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A B S T R A C T

The core of a Liquid Metal Fast Breeder Reactor (LMFBR) consists of cylindrical fuel rods that are wrapped by a
helicoidally-wound wire spacer to enhance mixing and to prevent damage by fretting. It is known that the liquid
metal close to the rod is forced to follow the wires, and that liquid metal further away from the rod crosses the
wires (called: migratory flow). This work aims at gaining more insight into the physics behind migratory flow
and to provide a model for its bending angle. To this purpose, the flow field in a 7-rods, wire-wrapped, hexagonal
bundle with water is studied within the Reynolds number range of 4990–16330 by using Particle Image
Velocimetry (PIV). Refraction of the light is minimized by using Fluorinated Ethylene Propylene (FEP), which is
a refractive index-matching (RIM) material. These measurements confirm that liquid near the rod follows the
helicoid path and bends cross-wise with respect to the wire further away from the rod. A theoretical model for
the bending angle of the flow is derived from the Euler equations and shows that the bending is primarily caused
by the pressure gradient field induced by the wire. The model shows a very good correspondence with the
experimentally obtained PIV data. These findings improve our understanding of the physics at play in rod bundle
flows with wrapped wires and can be of assistance in developing practical correlations for frictional pressure
losses and heat transfer in such bundles.

1. Introduction

Rod bundles characterise the geometry of many industrial compo-
nents, such as heat exchangers and the core of light water and liquid
metal cooled nuclear reactors. In particular, the core of a Liquid Metal
Fast Breeder Reactor (LMFBR) consists of a hexagonal bundle of rods,
each wrapped by a wire wound helicoidally. These wires prevent da-
mage by fretting of the fuel rod’s cladding, and guide the liquid metal
coolant close to the rods through the gaps between the pins enhancing
radial heat transfer and, thus, improving the safe operation of the re-
actor. Over the years, considerable efforts have been dedicated to in-
vestigating wire-wrapped rod bundles; a comprehensive review of both
experiments and numerical studies was provided in Moorthi et al.
(2018). Sato et al. (2009) focused on the flow field inside the gap of a 7-
rods, wire-wrapped hexagonal bundle, observing a lateral flow fol-
lowing the wrapping direction of the wire. Recently, the university of
Texas performed a number of experiments in a 61-rods test section for
code validation, as reported in Goth et al. (2018), and for studying
vortical structures that may occur in the flow, as described in Nguyen
and Hassan (2017) and in Nguyen et al. (2017). Computational Fluid
Dynamics (CFD) studies have focused on modelling the flow around a

single wrapped-wire pin (Shams et al., 2018; Fischer et al., 2007), and
on simulating the entire bundle for validation purposes (Pointer et al.,
2008; Merzari et al., 2016; Obabko et al., 2016; Brockmeyer et al.,
2017). Depending on the position of the wire, the flow is found, un-
expectedly, to bend against the direction of the wire. This was called
“migratory flow” in Ohtake et al. (1976), and ascribed to the increased
hydraulic resistance caused by the wire inside the considered sub-
channel. A physical model that is able to predict such a flow bending,
however, was not provided, nor it is nowadays available

This work aims at measuring migratory flow, and to develop a
model that explains and quantifies the bending of the flow. For this
purpose, a 7-rods, wire-wrapped, hexagonal bundle has been designed
and built to perform planar Particle Image Velocimetry (PIV) mea-
surements of the flow in front of the wire around the central rod.
Optical access, required for performing PIV measurements, has been
achieved by partially replacing the metal of the rods with a refractive
index-matching (RIM) material, being Fluorinated Ethylene Propylene
(FEP), as described in Dominguez-Ontiveros and Hassan (2009),
Mahmood (2011), Hosokawa et al. (2012) and in Bertocchi et al.
(2018). This solution keeps the light refraction to a minimum, allowing
for optical measurements inside the bundle.
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The approach is as follows:

1. The flow field at the front of the central wrapping wire is studied
with PIV for six Reynolds numbers within the range of 4990 16330,
at room temperature, and with water as working fluid.

2. The pressure gradient field close to the wire is retrieved from the
measured velocity field and the discretised, two-dimensional
Navier–Stokes equations.

3. A model, derived from the Euler equations, is derived for estimating
both the pressure gradient normal to the wire and the bending angle
of the flow streamlines.

4. The pressure gradient field obtained from the model is compared
with the experimentally obtained field.

5. Finally, the theoretically predicted bending angle of the flow is
compared with the experimental values to confirm the validity of
the proposed model.

