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ABSTRACT Since their introduction, anti-lock braking systems (ABS) have mostly relied on heuristic,
rule-based control strategies. ABS performance, however, can be significantly improved thanks to many
recent technological developments. This work presents an extensive review of the state of the art to verify
such a statement and quantify the benefits of a new generation of wheel slip control (WSC) systems.
Motivated by the state of the art, as a case study, a nonlinear model predictive control (NMPC) design
based on a new load-sensing technology was developed. The proposed ABS was tested on Toyota’s high-end
vehicle simulator and was benchmarked against currently applied industrial controller. Additionally, a
comprehensive set of manoeuvres were deployed to assess the performance and robustness of the proposed
NMPC design. The analysis showed substantial reduction of the braking distance and better steerability with
the proposed approach. Furthermore, the proposed design showed comparable robustness against external
factors to the industrial benchmark.

INDEX TERMS Road vehicles, vehicle safety, antilock braking system, wheel slip control, model predictive
control.

I. INTRODUCTION
Anti-Lock Braking System (ABS) is among the most chal-
lenging topics of wheel slip control (WSC) design. ABS is
an active safety technology used to control wheel dynamics
during severe braking. The system aims at maximizing brak-
ing performance while keeping the vehicle’s ability to steer.
The ABS control objective is achieved by the modulation of
the applied brake pressure.

Being a safety system, ABS must satisfy a wide range of
requirements, [1] It must:

• Maintain steering response and vehicle stability at all
times, regardless of road conditions;

• Utilize the friction between tires and road surface
towards maximizing the braking performance;

The associate editor coordinating the review of this manuscript and
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• Be fully functional throughout the vehicles speed range;
• Allow for rapid adaptation to changes in road
friction.

ABS design is complicated by uncertainties, measurement
noise, parameter variations, and nonlinearities [2], [3]. For
example, relevant fundamental quantities (such as vehicle
velocity, longitudinal wheel slip, and tire-road friction coef-
ficient) are highly noisy and need to be estimated. Depending
on road conditions, the maximum allowable braking force
may vary over a wide range of values. On rough roads,
the wheel slip ratio can be changed rapidly due to tire bounc-
ing. Furthermore, due to variations in the disc-pad friction
coefficient, the brake torque-pressure relation is nonlinear.
In addition to this, the plant to be controlled (i.e., an elas-
tically suspended wheel, a braking servo system, and actu-
ators) introduce significant delays that limit the controller’s
bandwidth. Lastly, the main difficulty arising in the design of
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an ABS control law, is the strong nonlinearity of the tire (tire
force saturation).

Since the first reliable ABS applications in late 1970s,
a wide variety of approaches have been proposed for vehicles
to overcome the challenges above. This paper contributes
to the current literature by introducing a critical overview
and analysis of the state of the art in ABS control design
(Section II). An additional contribution, is the list of key per-
formance indicators (KPIs) and scenarios by which to bench-
mark and validate any proposed ABS design (Section III),
with the aim of providing guidelines for future research
in this area. Motivated by the conclusions of the review
of the state of the art, a Nonlinear Model Predictive ABS
Controller is presented and validated through the designed
KPIs and compared with respect to a more classical approach
(Sections IV). The novelty of the proposed controller is the
usage of reconstructed wheel force information in the pre-
diction horizon allowing to achieve a better tracking perfor-
mance compared to the industry-used logic and the reduction
of computational load.

II. SURVEY OF CONTROL STRATEGIES FOR
WHEEL SLIP CONTROL
The design of wheel slip control systems is highly dependent
on the brake actuators characteristics. Firstly, the brake actua-
tor characteristics is discussed after this, focus is given to the
different control approaches found in literature.

The most common brake system layout of passenger cars
is Hydraulically Applied Brakes (HAB), shown in Fig. 1a.
Brake servo assistance is generated by the brake booster. The
brake booster is a hollow housing with a movable rubber
diaphragm creating two chambers, one of which is pressure
varying. The process of filling up the rear chamber with
atmospheric air when the brakes are applied introduces sig-
nificant delays in the brake actuation. The ABS function is
realized by controlling the on/off solenoid valves. The system
uses the volume accumulator to dump pressure and the driver
force to increase it, while the pump is only used to bring the
excess fluid back into the master cylinder reservoir (Fig. 1a).
In this layout, pressure modulation is usually realized in a
stairway-fashion making it most suitable for threshold-based,
fuzzy logic and neural-network control.

Demand on brake blending in electric vehicles is caus-
ing the gradual shift from conventional hydraulic to
Electro-Hydraulic Brake (EHB) systems. These systems are
generally characterized by a faster response compared to
conventional hydraulic systems and allow for continuous
pressure modulation. HAB response time can be found in
the range of 200 to 400 ms [4] depending on the on the
size of the brake system and the manufacturer, while EHB
response is between 60 to 100 ms [5]. The system’s key
element of EHB systems is the boost valve, an electronically
controlled proportional valve, downstream the high-pressure
accumulator, as shown in Fig. 1b. By proportionally opening
and closing this element, it is possible to achieve a specific
target pressure. To control solenoid coil, direct current control

FIGURE 1. Brake system layouts.

or pulse width modulation (PWM) method are commonly
used [6].More advanced control methods of hydraulic system
can be found in [7], [8].

For hybrid and electric vehicles, an electric motor can be
used to generate additional brake torque demand allowing
the regenerative braking [9]. Depending on the powertrain
layout, blending between frictional brake system and electric
motor(s) can be designed in the several ways. Commonly for
central axle location of the electric motor, high-frequency
brake demand is generated by frictional brake system, e.g.
for hybrid [10] or electric [11] vehicle. The application of the
single axle electric motor to generate high-frequency demand
has been investigated, e.g. for a hybrid sport utility vehicle
(SUV) [12], an electric commercial vehicle with a pneumatic
brake system [13], passenger electric vehicle [14]. The main
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limitation to use the single axle electric motor for wheel slip
control is related to dynamics of the transmission, the final
axle and the differential.

In the case of on-board or in-wheel electric motors, the
dynamics of mechanical components (e.g. half-shaft dynam-
ics for on-board electric motor) have a lesser effect on the
performance of wheel torque modulation. From the per-
spective of wheel slip control, due to a faster response of
the electric motor compared to the frictional brake system,
high-frequency brake demand can be more effectively real-
ized by the electric motor and so, a continuous wheel slip
control can be achieved [15], [16].

The literature, related to the ABS control, traditionally
addresses one of the following quantities used as the wheel
dynamics parameters: (i) wheel acceleration ω̇ and (ii) longi-
tudinal wheel slip λ.
On one hand, the wheel-acceleration control has the ben-

efit that the wheel acceleration, as control parameter, can
be estimated more simply than wheel slip, this can be
done by using wheel-encoder measurements. Furthermore,
wheel-acceleration control allows wheel slip to keep close to
the optimal point, without explicitly using the value of this
point.

On the other hand, assuming robust estimation of longi-
tudinal wheel slip, the wheel slip control is simpler from a
dynamical point of view and has the feature that the applied
torque converges to a fixed value. Hence, the controlled sys-
tem shows lesser oscillations compared to wheel-acceleration
control designs [17], [18]. The controller, however, is highly
sensitive to set-point selection. Hence, the controller requires
a set-point adaptation strategy based on the road condi-
tions [19]. In addition to this, the longitudinal wheel slip
requires information about the vehicle velocity. Given that
direct measurement of this quantity is quite expensive to be
used for mass-production cars, the velocity is obtained via
estimation, making longitudinal wheel slip control highly
sensitive to measurement noise [20].

Independently from the selected variant of control strat-
egy, the WSC should provide reliable generation of the
reference wheel slip ratio and its adaptation to driving con-
ditions. But only few published studies are known in this
area, in particular, the authors in [22] proposed reference slip
estimation using the bootstrap Rao-Blackwellized particle
filter based on the signals from the wheel speed sensors,
accelerometer and GPS. Estimation of the reference slip is
also discussed and validated in simulation in [23], where
wheel slip dynamics is handled as the second-order system
based on LuGre friction model. Feedback linearizing con-
trol is used in [24], where the optimal wheel slip area is
determined by the extremum seeking algorithm based on
the online optimization method, where an uncertain plant
with unknown parameters is considered. However, as it can
be concluded from the analysis of published research stud-
ies, robust and real-time capable methods of the reference
wheel slip estimation are mainly based on the polynomial
fitting algorithms. As it was demonstrated in [25], [26], this

method allows determination of extremum position using
conventional on-board vehicle sensors and applying meth-
ods requiring reasonable computational resources. However,
there is limited information in relevant publications about the
integration of the slip target adaptation mechanisms [27] into
the overall control architecture.

