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1 Introduction 

1.1 Problem statement 
The design of funicular structures, or compression only structures, has been an inspiration for many 

architects and structural engineers. 

The most efficient way to transfer loads is through axial forces instead of by bending. Funicular sys-

tems act solely in compression or tension for a given loading (Block, 2009), see figure 1.1. 

 
Figure 1.1 Load transfer by axial forces versus bending moments 

The beginning of the research of shell structures can be seen in the catenary. A famous person who 

was working a lot with catenaries was Antoni Gaudí. He made different models of hanging chains, and 

after gluing the chains he turned the upside down and the result is a stable catenary shaped construc-

tion, see figure 1.2.  

 
Figure 1.2 Gaudi's catenary model at Casa Milà; Etan J. Tal, Wikipedia.org 
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From the catenary structure the step to a shell structure is only a small step. Shell structures can be 

seen as catenaries with infinite small members, see figure 1.3. 

 
Figure 1.3 From shell structure to the funicular structure 

With more than 1,400 planned and realized shell structures, Heinz Isler (1926 – 2009) is considered 

the world's largest shell builder, for an example see figure 1.4. 

A shell structure has a great benefit; it is possible to build a very slender shell, which is strong enough 

to carry the dead weight including other imposed loads. 

Because the forces in a shell structure are mainly axial forces,  the structure can be dimensioned much 

more slender than non-funicular structures of the same size which are designed on bending. 

In a shell structure shape follows force.  

 
Figure 1.4 Heinz Isler, 1968: Laboratory and research facility for the Gips Union; panoramio.com 

To calculate and design a shell structure, there are many variables. The most existing calculation 

methods are like a black box with a certain outcome, or are too complicated to use as a design tool.  

 

So this thesis describes a methodology for generating shells with the least complementary energy on a 

faster way, compared with the traditional methods. In this case only with vertical loads. 

There are methods to solve such a problems, but in my opinion it must be possible to do it on a smarter 

en faster way.  

 



Optimizing shell structures 

11 

 

1.2 Goal of this thesis 
The goal of this graduation project is to develop an easy tool that calculates the optimum shell struc-

ture loaded by forces in the direction of gravity. 

Besides an introduction about the mechanics of shell structures, a description of each calculation step 
will be given to show the functionality of this tool. This tool makes it possible (with the input of load-
ings on shells), to calculate the optimum height of the structure. 

For visualization purpose Grasshopper has been used while changing loads and shape of the structure 
is very easy using Grasshopper as a graphic part. 

From the previous discussions the following assignment can be formulated: 

Design a tool to optimize the shape of a shell with a minimum of complementary energy. 

 

This assignment will serve as a guide for this thesis. To develop the tool, a good background 

knowledge of the calculation methods is needed. This will be the first part to investigate. 
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1.3 Thesis outline 
This thesis comprised from four parts: 

Part I Introduction 

This part introduces the thesis with some background information. It also introduces the goal of the 

research. 

Part II Mechanics 

This part contains the research part about the calculation methods. Basically it contains two parts. First 

there is a theoretical framework with more back ground information and the basics of the calculations.  

The second part contains the actual research from the mechanics. First there is explanation about the 

complementary energy and how it can be calculated. After that, the calculation of the height in the 

shell structures will be explained. 

Part III Informatics 

The informatics part contains the explanation of the informatics part of the designed tool. It gives a 

step by step overview of the calculation and the working of the tool itself. 

Part IV Conclusions 

In this part there is the overall conclusion of the thesis and some recommendations for the future. 
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2 Theoretical framework 
In this chapter there is more background information about the theoretical framework of the research. 

In four paragraphs there is a closer look on graphic statics, how to calculate the complementary energy 

and what it is, the thrust network method and the calculation of the force density . 

2.1 Graphic statics 
In this paragraph there is more information about graphic statics; what it is and what is possible with 

this method. 

2.1.1 Force polygons 
Forces acting on a structure could be drawn in a force diagram, this is called graphic statics. The most 

well-known aspect of graphic statics is the head-to-tail method. Changing the force diagram or the 

force polygons, will directly effect on another. 

The external forces on each structure are plotted to a scale of length to force on a load line. Working 

from the load line, the forces in the members of the structure are determined by scaling the lengths of 

lines constructed parallel to the members. The diagram of forces that results from this process is called 

the force polygon. For an example see figure 2.1. 

 
Figure 2.1 Force polygon in a simple catenary 

When three forces are acting on a point; the magnitude of the forces can be graphically determined 

when the directions of the forces and the magnitude of one of the forces is known. We can use the 

head-to-tail method using a scaled vector diagram. This is a statically determinate situation. 

When there are more than 3 forces acting on a point, the situation will be statically indeterminate; 

there are may be infinite solutions to determine, see figure 2.2. In this case it is possible to draw infi-

nite possible polygons. To solve a statically indeterminate problem, it can be analysed by the direct 
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stiffness method, the flexibility method, the finite element method or by using complementary energy. 

(Borgart & Liem, Force network analysis using complementary energy, 2011) 

 
Figure 2.2 Difference in statically determinate and indeterminate structures 

2.1.2 Thrust lines 
When a force polygon is drawn, also the thrust line of a certain beam loaded by an uniform distributed 

load can be drawn. 

By reducing the uniform distributed load (q) to point loads (Fa – Fd) on the beam, a beam loaded by 

point loads is drawn, see figure 2.3. 

 
Figure 2.3 Beam loaded by an uniform distributed load, converted to point loads 

From those point loads a force polygon can be made, see for example figure 2.4. 

 
Figure 2.4 Force polygon 

When the forces of the point loads are added together, with the use of the head-to-tail method, the re-

sult is a polyline of the resulting force. Then the polar coordinate has to be added. This is a point out-

side the resulting force polyline, to which coordinate the start and the end of the individual forces can 

be connected. So the result is a collection of connected force polygons, see figure 2.5. 
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Figure 2.5 Beam with a corresponding force polygon 

With the slope of the lines from the polar coordinate to the start point and the end point of the forces 

we can describe the thrust line of the beam, see figure 2.6. 

 
Figure 2.6 Beam with the thrust line derived from the force polygon 

The horizontal distance from the polar coordinate to the forces is the horizontal reaction force on the 

supporting points; Fh1 = Fh2 = Fh, see figure 2.6. Figure 2.6 gives also the vertical equilibrium between 

the loads by a span of l: 

𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 = 𝐹𝑣1 + 𝐹𝑣2 = 𝑞𝑙 

 

 
Figure 2.7 Different thrust line by the corresponding force polygons 
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When the distance of the polar coordinate changes, the thrust line also changes, see figure 2.7. By a 

higher thrust line the horizontal reaction force is also lower. 

2.1.3 Summary 
The graphic static method is very powerful for defining the thrust lines for arches or hanging cables. 

The only disadvantage of this method is that it is not applicable for three dimensional systems, only 

for two dimensional systems. 
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2.2 Complementary energy 
As result of forces acting on a bar, the bar will deform by elongating or shortening.  

When the material behaves linear elastically, Hooke’s law will apply. The stress level will be propor-

tional to the elongation. So, when the stress increases the elongation will also increase. 