2. Experimental setup

The experimental apparatus consists of a water loop with a 7-rods
hexagonal bundle having a spacing helical wire wrapped around each
rod. The pitch-to-rod diameter ratio (P/D) is 1.11 and it is also equal to
the nearest wall distance ratio-to-rod diameter (W/D). An hexagonal
encasing of transparent polymethyl methacrylate (PMMA), commonly
referred to as Perspex, encloses the bundle. The water flows top-down
by gravity from an upper vessel through the bundle and is collected in a
lower tank; a centrifugal pump provides the required head to circulate
the water towards the upper vessel and to keep the water level in the
vessel constant. A small in-house heat exchanger keeps the water
temperature constant during the measurements, and the temperature is
monitored with a termocouple (Labfacility) installed inside the upper
vessel. A valve with a linear response regulates the flow rate, which is
monitored by both a magnetic (ABB - type HA3) and an ultrasonic flow
meter (model TTFM100-B-HH-NG, B. M. Tecn. Industriali) in-
dependently.

2.1. Bundle geometry

The bundle consists of 7 rods arranged in a hexagonal lattice with a
P/D of 1.11. A stainless steel wire is wound and point-welded around
each rod. The main parameters of the hexagonal lattice and of the test
section are listed in Table 1.

The sketch of the hexagonal test section casing is provided in Fig. 1.
The flow enters from the top and the water is distributed over the

subchannels via a funnel-shaped flow distributor (Fig. 1c); after a de-
velopment length of 1.5 m, the flow reaches the location of the mea-
surements. The development length to reach fully turbulent conditions
is based on CFD evidence (De Ridder et al., 2016). The internal struc-
ture of the flow distributor disrupts the large eddies that may develop in
the stream, and it redistributes the flow uniformly among the sub-
channels of the bundle. Flow detachment from the walls of the dis-
tributor is avoided by adopting a divergent angle of 4∘, as suggested in
Idel’chik (1966). The divergent shape of the flow distributor may lead
to entrapment of air bubbles in the flow. These would disturb the op-
tical measurements to be performed in the rod bundle. However, the
entrapment of air is observed below a flow rate of ×9.00 10 m s ,4 3 1

therefore the measured flow rates are kept above this threshold. Optical
access around the central rod is ensured by partially replacing the
stainless steel of the two front rods with heat-shrunk FEP (see Fig. 1b
and 2 for further details), which has nearly the same refractive index of
water. This minimises the refraction of light (Mahmood, 2011; Nguyen
and Hassan, 2017; Bertocchi et al., 2018).

2.2. PIV System

2.2.1. Laser and seeding particles
The laser is a class-IV, diode pumped, 5 W laser with the wavelength

= 532 nm (LaVision, Germany). The DaVis software allows for ad-
justing the separation time between the two laser pulses. The combi-
nation of a spherical and a cylindrical lens creates the laser sheet, which
has a beam waist (the thinnest region of the sheet) thickness of 1 mm.

Nomenclature

A Bundle’s total flow area (m2)
Dh Bundle’s hydraulic diameter (mm)
D Rod diameter (mm)
Dw Wire diameter (mm)
ê ,n ês Unit vectors perpendicular and tangent to the streamline
f# Lens aperture
h Wire pitch (mm)
i, j, τ Indices
Ld Development length (m)
Mo Magnification factor
N Number of recorded PIV images
Ns Number of sampled points along a streamline
n, s Perpendicular and tangent directions in the streamlines’

reference system
Ph Total wetted perimeter (mm)
P/D Pitch to rod diameter ratio
p Pressure (Pa)
Q Volumetric flow rate (m s3 1)
R Streamline’s radius of curvature (m)

r Vector position (m)
T Fluid temperature (∘C)
t Time (s)
Δt Time separation between two consecutive images (s)
tFEP FEP wall thickness (mm)
U Velocity vector tangent to the streamline (ms 1)
u, v Vertical and transversal velocity components (ms 1)
Vb Bulk velocity based on the bundle’s total flow area (ms 1)
W/D Closest wall distance-to-rod diameter ratio
x, y, z Transversal, vertical and out-of-plane directions
x̃ Direction perpendicular to the wire
Δx, Δy Transversal and vertical pitch of the velocity vectors (mm)
δz Laser sheet thickness (out-of-plane) (mm)
α Half-angle of the flow distributor (∘)
β Bending angle of the streamline (∘)
γ Wire’s pitch angle (∘)
θ Wire angle with the horizontal (∘)
λ Laser light wavelength (nm)
ν Kinematic viscosity (m s2 1)
ρ Density (kg m 3)

Table 1
Bundle’s main dimensions. (see Nomenclature for a list of symbols) .

