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SUMMARY

ICRO and nanomechanical resonators are essential to the state-of-the-art commu-
M nication, data processing, timekeeping, and sensing systems. The discovery of
graphene and other two-dimensional (2D) materials has been a profound source of in-
spiration for the next generation of these devices, owing to their exceptional mechanical,
electrical, and thermal properties. However, alongside their advantages, the atomically
thin nature of these resonators also presents its own unique challenges, as the dynamic
response of these resonators rapidly becomes nonlinear, where nonlinear coupling and
dissipation processes manifest. To unleash the full potential of these resonators, a com-
prehensive understanding of the emerging nonlinear phenomena is crucial. In this pur-
suit, this thesis studies nonlinear dissipation pathways in 2D material resonators that
arise from the coupling of their internal mechanical modes to each other as well as to
their microscopic physics. The thesis consists of six chapters.

Chapter 1 serves as an introduction to the realm of micro/nanomechanical and 2D
material resonators, providing the reader with the fundamental mathematical ground-
work and forming the motivation for investigating their nonlinear dynamics and dissi-
pation.

Chapter 2 investigates the effects of intermodal coupling on nonlinear dissipation,
by studying the nonlinear dynamic response of an optothermally excited graphene nan-
odrum resonator. Here, experiments reveal a significant increase in the nonlinear dis-
sipation rate at the vicinity of a parametric-direct internal resonance. The observations
are explained by a coupled nonlinear two degrees-of-freedom model of the resonator
with good agreement, demonstrating a clear relationship between the observed nonlin-
ear dissipation and parameters such as drive frequency, coupling strength, and Q factor
of the coupled mode.

To understand the intermodal couplings of these resonators in a more general frame-
work, in Chapter 3, a multi-modal reduced-order modeling procedure is introduced.
This approach, relying only on physically measurable quantities and utilizing finite ele-
ment simulations, enables the understanding of the global dynamic response of nonlin-
ear nanoresonators. To validate the model, the simulations of the reduced-order model
are compared to experimental data from a graphene nanoresonator, resulting in a good
qualitative description of the intricate nonlinear dynamics exhibited by the nanodrum,
which is essential for describing the dissipation and intermodal energy pathways of the
system.

Chapter 4 explores the generation of mechanical frequency combs from the non-
linear coupling of internal modes of a graphene nanodrum due to symmetry-breaking
forces. By applying electrostatic forces to disrupt the out-of-plane symmetry of a graphene
resonator and tuning its resonance frequencies, a one-to-two internal resonance is acti-
vated. It is found that at high drive levels, at the center of this internal resonance, quasi-
periodic oscillations emerge, leading to the generation of mechanical frequency combs.

xi



Xii SUMMARY

To explain the observations, a continuum mechanics model of the deflected nanodrum
is constructed, offering insight into the origin of the frequency comb through simula-
tions and revealing that it is a consequence of the Neimark bifurcation of periodic solu-
tions.

In Chapter 5, the focus shifts to the nonlinear coupling between mechanics and mi-
croscopic physics in a 2D material resonator. The nonlinear dynamics of FePS3-based
heterostructure membranes undergoing a magnetic phase transition at the Néel tem-
perature are investigated. Significant changes in the nonlinear stiffness and damping
parameters are observed during the transition. An analytical model that accounts for
magneto-mechanical coupling is utilized to explain these observations. The results em-
phasize the influence of the material’s magnetic order on linear and nonlinear dynamics
of the resonator, showcasing the potential for utilizing the resonator’s nonlinear dynamic
responses as probes for condensed-matter physics.

And finally, in Chapter 6, the conclusions and key findings of the thesis are presented.
Additionally, an outlook is provided on future directions and the next steps for research
in the field of nonlinear dynamics of micro/nano and 2D material resonators.