To estimate the vehicle velocity or ABS reference
velocity [28], the problem has traditionally been tackled by
pursuing one of the following approaches: (i) devising algo-
rithms based on intuitive procedures linked to the physics of
problem (e.g., underbraking the rear wheels to use them as
a sensor to control the front wheels), (ii) setting up black-
box approaches based on input/output data (e.g., fuzzy logic
or neural networks), and (iii) stating model-based filtering
problems solved via classical identification techniques and
observer design methods (e.g. Kalman filters) [29]. The con-
tinuous control system can be potentially realized with many
approaches, starting from well-known PID algorithms up to
complex hybrid control methods.
Remark 1: In the last decade, much effort has been spent to

develop sensors or estimators to provide tire force informa-
tion to improve ABS control design.Wheel force information
would allow for easy estimation of the peak friction coeffi-
cient. Additionally, the availability of the tire forces would
benefit model-based optimal control designs, such as model
predictive control (MPC), from the computational point of
view. This information allows the controller to eliminate the
tire model and, consequently, some nonlinearities and tedious
trigonometric functions. In this respect, load-sensing technol-
ogy allow for the reconstruction of tire forces, with sufficient
accuracy and bandwidth, and so recent research is hoped to
lead to commercialization in the coming decade [30], [31].
The proof-of- concept of load-sensing technology to ABS
application was demonstrated for intelligent tires [32] via
simulations and for load-sensing bearings in laboratory con-
ditions using a tire test rig [33] and field testing [34].

Considering typical WSC systems requirements in terms
of real-time applicability and robustness to manoeuvre-/road-
related uncertainties, it is difficult to select a priori a more
suitable control technique [35], [36]. The remainder of the
section reviews the main ABS control trends proposed by
researchers and OEMs. Two macro directions are identified.
The first direction (dynamic threshold-based, fuzzy-logic and
neural-network controllers) achieves the control objective by
discretelymodulating brake pressure for eachwheel. The sec-
ond direction (PID, linear quadratic, sliding mode, robust
and predictive controllers) assumes the possibility of continu-
ously modulating brake pressure and, thus, brake torque. The
existing control approaches are compared with the focus on
their applicability to ABS applications.

A. THRESHOLD-BASED (RULE-BASED) CONTROLLERS
Logic threshold-based controllers are widely used in ABS
applications. The advantages of these control methods come
from the heuristic, tuneable control laws, and low hard-
ware requirements (such as the HAB in Fig. 1a). Rules are
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identified from practical experience as well as intensive simu-
lation studies. The approach has good performance in practice
but requires extensive testing for fine tuning the control logic,
starting from initial look-up tables values. Additionally, since
threshold-based control uses a heuristic approach, the stabil-
ity assessment by means of common stability analysis theory
is debatable. Furthermore, the robustness assessment needs
to be done via experiments on the target vehicle.

FIGURE 2. Logic threshold controller (adapted from [39]).

Threshold-based algorithms (Fig. 2) can be represented
using the concept of Finite State Machines (FSM). Most
states (each state is associated with a certain control action)
are defined a-priori and the jumps from one state to the other
are triggered when the control variable exceeds a predefined
threshold. Three control actions of brake pressure are gen-
erally defined: (i) apply, (ii) release, and (iii) hold. A more
detailed explanation of the working principles behind these
algorithms can be found in [29], [37], [38].

Majority of industrial ABS systems fit in this category.
Dynamical values of slip and deceleration, or a switching
surface defined using a weighted sum of the two are com-
monly used [40]. In addition, given that the road conditions
vary over a large range of friction levels, the thresholds
need to be redefined for each of them (i.e., dry, wet, snow,
etc.). As a result, the logic is adapted based on the output
of a friction estimator. Furthermore, the inclusion of rules
related to the functions of jerk compensation, yaw moment
build-up delay for µ-split, braking-in-the-turn, braking on
banked roads, rough road and road disturbance detection,
and many others [1] increases complexity to the finite state
machine. Consequently, the number of tuning parameters
for a real application is incredibly high. This conclusion is
supported by [19], [41]. The authors present a five-phase
hybrid controller [19] using wheel deceleration logic-based
switching and evaluate the design by means of Poincare’
maps and limit cycle analysis. The acceleration-based switch-
ing thresholds are defined based on the analysis of the phase
plane evolution of the system. The assumption is that the
µ-curve maximum (possibly unknown) remains unchanged

during the whole braking. A later study investigated the pos-
sibility of a µ-transition in friction during the manoeuvre and
propose an eleven-phase strategy [41]. This approach implies
a much higher number of tuneable parameters and could not
be developed with the same mathematical soundness that
facilitated the tuning in the simpler approach.

The authors of [17] revise the controller presented in [19]
(to account for previously neglected effects) and test it on
a tire-in-the-loop experimental setup. The aim was to make
the algorithm robust to measurement noise without nei-
ther excessively increasing the triggering thresholds (which
causes the controller to be non-reactive) nor by just heavily
filtering the acceleration (which introduces delays). They
use pressure-derivative profiles to anticipate the delays intro-
duced by the processes mentioned above. This, however,
introduces additional tuning parameters and the reduction
of the pressure derivative, when approaching the switching
threshold, due to time delays, is not able to prevent accelera-
tion from exceeding predefined thresholds.

B. FUZZY LOGIC CONTROLLERS (FLC)
The strong non-linearity of the tire behaviour, together with
the often noisy and uncertain state variables motivate the
research on fuzzy logic for ABS control problems.

FIGURE 3. Fuzzy ABS controller (adapted from [2]).

Fig. 3 presents the structure of an ABS fuzzy controller.
As the figure shows, error signals (crisp inputs) are created
and compared with predefined fuzzy sets during the fuzzi-
fication process. A set of predefined logic rules create the
input-output map. Finally, the output is defuzzified, that is,
the defuzzified set is translated to an exact real value (crisp
output).

Fuzzy logic can be easily blended with conventional con-
trol techniques, and the fuzzy control law can be calcu-
lated offline; however, the controller requires high memory
storage. The available literature in this field ranges from
fully fuzzy controllers to more traditional control strate-
gies augmented by fuzzy systems. In [42], Layne et al.
augmented a threshold-based controller with a fuzzy-model
reference-learning control tomaintain the desired fixedwheel
slip in the presence of disturbances caused by adverse road
conditions. This study showed that the fuzzy logic evalua-
tion process ensures a rapid computation of the controller
command, requiring less time and fewer computation steps
than controllers with adaptive identification. TheABS system
performance has also been investigated on a quarter vehicle
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model with nonlinear elastic suspension, and the robustness
of the overall controlled system has been evaluated for rough
road conditions and in the presence of large measurement
noise.

The work [2] by G. F. Mauer is among the most cited
and discussed paper on fuzzy logic applied to ABS. This
work presents a digital controller combining a fuzzy logic
element and a decision logic network to identify the current
road condition and generate a brake pressure signal based
on current and past data of the wheel slip ratio and brake
pressure. The author examined the ABS system performance
on a quarter vehicle model with nonlinear elastic suspension
and investigated the robustness on rough roads, while also
including the effects of measurement noise. Then, the author
benchmarked the performance of the FLC with a discrete PI
controller. The main drawback of the proposed approach is
that, compared to a PI controller, it requires a remarkably
large number of parameters to be finely tuned to achieve the
presented performance.

The authors in [43] presented an ABS FLC that includes
the estimation of the tire-road friction coefficient and vehicle
velocity using a recursive least square (RLS) method. The
proposed method determines the optimal wheel slip using
fuzzy logic considering wheel slip and friction coefficient.
The authors tested the controller on a steal-belt-tire test bench
with the brake system including a hydraulic pump, which
was regulated by a proportional valve and fed a conventional
brake piston connected with a brake calliper. No other control
strategy was used to provide a clear performance assessment
and, although the logic convincingly prevents wheel lock,
evident oscillations are present on both the fuzzy controller’s
outputs.

Similar to the previous work, other FLCs have frequently
been proposed to tackle the problem of ABS for the unknown
environmental parameters [44], [45]. The large number of the
fuzzy rules, however, makes the analysis comparable to the
threshold controllers’ case in terms of complexity. To miti-
gate this problem, some studies have proposed fuzzy-control
design methods based on the sliding-mode control scheme
(FSMC) [46], [47]. Since SMC brings a reduction of the
system’s order, FSMC requires relatively fewer fuzzy rules
compared to FLC. Moreover, the FSMC system is more
robust against parameter variation [47].