Parameter Value dim.

D 30 mm
Dw 3 mm
P/D 1.11
W/D 1.11
h 400 mm
θ 77 ∘

α 4 ∘

Ld 1.5 m
tFEP 0.25 mm
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The flow is seeded with borosilicate glass hollow spheres (LaVision,
Germany) with an average density of 1.1 g m 3 and diameter falling
within the range 9 13 µm.

2.2.2. Camera
The camera used for PIV measurements is a Complementary Metal-

Oxide Semiconductor (CMOS) Imager MX-4M (LaVision, Germany)
with 4 MP of resolution (5.5 µm of pixel size). The camera mounts a AF-
S 50 mm F/1.4 (Nikon) lens with a magnification factor =M 0.13o . The
depth of focus δz is given in Tropea et al. (2007) as

= + =z
M

f4 1 1 0.6 mm,
o

2

#
2

(1)

where f# is the lens aperture, and λ is the laser wavelength. An intensity
correction algorithm consisting of a background subtraction is used to
diminish the reflection from the internal components of the bundle.

2.2.3. PIV Vector calculation parameters
The calculation of the velocity fields is done in the PIV DaVis soft-

ware as follows.
The recorded images are pre-processed with a sliding background

subtraction algorithm available in the software. This method averages
the local intensity of light around each particle. The mean value is then
subtracted from the intensity value of each pixel to improve the local
contrast. This method keeps intensity fluctuations at a minimum.

The velocity vectors are calculated by cross-correlating two con-
secutive images to detect the displacement of each particle. The cross-
correlation is calculated over a so-called interrogation window whose
size can be adjusted in the DaVis software.The multi-pass option allows
for computing a first displacement field with an initial size of the in-
terrogation window of 64×64 pixels. The interrogation window size is
then decreased to 48× 48 pixels during a second calculation.

The post-processing of the vector fields consists of a median filter to
remove outliers, as in Westerweel (1994) and Nguyen et al. (2017). The
resulting blank points are filled up with a vector interpolation algo-
rithm available in the DaVis software.

2.3. –Determining the pressure gradient field from the 2D Navier–Stokes
equations

The pressure gradient normal to the wire, which is later needed to
describe the migratory flow, is evaluated by means of the Navier–Stokes
equations applied to the measured velocity fields. The laser sheet is
positioned very close to the wire (i.e. tangent to it), therefore the out-of-
plane velocity component is locally assumed to be negligible compared
to the other two. Based on the experiments described in Nguyen et al.
(2018), the out-of-plane velocity component is estimated to be equal at
most to 10%Vb for a Reynolds of 6300. Moreover, a recent numerical
work (Song et al., 2019) showed that the local flow behaviour near the
wire is independent of the Reynolds number. It is thus reasonable to
assume that the relative magnitude of the out-of-plane velocity com-
ponent near the wire does not strongly depend on the flow rate.

The Navier–Stokes equations are discretised in space and time fol-
lowing the approach described in de Kat and van Oudheusden (2010,
2011). The pressure gradient is expressed as follows:

= +p U
t

U U U( · ) ,2

(2)

where U is the velocity vector with components (u; v5). Assuming a
two-dimensional flow, Eq. 2 is decomposed along x:

= + +

+

p x y t
x

u x y t
t

u x y t u x y t
x

v x y t u x y t
y

u
x

u
y

( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

2

2

2

2 (3)

and along y:

= + +

+

p x y t
y

v x y t
t

u x y t v x y t
x

v x y t v x y t
y

v
x

v
y

( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

.
2

2

2

2 (4)

The time derivative term is discretised with a central finite differ-
ence scheme following (de Kat and van Oudheusden, 2011) considering
a separation time between two consecutive images of 0.055 s. The same
discretization scheme is used for the space derivatives. This leads, for
the x direction, to

Fig. 1. a) An outer hexagonal casing, containing the rod bundle, is clamped to
the supports. The PIV measurements are performed at the location of the
transparent Perspex casing. b) Measurement section of the bundle where part of
the rods is masked-out to make it more visible. FEP replaces part of the outer
rods to provide decrease refraction of light. c) The inlet flow distributor conveys
the fluid in the subchannels of the bundle; its internal structure breaks large
vortices developed in the fluid falling from the top vessel.

