.000900
0.30 Simple operation Mid-High HEP 0.0065 0.001950
0.30 Simple operation High HEP 0.0100 0.003000
0.30 Routine operation Low HEP 0.0010 0.000300
0.30 Routine operation Low-Mid HEP 0.0055 0.001650
0.30 Routine operation Nominal HEP 0.0100 0.003000
0.30 Routine operation Mid-High HEP 0.0550 0.016500
0.30 Routine operation High HEP 0.1000 0.030000
0.30 Decision-making under time pressure Low HEP 0.0100 0.003000
0.30 Decision-making under time pressure | Low-Mid HEP 0.0550 0.016500
0.30 Decision-making under time pressure | Nominal HEP 0.1000 0.030000
0.30 Decision-making under time pressure | Mid-High HEP 0.2000 0.060000
0.30 Decision-making under time pressure High HEP 0.3000 0.090000
0.30 Complex procedure execution Low HEP 0.0100 0.003000
0.30 Complex procedure execution Low-Mid HEP 0.1050 0.031500
0.30 Complex procedure execution Nominal HEP 0.2000 0.060000
0.30 Complex procedure execution Mid-High HEP 0.3500 0.105000
0.30 Complex procedure execution High HEP 0.5000 0.150000
0.30 Diagnoses of unfamiliar problem Low HEP 0.0500 0.015000
0.30 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.037500
0.30 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.060000
0.30 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.120000
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0.30 Diagnoses of unfamiliar problem High HEP 0.6000 0.180000
0.30 Omission of step in procedure Low HEP 0.0030 0.000900
0.30 Omission of step in procedure Low-Mid HEP 0.0065 0.001950
0.30 Omission of step in procedure Nominal HEP 0.0100 0.003000
0.30 Omission of step in procedure Mid-High HEP 0.0550 0.016500
0.30 Omission of step in procedure High HEP 0.1000 0.030000
0.35 Simple detection Low HEP 0.0010 0.000350
0.35 Simple detection Low-Mid HEP 0.0055 0.001925
0.35 Simple detection Nominal HEP 0.0100 0.003500
0.35 Simple detection Mid-High HEP 0.0200 0.007000
0.35 Simple detection High HEP 0.0300 0.010500
0.35 Simple operation Low HEP 0.0004 0.000140
0.35 Simple operation Low-Mid HEP 0.0017 0.000595
0.35 Simple operation Nominal HEP 0.0030 0.001050
0.35 Simple operation Mid-High HEP 0.0065 0.002275
0.35 Simple operation High HEP 0.0100 0.003500
0.35 Routine operation Low HEP 0.0010 0.000350
0.35 Routine operation Low-Mid HEP 0.0055 0.001925
0.35 Routine operation Nominal HEP 0.0100 0.003500
0.35 Routine operation Mid-High HEP 0.0550 0.019250
0.35 Routine operation High HEP 0.1000 0.035000
0.35 Decision-making under time pressure Low HEP 0.0100 0.003500
0.35 Decision-making under time pressure | Low-Mid HEP 0.0550 0.019250
0.35 Decision-making under time pressure | Nominal HEP 0.1000 0.035000
0.35 Decision-making under time pressure | Mid-High HEP 0.2000 0.070000
0.35 Decision-making under time pressure High HEP 0.3000 0.105000
0.35 Complex procedure execution Low HEP 0.0100 0.003500
0.35 Complex procedure execution Low-Mid HEP 0.1050 0.036750
0.35 Complex procedure execution Nominal HEP 0.2000 0.070000
0.35 Complex procedure execution Mid-High HEP 0.3500 0.122500
0.35 Complex procedure execution High HEP 0.5000 0.175000
0.35 Diagnoses of unfamiliar problem Low HEP 0.0500 0.017500
0.35 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.043750
0.35 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.070000
0.35 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.140000
0.35 Diagnoses of unfamiliar problem High HEP 0.6000 0.210000
0.35 Omission of step in procedure Low HEP 0.0030 0.001050
0.35 Omission of step in procedure Low-Mid HEP 0.0065 0.002275
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0.35 Omission of step in procedure Nominal HEP 0.0100 0.003500
