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Deep-learning-based Position Control of a Robotic Catheter under
Environmental Contact

Di Wu∗, Yao Zhang∗, Mouloud Ourak, Xuan Thao Ha, Kenan Niu,
Jenny Dankelman and Emmanuel Vander Poorten

Abstract— Precise control of robotic catheters remains chal-
lenging in interventions. Inherent non-linearities such as hys-
teresis and external disturbances such as blood flow or contact
with the vessel walls have a large impact on the reachable
positioning precision. As inaccurate positioning of the catheter
tip could lead to tissue damage, controllers that would perform
adequately in the presence of hysteresis and environmental
contacts would be highly desirable. This paper proposes a
method based on multiple Long Short-Term Memory Networks
(LSTMs). To this end, a so-called free-space-LSTM (f-LSTM)
is trained in order to steer the catheter when it moves in
free. Constrained-space-LSTMs (c-LSTMs) are trained to drive
the catheter when it is in contact with an obstacle. Based on
contact estimation methods, LSTMs are switched. The f-LSTM
and c-LSTMs are first tested in free space motion and under
constraint situations. The results reveal that LSTMs perform
well (RMSE < 0.5 mm) for a steerable robot section with a
total length of 77 mm when tested in the same situation where
trained. However, when f-LSTM and c-LSTM were tested in an
environment different from the one in which they were trained,
errors tended to increase. The results highlight the need to
exhaustively estimate the contact location and switch between
different LSTMs accordingly. The effective working range of a
c-LSTM was investigated as well. Experiments showed that a
well-trained single c-LSTM could be used effectively in a range
of 8.8 mm among the entire length of a steerable catheter
section, while maintaining the average tip positioning error
below 2 mm in this range.

I. INTRODUCTION

Coronary artery disease (CAD) forms a threat to humans
health worldwide. CAD may cause a variety of symptoms
such as chest pain, unusual fatigue, and even sudden death
[1]. Catheters, which are long snake-like instruments, are
commonly used for treating CAD. Due to their flexible
nature, catheters can be inserted via a small incision into
the body. Then they can be steered manually by the in-
terventionist through intricate blood vessels, reaching the
designated area where they can e.g. widen an artery. When
tackling occluded coronaries, this procedure is known as
Percutaneous Coronary Intervention (PCI).

Currently, catheters used in interventions are generally
passive. They are manually steered by the interventionist.
This procedure is skill-intensive. To address this kind of
challenge, robotic assistance, which may provide increased
precision and enhanced dexterity, is introduced in steering
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different flexible/continuum surgical tools [2]–[6]. Catheters
that incorporates robotic assistance are known as robotic
catheters, which could simplify the interventional procedure.
Robotics catheters rely on various actuation principles [7].
However, regardless of the adopted actuation method, pre-
cise control of robotic catheters remains a challenge as all
actuation is affected by inherent non-linearities and external
disturbances. Hysteresis is one of the most typical non-
linearities that can be found in robotic catheters, leading to
a complicated multi-valued relation between the actuation
input and the response of the catheters distal tip. If left
untackled, hysteresis will lead to inaccurate positioning. This
may slow down the PCI procedure, cause perforation of
vessel walls or thrombus formation [8]. Past studies pro-
posed deep learning approaches namely a Long Short-Term
Memory network (LSTM) to model [9] and compensate [10]
for the hysteresis. Previous work focused on steering robotic
catheters in free space and showed that good precision could
be reached. This paper investigates position control in the
presence of both hysteresis and external disturbances.

External disturbances could originate from blood flow or
contact with vessel walls. This is a realistic but much more
complicated scenario compared to past studies. Due to the
deformable and fragile nature of the lumen, precise control of
the catheter in such constrained scenario is imperative. A few
models for representing the kinematics or/and dynamics of a
catheter, or in a broader sense, flexible surgical robots, have
been proposed in order to precisely positioning the catheter
tip under environmental contacts. A closed-loop position
control based on feedback from electromagnetic tracking was
introduced in [11]. Qi et al. derived a kinematic model for a
multi-DOF robotic catheter [12], and implemented a fuzzy-
model-based method with feedback from Eletro-Magnetic
(EM) trackers [13]. Kesner et al. [14] implemented position
control of a cardiac catheter by compensating for friction
and backlash in the catheter. The in vivo experiment showed
rms errors below 1.0 mm for valve tracking when operatig
under 3D ultrasound image guidance . This work did not take
the external disturbances into account. Back et al. introduced
a model-free tension control approach for catheter steering
[15]. However, this approach did not achieved a better
performance than the inverse Jacobian method in terms of
precision. Xu et al. adopted machine learning and proposed
three regression methods to model the inverse kinematics
of a tendon-driven continuum surgical manipulator [16].
These regression methods were only validated by trajectory
following experiments in free space. Yu et al. introduced a
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Fig. 1. The proposed framework: (a) based on contact estimation and estimation of contact location, controllers are switched. If no contact with an
obstacle is detected, the free-space-LSTM is selected. If a contact is detected, the most appropriate constrained-space-LSTM is selected in line with the
estimated contact location; b) the number and the distribution of constrained-space-LSTM ought to be determined based on the required precision.

probabilistic kinematic model based on a Gaussian Mixture
Model (GMM) for 3D position control of a catheter [17].
The proposed control method can navigate the catheter tip
to follow a desired 3D trajectory in open space and/or
in a constrained environment. However, catheter control in
constrained environment was only validated in simulation.
Moreover, both works, namely [16] and [17], used traditional
machine learning methods such as regression and GMM
while solving the catheter control problem with deep learning
would be interesting to explore. This paper continues our
previous research [9] by using deep learning to control the
catheter tip to a target position under environmental contact.

The main contributions of this work are: 1) proposing a
framework to control robotic catheters both in free space
and constrained space; 2) training dedicated LSTM net-
works based on data collected from free space and con-
strained space producing f-LSTM and c-LSTM respectively;
3) exploring the performance and generalizability (applicable
working range) of f-LSTMs and c-LSTMs; 4) experimental
validation on a steerable catheter actuated by artificial mus-
cles. The paper is structured as follows: section II introduces
a framework for position control of robotic catheters under
environmental contact. Section III presents a catheter system
that has been used for experimental validation. The structure
and the parameters of the f-LSTM and c-LSTM network as
well as the generation of training data are also described in
Section III. Section IV describes the designed experiment
and the results. Finally, Section V concludes the paper and
proposes some future work.

II. PROPOSED FRAMEWORK

This paper assumes that an estimation of the location
where external contacts are made is available. Readers can
refer to works like [18] and [19] where real-time contact
estimation based on shape sensing methods e.g. embed-
ded FBG fibers [20], [21] is demonstrated. Based on such

knowledge, this paper proposes to switch between various
LSTMs depending on various on contact situation. Note that
for convenience, no contact or a single contact is assumed,
whereas expansions to multiple simultaneous contacts remain
for further work.

Figure 1 shows the approach towards training. First,
training happens without any obstacle, a f-LSTM is trained
for this situation, then different c-LSTMs are trained. For
each c-LSTM a single obstacle is positioned at a given
distance Li from the tip of the catheter. Depending on the
application a reasonable distribution of Li’s is proposed.
That many c-LSTMs will then be trained by commanding
the catheter to move against those obstacles and recording
the corresponding pressure and displacements. The proposed
framework consists of a single f-LSTM and several c-LSTMs
(Fig. 1) and a mechanism to switch between them at the
appropriate instant of time.

It is noteworthy that in this work, the Fiber Bragg grating
(FBG) sensor was not integrated to estimate the contact. A
shortcut was taken by deliberately placing the obstacle at
a known location. To prove the principle in this work only
a single f-LSTM and a single c-LSTM with L1=38.5 mm
(middle point of the catheter, see Fig. 1b) mm was trained.
The ability of these LSTMs to control different contact states
was investigated and is reported in the following.

III. CATHETER SYSTEM AND THE LSTM

A. Experimental Setup

The proposed framework is showcased on a one-degree-
of-freedom fluidic-driven catheter system shown in Fig. 2.
The system features a Pneumatic Artificial Muscle (PAM)
integrated off-centered in a 40 mm long flexible 4.4 mm
OD Nitinol tube. Notches were made in the Nitinol tube
such that catheter is bendable and steerable. PAMs are
light-weight, easy-to-fabricate and have a high operational
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Fig. 2. A bench-top setup for experimental validation: 1. catheter distal
segment made of Nitinol; 2. Pneumatic Artificial Muscle; 3. rigid obstacle;
4. laser distance sensor.

bandwidth [22], [23]. However, similar to other catheter
actuation methods, they suffer from asymmetric, saturated,
rate-dependent hysteresis that needs to be compensated for.

The catheter tip displacement is measured by a laser
photoelectric sensor (OADM 12I6460/S35A, Baumer Group,
Switzerland) with a sampling frequency of 250 Hz. A Graph-
ical User Interface (GUI) is created based on Labview® to
facilitate the experimental procedure.

A hollow tube made of hard plastic was placed to serve as
a rigid obstacle in this experiment (Fig. 2). When the catheter
is in a straight configuration and an obstacle is simulated, the
obstacle is fixed at the midpoint of the catheter length (i.e.
the L1 = 38.5 mm in Fig. 1b), and 9 mm away from the
catheter. The catheter first bends in free space and starts to
contact the obstacle halfway through its bending action.

B. Training Data Acquisition

It is well-known that deep learning requires abundant data
for training. In this work, descending sinusoidal pressure
signals described in (1) were used to excite the PAM-driven
catheter.

p(t) = e−τt(Asin(2πft− π

2
) +A) [bar] (1)

The resulting catheter tip displacement and collected pressure
data were used to train the LSTMs. The amplitude A in
(1) was set to 1.5 bars. The maximum pressure is 3 bars.
Three bars were chosen as the maximum amplitude as this
value is close to the maximum operating pressure of this
custom-made PAM. In addition, one challenge in hysteresis
modeling is the dead zone (in our case around 0.5 bar, see
Fig. 3a), in which the catheter tip almost does not react
when the pressure increases. Beyond this deadzone, catheter
tip displacement correlates better to pressure changes. This
confirmed that maximum pressure equals to 3 bars is a gener-
alized case to investigate. With this larger maximum pressure
it would not incorporate more information in the training
data nor increase the modeling difficulty. The parameter τ
regulates the descending speed and was set at 0.05. This
value is chosen empirically. A large τ value leads to a fast
drop in the sine wave and thus generates insufficient training
data, while a small τ value largely increases training time.
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Fig. 3. The training data for the f-LSTM and the c-LSTM: (a) the training
data collected in free space under four frequencies from 0.2 to 0.8. (b)
training data collected in constrained case. The data that below the green
dash line are free space motion, while the data above the green dash line
are contacting with the rigid obstacle.

The variable f is the excitation frequency in Hz. The training
data was collected under 0.2, 0.4, 0.6, 0.8 Hz. At each τ
and f , data were collected in both the presence and absence
(i.e. free space motion) of the obstacle. The data collected
in free space was used to train the f-LSTM, while the data
collected in constrained situation was used to train the c-
LSTM. The total number of data points for the f-LSTM and
the c-LSTM are 24626 (see Fig. 3a) and 15040 (see Fig.
3b), respectively. Due to the gap between the obstacle and
the catheter, the catheter cannot contact the obstacle after
several bending loops when being excited with a descending
sinusoidal pressure. Since then the training data collection for
the c-LSTM is stopped. Therefore, shorter sampling time of
the c-LSTM compared to f-LSTM results in less c-LSTM
training data on condition that the sampling frequency is
the same. The training data collected in free space forms
normal rate-dependent hysteresis loops, in which the width of
the hysteresis loops expands with increasing frequencies. As
visible in Fig. 3b, the data collected in constrained situation
can be separated into two parts that are marked by a dashed
line. At pressure levels below the dashed line, the catheter
has not yet established contacted with the obstacle. Above
the dashed line, the catheter is in contact with the obstacle.
It can be clearly observed that the inclination of the upper
and lower parts differs. However, all of the data shown in
Fig. 3b were used to train the c-LSTM.
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TABLE I
HYPERPARAMETERS FOR BOTH THE F-LSTM AND THE C-LSTM

Number of
hidden layers

Number of neurons
per cell

Activation
functions Optimizer Loss function Training-subset

/Validation ratio Batch size Learning Rate Epoches

LSTM 4 128 Tanh/Sigmoid Adam L2 Loss 70% 30% 16 0.001 100
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Fig. 4. The performance of the f-LSTM and c-LSTM tested in contact and non-contact situation. Red lines represent the desired trajectories, while the
blue lines represent the real trajectories.

C. LSTM

From their origin, LSTMs were proposed as a tool to pro-
cess sequential information and take historical information
into account [24]. It is therefore logical to also consider the
use of an LSTM to compensate for the hysteretic behavior,
which is typically also associated to a memory-effect and
to explore the combination of external disturbances and
hysteresis. Note that the hysteresis in this work results not
only from the PAM but also from, e.g. friction between
different moving parts during bending, flexibility of the
pneumatic tube, non-linear behavior of the material used
(Nitinol), compressibility of the air, and nonlinearities of
pressure valve used. All these factors together determine the
resulting hysteresis behavior. Being a data-driven approach
an LSTM could approach that considers solely inputs and
outputs, could learn all of the above factors.