Fig. 2. Overview of the rod bundle test section as the laser light of the PIV
system goes through: the area of interest (AOI) is the red rectangular area of the
laser sheet. Front section (section A-A) and (top view (section B-B) of the bundle
where the light sheet goes through the FEP in front of the central rod’s wire.
Section B-B shows the positions of the laser sheet corresponding to the pre-
liminary measurement (dashed line), and to the measurement campaign fo-
cusing on the flow area in front of the wire. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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and, similarly, for the y direction with y and v instead of x and u, re-
spectively. Eq. 5 and the corresponding one for the y direction are
averaged over the total recorded images to obtain the time-averaged
pressure gradient components along x and y:

= =p i j
x N

N p i j
x

( , ) 1 1] ( , , ) ,
[

(6)

and

= =p i j
y N

N p i j
y

( , ) 1 1] ( , , ) ,
[

(7)

where N is the number of recorded PIV images. Finally, the time-
averaged pressure gradient normal to the wire is estimated as

= +p i j
x

p i j
x

p i j
y

( , )
˜

( , ) sin ( , ) cos ,
(8)

where = 77 is wire pitch angle (see Fig. 6a).

3. Measurement campaigns

The measurement campaign consists of six flow rate values whose
corresponding Reynolds numbers are calculated based on the bundle’s
hydraulic diameter =D A P4 / ,h h where A is the bundle flow area, and
Ph is the corresponding wetted perimeter, following (Todreas and
Kazimi, 1990). Table 2 reports the water temperature of the experi-
ments and the corresponding Reynolds number for the several in-
vestigated flow rates.

The PIV measurements consists of 10,000 images collected at a rate
of 18 frames per second. The location of the measurement region is
shown in Fig. 2. The laser sheet enters the outer hexagonal Perspex
casing (Fig. 2a) and it goes through the FEP, reaching the central wire
spacer where the measurement region is located (red rectangle in
Fig. 2b). For a preliminary measurement, the laser sheet is moved closer
to the rod (Fig. 2b, dashed profile in view B-B) in order to study the flow
area downstream the wire. The second, and main, measurement cam-
paign is conducted with the laser sheet closer to the bulk region of the
subchannel, being tangent to the central rod’s wire spacer. The flow
area in front of the helicoid spacer is thus investigated.

3.1. Time-averaged velocity fields

A preliminary measurement campaign has studied the fluid region
downstream the wire (see Fig. 2b, view B-B), showing that the flow
follows the helical path of the wire, as expected, contributing to the
mixing. This is evident in Fig. 3a where the blue colour indicates a
negative direction of the u component (towards the left). Fig. 3b,
however, shows that if the measurement region is moved at the front of
the wire, closer to the bulk of the subchannel, the fluid changes di-
rection moving against the wire’s path. This is clear from the red colour
that shows a positive u, hence a flow in the positive x direction. The two
measurement areas are approximately 2 mm apart in the out-of-plane
direction. The area shown in Fig. 2a is locally aligned with the wire. In
order to illuminate the region downstream of the wire, the laser is
blocked by the metal surface of the wire and thus it does not reach the

region to the left in the figure. This flow behaviour, called “migratory
flow” in Ohtake et al. (1976), was ascribed to the increased hydraulic
resistance that the wire causes in the subchannel.

The velocity fields shown hereafter focus on the flow in front of the
central wire where the migratory flow is observed. The measured
quantities are the stream-wise and span-wise velocity components v and
u, respectively. These are normalised by the bulk velocity, which is
defined as =V Q A/ ,b being Q the volumetric flow rate, and A the total
bundle’s flow area. In small rod bundles such as the one of this work,
dimensional tolerances of the components (rods, wires, Perspex outer
case) play an important role. A deviation in the thickness of the outer
hexagonal wall from the nominal value could affect the flow area in the
cross section, thereby affecting the estimation of the bulk velocity, For
example, it has been estimated that a deviation of 1 mm in the wall
thickness could change the bulk velocity by as much as 18%.

Fig. 4 shows the contour plot of the time-averaged axial velocity
component v, for the considered values of Reynolds numbers. A low-
speed region appears at the downstream side of the wire, which is also
found in Goth et al. (2018). This low-speed region is more spread-out at
the lower Reynolds numbers and it becomes narrower as the Reynolds
increases.

Fig. 5 shows the contour plot of the normalised time-averaged span-
wise velocity component u for the six studied Reynolds numbers. The
positive sign of the lateral velocity component means that the flow
coming from the top bends towards the right as it approaches the wire,
as shown in Fig. 6b. The figure shows that the relative magnitude of u is
slightly higher at lower Reynolds numbers, meaning that the flow tends
to bend more markedly at lower flow rates. The next section will pro-
vide a description of the bending angle of the flow.

