

Delft University of Technology

Correction: CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO₂ electrolyzer

Subramanian, S.S.; Kok, J.J.; Gholkar, P.V.; Sajeev Kumar, A.; Iglesias van Montfort, H.P.; Kortlever, R.; Urakawa, A.; Dam, B.; Burdyny, T.E.

DOI

[10.1039/D5EE90059J](https://doi.org/10.1039/D5EE90059J)

Publication date

2025

Document Version

Final published version

Published in

Energy & Environmental Science

Citation (APA)

Subramanian, S. S., Kok, J. J., Gholkar, P. V., Sajeev Kumar, A., Iglesias van Montfort, H. P., Kortlever, R., Urakawa, A., Dam, B., & Burdyny, T. E. (2025). Correction: CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO₂ electrolyzer. *Energy & Environmental Science*, 18(12), 6307-6308. <https://doi.org/10.1039/D5EE90059J>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

CORRECTION

[View Article Online](#)
[View Journal](#)

Cite this: DOI: 10.1039/d5ee90059j

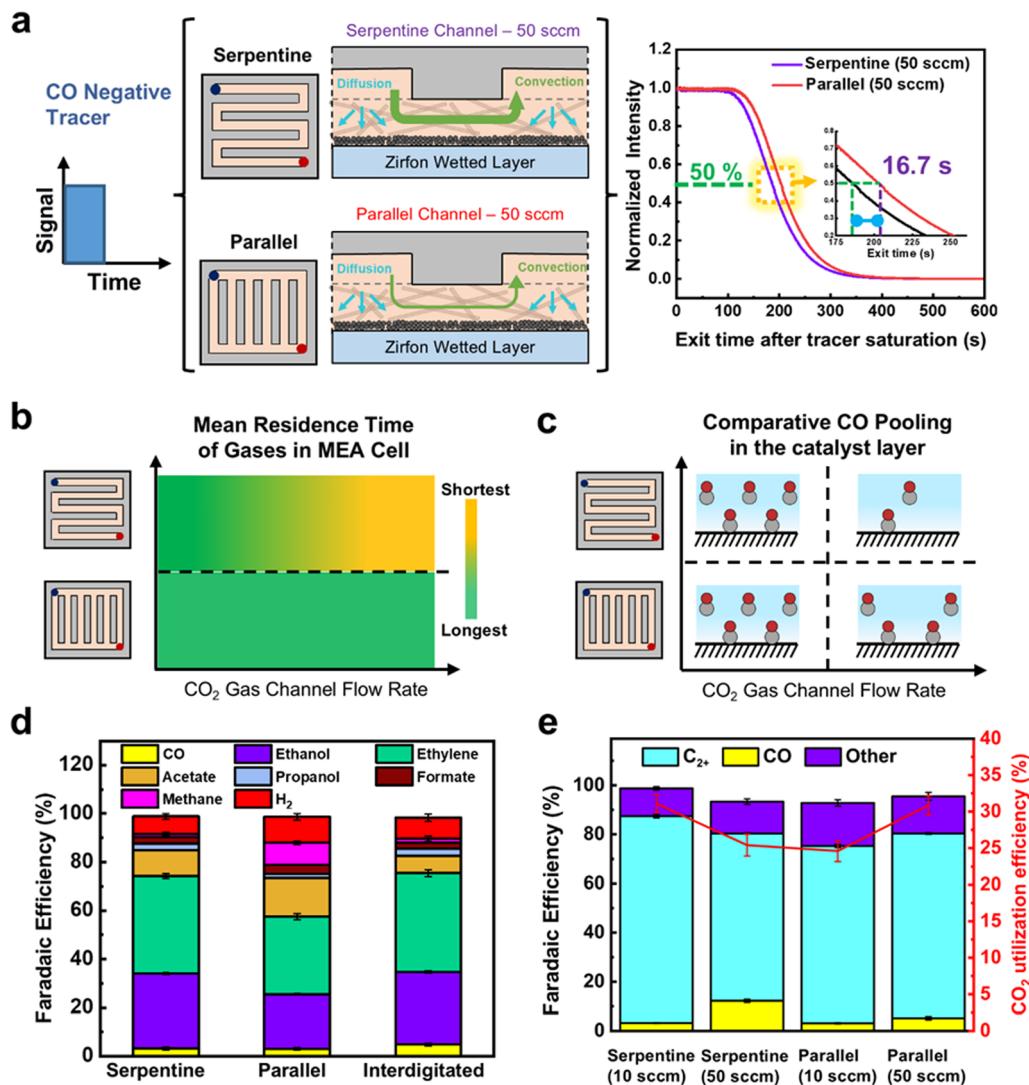
Correction: CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO₂ electrolyzer

Siddhartha Subramanian,^{*a} Jesse Kok,^a Pratik Gholkar,^c Asvin Sajeev Kumar,^b Hugo-Pieter Iglesias van Montfort,^a Ruud Kortlever,^b Atsushi Urakawa,^c Bernard Dam^a and Thomas Burdyny^{*a}

DOI: 10.1039/d5ee90059j

Correction for 'CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO₂ electrolyzer' by Siddhartha Subramanian *et al.*, *Energy Environ. Sci.*, 2024, **17**, 6728–6738, <https://doi.org/10.1039/D4EE02004A>.

In Fig. 4(e) on page 6733 of this article, the legends in the graph for faradaic efficiency of CO and C₂₊ were misplaced. The original figure should be replaced with an updated one. Note that this correction does not have any impact on the main idea and conclusion of this article. The updated Fig. 4 is as follows.


The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands. E-mail: siddhartha.subramanian92@gmail.com, T.E.Burdyny@tudelft.nl

^b Large Scale Energy Storage, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft 2628 CB, The Netherlands

^c Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands

Fig. 4 (a) Non-electrochemical negative tracer RTD results for serpentine and parallel flow fields at tracer flow rates of 50 sccm showing longer residence times for parallel flow fields as a result of lower convective forces. (b) A qualitative comparison of the RTD results as a function of flow rate and flow field. (c) A qualitative assessment of the CO pooling inside the catalyst layer during CO₂ electrolysis as a function of flow rate and flow field. (d) Faradaic efficiency of products obtained from ECO₂R in an MEA cell at 10 sccm and 200 mA cm⁻² for serpentine, parallel and interdigitated flow fields. (e) Comparable CO and C₂₊ product selectivity for varied flow rates and flow fields. The inset (red line) shows the calculated CO₂ utilization efficiencies. Error bars represent the mean and standard deviation of triplicate experiments.