
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2016

MSc THESIS

Pauli Frames for Quantum Computer
Architectures

Leon Riesebos

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2016

Quantum computers hold the promise to solve problems that are in-
tractable to classical computers. Since qubits suffer from extremely
short lifetime and unreliable operations, Quantum Error Correc-
tion (QEC) forms a vital part of a quantum computer to enable
Fault-Tolerant quantum computing. The usage of a Pauli frame can
relax the time constraints on QEC by keeping track of detected errors
in classical logic. For the first time, in the background of a heteroge-
neous quantum computer architecture, we clarified the input/output
and working principles of a Pauli frame, which can soon be mapped
to a hardware implementation. We proposed the first functional
quantum computer architecture simulation platform, QPDO, which
can connect to different quantum simulators, such as QX Simulator
or CHP, and is used to verify the logical operations of a Surface Code
17 (SC17) logical qubit. Finally, by using QPDO we found that a
Pauli frame does not improve the Logical Error Rate (LER) of a
SC17 logical qubit, which is opposite to previous understanding. By
further reasoning, we also expect no improvement in LER by using
a Pauli frame for surface codes with a larger distance. Neverthe-
less, the usage of a Pauli frame is still crucial for relaxing the timing
constraints on QEC.

Pauli Frames for Quantum Computer
Architectures

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Leon Riesebos
born in Amsterdam, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Pauli Frames for Quantum Computer
Architectures

by Leon Riesebos

Abstract

Quantum computers hold the promise to solve problems that are intractable to classical com-
puters. Since qubits suffer from extremely short lifetime and unreliable operations, Quantum
Error Correction (QEC) forms a vital part of a quantum computer to enable Fault-Tolerant
quantum computing. The usage of a Pauli frame can relax the time constraints on QEC by
keeping track of detected errors in classical logic. For the first time, in the background of a het-
erogeneous quantum computer architecture, we clarified the input/output and working principles
of a Pauli frame, which can soon be mapped to a hardware implementation. We proposed the
first functional quantum computer architecture simulation platform, QPDO, which can connect
to different quantum simulators, such as QX Simulator or CHP, and is used to verify the logical
operations of a Surface Code 17 (SC17) logical qubit. Finally, by using QPDO we found that
a Pauli frame does not improve the Logical Error Rate (LER) of a SC17 logical qubit, which
is opposite to previous understanding. By further reasoning, we also expect no improvement in
LER by using a Pauli frame for surface codes with a larger distance. Nevertheless, the usage of
a Pauli frame is still crucial for relaxing the timing constraints on QEC.

Laboratory : Computer Engineering
Codenumber : CE-MS-2016

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Carmen G. Almudever, CE, TU Delft

Member: Tim H. Taminiau, QuTech, TU Delft

Member: Leo DiCarlo, QuTech, TU Delft

Member: Xiang Fu, CE, TU Delft

i

ii

To my parents, sister, and friends

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

Acknowledgements xv

1 Introduction 1

2 Background 3

2.1 Qubits . 3

2.2 Quantum gates . 4

2.2.1 Single-qubit gates . 4

2.2.2 Multi-qubit gates . 4

2.3 Quantum math formalism . 5

2.3.1 Group . 5

2.3.2 Gate properties . 6

2.3.3 Gate groups . 6

2.4 Universal quantum computation . 7

2.5 Quantum error correction . 7

2.5.1 Surface code . 8

2.6 Fault-tolerant quantum computing . 10

2.6.1 Surface code 17 . 11

3 Pauli frames 15

3.1 Working principles . 15

3.2 System specification . 16

3.3 Applications and benefits . 19

3.4 Pauli frame example . 21

3.5 Implementation . 23

3.5.1 Quantum control unit . 24

3.5.2 Pauli frame unit . 25

4 Simulation platform 29

4.1 Quantum simulators . 31

4.1.1 QX Simulator . 31

4.1.2 CHP . 31

4.2 QPDO . 32

4.2.1 Layered structure . 32

v

4.2.2 Shared data structures . 33
4.2.3 Implemented layers . 34
4.2.4 Test benches . 35

5 Experiments 37
5.1 Ninja star logical operations verification 37

5.1.1 Run-time properties of a Ninja star 37
5.1.2 Logical operation conversion and property updating 38
5.1.3 QPDO implementation . 38
5.1.4 Simulation results . 39

5.2 Pauli frame verification . 42
5.2.1 QPDO implementation . 43
5.2.2 Random circuit simulation results 43
5.2.3 Ninja star measurement simulation results 46

5.3 Ninja star logical error rates . 47
5.3.1 Test setup . 48
5.3.2 Results . 50

6 Conclusion 63

Bibliography 67

vi

List of Figures

2.1 The layout of a surface code using 17 qubits, also known as the ninja star. 9

2.2 Left the orientation and naming of the qubits, right the circuit for the
X parity checks. 10

2.3 Left the orientation and naming of the qubits, right the circuit for the
Z parity checks. 10

2.4 Logical Pauli operations for a ninja star. 12

2.5 Rotation of a ninja star. 12

2.6 Execution scheme of a ninja star logical qubit. 13

3.1 Representation of the location of the Pauli frame unit. 17

3.2 A layered system with physical qubits, a Pauli frame unit and a Quantum
Error Correction layer. 20

3.3 Schedules of steps in the Quantum Error Correction process with and
without Pauli frame. 20

3.4 The schematic overview of the data qubits of the ninja star and their
corresponding Pauli records. 21

3.5 All data qubits and their corresponding Pauli records are reset to be
able to initialize the ninja star. 21

3.6 Two errors are detected and processed by the Pauli frame. 22

3.7 A double error on D4 is detected and processed by the Pauli frame. . . 22

3.8 A logical Hadamard gate is applied an the Pauli records are mapped. . . 22

3.9 All data qubits are measured and measurement results are mapped by
their corresponding Pauli record. 23

3.10 Simplified quantum computer architecture for a ninja star. 24

3.11 Detailed schematic of the Pauli Frame Unit. 26

3.12 Schematics how the Pauli arbiter and Pauli Frame Unit process different
operations. 28

4.1 The global picture of a quantum computing environment. 30

4.2 Compiler infrastructure . 30

4.3 Schematics for QPDO control stacks with layers. 33

4.4 A schematic view of data structure for a circuit consisting of time slots
with operations. 34

4.5 A schematic view of a control stack and a test bench. 35

5.1 The test setup for simulations of the ninja star control software. 40

5.2 Schematic overview of a control stack with a Pauli frame layer and a
QxCore layer. 44

5.3 The test setup for the random-circuit test bench. 44

5.4 An example of a generated random circuit for 5 qubits with 20 gates. . . 45

5.5 The test setup with a ninja star layer and a Pauli frame layer. 46

5.6 The circuit used to create an odd Bell state. 46

vii

5.7 The resulting histograms of the odd Bell state test bench with and with-
out Pauli frame. 47

5.8 The test setup used for the Logical Error Rate experiments. 49

5.9 The scheme of Error Syndrome Measurement (ESM) results used for
successive windows. 49

5.10 The stabilizer circuits used to detect logical errors. 50

5.11 Physical Error Rate versus Logical Error Rate for a Surface Code 17
logical qubit without Pauli frame. 51

5.12 Physical Error Rate versus Logical Error Rate around the pseudo-
threshold for a Surface Code 17 logical qubit without Pauli frame. . . . 51

5.13 Physical Error Rate versus Logical Error Rate for a Surface Code 17
logical qubit with Pauli frame. 52

5.14 Physical Error Rate versus Logical Error Rate around the pseudo-
threshold for a Surface Code 17 logical qubit with Pauli frame. 52

5.15 Physical Error Rate versus Logical Error Rate for a Surface Code 17
logical qubit with (red circles) and without (blue squares) Pauli frame. . 53

5.16 Physical Error Rate versus Logical Error Rate for a Surface Code 17
logical qubit with (red circles) and without (blue squares) Pauli frame
around the pseudo-threshold. 53

5.17 The absolute Logical Error Rate difference between the experiments with
and without Pauli frame (red triangles) plotted together with the stan-
dard deviations of the LER results (vertical bars). 54

5.18 The absolute Logical Error Rate difference between the experiments with
and without Pauli frame (red triangles) plotted together with the stan-
dard deviations of the LER results (vertical bars) around the pseudo-
threshold. 55

5.19 The coefficient of variation of the number of counted windows with (red
circles) and without (blue squares) Pauli frame. 55

5.20 The coefficient of variation of the number of counted windows with
(red circles) and without (blue squares) Pauli frame around the pseudo-
threshold. 56

5.21 The resulting ρ-values from the independent t-test performed on the
data sets obtained with and without Pauli frame for different Physical
Error Rate values. 56

5.22 The resulting ρ-values from the paired t-test performed on the data sets
obtained with and without Pauli frame for different Physical Error Rate
values. 57

5.23 The resulting ρ-values from the independent t-test performed on the
data sets obtained with and without Pauli frame for different Physical
Error Rate values. 57

5.24 The resulting ρ-values from the paired t-test performed on the data sets
obtained with and without Pauli frame for different Physical Error Rate
values around the pseudo-threshold. 58

5.25 The percentage of gates and time slots saved by the Pauli frame during
Logical Error Rate simulations for X errors. 59

viii

5.26 The percentage of gates and time slots saved by the Pauli frame during
Logical Error Rate simulations for X errors around the pseudo-threshold. 59

5.27 The upper-bound on the relative improvement in Logical Error Rate
that can be obtained by using a Pauli frame for tsESM = 8. 61

ix

x

List of Tables

2.1 Stabilizers of the Surface Code 17. 9
2.2 Additional stabilizers to describe the SC17 logical states. 9
2.3 List of how logical operations are implemented for Surface Code 17. . . 13

3.1 Pauli frame execution steps for different operations. 17
3.2 The modifications for measurement results of qubit q with Pauli record

Rq. 17
3.3 The mappings for Pauli record Rq for the Pauli generators. 18
3.4 The mappings for Pauli record Rq the for single qubit Clifford generators. 18
3.5 The mappings for the CNOT gate on Pauli records Rc and Rt for the

control and target qubits. 19

4.1 The functions of the shared Core interface between layers in QPDO. . . 33

5.1 List of how logical operations are performed for a ninja star. 37
5.2 List of properties of a ninja star. 38
5.3 List of logical operations and their relation to properties of a ninja star. 39
5.4 List of all classes used for the implementation of a ninja star layer in

QPDO with their corresponding responsibilities. 40
5.5 Logical initial state, expected state after applying a logical CNOT gate

(with qubit 0 as control and qubit 1 as target), and the state obtained
by simulation. 41

5.6 Logical initial state, expected state after applying a logical CZ gate, and
the state obtained by simulation. 42

5.7 Pauli frame execution steps for different operations. 43
5.8 Description of the Error Syndrome Measurement circuit used for the

logical error rate experiment. 50

xi

xii

List of Acronyms

ESM Error Syndrome Measurement

FT Fault-Tolerant

LER Logical Error Rate

LUT Look-Up Table

PEL Physical Execution Layer

PER Physical Error Rate

PF Pauli Frame

PFU Pauli Frame Unit

QASM Quantum Assembly

QCI Quantum-Classical Interface

QCU Quantum Control Unit

QEC Quantum Error Correction

QED Quantum Error Detection

QEX Quantum Execution

QISA Quantum Instruction Set Architecture

QPDO Quantum Platform Development framewOrk

SC17 Surface Code 17

SCC Surface Code Cycle

xiii

xiv

Acknowledgements

I would like to express my very great appreciation to my Thesis advisor Dr. Koen Bertels
for providing me the opportunity to do an MSc Thesis on the interesting topic of quantum
computing, for the valuable advice during my work, and for the great pizza/beer/wine
evenings. Also, I would like to offer my special thanks to my daily supervisor Xiang Fu.
His extraordinary motivation and support has been of great importance and has been
very much appreciated.

I would like to thank my colleagues from the Quantum Computing Team of the
Computer Engineering department for their support on my work. Especially I would like
to mention Nader Khammassi for his support on the QX server, Savvas Varsamopoulos
for providing me with the decoder software, and Dan Iorga for helping me with the
flexible wrapper for CHP. It has been a pleasure to work with all of you as a team, and
I hope we will continue to work together for a couple more years.

I wish to thank my parents and sister for their unconditional support and continuous
encouragement throughout all the years of my study. This academic, as well as personal
accomplishment, would not have been possible without them.

Finally, I would like to show my gratitude to the friends that have been standing by
my side for the last years. I have always been able to count on them during the good
times and the bad times.

Thank you.

Leon Riesebos
Delft, The Netherlands
June 23, 2016

xv

xvi

Introduction 1
Quantum computing is an emerging technique that promises to solve problems in a rea-
sonable time which are intractable by classical computers. For certain problems, quan-
tum computers running specialized quantum algorithms can gain exponential speedup
compared to classical computers running equivalent classical algorithms. The speedup
is caused by exploiting quantum phenomena (i.e. superposition and entanglement) for
computational purposes using qubits. Well-known applications of quantum algorithms
are factoring large numbers using Shor’s algorithm [1] and searching large data sets using
Grover’s search algorithm [2], but applications can also be found in the field of chemistry,
optimization, and quantum simulation.

Superposition refers to the fact that qubits can reside in not only a single state but
also a superposition of states. A classical bit has two exclusive states, 0 or 1, and can
only be in one state at any point in time. A qubit however has two basis states, |0〉 and
|1〉, and can be in a superposition of both states represented as a linear combination of |0〉
and |1〉: |ψ〉 = α |0〉+ β |1〉, where α, β ∈ C are the probability amplitudes satisfying the
normalization condition |α|2+|β|2 = 1, and |α|2 / |β|2 represent the probability of getting
the measurement result +1/−1 (resulting state |0〉/|1〉) respectively when measuring the
qubit in the basis {|0〉 , |1〉}. Note that the action of measuring the qubit will project the
state of the qubit onto one of the measurement basis states which means that a quantum
state cannot be measured directly without losing the information stored.

In classical computing, a system composed by n classical bits can only store and
process one of the 2n possible states at a time. However, in quantum computing multiple
qubits can be combined, resulting in a new state that is a superposition of all 2n possible
states |ψ〉 = α0 |0 . . . 00〉+α1 |0 . . . 01〉+ . . .+α2n−1 |1 . . . 11〉, where αi ∈ C,

∑ |αi|2 = 1.
Entanglement is a special case of such combination meaning that the combined qubit
state cannot be decomposed into separate states. When applying a (quantum) operation
on those combined qubits, the operation is applied on all 2n possible states at the same
time.

Various implementations of qubits and small quantum systems already exist, and
all of them share one property: qubit states are very fragile. Qubits interact with the
environment and information stored in the qubits tends to get corrupted, which is known
as decoherence. Due to decoherence, qubits cannot reliably store information for enough
time and quantum operations are error prone. For example, superconducting qubits
may lose their information in tens of microseconds [3, 4]. Also, quantum operations are
unreliable with error rates around 0.1% [5, 3, 4]. Quantum algorithms require qubits
with long coherence time and operations with high fidelity to perform meaningful com-
putations, making existing qubits unsuitable to use directly for computational purposes.
For example, factoring a 2000-bit number using Shor’s algorithm is estimated to require
error rates below 4× 10−13 [6, Appendix M] being far below current quantum operation

1

2 CHAPTER 1. INTRODUCTION

error rates.
To enable quantum computing using qubits with high error rates, Quantum Error

Correction (QEC) was introduced [7]. QEC encodes a single quantum state in a logical
qubit created from multiple physical qubits and can detect errors on physical qubits based
on error syndromes. These error syndromes are created by repeatedly executing Error
Syndrome Measurement (ESM) circuits on the qubits. The error syndromes are decoded
using classical algorithms and make it possible to find and correct erroneous qubits in
the system. By using QEC, we can create logical qubits that have lower error rates
than the physical qubits they were made of, making it possible to satisfy the demands
of quantum algorithms to have qubits with low error rates.

Besides from the benefits, QEC introduces overhead and new challenges. Execution
of ESM circuits has to be performed in short time periods putting high demands on qubit
gate and measurement times. Also, decoding of error syndromes should be executed in
a very short period to prevent QEC procedures from stalling. The requirement of fast
error decoding introduces high demands on the classical algorithms and computational
devices.

The concept of Pauli frames was introduced [8] to loosen the timing constraints
on ESM circuits and decoding algorithm execution time. A Pauli frame consists of
a combination of classical memory and logic that can track the errors of qubits. By
using a Pauli frame, qubit errors found by decoding error syndromes can be tracked in
classical electronics, making it unnecessary to apply corrections on physical qubits. The
Pauli frame can loosen the timing constraints on qubit measurement times and decoding
algorithms, making it easier to implement fully functional QEC.

In this work, we investigate how to implement a Pauli frame, and we propose a
Pauli frame implementation as part of a quantum computer architecture targeted for a
Surface Code 17 (SC17) quantum chip. We perform functional simulations of quantum
computer architectures with integrated QEC and verify the fault-tolerant operations
of SC17 systems. We also check the control logic of our Pauli frame implementation
by simulation. Finally, we study the effect of a Pauli frame on the error rate of a
SC17 logical qubit. Quantum simulations are performed with the universal quantum
simulator QX Simulator [9] and the stabilizer simulator CHP [10]. For simulating the
quantum computer architecture and the Pauli frames, we used the QPDO software which
is specifically developed for this work.