4. Modelling of migratory flow

The time-averaged velocity fields reported in Fig. 4 and 5 show that
the flow near the wire bends against the wrapping direction of the
helicoid spacer (as modelled in Fig. 6a), if the flow is measured at the
front of the wire. This section discusses the theory through which this
behaviour is modelled and explained.

4.1. Euler equations in the streamline’s coordinate system

This section makes use of the Euler equation in the streamline’s
coordinate system to provide an equation that models the pressure
gradient normal to the wire. The steady state Navier–Stokes equation
where the viscous term is neglected is known as Euler equation:

Table 2
Experimental conditions of the experiments.

Q [m s3 1] T [∘C] Re

×9.00 10 4 32.4 4990

×1.37 10 3 32.3 7580

×1.80 10 3 32.2 9940

×2.30 10 3 32.0 12650

×2.70 10 3 31.7 14760

×2.95 10 3 32.3 16330

= + + + +

+ + +

+ + + + +

p i j
x

u i j u i j
t

u i j u i j u i j
x

v i j u i j u i j
y

u i j u i j u i j
x

u i j u i j u i j
y

( , , ) ( , , 1) ( , , 1)
2

( , , ) ( 1, , ) ( 1, , )
2

( , , ) ( , 1, ) ( , 1, )
2

( 1, , ) 2 ( , , ) ( 1, , )
( )

( , 1, ) 2 ( , , ) ( , 1, )
( )2 2 (5)
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= +U U p g( · ) , (9)

whereU is the velocity vector. Fig. 6a sketches a streamline that bends
as the fluid approaches the wire spacer. The main flow is in the negative
y direction in the figure. A sample of the real time-averaged streamline

distribution is shown in Fig. 6b. The streamlines are superimposed to
the field of the lateral (span-wise) velocity component. It is convenient
to express the Euler equations in the streamline’s reference frame, being
ês and ên the unit vectors tangential and normal to the streamline, re-
spectively. The velocity vector Uês is, by definition, always tangent to
the streamline, and the gradient operator is defined as +e e^ ^

s n
•

s
•

n.
By doing so, Eq. 9 takes the form reported in Fox et al. (2011)

+ = + + +U e
s

U U
s

e p
s

e p
n

e g y
s

e y
n

e
^ ^ 1 ^ ^ ^ ^ ,2 s

s s n s n (10)

where

= = =e
s R

e y
s

y
n

^ 1 ^ ; cos ; sin ,s
n (11)

being R the local curvature radius of the streamline and β the angle that
the streamline forms with the vertical (see Fig. 6a for reference). R is
calculated as in Zorich (2004)

= +R dx
dy

d x
dy

1 ,
2 3/2 2

2

1

(12)

where dx/dy is the derivative of the streamline along the stream-wise
direction y. The component of Eq. 10 normal to the streamline (along
ên) becomes then

= +U
R

p
n

g1 sin .
2

(13)

This equation is responsible for the bending of the streamlines,
meaning that when gravity is not considered, the pressure decreases
towards the centre of curvature of the streamline (Fay, 1994). The

Fig. 3. a) Contour plot of the lateral component u measured beneath the wire;
the dashed line indicates the wire’s position, whereas the solid line bounds the
masked-out area affected by reflection. b) Contour plot of the u component
measured at the front of the wire, closer to the bulk; the dashed line marks the
borders of the wire. The main flow is from top to bottom.

Fig. 4. Stream-wise time-averaged velocity component v normalised to the bulk
velocity Vb. a) =Re 4990; b) =Re 7580; c) =Re 9940; d) =Re 12650; e)

=Re 14760; f) =Re 16330. The main flow is from top to bottom. The cases a, b,
and c have the upper-right corner masked-out due to reflections.

Fig. 5. Span-wise velocity component u normalised to the bulk velocity Vb,
overlapped to the vectorial field. a) =Re 4990; b) =Re 7580; c) =Re 9940; d)

=Re 12650; e) =Re 14760; f) =Re 16330. The main flow is from top to bottom.
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component of Eq. 10 parallel to the streamline (along ês) gives the well-
known Bernoulli equation, where the term ∂p/∂s is responsible for the
acceleration of the fluid along the streamline:

= +U U
s

p
s

g1 cos .
(14)

From Eqs. 13 and 14 it follows that the components of the pressure
gradient are

= + = +p
n

U
R

g p
s

U U
s

gsin , cos ,
2

(15)

where the derivative of the velocity along a streamline, ∂U/∂s, is
computed as

= +

+

U
s

U U
s s

,i i

i i

1 1

1 1 (16)

with the indices +i 1 and i 1 referring to the points along the
streamline. The pressure gradient normal to the wire (x̃ direction) is
evaluated as

= +p
x

p
n

p
s˜

sin( ) cos( ), (17)

where = 77 is the wire’s pitch angle (see Fig. 6a). This equation can
be used to estimate the pressure gradient normal to the wire as a tool to
explain the experimental results regarding the flow direction.