SAMENVATTING

ICRO- en nanomechanische resonatoren zijn essentieel voor de nieuwste vormen
M van communicatie, gegevensverwerking, tijjdwaarneming en detectie. De ontdek-
king van grafeen en andere tweedimensionale (2D) materialen is een rijke bron van
inspiratie geweest voor de volgende generatie van zulke systemen. De materialen on-
derscheiden zich vanwege hun uitzonderlijke mechanische, elektrische en thermische
eigenschappen. Naast voordelen brengt de atomair dunne aard van deze resonatoren
echter ook zijn unieke uitdagingen met zich mee. De dynamische respons van deze reso-
natoren wordt snel niet-lineair, waardoor niet-lineaire koppeling en dissipatieve proces-
sen zich manifesteren. Om het volledige potentieel van deze resonatoren te benutten, is
diepgaand inzicht in de voortkomende niet-lineaire verschijnselen cruciaal. In dit stre-
ven bestudeert dit proefschrift niet-lineaire dissipatieroutes in 2D-materiaalresonatoren
die voortkomen uit de koppeling van hun interne mechanische modi met elkaar en met
hun microscopische fysica. Dit proefschrift bestaat uit zes hoofdstukken.

Hoofdstuk 1 dient als inleiding tot het rijk van micro/nanomechanische en 2D-materiéle
resonatoren, die de lezer voorziet van de fundamentele wiskundige grondslag en de mo-
tivatie vormt voor het onderzoek naar hun niet-lineaire dynamiek en dissipatie.

Hoofdstuk 2 onderzoekt de effecten van intermodale koppeling op niet-lineaire dis-
sipatie, door het bestuderen van de niet-lineaire dynamische respons van een opto-
thermisch aangedreven grafeen nanodrum resonator. Hier onthullen experimenten een
significante toename van de niet-lineaire dissipatie in de buurt van een parametrisch-
directe interne resonantie. De observaties worden met goede overeenstemming ver-
klaard door een gekoppeld niet-lineair model van de resonator met twee vrijheidsgra-
den, waaruit een duidelijke relatie blijkt tussen de waargenomen niet-lineaire dissipa-
tie en parameters zoals aandrijffrequentie, koppelingssterkte en Q-factor van de gekop-
pelde modus.

Om de intermodale koppelingen van deze resonatoren in een algemener kader te
begrijpen wordt in hoofdstuk 3 een multimodale modelleringsprocedure van geredu-
ceerde orde geintroduceerd. Deze benadering, die alleen vertrouwt op fysiek meetbare
grootheden en gebruik maakt van eindige elementen methodes, maakt het mogelijk om
de globale dynamische respons van niet-lineaire nanoresonatoren te begrijpen. Om het
model te valideren, worden de simulaties van het gereduceerde-orde model vergeleken
met experimentele data van een grafeen nanoresonator, wat resulteert in een goede kwa-
litatieve beschrijving van de ingewikkelde niet-lineaire dynamica die de nanodrum ver-
toont. Dit is essentieel voor het beschrijven van de dissipatieve en intermodale energie-
overdrachten van het systeem.

Hoofdstuk 4 onderzoekt hoe mechanische frequentiekammen voortkomen uit de
niet-lineaire koppeling van interne modi van een grafeen nanodrum ten gevolge van
symmetrie brekende krachten. Door elektrostatische krachten toe te passen om de per-
pendiculaire symmetrie van een grafeen resonator te verstoren en de resonantiefrequen-
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ties af te stemmen, werd een één-op-twee interne resonantie geactiveerd. Er blijken bij
hoge aandrijfniveaus, in het midden van deze interne resonantie, quasi-periodieke oscil-
laties te ontstaan, wat leidt tot het genereren van mechanische frequentiekammen. Om
de waarnemingen te verklaren, wordt een continuiimmechanica model voor een gebo-
gen nanodrum geconstrueerd, die inzicht biedt in de oorsprong van de frequentiekam
door middel van simulaties, en onthult dat deze het gevolg is van een Neimark-bifurcatie
van periodieke oplossingen.