0.35 Omission of step in procedure Mid-High HEP 0.0550 0.019250
0.35 Omission of step in procedure High HEP 0.1000 0.035000
0.40 Simple detection Low HEP 0.0010 0.000400
0.40 Simple detection Low-Mid HEP 0.0055 0.002200
0.40 Simple detection Nominal HEP 0.0100 0.004000
0.40 Simple detection Mid-High HEP 0.0200 0.008000
0.40 Simple detection High HEP 0.0300 0.012000
0.40 Simple operation Low HEP 0.0004 0.000160
0.40 Simple operation Low-Mid HEP 0.0017 0.000680
0.40 Simple operation Nominal HEP 0.0030 0.001200
0.40 Simple operation Mid-High HEP 0.0065 0.002600
0.40 Simple operation High HEP 0.0100 0.004000
0.40 Routine operation Low HEP 0.0010 0.000400
0.40 Routine operation Low-Mid HEP 0.0055 0.002200
0.40 Routine operation Nominal HEP 0.0100 0.004000
0.40 Routine operation Mid-High HEP 0.0550 0.022000
0.40 Routine operation High HEP 0.1000 0.040000
0.40 Decision-making under time pressure Low HEP 0.0100 0.004000
0.40 Decision-making under time pressure | Low-Mid HEP 0.0550 0.022000
0.40 Decision-making under time pressure | Nominal HEP 0.1000 0.040000
0.40 Decision-making under time pressure | Mid-High HEP 0.2000 0.080000
0.40 Decision-making under time pressure High HEP 0.3000 0.120000
0.40 Complex procedure execution Low HEP 0.0100 0.004000
0.40 Complex procedure execution Low-Mid HEP 0.1050 0.042000
0.40 Complex procedure execution Nominal HEP 0.2000 0.080000
0.40 Complex procedure execution Mid-High HEP 0.3500 0.140000
0.40 Complex procedure execution High HEP 0.5000 0.200000
0.40 Diagnoses of unfamiliar problem Low HEP 0.0500 0.020000
0.40 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.050000
0.40 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.080000
0.40 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.160000
0.40 Diagnoses of unfamiliar problem High HEP 0.6000 0.240000
0.40 Omission of step in procedure Low HEP 0.0030 0.001200
0.40 Omission of step in procedure Low-Mid HEP 0.0065 0.002600
0.40 Omission of step in procedure Nominal HEP 0.0100 0.004000
0.40 Omission of step in procedure Mid-High HEP 0.0550 0.022000
0.40 Omission of step in procedure High HEP 0.1000 0.040000
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0.45 Simple detection Low HEP 0.0010 0.000450
0.45 Simple detection Low-Mid HEP 0.0055 0.002475
0.45 Simple detection Nominal HEP 0.0100 0.004500
0.45 Simple detection Mid-High HEP 0.0200 0.009000
0.45 Simple detection High HEP 0.0300 0.013500
0.45 Simple operation Low HEP 0.0004 0.000180
0.45 Simple operation Low-Mid HEP 0.0017 0.000765
0.45 Simple operation Nominal HEP 0.0030 0.001350
0.45 Simple operation Mid-High HEP 0.0065 0.002925
0.45 Simple operation High HEP 0.0100 0.004500
0.45 Routine operation Low HEP 0.0010 0.000450
0.45 Routine operation Low-Mid HEP 0.0055 0.002475
0.45 Routine operation Nominal HEP 0.0100 0.004500
0.45 Routine operation Mid-High HEP 0.0550 0.024750
0.45 Routine operation High HEP 0.1000 0.045000
0.45 Decision-making under time pressure Low HEP 0.0100 0.004500
0.45 Decision-making under time pressure | Low-Mid HEP 0.0550 0.024750
0.45 Decision-making under time pressure | Nominal HEP 0.1000 0.045000
0.45 Decision-making under time pressure | Mid-High HEP 0.2000 0.090000
0.45 Decision-making under time pressure High HEP 0.3000 0.135000
0.45 Complex procedure execution Low HEP 0.0100 0.004500
0.45 Complex procedure execution Low-Mid HEP 0.1050 0.047250
0.45 Complex procedure execution Nominal HEP 0.2000 0.090000
0.45 Complex procedure execution Mid-High HEP 0.3500 0.157500