Although FSMC is an effective way to reduce the number
of fuzzy rules, these would still be, as previously, tuned by the
same time-consuming trial-and-error procedures. To tackle
this problem, the authors in [48] combine a self-learning
fuzzy sliding-mode control (with a fuzzy system mimick-
ing an ideal control strategy) with a robust controller that
compensates for the approximation errors (between the ideal
and fuzzy controllers). The authors use Lyapunov-based tun-
ing to guarantee stability and tested the controller on two
simulation scenarios comparing its performance with SMC
and FSMC designs. These simulations demonstrate that the
self-learning approach requires less tuning providing similar
results compared to FSMC and FLC. They are, however,

based on oversimplifications, and it is hard to assess the
controller behaviour in a real-life scenarious.

Lee and Zak introduced a genetic fuzzy ABS, which
includes a non-derivative neural optimizer and fuzzy-logic
components [49]. Specifically, they rely on the non-derivative
optimizer from [50] to identify the road surface and to search
for the optimal wheel slip. Based on these estimates, the FLC
computes the brake torques. The authors also automated the
tuning of the many fuzzy membership functions using a
genetic algorithm. To check the outcome of tuning process,
they tested the FLC by applying randomly varying reference
wheel slips. However, the final controller assessment is done
using a simple linear vehicle simulator (neglecting tire and
actuators dynamics) and only compared to the uncontrolled
case.
Remark 2: In literature, extraneous to ABS, controllers

with shape-changing membership functions have been pro-
posed [51], [52]. This approach allows to substantially
decrease the number of rules. However, a large pre-defined
knowledge base is still required.

C. NEURAL NETWORKS CONTROLLERS (NNC)
Similar to FLCs, Neural Networks (NNs) create suitable
control alternative to deal with nonlinearities and variability.
Different from FLCs, NN controllers use test data (rather than
tuning the rules and membership functions) to train the NN
and approximate the system with its nonlinearities. A hidden
layer of neural network is tuned (for example, by using
gradient descent techniques) to match all the corresponding
input-output pairs in the training set. The network complexity
can be increased by adding more layers (deep NNs), accord-
ing to the requirements of the application.

Tuning from training data is a general advantage of neu-
ral networks. For WSC tasks, however, this NN feature
might result in a fundamental weakness. Neural-network-
based methods have the premise that the physical system
can be sufficiently instrumented during network training so
that the effect of control actions can be accurately evaluated.
In the context of ABS application, it would be tremendously
costly to obtain the necessary data required to exploit the full
capabilities of neural methods.

Davis et al. in [53] present an initial simulation-based study
to determine the performance potential of a NN-type ABS
controller. The aim was to determine whether the cost of
carrying out neural training methods on real systems can be
justified. Although the study dates back to 1992, the final
negative answer to this query could still be considered as valid
today.

The authors in [54] propose aNNhybrid controller (Fig. 4).
The approach relies on an ideal controller containing a
Recurrent-Neural-Network (RNN) uncertainty observer and
a compensation controller to correct for the approximation
error with respect to the ideal one. The authors tuned all
parameters in the NN hybrid control system in the Lyapunov
sense to guarantee stability. They then simulated the proposed
control strategy with the same vehicle model used in [47]
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FIGURE 4. Neural network hybrid controller (adapted from [54]).

and compared the performance to a SMC design. In this
simplified setting, the proposed design showed good track-
ing performance and robustness for various road conditions.
In addition to this, the SMCoutperforms theNN-based design
in terms of braking distance. Several additional studies onNN
applied to ABS can be found, for example, in [55] and [56].

D. PROPORTIONAL INTEGRAL DERIVATIVE (PID)
CONTROLLERS
PID controllers are among the most used controllers in the
industry. Fig. 5 details the general architecture of a PID
controller as applied to a generic ABS. The proportional,
integral, and derivative gains can be tuned to ensure that
the desired system performance is being achieved around a
desired operating point. These controllers, however, do not
generally provide optimal control action and might show
insufficient performance if the gains are poorly tuned (e.g.,
overshoots, oscillations, or cycling around the set-point) or
when they are in the presence of constraint saturation.

FIGURE 5. Generic ABS PID controller scheme.

PIDs are feedback controllers and do not rely on any
knowledge of the system dynamics (only input-output
behaviour is considered). This could be an advantage in gen-
eral, but it can also lead to reactive behaviour. Additionally,
PID controllers do not cope well enough with nonlinearities
(e.g., actuator saturation) compared to another control tech-
niques, require trade-offs between regulation and response
time, do not react to changes in the process behaviour, and has
a lag in the response to large disturbances. A further poten-
tial problem is that derivative term (D) can amplify process
noise. Some of these issues can be mitigated. For example,
low-pass filtering could be a solution to minimize the noise
amplification when using the derivative term. The derivative
action and the filtering, however, could have counter-action
behaviour. Therefore, the amount of filtering should be lim-
ited, and low-noise instrumentation could be important [57].
Anti-wind-up techniques can be used to deal with actuator
saturation.

In the context of ABS regulation problem, PID controllers
could not achieve best performance under varying operating
conditions due to the aforementioned issues. In this respect,
several investigations evaluated the use of PID (either in
simulation or with hardware-in-the-loop tests) and support
the conclusion of the proposed paper [43], [44]. Nevertheless,
several strategies are available and can effectively improve
both performance and robustness of PID approach in ABS
applications, as discussed below.

The differential band can be turned off with a relative loss
of performance but with benefit for robustness increase. Gain
scheduling based on vehicle velocity allows the controller to
have high gains when the wheel dynamics is slow (higher
speeds) and low gains as it becomes faster (as the speed
decreases).

Augmenting the PI with sliding modes allows the con-
troller to reduce its sensitivity to variation of road condi-
tions (where oscillatory behaviour might occur). The authors
in [58] discussed this last approach proposing a sliding-mode
PI (SMPI). They implemented the design on a dSPACE pro-
cessor board mounted on vehicle demonstrator equipped with
EHB. They relied on standard wheel speed sensors and IMU
for the state and parameter estimation (i.e., vehicle speed,
brake lining friction coefficient, tire forces). The algorithms
in closed-loop with the state estimator were tested. Addi-
tionally, to evaluate the advantages of the developed con-
trollers over state of the art solutions, the also implemented a
threshold-based algorithm. Both the properly tuned PI and the
SMPI were found to be superior to threshold-based control on
high- and low-friction cases. Additionally, SMPI leads to a
3-5% reduction in brake distance and a significant improve-
ment in robustness compared to the PI.

Another option is to augment the PI controller (or any
other feedback-only controller) with a feedforward term
to improve the bandwidth of the regulation scheme. This
idea has been investigated on a simple quarter car model
in [59]. The authors used a cascaded wheel slip control
strategy based on both wheel slip estimation and wheel

10956 VOLUME 8, 2020



F. Pretagostini et al.: Survey on WSC Design Strategies, Evaluation and Application to ABS

acceleration measurement. Additionally, they applied a set-
point filter to smooth the response and improve control per-
formance. This latest approach, however, is not always robust
to sudden set point changes, which are commonly encoun-
tered in real ABS scenarios. Nonetheless, it was analyti-
cally demonstrated that the algorithm is able to globally and
asymptotically stabilize the wheel slip around any prescribed
set point.

Lastly, a mixed slip-deceleration control was introduced
in [18]. The basic idea of this control approach is to select the
regulated variable as a convex combination of the wheel slip
and wheel deceleration. This strategy could be both powerful
and flexible as it could reduce the detrimental effects of inac-
curate wheel slip estimation, while avoiding the limitations
of wheel acceleration control.

E. LQR CONTROL
Similar to PID controllers, linear quadratic regulators (LQR)
are feedback controllers and are among themost popular opti-
mal control approaches. Loosely speaking, they deal with the
problem of finding a state-feedback control law for a given
linear time-invariant (LTI) system to satisfy an optimality
criterion.

The classical LQR feedback law is given by

u (t) = −R−1BTPT x (t) . (1)

The control law is obtained by solving a quadratic opti-
mization problem of the following form

min

∞∫
t0

(
u (t)T Ru (t)+ x (t)T Qx (t)

)
dt (2)

where R is a positive-definite weighting matrix,Q is positive-
semidefinite weighting matrix, and P is the solution of
the algebraic Riccati equation associated with the system
described by:

ẋ (t) = Ax (t)+ Bu (t) , x (t0) = x0 (3)

where A and B are matrices of appropriate dimensions
describing LTI system of wheel slip dynamics.