In hoofdstuk 5 verschuift de focus naar de niet-lineaire koppeling tussen mechanica
en microscopische fysica in een 2D-materiaalresonator. De niet-lineaire dynamica van
FePS3-gebaseerde heterostructuurmembranen die een magnetische faseovergang on-
dergaat bij de Néel temperatuur wordt onderzocht. Significante veranderingen in de
niet-lineaire stijfheid en demping worden waargenomen tijdens de overgang. Een ana-
lytisch model dat rekening houdt met magneto-mechanische koppeling wordt gebruikt
om deze waarnemingen te verklaren. De resultaten onderstrepen de invloed van de
magnetische orde van het materiaal op lineaire en niet-lineaire dynamica van de reso-
nator, die het potentieel toont voor het gebruik van de niet-lineaire dynamiek van de
resonator reacties als sonde voor de vaste stof fysica.

Tot slot worden in hoofdstuk 6 de conclusies en belangrijkste bevindingen van het
proefschrift gepresenteerd. Daarnaast wordt er een vooruitblik gegeven op toekomstige
richtingen en de volgende stappen voor onderzoek op het gebied van niet-lineaire dyna-
mica van micro/nano- en 2D-materiaalresonatoren.



OzET

IKRO ve nanomekanik rezonatorler iletisim, veri isleme, zaman 6l¢iimii ve algi-

lama sistemlerinin en ileri teknolojik gelismelerinde temel bir rol oynamaktadir.
Grafen ve diger iki boyutlu (2B) malzemelerin kesfi, bu malzemelerin {istiin mekanik,
elektriksel ve termal 6zellikleri sebebiyle gelecek nesil cihazlar i¢in derin bir ilham kay-
nagl olmustur. Avantajlarinin yani sira, 2B rezonatorlerin atomik derecede ince yapisi
kendi benzersiz zorluklarini beraberinde getirmektedir. Bu cihazlarin dinamik tepkisi
kolayca dogrusal olmayan bir hale gelmekte ve mekanik dogal modlar1 arasinda dogrusal
olmayan baglasim ve séniimleme siirecleri ortaya cikmaktadir. Bu cihazlarin tam potan-
siyelini aciga cikarmak i¢in, dogrusal olmayan bu fenomenlerin kapsaml sekilde anlasil-
mas1 hayati 6neme sahiptir. Bu amacla, bu tez, 2B rezonatérlerin i¢c mekanik modlarinin
birbiriyle ve mikroskobik 6lcekteki siireclerle olan baglasimindan kaynaklanan dogrusal
olmayan soniimleme yollarini incelemektedir. Tez alt1 boliimden olugsmaktadir.

Birinci boliim, mikro/nanomekanik ve 2B rezonatorlere giris olarak hizmet ederek,
okuyucuya dogrusal olmayan dinamikleri ve soniimlemeyi incelemek i¢in gerekli mate-
matiksel temeli sunmakta ve arastirmanin motivasyonunu ac¢iklamaktadir.

ikinci béliim, i¢ dogal modlar aras1 baglagimin dogrusal olmayan séniimleme iize-
rindeki etkilerini inceleyerek, optotermal olarak uyarilmis bir grafen nanodavul rezo-
natoriiniin dogrusal olmayan dinamik tepkisini incelemektedir. Burada deneyler, bir
parametrik-direkt i¢sel rezonansin (internal resonance) yakininda, dogrusal olmayan
soniimleme hizinda énemli bir artisin oldugunu gostermektedir. Gozlemler, rezona-
tortin dogrusal olmayan baglasimls, iki serbestlik dereceli bir modeli ile aciklanmig ve
dogrusal olmayan sontimleme ile siiriicii frekansi, baglasim giicii ve baglasan modun Q
faktorii gibi parametreler arasindaki acik bir iliskiyi gostermistir.