0.45 Complex procedure execution High HEP 0.5000 0.225000
0.45 Diagnoses of unfamiliar problem Low HEP 0.0500 0.022500
0.45 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.056250
0.45 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.090000
0.45 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.180000
0.45 Diagnoses of unfamiliar problem High HEP 0.6000 0.270000
0.45 Omission of step in procedure Low HEP 0.0030 0.001350
0.45 Omission of step in procedure Low-Mid HEP 0.0065 0.002925
0.45 Omission of step in procedure Nominal HEP 0.0100 0.004500
0.45 Omission of step in procedure Mid-High HEP 0.0550 0.024750
0.45 Omission of step in procedure High HEP 0.1000 0.045000
0.50 Simple detection Low HEP 0.0010 0.000500
0.50 Simple detection Low-Mid HEP 0.0055 0.002750
0.50 Simple detection Nominal HEP 0.0100 0.005000
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0.50 Simple detection Mid-High HEP 0.0200 0.010000
0.50 Simple detection High HEP 0.0300 0.015000
0.50 Simple operation Low HEP 0.0004 0.000200
0.50 Simple operation Low-Mid HEP 0.0017 0.000850
0.50 Simple operation Nominal HEP 0.0030 0.001500
0.50 Simple operation Mid-High HEP 0.0065 0.003250
0.50 Simple operation High HEP 0.0100 0.005000
0.50 Routine operation Low HEP 0.0010 0.000500
0.50 Routine operation Low-Mid HEP 0.0055 0.002750
0.50 Routine operation Nominal HEP 0.0100 0.005000
0.50 Routine operation Mid-High HEP 0.0550 0.027500
0.50 Routine operation High HEP 0.1000 0.050000
0.50 Decision-making under time pressure Low HEP 0.0100 0.005000
0.50 Decision-making under time pressure | Low-Mid HEP 0.0550 0.027500
0.50 Decision-making under time pressure | Nominal HEP 0.1000 0.050000
0.50 Decision-making under time pressure | Mid-High HEP 0.2000 0.100000
0.50 Decision-making under time pressure High HEP 0.3000 0.150000
0.50 Complex procedure execution Low HEP 0.0100 0.005000
0.50 Complex procedure execution Low-Mid HEP 0.1050 0.052500
0.50 Complex procedure execution Nominal HEP 0.2000 0.100000
0.50 Complex procedure execution Mid-High HEP 0.3500 0.175000
0.50 Complex procedure execution High HEP 0.5000 0.250000
0.50 Diagnoses of unfamiliar problem Low HEP 0.0500 0.025000
0.50 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.062500
0.50 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.100000
0.50 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.200000
0.50 Diagnoses of unfamiliar problem High HEP 0.6000 0.300000
0.50 Omission of step in procedure Low HEP 0.0030 0.001500
0.50 Omission of step in procedure Low-Mid HEP 0.0065 0.003250
0.50 Omission of step in procedure Nominal HEP 0.0100 0.005000
0.50 Omission of step in procedure Mid-High HEP 0.0550 0.027500
0.50 Omission of step in procedure High HEP 0.1000 0.050000
0.60 Simple detection Low HEP 0.0010 0.000600
0.60 Simple detection Low-Mid HEP 0.0055 0.003300
0.60 Simple detection Nominal HEP 0.0100 0.006000
0.60 Simple detection Mid-High HEP 0.0200 0.012000
0.60 Simple detection High HEP 0.0300 0.018000
0.60 Simple operation Low HEP 0.0004 0.000240
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0.60 Simple operation Low-Mid HEP 0.0017 0.001020
0.60 Simple operation Nominal HEP 0.0030 0.001800
0.60 Simple operation Mid-High HEP 0.0065 0.003900
0.60 Simple operation High HEP 0.0100 0.006000
0.60 Routine operation Low HEP 0.0010 0.000600
0.60 Routine operation Low-Mid HEP 0.0055 0.003300
0.60 Routine operation Nominal HEP 0.0100 0.006000
0.60 Routine operation Mid-High HEP 0.0550 0.033000
0.60 Routine operation High HEP 0.1000 0.060000