This report is organized as follows: Chapter 2 provides a background to introduce
the reader to the concepts used throughout this report. Chapter 3 introduces the reader
to the concept and working principles of Pauli frames. In this chapter, we will also
discuss the benefits of a Pauli frame and propose an implementation as part of a quantum
computer architecture. In Chapter 4, we introduce the simulations software that was used
for our experiments which include a self-developed framework for functional simulation
of quantum computer architectures: QPDO. Chapter 5 discusses the experiments we
performed and the results of those experiments. These experiments include verification
of the logical operations for a SC17 logical qubit, verification of the Pauli frame working
principles, and experiments to observe the impact of a Pauli frame on the error rate of
a SC17 logical qubit. Finally we conclude in Chapter 6.

build 0.18

Background 2
The fundamental elements of quantum computers are quantum bits, also known as
qubits. Qubits can be represented as mathematical objects, but can also be realized
in a physical system, just as classical bits. Bits and qubits are related to each other,
but qubits extend the features of bits. The two extending features are superposition and
entanglement.

2.1 Qubits

Where classic bits can only be in a 0 or 1 state at a certain point in time, qubits can be
in a superposition of both. Two basis states are defined: |0〉 and |1〉. Qubits can be in a
linear combination of both states and are therefor represented like: |ψ〉 = α |0〉 + β |1〉,
where α, β ∈ C are complex probability amplitudes. The sum of all probabilities within
a system should always be 1, therefor: |α|2+|β|2 = 1. The state of a qubit can be treated
as a unit column vector in a two dimensional complex space C2. This vector lives in the
so called Hilbert space H. The states |0〉 and |1〉 are an orthonormal basis for H, also

known as the computational basis. By defining |0〉 =
[
1 0

]T
and |1〉 =

[
0 1

]T
, we can

introduce the vector notation of a qubit state as shown in Equation (2.1). This notation
is known as the Dirac bra-ket notation.

|ψ〉 = α |0〉+ β |1〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
where |α|2 + |β|2 = 1 (2.1)

The probabilistic nature of qubits presents themselves when being measured. When
measuring a single qubit in the computational basis, there is a probability of |α|2 to
measure |0〉/+1 and a probability of |β|2 to measure |1〉/−1. Observing a qubit collapses
its state to one of the possible measurement outcomes and destroys the information in
the probability amplitudes. As a result, α and β are not directly observable.

For an n-qubit system, the global state is represented as a column vector with 2n = N
entries. For example, an n = 2 qubit system has N = 4 basis states and can, therefore,
be fully described by four complex amplitudes. The state vector of a two-qubit system
lives in a four-dimensional Hilbert space.

The state of a quantum system |ψ〉 has a global phase δ. Every state |ψ〉 could
therefore be written like eiδ |ψ〉. Since the global phase has no observable influence on
the measurement results, it is in general ignored.

The second feature of qubits, that extends the capabilities of classical bits, is entan-
glement. Qubits can be entangled with each other, which means that the state of the
entire system cannot be represented as the production of individual qubit state anymore.
An example of a non-entangled state is |ψ〉 = 1√

2
|00〉+ 1√

2
|01〉 = |0〉⊗ 1√

2
(|0〉+ |1〉). This

state can still be written as the tensor product of two individual states and is therefor

3

4 CHAPTER 2. BACKGROUND

not entangled. The state |Φ〉 = 1√
2

(|00〉+ |11〉) is entangled since it can not be written

as two individual states.

2.2 Quantum gates

To manipulate a qubit state, we use quantum gates which can be expressed as matrices.
Applying a gate can be modeled as a matrix-vector multiplication. A qubit state vector
is always a unit vector and for that reason, matrices representing quantum gates are
always unitary. For unitary matrices it holds that:

UU † = U †U = I (2.2)

The fact that quantum gates are unitary matrices implies that quantum gates are always
reversible.

2.2.1 Single-qubit gates

A single qubit gate can be represented as a 2 × 2 unitary matrix. The simplest single
qubit gate is the Pauli-X gate. The Pauli-X gate transforms the state α |0〉 + β |1〉 to
β |0〉+α |1〉. The matrix representation of the Pauli-X gate is shown in Equation (2.3).

X ≡
[
0 1
1 0

]
(2.3)

A few other basic single qubit gates are the Pauli-Y , Pauli-Z, and Hadamard(H)
gate. Especially the H gate is interesting since it maps a computational basis state to a
superposition state. Their corresponding matrices are:

Y ≡
[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
, H ≡ 1√

2

[
1 1
1 −1

]
(2.4)

The Z gate is part of the Z-axis rotation-gate family. The general form of a Z-axis
rotation-gate is shown in Equation (2.5). The rotation angle θ ∈ R only has an influence
on the |1〉 part of the qubit state. When θ = π, the rotation-gate is equivalent to a Z
gate. Other common rotation angles are θ = π

2 and θ = π
4 for the corresponding S and

T gate. The matrices for the S and T gate are shown in Equation (2.6).

RZ (θ) ≡
[
1 0
0 eiθ

]
(2.5)

S ≡ RZ
(π

2

)
=

[
1 0
0 i

]
, T ≡ RZ

(π
4

)
=

[
1 0

0 eiπ/4

]
(2.6)

2.2.2 Multi-qubit gates

Besides from single-qubit gates, there are also quantum gates applying on multiple qubits.
Multi-qubit gates are essential for creating entanglement. A well known multi-qubit
gate is the controlled NOT (CNOT) gate. CNOT transfers the basis state |a〉 ⊗ |b〉 to

build 0.18

2.3. QUANTUM MATH FORMALISM 5

another basis state |a〉 ⊗ |b⊕ a〉, where a, b ∈ {0, 1} and ⊕ is classical XOR operation.
The CNOT gate can also be interpreted as a controlled-X gate, which only applies an X
gate to the target qubit if the control qubit is in the |1〉 state. The matrix representing
the CNOT gate looks as follows:

UCNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.7)

There are more two-qubit gates and among them a simple type is that with a control
qubit and a target qubit. A typical example is the controlled-Z gate, also known as the
CZ gate. This gate performs a Z gate on the target qubit if the control qubit is in the
|1〉 state. Three-qubit gates also exist and one commonly-used example is the Toffoli
gate, also known as the controlled-controlled NOT or CCNOT gate. The Toffoli gate
works similar as the CNOT gate but has two control qubits. Only if both control qubits
are in the |1〉 state, the Toffoli gate will apply a X operation to the target qubit.

2.3 Quantum math formalism

The mathematical model of quantum mechanics is mainly based on linear algebra. In
this section, we introduce mathematical concepts which are used in the remainder of this
report.

2.3.1 Group

As described in [11, Appendix 2], a group is defined as a 2-tuple (E, •) where E is a
set and • is is the so-called group law. Groups are in general referred as E without the
group law, but it must be defined. A subgroup F of E, noted as F ⊆ E, is a subset
of E using the same group law as E. For E to be qualified as a group, the following
requirements must hold:

1. ∀a, b ∈ E it holds that a • b ∈ E.

2. ∀a, b, c,∈ E it holds that (a • b) • c = a • (b • c).

3. ∃e ∈ E where ∀a ∈ E it holds that e • a = a • e = a. Element e is the so called
identity element.

4. ∀a ∈ E there ∃b ∈ E such that a • b = b • a = e.

To describe a group we can use group generators. The generators of a group S is a set
Gs ⊆ S such that each si ∈ S can be expressed as a finite combination of gi ∈ Gs using
the group law of S. The set generated by Gs is 〈Gs〉 and Gs contains the generators of
〈Gs〉. By describing a group by their generators, we have a compact notation that covers
all the elements in a group.

A group can also have a normalizer. Assume we have a group (T, •), then the
normalizer of a group S ⊆ T is the group NS ⊆ T where ∀ni ∈ NS and ∀si ∈ S there

build 0.18

6 CHAPTER 2. BACKGROUND

∃sj ∈ S where it holds that ni • si •n−1i = sj . This means that the normalizer of S maps
elements of S to elements of S.

2.3.2 Gate properties

Since all gates are defined by unitary matrices, we can derive useful mathematical prop-
erties. As mentioned earlier (see Section 2.2) all quantum gates have an inverse. The
Pauli gates (X, Y , and Z) are not only unitary but also Hermitian. For Hermitian
matrices Equation (2.8) holds. Now we can derive Equation (2.9) using both the unitary
and Hermitian properties of the Pauli gates.

A = A† (2.8)

XX† = XX = Y Y † = Y Y = ZZ† = ZZ = I (2.9)

The Pauli gates also have other interesting properties. The X and Z gate anti-
commute and the Y gate can be decomposed into an X, Z, and iI component as shown
in Equation (2.10) and (2.11). The iI component trivially commutes with every matrix
since it is a scalar matrix.

XZ = −ZX (2.10)

Y = iXZ (2.11)

The Hadamard gate is just like the Pauli gates a Hermitian matrix, as shown in
Equation (2.12), and has some interesting relations with the Pauli gates. Those relations
are shown in Equation (2.13) and (2.14).

HH† = HH = I (2.12)

HX = ZH (2.13)

HZ = XH (2.14)

2.3.3 Gate groups

Quantum gates can be divided into groups as described in [12]. The infinite group U(2n)
is the group of unitary transformations on n qubits with (matrix) multiplication as group
law. The most basic subset of gates are the Pauli gates, which are part of the Pauli group.
The Pauli group on n qubits is defined as Pn ⊂ U(2n). The Pauli group is finite and can
be described by its generators GPn as shown in Equation (2.15) as taken from [12].

GPn = 〈iI,X1, Z1, . . . , Xn, Zn〉 (2.15)

Another group of gates are the Clifford gates. The Clifford group for n qubits Cn ⊂
U(2n) is defined in [12] as the normalizer for Pn as shown in Equation (2.16). We can
conclude that gates of the Clifford group Cn map Pauli gates of the group Pn to Pauli
gates of the same group Pn. The generators for C2 are defined in [12] and can be found
in Equation (2.17).

Cn = {U ∈ U(2n)|∀P ∈ Pn,∃P ′, UPU † = P ′} (2.16)

GC2 = 〈H1, S1, H2, S2, CNOT1,2〉 (2.17)

build 0.18

2.4. UNIVERSAL QUANTUM COMPUTATION 7

The last group of interest is the group of non-Clifford gates. This infinite group
consists of all the gates that are not in the Clifford group and is defined as UNC(2n) =
U(2n) \ (Pn ∪ Cn) for n qubits. Concrete examples of non-Clifford gates discussed in
Section 2.2 are the T gate and the Toffoli gate.

2.4 Universal quantum computation

For realizing universal quantum computation, there is a minimal set of requirements
which includes a universal quantum gate set (as proposed in [11]). For universal quantum
computation, the following conditions should be met:

1. Adequate amount of classical computing resources for controlling the quantum
process.

2. Adequate amount of qubits to have a state space large enough to perform the
computation.

3. Ability to initialize any qubit in the system to a computational basis state.

4. Ability to perform a universal set of quantum gates on any subset of qubits in the
system.

5. Ability to perform measurements in the computational basis.

At this moment, we want to point out the definition of the universal set of quantum
gates. Universal gates are a well-known concept in Boolean logic. For binary logic
systems, having NAND or NOR gates is enough to implement any arbitrary Boolean
function. In quantum computing, a set of quantum gates is universal if any unitary
operation can be approximated to arbitrary accuracy by a quantum circuit involving only
gates in the set. An example of a universal set of quantum gates is the set H,T,CNOT .
Any universal gate set should at least contain a multi-qubit gate and a non-Clifford gate.

2.5 Quantum error correction

Up to this point, we have described qubits as mathematical objects. Just as classical
bits, qubits need to be physically realized to use them for actual calculations. There
are many different ways to construct physical qubits, and all realizations have one factor
in common: physical qubits suffer from decoherence. A qubit loses its state in a short
period which makes it hard to store a quantum state for a long time. Also, the physical
execution of initialization, gates and measurement operations is not perfect and can
introduce errors.

For example, superconducting qubits may lose their information in tens of microsec-
onds [3, 4] and quantum operations are unreliable with error rates around 0.1% [5, 3, 4].
Quantum algorithms require qubits with long coherence time and operations with high
fidelity to perform meaningful computations, making existing qubits unsuitable to use
directly for computational purposes. For example, factoring a 2000-bit number using
Shor’s algorithm is estimated to require error rates below 4 × 10−13 [6, Appendix M]

build 0.18

8 CHAPTER 2. BACKGROUND

being far below current quantum operation error rates. To still be able to do meaningful
computations using qubits with high error rates, Quantum Error Correction (QEC) was
introduced [7].

A quantum state can be encoded redundantly to protect it from noise using QEC
codes. These encoding schemes entangle multiple (physical) qubits to form a logical qubit
that can store a single qubit state. By using QEC it is possible to create logical qubits
that have lower error rates than their underlying physical qubits. These error rates are
also referred to as the Logical Error Rate (LER) and Physical Error Rate (PER). In the
next section, we will discuss a QEC scheme which is known as the surface code.

2.5.1 Surface code

The surface code is a topological QEC code [12] and is derived from Kitaev’s toric code
[13]. The surface code is a promising QEC code and attracts a lot of theoretical and
experimental research [6, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22]. There are several different
methods [6, 14, 23] to encode logical qubits using the surface code. The method studied
in this thesis is to encode a logical qubit in a sheet or patch, also known as planar
surface code, and will from now on be referred to as surface code. The surface code is
interesting mainly because of its good tolerance to errors and convenient two-dimensional
layout with only nearest-neighbor qubit interactions, which contributes in a positive way
to the feasibility to manufacture such a system. The two-dimensional layout of the
surface code can exist in various shapes and sizes. Data qubits, which hold the encoded
state of the logical qubit, are aligned in a grid with ancilla qubits between them. Figure
2.1 displays an example using nine data qubits (in blue) and eight ancilla qubits (in
red and green). The red/green ancilla qubits are used to check X/Z parity between
neighboring data qubits. The red and green connection lines show how ancilla qubits
interact to the data qubits. Since the surface code checks both X and Z parity, all types
of errors can be detected. A surface code using 17 qubits, which is also known as Surface
Code 17 (SC17) or a ninja star, can detect up to one error and is described in [19] by
the stabilizers shown in Table 2.1. The additional stabilizers that are shown in Table 2.2
can be used to describe various logical states of a ninja star. More information about
stabilizer formalism can be found in [11].

The example in Figure 2.1 shows a surface code with 17 qubits, but the surface can
be extended by repeating the two-dimensional pattern. By increasing the size of the
lattice, the distance d increases where the distance is defined by [6] as the minimum
number of gates required to inflict a logical operation (more about logical operations
in Section 2.6.1). The SC17 has a distance d = 3. The effect of a different distance d
can be explained by the threshold pth of a QEC code. The threshold pth is defined by
[6] as the PER p where for p < pth, the LER PL decreases exponentially with d, while
for p > pth, the LER PL increases with d. If we work in the regime where the PER
p < pth, a larger distance d will increase the error tolerance of a QEC code and decrease
the LER. For the surface code, the threshold is defined by [6] as pth = 5.7 × 10−3. A
QEC with a specified distance d also has a pseudo-threshold ppth, which is defined by
[19] as the PER p where for p < ppth, the LER PL < p, while for p > ppth, PL > p. For
a certain QEC and a given distance d this means that if we work in the regime where

build 0.18

2.5. QUANTUM ERROR CORRECTION 9

PER p < pth, QEC yields logical qubits that have lower error rates than the underlying
physical qubits.

D0 D1 D2

D3 D4 D5

D6 D7 D8

Figure 2.1: The layout of a surface code using 17 qubits, also known as the ninja star.

X Stabilizers Z Stabilizers

X0X1X3X4 Z0Z3

X1X2 Z1Z2Z4Z5

X4X5X7X8 Z3Z4Z6Z7

X6X7 Z5Z8

Table 2.1: Stabilizers of the Surface Code 17.

Stabilizer Logical state

Z0Z4Z8 |0〉L
−Z0Z4Z8 |1〉L
X2X4X6 |+〉L
−X2X4X6 |−〉L

Table 2.2: Additional stabilizers to describe the SC17 logical states.

The surface code can detect errors by executing an error correction circuit, also
known as an Error Syndrome Measurement (ESM), which is performed during a Surface
Code Cycle (SCC). When executing an ESM, all red and green ancilla qubits perform
a particular circuit interacting only with their neighboring data qubits. These circuits
are shown in Figure 2.2 and 2.3 and are also known as stabilizer circuits. The ancilla
qubits interact with their specific neighboring data qubits at a predefined timing. The
order of interacting with the data qubits is crucial to ensure correct functionality of the
ESM. Neighboring data qubits of an ancilla qubit can only be accessed in a Z or S
pattern. Figure 2.2 shows the S pattern while Figure 2.3 demonstrates the Z pattern. It
is possible to use a single pattern or different patterns for red and green ancilla qubits.
As shown in [19] it is preferred to use different patterns for the red and green ancilla

build 0.18

10 CHAPTER 2. BACKGROUND

qubits to prevent error insertion in the logical state of the ninja star due to errors on
ancilla qubits.

b a

d c

|a〉 ⊕

|b〉 ⊕

|c〉 ⊕

|d〉 ⊕

|x〉 |0〉 H • • • • H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 2.2: Left the orientation and naming of the qubits, right the circuit for the X
parity checks.

c a

d b

|a〉 •

|b〉 •

|c〉 •

|d〉 •

|z〉 |0〉 ⊕⊕⊕⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 2.3: Left the orientation and naming of the qubits, right the circuit for the Z
parity checks.