Bu rezonatérlerin i¢ modlar arasindaki baglasimlari ve etkilesimleri daha genel bir
cercevede anlamak icin, {iclincii boliimde bu rezonatérlerin ¢coklu modlu indirgenmis
derece modellemesi (reduced-order modelling) sunulmaktadir. Bu yaklasim tamamen
fiziksel olarak olciilebilir niceliklere dayanmaktadir ve sonlu elemanlar simiilasyonlari
kullanarak dogrusal olmayan nanorezonatorlerin dinamik tepkisinin biitiinsel olarak an-
lagilmasini amaclamaktadir. Modelin dogrulanmast icin, indirgenmis derece modelin si-
miilasyonlar1 bir grafen nanorezonatériinden elde edilen deneysel verilerle karsilastiril-
maktadir. Model, nanodavulun gosterdigi karmasik dogrusal olmayan dinamiklerin nitel
bir aciklamasini basarili bir sekilde sunar ve bu, bu sistemlerdeki i¢ modlar arasi enerji
yollariin ve soniimlemenin kokenlerinin kapsamli bir bakis acisindan anlasilmasi icin
esastir.

Dérdiincii boliim, bir grafen nanodavulunda dogal modlarin, simetri bozan kuvvet-
ler sayesinde ortaya ¢ikan dogrusal olmayan baglasimindan meydana gelen mekanik fre-
kans tarag1 olusumunu incelemektedir. Bu boliimde, bir grafen rezonatoriiniin diizlem
dis1 simetrisini bozmak ve rezonans frekanslarini ayarlamak i¢in elektrostatik kuvvetler
uygulanmakta ve bu sayede iki dogal mod arasi bir bire-iki i¢csel rezonans etkinlestiril-
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mektedir. Yiiksek siiriicii seviyelerinde, bu i¢sel rezonansin merkezinde, kuazi-periyodik
salinimlarin ortaya ciktig1 ve mekanik frekans taragi olusturdugu gézlemlenmektedir.
Gozlemleri aciklamak icin, egik nanodavulun siirekli ortamlar mekanigi modeli olus-
turulmaktadir. Bu sayede, modelin simiilasyonlar1 araciliiyla frekans taraginin kokeni
anlasilmis ve bunun periyodik salimimlarin Neimark ¢atallanmasinin bir sonucu oldugu
ortaya koyulmustur.

Besinci béliim, 2B rezonatorlerde mekanik ve mikroskobik fizik arasindaki dogrusal
olmayan baglasima odaklanmaktadir. Néel sicakliginda manyetik bir faz gecisine ug-
rayan FePS3 tabanli heteroyapt membranlarin dogrusal olmayan dinamikleri incelen-
mektedir. Gegcis sirasinda dogrusal olmayan sertlesme ve séniimleme parametrelerinde
onemli degisiklikler gozlenmektedir. Bu gozlemleri agiklamak icin, manyeto-mekanik
baglasimi hesaba katan analitik bir model olusturulmustur. Sonugclar, malzemenin man-
yetik diizeninin, rezonatdriin dogrusal ve dogrusal olmayan dinamigi tizerindeki etkisini
aciga cikartmakta ve rezonatoriin dogrusal olmayan dinamik tepkisinin yogun madde fi-
zigi arastirmalari icin potansiyel bir ara¢ oldugunu sergilemektedir.

Son olarak, altinc1 boliimde tezin ¢ikarimlari ve anahtar bulgulari sunulmaktadir. Ay-
rica, mikro/nano ve 2B rezonatorlerin dogrusal olmayan dinamikleri alaninda gelecek
yonelimler ve arastirma adimlarina dair bakis agilar ele alinmaktadr.



INTRODUCTION

HETHER it is to study the motion of celestial bodies, growth of a cell or a chemical
Wreaction, predicting the future states of a dynamical system is essential to many
scientific disciplines. From the perspective of mechanics, this state is defined by the
displacement of an object and its time derivatives. In his foundational works on classi-
cal mechanics, given their initial condition and forces acting on them, Newton demon-
strated that it is possible to relate an object’s current state to its future states. On a deeper
level, this meant that, it might be possible to claim (as Laplace did [1]), at a certain mo-
ment in time, having complete knowledge of the forces in nature, together with the po-
sition and velocity of every single particle in the universe, in principle, one would have
all the ingredients, not only to know all the future states of the universe, but also all the
past. Consequences of this claim went beyond the boundaries of science and even raised
philosophical questions regarding the existence of free will. The problems with this ex-
citing but ambitious statement became apparent in many works later on, but even at the
conceptual level, the idea is still inspiring.