In this work, the f-LSTM and c-LSTM introduced in
section II share the same structure and hyperparameters. A
4-layer stacked LSTM was introduced. The LSTM has the
targeted catheter tip displacement (with respect to its straight
configuration) as input and the required pressure as output.
Therefore, the LSTM-based controller predicts directly the
pressure needed to control the catheter despite hysteresis and
obstacles. The predicted pressure is sent to the catheter in
a feedforward manner. The number of neurons in each cell

was set to 128. Adaptive Moment Estimation (Adam) and L2
loss are chosen as optimizer and loss function, respectively.
The training and validation sets are partitioned in a ratio of
70% and 30%. The remaining hyperparameters of the LSTM
are listed in Table I. The neural network was implemented
based on PyTorch, an open source machine learning library.
The training of the LSTMs were executed on an 4 GB
NVIDIA® CUDA-capable GPU. Both LSTMs were trained
for 100 epochs until they were adequately optimized. The
whole training duration was around 20 to 30 minutes.

IV. EXPERIMENTAL VALIDATION

A. Validation of the f-LSTM and the c-LSTM under Different
situations

The f-LSTM and the c-LSTM were tested with contact
and non-contact case separately. This produced four sets of
experiments in total. The catheter distal tip was controlled
to follow an unseen descending sinusoidal trajectory as
described in (2) with A = 8:

d(t) = e−0.1t(Asin(0.5πt− π/2) +A) [mm] (2)

The Maximum Absolute Error (MAE) and the Root Mean
Square Error (RMSE) were used to evaluate the performance
of the controllers. For each test trajectory, the validation
procedure was repeated five times. The standard deviation of
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TABLE II
THE MAE AND RMSE OF THE FREE SPACE LSTM AND CONSTRAINED SPACE LSTM IN FIVE TRIALS

training environment free-space constrained-space
test environment metrics 1 2 3 4 5 mean std 1 2 3 4 5 mean std

free-space MAE (mm) 1.50 1.23 1.15 1.21 1.19 1.26 0.12 9.92 9.88 9.81 9.85 9.69 9.83 0.08
RMSE (mm) 0.43 0.40 0.41 0.44 0.45 0.43 0.02 2.84 2.82 2.80 2.83 2.74 2.81 0.04

constrained
-space

MAE (mm) 4.87 4.85 4.89 4.89 4.93 4.89 0.03 1.89 2.05 2.04 1.99 2.05 2.00 0.06
RMSE (mm) 1.72 1.72 1.74 1.72 1.76 1.73 0.02 0.32 0.40 0.39 0.36 0.38 0.37 0.03

the two metrics was also calculated to assess the repeatability
of this experiment.

The results of five trials are detailed in Table II, while Fig.
4 shows one out of five trials. The f-LSTM could generally
track the desired trajectory in the free case (see Fig. 4), with
an average RMSE of 0.43 mm (see Table II). The maximun
error occured at the beginning of the loading phase when
the f-LSTM needs to compensate for the deadzone. It is
shown that the c-LSTM also achieves good performance in
the presence of obstacles, with an average RMSE of 0.37
mm (see Table II). The small standard deviations of the
two experiments (0.02 mm and 0.03 mm) imply a high
reproducibility of the experiments. On the contrary, as can
be seen from the bottom left and top right subfigures in
Fig. 4, the transferability across contact situations is limited.
An LSTM trained in a certain situation performs poor when
operating in another situation. When the f-LSTM is used in
the presence of obstacles, the MAE rises to 4.89 mm and
RMSE to 1.73 mm (see Table II). The RMSE in this is
about four times higher than that of the f-LSTM tested in
free space. Similarly, the c-LSTM also did not perform well
when tested in free space. This highlights the importance
of foreseeing a means to estimate the contact location and
switch the system accordingly. The air pressure (control
commands) that are predicted by both LSTMs in the free
case are shown in Fig. 5. The figure shows how the c-LSTM
overestimates the pressure compared to the f-LSTM, thus
leading to a larger MAE (9.83 mm) and RMSE (2.81 mm)
(see Table II).

Fig. 5. The pressure predicted by both LSTMs in the free space case. The
c-LSTM over-estimates pressure and is less suitable for use in a free space.

In cardiovascular applications, the required precision that
clinicians indicate as being acceptable is typically in the
order of 1–3 mm [25]–[27]. The obtained performance of the
LSTM, when tested in the same case as it was trained, shows
a good potential to satisfy this requirement. If contact states
alter, the performance of the same LSTM will be insufficient.