This method is generally suitable to control multi-input-
multi-output (MIMO) systems. MIMO systems show strong
couplings between states and, therefore, require tailored
strategies to design the manoeuvre and achieve good perfor-
mance. These systems often display significant nonlinearities
or have non-minimum phase. Compared to PID controllers,
LQR approaches require a model of the system to be con-
trolled that might be complex and expensive to obtain.

Concerning ABS control, the explicit LQR approach taken
by Johansen et al. is [60] of interest. Their work on the
topic extends on the previous research discussed in [40]. The
control design relies on local linearization and gain schedul-
ing. The proposed control law contains no explicit friction
model and relies on integral action, rather than adaptation,
to eliminate a steady-state uncertainty. Following the LQR

theory, they formulate the optimality condition as a standard
quadratic cost function resulting in the optimal control input:

u (t) = −R−1BT (v)PT︸ ︷︷ ︸
K (v)

x (t) (4)

where P is the solution of the algebraic Riccati equation.
The controller gain, namely K(v), depends on the speed. Gain
scheduling is achieved by letting

dQ (v)
dv

> 0, (5)

which reduces the gain as v → 0. This is necessary to
avoid instability due to the unmodeled dynamics tending to
dominate as the velocity decreases and open loop wheel slip
dynamics becomes faster. The authors proved that the control
strategy is uniformly exponentially stable by using Lyapunov
theory. The vehicle implementation, however, showed funda-
mental limitations on the achievable performance and maxi-
mum gain that could be tolerated before becoming unstable.

This issue has been handled in [61] by discretising and
augmenting the controller with electro-mechanical brake-
actuator dynamics and communication delays. The improved
model is used for the synthesis of gain matrices at appropriate
operating points, which are stored to provide an explicit
piece-wise linear controller that incorporates actuator rate
constraints. The controller is evaluated on various road con-
ditions with different set-points. Several weak points are
identified, for example, the initial transient response was not
satisfactory due to significant modelling inaccuracies and
noise in the low-slip region. Tests on wet tarmac partially
covered with ice-simulating material revealed the controller
is sensitive to friction coefficient variations and reacts with
significant variability in the wheel slip error.

F. SLIDING MODE CONTROL
Sliding mode control (SMC) is a type of variable structure
control system and it is characterized by a switching control
action, as the system crosses a certain manifold in the state
space, to force the state to reach, and thereafter to remain on
a specified surface, called the sliding surface (Fig. 6). The
system dynamics, when confined to the sliding surface, are
termed as an ideal sliding motion and results in reduced-order
dynamics with respect to the original plant. The reduction
provides attractive advantages, such as insensitivity to param-
eter variations, matched uncertainties and disturbances.

Although slidingmode control was demonstrated as a pow-
erful control method for ABS application [62]–[64], it has
some disadvantages. In theory, the control action switch-
ing would occur at infinitely high frequency. As a result,
the trajectories of the dynamic system are moving along the
restricted slidingmode subspace. In practice, it is not possible
to change the control infinitely fast because of time delays due
to software and hardware limitations. Therefore, the sliding
mode control action can lead to a high frequency oscillation,
or chattering, that excites unmodelled dynamics. This could
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FIGURE 6. SMC ABS controller (adapted from [62]).

lead to energy loss, system instability, and excessive actuator
wear [65], [66].

Different techniques were introduced to reduce chattering
inABS design. Thesemethods smooth the discontinuous con-
trol law to achieve a trade-off between control-bandwidth and
tracking precision. The simplest method is to replace the sign-
function in the hitting control part with a saturation function
or by other suitable continuous functions [67]. While these
modifications are effective to reduce the chattering, these
changes affect the tracking performance of the controller
and do not ensure asymptotic stability. As an alternative,
the authors of [68] proposed to replace the sign-function
with a PI-like expression in a fixed neighbourhood around
the switching surface. The authors of [69] proposed, instead,
an improved continuous switching function that incorporates
the state trajectory approach angle with respect to the sliding
surface. In this way, the overall SMC guarantees asymp-
totic stability with a slight amount of system chattering.
Harifi et al. in [70] used an integral switching surface, instead
of sign function, to reduce chattering. In this case, how-
ever, the authors assume precise estimate on the bounds of
the parametric uncertainties for the controller to work effi-
ciently. Additionally, to suppress chattering conditional inte-
grators [71] or offline optimization of the controller gains [72]
have been also investigated.

SMC guarantees asymptotic stability in the presence of
matched disturbances. In the case of unmatched disturbances
only bounded stability can be guaranteed [73]. The authors
of [74] analysed the robustness to uncertainties related to
tire-road interaction of several SMC sliding surfaces forWSC
in two-wheeled vehicles. The authors of [75] focused on
these uncertainties, as well, by using a grey systemmodelling
approach applied to SMC. This approach achieved enough
reduction of wheel slip oscillations even in cases of signifi-
cant road friction variation.

The authors of [76] proposed a SMC augmented with a
Radial Basis Function (RBF) NN. The RBFNN comprises
of a two-layer data processing structure, implementing a
moving sliding surface. The adaptive rule is employed for
online adjustment of the RBF weights by using the reaching
condition of a specified sliding surface. Unlike conventional
SMC, the dynamic sliding surface moves to the desired
sliding surface from the initial condition, and thus the pro-
posed design can achieve good tracking performance. The

strategy can eliminate the reaching phase from conventional
SMC, reduce chattering, and guarantee the system robustness
during the whole control process. However, the approach
is limited by the previously discussed drawbacks of NN in
ABS. The authors of [77] developed a SMC using a second
order switching surface for wheel slip control. Second-order
SMC generalizes the basic sliding mode idea acting directly
on the second-order time derivative of the sliding variable.
This method, with respect to the first-order case, provides
higher accuracy and generates continuous control actions
while retaining the same robustness properties and a com-
parable design complexity. Additionally, by means of sim-
ulation, the method is proven to avoid complex stick-slip
phenomena as no oscillations or overshoot take place during
the transients. The authors claimed that it is not necessary to
have precise values for the error signals for the controller to
work. However, on a real system, the approach requires the
first and second-order derivatives of the slip signal, which is
already difficult to obtain reliably. Lastly, in contrast to first-
order SMC, actuator dynamics cannot be considered.

The authors of [78] deployed a Pseudo-Sliding Mode
approach for the design of a mixed slip-deceleration con-
troller, well explained in [79], as well. The SMC frame-
work allows to alleviate the control sensitivity to the actuator
characteristic uncertainty, exhibited by the linear approach
seen in [18]. The control architecture considers a more
realistic, first-order LTI system to model the behaviour
of electro-mechanical brakes resulting in nonlinear braking
dynamics in contrast to [18], where a transfer function based
on the linearized model description was employed. However,
the approach relies on the Burckhardt-type tire model, that
is, tire dynamics are not present, and the oversimplified
simulation is not representative of the controller absolute
performance. Nonetheless, it is appropriate for showing the
superiority of SMC over PI in both dynamic performance and
noise rejection.

The authors of [58] proposed an Integral Sliding
Mode (ISM) controller and demonstrated that ISM provides
compensation and estimation of the perturbations with less
chattering compared to the SMPI. Compared to the switching
threshold-based control, the approach reduces the braking
distance by 31% and 25% with and without reference adap-
tation respectively, on the low friction road surface. The
shortest stopping distance achieved by ISM control was 7%
shorter than with PI and 2% shorter than SM (all with refer-
ence adaptation logic in the loop). Furthermore, the authors
showed the robustness of the system by comparing the vari-
ations in braking distance of five subsequent tests: switching
threshold-based causes deviation in 9% from the median
value, while for the ISM case this was reduced up to 3%. The
effectiveness of the reference adaptation algorithm results in
a reduction in braking distance of up to 2% in comparison to
the cases with pre-set reference wheel slip. This confirms the
hypothesis that, during the emergency braking, the optimal
area of the λ-Fx friction curve can deviate from its initial
value and emphasizes the importance of reference adaptation.
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G. CLASSICAL ROBUST CONTROL
H∞ control designs are robust control approaches. A robust
control design explicitly deals with uncertainty to achieve
robust performance and stability in the presence of bounded
modelling errors. In contrast with an adaptive control, robust
control is designed to work in a static way, rather than
adapting to measurements of variations. An H∞ controller
is designed through optimizing the infinite norm of a perfor-
mance index in H∞ space. By minimizing the sensitivity of a
system over its frequency spectrum, this design can guarantee
that the system will not greatly deviate from expected tra-
jectories in the presence of disturbances. Finding an optimal
H∞ controller is often both numerically and theoretically
complicated, as discussed in [80].