The potential energy accumulated in an elastic body is called strain energy. In figure 2.8 the stress (𝜎) 

and elongation (𝜀) are plotted. The area below the stress-strain curve is the strain energy (Ev), the area 

above the curve is the complementary energy (Ec), see figure 2.8. (Blaauwendraad, 2004) 

 
Figure 2.8 Elongation as a function of the stress (Blaauwendraad, 2004) 

So in this case: 

𝐸𝑐𝑜𝑚𝑝𝑙 =
1
2
𝜎𝜀 = 𝐸𝑣 

 

Since 

𝜀 =
𝜎
𝐸

 

 

And since 

𝜎 =
𝑁
𝐴

 

 

The complementary energy per unit bar length equals to: 

𝐸𝑐𝑜𝑚𝑝𝑙, = �
1
2
𝜎2

𝐸
𝑑𝑉

𝑣
=

1
2
𝑁2

𝐸𝐴
 

 

The complementary energy can be expressed in stresses: 

𝐸𝑐𝑜𝑚𝑝𝑙, =
1
2
𝜎2

𝐸
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When a bar with length 𝑙 is used: 

𝐸𝑐𝑜𝑚𝑝𝑙, =
1
2
𝜎2

𝐸
𝑙 

 

When the total complementary energy of a polygon is calculated, the following formula can be used: 

𝐸𝑐𝑜𝑚𝑝𝑙,𝑡𝑜𝑡 = �𝐹𝑖2𝑙𝑖

𝑛

𝑖=1

 

 

To solve the statically indeterminate problem in figure 2.9,  the solution with the least complementary 

energy has to be found. So: 

𝐸𝑐𝑜𝑚𝑝𝑙,𝑡𝑜𝑡 = �𝐹𝑖2𝑙𝑖

𝑛

𝑖=1

= 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

 
Figure 2.9 Example of a statically indeterminate structure with the corresponding forces 

Next the equation below can be derived: 

𝐸𝐶 = 𝐹𝑎2𝑙𝑎 + 𝐹𝑏2𝑙𝑏 + 𝐹𝑐2𝑙𝑐 + 𝐹𝑑2𝑙𝑑 

 

For this case it can be said that the member lengths are known, and that Fd is also known. So the nor-

mal forces acting on the bars a, b and c are unknown. 

Now every possible solution can be filled in and the complementary energy can be calculated. A pow-

erful method to solve such a problem is to use a Generalized Reduced Gradient (GRG). (Borgart & 

Liem, Force network analysis using complementary energy, 2011) For example Microsoft Excel has a 

solver function that can use this method to solve such problems. 

 

For this thesis this formula has been leading: 

𝐸𝑐𝑜𝑚𝑝𝑙,𝑡𝑜𝑡 = �𝐹𝑖2𝑙𝑖

𝑛

𝑖=1
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2.3 Thrust network analysis 
Thrust network analysis is a three dimensional version of the thrust line analysis, using reciprocal dia-

grams. Like graphic statics, thrust network analysis uses a graphical representation of the forces in a 

system, using force polygons. Reciprocal figures are introduced to relate the geometry of the three-

dimensional systems to their internal forces. (Block, 2009) 

A planar projection of the surface is necessary to describe the force network; this is the reciprocal dia-

gram of the force polygon. Because it is a planar projection, the primal grid contains only the x and y 

coordinates of the nodes, see figure 2.10. 

 
Figure 2.10 Thrust network analysis considers a planar projection of a structure (P. Block, 2009) 

The forces acting on a node in the primal grid are described as a closed force polygon in the reciprocal 

figure and vice versa, see figure 2.11. 
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Figure 2.11 Relation of the primal grid and the reciprocal figure 

When several force polygons are constructed for one statically indeterminate system, they are usually 

not directly comparable. If one solution gives equal forces for all four members in a four-valent sys-

tem, and a second solution appoints a larger force to one of the members, the forces in the other mem-

bers have to become smaller, in to get a solution for the same load in the polygons. 

 
Figure 2.12 For an indeterminate primal grid (left) multiple reciprocal grids coresponding to different internal 
distribution of the horizontal forces are possible (P. Block, 2009) 

In figure 2.12, a four-valent system with a vertical load is considered. Two force polygons are con-

structed to describe the horizontal components of the axial forces in the members. 

Since the dimensions of the system are known, using the horizontal forces, the support reactions and 

the magnitude of the vertical force can be determined. 

For the two solutions of horizontal force equilibrium, a different vertical force is achieved. The two 

force polygons are therefore no solutions for the same problem, and cannot be compared directly. 
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By changing the scale of the reciprocal figure, the height of the structure changes accordingly. There is 

a relation in the horizontal support forces and the height of the structure, as in the two dimensional 

graphic statics. The different horizontal supporting forces provide different heights of the structure, 

see figure 2.13. 

 
Figure 2.13 Effect of changing the scale factor of the reciprocal grid (P. Block, 2009) 
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2.4 Force density method 
The force density method is a powerful method for form finding for shells and membranes. 

The force density method was introduced by J.H. Shek in 1974. This method  is commonly used in 

engineering to find the equilibrium shape of a structure consisting of a network of cables with different 

elasticity properties when stress is applied. (Southern, 2011) 

While shape analysis of tensile structures is a geometrically non–linear problem, the force density 

method linearizes the form-fitting equations analytically, by using the force density ratio for each 

cable element. The method uses q = F/l, where F and l are the force and length of a cable element in 

the network. (Yang, Southern, & Zhang, 2009) 

The network consists of a number of points (nodes) which are connected by lines (bars), see figure 

2.14. 

There are two types of nodes: fixed nodes, and free nodes. For the fixed nodes, the x, y and z coordi-

nates are known. For the free nodes, the x, y and z nodes are unknown. The x, y and z components of 

the external forces acting on each node are also known. 

In figure 2.14 a projection of a network can be seen. The nodes 1-6 are the fixed nodes; these nodes 

act as support nodes. The nodes 7 and 8 are free nodes.  

 
Figure 2.14 Planar projection of a network, the primal grid, with six fixed nodes and two free nodes 
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In order the construction to be stable, there should be force equilibrium in each of the free nodes. This 

force equilibrium can be described for every node, as equilibrium in the x, y and z direction. (Liem, 

2011) 

This is presented in the following equations:  

 

Node 7 

Equilibrium in x-direction: 

�𝑥7: (𝑥7 − 𝑥1)
𝐹𝑎
𝑙𝑎

+ (𝑥7 − 𝑥8)
𝐹𝑔
𝑙𝑔

+ (𝑥7 − 𝑥5)
𝐹𝑒
𝑙𝑒

+ (𝑥7 − 𝑥6)
𝐹𝑓
𝑙𝑓
− 𝐹𝑥;7 = 0 

 

Equilibrium in y-direction: 

�𝑦7: (𝑦7 − 𝑦1)
𝐹𝑎
𝑙𝑎

+ (𝑦7 − 𝑦8)
𝐹𝑔
𝑙𝑔

+ (𝑦7 − 𝑦5)
𝐹𝑒
𝑙𝑒

+ (𝑦7 − 𝑦6)
𝐹𝑓
𝑙𝑓
− 𝐹𝑦;7 = 0 

 

Equilibrium in z-direction: 

�𝑧7: (𝑧7 − 𝑧1)
𝐹𝑎
𝑙𝑎

+ (𝑧7 − 𝑧8)
𝐹𝑔
𝑙𝑔

+ (𝑧7 − 𝑧5)
𝐹𝑒
𝑙𝑒

+ (𝑧7 − 𝑧6)
𝐹𝑓
𝑙𝑓
− 𝐹𝑧;7 = 0 

 

Node 8 

Equilibrium in x-direction: 

�𝑥8: (𝑥8 − 𝑥2)
𝐹𝑏
𝑙𝑏

+ (𝑥8 − 𝑥3)
𝐹𝑐
𝑙𝑐

+ (𝑥8 − 𝑥4)
𝐹𝑑
𝑙𝑑

+ (𝑥8 − 𝑥7)
𝐹𝑔
𝑙𝑔
− 𝐹𝑥;8 = 0 

 