0.60 Decision-making under time pressure Low HEP 0.0100 0.006000
0.60 Decision-making under time pressure | Low-Mid HEP 0.0550 0.033000
0.60 Decision-making under time pressure | Nominal HEP 0.1000 0.060000
0.60 Decision-making under time pressure | Mid-High HEP 0.2000 0.120000
0.60 Decision-making under time pressure High HEP 0.3000 0.180000
0.60 Complex procedure execution Low HEP 0.0100 0.006000
0.60 Complex procedure execution Low-Mid HEP 0.1050 0.063000
0.60 Complex procedure execution Nominal HEP 0.2000 0.120000
0.60 Complex procedure execution Mid-High HEP 0.3500 0.210000
0.60 Complex procedure execution High HEP 0.5000 0.300000
0.60 Diagnoses of unfamiliar problem Low HEP 0.0500 0.030000
0.60 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.075000
0.60 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.120000
0.60 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.240000
0.60 Diagnoses of unfamiliar problem High HEP 0.6000 0.360000
0.60 Omission of step in procedure Low HEP 0.0030 0.001800
0.60 Omission of step in procedure Low-Mid HEP 0.0065 0.003900
0.60 Omission of step in procedure Nominal HEP 0.0100 0.006000
0.60 Omission of step in procedure Mid-High HEP 0.0550 0.033000
0.60 Omission of step in procedure High HEP 0.1000 0.060000
0.65 Simple detection Low HEP 0.0010 0.000650
0.65 Simple detection Low-Mid HEP 0.0055 0.003575
0.65 Simple detection Nominal HEP 0.0100 0.006500
0.65 Simple detection Mid-High HEP 0.0200 0.013000
0.65 Simple detection High HEP 0.0300 0.019500
0.65 Simple operation Low HEP 0.0004 0.000260
0.65 Simple operation Low-Mid HEP 0.0017 0.001105
0.65 Simple operation Nominal HEP 0.0030 0.001950
0.65 Simple operation Mid-High HEP 0.0065 0.004225
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0.65 Simple operation High HEP 0.0100 0.006500
0.65 Routine operation Low HEP 0.0010 0.000650
0.65 Routine operation Low-Mid HEP 0.0055 0.003575
0.65 Routine operation Nominal HEP 0.0100 0.006500
0.65 Routine operation Mid-High HEP 0.0550 0.035750
0.65 Routine operation High HEP 0.1000 0.065000
0.65 Decision-making under time pressure Low HEP 0.0100 0.006500
0.65 Decision-making under time pressure | Low-Mid HEP 0.0550 0.035750
0.65 Decision-making under time pressure | Nominal HEP 0.1000 0.065000
0.65 Decision-making under time pressure | Mid-High HEP 0.2000 0.130000
0.65 Decision-making under time pressure High HEP 0.3000 0.195000
0.65 Complex procedure execution Low HEP 0.0100 0.006500
0.65 Complex procedure execution Low-Mid HEP 0.1050 0.068250
0.65 Complex procedure execution Nominal HEP 0.2000 0.130000
0.65 Complex procedure execution Mid-High HEP 0.3500 0.227500
0.65 Complex procedure execution High HEP 0.5000 0.325000
0.65 Diagnoses of unfamiliar problem Low HEP 0.0500 0.032500
0.65 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.081250
0.65 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.130000
0.65 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.260000
0.65 Diagnoses of unfamiliar problem High HEP 0.6000 0.390000
0.65 Omission of step in procedure Low HEP 0.0030 0.001950
0.65 Omission of step in procedure Low-Mid HEP 0.0065 0.004225
0.65 Omission of step in procedure Nominal HEP 0.0100 0.006500
0.65 Omission of step in procedure Mid-High HEP 0.0550 0.035750
0.65 Omission of step in procedure High HEP 0.1000 0.065000
0.70 Simple detection Low HEP 0.0010 0.000700
0.70 Simple detection Low-Mid HEP 0.0055 0.003850
0.70 Simple detection Nominal HEP 0.0100 0.007000
0.70 Simple detection Mid-High HEP 0.0200 0.014000
0.70 Simple detection High HEP 0.0300 0.021000