FIGURE 7. Design method based on mixed sensitivity (adapted from [81]).

Fig. 7 shows a general scheme of the approach, where r , e,
n, d and y are the reference input, tracking error, measurement
noise, disturbance input and system output, respectively.W1,
W2 andW3 are the weight functions of the performance of the
system, output constraints of the controller and the system
robustness, respectively. The H∞ mixed sensitivity control
consists in choosing the weighting function W1, W2 and W3
in the frequency domain such that condition (6) is satisfied,
where Q, R, T are the transfer functions from r to e, u and y
respectively. ∥∥∥∥∥∥

W1Q
W2R
W3T

∥∥∥∥∥∥
∞

≤ 1 (6)

The authors in [81] proposed H∞ robust controllers
designed via a simplified ABSmathematical model by mixed
sensitivity method. They design the controller according to
the nominal plant model to keep the controlled system steady
and the H∞ norm of the sensitivity function small. The
controller is evaluated in simulation environment with a quar-
ter car model. The manoeuvre represents friction transition
such as a µ-transition, and satisfactory performance has been
achieved.

In the context of robust control, a possible option is to
use Linear Matrix Inequalities (LMIs) to approximate and
solve robust control problems in a more tractable form. In the
context of ABS designs, the authors of [82] proposed a robust
control method using a Linear Parameter Varying (LPV)
system representation and used LMIs to derive conditions
for the existence of the state-feedback controller. They used

as plant model a quarter car model with Pacejka’s Magic
Formula (MF).

The authors of [83] relied on a similar LMI technique to
avoid the chattering effect in the design of a SMC controller.
In particular, thework considers the system unmatched uncer-
tainties in the design of ABS system by employing LMIs to
design a stable sliding surface. Compared to the approaches
described in the SMC Section, this method incorporates
uncertainties in the design phase. The proposed controller has
been investigated on a quarter car model showing that robust
stabilisation and chattering reduction can be achieved.

H. MODEL PREDICTIVE CONTROL
Similar to optimal control, model predictive control (MPC)
relies on optimization to find the optimal control input to
apply to the plant. In contrast to LQR, MPC solves online
a constrained Optimal Control Problem (OCP) over a finite
time window, called prediction horizon. An example of gen-
eral OCP is described below:

min

t0+Tp∫
t0


∥∥y (t)− yref (t)∥∥2Q + ∥∥u (t)− uref (t)∥∥2R+∥∥y (t0 + Tp)− yref (t0 + Tp)∥∥2P︸ ︷︷ ︸

J


x (t0) = x̃0 initial conditions

ẋ (t) = f (x (t) , u (t)) plant dynamics

y (t) = g (x (t) , u (t)) output mapping

xmin ≤ x (t) ≤= xmax state constraint

umin ≤ u (t) ≤= umax actuator constraint (7)

The solution of the OCP is the result of minimizing the
cost function J over the horizon Tp. Q and P are positive
semidefinite weight matrices penalizing the deviations of the
outputs y from their reference values yref and R is positive
definite weight matrix penalizing the deviations of the inputs
u from their reference values uref . The weight matrices are
usually tuning parameters with a physical interpretation.

In contrast to LQR, MPC works over a finite time hori-
zon to make the constrained optimization problem tractable
online (it would be computationally impossible to solve a
constrained infinite horizon problem with an infinite amount
of decision variables and constraints). MPC formulates a
parametric optimization problem, in which the parameters
are the current states x̃0 of the system. Based on the current
system states, by using a dynamic model to describe the
system (plant dynamics), the controller computes a sequence
of optimal control commands that minimizes J and satisfies
the state and actuator constraints. Only the first element of the
obtained control sequence is applied to the plant, according
to the receding horizon principle. Every time the controller
receives new measurements from the plant the process is
repeated. TheMPC problem formulation can be either convex
or nonconvex and can accommodate both linear or nonlinear
plant models and constraints. The general structure of a dis-
crete time model predictive controller for wheel slip control
is shown in Fig. 8.
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FIGURE 8. General structure of model predictive control.

MPC has the advantages of incorporating constraints and
accurately predicting (if an accurate model of the system
is available) the change of system dynamics along the
prediction horizon. Robust MPC [84] implementations are
also possible (and involved the use of constraint-tightening
methods [85], tubes [86], or chance-constraints [87]). The
main drawback of MPC is related to the computational
requirements for online computation that could make the
implementation of the controller for real-time applications
challenging or even impossible. For linear systems and poly-
topic constraints, the MPC problem reduces to a quadratic
programming problem, which can be solved efficiently.
The computation load substantially increases when dealing
with nonlinear systems and non-convex constraints. Efficient
online solvers (such as IPOpt [88] and QPOASES [89]) have
been developed for these formulations, but they only provide
convergence to local minima. In addition to this, the compu-
tation time is often unpredictable, which could be a problem
for safety critical real-time applications.

Nonetheless, there have been attempts in using MPC for
ABS applications. Anwar et al., reiterating on what was
proposed for yaw dynamics control in [90], a generalized pre-
dictive ABS control based on a Controlled Auto Regressive
Integrated Moving Average model [91].

The authors of [92] proposed the Independent Model
Generalized Predictive (IMGPC) control introduced by
Rossiter [93] for ABS control. The control system is tested
on a simple linearized quarter-car model (with an unspecified
tire model) in the presence of severe disturbances and noise.
Their results showed that, with a long prediction horizon
(500 samples), MPC performed better than LQR in terms
of noise and disturbance rejection. The online computational
load is not mentioned in these studies.

The authors of [94] showed an optimization-based brake
torque control law. The prediction model is obtained from
a quarter car model equipped with Dugoff non-linear tire
model augmented with a first-order transfer function for

the tire dynamics and first order actuator dynamics (EMB).
To increase the robustness of the controller, they augmented
the state with the integral of the wheel slip. They also anal-
ysed the effect of the continuous time prediction horizon on
the tracking error. They found that, as the prediction horizon
increases the tracking error decreases up to a point, in which
the control energy becomes oscillatory and chattering occurs.
The proposed controller demonstrates better performance
compared to the controller with the SMC algorithm from [67]
on dry and slippery roads including uncertainty levels of the
total vehicle mass and the friction coefficient.

The authors of [95] took a step forward from simulation
to HIL experiments. They proposed a distributed wheel-slip
controller using MPC using a longitudinal vehicle model
(a quarter car model) as prediction model assuming that
each wheel remains on the same road surface. The pre-
defined longitudinal slip stiffness is used to compute the
longitudinal force. Tire relaxation dynamics is included in
MPC formulation. The constrained optimal control problem
is solved online with primal-dual method of the Hildreth’s
quadratic programming algorithm. The controller evaluation
is performed on high-, mid-, and low µ surfaces and for each
of them the wheel slip error is found to be relatively small
and oscillations, although present, are confined. The main
limitation is that longitudinal slip stiffness is predefined for a
given road surface.

The investigation [96] proposed the design of linear and
nonlinear model predictive controllers (solved using Forces
Pro [97]) incorporating a predefined MF tire model for wheel
slip control using friction brake system and near-wheel elec-
tric motors. The simulation-based assessment is performed
using an IPG/Carmaker vehicle model for various road sur-
faces and µ-split braking showing accurate tracking perfor-
mance and robustness against tire-road friction coefficient
uncertainty. During µ variation a notable offset from the
reference wheel slip is observed due to the predefined MF
parameters, which requires adaptation of the internal model.

To overcome real-time capability issue related to MPC,
the usage of explicit nonlinear MPC could be potential solu-
tion assuming availability of a high-fidelity model on the
design stage. The authors of [98] proposed an original explicit
nonlinearMPC solution evaluated in EHBHIL test bench and
IPG/Carmaker model with first-order transient tire dynamics,
and compared to PID ABS. This solution outperforms PID
ABS resulting in 11.4% decrease in the brake distance for
low µ conditions. The needs to update the predefined tire
model in the controller can be considered as the limitation
similar to the previous research.

I. DISCUSSION
Based on the state of the art, the following conclusions can
be derived:
• Threshold-based (rule-based) algorithms compose the
vast majority of ABS controllers found on today’s vehi-
cles but are time-consuming and supplier-dependent to
tune due to their heuristic nature and a large list of
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tuning parameters. Additionally, considering the recent
improvements in actuator technology and trend towards
the coordinated chassis control, their potential is signif-
icantly underused.