B. Exploration of the Acceptable Working Range of a c-
LSTM

Based on previous experiments one can expect that a c-
LSTM trained for a given contact situation can only achieve
an acceptable accuracy within a certain range around that
location. Therefore, this section investigates in which range
the c-LSTM could work. With the results of this study, one
could then determine how many c-LSTMs need to be trained
over the entire length of the catheter in order to allow a pre-
defined required precision independent of contact state. The
MAE and RMSE are used as the evaluation metrics for the
control experiment. According to the precision requirement
in clinical scenarios [25]–[27], a target of MAE ≤ 3 mm and
RMSE ≤ 2 mm was set.

test 
positions 

training 
position

obstacle

IV. Experimental design and results

0 -2
.5

-5 -7
.5

+2
.5

+5+7
.5

Fig. 6. c-LSTM tested at 7 different positions spaced at 2.5mm including
the central position for which it was trained.

The experimental procedure that has been followed is
shown in Fig. 6. As mentioned above, the c-LSTM was
trained with the data collected when the obstacle was placed
in the middle point of the catheter length. Afterwards, the
obstacle was placed at 7 different positions separated at
2.5 mm distance. Three positions towards the end of the
catheter distal tip are marked as positive, three towards the
catheter base are marked as negative. Next, the catheter was
controlled to follow a trajectory in (2) with A = 7 under the
environmental contact. For each test position the experiment
was repeated five times.

The results of the trajectory following experiments at
different test positions are displayed in Fig. 7. The number in
the upper left corner of each subplot represents the position
of the obstacle (see Fig. 6) during the experiment. When
the obstacle is more distal than during training, the c-LSTM
trained in the midpoint usually underestimates the pressure.
Fig. 7 clearly shows the performance decrease as the distance
between the obstacle and the training position increases.
When the obstacle moves from 0 to +7.5 mm, the RMSE
of the c-LSTM increases from 0.33 mm to 1.65 mm, and
the MAE rises from 1.15 mm to 3.21 mm. The performance
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Fig. 7. The performance of the c-LSTM at different test positions shown in 7 subplots with each time test positions labeled on the top left corner
(corresponding to the horizontal aixs of the bar plot). The bar plot reveals the average RMSE and MAE as well as their standard deviations.

degradation is more outspoken when the contact moves in
the negative direction. Even though the c-LSTM can track
the desired trajectory with high precision in the free motion
part before catheter contact with the obstacle, it clearly over-
compensates around the peak. From 0 to -7.5 mm, the RMSE
of the c-LSTM increases from 0.33 mm to 3.33 mm, while
the MAE grows from 1.15 mm to 7.63 mm. The results show
a correlation between the performance of the c-LSTM and
the location of the obstacle. By interpolation the results one
can try to infer the performance of the c-LSTM at other
locations between + 7.5 mm and -7.5 mm. Considering our
pre-set goal, i.e. RMSE ≤ 2 mm and MAE ≤ 3 mm, it
can be concluded that the c-LSTM can satisfy the accuracy
requirements in the range of +7 mm to - 1.8 mm around
the trained location. Since the length of our catheter is 77
mm, one can expect to need to train nine c-LSTMs with a
distance separation of 8.8 mm in order to meet the overall
control precision requirement.

V. CONCLUSIONS AND FUTURE WORK

A framework was proposed in this work to implement
precise catheter control under environmental contact and
hysteresis in the actuation system by using LSTMs. The
framework proposes to train a single f-LSTM and a plu-
rality of c-LSTMs. Depending on the required positioning
precision, the different LSTMs are then to be switched. The
contact status and position could be estimated by a shape

sensing method e.g. based on FBGs but this part does not
fall into the work of this paper.

Both LSTMs were validated on a fluidics-driven catheter
segment. The first experiment verified the need to train
multiple LSTMs. The experimental results indicate that both
f-LSTM and c-LSTM could achieve good performance when
tested in the same position, while their performance reduces
when tested in a different contact situation. A second experi-
ment explored the acceptable working range of a c-LSTM. It
was shown that the acceptable working range of a c-LSTM
in this work amounts to 8.8 mm. Within this range, the MAE
and RMSE predicted by the LSTM are below 3 mm and 2
mm, respectively. Based on these results, it becomes possible
to optimize the number and distribution of c-LSTMs over the
entire length of the catheter. Considering that the time to train
one LSTM is 20-30 minutes, it is feasible to train multiple
LSTMs for precisely controlling the catheters, but training
may become quite long for general cases.

In the future, we will extend this work to a two degrees-
of-freedom (DOFs) robotic catheter and link this to real-time
contact estimation based on FBG shape sensing.
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