0.70 Simple operation Low HEP 0.0004 0.000280
0.70 Simple operation Low-Mid HEP 0.0017 0.001190
0.70 Simple operation Nominal HEP 0.0030 0.002100
0.70 Simple operation Mid-High HEP 0.0065 0.004550
0.70 Simple operation High HEP 0.0100 0.007000
0.70 Routine operation Low HEP 0.0010 0.000700
0.70 Routine operation Low-Mid HEP 0.0055 0.003850
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0.70 Routine operation Nominal HEP 0.0100 0.007000
0.70 Routine operation Mid-High HEP 0.0550 0.038500
0.70 Routine operation High HEP 0.1000 0.070000
0.70 Decision-making under time pressure Low HEP 0.0100 0.007000
0.70 Decision-making under time pressure | Low-Mid HEP 0.0550 0.038500
0.70 Decision-making under time pressure | Nominal HEP 0.1000 0.070000
0.70 Decision-making under time pressure | Mid-High HEP 0.2000 0.140000
0.70 Decision-making under time pressure High HEP 0.3000 0.210000
0.70 Complex procedure execution Low HEP 0.0100 0.007000
0.70 Complex procedure execution Low-Mid HEP 0.1050 0.073500
0.70 Complex procedure execution Nominal HEP 0.2000 0.140000
0.70 Complex procedure execution Mid-High HEP 0.3500 0.245000
0.70 Complex procedure execution High HEP 0.5000 0.350000
0.70 Diagnoses of unfamiliar problem Low HEP 0.0500 0.035000
0.70 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.087500
0.70 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.140000
0.70 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.280000
0.70 Diagnoses of unfamiliar problem High HEP 0.6000 0.420000
0.70 Omission of step in procedure Low HEP 0.0030 0.002100
0.70 Omission of step in procedure Low-Mid HEP 0.0065 0.004550
0.70 Omission of step in procedure Nominal HEP 0.0100 0.007000
0.70 Omission of step in procedure Mid-High HEP 0.0550 0.038500
0.70 Omission of step in procedure High HEP 0.1000 0.070000
0.75 Simple detection Low HEP 0.0010 0.000750
0.75 Simple detection Low-Mid HEP 0.0055 0.004125
0.75 Simple detection Nominal HEP 0.0100 0.007500
0.75 Simple detection Mid-High HEP 0.0200 0.015000
0.75 Simple detection High HEP 0.0300 0.022500
0.75 Simple operation Low HEP 0.0004 0.000300
0.75 Simple operation Low-Mid HEP 0.0017 0.001275
0.75 Simple operation Nominal HEP 0.0030 0.002250
0.75 Simple operation Mid-High HEP 0.0065 0.004875
0.75 Simple operation High HEP 0.0100 0.007500
0.75 Routine operation Low HEP 0.0010 0.000750
0.75 Routine operation Low-Mid HEP 0.0055 0.004125
0.75 Routine operation Nominal HEP 0.0100 0.007500
0.75 Routine operation Mid-High HEP 0.0550 0.041250
0.75 Routine operation High HEP 0.1000 0.075000
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0.75 Decision-making under time pressure Low HEP 0.0100 0.007500
0.75 Decision-making under time pressure | Low-Mid HEP 0.0550 0.041250
0.75 Decision-making under time pressure | Nominal HEP 0.1000 0.075000
0.75 Decision-making under time pressure | Mid-High HEP 0.2000 0.150000
0.75 Decision-making under time pressure High HEP 0.3000 0.225000
0.75 Complex procedure execution Low HEP 0.0100 0.007500
0.75 Complex procedure execution Low-Mid HEP 0.1050 0.078750
0.75 Complex procedure execution Nominal HEP 0.2000 0.150000
0.75 Complex procedure execution Mid-High HEP 0.3500 0.262500
0.75 Complex procedure execution High HEP 0.5000 0.375000
0.75 Diagnoses of unfamiliar problem Low HEP 0.0500 0.037500
0.75 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.093750
0.75 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.150000
0.75 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.300000
0.75 Diagnoses of unfamiliar problem High HEP 0.6000 0.450000
0.75 Omission of step in procedure Low HEP 0.0030 0.002250
0.75 Omission of step in procedure Low-Mid HEP 0.0065 0.004875
0.75 Omission of step in procedure Nominal HEP 0.0100 0.007500
0.75 Omission of step in procedure Mid-High HEP 0.0550 0.041250
0.75 Omission of step in procedure High HEP 0.1000 0.075000
0.80 Simple detection Low HEP 0.0010 0.000800
0.80 Simple detection Low-Mid HEP 0.0055 0.004400
0.80 Simple detection Nominal HEP 0.0100 0.008000
0.80 Simple detection Mid-High HEP 0.0200 0.016000
0.80 Simple detection High HEP 0.0300 0.024000
0.80 Simple operation Low HEP 0.0004 0.000320
0.80 Simple operation Low-Mid HEP 0.0017 0.001360
0.80 Simple operation Nominal HEP 0.0030 0.002400
0.80 Simple operation Mid-High HEP 0.0065 0.005200
0.80 Simple operation High HEP 0.0100 0.008000
0.80 Routine operation Low HEP 0.0010 0.000800
0.80 Routine operation Low-Mid HEP 0.0055 0.004400
0.80 Routine operation Nominal HEP 0.0100 0.008000
0.80 Routine operation Mid-High HEP 0.0550 0.044000
0.80 Routine operation High HEP 0.1000 0.080000
0.80 Decision-making under time pressure Low HEP 0.0100 0.008000
0.80 Decision-making under time pressure | Low-Mid HEP 0.0550 0.044000
0.80 Decision-making under time pressure | Nominal HEP 0.1000 0.080000
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0.80 Decision-making under time pressure | Mid-High HEP 0.2000 0.160000
0.80 Decision-making under time pressure High HEP 0.3000 0.240000
0.80 Complex procedure execution Low HEP 0.0100 0.008000
0.80 Complex procedure execution Low-Mid HEP 0.1050 0.084000
0.80 Complex procedure execution Nominal HEP 0.2000 0.160000
0.80 Complex procedure execution Mid-High HEP 0.3500 0.280000
0.80 Complex procedure execution High HEP 0.5000 0.400000
0.80 Diagnoses of unfamiliar problem Low HEP 0.0500 0.040000
0.80 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.100000
0.80 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.160000
0.80 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.320000
0.80 Diagnoses of unfamiliar problem High HEP 0.6000 0.480000
0.80 Omission of step in procedure Low HEP 0.0030 0.002400
0.80 Omission of step in procedure Low-Mid HEP 0.0065 0.005200
0.80 Omission of step in procedure Nominal HEP 0.0100 0.008000
0.80 Omission of step in procedure Mid-High HEP 0.0550 0.044000
0.80 Omission of step in procedure High HEP 0.1000 0.080000
0.85 Simple detection Low HEP 0.0010 0.000850
0.85 Simple detection Low-Mid HEP 0.0055 0.004675
0.85 Simple detection Nominal HEP 0.0100 0.008500
0.85 Simple detection Mid-High HEP 0.0200 0.017000
0.85 Simple detection High HEP 0.0300 0.025500
0.85 Simple operation Low HEP 0.0004 0.000340
0.85 Simple operation Low-Mid HEP 0.0017 0.001445
0.85 Simple operation Nominal HEP 0.0030 0.002550
0.85 Simple operation Mid-High HEP 0.0065 0.005525
0.85 Simple operation High HEP 0.0100 0.008500
0.85 Routine operation Low HEP 0.0010 0.000850
0.85 Routine operation Low-Mid HEP 0.0055 0.004675
0.85 Routine operation Nominal HEP 0.0100 0.008500
0.85 Routine operation Mid-High HEP 0.0550 0.046750
0.85 Routine operation High HEP 0.1000 0.085000
0.85 Decision-making under time pressure Low HEP 0.0100 0.008500
0.85 Decision-making under time pressure | Low-Mid HEP 0.0550 0.046750
0.85 Decision-making under time pressure | Nominal HEP 0.1000 0.085000
0.85 Decision-making under time pressure | Mid-High HEP 0.2000 0.170000
0.85 Decision-making under time pressure High HEP 0.3000 0.255000
0.85 Complex procedure execution Low HEP 0.0100 0.008500
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0.85 Complex procedure execution Low-Mid HEP 0.1050 0.089250
0.85 Complex procedure execution Nominal HEP 0.2000 0.170000
0.85 Complex procedure execution Mid-High HEP 0.3500 0.297500
0.85 Complex procedure execution High HEP 0.5000 0.425000
0.85 Diagnoses of unfamiliar problem Low HEP 0.0500 0.042500
0.85 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.106250
0.85 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.170000
0.85 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.340000
0.85 Diagnoses of unfamiliar problem High HEP 0.6000 0.510000
0.85 Omission of step in procedure Low HEP 0.0030 0.002550
0.85 Omission of step in procedure Low-Mid HEP 0.0065 0.005525
0.85 Omission of step in procedure Nominal HEP 0.0100 0.008500
0.85 Omission of step in procedure Mid-High HEP 0.0550 0.046750
0.85 Omission of step in procedure High HEP 0.1000 0.085000
0.90 Simple detection Low HEP 0.0010 0.000900
0.90 Simple detection Low-Mid HEP 0.0055 0.004950
0.90 Simple detection Nominal HEP 0.0100 0.009000
0.90 Simple detection Mid-High HEP 0.0200 0.018000
0.90 Simple detection High HEP 0.0300 0.027000
0.90 Simple operation Low HEP 0.0004 0.000360
0.90 Simple operation Low-Mid HEP 0.0017 0.001530
0.90 Simple operation Nominal HEP 0.0030 0.002700
0.90 Simple operation Mid-High HEP 0.0065 0.005850
0.90 Simple operation High HEP 0.0100 0.009000
0.90 Routine operation Low HEP 0.0010 0.000900
0.90 Routine operation Low-Mid HEP 0.0055 0.004950
0.90 Routine operation Nominal HEP 0.0100 0.009000
0.90 Routine operation Mid-High HEP 0.0550 0.049500
0.90 Routine operation High HEP 0.1000 0.090000
0.90 Decision-making under time pressure Low HEP 0.0100 0.009000
0.90 Decision-making under time pressure | Low-Mid HEP 0.0550 0.049500
0.90 Decision-making under time pressure | Nominal HEP 0.1000 0.090000
0.90 Decision-making under time pressure | Mid-High HEP 0.2000 0.180000
0.90 Decision-making under time pressure High HEP 0.3000 0.270000
0.90 Complex procedure execution Low HEP 0.0100 0.009000
0.90 Complex procedure execution Low-Mid HEP 0.1050 0.094500
0.90 Complex procedure execution Nominal HEP 0.2000 0.180000
0.90 Complex procedure execution Mid-High HEP 0.3500 0.315000
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0.90 Complex procedure execution High HEP 0.5000 0.450000
0.90 Diagnoses of unfamiliar problem Low HEP 0.0500 0.045000
0.90 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.112500
0.90 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.180000
0.90 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.360000
0.90 Diagnoses of unfamiliar problem High HEP 0.6000 0.540000
0.90 Omission of step in procedure Low HEP 0.0030 0.002700
0.90 Omission of step in procedure Low-Mid HEP 0.0065 0.005850
0.90 Omission of step in procedure Nominal HEP 0.0100 0.009000
0.90 Omission of step in procedure Mid-High HEP 0.0550 0.049500
0.90 Omission of step in procedure High HEP 0.1000 0.090000
0.95 Simple detection Low HEP 0.0010 0.000950
0.95 Simple detection Low-Mid HEP 0.0055 0.005225
0.95 Simple detection Nominal HEP 0.0100 0.009500
0.95 Simple detection Mid-High HEP 0.0200 0.019000
0.95 Simple detection High HEP 0.0300 0.028500
0.95 Simple operation Low HEP 0.0004 0.000380
0.95 Simple operation Low-Mid HEP 0.0017 0.001615
0.95 Simple operation Nominal HEP 0.0030 0.002850
0.95 Simple operation Mid-High HEP 0.0065 0.006175
0.95 Simple operation High HEP 0.0100 0.009500
0.95 Routine operation Low HEP 0.0010 0.000950
0.95 Routine operation Low-Mid HEP 0.0055 0.005225
0.95 Routine operation Nominal HEP 0.0100 0.009500
0.95 Routine operation Mid-High HEP 0.0550 0.052250
0.95 Routine operation High HEP 0.1000 0.095000
0.95 Decision-making under time pressure Low HEP 0.0100 0.009500
0.95 Decision-making under time pressure | Low-Mid HEP 0.0550 0.052250
0.95 Decision-making under time pressure | Nominal HEP 0.1000 0.095000
0.95 Decision-making under time pressure | Mid-High HEP 0.2000 0.190000
0.95 Decision-making under time pressure High HEP 0.3000 0.285000
0.95 Complex procedure execution Low HEP 0.0100 0.009500
0.95 Complex procedure execution Low-Mid HEP 0.1050 0.099750
0.95 Complex procedure execution Nominal HEP 0.2000 0.190000
0.95 Complex procedure execution Mid-High HEP 0.3500 0.332500
0.95 Complex procedure execution High HEP 0.5000 0.475000
0.95 Diagnoses of unfamiliar problem Low HEP 0.0500 0.047500
0.95 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.118750
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0.95 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.190000
0.95 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.380000
0.95 Diagnoses of unfamiliar problem High HEP 0.6000 0.570000
0.95 Omission of step in procedure Low HEP 0.0030 0.002850
0.95 Omission of step in procedure Low-Mid HEP 0.0065 0.006175
0.95 Omission of step in procedure Nominal HEP 0.0100 0.009500
0.95 Omission of step in procedure Mid-High HEP 0.0550 0.052250
0.95 Omission of step in procedure High HEP 0.1000 0.095000
1.00 Simple detection Low HEP 0.0010 0.001000
1.00 Simple detection Low-Mid HEP 0.0055 0.005500
1.00 Simple detection Nominal HEP 0.0100 0.010000
1.00 Simple detection Mid-High HEP 0.0200 0.020000
1.00 Simple detection High HEP 0.0300 0.030000
1.00 Simple operation Low HEP 0.0004 0.000400
1.00 Simple operation Low-Mid HEP 0.0017 0.001700
1.00 Simple operation Nominal HEP 0.0030 0.003000
1.00 Simple operation Mid-High HEP 0.0065 0.006500
1.00 Simple operation High HEP 0.0100 0.010000
1.00 Routine operation Low HEP 0.0010 0.001000
1.00 Routine operation Low-Mid HEP 0.0055 0.005500
1.00 Routine operation Nominal HEP 0.0100 0.010000
1.00 Routine operation Mid-High HEP 0.0550 0.055000
1.00 Routine operation High HEP 0.1000 0.100000
1.00 Decision-making under time pressure Low HEP 0.0100 0.010000
1.00 Decision-making under time pressure | Low-Mid HEP 0.0550 0.055000
1.00 Decision-making under time pressure | Nominal HEP 0.1000 0.100000
1.00 Decision-making under time pressure | Mid-High HEP 0.2000 0.200000
1.00 Decision-making under time pressure High HEP 0.3000 0.300000
1.00 Complex procedure execution Low HEP 0.0100 0.010000
1.00 Complex procedure execution Low-Mid HEP 0.1050 0.105000
1.00 Complex procedure execution Nominal HEP 0.2000 0.200000
1.00 Complex procedure execution Mid-High HEP 0.3500 0.350000
1.00 Complex procedure execution High HEP 0.5000 0.500000
1.00 Diagnoses of unfamiliar problem Low HEP 0.0500 0.050000
1.00 Diagnoses of unfamiliar problem Low-Mid HEP 0.1250 0.125000
1.00 Diagnoses of unfamiliar problem Nominal HEP 0.2000 0.200000
1.00 Diagnoses of unfamiliar problem Mid-High HEP 0.4000 0.400000
1.00 Diagnoses of unfamiliar problem High HEP 0.6000 0.600000
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1.00 Omission of step in procedure Low HEP 0.0030 0.003000

1.00 Omission of step in procedure Low-Mid HEP 0.0065 0.006500

1.00 Omission of step in procedure Nominal HEP 0.0100 0.010000

1.00 Omission of step in procedure Mid-High HEP 0.0550 0.055000

1.00 Omission of step in procedure High HEP 0.1000 0.100000
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