• Controllers based on fuzzy logic suffer from similar
issues, such as the large number of tuning parameters,
membership functions, and rules, which increase expo-
nentially with the complexity of the application. In gen-
eral, fuzzy approaches are good for those processes that,
although containing uncertainty, do not present the large
variability band intrinsic to the ABS regulation problem.
For a controller addressing everyday situations in accor-
dance with the ABS safety requirements, thousands of
rules would be needed, and it would be extremely incon-
venient, if even possible, to tune them. This conclusion is
contradictory to the conclusions performed in the survey
in 2011 [35].

• Neural networks approaches require a very large set
of training data to achieve adequate performance and
robustness. For the WSC tasks, this is extremely con-
suming in terms of time and resources.

• PIDs struggle with nonlinearities and can become unsta-
ble if countermeasures are not in place (e.g., anti-windup
strategies).

• LQRmethods are feedback controllers sensitive to mod-
elling errors and do not accommodate any feedforward
action that could be beneficial for ABS applications.

• SMC demonstrates better performance and robustness
than the PID. SMCs combined with methods that allow
to reduce chattering (e.g., the ISMC) are the best reactive
wheel slip controllers in this regard. SMCs approaches,
however, are still rarely validated by real-world exper-
iments. Finally, similar to LQR, SMC is a feedback
technique and adding feedforward action is nontrivial,
limiting the performance of the controller.

• Classical robust control approaches allow to deal
with disturbances and noise by design; however,
the performance evaluation of ABS controllers using
these approaches is limited compared to other
methods.

• Model predictive control is a promising approach that
offers space for improvements in terms of performance
and robustness with respect to state of the art con-
trollers. Compared to other designs, MPC also proposes
a modular framework that it is intuitive to understand
and maintain. The main limitation of MPC is related
to the computational burden, especially if the con-
trol problem is nonconvex. Nevertheless, the advance
in microcontrollers processing power, solvers for
nonconvex optimization, and the drive towards a
model-based integrated chassis control will mitigate this
drawback.

• Several control methods such as iterative learning [99],
backstepping [100], nonlinear feedback control [101]
and flatness-based [102] were not considered in this
paper due to limited studies for WSC application.

TABLE 1. Summary of control strategies.

• Lastly, one of the weak-investigated directions and in
the starting point of the research in WSC is the usage of
reinforcement learning [103], [104] and deep learning.

A summary of the analysed control strategies is presented
in the Table 1 using Harvey Balls.

Based on the considerations above, MPC should be further
investigated by the research community to understand its
full capabilities. This motivates the case study proposed in
Section IV. Current trends related to automated driving result-
ing in the usage of on-board high-performance computational
processors that the major drawback of an MPC approach,
computational effort, is decreasing in importance and could
be outweighed by its performance benefits.

III. ABS TESTING AND KEY PERFORMANCE INDICATORS
To assess the controller’s performance, its behaviour should
be comparedwith the state of the art solutions. Demonstrating
the stability of the ABS controller is also a key point that
remains unsolved. Classical stability theory to validate such
complex designs is extremely difficult to apply. Traditional
approaches can only prove closed-loop stability of the system
model used in the analysis and not the real plant. In theory,
this would require developing high-fidelity models of the
system in differential equation forms. In practice, deriving
these models is too difficult.

To overcome these issues, a comprehensive set of manoeu-
vres should be used to empirically demonstrate the stability
of the developed design. Moreover, a set of key performance
indicators (KPIs) is proposed to analyse and interpret the
results. Selecting the right manoeuvres and KPIs is not trivial
and requires extensive evaluation of regulations and tech-
nical documents. The aim of this section is to summarize
this research to simplify the future design evaluations. The
proposed manoeuvres and KPIs are discussed below.

A. ABS TESTING SCENARIOS
The goal of the manoeuvre selection is to span all pos-
sible conditions that might be encountered on the road.
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Attention is therefore focused on identifying a restricted set
of manoeuvres that is representative of a much larger set of
possible conditions. Braking scenarios were chosen based
on the guidelines given by the United Nations in Regulation
13 (E/ECE/- TRANS/505/Rev.1/Add.12/Rev.8. 3. Regulation
No. 13) and Toyota’s internal knowledge.

The eight selected manoeuvres, reported in Table 2,
belongs to three major groups:

TABLE 2. ABS straight-line test scenarios.

Braking on smooth roads – Three manoeuvres are targeted
at evaluating the performance gain on smooth roads with
constant friction conditions. Three friction levels are selected,
associated with dry asphalt, wet asphalt and packed snow.
The initial speed for each of three decelerations is chosen for
relatable domains’ speed limits (e.g. high-way, freeway, etc.)
and advisable maximum speed associated with the friction
condition.
Friction transition – The three µ-transition manoeuvres

(performed on smooth roads) are specifically intended for
evaluation of the controller transient behaviour. Friction tran-
sitions are commonly found on everyday roads and it is
therefore key for the controller to be fast adapting and robust
to them. To assess the controller behaviour in relation to
transient conditions, two friction transitions in which the fric-
tion coefficient drops and one in which it raises are typically
simulated. The speed at which the transition happens can be
selected based on typical operational conditions for a given
vehicle.
Braking on rough roads – Two last manoeuvres are per-

formed on rough surface. The objective is to quantify and
compare eventual performance degradation when injecting
high-noise levels in the sensed signals. Road irregularities,
in fact, are transmitted through the vehicle and cause variable
band noise on the sensor measurement. As frequency and
amplitude are dependent on the road shape, it is usually
difficult to filter the disturbance out.

Extra test procedures related to µ-split conditions are not
considered in this paper.

B. KEY PERFORMANCE INDICATORS
Different KPI sets have been selected for each of three groups
of manoeuvres.
Steady state and transient performances, as well as human

factors and actuator wear, are evaluated on smooth roads by
the following KPIs:

ABS Index of Performance(ABSIP) – this KPI compares the
braking distance achieved by the specific controller to that of
the case in which ABS is not present. The returned value,
a brake distance reduction percentage, gives a first rough
idea of how effective the controller is throughout the braking
manoeuvre:

ABSIP =
dABS
dskid

(8)

Brake Distance(BD) – the KPI is calculated as the velocity
integral from the moment, at which the brake pedal is first
pressed ti, to that, in which the vehicle speed equals to the exit
velocity tf reported in Table 2. The aim is also to compare
overall braking performance but this time with an absolute
brake distance:

BD =

tf∫
ti

Vxdt (9)

Mean Fully Developed Deceleration(MFDD) – this KPI is
simply the mean longitudinal acceleration, āx , calculated in a
time interval that goes from 90% to 5% of the vehicle speed
V0 at the beginning of the braking. The MFDD is specifically
designed for assessment the vehicle deceleration performance
throughout the entire ABS activation time.

MFDD = [āx]
0.9V0
0.05V0

(10)

ABS efficiency(ηABS ) – this KPI is the ratio of mean lon-
gitudinal acceleration to its theoretical maximum (product
between average friction coefficient µ̄ and gravitational con-
stant g). āx is calculated from when the vehicle velocity
equals 80% of its initial speed to when the vehicle is at
5% of its initial speed. This KPI is specifically designed
for assessment of steady state deceleration performance. The
steady state covers the interval after the initial weight transfer
up to the point at which the ABS switched to its low speed
mode and pressure modulation is stopped.

ηABS =
[āx]

0.8V0
0.05V0

µ̄g
(11)

Peak to Peak (PTP or ωpeak ) – KPI quantifies the agility
of the controller in transient conditions. This is done by
focusing only on the first control cycle after ABS activation
and it is calculated in a similar fashion to a normalized slip
error except that the vehicle velocity is not needed for the
calculation and thus simulation results can be replicated more
easily in real life. ωmax,k is the wheel angular velocity at
either ABS activation or friction transition. ωopt,k , on the
other hand, is the optimal wheel speed obtained from the tire
model. An illustration of these two wheel speeds is shown
in Fig. 9.

ωpeak =
∑

k

ωmax,k − ωopt,k

ωmax,k
k = [FL,FR] ∧ [RL,RR] (12)
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FIGURE 9. Illustration of the Peak to Peak KPI (PTP).