4.2. An equation for the bending of the streamlines

This section aims at deriving an equation that describes and quan-
tifies the bending of the flow streamline due to the proximity of the
wire spacer. By doing so, our understanding of the physics at play im-
proves. We start from the Euler equation across a streamline (Eq. 13)
that, without gravitational effects, is

=U r
R r

e p r
n

e( )
( )

^ 1 ( ) ^ ,
2

n n
(18)

where =r x y( , ) is the position in the two-dimensional flow field.
A streamline is defined as the locus of points always tangent to the

local velocity, as explained in Tropea et al. (2007):

=dx
dy

u r
v r

( )
( ) (19)

where u r( ) and v r( ) are the velocity components along any stream-
line. For any particular streamline =s y y( ( ), ) it follows that

= = =d y
dy

u r
v r

U r
U r

r( ) ( )
( )

sin ( )
cos ( )

tan ( ),
(20)

which is expressed in terms of the angle β that the streamline forms
with the vertical (see Fig. 6a). The velocity magnitude U is then ex-
pressed as

= +U r v r r( ) ( )[1 tan ( )].2 2 2 (21)

Upon substitution of Eq. 21, Eq. 18 becomes

+ =v r
R r

r e p r
n

e( )
( )

[1 tan ( )]^ ( ) ^ .
2

2
n n

(22)

Considering a single streamline (ψ(y), y) and recalling the definition of
R (Eq. 12), the previous equation becomes

+ + =v r r d y
dy

d y
dy

e p r
n

e( )[1 tan ( )] ( ) 1 ( ) ^ ( ) ^ .2 2
2

2

2 3/2

n n

(23)

From Eq. 20 rtan ( ) replaces the dψ(y)/dy term, hence

+
+

=
+

=

v r r
r

d y
dy

e v r
r

d y
dy

e

p r
n

e

( ) 1 tan ( )
[1 tan ( )]

( ) ^ ( )
[1 tan ( )]

( ) ^

( ) ^ .

2
2

2 3/2

2

2 n
2

2 1/2

2

2 n

n (24)

The second order derivative term is rearranged as

= +d y
dy

r d r
dy

( ) [1 tan ( )] ( ) ,
2

2
2

(25)

and substituted into Eq. 24, to obtain an expression relating the pres-
sure gradient normal to the streamline with the local angle of inflection

r( ):

= +
v r

p r
n

r d r
dy

1
( )

( ) [1 tan ( )] ( ) .
2

2 1/2

(26)

In order to obtain r( ), Eq. 26 is integrated in dy on both sides
along the considered streamline =s y y( ( ), ). The integral is estimated
between =y , far upstream, where the influence of the wire is
negligible and the streamline is straight ( = 0), and the generic co-
ordinate =y along the streamline. By moving all the terms that do
not contain r( ) to the right-hand side of the equation, we get

+ =r d r
dy

dy
v r

p r
n

dy[1 tan ( )] ( ) 1
( )

( ) .2 1/2
2 (27)

Assuming that the streamline far upstream of the wire is straight,
i.e. = =y( ) 0, the left-hand side term becomes

+ =
=

r d r
v r

p r
n

dy[1 tan ( )] ( ) 1
( )

( ) .
y

0

( )
2 1/2

2 (28)

Considering that

+ =r
r

1 tan ( ) 1
cos ( )

,2
2 (29)

it follows that

=
=

r
d r

v r
p r

n
dy1

cos ( )
( ) 1

( )
( ) .

y

0

( )

2 (30)

Solving the integral at the left hand side of the previous equation
leads to

Fig. 6. a) Deflection of a streamline near the wire spacer; the Euler equations
are applied in the streamline’s frame of reference ê ,n ês to reconstruct the
pressure gradient field normal to the wire. x̃ is the direction normal to the wire.
b) Example of the mean velocity’s streamlines superimposed to the lateral ve-
locity component.
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+ = = =y y
v r

p r
n

dy1
2

[ln(1 sin ( )) ln(1 sin ( ))] 1
( )