However, in the practical sense, even in a scenario where all of the fundamental
forces could be described in simple mathematical forms, a student of dynamics will
quickly realize that it is still non-trivial how the resulting motion will be determined,
specially when nonlinear forces and multiple interacting objects are involved. It is al-
most ironic that even the simplest looking dynamics problems in nature, such as three
particles interacting via gravity, the famous three-body problem, has no general analyt-
ical closed form solution. Nevertheless, with the development of theory of dynamical
systems, pioneered by Henri Poincaré and later further advanced by many others, nu-
merous methods have been established in order to gather valuable information about a
system’s dynamics, without having to exactly solve them [2]. Benefits of these methods
expand beyond mechanics, and were used to virtually study any dynamical system that
could be expressed with differential equations, let it be the prey-predator population dy-
namics, electrical circuits or the weather forecasting.




2 1. INTRODUCTION

If we set aside slightly complicated (!) problems like solving the equation of motion
for the universe, for certain conditions, many dynamical systems in nature locally show
well defined periodic responses with a characteristic frequency. It is even possible to
find many instances where there is an emerging symmetry in this periodicity between
interacting systems, where we can talk about a dynamical order, in spite of what the
second law of thermodynamics dictates in the long run [3]. In fact, this dynamical order
is the reason I am able to write these words, thanks to the thousands of pacemaker cells
that are periodically firing in synchrony to keep my heart beating.

The mathematical framework for analyzing such periodic responses has been thor-
oughly developed, not only to understand how nature operates, but also to take advan-
tage of these principles in technology. Great examples are the oscillators that we use,
whether these are old pendulum clocks on the wall of our grandparents’ house, RLC cir-
cuits in radio receivers, quartz crystals in our computers or micro and nanoelectrome-
chanical oscillators.

1.1. MICRO/NANOELECTROMECHANICAL OSCILLATORS

Micro and Nanoelectromechanical oscillators are essential for cutting-edge technolog-
ical applications like modern communication, data processing, and time-keeping sys-
tems[4], [5]. They are micro/nanoscale structures that are used for reliable generation of
stable and periodic electromechanical signals from kHz up to GHz frequencies, to syn-
chronize operations and track time. Because of their high stability and longevity, they
are frequently preferred to their purely electrical analogues. These devices have been
pushed down to sub-nanometer scale as a result of recent advancements in manufac-
turing processes, which have reduced their volume and energy requirements while in-
creasing their output frequency. All oscillators mainly consist of two core components,
a resonator and an amplifier. The resonator, is the heart of the oscillator, which in Mi-
cro/Nanoelectromechanical systems (MEMS/NEMS), is a mechanical structure that can
vibrate efficiently at its resonance frequency. An amplifier provides the drive for the res-
onator, in a feedback loop, to drive the resonator at its resonance where it generates
a high amplitude, stable electromechanical signal. In this thesis, we will focus on the
thinnest mechanical resonators ever made.