Equilibrium in y-direction: 

�𝑦8: (𝑦8 − 𝑦2)
𝐹𝑏
𝑙𝑏

+ (𝑦8 − 𝑦3)
𝐹𝑐
𝑙𝑐

+ (𝑦8 − 𝑦4)
𝐹𝑑
𝑙𝑑

+ (𝑦8 − 𝑦7)
𝐹𝑔
𝑙𝑔
− 𝐹𝑦;8 = 0 

 

Equilibrium in z-direction: 

�𝑧8: (𝑧8 − 𝑧2)
𝐹𝑏
𝑙𝑏

+ (𝑧8 − 𝑧3)
𝐹𝑐
𝑙𝑐

+ (𝑧8 − 𝑧4)
𝐹𝑑
𝑙𝑑

+ (𝑧8 − 𝑧7)
𝐹𝑔
𝑙𝑔
− 𝐹𝑧;8 = 0 

 

In this case only the equilibriums in z-direction are needed, so 2 equations are left: 

�𝑧7: (𝑧7 − 𝑧1)
𝐹𝑎
𝑙𝑎

+ (𝑧7 − 𝑧8)
𝐹𝑔
𝑙𝑔

+ (𝑧7 − 𝑧5)
𝐹𝑒
𝑙𝑒

+ (𝑧7 − 𝑧6)
𝐹𝑓
𝑙𝑓
− 𝐹𝑧;7 = 0 

�𝑧8: (𝑧8 − 𝑧2)
𝐹𝑏
𝑙𝑏

+ (𝑧8 − 𝑧3)
𝐹𝑐
𝑙𝑐

+ (𝑧8 − 𝑧4)
𝐹𝑑
𝑙𝑑

+ (𝑧8 − 𝑧7)
𝐹𝑔
𝑙𝑔
− 𝐹𝑧;8 = 0 
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For this subject the forces and the lengths are known, so there are two unknown and two equation left, 

which is solvable. 

 

In general, it can be concluded that the following shortened formula can be used: 

��∆𝑧 ∗
𝐹𝑛
𝑙𝑛
� − 𝐹𝑧,𝑡𝑜𝑡 = 0 

 

This can be rewritten to: 

�∆𝑧 ∗
𝐹𝑛
𝑙𝑛

= 𝐹𝑧,𝑡𝑜𝑡 

 

Because the force density equals to: 

𝑞 =
𝐹
𝑙

 

 

It can be said that: 

�∆𝑧 ∗
𝐹𝑛
𝑙𝑛

= �∆𝑧 ∗ 𝑞𝑛 = 𝐹𝑧,𝑡𝑜𝑡 
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3 Calculation – Complementary energy 
In this chapter more information about the calculation of the optimal reciprocal figure by an orthogo-

nal primal grid will be given. There is also more about the calculation of the complementary energy 

itself. 

To compare different possible solutions, the perimeter of the reciprocal figure has to be set to constant. 

3.1 Calculation complementary energy 

 
Figure 3.1 A basic primal grid with four bars and a corresponding reciprocal figure 

Consider figure 3.1 to calculate the complementary energy of a structure. 

The variables are in this case: 

𝑙𝑎 = 𝑙𝑏 = 𝑙𝑐 = 𝑙𝑑 = 3 

𝐹𝑎 = 𝐹𝑏 = 𝐹𝑐 = 𝐹𝑑 = 1 

 

When the formula of paragraph 2.2 to calculate the complementary energy is used; 

𝐸𝑐𝑜𝑚𝑝𝑙,𝑡𝑜𝑡 = �𝐹𝑖2𝑙𝑖

𝑛

𝑖=1

 

 

And scribed out; 

𝐸𝑐𝑜𝑚𝑝𝑙,𝑡𝑜𝑡 = 𝐹𝑎2𝑙𝑎 + 𝐹𝑏2𝑙𝑏 + 𝐹𝑐2𝑙𝑐 + 𝐹𝑑2𝑙𝑑 = 12 ∗ 3 + 12 ∗ 3 + 12 ∗ 3 + 12 ∗ 3 = 12 

 

So in this case the complementary energy has a value of 12. 
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3.2 Calculating the optimal reciprocal figure 
When searching for the reciprocal figure with the least complementary energy, a link is found in the 

ratio between the height and the length of the grid and the size of the force in the reciprocal figure with 

the least complementary energy. 

 
Figure 3.2 A primal grid with four equal members and the corresponding reciprocal figure 

If the perimeter of the reciprocal figure is set as P, we can describe P as: 

𝑃 = 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 

 

The forces acting on member a and c act in the y-direction, so 𝐹𝑎 = 𝐹𝑐 = 𝐹𝑦. The forces acting on b 

and d work in the x-direction, so 𝐹𝑏 = 𝐹𝑑 = 𝐹𝑥. Because of the reciprocal figure, the x- and y-axes 

will be changed. The relation between the dimensions of the grid and the dimensions of the reciprocal 

figure can be described as: 

𝑙: ℎ = 𝐹𝑦:𝐹𝑥 

The optimal reciprocal figure by a square shaped primal grid is also a square, see figure 3.2. It doesn’t 

matter for this relation what the length of the members is in the grid, see figure 3.3. The dimensions of 

the primal grid determine the ratio of the reciprocal figure.  

 
Figure 3.3 A primal grid with four members and the corresponding reciprocal figure 
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In case of an orthogonal grid with more than 4 bars, the relation will be maintained, see figure 3.4. 

 
Figure 3.4 A primal grid with seven equal members and the corresponding reciprocal figure 

But instead of the ratio 𝑙: ℎ = 𝐹𝑦:𝐹𝑥, further information has to be added; the perimeter of the recipro-

cal grid is based on more than 4 forces. The relation of the ratio is not for the reciprocal figure as a 

whole, but only for the area of a node. 

The length of the reciprocal figure is half of the forces acting in the y-direction on the grid. The 

amount of forces acting on the y-direction in the grid can be called ny. The same can be done for the 

forces in x-direction, this amount is nx. For example in figure 3.3 ny is 2 (𝐹𝑎 and 𝐹𝑏) and ny is 1 (𝐹𝑐). 

So the ratio 𝑙: ℎ = 𝐹𝑦:𝐹𝑥 will be: 

𝑙: ℎ =
𝐹𝑦;𝑡𝑜𝑡

𝑛𝑦
:
𝐹𝑥;𝑡𝑜𝑡

𝑛𝑥
 

 

 
Figure 3.5 A bigger primal grid with seven members and the corresponding reciprocal figure 

As can be seen in figure 3.5, also for those kind of orthogonal grids the relation of the dimensions of 

the grid and the reciprocal figure remains. 
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3.3 Conclusion 

 
Figure 3.6 A primal grid with seven equal members and the corresponding reciprocal figure 

The most important thing in this chapter is the relation in the dimensions of the primal grid and the 

reciprocal figure. The length of the reciprocal figure is half of the forces acting in the y-direction on 

the grid. The amount of forces acting on the y-direction in the grid is ny and the amount of forces in x-

direction is nx. 

So the ratio 𝑙: ℎ = 𝐹𝑦:𝐹𝑥 will be: 

𝑙: ℎ =
𝐹𝑦;𝑡𝑜𝑡

𝑛𝑦
:
𝐹𝑥;𝑡𝑜𝑡

𝑛𝑥
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4 Calculation – The height  
This chapter contains more information how to calculate the height of the free nodes as mentioned in 

paragraph 2.4. 

4.1 The height of a node 
In this paragraph the calculation of the height of the free nodes related to the force on the node, will be 

described. 

Consider the primal grid as in figure 4.1. 

 
Figure 4.1 Primal grid with four equal members 

To calculate the height of node 5 in the primal grid, the equation as mentioned in paragraph 2.4 can be 

used: 

�𝑧5: (𝑧5 − 𝑧1)
𝐹𝑎
𝑙𝑎

+ (𝑧5 − 𝑧2)
𝐹𝑏
𝑙𝑏

+ (𝑧5 − 𝑧3)
𝐹𝑐
𝑙𝑐

+ (𝑧5 − 𝑧4)
𝐹𝑑
𝑙𝑑
− 𝐹𝑧;5 = 0 

 

Because nodes 1-4 are fixed nodes, with a height equal to 0, this can be rewritten to: 

(𝑧5 − 0)
𝐹𝑎
𝑙𝑎

+ (𝑧5 − 0)
𝐹𝑏
𝑙𝑏

+ (𝑧5 − 0)
𝐹𝑐
𝑙𝑐

+ (𝑧5 − 0)
𝐹𝑑
𝑙𝑑
− 𝐹𝑣5 = 0 → 

𝑧5
𝐹𝑎
𝑙𝑎

+ 𝑧5
𝐹𝑏
𝑙𝑏

+ 𝑧5
𝐹𝑐
𝑙𝑐

+ 𝑧5
𝐹𝑑
𝑙𝑑
− 𝐹𝑣5 = 0 → 

𝑧5
𝐹𝑎
𝑙𝑎

+ 𝑧5
𝐹𝑏
𝑙𝑏

+ 𝑧5
𝐹𝑐
𝑙𝑐

+ 𝑧5
𝐹𝑑
𝑙𝑑

= 𝐹𝑣5 

 

This can be rewritten to: 

𝑧5 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� = 𝐹𝑣5 
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The part between the parentheses is the force density: 

𝑞 =
𝐹
𝑙

 

 

So the equation can be shortened to: 

�
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� = �𝑞 

 

So: 

𝑧5 ∗�𝑞 = 𝐹𝑣5 

 

For example the primal grid in figure 4.2; the vertical force on node 5 (Fv5) has a size of 3 and the 

forces Fa, Fb, Fc and Fd, are 1: 

 
Figure 4.2 Primal grid with four equal members and the reciprocal figure 

𝐹𝑣5 = 𝑧5 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� = 𝑧5 �

1
3

+
1
3

+
1
3

+
1
3
� =

4
3
∗ 𝑧5 = 3 → 𝑧 =

9
4

 

 

According to this formula,  𝑧(𝑞) = 𝐹𝑣5, the forces acting on a point can be reduced to a total resulting 

force at the cross of the working line of the members, see figure 4.3. 
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Figure 4.3 Resulting force on the cross of the working lines in the structure 

When the same is done for a more complex primal grid (see figure 4.4), with a unit load of 3 on nodes 

7 and 8 and the reciprocal as in figure 4.5, we get: 

 
Figure 4.4 A more complex primal grid with seven members 

 
Figure 4.5 The reciprocal figure by figure 4.4 

𝐹𝑣;𝑡𝑜𝑡 = 𝑧7 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑔
𝑙𝑔

+
𝐹𝑒
𝑙𝑒

+
𝐹𝑓
𝑙𝑓
� + 𝑧8 �

𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑

+
𝐹𝑔
𝑙𝑔
� = 

𝑧7 �
11
10
3

+
6

10
5

+
11
10
3

+
6

10
3
� + 𝑧8 �

11
10
3

+
6

10
3

+
11
10
3

+
6

10
5
� =

79
75

𝑧7 +
79
75

𝑧8 = 6 



Optimizing shell structures 

36 

 

Because the reciprocal is symmetrical, the height of node 7 is equal to node 8, so: 

𝑧7 = 𝑧8 →
79
75

𝑧7 +
79
75

𝑧7 =
158
75

𝑧7 = 6 → 𝑧7 =
225
79

 

 
Figure 4.6 Resulting force on the cross of the working lines in the more complex structure 

This gives a similarity to the force polygon of a funicular shape; there is also a resulting force at the 

cross of the working lines of the ‘members’ at the support points, see figure 4.7 

 
Figure 4.7 Hanging cable with forces and the corresponding force polygon 

From figure 4.7 it can deduce that the individual forces, Fa, Fb, Fc and Fd, have no influence on the out-

line of the force polygon. So if the forces are changed, the shape of the funicular will change, but the 

lines at the support points will remain the same. 
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4.2 Elimination bars in the middle 
Consider the primal grid as in figure 4.8 and the reciprocal figure as in 4.9. 

 
Figure 4.8 Primal grid with 12 members 

 
Figure 4.9 The reciprocal figure by the primal grid in figure 4.8 
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To calculate the height of the nodes 9, 10, 11 and 12, the following equations can be used: 

(𝑧9 − 𝑧1)
𝐹𝑎
𝑙𝑎

+ (𝑧9 − 𝑧10)
𝐹𝑖
𝑙𝑖

+ (𝑧9 − 𝑧12)
𝐹𝑙
𝑙𝑙

+ (𝑧9 − 𝑧8)
𝐹ℎ
𝑙ℎ
− 𝐹𝑧9 = 0 

(𝑧10 − 𝑧2)
𝐹𝑏
𝑙𝑏

+ (𝑧10 − 𝑧3)
𝐹𝑐
𝑙𝑐

+ (𝑧10 − 𝑧11)
𝐹𝑗
𝑙𝑗

+ (𝑧10 − 𝑧9)
𝐹𝑖
𝑙𝑖
− 𝐹𝑧10 = 0 

(𝑧11 − 𝑧10)
𝐹𝑗
𝑙𝑗

+ (𝑧11 − 𝑧4)
𝐹𝑑
𝑙𝑑

+ (𝑧11 − 𝑧5)
𝐹𝑒
𝑙𝑒

+ (𝑧11 − 𝑧12)
𝐹𝑘
𝑙𝑘
− 𝐹𝑧11 = 0 

(𝑧12 − 𝑧9)
𝐹𝑙
𝑙𝑙

+ (𝑧12 − 𝑧11)
𝐹𝑘
𝑙𝑘

+ (𝑧12 − 𝑧6)
𝐹𝑓
𝑙𝑓

+ (𝑧12 − 𝑧7)
𝐹𝑔
𝑙𝑔
− 𝐹𝑧12 = 0 

 
When the brackets we get are eliminated, the following equations are derived: 

𝑧9
𝐹𝑎
𝑙𝑎

+ 𝑧9
𝐹𝑖
𝑙𝑖
− 𝑧10

𝐹𝑖
𝑙𝑖

+ 𝑧9
𝐹𝑙
𝑙𝑙
− 𝑧12

𝐹𝑙
𝑙𝑙

+ 𝑧9
𝐹ℎ
𝑙ℎ

= 𝐹𝑧9 

𝑧10
𝐹𝑏
𝑙𝑏

+ 𝑧10
𝐹𝑐
𝑙𝑐

+ 𝑧10
𝐹𝑗
𝑙𝑗
− 𝑧11

𝐹𝑗
𝑙𝑗

+ 𝑧10
𝐹𝑖
𝑙𝑖
− 𝑧9

𝐹𝑖
𝑙𝑖

= 𝐹𝑧10 

𝑧11
𝐹𝑗
𝑙𝑗
− 𝑧10

𝐹𝑗
𝑙𝑗

+ 𝑧11
𝐹𝑑
𝑙𝑑

+ 𝑧11
𝐹𝑒
𝑙𝑒

+ 𝑧11
𝐹𝑘
𝑙𝑘
− 𝑧12

𝐹𝑘
𝑙𝑘

= 𝐹𝑧11 

𝑧12
𝐹𝑙
𝑙𝑙
− 𝑧9

𝐹𝑙
𝑙𝑙

+ 𝑧12
𝐹𝑘
𝑙𝑘
− 𝑧11

𝐹𝑘
𝑙𝑘

+ 𝑧12
𝐹𝑓
𝑙𝑓

+ 𝑧12
𝐹𝑔
𝑙𝑔

= 𝐹𝑧12 

 
When those equations are added, some items can be erased, because they are added in one equation 
and subtracted in the other. So: 

𝑧9
𝐹𝑎
𝑙𝑎

+ 𝑧9
𝐹𝑖
𝑙𝑖
− 𝑧10

𝐹𝑖
𝑙𝑖

+ 𝑧9
𝐹𝑙
𝑙𝑙
− 𝑧12

𝐹𝑙
𝑙𝑙

+ 𝑧9
𝐹ℎ
𝑙ℎ

= 𝐹𝑧9 

𝑧10
𝐹𝑏
𝑙𝑏

+ 𝑧10
𝐹𝑐
𝑙𝑐

+ 𝑧10
𝐹𝑗
𝑙𝑗
− 𝑧11

𝐹𝑗
𝑙𝑗

+ 𝑧10
𝐹𝑖
𝑙𝑖
− 𝑧9

𝐹𝑖
𝑙𝑖

= 𝐹𝑧10 

𝑧11
𝐹𝑗
𝑙𝑗
− 𝑧10

𝐹𝑗
𝑙𝑗

+ 𝑧11
𝐹𝑑
𝑙𝑑

+ 𝑧11
𝐹𝑒
𝑙𝑒

+ 𝑧11
𝐹𝑘
𝑙𝑘
− 𝑧12

𝐹𝑘
𝑙𝑘

= 𝐹𝑧11 

𝑧12
𝐹𝑙
𝑙𝑙
− 𝑧9

𝐹𝑙
𝑙𝑙

+ 𝑧12
𝐹𝑘
𝑙𝑘
− 𝑧11

𝐹𝑘
𝑙𝑘

+ 𝑧12
𝐹𝑓
𝑙𝑓

+ 𝑧12
𝐹𝑔
𝑙𝑔

= 𝐹𝑧12 

_________________________________________________________+ 

𝑧9
𝐹𝑎
𝑙𝑎

+ 𝑧9
𝐹ℎ
𝑙ℎ

+ 𝑧10
𝐹𝑏
𝑙𝑏

+ 𝑧10
𝐹𝑐
𝑙𝑐

+ 𝑧11
𝐹𝑑
𝑙𝑑

+ 𝑧11
𝐹𝑒
𝑙𝑒

+ 𝑧12
𝐹𝑓
𝑙𝑓

+ 𝑧12
𝐹𝑔
𝑙𝑔

= 𝐹𝑧,𝑡𝑜𝑡 

 
It is considered that there is only influence of the forces and the lengths (= the force density) of the 
members connected to the fixed nodes on the . 
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From this it can concluded that the force density in the members which are only connected to the free 
nodes, have no influence on the z coordinate, see figure 4.10. 

 

Figure 4.10 Primal grid with the unneeded members 
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4.3 Conclusion 
To calculate the height of a node the structure the sum of the force density of a member times the dif-

ference in height of the start point and end point has to be equal to the vertical load on the node. 

For example see figure 4.11. 

 
Figure 4.11 Primal grid with four equal members 

 

To calculate the height of node 5 in the primal grid of figure 4.11, the following equation can be used: 

�𝑧5: (𝑧5 − 𝑧1)
𝐹𝑎
𝑙𝑎

+ (𝑧5 − 𝑧2)
𝐹𝑏
𝑙𝑏

+ (𝑧5 − 𝑧3)
𝐹𝑐
𝑙𝑐

+ (𝑧5 − 𝑧4)
𝐹𝑑
𝑙𝑑
− 𝐹𝑧;5 = 0 

 

By a more complex primal grid it has to be done for every node. 

 

When we work out the formula for the primal grid in figure 4.11 we get: 

(𝑧5 − 0)
𝐹𝑎
𝑙𝑎

+ (𝑧5 − 0)
𝐹𝑏
𝑙𝑏

+ (𝑧5 − 0)
𝐹𝑐
𝑙𝑐

+ (𝑧5 − 0)
𝐹𝑑
𝑙𝑑
− 𝐹𝑣5 = 0 → 

𝑧5
𝐹𝑎
𝑙𝑎

+ 𝑧5
𝐹𝑏
𝑙𝑏

+ 𝑧5
𝐹𝑐
𝑙𝑐

+ 𝑧5
𝐹𝑑
𝑙𝑑

= 𝐹𝑣5 

 

This can be rewritten to: 

𝑧5 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� = 𝐹𝑣5 

 

The part between the parentheses is the force density: 

𝑞 =
𝐹
𝑙
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So the equation can be shortened to: 

𝑧5 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� = 𝑧5 ∗�𝑞 

 

So: 

𝑧5 ∗�𝑞 = 𝐹𝑣5 

 

In general can be said that: 

�∆𝑧 ∗ 𝑞𝑛 = 𝐹𝑧,𝑡𝑜𝑡 

 

In paragraph 4.2 can be found that the members connected only to the free nodes, have no influence on 

the slope of the members connected to the fixed nodes. They are only needed to solve the equations 

for the z coordinate. 

 
Figure 4.12 Primal grid with 12 members 

So the resulting formula by figure 4,12 is: 

𝑧9
𝐹𝑎
𝑙𝑎

+ 𝑧9
𝐹ℎ
𝑙ℎ

+ 𝑧10
𝐹𝑏
𝑙𝑏

+ 𝑧10
𝐹𝑐
𝑙𝑐

+ 𝑧11
𝐹𝑑
𝑙𝑑

+ 𝑧11
𝐹𝑒
𝑙𝑒

+ 𝑧12
𝐹𝑓
𝑙𝑓

+ 𝑧12
𝐹𝑔
𝑙𝑔

= 𝐹𝑧,𝑡𝑜𝑡 
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5 Calculation - Overview 

5.1 Calculation examples 
In this chapter some examples are presented, to compare the influence between the force density in-

cluding the perimeter of the reciprocal figure and the complementary energy. 

For all the examples the primal grid as in figure 5.1 is used. 

 
Figure 5.1 Primal grid with four members for the examples to be calculated 

The sizes of the bars in the primal grid are: 

𝑙𝑎 = 1;   𝑙𝑏 = 𝑙𝑐 = 𝑙𝑑 = 3 
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5.1.1 Example 1 
In this example the force size  for all bars is set on 1, see figure 5.2. 

 
Figure 5.2 The reciprocal figure for example 1 

𝐹𝑎 = 𝐹𝑏 = 𝐹𝑐 = 𝐹𝑑 = 1 

 

𝐸𝐶 = 𝐹𝑎2𝑙𝑎 + 𝐹𝑏2𝑙𝑏 + 𝐹𝑐2𝑙𝑐 + 𝐹𝑑2𝑙𝑑 = 12 ∗ 1 + 12 ∗ 3 + 12 ∗ 3 + 12 ∗ 3 = 10 

 

𝐹𝐷 =  
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑

=
1
1

+
1
3

+
1
3

+
1
3

= 2 

 

𝑧 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� − 𝐹 = 0 → 𝑧 �

1
1

+
1
3

+
1
3

+
1
3
� − 𝐹 = 0 → 2𝑧 = 𝐹 

 

If 𝑧 = 3;  2 ∗ 3 = 𝐹 = 6 

Perimeter: 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 = 1 + 1 + 1 + 1 = 4 

Area:  𝐹𝑎 ∗ 𝐹𝑏 = 1 ∗ 1 = 1 

 

Summary: 

EC: 10 Perimeter: 4 
FD: 2 Area: 1 
z: 3 Perimeter/area: 4 
F: 6   
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5.1.2 Example 2 - least complementary energy 
In paragraph 3.2 it is found that there is a relation between the ratio of the size of the primal grid and 

the reciprocal: 

𝑙: ℎ = 𝐹𝑦:𝐹𝑥 

 

See also figure 5.3. 

 
Figure 5.3 Primal grid with four members and the corresponding reciprocal figure 

In this example this knowledge will be used to solve the problem and generate the reciprocal with the 

least complementary energy. 

 

With this information the reciprocal figure can be calculated with the minimum complementary ener-

gy. 

𝑙: ℎ = 6: 4 → 4𝐹𝑦: 6𝐹𝑥 →
3
2
𝐹𝑥:𝐹𝑦 

 

The perimeter of the reciprocal figure remains constant at 4, so: 

𝑃 = 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 = 2𝐹𝑥 + 2𝐹𝑦 = 4 

2𝐹𝑥 + 2𝐹𝑦 = 2𝐹𝑥 + 2 ∗
3
2
𝐹𝑥 = 5𝐹𝑥 = 4 → 𝐹𝑥 =

4
5

 

𝐹𝑦 =
3
2
𝐹𝑥 =

3
2
∗

4
5

=
6
5

 

 

𝐹𝑥 = 𝐹𝑏 = 𝐹𝑑 =
4
5

 

𝐹𝑦 = 𝐹𝑎 = 𝐹𝑐 =
6
5

 

 

The reciprocal will be according figure 5.4. 
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Figure 5.4 The reciprocal figure for example 2 

𝐸𝐶 = 𝐹𝑎2𝑙𝑎 + 𝐹𝑏2𝑙𝑏 + 𝐹𝑐2𝑙𝑐 + 𝐹𝑑2𝑙𝑑 =
6
5

2
∗ 1 +

4
5

2
∗ 3 +

6
5

2
∗ 3 +

4
5

2
∗ 3 = 9,6 

𝐹𝐷 =  
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑

=
6
5
1

+
4
5
3

+
6
5
3

+
4
5
3

=
32
15

 

𝑧 �
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑
� − 𝐹 = 0 → 𝑧�

6
5
1

+
4
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𝑧 = 𝐹 

 

If 𝑧 = 3;  32
15
∗ 3 = 𝐹 = 6,4 

Perimeter: 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 = 1 + 1 + 1 + 1 = 4 

Area:  𝐹𝑎 ∗ 𝐹𝑏 = 1 ∗ 1 = 1 

 

Summary: 

EC: 9,6 Perimeter: 4 
FD: 2,13 Area: 1 
z: 3 Perimeter/area: 4 
F: 6,4   
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5.1.3 Example 3 
In this example there are some values for the forces in the reciprocal figure are chosen in such a way 

that the perimeter stays the same as in example 1 and 2 on 4. 

 
Figure 5.5 The reciprocal figure for example 3 
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2
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1
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𝑙𝑏
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𝐹𝑐
𝑙𝑐
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3
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1

+
1
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3

+
3
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3

+
1
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3
� − 𝐹 = 0 → 2
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3
𝑧 = 𝐹 

 

If 𝐹 = 6;  6/2 1
3

= 𝑧 = 18
7

 

Perimeter: 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 = 3
2

+ 1
2

+ 3
2

+ 1
2

= 4 

Area:  𝐹𝑎 ∗ 𝐹𝑏 = 3
2
∗ 1
2

= 3
4
 

 

Summary: 

EC: 10,5 Perimeter: 4 
FD: 2,33 Area: 0,75 
z: 2,57 Perimeter/area: 5,33 
F: 6   
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5.1.4 Example 4 
In this example the force density is set the same as in example 2 with the least complementary energy; 

2,13 (= 32/15). The perimeter of the reciprocal figure is a variable.  

The difference with example is that the forces are expressed in x times Fa. So: 

𝐹𝑎 = ?;  𝐹𝑏 = 𝑥𝐹𝑎;  𝐹𝑐 = 𝐹𝑎;  𝐹𝑑 = 𝑥𝐹𝑎 

 

When the variable x equals 3, the following forces are the result: 

𝐹𝑎 = ?;  𝐹𝑏 = 3𝐹𝑎;  𝐹𝑐 = 𝐹𝑎;  𝐹𝑑 = 3𝐹𝑎 

 

Because the force density is known, we can calculate Fa: 

𝐹𝐷 =  
𝐹𝑎
𝑙𝑎

+
𝐹𝑏
𝑙𝑏

+
𝐹𝑐
𝑙𝑐

+
𝐹𝑑
𝑙𝑑

 

Al the force can be expressed in Fa, so: 

 
𝐹𝑎
1

+
3𝐹𝑎

3
+
𝐹𝑎
3

+
3𝐹𝑎

3
=

32
15

→ 𝐹𝑎 =
16
25

 

 

The resulting forces are: 

𝐹𝑎 =  16
25

;  𝐹𝑏 = 48
25

;  𝐹𝑐 =  16
25

;  𝐹𝑑 = 48
25

 

 

When the related reciprocal figure is drawn, it results in figure 5.6. 
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Figure 5.6 The reciprocal figure for example 4 

𝐸𝐶 = 𝐹𝑎2𝑙𝑎 + 𝐹𝑏2𝑙𝑏 + 𝐹𝑐2𝑙𝑐 + 𝐹𝑑2𝑙𝑑 =
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32
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𝑧 = 𝐹 

 

If 𝑧 = 3;  32
15
∗ 3 = 𝐹 = 6,4 

Perimeter: 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑐 + 𝐹𝑑 = 16
25

+ 48
25

+ 16
25

+ 48
25

= 5,12 

Area:  𝐹𝑎 ∗ 𝐹𝑏 = 16
25
∗ 48
25

= 768
625

 

 

Summary: 

EC: 23,76 Perimeter: 5,12 
FD: 2,13 Area: 1,23 
z: 3 Perimeter/area: 4,17 
F: 6,4   
 

  



Optimizing shell structures 

49 

 

5.2 Conclusion 
When the results of the previous four examples are compared, the following summary can be made, 

see the table in figure 5.7. 

 Example 1 Example 2 Example 3 Example 4 

Reciprocal 

 
 

 

 
EC 10 9,6 10,5 23,76 

FD 2 2,13 2,33 2,13 

Perimeter 4 4 4 5,12 

Figure 5.7 Comparison of the results of the different examples 

The perimeter of the reciprocal figure should be the lowest for the least complementary energy. The 

value of the force density is not necessary to find the solution with the least complementary energy or 

to compare the different solutions. 



 

 

  



 

 

 

 
 
 
Part III 
Informatics  
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6 Informatics 

6.1 Introduction 
Informatics has an important role in the calculation of the items described before. 

In the very early phase some solver sheets in Excel were made to calculate the reciprocal figure with 

the least complementary energy. 

Rhino with Grasshopper are very important in this informatics part. Rhino is a powerful three dimen-

sional drawing program. A major advantage of Rhino is the availability of various plugins. Grasshop-

per for example is such a plugin. Grasshopper is a graphical algorithm editor tightly integrated with 

Rhino’s three dimensional modelling tools. 

6.2 Workflow 
The workflow of the tool can be summarized as in figure 6.1. 

 
Figure 6.1 Resume of the calculating process 

There are three layer in the whole process. It starts with the ‘load generator’. With this generator it is 

possible to determine the magnitude of the loads on the nodes. The second layer (‘Optimal shape’ in 

figure 6.1) is actually the last step in the process; the result of the calculations. After calculating the 

structure with the minimum complementary energy, it is possible to draw this structure. The layer 

‘Surface’ in figure 6.1 is along with the ‘Load generator’ part of the input variables. 



Optimizing shell structures 

54 

 

In this paragraph the workflow of the tool is described. Each (calculation) step will be explained. Fig-

ure 6.2 shows the total Grasshopper workflow. In Appendix 1 there is a larger image of the model.  

The numbering of each frame corresponds to the numbering of the paragraphs with the explanation of 

that step. 

 
Figure 6.2 Total Grasshopper model 
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6.2.1 Inputs 
The first step in the process is the panel with the sliders for the input for the calculation, see figure 6.3. 

 
Figure 6.3 Grasshopper: input sliders 

Width (x):   With this slider the width (in the x direction) of the grid can be set. 

Length (y):   With this slider the length (in the y direction) of the grid can be set. 

Send to Excel: When this Boolean is set to ‘True’, Grasshopper updates continuously 

the values of sliders to Excel. The disadvantage of this continue up-

dating process is that the response of the sliders in Grasshopper is 

very slow. It is recommended first to enter the values with the Boole-

an on ‘False’ and after that to toggle it to ‘True’. Grasshopper then 

exports everything needed to calculate to Excel. After that the Boole-

an can be set back to ‘False’. 

Perimeter reciprocal: With this value the perimeter of the reciprocal figure can be set. The 

value of this perimeter has influence on the height of the structure. 

Slider n (x): The value of this slider determines in how many segments the struc-

ture is distributed, in the x direction. The higher this values, the high-

er the accuracy of the model. 

Slider n (y):   This slider does the same as ‘Slider n (x)’, but in the y direction. 

Q on 1-4: With those sliders the size of the load can be set.  Each slider corre-

sponds to a corner, see also paragraph 6.1.2. 

Total Complementary Energy: This is the total complementary energy of the calculated structure. 



Optimizing shell structures 

56 

 

6.2.2 Generating forces 

 
Figure 6.4 Grasshopper: generating the magnitude of the forces 

This step generates the forces on the nodes of the structure. By setting the force size of the corners in 

the input panel (see 6.1.1), Grasshopper generates a volume of the force. This ‘volume’ of the load is 

converted to point loads on the nodes of the structure. By doing this, it is possible to use no equally 

distributed loads on the structure, see figure 6.5. 

 
Figure 6.5 From distributed load to point loads 
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6.2.3 Defining the primal grid 

 
Figure 6.6 Grasshopper: defining the projected grid: the primal grid 

In this part the dimensions and the amount of steps (‘Slider n’) set in the input part, will be converted 

to the primal grid. In this grid there is no height (z coordinate) used. 

6.2.4 Export to Excel 

 
Figure 6.7 Grasshopper: export to Excel 
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With this part of the tool all the needed values to calculate the least complementary energy is generat-

ed. Those values will be exported to Excel when the ‘Send to Excel’ toggle (see 6.1.1) is set to ‘True’. 

To export the values to Excel, the tool uses some Visual Basic scripts, see Appendix 2. Those scripts 

provide a direct link between Grasshopper and Excel, so it is possible to get the right values on the 

right places in Excel. To calculate the least complementary energy, Excel needs the lengths of the 

members in the x and y direction, the two red areas at the top in figure 6.7. In the third and the fourth 

red areas there is a cell reference for Excel. With this reference Excel ‘knows’ how many forces there 

are. In the bottom red area the values for the ‘Slider n (x)’, ‘Slider n (y)’ and the ‘Perimeter reciprocal’ 

are collected. 

In earlier versions of the tool the stream function of a panel in Grasshopper was used. A disadvantage 

of this was that the file path of this stream cannot be relative. On each computer the path has to be set. 

6.2.5 Generating equations for calculating the height 

 
Figure 6.8 Grasshopper: generating equations to calculate the height of a node 

The equations mentioned in paragraph 2.4 are generated in this part. First it searches for the free nodes 

and then it searches for the four nodes around the free nodes. When this is known, the force density 

method equations can be generated. After that the forces on the nodes should be subtracted. This has 

to be exported to Excel. The formulas are designed in such a way that Excel immediately can start cal-

culating, see figure 6.9. 
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Figure 6.9 Grasshopper: generated equations for calculating the height of the nodes 

 



Optimizing shell structures 

60 

 

6.2.6 Excel 

 
Figure 6.10 Excel: the calculation sheet 

Figure 6.10 shows the calculation sheet in Excel. The values from column B to M are the exported 

values from Grasshopper, except for the values in cell D2 and G2. The values in those two cells are 

calculated using the dimensions of the primal grid and the amount of divisions in the primal grid. In 

paragraph 3.2 the relation between the dimensions of the primal grid and the reciprocal figure were 

explained according to this formula: 

𝑙: ℎ =
𝐹𝑦
𝑛𝑦

:
𝐹𝑥
𝑛𝑥

 

 

With this formula and the given perimeter of the reciprocal figure, Excel can calculate the forces 

Force_y and Force_x. Those forces are copied downward for the amount of members in that direction. 

With the force and the length, the complementary energy can be calculated per member (EC_y and 

EC_x). The sum of those values is the total complementary energy. 

In column B the equations are presented to calculate the height of the free nodes, see figure 6.9 for the 

equations as exported from Grasshopper. 
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In Excel a script is created in Visual Basic for Applications (see Appendix 3). This script contains the 

Solver function of Excel. This script is started by clicking on the button ‘Calculate Z’ in the Excel 

sheet. 

The Solver function uses the Generalized Reduced Gradient and changes the values in column A (with 

the height of the nodes) in such a way that the results of the equations from figure 6.9 equal to zero.  

A big disadvantage for now is the limitations in the Solver function. This function accepts no more 

than 100 constraints. To calculate the height of the nodes, there is a maximum of 100 nodes. If there 

was no maximum, or a higher maximum, it was possible to calculate a much higher accurate structure. 

6.2.7 Import height free nodes 

 
Figure 6.11 Grasshopper: import the height of the free nodes 

In this part there is piece of Visual Basic code (see Appendix 4) that imports the height which are cal-

culated in Excel, as described in 6.1.6. Those heights are combined with the x and y coordinates of the 

primal grid, such that the coordinates of the nodes are known. 
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6.2.8 Visualization of the load 

 
Figure 6.12 Grasshopper: visualization of the load 

In this part the load, as set in 6.1.1, will be visualized in Rhino, see figure 6.12 and 6.15.  

6.2.9 Visualization of the reciprocal grid 

 
Figure 6.13 Grasshopper: visualization of the reciprocal grid 

This part of the tool imports the optimum forces in the x and y direction for the least complementary 

energy from Excel, by using a Visual Basic script (see Appendix 5). With those values the reciprocal 

figure is generated and drawn in Rhino, see figure 6.13 and 6.15. 



Optimizing shell structures 

63 

 

6.2.10 Visualization of the final structure 

 
Figure 6.14 Grasshopper: visualization of the final structure 

With this part of the tool the final structure is drawn, see figure 6.14 and 6.15. 

 
Figure 6.15 Rhino: example of a result of a calculation 
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6.3 Conclusion 
The steps as explained before can be summarized in the process diagram as presented in figure 6.16. 

It is easy to calculate different structures. 

As mentioned in paragraph 6.2.6, Excel has a maximum of constraint in the Solver function. Therefore 

the accuracy of the model is not that high as expected. A solution for that problem is maybe another 

solver function which has not a maximum or a higher maximum. 

Another solution is to use a matrix and an inverse matrix. The disadvantage of a matrix is that every 

calculation needs another matrix. That makes this solution more complex. 

 
Figure 6.16 Process diagram 
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7 Results 
In figure 7.1 are two results generated by the developed tool. Both solutions have the reciprocal figure 

and thus the same perimeter, see figure 7.2. The only difference is the magnitude of the point loads. In 

the left example all the loads are the same, in the right example the magnitude of the load at the right 

side is bigger than at the left side. 

 

Figure 7.1 Two example results of the tool; left with equal loads, right with non equal loads 

 
Figure 7.2 Reciprocal figure by the example of figure 7.1 
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Figure 7.3 Example result with a high step size 

In figure 7.3 there is a shell structure with the highest possible amount of calculation steps in the tool. 

It is a relatively fluent structure, but when it is possible to use more steps the result is a more smooth 

shape. 

 

Figure 7.4 Result of a calculation 

Figure 7.4 contains the results of a calculation. The inputs are the values as presented in figure 6.3. 
What we can see in this figure is at the top the graphical representation of the volume of the load. Be-
low the load is the final optimized structure. Right of the structure is the associated reciprocal grid. 
The magnitude of the forces in the reciprocal figure can be found in the Excel calculating sheet, see 
figure 6.10.  



 

 

 

  



 

 

 
  



 

 

 
 
Part IV 
Conclusions 
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8 Conclusion 
This chapter gives a short conclusion of the research and some recommendations to be elaborated fur-

ther on this subject. 

8.1 Conclusion 
The research as done in the second part of this thesis provides some techniques to calculate on a faster 

way the optimal shell structure. 

With the found relation between the dimensions of the primal grid and the dimensions of the recipro-

cal figure it is possible to describe on a fast way the right reciprocal figure. 

The tool, designed in Grasshopper, functions as expected; it is simple, relatively fast and with the de-

scription in chapter 6 it is good to understand what every part does in the tool. 

By programming the Solver function in Excel the limitation of this function came up. Afterwards it 

was better to look first what the limitations of the programs are, so one can anticipate in that during the 

development. 

It can be considered that the results are only valid for the orthogonal grids. When there is a non-

orthogonal grid the results will probably different. 

The difference in results from an orthogonal versus a non-orthogonal grid  however was not part of 

this thesis but can be elaborated in future.  
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8.2 Recommendations 
The tool as described in the third part is good enough to make calculations to determine the shape of a 

shell by different loads, but there are some recommendations: 

 

• As mentioned in paragraph 6.2.6, Excel has a maximum of constraint in the Solver function. 

Therefore the accuracy of the model is not that high as expected. The maximum of accuracy 

with the tool is showed in figure 8.1. 

 

Figure 8.1 Render of a shell, with at the right a calculated structure as layer on it 

When it was possible to use more calculation steps, the members of the structure become 

smaller and the model more accurate. 

To eliminate this problem, probably the use of a matrix and an inverse matrix in Excel is the 

way to go. 

 

• To use the tool for more practical load cases, there must be the possibility to make loads with 

another direction then only in the z direction, and a combination of different load cases. These 

aspects have not been investigated because of the time. 
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Appendix 2 
Visual Basic script in Grasshopper to export variables to Excel. 
 
If sendToExcel Then 
 

Dim columnList As New Collection 
columnList.Add(data) 

 
' override language 

Dim oldCI As System.Globalization.CultureInfo = sys-
tem.Threading.Thread.CurrentThread.CurrentCulture 
System.Threading.Thread.CurrentThread.CurrentCulture = New 
System.Globalization.CultureInfo("en-US") 

 
'Grab a running instance of Excel 

Dim xlapp As Object 
xlapp = Sys-
tem.Runtime.InteropServices.Marshal.GetActiveObject("Excel.App
lication") 

 
 
' Get open document 

Dim wb As Object 
wb = xlapp.worksheets(1) 

 
Dim i As int32 
i = 0 
'For i = 0 To columnName.Count() - 1 
'Retrieve column input from columnList Collection 
Dim columnNum As List (Of Object) 
columnNum = columnList(i + 1) 

 
If Not columnNum.Count() = 0 Then 
'number of rows for current column 
Dim count As int32 
count = columnNum.Count() 
'Place information for a column 

Dim j As Int32 
For j = 0 To count - 1 
Dim cellPosition As Object 
cellPosition = wb.Cells(j + rowStart + 1, columnStart + 
i) 
cellPosition.value = columnNum(j) 

 
Next 
End If 

 
' Give the user control of Excel 
xlapp.UserControl = True 

 
End If 
  



Optimizing shell structures 

78  

 

Appendix 3 
Visual Basic for Application Macro in Excel to activate the Solver function. 
 
Sub Solver_Z() 
 

ActiveWorkbook.RefreshAll 
 

Range("A2:A200").Select 
Selection.ClearContents 

     
SolverReset 
SolverAdd CellRef:="$B$3:$B$102", Relation:=2, Formu-
laText:="0" 
SolverOk SetCell:="$B$2", MaxMinVal:=3, ValueOf:=0, By-
Change:="$A$2:$A$150", _ 
Engine:=1, EngineDesc:="GRG Nonlinear" 
SolverSolve True 

      
End Sub 
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Appendix 4 
Visual Basic script in Grasshopper to import the z coordinates to draw the resulting structure. 

 
Dim xlApp As Object 
 
Dim oldCI As System.Globalization.CultureInfo = sys-
tem.Threading.Thread.CurrentThread.CurrentCulture 
System.Threading.Thread.CurrentThread.CurrentCulture = New Sys-
tem.Globalization.CultureInfo("en-US") 
 
'Grab a running instance of Excel 

xlApp = Sys-
tem.Runtime.InteropServices.Marshal.GetActiveObject("Excel.App
lication") 

 
 
'call objects 

Dim wb As Object = xlApp.ActiveWorkbook 
Dim sheet As Object 
Dim val As Double 
Dim i As Integer 

 
sheet = wb.Worksheets(1) 

 
For i = 2 To 200 
val = sheet.cells(i, 1).value 
print(val) 
Next 
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Appendix 5 
Visual Basic script in Grasshopper to import the force size to draw the reciprocal figure. 

 
Dim xlApp As Object 

 
Dim oldCI As System.Globalization.CultureInfo = sys-
tem.Threading.Thread.CurrentThread.CurrentCulture 
System.Threading.Thread.CurrentThread.CurrentCulture = New Sys-
tem.Globalization.CultureInfo("en-US") 

 
'Grab a running instance of Excel 

xlApp = Sys-
tem.Runtime.InteropServices.Marshal.GetActiveObject("Excel.App
lication") 
 
 

'call objects 
Dim wb As Object = xlApp.ActiveWorkbook 
Dim sheet As Object 
Dim val As Double 
Dim val2 As Double 
 
sheet = wb.Worksheets(1) 
 
val = sheet.cells(2, 4).value 
val2 = sheet.cells(2, 7).value 
print(val) 
print(val2) 
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