The execution of an ESM starts with initializing all ancilla qubits to |0〉 and applying
a Hadamard gate to the red ancilla qubits. After that, all ancilla qubits perform their
four CNOT operations at the same time where the timing and order of the CNOT
operations are crucial for correct results. After the CNOT operations, a Hadamard
gate is applied on the red ancilla qubits before all ancilla qubits are measured. The
measurement results of all ancilla qubits together form an error syndrome which can be
decoded (using a decoder) to find the most likely error happened on the data qubits. The
error found in the data qubits can then be corrected by applying a correction gate on
the corresponding data qubit. When repeatedly executing the ESM procedure including
error syndrome decoding and error correction, a logical state encoded in a surface code
can be protected from errors for a longer period.

2.6 Fault-tolerant quantum computing

Encoding a quantum state using a QEC code can protect it against a certain level of
noise, but more effort is required to realize a full Fault-Tolerant (FT) quantum system.
Let us first quote a definition of fault-tolerance from [11, p. 476] to make the concept
clear:

build 0.18

2.6. FAULT-TOLERANT QUANTUM COMPUTING 11

“We define the fault-tolerance of a procedure to be the property that if only
one component in the procedure fails then the failure causes at most one
error in each encoded block of qubits output from the procedure.”

The idea of FT quantum computing does not only require QEC but also requires us
to perform operations on logical qubits without decoding the protected quantum state.
Therefore, we need to have FT logical operations that operate directly on logical qubits
and prevent us from decoding an encoded state at any time. To make the concept of
FT quantum computing universal, both QEC as well as all required logical operations
for universal quantum computing (see Section 2.4) need to be performed in a FT way.
Required FT operations include initialization of logical qubits to a computational basis
state, measurement of logical qubits in the computational basis, and a universal set of
quantum gates.

2.6.1 Surface code 17

To operate the SC17 fully FT, both QEC and logical operations have to be implemented
in a FT way. To make the ESM and error detection FT, we use no FT ESM and rely on
complex decoders that can filter inconsistencies in the error syndromes. Such decoding
algorithms use d error syndromes to be able to detect errors. An example algorithm used
to decode error syndromes is the Blossom algorithm [24, 25]. SC17 supports a limited
set of FT logical operations. In the next paragraphs, we will discuss a set of FT logical
operations and the timing challenges for the FT operation of a ninja star.

Initialization of a ninja star to the logical |0〉 state is done by executing multiple
rounds of ESM and rely on the decoder to fix initialization errors. The number of error
syndromes required for the decoder to work correctly is equal to the distance of the
logical qubit where for a SC17 logical qubit d = 3. The |0〉L state was described in [19]
by the stabilizers shown in Table 2.1 and the stabilizer Z0Z4Z8. The following procedure
can be used to initialize a ninja star to the |0〉 state:

1. Reset all data qubits to the |0〉 state.

2. Execute d rounds of ESM.

3. Run regular decoding algorithms to fix initialization errors.

Logical X and Z operations are implemented by executing a chain of X or Z op-
erations on the data qubits that reach from one boundary to the other boundary. For
a ninja star (as shown in Figure 2.1), the logical X gate is performed by executing X
gates on data qubit D2, D4, and D6. The logical Z gate is performed by executing Z
gates on data qubit D0, D4, and D8. Figure 2.4 shows graphically how the XL and ZL
operations are performed.

The logical Hadamard gate for SC17 is implemented transversely, which means that
a Hadamard gate is executed on all data qubits. After a logical Hadamard operation,
the green ancilla qubits become red ancilla qubits and vice versa. The switched ancilla
functions can be interpreted as a 90 degrees rotation of the lattice. Therefore, the XL

and ZL operations also rotate with 90 degrees. Despite from the lattice rotation, the

build 0.18

12 CHAPTER 2. BACKGROUND

X

X

X

(a) XL operation for a ninja star.

Z

Z

Z

(b) ZL operation for a ninja star.

Figure 2.4: Logical Pauli operations for a ninja star.

addressing of the qubits does not change. Figure (2.5) shows a graphical representation
of the rotation and the modified logical Pauli gates.

D0 D2

D3 D5

D6 D7 D8

D1

D4

ZLXL
D0 D2

D3 D5

D6 D7 D8

D1

D4

Figure 2.5: Rotation of a ninja star.

For SC17, the logical CNOT gate can be implemented by transversely applying
CNOT gates between the data qubits of two logical qubits. The transversal CNOTL
operation between two logical qubits is dependent on the rotation of the lattices. A
ninja star can be in a normal orientation or a rotated orientation due to a HL opera-
tion. If two ninja stars A and B share the same orientation, the transversal CNOTL is
executed between data qubits (ADn, BDn) where n ranges from 0 to 8. In case the ninja
stars are in different orientations, the transversal CNOTL is executed in a rotated fash-
ion. The CNOT operations will be executed between the following pairs of data qubits
of ninja star A and B: {(AD0, BD6), (AD1, BD3), (AD2, BD0), (AD3, BD7), (AD4, BD4),
(AD5, BD1), (AD6, BD8), (AD7, BD5), (AD8, BD2)}.

The logical CZ gate for planar surface code is executed transversally, just like the
CNOTL. The only difference is the way to deal with different rotational orientations of
ninja stars. If the orientation of two ninja stars A and B is different, the transversal
CZL gate is executed between data qubits (ADn, BDn) where n ranges from 0 to 8. In
case ninja star A and B share the same orientation, the transversal CZL is executed in
a rotated fashion as explained for the CNOTL.

Logical measurement of a ninja star in the ZL basis can be performed by measuring
all data qubits (transversal measurement) in the Z basis. The product of the data
qubit measurement outcomes (±1) will yield the logical qubit measurement result. The

build 0.18

2.6. FAULT-TOLERANT QUANTUM COMPUTING 13

procedure for FT logical measurement can be summarized in the following steps:

1. Measure all data qubits in the computational basis. Retrieve their measurement
outcomes.

2. Run several ESM rounds, but only for the Z ancillas. Running the partial ESM
enables us to detect possible X errors that happened during the measurement
procedure.

3. Calculate the product of the measurement outcomes (±1) of all data qubits. The
result, which can be seen as a parity check, represents the logical measurement
outcome.

Table 2.3 recaps in one table how FT logical operations are implemented for SC17.

Logical operation Implementation

XL Chain
ZL Chain
HL Transversal

CNOTL Transversal
CZL Transversal

Reset to |0〉L Transversal
MZL

Transversal

Table 2.3: List of how logical operations are implemented for Surface Code 17.

ESM rounds can repeatedly be executed to correct and maintain a ninja star state
for a longer period. We can execute one or more (1..*) rounds of ESM to collect enough
error syndromes for the used decoder. The decoder can generate a set of corrections
which can then be applied on the data qubits. After applying the corrections, we can
apply a logical operation before we execute the next rounds of ESM. By repeating
this execution scheme of 1 or more rounds of ESM, decoding, applying corrections, and
logical operations we can perform FT computations with logical qubits while protecting
the logical state from errors. A schematic view of the execution scheme is shown in
Figure 2.6.

Time

ESM (1..*)

Correct errors

Logical operation

Decoding time Decoding time

Figure 2.6: Execution scheme of a ninja star logical qubit.

build 0.18

14 CHAPTER 2. BACKGROUND

build 0.18

Pauli frames 3
In the previous chapter, we have seen that qubits suffer from decoherence. Execution of
fewer gates on qubits can result in reduced operation times, which reduces the probability
of errors. A technique that reduces the amount of gates that have to be applied on qubits
is called Pauli frames. This chapter explains more about the technique and the benefits
of Pauli frames.

3.1 Working principles

The basic idea of Pauli frames is to track gates from the Pauli group in classical electronics
instead of applying them on qubits. In that case, every qubit in the system has a Pauli
record that tracks the Pauli gates for that specific qubit. The Pauli records of all qubits
in a quantum system make a Pauli frame. This idea was first proposed in [8] but has
also been discussed in [26, 27, 12, 28, 17]. Three essential elements form the basis of the
working principles of Pauli frames:

1. The first element is the effect of qubit initialization on a Pauli record. If a qubit
is initialized to |0〉, its corresponding Pauli record is reset to an empty state (i.e.
nothing was tracked yet). All tracked Pauli operators from the past are erased,
and the system is in a known state.

2. The second element is the effect of the Pauli records on qubit measurements in
the Z basis. Assume mq is the measurement result of qubit q which was measured
in the Z basis and Rq is the Pauli record of qubit q. All tracked Pauli operators
can be described by the generators of the Pauli group GPn as defined in equation
(2.15). We can conclude that Rq can be expanded to a series of X, Z, and iI gates.
Both Z and iI gates have no effect on the measurement result (see equation (3.1)).
Only the X gates in Rq have an effect on the measurement result. An odd amount
of X gates in Rq will invert measurement result mq to −mq (see equation (3.2))
while an even amount of X gates in Rq will have no effect on mq.

mq · Z ≡ mq · iI ≡ mq (3.1)

mq ·X ≡ −mq (3.2)

3. The last element is based on the gate groups mentioned in Section 2.3.3. Let
us recall the group of Clifford operators on n qubits Cn and the group of Pauli
operators on n qubits Pn. For those groups it holds that Cn is the normalizer of
Pn, as defined in Section 2.3.1. This means that every Clifford gate ci ∈ Cn maps
a Pauli gate pi ∈ Pn to a Pauli gate pj ∈ Pn. In short, for ∀n it holds that for

15

16 CHAPTER 3. PAULI FRAMES

∀ci ∈ Cn and ∀pi, pj ∈ Pn, cipi = pjci. Since it is know that all elements in Cn
have an inverse, it also holds that cipic

−1
i = pj . This means that the application

of a Clifford gate ci on qubit q will map the corresponding Pauli record Rq to a
new valid Pauli record R′q.

Up to now, we assumed that all Pauli gates have to be tracked. Fortunately, this
is not the case since Pauli gates have certain beneficial properties and global phase has
no effect on the measurement results. All Pauli gates tracked in Pauli record Rq can be
decomposed into a series of Pauli generators as described in equation (2.15). Since global
phase has no effect on measurement results, only the X and Z generators have to be
tracked in the Pauli records. We define R′q as the Pauli record which only contains the X
and Z elements of Rq. The Pauli generators X and Z anti-commute (i.e. XZ = −ZX).
Reordering the elements of R′q can only introduce new global phase elements which again
can be dropped. In this case, we can order R′q in a way where all X gates and Z gates
are combined. Since X and Z gates are Hermitian, every even sequence of those gates
will cancel to I as described in equation (2.9). By canceling out as much as possible X
and Z gates we can compress R′q to R′′q where R′′q contains a maximum of one X gate
and one Z gate. We can conclude that any Pauli record Rq can be expressed by one out
of four compressed records R′′q ∈ {I,X,Z,XZ}.

Up to now, we described how Pauli frames can handle qubit initialization, qubit
measurement, Pauli gates and Clifford gates. In Section 2.4, we defined the requirements
for universal quantum computation. All requirements mentioned are met, except for
requirement 4: The ability to perform a universal set of quantum gates. Pauli frames are
not compatible with non-Clifford gates, and therefore, the mechanism can not support a
universal set of quantum gates. Non-Clifford gates can still be applied by flushing Pauli
record Rq of qubit q before applying the non-Clifford gate on qubit q which means that
all pending Pauli gates in record Rq are executed on qubit q to empty the record. Now
the non-Clifford gate can be applied on qubit q. After the non-Clifford gate, Pauli gates
can be tracked again. By using this flushing technique, the Pauli frame technique can
be utilized as an architectural component of a universal quantum computer.

3.2 System specification

Every physical qubit in a quantum system will be assigned a piece of classical memory to
store the Pauli record of that qubit. The Pauli records of all qubits in a single quantum
system together make a Pauli frame. Since every Pauli record Rq ∈ {I,X,Z,XZ}, every
Pauli record can be a 2-bit memory. A system with n qubits will need 2n bits of memory
for the Pauli frame. The Pauli frame together with required Pauli frame mapping logic
will be called a Pauli Frame Unit (PFU). A Pauli frame can be seen as an abstract layer
on top of the qubits that exists in the classical domain as shown in Figure 3.1. In this
figure, Operations′ does not have to be equal to Operations.

Different operations are handled in a variety of ways by the Pauli arbiter and the PFU.
The operations can be divided into five categories: Initialization (in the computational
basis), Measurement (in the computational basis), Pauli gates, Clifford gates, and non-
Clifford gates. Table 3.1 presents how every category is processed.

build 0.18

3.2. SYSTEM SPECIFICATION 17

Qubits

Pauli Frame Unit

Qubits

Operations Operations

Operations'

Figure 3.1: Representation of the location of the Pauli frame unit.

Operations Execution steps

Initialization to |0〉 1. Initialize the target qubit to |0〉.
2. Set the corresponding Pauli record to I.

Measurement 1. Measure target qubit.
2. Modify measurement result based on Pauli record.

Pauli gates 1. Map Pauli record (no interaction with qubit).

Clifford gates 1. Map Pauli record(s).
2. Apply Clifford gate on target qubit(s).

Non-Clifford gates 1. Flush Pauli record(s).
a. Apply gates in Pauli record(s) on target qubit(s).
b. Reset Pauli record(s) to I.

2. Apply non-Clifford gate on target qubit(s).

Table 3.1: Pauli frame execution steps for different operations.

From Table 3.1, we can see that measurement results are modified based on the
current state of the target qubit Pauli record. If the Pauli record of the measured qubit
contains an X operator (i.e. Rq ∈ {X,XZ}), the measurement result is inverted as
defined in equation (3.2). In any other case, the measurement remains in its original
state. These modifications to the measurement results are shown in Table 3.2.

Pauli record Rq Modified measurement result

I mq

X −mq

Z mq

XZ −mq

Table 3.2: The modifications for measurement results of qubit q with Pauli record Rq.

Pauli gates modify the Pauli record of the target qubit and do not have to be executed

build 0.18

18 CHAPTER 3. PAULI FRAMES

on the actual qubits. The mapping of Pauli records by Pauli gates is shown in Table 3.3
where Rq is the Pauli record of qubit q and R′q is the new Pauli record for qubit q. This
table shows the mappings for the generators of the Pauli group where operators that
only influence global phase are excluded. Mappings of other gates in the Pauli group
can easily be derived from Table 3.3 by expanding the Pauli gate to its set of generators.

Input record Rq Executed gate Output record R′q

I X X
Z Z

X X I
Z XZ

Z X XZ
Z I

XZ X Z
Z X

Table 3.3: The mappings for Pauli record Rq for the Pauli generators.

Clifford gates map Pauli records of their target qubits to new Pauli records and also
have to be executed on the actual qubits. The mappings of Pauli records by single qubit
Clifford gates is shown in Table 3.4 where Rq is the Pauli record of target qubit q and
R′q is the mapped Pauli record. This table only covers the generators for the single qubit
Clifford gates, but can easily be extended to all single qubit Clifford gates by combining
multiple mapping rules.

Input record Rq Executed gate Output record R′q

I H I
S I

X H Z
S XZ

Z H X
S Z

XZ H XZ
S X

Table 3.4: The mappings for Pauli record Rq the for single qubit Clifford generators.

Two-qubit Clifford gates map the Pauli records of both the control and the target
qubit. The Pauli record of the target qubit has an influence on the Pauli record of the
control qubit and vice versa because Pauli gates can propagate to other qubits through
multi-qubit gates. Besides from mapping the Pauli record, the Clifford gate also has to
be applied on the actual qubits. Table 3.5 shows the mapping tables of the CNOT gate,

build 0.18

3.3. APPLICATIONS AND BENEFITS 19

the only two-qubit Clifford gate in the Clifford generator set. In this table, Rc and Rt
are the Pauli records for the control and target qubit.

Input records Output record
Control Rc Target Rt Control R′c Target R′t

I I I I
X I X
Z Z Z
XZ Z XZ

X I X X
X X I
Z XZ XZ
XZ XZ Z

Z I Z I
X Z X
Z I Z
XZ I XZ

XZ I XZ X
X XZ I
Z X XZ
XZ X Z

Table 3.5: The mappings for the CNOT gate on Pauli records Rc and Rt for the control
and target qubits.

3.3 Applications and benefits

The Pauli frame technique can be applied in several ways and has multiple benefits which
make them attractive to use in real world applications. The most interesting application
is probably to use a Pauli frame for physical qubits in combination with Quantum Error
Correction (QEC) (see Section 2.5). A system structure with a QEC and a Pauli frame
is shown in Figure 3.2. In such a structure, correction gates from QEC, and logical
Pauli gates can be handled by the Pauli frame resulting in fewer gates being executed on
the physical qubits. We compiled a few example quantum programs provided with the
ScaffCC compiler [29] and found that the resulting circuits contain up to 7% Pauli gates.
Since Pauli gates are tracked in classical electronics only, Pauli gates are processed faster
and with a 100% fidelity.