( ) ,
2

(31)

where the Taylor expansion is applied to the logarithm. For small r( ),

r rsin ( ) ( ), (32)

so

= =y
v r

p r
n

dy( ) 1
( )

( ) .
2 (33)

Using Eq. 11, the previous equation can be rewritten as

= =y
v r

p r
n

r ds( ) 1
( )

( ) cos ( ) .
s

2 (34)

For small β, the cosine can, thus, be neglected. Such an approx-
imation leads to

= =y
v r

p r
n

ds( ) 1
( )

( ) .
s

2 (35)

This final equation gives the value of β as the result of a path integral
over a streamline. It is clear from Eq. 35that the bending of flow is
determined by the interplay of the transverse pressure gradient and
inertia. Furthermore, it is interesting to observe that the value of the
bending angle at a certain coordinate s along a streamline depends on
the upstream path, as indicated by the need of solving the integral.
Approximating the left hand side of Eq. 31 assuming that β is small is
accurate within an error of 5% for β∈ [0, π/3], and within 12% for
β∈ [0, π/4]. This values are obtained by comparing the left hand side
term of Eq. 31 with β itself over the interval [0, π/2].

5. Results

In the first part of this section, the results of the model based on the
Euler equations are shown; they consist of the pressure gradient fields
evaluated normal to the wire. These are then compared to the experi-
mental results, being the pressure gradient field derived from the 2D
Navier–Stokes equations. Finally, Eq. 35, which predicts the bending
angle β, is compared to the experimental results.

5.1. Pressure gradient normal to the wire predicted by the Euler equations

This section presents the reconstructed pressure gradient modelled
through the Euler equation, following the approach discussed in section
4. Eq. 17 is applied to the streamlines to estimate the local, non-di-
mensional pressure gradient normal to the wire, ,D

V
p
x

2
˜

w

b
2 where V1/2 b

2 is
the dynamic pressure, and Dw the wire diameter. Fig. 7 shows the
pressure gradient field normal to the wire, along the x̃ direction (see
Fig. 6a for the reference system).

Fig. 7 shows that the negative pressure gradient bends the stream-
lines towards the wire, leading to the lateral velocity field previously
shown in Fig. 5. Thereafter, the flow enters the downstream region,
where the pressure increases with x̃ (positive p x/ ˜) throughout the
recirculation region, similarly to the experiments reported in Biswas
et al. (2004) with a backward-facing step. Here the positive pressure
gradient tends to straighten the streamline, decreasing thus the bending
angle. The flow region over the wire is not shown due to reflection of
light from the metal surface of the wire that does not allow the PIV
software to keep track of the particle positions in the fluid.

5.2. –Comparison with the pressure gradient predicted by the Navier-Stokes
equation

The pressure gradient normal to the wire estimated by the model

based on the Euler equations is compared with the solution given by the
Navier–Stokes equation (Section 2.3, Eq. 8). Fig. 7 shows the pressure
gradient field predicted by the Euler equations; Fig. 8 shows the pres-
sure gradient field obtained from solving the two-dimensional Na-
vier–Stokes equations. The pressure gradient normal to the wire based
on the Euler equations is confirmed by the results of the Navier–Stokes
equations, where the viscous effects are taken into account and the only
assumption is that the flow is two-dimensional. Since the model pre-
dicts the pressure gradient in the fluid along the perpendicular direction
to the wire, a reference line also orthogonal to it is chosen to perform a
quantitative comparison. The line is shown in Fig. 8f, for the six in-
vestigated Reynolds numbers. The results of such a comparison are
plotted in Fig. 9.

Fig. 9 shows the plot of p
x̃
modelled by applying the Euler equation

to the flow streamlines (◯) and calculated from the Navier–Stokes
equations ( ). The abscissa x̃ is the coordinate over the line normal to
the wire chosen for the comparison (Fig. 8f). The error bars associated
with the model (black circles) are based on the error resulting from
fitting the velocity field with the streamlines. The error bars associated
with the results of the Navier–Stokes equations applied to the measured
velocity fields (blue squares) are based on statistical deviation around
the mean value. The figure shows good agreement between the two
data series. Firstly, this proves that the model based on the Euler
equations is consistent, and secondly that the viscous effects (neglected
in the model) do not play a significant role in such a flow.