Integral Time-weighted Average of the longitudinal jerk
(ITAEJx ) – KPI aims at characterizing driving comfort. A
negative influence on the driver’s perception during ABS
braking occurs owing to fluctuations in the realized brake
force, which produces oscillations in the vehicle deceleration.
Here, the lower the vehicle jerk, the better the comfort char-
acteristics provided by the ABS are. Weighting the average
with time, corresponds to taking the area between the jerk
signal jx and zero (an ideal value). Additionally, taking the
integral has the important advantage of filtering out outliers
and spikes (commonly originated by differentiating a noisy
signal as their contribution to the area is zero). In this way
the signal does not require complex filtering.

ITAEJx =

tf∫
ti

t |jx | dt (13)

Integral torque variation – Actuator wear (IACATb ) – KPI
calculates how much torque variation is prescribed by the
controller. This is important for a first evaluation of potential
issues related to actuator wear. Large torque variation can
lead to premature degradation of both brake components and
valves. Estimating how much this number should be consid-
ered as critical is outside the scope of the proposed work.

IACATb =

tf∫
ti

∑
k

∣∣Ṫb,k ∣∣dt
k = [FL,FR,RL,RR] (14)

Integral Pitch Variation (IPV) – this KPI relates to the
human factors. The driver capability to estimate distance is
significantly deteriorated in the presence of excessive vehicle
pitch angle ϕ [105]. Therefore, it is desirable for an ABS to be
as smooth as possible during the control action. IPV is mostly
relevant on high friction surfaces due to larger load transfer
causing high variation of pitch angle.

IPV =

tf∫
ti

|ϕ| dt (15)

KPIs used for the friction transitions scenarios are focused
on analysing the controller behaviour after µ-transition. Here
two key aspects are transient performance and lateral stability.
The indices are as follows:
Recovery time (Trec)−− KPI quantifies how much time is

taken by the controller to recover from the friction transition
and go back to steady state conditions. The counter is started
when the front wheels first experience the change in surface
condition and runs until the longitudinal acceleration is inside
a certain band. The band is identified as ±5% of the mean
longitudinal accelerationāx after the transition.

Trec = [t]±5%āxi,jump (16)

Peak to peak at friction transition(ωpeak,jump)−− the focus
is only on the first control cycle after the friction transition.
Generally, the depth of the first cycle significantly affects the
ABS performance, and it is therefore highly important to try
minimizing this specific aspect. The metric is of particular
interest (i) for lower friction coefficients where the cycle
takes significantly more time, and (ii) for under-braking, to
demonstrate the recovery from the unstable part of the λ-Fx
friction curve. It is calculated in the same way as for ωpeak .
Mean deceleration at friction transition (āx,jump)−− KPI

targeted at quantifying the overall deceleration performance
during the friction transitions. The calculation starts 0.2s
before the front wheels experience the change in friction and
ends 1s after the rear wheels have performed the transition.

āx,jump =

tf ,jump+1∫
ti,jump

axdt (17)

Maximum yaw rate at friction transition (ψ̇max) − − KPI
aims at quantifying the vehicle stability during the friction
µ- transition manoeuvre. It is not uncommon for a vehicle
experiencing a sudden change in friction to exhibit some
yawing. Yaw angles are usually not high since the wheel pairs
undergo the friction transition at the same time. Nonetheless,
the velocity at which the vehicle rotate should be contained in
order to allow the driver to counter steer. The usual threshold
for acceptability is set around a value of 1 − 1.5 deg/s.

ψ̇max = max
[
ψ̇
]f ,jump
i,jump (18)

For rough roads, the indicators are the same as that intro-
duced for smooth roads.

For the evaluation of µ-split testing, brake distance, vehi-
cle deceleration, maximum yaw rate and corrective steering
angle are typically used.

IV. CASE STUDY: A NONLINEAR MODEL PREDICTIVE
CONTROL ABS DESIGN
Motivated by the conclusions in Section II.I, the proposed
case study investigates the use of nonlinear model predictive
control (NMPC) for ABS applications. The paper goal is to
show the potential of this technique compared to the current
industry-used threshold-based logic in the scenarios and with
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the KPIs discussed in the previous section. First, to use
NMPC, a model that accurately describes the dynamics of
the system needs to be defined:

λ̇FL =
1
Vx

[
rw
Iw

(
dT cmdb,FLτ + Tb,FL − Fx,FLrw

)
−

1− λFL
0.5mf + msaxh/2L

]
λ̇FR =

1
Vx

[
rw
Iw

(
dT cmdb,FRτ + Tb,FR − Fx,FRrw

)
−

1− λFR
0.5mf + msaxh/2L

]
λ̇RL =

1
Vx

[
rw
Iw

(
dT cmdb,RLτ + Tb,RL − Fx,RLrw

)
−

1− λRL
0.5mr − msaxh2L

]
λ̇RR =

1
Vx

[
rw
Iw

(
dT cmdb,RRτ + Tb,RR − Fx,RRrw

)
−

1− λRR
0.5mr − msaxh/2L

]
Ṫb,FL = dTb,FL
Ṫb,FR = dTb,FR
Ṫb,RL = dTb,RL
Ṫb,RR = dTb,RR

ax =
(
Fx,FL + Fx,FR + Fx,RL + Fx,RR

)
/ms (19)

where Fx,ij is the longitudinal tire force, ax is the longitudinal
acceleration, Vx is the chassis velocity, Iw is the wheel inertia,
L is the the wheel base, rw is the effective rolling radius,
ms is the sprung mass, mf and mr are the portions of the
total mass resting on the front and rear axles, respectively.
The first four equations describe the wheel slip dynamics
of each wheels λij. Additional four augmentation equations
Tb,ij allow the MPC to control the torque rate dTb,ij instead
of the brake torque. Finally, the last equation describes the
chassis longitudinal dynamics. The model also considers the
effects related to the brake actuator dynamics and longitudi-
nal weight transfer. In particular, the EHB system behaviour
is represented by a first-order dynamics with the time con-
stant τ , and the longitudinal weight transfer is approximated
by its static part. Finally, online wheel force data is used
(obtained from the load sensing bearings including accuracy
and noise level [31]) to formulate a complete description of
the tire dynamics. The state vector is given by the following:

x =
[
λFL , λFR, λRL , λRR,Tb,FL ,Tb,FR,Tb,RL ,Tb,RR,Vx

]T
(20)

The control commands (i.e., the brake torque rates, dT cmdb,ij )
can be obtained by solving the associated optimal control
problem that includes the model described above as the pre-
diction model and the constraints discussed below.

Table 3 summarizes the state and input constraints. These
bounds were selected according to the following reasons:

TABLE 3. State and input bounds.

TABLE 4. Important controller settings.

• The lower bound for the chassis velocity is set to 0 to
prevent the vehicle from going backwards, while the
upper-bound is selected equal to the vehicle’s maximum
speed.

• The brake torque lower bound is 0 Nm given that
negative numbers would mean that a driving torque is
applied. The upper bound is the system’s maximum
capability. Given the different sizing of front and rear
brakes, two values are listed in Table 3.

• Given that the EHB pressure increase rate is approx-
imately 1300 bar/s and assuming the system is 30%
slower in damping pressure based on the previous inves-
tigations [106], the torque rate is limited for the consid-
ered vehicle. For stability reasons it is advisable for rear
wheels to follow the front ones in the event of a lock up.
Hence, the rear-pressure increase rate of the rear axle is
lowered.

The tool used as modelling environment to define the
optimal control problem is ACADO Toolkit. ACADO is an
open-source software environment for dynamic optimization
which supports self-contained C code [107]. Its most appeal-
ing features is the task scheduling of the Real Time Itera-
tion (RTI) scheme which splits one iteration into two phases:
a preparation phase, where the NLP is linearized, discretized
and condensed; and a feedback phase, where the condensed
QP is solved. Since operations are parametric in the initial
state x0, the preparation can be done offline. In this way,
the solver can achieve real-time performance within the milli-
or micro-seconds range (depending on the application) [89].
The NMPC problem reduces to a dense QP that ACADO
solves by using qpOASES [108]. Table 4 reports the most
relevant settings of the solver.

As mentioned, NMPC is the key element of the proposed
ABS formulation. Nevertheless, other components are also
important for the correct behaviour of the design under dis-
cussion. Fig. 10 provides an overview of the overall control
structure.
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FIGURE 10. Proposed ABS controller scheme.

TABLE 5. Weight scheduling.

The reference wheel slip generator reads the longitudi-
nal and normal forces (Fx,ij and Fz,ij, respectively) at each
time step and, after calculating the friction coefficient µij,
outputs the reference wheel slips λd based on a 3D-map
obtained from tire testing conducted by Toyota. The slip
target, together with other signals coming from the vehi-
cle and driver subsystems, are then passed to the activation
logic.