Using a Pauli frame as shown in Figure 3.2 has a second major benefit. Correction
gates for detected errors are always Pauli gates, which means that all of them can be
stored in the Pauli frame. As a result, the QEC system does not have to wait for the
decoder to generate and apply a set of corrections before we can execute a logical gate
and execute the next Error Syndrome Measurement (ESM) circuit (as shown in Figure

build 0.18

20 CHAPTER 3. PAULI FRAMES

QEC Layer

Qubits

Pauli Frame Layer

Commands

Figure 3.2: A layered system with physical qubits, a Pauli frame unit and a Quantum
Error Correction layer.

3.3a). By eliminating this dependency, we can create a new schedule for the ESM rounds
and logical gates which is shown in Figure 3.3b. The new schedule effectively removes
the time reserved for applying corrections and the waiting time for the decoder, resulting
in a more time-efficient schedule. As a consequence, we can perform the same number of
logical operations and ESM rounds in less time, effectively reducing the error probability
per logical operation. On top of that, the new schedule also loosens the timing constraint
on the decoding process as well as the timing constraint on the execution speed of the
ESM circuit.

Time

ESM (1..*)

Correct errors

Logical operation

Decoding time Decoding time

(a) Schedule without Pauli frame.

Time

Decoding time Saved time

(b) New schedule with Pauli frame.

Figure 3.3: Schedules of steps in the Quantum Error Correction process with and without
Pauli frame.

build 0.18

3.4. PAULI FRAME EXAMPLE 21

3.4 Pauli frame example

In this section, we will discuss a few examples to give a more visual representation of the
Pauli frame behavior. In this example case, we assume we have 17 qubits in a Surface
Code 17 (SC17) setup, also known as the ninja star and shown in Figure 2.1. The ninja
star has 9 data qubits and 8 ancilla qubits. The system layout is presented in Figure
3.2 where the Pauli frame unit resides between the qubits and the QEC layer. For this
example, we assume that we only have a Pauli frame for the 9 data qubits. We represent
the data qubits as blue circles labeled from D0 to D8. The ancilla qubits will not be
shown and are considered out of scope for this illustrative example. The Pauli records
are represented as yellow squares labeled from D0 to D8 where the labels correspond to
the labels of their qubit. The schematic system overview is shown in Figure 3.4.

D0 D1 D2

D3 D4 D5

D6 D7 D8

D0 D1 D2

D3 D4

D6 D7 D8

D5

Ninja star Pauli Frame

Figure 3.4: The schematic overview of the data qubits of the ninja star and their corre-
sponding Pauli records.

The first step is to initialize the ninja star to a logical |0〉 state. All data qubits are
reset and entangled, and the Pauli records of all data qubits are reset to the I state.
For this example, we assume that no errors occurred during initialization. This step is
illustrated in Figure 3.5. The yellow boxes of the Pauli records now show the state of
the records and the empty blue circles indicate that the qubits are in a correct state. All
data qubits are now entangled and represent the logical |0〉 state.

I I I

I I

I I I

I

Ninja star Pauli Frame

Figure 3.5: All data qubits and their corresponding Pauli records are reset to be able to
initialize the ninja star.

We continue to apply quantum error correction on the ninja star. Assume that two
errors are detected, an X error on data qubit D2 and a Z error on qubit D4. These
detected errors are corrected, and the Pauli frame processes the corrections. The Pauli
records of data qubits D2 and D4 are mapped to their corresponding values. The data
qubits stay in an erroneous state while the Pauli frame tracks the errors. Figure 3.6

build 0.18

22 CHAPTER 3. PAULI FRAMES

shows the new state of the Pauli frame while the current detected errors on the ninja
star are indicated with red circles.

X

Z

XII

I Z

I I I

I

Ninja star Pauli Frame

Figure 3.6: Two errors are detected and processed by the Pauli frame.

Now assume that both an X and a Z error is detected on data qubit D4, which will
be processed by the Pauli frame. The Pauli record of data qubit D4 already contained
a tracked X error. The combined XZ error maps the Pauli record to Z as shown in
Table 3.3. The two X errors have canceled each other out (up to a global phase which
can be ignored), and therefore, only the Z error has to be tracked. Figure 3.7 shows the
detection event and the mapped Pauli record of D4.

XZ

XII

I X

I I I

I

Ninja star Pauli Frame

Figure 3.7: A double error on D4 is detected and processed by the Pauli frame.

Let us assume a logical Hadamard gate is applied to the ninja star. Recall that the
logical Hadamard gate is implemented by applying a Hadamard gate on all data qubits
as noted in Table 2.3. The Hadamard gate is a Clifford gate and therefore maps the
Pauli records, but is still applied to the data qubits. Using the mappings in Table 3.4 we
can see that the two X entries in the Pauli frame will be mapped to Z entries. Figure
3.8 shows the new Pauli frame state after applying the logical Hadamard gate.

H H H

H H H

H H H

ZII

I Z

III

I

Ninja star Pauli Frame

Figure 3.8: A logical Hadamard gate is applied an the Pauli records are mapped.

Finally, the logical qubit is measured, which means that all data qubit are measured,

build 0.18

3.5. IMPLEMENTATION 23

and the results are combined to retrieve the logical measurement result. The Pauli frame
first processes the measurement results of the data qubits. In this example, we only have
Pauli records which are in the state I or Z. Both of them have no influence on the
measurement results as we can see in Table 3.2. Therefore, all measurement results can
be further processed to obtain the logical measurement result. If any Pauli record were
in the state X or XZ the corresponding measurement results would have to be inverted
before further processing.

M M M

M M M

M M M

ZII

I Z

III

I

Ninja star Pauli Frame I m0 → m0

I m1 → m1

Z m2 → m2

I m3 → m3

Z m4 → m4

I m5 → m5

I m6 → m6

I m7 → m7

I m8 → m8

Figure 3.9: All data qubits are measured and measurement results are mapped by their
corresponding Pauli record.

3.5 Implementation

Up to now, multiple papers [8, 26, 27, 12, 28, 17] have covered the topic of Pauli frames,
and other papers [30, 31, 32, 33] have discussed various architectures for quantum soft-
ware and hardware, but no practical implementations of Pauli frames for future quantum
computers have been proposed so far. In this section, we would like to cover the imple-
mentation of a Pauli frame in a quantum computer architecture.

In [34] we propose a heterogeneous quantum computer architecture which supports
all operations of a ninja star implemented with transmon qubits. Figure 3.10 shows a
simplified version of the proposed architecture which mainly focuses on the Quantum
Control Unit (QCU). The QCU decodes the instructions belonging to the Quantum
Instruction Set Architecture (QISA) and performs the required quantum operations,
feedback control, and QEC. The QCU can also communicate with the host CPU where
classical computations are performed, and quantum instructions are fetched. The QCU
outputs a sequence of physical operations to the Physical Execution Layer (PEL) to
control the physical qubits. The PEL takes charge of all technology-dependent control
making the QCU technology-independent. The QCU defined in this paper can support
not only transmon qubit but can also support other technologies.

The PEL converts the physical operations to a set of waveforms that represent ele-
mentary quantum gates supported by the underlying technology. After conversion, the
PEL manages the timing of the waveform outputs. These waveforms are fed to the
Quantum-Classical Interface (QCI) that routes the waveforms to the correct qubits on a
quantum chip. Regarding physical measurements, the PEL provides a readout pulse to
the QCI and the QCI returns the measurement signal. The PEL processes the measure-
ment signal and discriminates the measurement results. These physical measurement

build 0.18

24 CHAPTER 3. PAULI FRAMES

results are then returned to the QCU for further processing. In the next sections, we
will focus on the QCU and briefly discuss the main parts of this module. For more
details about the proposed architecture, we refer to the original paper [34]. After this
brief overview, we will focus on the PFU.

Figure 3.10: Simplified quantum computer architecture for a ninja star.

3.5.1 Quantum control unit

We assume that a binary is loaded into memory, and the instruction fetch unit fetches
the instructions. Based on the opcode of the instruction, the arbiter sends the instruc-
tion either to the host CPU or the QCU. In the remainder of the text, we focus on the
architectural support for the execution of quantum instructions and not on the execu-
tion of instructions on the classical CPU. In an earlier stage, a compiler maps a quantum
circuit using logical and virtual qubit addresses for the logical and physical qubits respec-
tively. Instructions from the Quantum Instruction Cache are first address-translated by
the Q-Address Translation module which means that compiler-generated, virtual qubit
addresses are translated into physical ones. The translation procedure is based on the
information contained in the Q Symbol Table which provides the overview of the exact
physical location of the logical qubits and contains information on what logical qubits
are still alive.

The Execution Controller can be seen as the brain of the QCU. The Execution
Controller decodes the various instructions that are fetched:

• Physical gate/measurement/reset: The Execution Controller sends these in-
structions to the Pauli Arbiter for further processing.

build 0.18

3.5. IMPLEMENTATION 25

• Update Q Symbol Table: Based on a series of instructions such as the ones
performing a logical Hadamard gate or a logical measurement, the Q Symbol Table
needs to be updated. Also for deallocating qubits such an update is required.

• QEC slot. The Execution Controller sends this instruction to the QEC Cycle
Generator, which is triggered to generate an ESM circuit.

As far as error correction is concerned, the necessary ESM instructions for the entire
qubit plane are added at run-time by the QEC Cycle Generator, based on the information
stored in the Q Symbol Table. The responsibility of the Quantum Error Detection (QED)
Unit is to detect errors based on ESM results. The decoder will use decoding algorithms
such as the Blossom algorithm [24, 25]. QED only starts to work when d rounds of error
syndromes are collected, where d equals the distance of the surface code.

The function of the Logic Measurement Unit is to combine the data qubit measure-
ment results into a logical measurement result for a logical qubit. Once the Execution
Controller receives a logical measurement instruction on a specified logical qubit, it no-
tifies the Logic Measurement Unit to wait for measurement results to arrive from the
PEL.

3.5.2 Pauli frame unit

The Pauli Frame Unit (PFU) consists of a Pauli frame (PF data) and Pauli frame
mapping logic (PF logic), and works closely together with the Pauli arbiter. Figure 3.11
shows a detailed schematic of the components in the PFU. The Pauli frame contains
a two-bit Pauli record for every physical qubit in the system as mentioned in Section
3.2. For a single SC17 logical qubit this would be 2 · 17 = 34 bit of memory. The
mapping of the Pauli records based on the applied physical operations are managed by
the PF logic module which holds all the required mapping tables. Finally, the Pauli
arbiter decides which operations in the stream are forwarded to the Physical Execution
Layer (PEL) and which ones not. The proposed PFU design complies with the system
described in Section 3.2 and supports all operation types mentioned in Table 3.1. In the
next paragraphs, we will explain how the different type of operations from Table 3.1 are
handled by the PFU and the Pauli arbiter.

If the Pauli arbiter receives a reset operation (step 1), the operation will be forwarded
to both the PFU and the PEL (step 2). While the PEL further processes the reset
operation, the PFU also processes the reset operation using the PF logic module. The
Pauli record of the target qubit will be set to I regardless of its current state (step 3).
This sequence of steps is schematically shown in Figure 3.12a.

In case the Pauli arbiter receives a measurement operation (step 1), the Pauli ar-
biter will forward the operation to the PEL without taking any further action (step
2). The PEL and other parts of the system perform the measurement operation, and
the measurement results are returned to the QCU (step 3). This measurement result is
picked up by the PFU which maps the measurement result based on the Pauli record of
the target qubit (step 4) using the PF logic module. Finally, the mapped measurement
result is forwarded to other parts of the QCU (step 5). The measurement procedure is
schematically shown in Figure 3.12b.

build 0.18

26 CHAPTER 3. PAULI FRAMES

Pauli Frame Unit

PF data

Pauli record 0

Pauli record 1

...

Pauli record n

PF logic

Pauli arbiter

P
hysica l E

xecu tion La yer

Operations

Measurement
results

Figure 3.11: Detailed schematic of the Pauli Frame Unit.

Pauli operations are handled in the most efficient way. When the Pauli arbiter
receives a Pauli gate (step 1), the Pauli arbiter will only forward the gate to the PFU
(step 2). The PEL is not required when executing Pauli operations. The PF logic module
of the PFU will map the Pauli record of the target qubit (step 3), and the execution of
the Pauli gate is finished. This procedure is also shown in Figure 3.12c.

If the Pauli arbiter receives a Clifford gate (step 1), the Pauli arbiter will forward
the gate to the PEL and the PFU (step 2). While the PEL handles further execution of
the Clifford gate, the PF logic module of the PFU updates the Pauli record of the target
qubit(s) (step 3). Figure 3.12d shows a graphical representation of this procedure.

In case the Pauli arbiter receives a non-Clifford gate (step 1), the Pauli arbiter stalls
the stream of operations and requests the PFU to flush the Pauli record of the target
qubit (step 2). The PF logic module of the PFU returns the Pauli gate(s) currently
present in the Pauli record of the target qubit and resets the Pauli record to I (step 3
and 4). Finally the Pauli arbiter forwards the flushed Pauli gates to the PEL and appends
the initial non-Clifford gate (step 5 and 6). The Pauli arbiter will continue processing the
stream of operations. Figure 3.12e shows the steps of handling a non-Clifford operation
in a graphical way.

build 0.18

3.5. IMPLEMENTATION 27

Pauli Frame Unit

PF data

PF logic

Pauli arbiter
1. Reset

operation on
qubit x

2. Reset operation

2. Reset operation

3. Pauli record x
set to “I”

(a) Reset operation.

Pauli Frame Unit

PF data

PF logic

Pauli arbiter1. Measurement
operation on qubit x

2. Measurement
operation

5. Mapped
measurement result

4. Map
measurement
result using

Pauli record x

3. Measurement
result

(b) Measurement operation.

Pauli Frame Unit

PF data

PF logic

Pauli arbiter1. Pauli gate
on qubit x

2. Pauli gate

3. Map Pauli
record x

(c) Pauli gate.

build 0.18

28 CHAPTER 3. PAULI FRAMES

Pauli Frame Unit

PF data

PF logic

Pauli arbiter1. Clifford gate
on qubit x 2. Clifford gate

2. Clifford gate

3. Map Pauli
record x

(d) Clifford gate.

Pauli Frame Unit

PF data

PF logic

Pauli arbiter1. Non-Clifford
gate on qubit x

5. Pauli gate
6. Non-Clifford gate

2. Non-Clifford gate

3. Flush Pauli
record x

4. Flushed
Pauli gate

(e) Non-Clifford gate.

Figure 3.12: Schematics how the Pauli arbiter and Pauli Frame Unit process different
operations.

build 0.18

Simulation platform 4
To gain more knowledge about quantum computer architectures and Pauli frames we
require a simulation platform. This simulation platform should fit into the big picture
of a full quantum computer development environment that connects from quantum al-
gorithms down to the physical operations on qubits of a quantum chip.

A quantum computer will always consist of both quantum and conventional com-
puting components because of the following two reasons: the quantum algorithms and
consequently the quantum applications that will be executed, include both classical as
well as quantum parts and will thus be executed by their respective computing blocks
[11]. The second reason is that, as is explained in Section 2.5, a quantum computer
requires very close monitoring and, if necessary, correction by classical logic. In [34]
we present a high-level view of the quantum system stack consisting of multiple layers
which are shown in Figure 4.1. The top layers represent the algorithms for which specific
language constructs and compilers need to be developed such that the algorithms can
exploit the underlying quantum hardware. Here the qubits are defined as logical qubits.
Figure 4.2 depicts the compiler infrastructure consisting of a conventional host compiler
and a quantum accelerator compiler. The former compiles the classical logic and the
latter will produce the quantum circuits. The quantum compiler will perform quantum
gate decomposition, reversible circuit design, and circuit mapping but also translates
the logical quantum operations to a series of physical operations. As represented by the
third dimension of Figure 4.1, the logical-to-physical quantum instruction translation is
driven by choices regarding the Quantum Error Correction (QEC) code for the logical
qubits.

The next layer is the Quantum Instruction Set Architecture (QISA) which is the di-
viding line between hardware and software. The algorithm designer and programmer are
offered a logical instruction set with the possibility to opt for certain encoding schemes,
thus exposing the relevant error correction functionality. As stated above, the compiler
will translate logical instructions into the physical instructions that belong to the QISA
and for which architectural support is provided. Examples of physical instructions in
the QISA are initialization, measurements, and quantum gates such as Hadamard and
CNOT .

The Quantum Execution (QEX) block will execute the quantum instructions that
are generated by the compiler infrastructure. It will also provide the necessary hardware
support such as the insertion of quantum error correction circuits or the use of Pauli
Frames for error tracking. These operations are finally sent to the Quantum-Classical
Interface (QCI), which will apply the proper electrical signals to the quantum chip. Note
that the QCI is responsible for all the conversions between the analog qubit plane and
the digital layers in the system stack. The QEC layer, is in charge of the error detection
and correction. It will receive the error syndrome data from the QCI which it will process

29

30 CHAPTER 4. SIMULATION PLATFORM

to identify possible errors. Then, it will make the required corrections by updating the
Pauli frame or by sending the appropriate corrective operations when required. The
Quantum Control Unit (QCU) proposed in Section 3.5 matches the QEX/QEC layer.

Q Algorithm

Programming Paradigm & Languages

Runtime Compiler

Q Instruction Set Architecture

QEX QEC

Quantum-Classical Interface

Q Arithmetic

Quantum Chip

Figure 4.1: The global picture of a quantum computing environment.

Figure 4.2: Compiler infrastructure

build 0.18

4.1. QUANTUM SIMULATORS 31

The main interest of this thesis lies in the QEX/QEC layer shown in Figure 4.1.
The QEX/QEC layer is where the quantum computer architecture resides and where all
quantum instructions are processed. The quantum algorithm and compiler levels are out
of the scope of this thesis and are therefore not further discussed. This chapter presents
the simulation software platform for the quantum layer and the QEX/QEC layer. The
simulation platform consists of three software tools of which two are quantum simulators,
and one is a self-developed software package for functional testing of quantum computer
architectures (QPDO). These three software tools will be discussed in the remainder of
this chapter.

4.1 Quantum simulators

Quantum behavior can be simulated on classical computers using software. There are
different ways to simulate qubits, and every type of simulation has its advantages and
disadvantages. In this section, we will discuss two quantum simulators which are used
for this thesis: QX Simulator and CHP.

4.1.1 QX Simulator

The QX Simulator [9] is a universal quantum simulator developed by the Computer En-
gineering lab of the Delft University of Technology. Universal quantum simulators store
the complex amplitudes of the quantum state vector. Quantum gates are represented as
matrices, and matrix-vector multiplications are used to apply gates. A universal quan-
tum simulator can simulate any quantum gate by using its matrix representation, but
there are also limitations. The memory usage of universal quantum simulators grows ex-
ponentially with the number of qubits simulated. Due to high memory usage, universal
quantum simulators are only able to simulate up to 30 to 45 qubits depending on the
available hardware resources.

There are two options to interface with the QX Simulator. One of them is by using
Quantum Assembly (QASM) files. These files describe quantum circuits as a list of
instructions and are limited to quantum instructions only. The QX Simulator can read
the QASM file and execute the described circuit. The second way of interfacing with
the QX Simulator is by using sockets. The QX Simulator can start as a server and
establish TCP connections. Any program can connect to the QX server and send QASM
instructions to the QX server. The TCP connection provides a flexible and interactive
interface to the capabilities of the QX Simulator that can be accessed from almost any
development environment. The QASM syntax for both interfaces is identical.

4.1.2 CHP

The CHP quantum simulator [10] is a quantum simulator developed by Scott Aaronson
and Daniel Gottesman. CHP is a stabilizer simulator and is therefore only able to process
stabilizer circuits using CNOT , H, and S gates beside from qubit initialization and
measurement. Stabilizer simulators store a quantum state by storing the stabilizers of
that specific state, which is very memory efficient. The limitation of stabilizer simulators

build 0.18

32 CHAPTER 4. SIMULATION PLATFORM

is that stabilizer circuits do not possess quantum speed-up regarding computation power.
Stabilizer simulators are still interesting to simulate large numbers of qubits and quantum
error correction codes. CHP can read QASM like files and execute the circuit described
in the file.

For this thesis, the quantum simulation capabilities of CHP have been exposed to
Python by creating a Python wrapper [35]. The Python wrapper was created using the
wrapper generation software SWIG which stands for ’Simplified Wrapper and Interface
Generator’. CHP functionality that was exposed to Python includes the creation of a
qubit register, qubit initialization, execution of quantum gates, and qubit measurements.

4.2 QPDO

For this thesis, we require a software tool that can simulate different modules of a quan-
tum computer architecture in a flexible way. To enable fast development and testing, we
allow functional simulation of the modules. The chosen programming language should
be accessible to a large crowd, cross-platform and high-level to decrease development
time. It is also preferable to be able to link the selected programming language easily
against code written in other languages. Execution speed of the quantum computer
architecture simulations is not a constraint since we allow functional simulation. There-
fore, we do not require high-speed, low-level programming languages. The tool should
be able to connect to different quantum simulators in a transparent way to allow sim-
ulations against different simulator back-ends. The first prototypes of such a tool were
written in Java. We experimented with different structures and design methodologies
using the Java software. Finally, we chose to develop a tool based on a layered struc-
ture programmed in Python 3. The name of the software package is Quantum Platform
Development framewOrk, or in short QPDO.

4.2.1 Layered structure

QPDO provides shared interfaces and data structures to support layered systems. In-
terfaces are implemented using abstract base classes and shared data structures are
expressed using classes. The layers are inspired by the OSI-model [36] and can be seen
as a black box that processes a stream of commands. Every layer has its responsibilities
and should be able to work without knowledge of lower or top layers. Commands are
implemented using function calls, and data is transferred using shared memory. Layers
can be stacked on each other in a flexible way to create a control stack. Such a control
stack contains the modules of a quantum computer architecture and enables simulation
of this architecture. The bottom layer of a control stack should always be a core. A
core connects to a quantum simulator to allow simulation of the invoked commands. A
control stack has one core and zero or more layers on top of it. The schematic view of a
layered control stack is shown in Figure 4.3a.

The key feature of the layers used in QPDO is that they all support the same interface
and that they share the same data structures. The shared Core interface consists of a
set of functions that can control quantum simulators or devices on an abstract level.
The Core interface has functions for creating and removing qubits, queuing quantum

build 0.18

http://swig.org/

4.2. QPDO 33

Layer B

Layer A

Simulation Back-end

Core

Commands

(a) A schematic view of a layered control
stack in QPDO.

Layer

Simulation Back-end

Core

(b) Interfaces for the core and the other lay-
ers.

Figure 4.3: Schematics for QPDO control stacks with layers.

circuits and executing queued quantum circuits. It is also possible to request the binary
state or quantum state of the system. The functions of the Core interface are listed in
Table 4.1. The lowest layer in a control stack, the core, supports the functions of the
shared Core interface and simulates the quantum behavior using a simulation back-end.
Layers on top of the core support the shared interface too and also require a lower layer
that supports the same interface. A schematic view of a layer and core are shown in
Figure 4.3b. By using this layered structure, it is possible to interchange layers easily
which make it possible to assemble different control stacks and use different simulation
back-ends.

Function Short description

createqubit(size) Allocate new qubits.
removequbit() Remove existing qubits.
add(circuit) Queue a quantum circuit.
execute() Execute the queued quantum circuits.
getstate() Retrieve the (binary) state of the qubits.

getquantumstate() Retrieve the quantum state (if supported).

Table 4.1: The functions of the shared Core interface between layers in QPDO.

4.2.2 Shared data structures

The shared data structures provided by QPDO are used to transfer information between
layers and to process data generated by the control stack. All shared data structures
by default provide rich functionality to analyze and manipulate its contents. The most
important shared data structures are the Circuit, the State, and the QuantumState. The

build 0.18

34 CHAPTER 4. SIMULATION PLATFORM

Circuit class represents a quantum circuit and contains a set of operations. Operations
can be single- or multi-qubit gates, initialization, and measurement. Operations in cir-
cuits are grouped into time slots. In one time slot, every qubit can only be involved in
one operation. Thereby we can see a time slot as a part of a circuit that can be executed
in parallel whereby we assume that every operation takes the same amount of time to
execute. A schematic view of a circuit with time slots and operations is shown in Figure
4.4.

Circuit

Time slot 0

Operation 0

Operation 1

Operation 2

Time slot 1

Operation 3

Operation 4

Time slot 2

Operation 5

Operation 6

Operation 7

Figure 4.4: A schematic view of data structure for a circuit consisting of time slots with
operations.

The State and QuantumState classes are shared data structures that describe the
current state of the quantum system. The State class represents a set of values that
correspond to the binary values of qubits. A measured qubit can either be in the 0 or 1
state. A qubit that is reset to |0〉 will also be in the 0 state. After applying a quantum
gate on a qubit, the state will become x (i.e. unknown) until it is measured or reset. A
State object holds a set of these binary values. A QuantumState represents the full state
vector with complex amplitudes and corresponding states. The QuantumState can only
be retrieved if a simulation back-end is used that supports outputting a quantum state.

4.2.3 Implemented layers

To use QPDO for our simulations, we implemented different layers. The first imple-
mented layers are two core layers that implement the Core interface: ChpCore and
QxCore. The ChpCore uses the Python wrapper for CHP to use it as a simulation back-
end. The CHP simulator is not universal, but can simulate Clifford gates efficiently.
Since QEC codes use Clifford gates only, those can be simulated using the ChpCore.
The QxCore uses the universal QX Simulator as a back-end and can simulate both Clif-
ford and non-Clifford gates. The QxCore maintains a TCP connection to the QX server.
Commands are sent over TCP and results are retrieved over the same connection.

Two QEC layers have been implemented: The SteaneLayer and the NinjastarLayer
for respectively the Steane code and planar surface code using 17 physical qubits per
logical qubit. The QEC layers supports generic control of independent logical qubits
including insertion of QEC routines, logical operation translation to a set of physical
operations, and logical operation post-processing. As specified by QPDO, the QEC
layers work in a transparent way and support the Core interface as shown in Table 4.1.

build 0.18

4.2. QPDO 35

It is for example possible to concatenate QEC layers by adding multiple QEC layers to
a control stack.

To be able to test QEC layers we need to be able to insert errors. Up to now, only
one error layer is developed, which is based on the symmetric depolarizing error model
[11, 19].

In the interest of this thesis, we developed a Pauli frame layer. This layer implements
the functionality of a Pauli frame unit as presented in Section 3.5.2. The layer manages
memory for a Pauli frame, maps the Pauli records according to mapping tables, maps
measurement results based on stored Pauli records, and filters Pauli gates. Since the
Pauli frame unit is implemented as a layer, it is possible to add multiple Pauli frame
layers on different levels in a control stack.

Finally, we implemented some diagnostic layers that do not modify the command
streams in a control stack but retrieves statistics about the command stream instead.
An example of such a layer is the counter layer that counts the number of operations and
commands that pass between two other layers. The information gained by diagnostic
layers can give us useful insight into the execution flow in a control stack.

4.2.4 Test benches

The previous sections presented how control stacks can be created and configured using
QPDO. Such a control stack can potentially perform functional simulations of a quantum
computer architecture, but requires useful input for simulation. It is possible to write
custom test benches in Python that provides input commands to a control stack and
diagnoses the output. To speed up development of test benches, QPDO provides a test
bench environment and simple ready-to-use test benches.

The test bench environment provides a set of base classes that implement generic
control of a certain class of test benches. Generic control can contain for example looping
of a test for a certain amount of times, handling test outcomes, and acting on test results.
Programmers only have to write an initialization procedure for the test bench, a single
test procedure, and a shutdown procedure for the test bench. The test bench environment
makes it possible to develop quickly test benches that can test against various control
stacks using the generic Core interface. An example of a setup with a control stack and
a test bench is shown in Figure 4.5.

Simulation Back-end

Control Stack

Test Bench

Figure 4.5: A schematic view of a control stack and a test bench.

QPDO provides a set of ready-to-use test benches that are derived from the test
bench base classes. These simple test benches only need a control stack and maybe a
couple of settings to run and can be used to verify the basic behavior of a control stack.

build 0.18

36 CHAPTER 4. SIMULATION PLATFORM

Two examples of such test benches are the BellStateHistoTb and the GateSupportTb.
The BellStateHistoTb resets two qubits and creates a Bell state using a Hadamard and
a CNOT gate. The two qubits are measured, and the results are stored. At the end of
the test a histogram of the measurement results are printed. The GateSupportTb runs
a predetermined script that tests various gates that are available in QPDO on a control
stack. It verifies if the control stack supports various gates and if the measurement result
after the execution of the gates matches the expected outcome. Finally, the test bench
prints a report that shows which gates are supported and executed correctly.

build 0.18

Experiments 5
In this chapter, we present the results of the experiments performed using the simulation
tools presented in Chapter 4. Three different experiments were performed considering
Surface Code 17 (SC17) and Pauli frames. The first experiment is a verification of the
known logical operations of the SC17. The second experiment is a verification of the
Pauli frame mechanism. With the last experiment, we investigate the impact of a Pauli
frame on the error rates of a ninja star.

5.1 Ninja star logical operations verification

The first experiment is to verify the logical operations for a ninja star using QPDO. The
logical operations we would like to verify are the initialization to |0〉, X gate, Z gate, H
gate, CNOT gate, CZ gate, and measurement in the computational basis as shown in
Table 5.1.

Logical operation Implementation

XL Chain
ZL Chain
HL Transversal

CNOTL Transversal
CZL Transversal

Reset to |0〉L Transversal
MZL

Transversal

Table 5.1: List of how logical operations are performed for a ninja star.

To perform the experiments to verify the ninja star logical operations, we require
specifying which run-time properties have to be tracked for every ninja star and how we
can perform the logical operations in a correct way based on these properties. The next
two sections will discuss what run-time properties need to be tracked for a ninja star
and how these properties cooperate with the logical operations.

5.1.1 Run-time properties of a Ninja star

To operate a Ninja star we need to track different properties which can change after
executing various logical operations. The first property to track is the rotation of the
lattice. The rotation property of a ninja star can have two values, normal or rotated,
where the rotated value indicates that the lattice is in a 90 degree rotated orientation.
Tracking of the current rotation is essential for executing the correct Error Syndrome

37

38 CHAPTER 5. EXPERIMENTS

Measurement (ESM) circuit and is also required for applying logical gates in the correct
way.

The second property that is tracked is the dance mode. The dance mode indicates
whenever a full ESM circuit has to be executed or if only Z ancilla qubits are active in
the ESM circuit. The dancemode property can have two values: all or z only. The value
all indicates that the full ESM circuit will be executed, while the z only value indicates
that only Z ancilla qubits are active in the ESM circuit.

Finally, there is a state value that indicates what the current binary state is of the
logical qubit. This value can be 0, 1, or x (i.e. unknown). Table 5.2 summarizes the
list of properties for a ninja star, their possible values and the initial values at system
start-up.

Ninja star property Possible values Initial value

rotation normal, rotated normal
dancemode all, z only z only

state 0, 1, x x

Table 5.2: List of properties of a ninja star.

5.1.2 Logical operation conversion and property updating

Logical operations for ninja star logical qubits have to be converted to a set of physical
operations and some classical post-processing. Conversion of the logical operations to
a set of physical operations can be done at run-time based on the current properties
of the involved logical qubits. Both the conversion of XL and ZL gates depend on the
lattice rotation, while the conversion of transversal CNOTL and CZL gates rely on the
rotations of both the target and the control ninja star. The details of logical operation
conversions for a ninja star are described in section 2.5.1.

Some logical operations update the run-time properties of a ninja star and therefore
their execution requires post-processing. The HL gate inverts the current rotation of the
lattice. The reset operation sets the current rotation of the ninja star to normal and the
dance mode to all. Measurement requires the most post-processing. After measuring
all the data qubits, the dance mode will be set to z only. Only measuring Z ancilla
qubits enables us to perform partial ESM rounds that can be used to detect X errors
that happened during the measurement of the physical qubits. If any X errors are
detected, the corresponding measurement results are corrected. Finally, the parity of
the data qubit measurement results is calculated yielding the logical measurement result
which is stored in the state property of the ninja star. The relations between the logical
operations and the properties of the logical qubit(s) they apply on are shown in Table
5.3.

5.1.3 QPDO implementation

We used QPDO to verify the logical operations of the ninja star. To do so, we im-
plemented a ninja star layer that accepts logical circuits as input and outputs all the

build 0.18

5.1. NINJA STAR LOGICAL OPERATIONS VERIFICATION 39

Logical operation Property dependencies Property influences

XL rotation state
ZL rotation state
HL - rotation, state

CNOTL rotations state
CZL rotations state

Reset to |0〉L - rotation, dancemode, state
MZL

- dancemode, state

Table 5.3: List of logical operations and their relation to properties of a ninja star.

circuits and commands required to perform both Quantum Error Correction (QEC) and
converted logical operations. The output operations of the ninja star layer can then be
executed on a simulation core or can be forwarded to another layer within the QPDO
environment (see section 4.2.1). The ninja star layer can control multiple independent
ninja stars and also supports two-qubit logical gates. Every ninja star can have a unique
set of ancilla qubits, or one set of ancilla qubits can be shared over all ninja stars in the
system to lower the amount of qubits that is required to be simulated.

The ninja star layer uses multiple classes to manage all the run-time properties,
execution of QEC, and execution of logical operations as shown in Table 5.4. Run-time
properties of every individual ninja star (see Table 5.2) are stored in a NinjaStarQubit
object. Based on the current properties, the NinjaStarQubit object can generate the
correct ESM circuit. Every ninja star also requires a decoder for error detection. For the
verification of logical operations, we used a decoder based on two look-up tables. The two
look-up table decoder independently decodes error syndromes of X and Z ancilla qubits
using separate look-up tables and returns the union of all resulting corrections. Logical
operations are converted to a set of physical operations using the NinjaStarGate class,
which is an extension to the QPDO Circuit class. The NinjaStarGate object converts
the logical operation to a circuit containing the corresponding physical operations based
on the current properties of the targeting NinjaStarQubit objects. The NinjaStarGate
object also contains post-processing procedures for the logical operations.

We used the test bench facilities of QPDO to verify the logical operations for a ninja
star. For our test setup, we assembled a control stack with a NinjaStarLayer and a
QxCore. A schematic view of the test setup is shown in Figure 5.1.

5.1.4 Simulation results

We first verified if ninja star initialization to logical state |0〉 is performed correctly. We
apply a circuit on the test setup that only contains aReset operation. The ninja star layer
resets all the data qubits to |0〉 and performs a single round of ESM to initialize the ninja
star. A ninja star does not always initialize correctly, and errors during initialization are
corrected using the look-up table decoder. The initialization procedure is repeated for
100 iterations and the resulting quantum state always equals the state shown in Listing
5.1 where the rightmost bit represents the value of data qubit 0. The state in Listing 5.1

build 0.18

40 CHAPTER 5. EXPERIMENTS

Class Responsibilities

NinjaStarQubit • Store run-time properties
• Store physical qubit address table
• Generate ESM circuits
• Manage decoder

NinjaStarGate • Convert logical operations to physical operations
• Post-processing of logical operations

NinjaStarLayer • Overall execution control of QEC and logical operations

Table 5.4: List of all classes used for the implementation of a ninja star layer in QPDO
with their corresponding responsibilities.

Ninja Star Layer

QX Simulator

QxCore

Test Bench

Figure 5.1: The test setup for simulations of the ninja star control software.

matches the logical |0〉 state as described in section 2.5.1. Hence, we can conclude that
the initialization procedure of the ninja star to the logical state |0〉 is correct.

(0.25+0 j) |000000000>
(0.25+0 j) |000000110>
(0.25+0 j) |000011011>
(0.25+0 j) |000011101>
(0.25+0 j) |011000000>
(0.25+0 j) |011000110>
(0.25+0 j) |011011011>
(0.25+0 j) |011011101>
(0.25+0 j) |101101011>
(0.25+0 j) |101101101>
(0.25+0 j) |101110000>
(0.25+0 j) |101110110>
(0.25+0 j) |110101011>
(0.25+0 j) |110101101>
(0.25+0 j) |110110000>
(0.25+0 j) |110110110>

Listing 5.1: The quantum state of the nine data qubits of a ninja star after initialization.

We continue by testing the logical X and Z gate. We know that ZL |0〉L = |0〉L

build 0.18

5.1. NINJA STAR LOGICAL OPERATIONS VERIFICATION 41

and ZL |1〉L = − |1〉L. We test the XL and ZL gates by checking if they replicate this
behavior. Simulation reproduces these results and therefore we can conclude that the
XL and ZL gates are correct. The obtained nine qubit quantum state for the logical |1〉
state is shown in Listing 5.2.

(0.25+0 j) |001001001>
(0.25+0 j) |001001111>
(0.25+0 j) |001010010>
(0.25+0 j) |001010100>
(0.25+0 j) |010001001>
(0.25+0 j) |010001111>
(0.25+0 j) |010010010>
(0.25+0 j) |010010100>
(0.25+0 j) |100100010>
(0.25+0 j) |100100100>
(0.25+0 j) |100111001>
(0.25+0 j) |100111111>
(0.25+0 j) |111100010>
(0.25+0 j) |111100100>
(0.25+0 j) |111111001>
(0.25+0 j) |111111111>

Listing 5.2: The quantum state of the nine data qubits of a ninja star in the |1〉L state.

The next gate we tested was the logical Hadamard gate. To test the logical H gate, we
initialize the ninja star to the |0〉L state and apply the HL gate to obtain the state HL |0〉L
which should equal the state |+〉L. We will test if the resulting state is indeed the |+〉L
state to confirm that the HL gate works correctly. We know that XL |+〉L = |+〉L and
ZL |+〉L = |−〉L = HL |1〉L. Simulations show that the state HL |0〉L indeed reproduces
the same behavior as the |+〉L state. Hence, we can conclude that the HL gate is correct.

To test the logical CNOT gate and the CZ gate, two ninja stars are required. We set
the two ninja stars to the four possible computational basis states (i.e. |0100〉L, |1100〉L,
|0110〉L, and |1110〉L) and apply a CNOTL gate with ninja star 0 as control qubit, and
ninja star 1 as target qubit. The simulation results are then compared to the expected
outcome states. As shown in Table 5.5, all four simulation results match the expected
results. Hence, we can conclude that the CNOTL gate is correct. We performed the
same test for the CZL gate and, as shown in Table 5.6, all four simulation results again
match the expected outcome. We can conclude that both the CNOTL and the CZL are
correct.

Initial state Expected state after CNOTL Simulation result

|0100〉L |0100〉L |0100〉L
|1100〉L |1100〉L |1100〉L
|0110〉L |1110〉L |1110〉L
|1110〉L |0110〉L |0110〉L

Table 5.5: Logical initial state, expected state after applying a logical CNOT gate (with
qubit 0 as control and qubit 1 as target), and the state obtained by simulation.

build 0.18

42 CHAPTER 5. EXPERIMENTS

Initial state Expected state after CZL Simulation result

|0100〉L |0100〉L |0100〉L
|1100〉L |1100〉L |1100〉L
|0110〉L |0110〉L |0110〉L
|1110〉L − |1110〉L − |1110〉L

Table 5.6: Logical initial state, expected state after applying a logical CZ gate, and the
state obtained by simulation.

Finally, we want to verify the logical measurement. Logical measurement of a ninja
star is performed by measuring all data qubits. The product of the nine measurement
results (±1) yields the logical measurement result. To verify the logical measurement
procedure, we will take a closer look to the nine qubit quantum states of the |0〉L state
(Listing 5.1) and the |1〉L state (Listing 5.2). The quantum states consist of binary
states with corresponding amplitudes. When measuring all nine data qubits, one of the
binary states in the quantum state will be the final measurement result. To verify if
the measurement procedure is correct, we have to confirm the procedure against every
possible measurement outcome. We can observe that for the |0〉L state, all binary states
have an even parity (i.e. an even number of 1’s) while for the |1〉L all binary states have an
odd parity. Binary states with an even parity will yield a +1 logical measurement result
while binary states with an odd parity will yield a −1 logical measurement result. We
can conclude that measuring the |0〉L state will always return a logical +1 measurement
result while measuring the |1〉L state will always return a logical −1 measurement result.
Hence, the logical measurement procedure must be correct.

We want to mention that it is also possible to measure data qubits 0, 4, and 8
to perform a logical measurement. The parity of these three data qubits also yields
the logical measurement result, but there is a difference compared to measuring and
calculating the parity of all nine data qubits. The three-qubit logical measurement
depends on the current rotation of the ninja star lattice while the nine-qubit logical
measurement does not. In case the ninja star is in the rotated state, data qubits 2,
4, and 6 have to be measured instead. The simulations done for this thesis use the
nine-qubit logical measurement for the ninja star.

5.2 Pauli frame verification

The second set of experiments were designed to verify the working mechanism of Pauli
frames. The goal is to confirm that we can use a quantum system with a Pauli frame that
works as described in Table 5.7 and still produce the same results as a quantum system
without Pauli frame up to a certain unimportant global phase. We will first discuss the
implementation of the Pauli frame before we discuss the test setup and the simulation
results.

build 0.18

5.2. PAULI FRAME VERIFICATION 43

Operations Execution steps

Initialization to |0〉 1. Initialize the target qubit to |0〉.
2. Set the corresponding Pauli record to I.

Measurement 1. Measure target qubit.
2. Modify measurement result based on Pauli record.

Pauli gates 1. Map Pauli record (no interaction with qubit).

Clifford gates 1. Map Pauli record(s).
2. Apply Clifford gate on target qubit(s).

Non-Clifford gates 1. Flush Pauli record(s).
a. Apply gates in Pauli record(s) on target qubit(s).
b. Reset Pauli record(s) to I.

2. Apply non-Clifford gate on target qubit(s).

Table 5.7: Pauli frame execution steps for different operations.

5.2.1 QPDO implementation

To verify the working mechanism of Pauli frames we created a Pauli frame layer using
QPDO. We first implemented a Pauli frame class that manages the memory for the
Pauli records and contains all the mapping tables required for the following set of gates:
{I,X, Y, Z,H, S,CNOT,CZ, SWAP}. Gates that do not have a mapping table are
treated as non-Clifford gates. Pauli records are implemented as an enumeration type
that can be in one of the four states {I,X,Z,XZ}. The Pauli frame class also has
specific procedures to handle initialization to |0〉 and measurement operations. The
Pauli frame class takes a Circuit object as input and modifies the Pauli records based on
the gates in the circuit and their corresponding mapping tables. The Pauli frame class
returns a modified Circuit object where Pauli gates initially present in the input circuit
are removed, and some Pauli gates are added in case Pauli records are required to be
flushed. The Pauli frame class is also able to modify measurement results based on the
current state of the Pauli records. Finally, there is an option to flush the complete Pauli
frame.

To be able to add a Pauli frame to a QPDO control stack in a flexible way, we
implemented a Pauli frame layer. This Pauli frame layer uses the Pauli frame class and
implements the QPDO Core interface as presented in Table 4.1. An example of a control
stack containing a Pauli frame layer is shown in Figure 5.2.

5.2.2 Random circuit simulation results

We used the test bench facilities of QPDO to verify the working mechanism of Pauli
frames. First, we created a test bench based on random circuits to verify that the Pauli
frame layer indeed does not change the final quantum state after executing a circuit.
The random-circuit test bench creates a random circuit that contains the following gate
types: {I,X, Y, Z,H, S,CNOT,CZ, SWAP, T, T †}. The circuit is then executed using

build 0.18

44 CHAPTER 5. EXPERIMENTS

Pauli Frame Layer

QX Simulator

QxCore

Commands

Figure 5.2: Schematic overview of a control stack with a Pauli frame layer and a QxCore
layer.

the QX Simulator, and the resulting quantum state is stored. Now the same circuit is
executed on a control stack consisting of a Pauli frame layer and a QxCore as shown
in Figure 5.2. After execution of the circuit, the Pauli frame is flushed. The resulting
quantum state is retrieved and compared to the earlier stored quantum state of the
execution without Pauli frame layer. If the two quantum states match (up to a certain
global phase) then we verified that the Pauli frame working mechanism is correct. A
schematic view of the test setup is shown in Figure 5.3.

Pauli Frame Layer

QX Simulator

QxCore

Test Bench

Figure 5.3: The test setup for the random-circuit test bench.

An example of a generated random circuit for five qubits with 20 gates is shown
in Figure 5.4. This circuit was first executed without a Pauli frame and the resulting
quantum state, which will be the reference quantum state, is shown in Listing 5.3. The
qubits are reset, and the same random circuit is executed with a Pauli frame. The
resulting quantum state before flushing the Pauli frame is shown in Listing 5.4. We can
see that the quantum state before flushing the Pauli frame is different compared to the
reference quantum state. The status of the Pauli frame layer is shown in Listing 5.5 and
we can see that the Pauli frame tracked Pauli gates for multiple qubits. We flush the
Pauli frame, and the final quantum state is shown in Listing 5.6. We can conclude that
final quantum state equals the reference quantum state up to an unimportant global
phase of −1.

build 0.18

5.2. PAULI FRAME VERIFICATION 45

−0.5 j |10001>
0 .5 j |10101>

(0 .353553+0.353553 j) |11001>
(−0.353553−0.353553 j) |11101>

Listing 5.3: The five qubit quantum state after executing the random circuit without
Pauli frame.

(0.5+0 j) |00000>
(0.5+0 j) |00100>

(−0.353553+0.353553 j) |01000>
(−0.353553+0.353553 j) |01100>

Listing 5.4: The five qubit quantum state after executing the random circuit with Pauli
frame before flushing.

Paul i frame l ay e r with Paul i r e co rd s :
0 : XZ
1 : I
2 : XZ
3 : I
4 : XZ

Listing 5.5: The status of the Pauli frame before flushing.

0 .5 j |10001>
−0.5 j |10101>

(−0.353553−0.353553 j) |11001>
(0 .353553 +0.353553 j) |11101>

Listing 5.6: The five qubit quantum state after executing the random circuit with Pauli
frame after flushing.

|q0〉 |0〉 × Y

|q1〉 |0〉 H I H

|q2〉 |0〉 I S × H X H

|q3〉 |0〉 S Z H × X S H T †

|q4〉 |0〉 × T Y

Figure 5.4: An example of a generated random circuit for 5 qubits with 20 gates.

The random circuit test bench was executed 100 times for a system with ten qubits
using random circuits containing 1000 gates each. A graphical overview of the test setup
is shown in Figure 5.3. The test bench reported that the simulations with Pauli frame
yield the same results as the simulations with Pauli frame for all iterations. Thereby we
verified that the Pauli frame working mechanism is correct and does not change the final
quantum state after executing a circuit.

build 0.18

46 CHAPTER 5. EXPERIMENTS

5.2.3 Ninja star measurement simulation results

The Pauli frame layer is also tested in combination with the ninja star layer to verify
that measurements are handled correctly by the Pauli frame in case we do not flush
the Pauli frame. We used a control stack consisting of a ninja star layer, a Pauli frame
layer, and a QxCore layer. A schematic overview of the test setup is shown in Figure
5.5. To verify the measurement behavior of the control stack with a Pauli frame layer,
we used a test bench that applies the circuit shown in Figure 5.6 to create the logical
state (|01〉 + |10〉)/

√
2 (which we will refer to as the odd Bell state) and measure the

outcome. The measurement results of multiple iterations are collected and plotted in a
histogram. The circuit to create the odd Bell state will be applied on the ninja star layer
which expands all logical operations to physical operations and inserts ESM circuits.
The explained test bench is relevant since the test procedure includes execution of Pauli
gates and measurements on the same qubits, which will test the measurement procedures
of the Pauli frame. None of the gates that will be executed due to the logical circuit or
ESM circuits are non-Clifford, which means that the none of the Pauli records will be
flushed during execution.

Pauli Frame Layer

QX Simulator

QxCore

Test Bench

Ninja Star Layer

Figure 5.5: The test setup with a ninja star layer and a Pauli frame layer.

|q0〉 |0〉 H • X
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉 |0〉 ⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 5.6: The circuit used to create an odd Bell state.

The expected outcome of the odd Bell state test bench would be a histogram with
equal frequencies at the states |01〉L and |10〉L. We performed the test bench with 100
iterations on the test setup shown in Figure 5.5 and on a similar test setup without Pauli
frame. Both tests yielded equivalent results and the resulting histograms are shown in
Figure 5.7a and 5.7b for respectively the control stack with and without Pauli frame.
We can conclude that both resulting histograms match the expected outcome. Hence,

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 47

we can conclude that a system with a Pauli frame yields similar measurement results as
a system without Pauli frame.

|00> |01> |10> |11>
State after measurement

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

(a) Result with Pauli frame.

|00> |01> |10> |11>
State after measurement

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

(b) Result without Pauli frame.

Figure 5.7: The resulting histograms of the odd Bell state test bench with and without
Pauli frame.

5.3 Ninja star logical error rates

The last experiment is designed to investigate the effect of the Pauli frame mechanism
on QEC. To do so, we calculate the Logical Error Rate (LER) PL of an idling Surface
Code 17 (SC17) logical qubit for different Physical Error Rate (PER) values p. The LER
PL is defined as the probability of a logical error happening within a single window [19]
where a window is defined as the time to execute one or more rounds of ESM and a set
of required corrections after decoding the obtained error syndromes.

For a given p, PL can be calculated by simulation. In the simulation, a ninja star,
constructed from 17 physical qubits, is initialized into the |0〉L or |+〉L state before we
repeatedly perform ESM rounds without executing any logical operation. After every
window, we check if there are any observable errors on data qubits, and if not, we check
if a logical error occurred. We repeat this procedure and count the number of windows
executed R and the number of logical errors detected m until m reaches a predefined
maximum value. The LER PL corresponding to a given p can be written as:

PL|p =
m

R
(5.1)

Listing 5.7 contains a piece of pseudo code based on Python that summarizes the simu-
lation procedure.

build 0.18

48 CHAPTER 5. EXPERIMENTS

I n i t i a l i z i n g used v a r i a b l e s
window count = 0
l o g i c a l e r r o r c o u n t = 0

I n i t i a l i z e the l o g i c a l qubit
i n i t i a l i z e l o g i c a l q u b i t ()

Perform the experiment
whi l e l o g i c a l e r r o r c o u n t < MAX LOGICAL ERROR:

execute window ()
window count += 1

i f n o ob s e r v ab l e e r r o r s () :
i f l o g i c a l e r r o r h app en ed () :

l o g i c a l e r r o r c o u n t += 1

Calcu la t e the l o g i c a l e r r o r ra t e
l o g i c a l e r r o r r a t e = l o g i c a l e r r o r c o u n t / window count

Listing 5.7: Pseudo code summary of calculating the PL of a ninja star.

5.3.1 Test setup

We used QPDO to perform the LER experiments. We chose CHP as the simulation
back-end to save simulation time since this experiment only executes Clifford gates. The
symmetric depolarizing error model [11, 19] is used to insert errors and is implemented
as a QPDO layer. The Pauli frame is also implemented as a layer as explained in Section
5.2. Besides of the main layers required for the simulation, three counter layers are added
to the control stack to count the number of operations and time slots transferred between
the layers. The full control stack used for the LER experiments is shown in Figure 5.8.

The error layer implements the symmetric depolarizing error model. In this model,
the PER p is the probability of an error occurring while executing a single operation
on a physical qubit [11, 19]. For every single-qubit operation, the probability of a Pauli
error, X, Y or Z, is for all p/3. Measurement in the computational basis can only have
an X error with the probability of p. Idling a physical qubit for a time slot is also
treated as a physical operation, the identity gate, I. For two-qubit gates the probability
to insert a specific combination of two single-qubit errors is p/15 for all errors in the set
({I,X, Y, Z} × {I,X, Y, Z}) \ {(I, I)}.

Error syndromes are the measurement result of the ancilla qubits and represent the
parity among data qubits. A decoder is required to decode error syndromes into errors
that happen on data qubits. For the LER experiments, the decoder used is a rule-based
Look-Up Table (LUT) decoder as presented in [19] and implemented by [37]. The rule-
based LUT decoder is specifically designed for the ninja star and uses three rounds of
ESM results to detect errors. Every window w uses one round of ESM results from the
previous window w − 1 as shown in Figure 5.9.

Detecting if there is any observable error in the data qubits is done by performing an
extra round of ESM and verifying if the measurement results are all +1. This round of
ESM used for diagnostic purposes should be error-free and not affect any counters in the

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 49

Pauli Frame Layer

CHP

ChpCore

Experiment
with Pauli

frame
Count Layer

Count Layer

Error Layer

Count Layer

Experiment
without Pauli

frame

Figure 5.8: The test setup used for the Logical Error Rate experiments.

Corrections

ESM

ESM

Corrections

ESM

ESM

Corrections

ESM

...

...

W
indow

 w

W
indow

 w
-1

Figure 5.9: The scheme of Error Syndrome Measurement (ESM) results used for succes-
sive windows.

experiment. Therefore, apart from the normal execution mode, the control stack has a
bypass mode which is only valid for system diagnostics circuits where the counter layers
and error layers are bypassed.

Logical errors are detected using stabilizer circuits in the bypass mode. We can use
the circuit shown in Figure 5.10a to verify if the ninja star is in the |0〉L/|1〉L state which
corresponds to the ancilla measurement result +1/−1. The circuit shown in Figure 5.10a
is a Z0Z4Z8 stabilizer measurement circuit and does not influence the logical |0〉L/|1〉L
state of the ninja star [11]. By detecting changes of logical state after successive windows,

build 0.18

50 CHAPTER 5. EXPERIMENTS

we can detectXL errors. For the same reason, ZL errors can be detected without affecting
the logical state using the stabilizer measurement circuit shown in Figure 5.10b with
measurement result +1/−1 corresponding to the state |+〉L/|−〉L. More information
about stabilizer circuits can be found in [6].

|d0〉 •

|d4〉 •

|d8〉 •

|a〉 |0〉 ⊕⊕⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

(a) Circuit for detecting XL errors.

|d2〉 ⊕

|d4〉 ⊕

|d6〉 ⊕

|a〉 |0〉 H • • • H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

(b) Circuit for detecting ZL errors.

Figure 5.10: The stabilizer circuits used to detect logical errors.

The ESM circuits for X and Z ancilla qubits, as described in Section 2.5.1, are
performed in parallel which results in an ESM circuit containing a total of 48 gates
divided over 8 time slots including preparation and measurements of ancilla qubits.
Table 5.8 describes which time slot contains which gates.

Time slot # Operations Short description

1 4 Reset X ancilla qubits to |0〉 state.

2 4 Reset Z ancilla qubits to |0〉 state.
4 Apply H gates on X ancilla qubits.

3-6 24 CNOT gates between data qubits and ancilla qubits.

7 4 Apply H gates on X ancilla qubits.

8 8 Measure all ancilla qubits.

Table 5.8: Description of the Error Syndrome Measurement circuit used for the logical
error rate experiment.

5.3.2 Results

We performed separate LER experiments for XL/ZL errors, starting from the |0〉L/|+〉L
state, using the test setup shown in Figure 5.8 without Pauli frame. Both experiments
were performed for PER values ranging from 1.0× 10−4 to 1.00× 10−2 with a step size
of 1.0 × 10−4 where ten simulations are performed for every PER. Every simulation
is terminated when 50 logical errors are detected. For every PER, we calculated the
mean and standard deviation of the resulting LER of the ten individual simulations.
The resulting graphs are shown in Figure 5.11 where the PER is represented on the
horizontal axis and the resulting LER on the vertical axis. We also added the line x = y
and a vertical dashed line which indicates the intersection between the linear interpolated
results and the line x = y.

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 51

10-4 10-3 10-2

Physical error rate

10-5

10-4

10-3

10-2

10-1
Lo

gi
ca

l e
rr

or
 ra

te

(a) LER for logical X errors.

10-4 10-3 10-2

Physical error rate

10-5

10-4

10-3

10-2

10-1

Lo
gi

ca
l e

rr
or

 ra
te

(b) LER for logical Z errors.

Figure 5.11: Physical Error Rate versus Logical Error Rate for a Surface Code 17 logical
qubit without Pauli frame.

From the graphs shown in Figure 5.11 we can conclude that the LER is similar for
XL and ZL errors, which can be explained by the used error model. The symmetric
depolarizing error model has equal probabilities for injecting X and Z errors on physical
qubits resulting in an equal probability of causing a logical X or Z error. Both graphs
intersect the line x = y around x ≈ 3.0 × 10−4 which is marked with a vertical dashed
line and known as the pseudo-threshold (as explained in Section 2.5.1). We performed
an other set of similar simulations for PER values around the pseudo-threshold ranging
from 3.0× 10−4 to 5.0× 10−4 with a step size of 5× 10−6 where 20 samples were taken
for every PER. The results are shown in Figure 5.12.

10-4 10-3

Physical error rate

10-4

10-3

Lo
gi

ca
l e

rr
or

 ra
te

(a) LER for logical X errors.

10-4 10-3

Physical error rate

10-4

10-3

Lo
gi

ca
l e

rr
or

 ra
te

(b) LER for logical Z errors.

Figure 5.12: Physical Error Rate versus Logical Error Rate around the pseudo-threshold
for a Surface Code 17 logical qubit without Pauli frame.

To observe the impact of a Pauli frame on the LER, we performed the same LER
experiments as explained earlier, but then using the test setup shown in Figure 5.8 with
a Pauli frame. The graphs with the resulting LER values are shown in Figure 5.13.

build 0.18

52 CHAPTER 5. EXPERIMENTS

Again we observe that the LER is similar for XL and ZL errors, which was expected.
The pseudo-threshold, which is marked with a vertical dashed line, can again be found
around 3.0 × 10−4. Again we performed extra simulations for PER values around the
pseudo-threshold ranging from 3.0 × 10−4 to 5.0 × 10−4 of which the results are shown
in Figure 5.14.

10-4 10-3 10-2

Physical error rate

10-5

10-4

10-3

10-2

10-1

Lo
gi

ca
l e

rr
or

 ra
te

(a) LER for logical X errors.

10-4 10-3 10-2

Physical error rate

10-5

10-4

10-3

10-2

10-1

Lo
gi

ca
l e

rr
or

 ra
te

(b) LER for logical Z errors.

Figure 5.13: Physical Error Rate versus Logical Error Rate for a Surface Code 17 logical
qubit with Pauli frame.

10-4 10-3

Physical error rate

10-4

10-3

Lo
gi

ca
l e

rr
or

 ra
te

(a) LER for logical X errors.

10-4 10-3

Physical error rate

10-4

10-3

Lo
gi

ca
l e

rr
or

 ra
te

(b) LER for logical Z errors.

Figure 5.14: Physical Error Rate versus Logical Error Rate around the pseudo-threshold
for a Surface Code 17 logical qubit with Pauli frame.

We combined the results of the LER experiments with and without Pauli frame in
one figure to be able to compare them. The results of the experiments performed over
the range 1.0 × 10−4 to 1.00 × 10−2 are shown in Figure 5.16 while the results of the
simulations around the pseudo-threshold of 3.0× 10−4 are shown in Figure 5.16. Again
the results with Pauli frame are indicated with red circles while the results without
Pauli frame are indicated by blue squares. By visual inspection, we can conclude that
the results of the LER experiments with Pauli frame look very similar to the results

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 53

of the experiments without Pauli frame. Our observed results are also very similar to
the results shown in [19] where they assume the presence of a Pauli frame during their
simulations.

10-4 10-3 10-2

Physical error rate

10-5

10-4

10-3

10-2

10-1

Lo
gi

ca
l e

rr
or

 ra
te

(a) LER for logical X errors.

10-4 10-3 10-2

Physical error rate

10-5

10-4

10-3

10-2

10-1

Lo
gi

ca
l e

rr
or

 ra
te

(b) LER for logical Z errors.

Figure 5.15: Physical Error Rate versus Logical Error Rate for a Surface Code 17 logical
qubit with (red circles) and without (blue squares) Pauli frame.

10-4 10-3

Physical error rate

10-4

10-3

Lo
gi

ca
l e

rr
or

 ra
te

(a) LER for logical X errors.

10-4 10-3

Physical error rate

10-4

10-3

Lo
gi

ca
l e

rr
or

 ra
te

(b) LER for logical Z errors.

Figure 5.16: Physical Error Rate versus Logical Error Rate for a Surface Code 17 logical
qubit with (red circles) and without (blue squares) Pauli frame around the pseudo-
threshold.

To take a closer look at the differences between the results with and without Pauli
frame we calculated the absolute difference in LER δPL

for every PER p where δPL
is

defined as:

δPL
|p = PLwithout PF

− PLwith PF
(5.2)

Figure 5.17 shows the absolute LER difference δPL
(red triangles) for every p on a sym-

metric logarithmic scale where the vertical axis has a logarithmic scale except between
±10−4 where the scale is linear. The δPL

for the results of the simulations around the

build 0.18

54 CHAPTER 5. EXPERIMENTS

pseudo-threshold are shown in Figure 5.18 with a symmetric logarithmic scale on the
vertical axis that is linear between ±10−5. In the plots for δPL

, the maximum of the
standard deviations of PL with and without Pauli frame σmax was added around the
horizontal axis for every p where for a given p, σmax is defined as:

σmax|p = max
(
σ(PLwith PF

) , σ(PLwithout PF
)
)

(5.3)

From Figure 5.17 and 5.18 we can observe that there is no consistent positive or negative
difference in LER PL for the simulations with and without Pauli frame. Also for nearly
all p, δPL

can be found within the standard deviation regions ±σmax. We can conclude
that the Pauli frame has no measurable effect on the LER of a SC17 logical qubit.

10-4 10-3 10-2

Physical error rate

-10-1

-10-2

-10-3

-10-4

0

10-4

10-3

10-2

10-1

Ab
so

lu
te

 im
pr

ov
em

en
t l

og
ic

al
 e

rr
or

 ra
te

 b
y

Pa
ul

i f
ra

m
e

(a) Difference for logical X errors.

10-4 10-3 10-2

Physical error rate

-10-1

-10-2

-10-3

-10-4

0

10-4

10-3

10-2

10-1

Ab
so

lu
te

 im
pr

ov
em

en
t l

og
ic

al
 e

rr
or

 ra
te

 b
y

Pa
ul

i f
ra

m
e

(b) Difference for logical Z errors.

Figure 5.17: The absolute Logical Error Rate difference between the experiments with
and without Pauli frame (red triangles) plotted together with the standard deviations
of the LER results (vertical bars).

We might wonder why the maximum standard deviations of the LER plotted in
Figure 5.17 and 5.18 increase for higher PER values p. We know from Equation (5.1)
that the LER PL depends on the number of detected logical errors m and the number of
counted windows R. The simulations we perform are always terminated when m = 50,
which means that PL can only be influenced by R. For a given p we would like to know
the coefficient of variation (also known as the relative standard deviation) c of R which
is defined as:

cR|p =
σR
µR

(5.4)

We calculated the cR for every p and the results for the simulations with and without
Pauli frame are shown in Figure 5.19 and 5.20 in red and blue. We can observe that for
simulations with and without Pauli frame the average of cR lies around 13% for all p
which are marked with horizontal dashed lines. We can conclude that for every p, R has
a relative standard deviation around 13%, which will result in a proportional coefficient
of variation for PL. Since PL is larger for larger p, the absolute standard deviation for
PL will be greater for higher values of p. Hence, we observe larger absolute standard
deviations for larger p in Figure 5.17 and 5.18.

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 55

10-4 10-3

Physical error rate

-10-3

-10-4

-10-5

0

10-5

10-4

10-3
Ab

so
lu

te
 im

pr
ov

em
en

t l
og

ic
al

 e
rr

or
 ra

te
 b

y
Pa

ul
i f

ra
m

e

(a) Difference for logical X errors.

10-4 10-3

Physical error rate

-10-3

-10-4

-10-5

0

10-5

10-4

10-3

Ab
so

lu
te

 im
pr

ov
em

en
t l

og
ic

al
 e

rr
or

 ra
te

 b
y

Pa
ul

i f
ra

m
e

(b) Difference for logical Z errors.

Figure 5.18: The absolute Logical Error Rate difference between the experiments with
and without Pauli frame (red triangles) plotted together with the standard deviations
of the LER results (vertical bars) around the pseudo-threshold.

10-4 10-3 10-2

Physical error rate

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
of

 w
in

do
w

 c
ou

nt

(a) During LER simulations for XL errors.

10-4 10-3 10-2

Physical error rate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
of

 w
in

do
w

 c
ou

nt

(b) During LER simulations for ZL errors.

Figure 5.19: The coefficient of variation of the number of counted windows with (red
circles) and without (blue squares) Pauli frame.

We also performed statistical analysis on the LER samples retrieved by individual
simulations. For every PER p we performed a t-test which can indicate if two data sets
are significantly different from each other by calculating a ρ-value. A consistent ρ-value
of 0.05 or lower would indicate that the difference between two sets of data is statistically
significant. If not, the null hypothesis holds which indicates that the difference between
two sets of data is not statistically significant. For a given p, we used one data set with
LER values obtained by simulations without Pauli while the other data set contained the
LER values obtained by simulations with Pauli frame. As mentioned earlier, simulations
with and without Pauli frame were repeated 10 times for every p which means that the
two data sets that we compare both have a sample size of 10. The t-test can be performed
on matched pairs (paired t-test) or independent data sets (unpaired or independent t-

build 0.18

56 CHAPTER 5. EXPERIMENTS

10-4 10-3

Physical error rate

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
of

 w
in

do
w

 c
ou

nt

(a) During LER simulations for XL errors.

10-4 10-3

Physical error rate

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
of

 w
in

do
w

 c
ou

nt

(b) During LER simulations for ZL errors.

Figure 5.20: The coefficient of variation of the number of counted windows with (red
circles) and without (blue squares) Pauli frame around the pseudo-threshold.

test). The LER samples obtained by our simulations are not paired for simulations
with and without Pauli frame which would indicate the usage of an independent t-test,
but all simulations do use the same simulation software which could imply that we are
testing the same object and suggest the usage of a paired t-test. For those reasons,
we performed both the paired as well as the independent t-test. The resulting ρ-values
of the independent t-test for every p for simulations considering XL and ZL errors are
shown in Figure 5.21 and the results for the same data using the paired t-test are shown
in Figure 5.22. Figures 5.23 and 5.24 present the results of the individual and paired
t-test performed on the data obtained by simulations around the pseudo-threshold where
every data set has a sample size of 20. All graphs also contain a horizontal dashed line
to indicate the mean of the ρ-values in the graph.

10-4 10-3 10-2

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) ρ-values for data obtained by simulations
for XL errors.

10-4 10-3 10-2

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) ρ-values for data obtained by simulations
for ZL errors.

Figure 5.21: The resulting ρ-values from the independent t-test performed on the data
sets obtained with and without Pauli frame for different Physical Error Rate values.

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 57

10-4 10-3 10-2

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0
p-

va
lu

e

(a) ρ-values for data obtained by simulations
for XL errors.

10-4 10-3 10-2

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) ρ-values for data obtained by simulations
for ZL errors.

Figure 5.22: The resulting ρ-values from the paired t-test performed on the data sets
obtained with and without Pauli frame for different Physical Error Rate values.

10-4 10-3

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) ρ-values for data obtained by simulations
for XL errors.

10-4 10-3

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) ρ-values for data obtained by simulations
for ZL errors.

Figure 5.23: The resulting ρ-values from the independent t-test performed on the data
sets obtained with and without Pauli frame for different Physical Error Rate values.

From the results of the t-tests shown in Figure 5.21, 5.22, 5.23, and 5.24 we can
observe that the ρ-values vary a lot for different values of p and that the mean of all ρ-
values lies around 0.5. Although we see a few ρ-values lower than 0.05 we do not observe
such values consistently over many values of p. By conventional criteria, the difference
between the data sets obtained with and without Pauli frame is considered to be not
statistically significant. Hence, we can conclude that the Pauli frame has no statistically
significant effect on the LER of a SC17 logical qubit.

To investigate why the usage of a Pauli frame does not significantly influence the
LER we have taken a look at the gate and time slot counts that we collected during the
simulations. We were especially interested in the number of Pauli gates that were filtered

build 0.18

58 CHAPTER 5. EXPERIMENTS

10-4 10-3

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(a) ρ-values for data obtained by simulations
for XL errors.

10-4 10-3

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

(b) ρ-values for data obtained by simulations
for ZL errors.

Figure 5.24: The resulting ρ-values from the paired t-test performed on the data sets
obtained with and without Pauli frame for different Physical Error Rate values around
the pseudo-threshold.

by the Pauli frame and the number of time slots that were removed as a result of that.
An ESM circuit as shown in Table 5.8 does not contain any Pauli gate, so the only gates
that can be filtered are Pauli gates that were inserted correct errors. A window consists
of two rounds of ESM and one possible time slot for corrections. Every ESM round has
8 time slots resulting in a total of 2 · 8 = 16 time slots per window. As a result, a single
window can have 16 or 17 time slots depending on if there are corrections to be applied
or not. The only time slot that could potentially be filtered by the Pauli frame is the
time slot containing the correction gates. If corrections are applied at the end of every
window, 1/17 ≈ 0.06 or around 6% of the time slots could be filtered by the Pauli frame.
As a result, the Pauli frame can never filter more than 6% of the time slots during our
simulations. For all simulations regarding logical X errors, we calculated the percentage
of gates and time slots that were filtered by the Pauli frame. We calculated the mean and
standard deviation of these results for every PER p and the resulting graphs are shown
in Figure 5.25. We also calculated the percentage of filtered gates and time slots for the
simulations regarding logical X errors around the pseudo-threshold. Those results are
shown in Figure 5.26.

From the graphs shown in Figure 5.25 and 5.26 we can conclude that the Pauli frame
does filter gates and time slots, but the percentage of gates and time slots that are
filtered is low, especially for PER values below the pseudo-threshold. These results can
be explained by the distance d. For the SC17, distance d = 3 which means that the SC17
is able to correct (d− 1)/2 = 1 error per ESM round. As a result, the pseudo-threshold
of the SC17 is found at a very low PER. Due to the low PER and low distance of the
SC17, there is a very low number of corrections to be applied over time, which results
in a low number of gates and time slots being filtered by the Pauli frame.

The low proportion of gates and time slots that are filtered by the Pauli frame can
also explain why we do not see any improvements in the LER by using a Pauli frame.

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 59

10-4 10-3 10-2

Physical error rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sa

ve
d

op
er

at
io

ns
 in

 %

(a) Percentage of saved gates.

10-4 10-3 10-2

Physical error rate

0

1

2

3

4

5

Sa
ve

d
tim

e
sl

ot
s

in
 %

(b) Percentage of saved time slots.

Figure 5.25: The percentage of gates and time slots saved by the Pauli frame during
Logical Error Rate simulations for X errors.

10-4 10-3

Physical error rate

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Sa
ve

d
op

er
at

io
ns

 in
 %

(a) Percentage of saved gates.

10-4 10-3

Physical error rate

0.25

0.30

0.35

0.40

0.45

0.50
Sa

ve
d

tim
e

sl
ot

s
in

 %

(b) Percentage of saved time slots.

Figure 5.26: The percentage of gates and time slots saved by the Pauli frame during
Logical Error Rate simulations for X errors around the pseudo-threshold.

Improvements in the LER due to a Pauli frame can only be observed if a significant
proportion of time slots is filtered. Since only a very low percentage of time slots is
filtered at PER values below the pseudo-threshold, no improvement in the LER can be
observed. For PER values above the pseudo-threshold the percentage of filtered time
slots increases quickly, but still, we do not observe any improvement in LER. At PER
values above the pseudo-threshold, the SC17 suffers from more errors than it can correct.
Logical errors occur often, and a Pauli frame can not prevent that. Hence, we can not
observe improvements in the LER at PER values above the pseudo-threshold.

We might wonder if we can expect improved LER values for a surface code with
a larger distance d > 3 using a Pauli frame. Therefore, we need to look further into
the theoretical benefit a Pauli frame can gain for the LER. The following reasoning is
not meant as an analytical proof but rather a quantitative reasoning about the relative

build 0.18

60 CHAPTER 5. EXPERIMENTS

impact of both the Pauli frame and the code distance on the LER.

Given a PER p, we could approximate the LER PL based on the distance d, and
the number of time slots required by a single window tswindow. We know that tswindow

equals the sum of the time slots required by d− 1 rounds of ESM tsrounds and the time
slot for corrections tscorrections. In our simulations, the number of time slots in a single
round of ESM tsESM = 8 as shown in Table 5.8. For the surface code, PL is negatively
correlated to the code distance d. Given the same PER and surface code lattice with
a certain distance, more time slots required by a window would lead to more physical
errors occurring per window, which could further increase the LER. Hence, we can
assume that the LER is positively correlated to the number of time slots required by a
window. Given a PER p, it would be a reasonable assumption to estimate the LER PL
by Equation (5.5):

PL|p ∝ tswindow

d
(5.5)

where

tswindow = tsrounds + tscorrections (5.6)

tsrounds = (d− 1)tsESM (5.7)

tsESM = 8 (5.8)

tscorrections =

{
1 if there are errors to be corrected

0 otherwise
(5.9)

We can improve the LER PL by reducing tswindow using a Pauli frame. The Pauli
frame can track all detected errors and as a result the value of tscorrections is reduced
to tscorrections = 0. Given a tsESM, let us calculate the upper-bound for the relative
improvement in PL that we can obtain by using a Pauli frame. Based on Equation (5.5)
we will approximate PL with/without Pauli frame as shown in Equation (5.10)/(5.11)
where C is a constant:

C · tswindow

d

∣∣∣∣
PF

where tscorrections = 0 (with Pauli frame) (5.10)

C · tswindow

d

∣∣∣∣
wo PF

where tscorrections = 1 (without Pauli frame) (5.11)

build 0.18

5.3. NINJA STAR LOGICAL ERROR RATES 61

Now we can define the upper-bound for the relative improvement in PL as:

Brelative ∝
C · tswindow

d

∣∣∣∣
wo PF

− C · tswindow

d

∣∣∣∣
PF

C · tswindow

d

∣∣∣∣
wo PF

=
tswindow|wo PF − tswindow|PF

tswindow|wo PF

=
1

tswindow|without PF

=
1

(d− 1)tsESM + 1

(5.12)

From Equation (5.12), we can conclude that the upper-bound for the relative improve-
ment in LER that can be obtained by using a Pauli Frame converges to 0 for a large
distance d and for a large tsESM. We plotted Equation (5.12) for tsESM = 8 in Figure
5.27 and we can observe that the upper-bound on the relative improvement quickly de-
creases to values below 3%. Hence, we do not expect an improved LER that for a larger
distance d by using a Pauli frame.

3 4 5 6 7 8 9 10 11
Distance

0

1

2

3

4

5

6

Up
pe

r-b
ou

nd
 re

la
tiv

e
im

pr
ov

em
en

t i
n

%

Figure 5.27: The upper-bound on the relative improvement in Logical Error Rate that
can be obtained by using a Pauli frame for tsESM = 8.

build 0.18

62 CHAPTER 5. EXPERIMENTS

build 0.18

Conclusion 6
We have analyzed the working principles of Pauli frames in detail and created an im-
plementation using the QPDO software. Our simulations show that when executing the
same circuits, a quantum system with a Pauli frame does yield the same measurement
results as a quantum system without a Pauli frame. We have also shown that by tracking
Pauli operations instead of executing them, we are still able to restore the quantum state
to the state it would have been without the usage of a Pauli frame. For those reasons
it is possible to add a Pauli frame to a quantum system while still yielding the same
results, even when the usage of a Pauli frame causes fewer gates being applied on its
corresponding qubits.

We have also verified the logical operations of the Surface Code 17 (SC17) by simula-
tion. The verified logical operations include preparation to |0〉L, XL, ZL, HL, transversal
CNOTL, transversal CZL, and nine-qubit measurement in the ZL basis. In our simula-
tions, we preferred to use the nine-qubit measurement over the three-qubit measurement
since lattice rotation does not influence the former.

We have shown that the usage of a Pauli frame does not cause an observable improve-
ment on the Logical Error Rate (LER) of a SC17, even when the Pauli frame effectively
filters all gates required to correct errors. By doing further analysis, we concluded that
a surface code with a larger distance might also not benefit from an improved LER by
the usage of a Pauli frame. Nevertheless, by using a Pauli frame we can still benefit from
relaxed timing constraints for error decoding and Error Syndrome Measurement (ESM)
circuit execution time.

Functional simulations have shown that our proposed design for a quantum computer
architecture targeting a SC17 quantum chip can maintain a logical qubit. Our archi-
tecture is capable of performing Quantum Error Correction (QEC) and can schedule
converted logical operations for execution.

Finally, we can conclude that the QPDO software is very flexible and offers powerful
simulation capabilities. The combination of a layered structure combined with differ-
ent simulation back-ends has proven to be very useful, especially in conjunction with
automated test benches. All simulations required for this report, and more, have been
performed with success using QPDO.

Future work

The work in this thesis could be extended in different directions.

We verified a set of logical operations for a SC17 logical qubit, but it would be
interesting to extend the set of operations. In [14] a procedure for state injection was
proposed that would make it possible to extend the set of logical gates for the SC17. It
might also be interesting to look at different techniques to encode logical qubits using

63

64 CHAPTER 6. CONCLUSION

the surface code (e.g. defect-based logical qubits as discussed in [6]) and verify the
corresponding logical operations.

The experiments considering the effect of a Pauli frame on the LER of a SC17 can
also be extended. It would be interesting to repeat these experiment using a larger
distance surface code to verify our expectations that for a larger distance surface code,
there will be no benefit in LER by using a Pauli frame. Such simulations would in the
first place require error syndrome decoders that are suitable for larger surface codes.
Future simulations could also benefit from more realistic error models.

Finally, we would like to take a deeper look into our proposed quantum computer
architecture [34]. Interesting work could be done by performing more accurate simula-
tions of the quantum computer architecture up to a level where we perform clock-cycle
accurate emulation.

build 0.18

Bibliography

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and fac-
toring,” in Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on, pp. 124–134, IEEE, 1994.

[2] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,”
Physical review letters, vol. 79, no. 2, p. 325, 1997.

[3] D. Riste, S. Poletto, M. Z. Huang, et al., “Detecting bit-flip errors in a logical qubit
using stabilizer measurements,” Nat Commun, vol. 6, 04 2015.

[4] A. Córcoles et al., “Demonstration of a quantum error detection code using a square
lattice of four super-conducting qubits,” Nature Comm., vol. 6, 2015.

[5] J. Kelly et al., “State preservation by repetitive error detection in a superconducting
quantum circuit,” Nature, vol. 519, no. 7541, pp. 66–69, 2015.

[6] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:
Towards practical large-scale quantum computation,” Physical Review A, vol. 86,
no. 3, p. 032324, 2012.

[7] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,”
Physical review A, vol. 52, no. 4, p. R2493, 1995.

[8] E. Knill, “Quantum computing with realistically noisy devices,” Nature, vol. 434,
no. 7029, pp. 39–44, 2005.

[9] N. Khammassi, “QX simulator.” http://www.xpu-project.net/qx/download.

html, 2016. Universal quantum simulator developed by the Computer Engineer-
ing department of Delft University of Technology.

[10] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Phys-
ical Review A, vol. 70, no. 5, p. 052328, 2004.

[11] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.
Cambridge university press, 2010.

[12] B. M. Terhal, “Quantum error correction for quantum memories,” Reviews of Mod-
ern Physics, vol. 87, no. 2, p. 307, 2015.

[13] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics,
vol. 303, no. 1, pp. 2–30, 2003.

[14] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code quantum
computing by lattice surgery,” New Journal of Physics, vol. 14, no. 12, p. 123011,
2012.

65

http://www.xpu-project.net/qx/download.html
http://www.xpu-project.net/qx/download.html

66 BIBLIOGRAPHY

[15] A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quan-
tum computation on the surface code,” Physical Review A, vol. 80, no. 5, p. 052312,
2009.

[16] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,”
Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505, 2002.

[17] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and
Y. Yamamoto, “Layered architecture for quantum computing,” Physical Review X,
vol. 2, no. 3, p. 031007, 2012.

[18] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for begin-
ners,” Reports on Progress in Physics, vol. 76, no. 7, p. 076001, 2013.

[19] Y. Tomita and K. M. Svore, “Low-distance surface codes under realistic quantum
noise,” Physical Review A, vol. 90, no. 6, p. 062320, 2014.

[20] Y.-C. Zheng and T. A. Brun, “Fault-tolerant holonomic quantum computation in
surface codes,” Physical Review A, vol. 91, no. 2, p. 022302, 2015.

[21] M. Takita, A. Córcoles, E. Magesan, B. Abdo, M. Brink, A. Cross, J. M. Chow, and
J. M. Gambetta, “Demonstration of weight-four parity measurements in the surface
code architecture,” arXiv preprint arXiv:1605.01351, 2016.

[22] J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White, D. Sank, J. Mutus,
B. Campbell, Y. Chen, et al., “State preservation by repetitive error detection in a
superconducting quantum circuit,” Nature, vol. 519, no. 7541, pp. 66–69, 2015.

[23] M. B. Hastings and A. Geller, “Reduced space-time and time costs using dislocation
codes and arbitrary ancillas,” arXiv preprint arXiv:1408.3379, 2014.

[24] J. Edmonds, “Maximum matching and a polyhedron with 0, l-vertices,” J. Res.
Nat. Bur. Standards B, vol. 69, no. 1965, pp. 125–130, 1965.

[25] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathematics, vol. 17,
no. 3, pp. 449–467, 1965.

[26] E. Knill, “Scalable quantum computing in the presence of large detected-error
rates,” Physical Review A, vol. 71, no. 4, p. 042322, 2005.

[27] D. P. DiVincenzo and P. Aliferis, “Effective fault-tolerant quantum computation
with slow measurements,” Physical review letters, vol. 98, no. 2, p. 020501, 2007.

[28] P. Aliferis and J. Preskill, “Fault-tolerant quantum computation against biased
noise,” Physical Review A, vol. 78, no. 5, p. 052331, 2008.

[29] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi, “Scaffcc: A framework for compilation and analysis of quantum
computing programs,” in Proceedings of the 11th ACM Conference on Computing
Frontiers, p. 1, ACM, 2014.

build 0.18

BIBLIOGRAPHY 67

[30] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An evaluation framework and in-
struction set architecture for ion-trap based quantum micro-architectures,” in ACM
SIGARCH Computer Architecture News, vol. 33, pp. 186–196, IEEE Computer So-
ciety, 2005.

[31] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov, “A layered
software architecture for quantum computing design tools,” Computer, no. 1, pp. 74–
83, 2006.

[32] D. Wecker and K. M. Svore, “Liqui—¿: A software design architecture and domain-
specific language for quantum computing,” arXiv preprint arXiv:1402.4467, 2014.

[33] K. Svore, A. Cross, A. Aho, I. Chuang, and I. Markov, “Toward a software architec-
ture for quantum computing design tools,” in Proceedings of the 2nd International
Workshop on Quantum Programming Languages (QPL), pp. 145–162, 2004.

[34] X. Fu, L. Riesebos, L. Lao, C. Almudever, F. Sebastiano, R. Versluis, E. Charbon,
and K. Bertels, “A heterogeneous quantum computer architecture,” in Proceedings
of the ACM International Conference on Computing Frontiers, pp. 323–330, ACM,
2016.

[35] D. Iorga, “Python wrapper for CHP,” 2016. Wrapper to enable quantum simulations
with CHP using function calls from Python.

[36] H. Zimmermann, “OSI reference model–the iso model of architecture for open sys-
tems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4,
pp. 425–432, 1980.

[37] S. Varsamopoulos, “Rule-based lookup table decoder,” 2016. Python implementa-
tion of the rule-based lookup table decoder.

build 0.18

68 BIBLIOGRAPHY

build 0.18

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Background
	Qubits
	Quantum gates
	Single-qubit gates
	Multi-qubit gates

	Quantum math formalism
	Group
	Gate properties
	Gate groups

	Universal quantum computation
	Quantum error correction
	Surface code

	Fault-tolerant quantum computing
	Surface code 17

	Pauli frames
	Working principles
	System specification
	Applications and benefits
	Pauli frame example
	Implementation
	Quantum control unit
	Pauli frame unit

	Simulation platform
	Quantum simulators
	QX Simulator
	CHP

	QPDO
	Layered structure
	Shared data structures
	Implemented layers
	Test benches

	Experiments
	Ninja star logical operations verification
	Run-time properties of a Ninja star
	Logical operation conversion and property updating
	QPDO implementation
	Simulation results

	Pauli frame verification
	QPDO implementation
	Random circuit simulation results
	Ninja star measurement simulation results

	Ninja star logical error rates
	Test setup
	Results

	Conclusion
	Bibliography