5.3. Validating the predicted bending angle against the experiments

In this section the bending angle β, predicted by Eq. 35, is compared

Fig. 7. Mean non-dimensional pressure gradient normal to the wire spacer
modelled through the Euler equations. The flow is from top to bottom; a)

=Re 4990; b) =Re 7580; c) =Re 9940; d) =Re 12650; e) =Re 14760; f)
=Re 16330; an exemplifying streamline is also reported. The flow region over

the wire is not shown due to reflection of light.
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with the angle obtained from the time-averaged velocity fields mea-
sured with PIV. Based on the PIV measurements, β along the streamline
is evaluated following Eq. 20 as

=r u r
v r

( ) arctan ( )
( )

.
(36)

The results are plotted in Fig. 10 against the normalised coordinate s
along the considered streamline. The error bars are based on the sta-
tistical deviation of the measured velocity components. The accuracy
on the prediction of β is expressed as the normalised root mean square
error (NRMSE):

=
=i N i i

NRMSE
1] [[ ( )] [ ( )] ]

( ) ( )
,N

1 [
s Eq.35 PIV

2

max PIV min PIV

s

(37)

where Ns is the number of points along the streamline where the
pressure gradient is evaluated, and the subscript PIV refers to the angle
retrieved from the measured velocity fields. The error thus evaluated is
8%: most of the contribution to the error is located in the measured
region closest to the wire, being =s y( )/ L 0.47 0.55, where reflections
of light coming from the metal wire may affect the measurement. The
new expression derived for estimating β proves to be a valid alternative
to the Euler equations for linking the pressure gradient to the corre-
sponding bending angle β, being the latter more easily measurable than
the curvature radius. The bending angle measured at one location (on
the edge of the wire) is not a function of the Reynolds number, being
constant for all the investigated flow rates. This is shown in Fig. 11.
Since β is related to the velocity components by = u vtan / (see Eq. 20),
a constant bending angle means that the ratio between the flow

Fig. 8. Time-averaged non-dimensional pressure gradient normal to the wire,
computed from the two-dimensional Navier–Stokes equations. The flow is from
top to bottom. a) =Re 4990; b) =Re 7580; c) =Re 9940; d) =Re 12650; e)

=Re 14760; f) =Re 16330; the black line is followed for extracting the nu-
merical values for comparison.The flow region over the wire is not shown due
to reflection of light.

Fig. 9. Non-dimensional pressure gradient normal to the wire predicted by the Euler equations (◯, Eq. 17) compared to the results obtained with the Navier–Stokes
equations ( , Eq. 8). a) =Re 4990; b) =Re 7580; c) =Re 9940; d) =Re 12650; e) =Re 14760; f) =Re 16330.

Fig. 10. Bending angle β along a streamline evaluated with Eq. 35 derived in
Section 4.2 (◯) compared with the angle obtained from the PIV measurements
( ). The abscissa is normalised by the streamline’s total length. =Re 16330.
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components remains constant as well. This might explain how the
pressure gradient fields (which determine the angle of bending) appear
to be independent on the Reynolds number (Fig. 7), even if the velocity
component fields are not (Fig. 4, 5).

6. Conclusions

This work aimed at investigating, modelling, and thereby explaining
the migratory flow close to the helicoid wire spacer inside a 7-rods,
wire-wrapped hexagonal bundle by reconstructing the pressure gra-
dient in the direction normal to the wire. Experiments have been per-
formed inside the rod bundle, where the axial flow has been in-
vestigated with Particle Image Velocimetry, making use of a refractive
index-matching technique to reduce refraction of light inside the test
section. Six Reynolds numbers were considered, at which the time-
averaged velocity fields were measured. The results show that the flow
downstream the wire followed the helicoid path, as expected. However,
if the investigated region was moved to the front of the wire, closer to
the bulk of the subchannel, the flow changed the direction by moving
against the wire’s helicoid path. The pressure gradient normal to the
wire has been modelled through the Euler equations applied to the
streamlines, thereby showing that the bending of the flow is caused by
the pressure gradient imposed by the wire. The results modelled
through the Euler equations were compared with the solution of the
two-dimensional Navier–Stokes equations leading to a good qualitative
and quantitative agreement. Furthermore, an expression to predict the
bending angle of the flow has been derived and successfully validated
against the experimental results. The findings of this work give more
insight into the physics governing the bending of the flow close to the
wire spacer, highlighting how the flow bending is determined by the
interplay of the transverse pressure gradient and inertia of the flow.
Nevertheless, the model hereby presented leads the way to future
possibilities for evaluating the bending angle through macroscopic,
known variables such as bundle dimensions and flow rate.
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