The activation logic is responsible for cycling through
three possible controller states: (i) ABS Off, (ii) ABS On,
and (iii) ABS On - Low Speed. A state machine selects
the controller’s mode and target state. Whenever the ABS is
inactive the NMPC acts as a driver brake request follower.
Activation of the ABS controller is triggered based on some
predefined wheel deceleration thresholds for front and rear
wheel pairs. In a range from 1 m/s to Vmax , the ABS operates
as a slip target follower. Below 1 m/s, where the wheel
dynamics is too unstable to control, the brake torque is kept
constant to avoid any under-braking.

Based on the selected control mode, the online weight
adjustment logic selects the entries of the weight matrices Q,
P and R (where R is equal to Q). In this formulation Q and
P are diagonal matrices containing state weights and control
weights respectively (Table 5). When the driver is in control
(ABS off), theMPC is forced to track the driver demand using
the weight entries from Table 5.

When the ABS is working in normal mode, the controller
acts as a wheel slip reference tracker. Since the vehicle
velocity acts as a time-scale factor for the slip dynamics,
cost weights are defined to track the slip target with an

increasingly larger control effort to cope with the progres-
sively higher slip frequency. Weight functions ff (Vx) and
fr (Vx) are two monotonically decreasing functions.
In low speed ABS mode, the brake torque applied to

each wheel is kept constant to prevent any unwanted under-
braking. To achieve it, the brake torques and rates are being
prioritized.

The NMPC receives the current state, target state, online
force measurements and cost weights to calculate the opti-
mal actuator commands, that are, the brake torques. The
optimized brake torques are then used as the target for
the low-level ABS controller, which directly operates the
hydraulic unit. Individual wheel pressures are then applied
to the vehicle to close the control loop.

The performance of the proposed NMPC controller was
compared to an industry-used threshold-based controller.
Fig. 11 shows the high-end simulation setup used for
evaluation.

FIGURE 11. Vehicle co-simulation layout.

Each of the main vehicle subsystems was developed in the
appropriate simulation tool, namely, MATLAB/Simulink for
the controller, Simpack multi-body software for the vehicle
model, Dymola multi-physics simulation software for the
brake system and Delft-Tyre MF-SWIFT (Short Wavelength
Intermediate Frequency Tire) model for tire behaviour. The
models were then interconnected to replicate full vehicle
behaviour.

The vehicle model was validated against a large set of
experimental data collected by Toyota. The compliance of
the flexible bodies were measured on dedicated test benches.
The hydraulics of the brake system behaviour was replicated
following a multi-physics approach. The pad-disc friction
coefficient was modelled by a look-up table, whose val-
ues depended on vehicle velocity, pressure and tempera-
ture. The relationship was obtained by analysing test data
for friction coefficient measurement according to the SAE
J2522 standard (known as AK Master). More advanced
approaches for pad-disc interaction can be based on dynam-
ical models, e.g. [109], [110], or finite element modelling,
e.g. [111]–[113].

Finally, to reproduce sensor behaviour, the information
coming from the simulation is altered to match the signal
quality.
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TABLE 6. Friction transition dry-wet – KPI values.

Eight ABS braking scenarios were evaluated according to
the test manoeuvres presented in Section III. In particular,
the results are presented for (i) friction transition from dry-
wet, (ii) smooth dry asphalt, and (iii) packed snow. A full
analysis for (ii) and a spider plot summarizing the findings for
(i) – (iii) are presented. More details regarding the performed
analysis is given in [114].

FIGURE 12. Friction transition dry-wet time histories – NMPC.

Fig. 12 presents the results for friction transition. As the
figure shows, once the controller becomes active, the front
brake torques increase to take advantage of the longitudinal
weight transfer, while rear ones decrease. When the vehicle
starts to pitch back, the behaviour is reversed. Steady state
would eventually be reached; however, at 2.5 s the friction
transition occurs, and brake torques promptly reduce. The
predictive behaviour of the NMPC controller allows (i) the
system to limit the under-braking and (ii) the torques con-
verge to their optimal value net of vehicle pitching.

The comparison between the wheel speeds and vehi-
cle speed (Fig. 12) highlights the absence of the typical
threshold-based ABS control cycles (i.e., increase, decrease,
and hold pressure). The longitudinal slip distribution graph

FIGURE 13. KPIs for straight-line braking.

of the front-left wheel (bottom plots) shows how the slip is
contained in a narrow band close to its optimal value. Two
defined peaks are observed, each associated with a specific
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friction coefficient. Moreover, limited distribution of longi-
tudinal slip outside the stable area of the force-slip curve is
identified.

Using the above-mentioned KPIs, Table 6 summarizes
the obtained results. The minimum longitudinal acceleration
at the transition reveals considerably less under-braking in
response to the friction change for the NMPC controller com-
pared to the threshold-based controller. Similarly, the time
needed to regain steady state is also noticeably less. As a
result, the mean deceleration value is sizably higher. Peak-
to-peak metrics show how the first control cycle after the
transition, is deeper for the benchmark. Lastly, although lat-
eral stability is retained in both cases, the maximum yaw
rate underlines the superiority of the NMPC design over the
threshold-based one.

The summary of KPIs is shown in Fig. 13a. Front and rear
peak-to-peak indicators were 78% and 50% lower respec-
tively. Less torque variations also ensure a much shorter
transition time (38% shorter). Lastly, an effect to keep under
control regardless of the longitudinal transition performance
is themaximum yaw rate. In this case the NMPC ensures 50%
more yawing stability than the benchmark.

Fig. 13b shows the relative results for the dry asphalt brak-
ing from 130km/h to 0km/h. In this scenario, the NMPCmain
advantage is in the absence of first cycle overshoot, as par-
ticularly evident from the peak-to-peak indicators (approx.
50% better compared to the benchmark). Nevertheless, as a
much larger portion of the braking manoeuvre is spent in
stationary conditions, fewer percentage points of difference
in steady-state performance also correspond to a remarkable
improvement. The brake distance is reduced by more than
30% by the NMPC.

Jerk and pitch related indicators reveal an effect related
to human factors (20% and 8% of the improvement corre-
spondingly compared to the benchmark logic). The IACA
demonstrates reduction of actuator wear (approx. 9% of the
improvement).

Fig. 13c shows the relative results for the packed snow
braking from 40km/h to 0km/h. Steady state performance
indicators related to the proposed control were about 25%
higher than the benchmark. The NMPC utilized more friction
compared to the rule-based controller, increasing ABS effi-
ciency. Jerk and pitch rate metrics are improved by approx.
65% and reduction of actuator wear (IACA) is improved
by 29%.

V. CONCLUSION
Based on the presented state of the art in ABS control
designs, it was decided to further investigate NMPC as a case
study and compare it to the industry-used threshold-based
control. To evaluate the proposed controller, a methodology
similar to the industry-used assessment chain was applied:
(i) a restricted set of manoeuvres were evaluated covering
all possible ABS control fall-backs; (ii) a comprehensive
set of key performance indicators (KPIs) was developed;
(iii) a high-fidelity simulation setup (multibody vehicle

model, rigid ring tire model, brake model, brake-pad inter-
action, etc.) was deployed to accurately replicates the brak-
ing behaviour from the field tests both at the vehicle level
and actuator dynamics. The analysis showed that the pro-
posed logic generally outperforms the threshold-based con-
trol on each of the simulated manoeuvres. The improvements
are mainly due to a much smoother and precise control
action. The NMPC destabilizes the wheel dynamics much
less than the benchmark logic with its repeated control cycles
(increase, decrease, and hold pressure). Additionally, there
was a large improvement in the transient behaviour obtained
with the NMPC controller. This was due to predictive nature
of the controller. On average, the NMPC controller was able
to improve by 75%, the first ABS control cycle, compared to
the threshold-based controller. Similarly, following a transi-
tion in the friction coefficient, the NMPC was approximately
50% faster to recover from the friction transition. The NMPC
controller improved the steady-state tracking by an average
of 15%. Moreover, the NMPC controller also enhanced occu-
pants’ comfort up to 20% and reduced actuator wear by up
to 30%. Regarding computational expenses, the proposed
NMPC controller did not encounter any issues related to
the solver failing to find a solution. Only minor real-time
concerns at the beginning of the braking manoeuvre were
observed as well as for the first few milliseconds after a fric-
tion transition occurred. Therefore, computational aspects are
still open to future investigations. Lastly, the proposed NMPC
requires a considerably lower number of tuning parameters
(roughly two order of magnitude lower than the equivalent
threshold-based logic).
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