1.1.1. GRAPHENE RESONATORS

The discovery of the two-dimensional (2D) material graphene by Novoselov and Geim
in 2004 [6] (which later earned them the Nobel Prize in Physics 2010 "for groundbreak-
ing experiments regarding the two-dimensional material graphene") opened up a num-
ber of promising research directions in physics [7] and, for that matter, nanomechan-
ics. Graphene is a single layer of carbon atoms organized in a hexagonal lattice and was
first realized by exfoliating layers (conveniently, with a commercial adhesive tape) from
natural graphite, as these layers are held by weak van der Waals forces. Along with hav-
ing outstanding electrical and thermal characteristics, it also possesses a record level of
mechanical strength in the plane of the lattice, being the strongest material ever mea-
sured with theoretical Young’s modulus of 1 TPa, where it has shown to endure stresses
up to 60 GPa experimentally [8]. Furthermore, due to being atomically thin (0.335 nm
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between its layers) it is extremely light and sensitive in the out-of-plane direction. Nat-
urally, it became one of the top contenders for the upcoming nanomechanical devices.
In fact, numerous studies have already shown the capabilities of graphene-based NEMS
sensors, including the ability to detect mass, pressure, acceleration, light and even the
movement of a single bacterium [9]-[18]. After the discovery of graphene, it was quickly
realized that it is possible to make free-standing graphene structures by transferring a
graphene layer on top of a cavity, that is often etched into a SiO, layer on top of a Si sub-
strate. Almost all of the graphene-based NEMS devices are based on these free-standing
graphene structures, including the graphene resonator [19].

These nanoscale resonators typically have resonances at the MHz frequencies. Con-
trary to what one might initially expect from such a pure resonator made out of a single
layer of carbon atoms, experiments at room temperature have shown that they have high
dissipation rates [20] compared to state of the art micro and nanomechanical resonators
that are designed for sensitivity [21]. There are many studies trying to pinpoint the ori-
gins of dissipation in these resonators, but because of the unique mechanical, thermal,
and electrical properties of graphene, the problem is non-trivial. Moreover, these res-
onators exhibit nonlinear dynamic response already at pN force levels due to their ex-
treme out-of-plane force sensitivity, resulting in a very small linear operation range [22].
Yet for the same reason, they also provide an unrivaled framework for the experimental
study of fundamental nonlinear dynamics problems, which is virtually impossible with
other types of mechanical systems. Thus it is clear that, in order to use these resonators
to their full potential, their response in the nonlinear regime should be well understood.
However, before diving deep into their nonlinear response, let us first establish the foun-
dations of the basic linear mechanical resonators.

1.1.2. FUNDAMENTALS OF A MECHANICAL RESONATOR

In its most basic form, a mechanical resonator can be approximated by a spring-mass
system, where a mass, m, is attached to the linear spring with resulting restoring force
Fs = —k1x. From Newton’s second law, the fundamental equation of motion for this
mechanical resonator is:

mx(t) + kyx(t) =0 (1.1)

The well known general solution to this differential equation is x(¢) = a; cos(wg?) +
ap sin(wg 1), where wg = /k;/m is the resonance frequency of the resonator and a; and
ay are coefficients depending on the initial conditions x(0) = xp and %(0) = vy. In this
form, the equations are conservative, where no energy goes in or out of the system. How-
ever, in reality, energy is being lost to the environment continuously. Typically to model
this energy being loss, a linear damping force F; = —cx is considered. A more intuitive
way of describing this dissipative term is by introducing the dimensionless quality fac-
tor (Q), where the damping coefficient ¢ can be expressed as ¢ = % The Q-factor can
be effectively interpreted as the number of oscillation cycles a system must go through
before losing most of its energy to the environment for a freely oscillating, non-driven
resonator. Therefore it is a useful quantity when comparing the energy efficiency of dif-
ferent resonators. When the resonator is excited with a periodic force in order to sustain
the motion of the resonator at a desired frequency (which is generally the resonance
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frequency wy for maximum efficiency and signal amplitude) F; = F cos (wqt), where F is
the drive amplitude and w is the drive frequency, we obtain the famous linear harmonic
oscillator model, which reads as:

. mawo |,
mi+kyx+ szFcos(wdt). (1.2)

The steady-state amplitude X for the linear harmonic oscillator model can be found by
assuming a motion in the form of x = Xcos(wgt+86), where 6 is a phase shift.

In the end, the steady-state amplitude X can be written as:

_ Fim
X= (1.3)

V(@3 =02 + (@owal Q)2

where the phase 0 is:

(1.4)

Wow
0=arctan( 0%d )

Q% - wf)

Here, two important observations that can be made, which will be important for the fol-
lowing sections. