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Abstract

IDR(s) is a family of fast algorithms for iteratively solving large nonsymmetric
linear systems [14]. With cluster computing and in particular with Grid computing,
the inner product is a bottleneck operation. In this paper, three techniques are com-
bined in order to alleviate this bottleneck. Firstly, the efficient and stable IDR(s)
algorithm from [16] is reformulated in such a way that it has a single global synchro-
nisation point per iteration step. Secondly, the so–called test matrix is chosen so that
the work, communication, and storage involving this matrix is minimised in multi–
cluster environments. Finally, a methodology is presented for a–priori estimation of
the optimal value of s using only problem and machine–based parameters. Numeri-
cal experiments applied to a 3D convection–diffusion problem are performed on the
DAS–3 Grid computer, demonstrating the effectiveness of these three techniques.

Key words. iterative methods, numerical linear algebra, nonsymmetric linear systems, IDR(s),

cluster and Grid computing, performance model

1 Introduction

The recent IDR(s) method and its derivatives are short recurrence Krylov subspace meth-
ods for iteratively solving large linear systems

Ax = b, A ∈ C
N×N , x, b ∈ C

N , (1)

where the coefficient matrix A is nonsingular and non–Hermitian [14]. The method has
attracted considerable attention, e.g., see [11, 6, 12, 7, 8]. For s = 1, IDR(s) is mathe-
matically equivalent to the ubiquitous Bi–CGSTAB algorithm [15]. For important types
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of problems and for relatively small values of s > 1, the IDR(s) algorithms outperform the
Bi–CGSTAB method.

The goal of this paper is to construct an efficient IDR(s) algorithm for cluster and
Grid computing. Global synchronisation is a bottleneck operation in such computational
environments and to alleviate this bottleneck, three techniques are combined:

(i.) The efficient and numerically stable IDR(s)-biortho method from [16] is reformulated
in such a way that it has one global synchronisation point per iteration step. The
resulting method is named IDR(s)-minsync;

(ii.) A–priori estimation of the optimal parameter s and number of processors is per-
formed to minimise the total computing time using only problem and machine–
dependent parameters;

(iii.) Piecewise sparse column vectors for the test matrix are used to minimise compu-
tation, communication, and storage involving this matrix in multi–cluster environ-
ments.

The target hardware consists of the distributed ASCI Supercomputer 3 (DAS–3), which
is a cluster of five geographically separated clusters spread over four academic institutions in
the Netherlands [10]. The DAS–3 multi–cluster is designed for dedicated parallel computing
and although each separate cluster is relatively homogeneous, the system as a whole can
be considered heterogeneous.

A parallel performance model is derived for computing the a–priori estimations of the
optimal parameter s. Extensive experiments on a 3D convection–diffusion problem show
that the performance model is in good agreement with the experimental results. The
model is successfully applied to both a single cluster and to the DAS–3 multi–cluster.
Comparisons between IDR(s)-biortho and IDR(s)-minsync are made, demonstrating supe-
rior scalability and efficiency of the new variant.

Techniques for reducing the number of synchronisation points in Krylov subspace meth-
ods on parallel computers has been studied by several authors [2, 3, 4, 5, 19, 18, 20]. With
the advent of Grid computing, the need for reducing global synchronisations is larger than
ever. In addition to presenting an IDR(s) variant with a single global synchronisation point
per iteration step, this paper also gives a method for a–priori computation of the optimal
s to minimise computing times. Lastly, sparse test vectors are used to reduce the cost of
global synchronisation even further, resulting in an efficient iterative method for solving
large nonsymmetric linear systems on Grid computers.

Note that the prototype method IDR(s)-proto from the original IDR(s) paper [14] also
has a single global synchronisation point per iteration step, except when computing a new
ω each s + 1st step, which requires two global synchronisations. However, the IDR(s)-
biortho method exhibits superior numerical stability and has less floating point operations
per IDR cycle. Therefore, the IDR(s)-biortho method was used as a basis for the new
IDR(s)-minsync method.
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The following notational conventions, terminology, and definitions will be used in this
paper. Let the matrix Qk = [q1, q2, . . . , qk]. If not specified otherwise, the norm || · ||
denotes the 2–norm. Let v ⊥ Q be shorthand for v is orthogonal to all column vectors
of Q. The orthogonal complement to the column space of Q is denoted by Q⊥. Number
of iterations refers to the number of (preconditioned) matrix–vector multiplications and
the index n refers to the iteration number, while the index j always refers to the jth IDR
cycle. Note that one IDR cycle consists of s+ 1 iterations.

This paper is organised as follows. In Sect. 2 the three strategies for constructing
efficient parallel IDR(s) methods are discussed in detail. Section 3 contains extensive
experimental results on the DAS–3, demonstrating the effectiveness of the three strategies.
Concluding remarks are given in Sect. 4.

2 An efficient IDR(s) algorithm for Grid computing

The IDR–based methods are new iterative algorithms for solving large nonsymmetric sys-
tems and much research is needed on efficient parallelisation on distributed memory com-
puters. The large amount of freedom when deriving IDR(s) algorithms allows for efficient
tuning of the numerical algorithm to specific computational environments.

This section is structured in the following way. In Sect. 2.1 the IDR(s)–biortho method
is reproduced and used as a basis for the IDR(s)–minsync method. Section 2.2 describes
the parallel performance model that is used to predict the optimal value of s and in Sect. 2.3
the method of using sparse column vectors for the test matrix is described.

2.1 An efficient IDR(s) variant with minimal synchronisation

points

Given an initial approximation x0 to the solution, all IDR(s) methods construct residuals
rj = b − Axj in a sequence (Gj) of shrinking subspaces that are related according to the
following theorem.

Theorem 1 (Induced Dimension Reduction (IDR)). Let A ∈ CN×N , let B ∈ CN×N be
a preconditioning matrix, let Q ∈ CN×s be a fixed matrix of full rank, and let G0 be any
non–trivial invariant linear subspace of A. Define the sequence of subspaces (Gj) recursively
as

Gj+1 ≡ (I − ωj+1AB
−1)(Gj ∩Q⊥) for j = 0, 1, . . . , (2)

where (ωj) is a sequence in CN . If Q⊥ does not contain an eigenvector of AB−1, then for
all j ≥ 0

• Gj+1 ⊂ Gj;

• dimGj+1 < dimGj unless Gj = {0}.
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Ultimately, the residual is forced in the zero–dimensional subspace Gj = {0} for some
j ≤ N . For a proof the reader is referred to [14, 12].

Iterative algorithms based on the IDR theorem consist of two main phases, which
constitute the jth cycle of an IDR method (i.e., s + 1 (preconditioned) matrix–vector
multiplications):

1. The dimension reduction step: given s vectors in Gj and a residual rj ∈ Gj, a residual
rj+1 in the lower dimensional subspace Gj+1 = (I − ωj+1AB

−1)(Gj ∩ Q⊥) ⊂ Gj is
computed after choosing an appropriate ωj+1;

2. Generating s additional vectors in Gj+1.

It can be shown that in exact arithmetic, IDR(s) methods terminate within N/s di-
mension reduction steps, or equivalently, within N(1 + 1

s
) (preconditioned) matrix–vector

multiplications [14, §3]. In practical applications, the iteration process will exhibit much

faster convergence rates according to N̂/s IDR cycles, where N̂ ≪ N .
Shown in Alg. 1 is the (right) preconditioned IDR(s)–biortho variant [16], which not

only has slightly less operations but is also numerically more stable than the IDR(s)–proto
variant. The dimension reduction step (i.e., lines 31–36) consists of one preconditioned
matrix–vector product, two vector updates, and two inner products. Combined with the
operations for constructing s vectors in Gj (i.e., lines 5–30), this amounts to s+1 precondi-
tioned matrix–vector products, s(s+1)+2 inner products, and 2(s(s+1)+1) vector updates
per cycle of IDR(s). The computation of the (combined and separate) inner products is
highlighted by boxes, which shows that there are 1

2
(s(s + 1)) + 2 global synchronisation

points per IDR cycle.
In the IDR(s)-biortho method, certain bi–orthogonality conditions with the columns of

Q are enforced that result in improved numerical stability and in reduced vector overhead.
Let rn+1 be the first residual in Gj+1. In IDR(s)-biortho, the s vectors for Gj+1 are made
to satisfy

gn+k ⊥ qi, i = 1, . . . , k − 1, k = 2, . . . , s, (3)

and the intermediate residuals are made to satisfy

rn+k+1 ⊥ qi, i = 1, . . . , k, k = 1, . . . , s. (4)

In the implementation presented in Alg. 1, these conditions are enforced using a modi-
fied Gram–Schmidt (MGS) process for oblique projection (lines 14–23). The disadvantage
of this approach is that the inner products cannot be combined, which poses a bottleneck
in parallel computing environments. By using a classical Gram–Schmidt (CGS) process
for these projections, this bottleneck can be alleviated. The general idea is that all the
inner products can be recursively computed with a one–sided bi–orthogonalisation process
using solely scalar updates. For a more detailed discussion on using either CGS or MGS
for the oblique projections, see [6].

Shown in Alg. 2 is the reformulated variant IDR(s)-minsync. In the following, the two
phases of the new IDR variant are discussed separately, where we sometimes specifically
refer to line numbers in Alg. 2.
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Algorithm 1 IDR(s) with bi–orthogonalisation of intermediate residuals

input: A ∈ CN×N ; x, b ∈ CN ;Q ∈ CN×s; preconditioner B ∈ CN×N ; parameter s; accu-
racy ε.

output: Approximate solution x such that ||b−Ax|| ≤ ε.

1: Set G = U = 0 ∈ CN×s;M = (µ) = I ∈ Cs×s;ω = 1
2: Compute r = b− Ax
3: // loop over nested Gj spaces, j = 0, 1, . . .
4: while ||r|| ≥ ε do

5: // Compute s linearly independent vectors gk in Gj

6: φ = QHr , φ = (φ1, . . . , φs)
T // s inner products (combined)

7: for k = 1 to s do

8: Solve Mγ = φ for γ, γ = (γk, . . . , γs)
T

9: v = r −
∑s

i=k γigi

10: ṽ = B−1v // Preconditioning
11: uk =

∑s

i=k γiui + ωṽ
12: gk = Auk

13: // Make gk orthogonal to q1, . . . , qk−1

14: for i = 1 to k − 1 do

15: α = qH
i gk/µi,i // k − 1 inner products (separate)

16: gk ← gk − αgi

17: uk ← uk − αui

18: end for

19: // Update column k of M

20: µi,k = qH
i gk for i = k, . . . , s // s− k + 1 inner products (combined)

21: // Make the residual orthogonal to q1, . . . , qk
22: β = φk/µk,k

23: r ← r − βgk

24: x← x+ βuk

25: // Update φ = QHr
26: if k + 1 ≤ s then

27: φi = 0 for i = 1, . . . , k
28: φi = φi − βµi,k for i = k + 1, . . . , s
29: end if

30: end for

31: // Entering Gj+1, the dimension reduction step
32: ṽ = B−1r // Preconditioning
33: t = Aṽ
34: ω = (tHr)/(tHt) // Two inner products (combined)
35: r ← r − ωt
36: x← x+ ωṽ
37: end while
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Algorithm 2 IDR(s) with bi–orthogonalisation of the intermediate residuals and with
minimal number of synchronisation points

input: A ∈ CN×N ; x, b ∈ CN ;Q ∈ CN×s; preconditioner B ∈ CN×N ; accuracy ε
output: Approximate solution x such that ||b−Ax|| ≤ ε.

1: // Initialisation
2: G = U = 0 ∈ CN×s;M = [µ] = I ∈ Cs×s;ω = 1
3: Compute r = b− Ax
4: φ = QHr, φ = (φ1, . . . , φs)

T

5: // Loop over nested Gj spaces, j = 0, 1, . . .
6: while ||r|| > ε do

7: // Compute s linearly independent vectors gk in Gj

8: for k = 1 to s do

9: // Compute v ∈ Gj ∩Q⊥

10: Solve Mlγ(k:s) = φ(k:s)

11: v = r −
∑s

i=k γigi

12: ṽ = B−1v // Preconditioning step
13: uk =

∑s

i=k γiui + ωṽ
14: gk = Auk

15: ψi = qH
i gk for i = 1, . . . , s // s inner products (combined)

16: Solve Mtα(1:k−1) = ψ(1:k−1)

17: // Make gk orthogonal to q1, . . . , qk−1 and update uk accordingly
18: gk ← gk −

∑k−1
i=1 αigi, uk ← uk −

∑k−1
i=1 αiui

19: // Update column k of M
20: µi,k = ψi −

∑k−1
j=1 αjµ

c
i,j for i = k, . . . , s

21: // Make r orthogonal to q1, . . . , qk
22: β = φk/µk,k

23: r ← r − βgk

24: x← x+ βuk

25: // Update φ = QHr
26: if k + 1 ≤ s then

27: φi = 0 for i = 1, . . . , k
28: φi ← φi − βµi,k for i = k + 1, . . . , s
29: end if

30: end for

31: // Entering Gj+1. Note: r ⊥ Q
32: ṽ = B−1r // Preconditioning step
33: t = Aṽ
34: ω = (tHr)/(tHt);φ = −QHt // s+ 2 inner products (combined)
35: r ← r − ωt
36: x← x+ ωṽ
37: φ← ωφ
38: end while
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1. The dimension reduction step The orthogonality condition (4) implies that the
last intermediate residual before the dimension reduction step is orthogonal to all the
columns of Q. Therefore, rn ∈ Gj ∩Q⊥ and according to Theorem 1 the first residual rn+1

in Gj+1 is thus computed as

rn+1 = (I − ωj+1AB
−1)rn. (line 35) (5)

Premultiplying this expression with A−1 results in the corresponding recursion for the
iterate

xn+1 = xn + ωj+1B
−1rn, (line 36) (6)

which is essentially modified Richardson. A typical (minimal residual) choice of ωj+1 is
arg minω ||(I − ωAB−1)rn|| or equivalently

ωj+1 =
(AB−1rn)Hrn

(AB−1rn)HAB−1rn

. (7)

By reordering operations, the computation of ωj+1 can be combined with the com-
putation of φ = QHr in line 6 from Alg. 1 as follows. Premultiplying the recursion for
computing the new residual (5) with QH gives

QHrn+1 = QHrn − ωj+1Q
HAB−1rn (8)

= −ωj+1Q
HAB−1rn, (9)

since QHrn = 0 by construction. Setting tn = AB−1rn, the computation of tHn rn, t
H
n tn, and

QHtn can then be combined (line 34).

2. Generating s additional vectors in Gj+1 In addition to the standard orthogo-
nalisation step performed in IDR(s) for computing a vector v ∈ Gj ∩ Q⊥ (line 9–11), the
goal is to enforce the extra orthogonality conditions (3) and (4) to the newly computed
vectors g and residuals r in Gj+1 ⊂ Gj . In practice, this means that there are now essen-
tially two main orthogonalisations that need to be performed. Since Gj+1 ⊂ Gj , the two
orthogonalisations use vectors g that are either in both Gj+1 and Gj or only in Gj .

In the following, let k = 1, 2, . . . , s and let Qk = [q1, . . . , qk]. Suppose that after n + k
iterations we have exactly s− k+ 1 vectors gi, i = n+ k− s− 1, . . . , n− 1 in Gj and k− 1
vectors gi, i = n+ 1, . . . , n+ k − 1 in Gj+1, which gives a total of s vectors gi. In addition,
suppose that we have s corresponding vectors ui such that gi = Aui for all i.

From the dimension reduction step we have a residual rn+1 ∈ Gj+1 and let ĝn+k ∈ Gj+1.
Then the two main orthogonalisations that need to be performed are

{
vn+k = rn+k −

∑s

i=k γign+i−s−1 ∈ Gj ∩Q⊥, (‘standard’, line 11)

gn+k = ĝn+k −
∑k−1

i=1 αign+i ∈ Gj+1 ∩Q⊥

k−1, (additional, line 18)
(10)
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The γi’s are chosen such that vn+k ∈ Gj ∩ Q⊥ and the αi’s are chosen such that gn+k ∈
Gj+1 ∩Q⊥

k−1 (i.e., condition (3)).
The update ûn+k for the iterate and the intermediate vector ĝn+k for Gj+1 using explicit

multiplication by A are computed according to

{
ûn+k =

∑s

i=k γiun+i−s−1 + ωj+1B
−1vn+k; (line 13)

ĝn+k = Aûn+k. (line 14)
(11)

In the implementation of IDR(s)-biortho from Alg. 1, the vector ĝn+k is subsequently
orthogonalised against q1, . . . , qk−1 using a MGS process (lines 14–18 in Alg. 1), while vn+k

is orthogonalised using a CGS process (lines 8–9 in Alg. 1).
By performing both oblique projections in (10) using a CGS process, it will be shown

that in each iteration step n + k only s (combined) inner products have to be computed
and that the rest of the relevant inner products can be computed using scalar updates.

Using the orthogonality condition (3), define the (s−k+1)×(s−k+1) and (k−1)×(k−1)
lower triangular matrices Ml and Mt as

Ml ≡ [µl
i,j] =

{
qH
i gn+j−s−1 for k ≤ j ≤ i ≤ s;

0 otherwise
(12)

and

Mt ≡ [µt
i,j] =

{
qH
i gn+j for 1 ≤ j ≤ i ≤ k − 1;

0 otherwise
(13)

respectively. Using the orthogonality condition (4), define the s× 1 column vectors φ and
ψ as

φi =

{
qH
i rn+k for k ≤ i ≤ s;

0 otherwise.
(14)

ψi = qH
i ĝn+k, for 1 ≤ i ≤ s (line 15) (15)

Using these definitions, the following two small lower triangular systems have to be solved
in order to perform the oblique projections (10):

{
Mlγ(k:s) = φ(k:s) (line 10)

Mtα(1:k−1) = ψ(1:k−1) (line 16)
(16)

Here, the notation φ(m:n) denotes the column vector [φm, φm+1, . . . , φn]
T .

Most of the inner products that are computed during iteration step k can be stored in
a single lower triangular matrix M . To be more precise, define at the start of iteration
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step k the following s × s lower triangular matrix M , consisting of the three submatrices
Mt,Ml, and Mc:

M ≡
[
Mt 0
Mc Ml

]
=




µt
1,1 0 0 0 0 0
...

. . . 0 0 0 0
µt

k−1,1 . . . µt
k−1,k−1 0 0 0

µc
k,1 . . . µc

k,k−1 µl
k,k 0 0

...
...

...
. . . 0

µc
s,1 . . . µc

s,k−1 µl
s,k . . . µl

s,s




(17)

where Mc is defined as the (s− k + 1)× (k − 1) block matrix

Mc ≡ [µc
i,j] = qH

i gn+j for k ≤ i ≤ s, 1 ≤ j ≤ k − 1 (18)

We are now ready to compute the vector vn+k ∈ Gj ∩Q⊥ as follows. If

γ(k:s) = M−1
l φ(k:s), vn+k = rn+k −

s∑

i=k

γign+i−s−1 (lines 10–11) (19)

then

vn+k ⊥ q1, . . . , qk (20)

Also, to compute the vector gn+k ∈ Gj+1 ∩Q⊥

k−1 and corresponding update un+k, let

α(1:k−1) = M−1
t ψ(1:k−1) (21)

gn+k = ĝn+k −
k−1∑

j=1

αjgn+j (22)

un+k = ûn+k −
k−1∑

j=1

αjun+j (23)

then

gn+k ⊥ q1, . . . , qk−1 and un+k ⊥A q1, . . . , qk−1 (24)

which is exactly condition (3).
To efficiently compute the new column k of M using a scalar update, premultiply the

recurrence for gn+k with qH
i to obtain

qH
i gn+k = qH

i ĝn+k −
k−1∑

j=1

αjq
H
i gn+j (25)

µi,k = ψi −
k−1∑

j=1

αjµ
c
i,j for i = k, . . . , s. (26)
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where the second expression uses the block matrix Mc from (17).
To summarise, this gives for step k while referring to the line numbers:

ψi = qH
i ĝk, i = 1, . . . , s (line 15, s combined inner products)

α(1:k−1) = M−1
t ψ(1:k−1) (line 16, lower triangular system M−1

t )

gn+k = ĝn+k −
k−1∑

j=1

αjgn+j (line 18, orthogonalise against q1, . . . , qk−1)

un+k = ûn+k −
k−1∑

j=1

αjun+j (line 18, A–orthogonalise against q1, . . . , qk−1)

µi,k = ψi −
k−1∑

j=1

αjµ
c
i,j, i = k, . . . , s, (line 20, new column k of M using Mc)

In accordance to condition (4), the updated residual rn+k+1 can be made orthogonal to
q1, . . . , qk by

rn+k+1 = rn+k −
φk

µk,k

gn+k, (line 23) (27)

since

qH
k rn+k+1 = qH

k rn+k −
φk

µk,k

qH
k gn+k (28)

= qH
k rn+k − qH

k rn+k = 0 (29)

Premultiply (27) with A−1 to obtain the corresponding update to the iterate

xn+k+1 = xn+k +
φk

µk,k

un+k (line 24) (30)

Finally, premultiplying (27) with qH
i for i = k + 1, . . . , s gives the scalar update for the

vector φ,

φi ← φi −
φk

µk,k

µi,k, i = k + 1, . . . , s (line 28) (31)

which concludes the generation of the s vectors for Gj+1. Therefore, using only the inner
products ψi, every other inner product can be computed using only scalar updates.

As in Alg. 1, the computation of the (now solely combined) inner products is highlighted
by boxes in Alg. 2. The small system in line 10 and in line 16 involving (part of) M are
lower triangular and can be solved efficiently using forward substitution. Note that the
system in line 16 involves the first k−1 elements of the column vector ψ, while in line 20 the
remaining elements are used. This shows that there is now a single global synchronisation
point per iteration step. The number of operations is the same as the original IDR(s)-
biortho method in Alg. 1.
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2.2 Finding the optimal parameter s

In this section a performance model is derived to compute the total execution time of
the IDR(s)-biortho variant and the IDR(s)-minsync variant shown in Alg. 1 and Alg. 2,
respectively. The performance model is used to estimate the optimal parameter s.

The model is based on message passing between single core computational nodes. The
cubical domain is partitioned into rectangular cuboids and each domain is assigned to
a single core. It is assumed that no load imbalance occurs and as a result the parallel
computing time for a fixed–sized problem on p processors can be described in general by

T (p) =
T (1)

p
+ Tcomm, (32)

where Tcomm denotes the total communication time of the algorithm.
In parallel iterative methods there are two operations that require communication,

which are the inner product (both single and combined) and the matrix–vector product.
The first operation requires global communication, whereas the second operation requires
nearest neighbour communication for the current problem. Note that the model does not
include preconditioning.

The following simple linear model for the time to communicate a message of k bytes
length is assumed,

Tmess = l + k/b, (33)

in which l is the latency and b the bandwidth. For the inner product it is assumed that
each processor broadcasts its partial inner product to all the other inner products. Hence
the following communication time for an inner product is obtained

Tdot = (p− 1)(l + 8/b). (34)

In the algorithms, some inner products can be combined. The time for the combined
broadcasting of c partial inner products to p processors can be written as

Tcdot = (p− 1)(l + 8c/b). (35)

Assuming that a minimal residual strategy is used for computing ω, the total communica-
tion time spent on inner products in each cycle of IDR(s)-biortho is then

T biortho
dots (p, s) = (p− 1)[(1

2
s(s+ 1) + 2)l + 8(s2 + s+ 2)/b] (36)

= (p− 1)[O(s2)l +O(s2)/b]. (37)

For the IDR(s)-minsync variant it is

Tminsync
dots (p, s) = (p− 1)

[
(s+ 1)l + 8(s2 + s+ 2)/b

]
(38)

= (p− 1)[O(s)l +O(s2)/b]. (39)
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The expressions (37) and (39) show that for relatively large values of bandwidth b, the
communication time spent on inner products in each cycle grows differently with s in the
two variants. For larger values of latency l, the time per cycle is almost linear in s for
IDR(s)-minsync, while the time per cycle behaves quadratically in s for IDR(s)-biortho.

Since the domain is partitioned using a block partitioning, the time for the matrix–
vector multiplication for an interior subdomain is (in both variants)

Tmmult(p) = 6

(
l +

8n2
x

b 3
√
p

)
, (40)

if nx = ny = nz.
To complete the performance model, the total number of dimension reduction steps has

to be obtained. As mentioned before, it can be shown that in exact arithmetic, IDR(s)
methods terminate within N(1+s−1) matrix–vector multiplications, or equivalently, within
N/s dimension reduction steps [14, §3]. In practical applications, the iteration process will

exhibit much faster (superlinear) convergence rates according to N̂/s, where N̂ ≪ N . The
total theoretical computing time on p processors for a given value of s is then

Ttotal(p, s) =
N̂

s
×

[
T̃ (1, s)

p
+ Tdots(p, s) + (s+ 1)Tmmult(p)

]
, (41)

where T̃ (1, s) is the computing time of one IDR(s) cycle. This value can be obtained by
counting the number of floating point operations and using the value for the computational
speed of a single processor.

Using the expression (41), the optimal value of s and p for solving the test problem in

a minimal amount of time can be obtained. Note that the parameter N̂ corresponds to
the total number of cycles for s = 1 and that it is merely a constant. Therefore, it does
not play any role in minimising (41). Only problem and machine–dependent parameters
are needed to find the optimal parameters s and p.

In multi–cluster environments, intercluster latencies are often several orders of magni-
tude higher than intracluster latencies. This is also true for the DAS–3 and the performance
model is adapted accordingly. When estimating total computing times on a single cluster,
the values for latency and bandwidth of this cluster are used in the performance model.

Additionally, when more clusters are added in the experiments, intracluster latency is
neglected in the performance model. A cluster is considered a single ‘supernode’ and it
is assumed that each cluster consists of a fixed amount P of ‘regular’ nodes. This means
that in the model each supernode has the combined computational speed of P nodes. The
intercluster latency and intercluster bandwidth of the DAS–3 is then used in the model to
compute the optimal s and corresponding number of clusters.

2.3 Sparse column vectors for Q

In multi–cluster environments such as the DAS–3, the latency between clusters may be
several orders of magnitude larger than the intracluster latency. The majority of the
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inner products in the algorithm consist of computing v = QHr for some vector r. The
N × s matrix Q can be chosen arbitrarily and this freedom can be exploited [14, §4.1]. By
using sparse column vectors for Q, the total cost of the inner products may be reduced
significantly in the context of Grid computing. However, such a strategy may influence the
robustness of the algorithm and this phenomenon will be illustrated experimentally.

The outline of the algorithm for the computation of v = QHr using sparse column
vectors for Q is as follows. Each cluster in the multi–cluster is considered as one (large)
subdomain. The columns of Q are chosen in such a manner that they are nonzero on one
of these subdomains and zero on the other subdomains.

A coordinator node is randomly chosen on each cluster and each node computes its local
inner product with its local part of r. A reduction operation is then performed locally
on each cluster and the result is gathered on the coordinator node. The coordinators
exchange the partial inner products across the slow intercluster connections, combining
them to make the total inner product. Finally, this result is broadcasted locally within
each cluster. Therefore, the number of times that data is sent between the clusters is
reduced considerably.

For ease of implementation, the value s is chosen as an integer multiple of the total
number of clusters γ in the grid. Using sparse column vectors decreases the computational
work and the storage requirements on each cluster. Instead of computing s inner products
of length N , the total computational cost is reduced to s inner products of length N/γ.
Note that this approach is valid for arbitrary s.

As an example, suppose that there are three clusters in the multi–cluster and that each
cluster has two nodes, giving six nodes {a, b, c, d, e, f} in total. If s = 6, the computation
of QHr using the sparse column vectors q1, . . . , q6 for Q has the following form:

QHr =




qa
1 qb

1

qa
2 qb

2

qc
3 qd

3

qc
4 qd

4

qe
5 qf

5

qe
6 qf

6



×




ra

−
rb

rc

−
rd

re

−
rf




. (42)

In this case, parts of two columns of Q are nonzero on one cluster and zero on the remaining
two clusters. Therefore, two partial local inner products are computed by each node and the
results are gathered on one of the two nodes the cluster. These results are then exchanged
between the three clusters and broadcasted locally to the two nodes in each cluster.

3 Numerical experiments

Three parallel implementations of IDR–based methods will be compared:
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(i) the IDR(s)-biortho variant given in Alg. 1 and using a dense matrix Q;

(ii) the IDR(s)-minsync variant given in Alg. 2 and using a dense matrix Q;

(iii) the IDR(s)-minsync variant given in Alg. 2 and using the sparse matrixQ as described
in Sect. 2.3.

Note that in exact arithmetic, the first two variants produce residuals that are identical
every iteration step.

This section is structured as follows. In Sect. 3.1 and Sect. 3.2 a description is given
of the target hardware and test problem, respectively. In Sect. 3.3 the parameter N̂ for
this test problem and the (true) computational speed of a single core are estimated. In
Sect. 3.4 the optimal parameter s for a particular computational environment is computed
using the performance model. In Sect. 3.5 the performance model is compared to the
numerical results. In Sect. 3.6 the experimental results are investigated more closely by
comparing the time per cycle to the performance model. Finally, both strong and weak
speedup results are given in Sect. 3.7, which includes results for sparse Q.

3.1 Target hardware

Site Nodes Speed Memory Network

TUD 68 2.4 GHz 4 GB GbE
LU 32 2.6 GHz 4 GB Myri–10G/GbE
VU 85 2.4 GHz 4 GB Myri–10G/GbE
UvA 41 2.2 GHz 4 GB Myri–10G/GbE

UvA–MN 46 2.4 GHz 4 GB Myri–10G/GbE

Table 1: Specific details on each DAS–3 site [10].

LU site
1–way latency MPI (µsec) 2.7
max. throughput (MB/sec) 950
Gflops (HPL benchmark [9]) 6.9

DAS–3
WAN bandwidth (Mb/s) 40000
WAN latencies (µsec) (average) 990

Table 2: Specifications DAS–3: values (except WAN latencies) courtesy of Henri Bal [1].

The numerical experiments are performed using the distributed ASCI Supercomputer 3
(DAS–3), which is a cluster of five clusters, located at four academic institutions across the
Netherlands [10]. The five sites are connected through SURFnet, which is the academic and
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research network in the Netherlands. Each local cluster is equipped with both 10 Gbps
Ethernet and high speed Myri–10G interconnect. However, the TUD site only employs
the Ethernet interconnect. If an experiment includes the TUD site, the other sites will
automatically switch to the slower Ethernet interconnect. Specific details on the five sites
are given in Tab. 1.

The network topology of the DAS–3 cluster is structured like a ring, connecting the
five sites as follows: TUD, LU, VU, UvA, UvA–MN, and again to the TUD site. Although
nodes on some sites may contain multiple cores, we always employ a single core on each
node for our computations. Table 2 lists values provided by Henri Bal on latency and
bandwidth for the LU site and for the wide–area bandwidth on all five clusters [1]. These
values were corroborated by the authors using the Intel MPI Benchmarks suite (IMB v2.3).
The value for the WAN latency in Tab. 2 is the average value from several IMB benchmarks
performed at different times during the day and is similar to (albeit somewhat below) the
values given in [17].

The algorithms are implemented using OpenMPI v1.2.1 and the implementations are
matrix–free. Level 3 optimisation is used by the underlying GNU C compiler.

3.2 Test problem and experimental setup

# nodes px × py × pz # equations

1 1× 1× 1

1283

2 2× 1× 1
4 2× 2× 1
8 2× 2× 2
16 4× 2× 2
32 4× 4× 2
64 4× 4× 4
96 4× 6× 4
128 4× 8× 4

Table 3: Processor grid and problem size for the strong scalability experiments.

# nodes px × py × pz # equations

30 5× 3× 2 3983

60 5× 4× 3 5013

90 5× 6× 3 5743

120 5× 6× 4 6313

150 5× 6× 5 6803

Table 4: Processor grid and problem sizes for the weak scalability experiments.
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Consider the following three–dimensional elliptic partial differential equation taken
from [13]:

∇2u+ wux = f(x, y, z), (43)

defined on the unit cube [0, 1]× [0, 1]× [0, 1]. The predetermined solution

u = exp(xyz) sin(πx) sin(πy) sin(πz) (44)

defines the vector f and Dirichlet boundary conditions are imposed accordingly.
Discretisation by the finite difference scheme with a seven point stencil on a uniform

nx× ny × nz grid results in a sparse linear system of equations Ax = b where A is of order
N = nxnynz. Centered differences are used for the first derivatives. The grid points are
numbered using the standard (lexicographic) ordering and the convection coefficient w is
set to 100.

When not specified otherwise, the matrix Q consists of s orthogonalised random vectors.
The iteration is terminated when ||rn||/||r0|| ≤ ε ≡ 10−6 and the initial guess is set to
x0 ≡ 0. At the end of the iteration process convergence is verified by comparing the true
residual with the iterated final residual.

Parallel scalability will be investigated in both the strong and weak sense. In strong
scalability experiments a fixed total problem size is used, while in weak scalability experi-
ments a fixed problem size per node is used.

The experiments for investigating strong scalability are performed using the four sites
that employ the fast interconnect. On each site, 32 nodes are used, which gives a total
of 128 nodes for the largest experiment. Experiments that use less than 32 nodes are
performed on the LU site and in each subsequent experiment 32 nodes are added with
each additional site, in the following order: VU, UvA, and UvA–MN. In this way, the ring
structure of the DAS–3 wide–area network is obeyed. The number of grid points in each
direction is nx = ny = nz ≡ 128, which gives a total problem size of approximately two
million equations.

For the weak scalability experiments, 30 nodes per site are used and the TUD cluster
is sometimes included, which means that in this case the slower interconnect is used. The
number of equations per node is set to approximately two million equations, yielding the
problem sizes shown in Tab. 4.

The computational domain is partitioned using a three–dimensional block partitioning,
where the nodes are arranged in a non–periodic Cartesian grid px × py × pz. Table 3 lists
the dimensions of the processor grid for each number of nodes used in the strong scalability
experiments. The domain is partitioned in such a way that the partition size along the x
direction is always constant on each site. Similarly, Tab. 4 lists the sizes of the processor
grids for the weak scalability experiments.

3.3 Estimating parameters of the performance model

In order to estimate N̂ for the test problem, the total number of dimension reduction steps
for s ∈ {1, . . . , 16} are shown in Fig. 1(a). These experimental data are obtained using
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Figure 1: Estimating model parameters: N̂ and processor speed.

variant (ii) on a single LU node. Variant (i) gives the same results and the data are fitted

to the curve N̂/s, giving N̂ ≈ 218. This shows that the number of IDR cycles behaves

in accordance with the theoretical estimate. Interestingly, the value for N̂ is of the same
order of magnitude as the number of grid points in each direction nx = ny = nz ≡ 128.

Note that a single (possibly parallel) experiment is sufficient to estimate the parameter N̂ .
In order to estimate the effective computational speed of a single core, wall clock times

of two executions of variant (ii) on an LU node for each value of s are shown in Fig. 1(b).
Since variants (i) and (ii) have the same number of operations, only results from the
second variant are given. Also shown in Fig. 1(b) are the theoretical computing times of
the algorithm, which is equal to

N̂

s
× T̃ (1, s), (45)

using the previously obtained value of N̂ .
According to the HPL benchmark (see Tab. 2), the peak performance of a single core

is 6.9 Gflops. In realistic applications, it is not uncommon that only a fraction of the
peak performance can be attained. When using the more realistic processor performance
of 3× 10−1 Gflops, the model (solid line) corresponds to the experimental data perfectly.
The results indicate that when using a single core, setting s = 2 results in the fastest
computing times.

3.4 Estimating the optimal parameter s

By using the expression for the theoretical computing time (41) from Sect. 2.2, the cali-
brated value for the computational speed from Sect. 3.3, and data from Tab. 2 for latency
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(b) Variant (ii), single cluster (LU).
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(c) Variant (i), multi–cluster (DAS–3).
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(d) Variant (ii), multi–cluster (DAS–3).

Figure 2: A–priori estimation of optimal parameter s and corresponding number of
nodes/clusters.

and bandwidth, the optimal parameter s that minimises the total execution time can be
computed. Note that every parameter needed to compute these optimal values is problem
or machine–dependent and can be obtained a–priori. In particular, the parameter N̂ is not
required.

As described in Sect. 2.2, estimates for both a single cluster (the LU site) and for
a multi–cluster (the DAS–3) will be given. Using data from Tab. 2, the optimal s and
corresponding (theoretical) number of nodes for the LU cluster are computed and shown
in Fig. 2(a) and 2(b) for variants (i) and (ii), respectively. Similarly, Fig. 2(c) and 2(d)
show the optimal s and corresponding (theoretical) number of clusters for the DAS–3
multi–cluster — with 32 nodes per cluster — for variants (i) and (ii), respectively.

Note that according to the model results from Fig. 2(a) and 2(b), the optimal s for
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extremely small latencies on a single cluster approaches s = 2 for both variants. This result
is in agreement with Fig. 1(b) from Sect. 3.3, where the computing times on a single node
(i.e., latency equal to zero) were given. Here, the optimal values of s was also s = 2.

Not surprisingly, the results show that when latency is low, it is beneficial to use a
large value of s and a small number of nodes on a single cluster. The same holds for the
DAS–3 multi–cluster. A reason is that in both these cases, the overhead when generating
the vectors for Gj is low. This phenomenon can be observed for both variant (i) and (ii).

Note that for latencies l > 10−4 and using variant (ii), the model for the multi–cluster
gives roughly the same optimal s as the single cluster model.

In multi–cluster environments, intercluster latency is often relatively high. Figure 2(c)
shows that in this case variant (i) is completely ineffective, since the value of s approaches
infinity. For variant (ii) behaves much more favourably for low latencies, where the value
of s approaches s = 6.

Although it is not particularly natural to give results for extremely low latencies in the
multi–cluster model, they are included for completeness.

It is interesting to note that in parallel IDR(s) methods on cluster and Grid computing
the optimal value of s and the corresponding number of nodes/clusters can be determined
in such a manner.

3.5 Validation of the parallel performance model for Grid com-

puting
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Figure 3: Performance model results for variants (i) and (ii).

Shown in Fig. 3 are the predicted total computing times defined by (41) from Sect. 2.2
for variants (i) and (ii) using s ∈ {1, 3, 5, 10} and using up to (in theory) 512 nodes
(i.e., sixteen clusters). As mentioned before, experiments that use up to 32 nodes employ
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the LU site and corresponding parameters in the performance model. In each additional
experiment, a cluster is added consisting of 32 nodes and the corresponding multi–cluster
performance model is used. Also shown are the measured wall clock times using up to 128
nodes (i.e., four DAS–3 clusters).

Communication overhead on the LU site (i.e., p ≤ 32) is relatively small. As a result,
the total wall clock time scales almost linearly with the number of nodes in both variants.
This holds for both the model and the measurements. However, when more clusters are
added (i.e., p > 32), the effect of communication begins to play a more significant role.
Clearly, the optimal s and number of nodes differ for both variants.

According to the measurements from Fig. 3(a), the optimal optimal value of s for
solving the test problem using variant (i) lies between s = 1 and s = 3. The corresponding
number of nodes lies between 32 and 64 nodes (i.e., between one and two clusters). This is
in accordance with the predictions from Fig. 2(c), which shows that for the DAS–3 latency
l = 990× 10−6s given in Tab. 2, the optimal value of s is close to s = 2 using two clusters.

Similarly, measurements from Fig. 3(b) show that for variant (ii) the optimal value of
s is between s = 3 and s = 5. Correspondingly, the optimal number of nodes is between
96 and 128 nodes (i.e., between three and four clusters). The predictions in Fig. 2(d) show
that for l = 990 × 10−6s the optimal value of s lies close to s = 4 using three to four
clusters. This also corresponds well to the measurements.

3.6 Comparing the time per IDR(s) cycle to the performance
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Figure 4: Investigating s–dependence for s ∈ {1, . . . , 16} using 64 nodes, four sites, and
fast network.

To investigate the relation between the value of s and the time per IDR(s) cycle, the
following experiment is performed. Figure 4 shows results of experiments using all three
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variants and using a total of 64 nodes, divided equally between the four DAS–3 sites that
employ the fast interconnect.

For completeness, the total number of IDR cycles is shown in Fig. 4(a), which is practi-
cally identical for all three variants. The experiments showed that the use of sparse column
vectors for Q can result in numerical instability issues for large s. That is, when using
variant (iii) the iteration did not converge for values of s > 8 for this test problem. As

before, the total number of IDR cycles is fitted to the curve N̂/s, which gives in this case

N̂ ≈ 211. Naturally, this value is almost identical to the previously obtained value for N̂
from Sect. 3.3.

More interestingly, Fig. 4(b) shows the wall clock time per IDR cycle for increasing
values of s. As mentioned in Sect 2.2, the performance model (i.e., expression (39)) predicts
that for larger bandwidth values, the time spent on inner products per cycle in variant (ii)
scales almost linearly with s. The measurements are in agreement with this prediction.

Similarly, expression (37) from Sect 2.2 shows that the time per IDR(s) cycle in variant
(i) has more quadratic behaviour in s, which is also in agreement with the measurements
from Fig. 4(b). As a result, there is a significant increase in time per iteration with
increasing s for variant (i).

In general, the performance model is in good agreement with the measurements. The
outlier for s = 1 for variants (i) and (ii) seems related to C compiler optimisations, since
disabling these optimisations reduced the time per cycle. For some reason, variant (iii)
conforms well to the performance model for s = 1 when using the compiler optimisations.

3.7 Parallel speedup results
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Figure 5: Absolute speedup, scaled to number of iterations and using a log–log scale.
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Figure 6: Weak scaling experiments on DAS–3 for variants (ii) and (iii).

In this section the strong and weak scalability of the three variants is investigated. The
standard definition for strong scalability S is used, i.e.,

S(p) =
T (1)

T (p)
, (46)

where T (1) is the execution time of the parallel algorithm on one node and p is the number
of nodes. Figure 5 shows strong scalability results using variants (i) and (ii) for s ∈
{1, 3, 5, 10}, in Fig. 5(a) and Fig. 5(b) respectively. The scalability results of variant (iii)
is similar to that of variant (ii) and are therefore omitted. Optimal speedup S(p) = p is
also shown.

The near to linear speedup of both variants using up to 32 nodes on the LU site is
not surprising, considering the fact that in this case communication overhead is almost
negligible. However, as more sites are added, the results show that variant (ii) scales much
more favourably than variant (i). Since for s = 1 variants (i) and (ii) almost have the same
implementation, speedup is roughly identical. In addition, the results show that variant
(i) exhibits the same (bad) scalability for all values of s, while increasing s in variant (ii)
gives significant gains in scalability.

To investigate weak scalability, the number of equations per node is fixed to approxi-
mately two million and a fixed number of iterations of 275 is performed. The TUD site is
also used in this case and the number of nodes in each experiment is 30, 60, . . . , 150. The
corresponding total problem sizes are listed in Tab. 4. Note that for variant (iii), the value
of s has to be a multiple of the number of clusters in the grid.

The problem size is increased using two different strategies. The first strategy equally
divides the nodes between the five DAS–3 sites, starting with six nodes per site for the
smallest experiment. This allows comparing the use of a dense matrix Q and of a sparse
matrix Q. In the second strategy, one whole site is added each time, starting with the LU
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site as before and finishing with the TUD site. In the ideal case, the time per iteration is
constant for increasing number of nodes.

Figure 6 shows the weak speedup results for s ∈ {5, 10}. In Fig. 6(a) results are given
when employing the first strategy, showing that using the sparse matrix Q gives increased
gains in execution time for increasing s. In addition, the time per iteration becomes
increasingly constant for larger values of s, showing favourable weak scalability.

Figure 6(b) gives results using the second strategy. Not surprisingly, adding the second
cluster results in a large jump in execution time, because the relative increase in commu-
nication time is rather high in this case. However, adding subsequent servers show weak
scalability results comparable to Fig. 6(a).

4 Conclusions

The recent IDR(s) method is a family of fast algorithms for solving large sparse nonsym-
metric linear systems. On cluster and in particular on Grid computers, global synchroni-
sation is a critical bottleneck in parallel iterative methods. To alleviate this bottleneck in
IDR(s) algorithms, three strategies were used. Firstly, by reformulating the efficient and
numerically stable IDR(s)-biortho method [16], the IDR(s)-minsync method was derived
which has a single synchronisation point per iteration step. Experiments on the DAS–3
multi–cluster show that the new IDR(s)-minsync method exhibits increased speedup for
increasing values of s. In contrast, the IDR(s)-biortho variant has no speedup whatsoever
on the DAS–3 multi–cluster.

In addition, the test matrix in IDR(s)-minsync was chosen in such a way that the work,
communication, and storage involving this matrix is minimised on the DAS–3 multi–cluster.
The experiments show that this approach results in reduced execution times, in particular
for larger values of s.

Using only problem and machine–dependent parameters, the presented parallel perfor-
mance model can be utilised for a–priori esimation of the optimal value of s and number
of nodes. In this way, the total execution time on the DAS–3 multi–cluster of both IDR(s)
variants can be minimised.
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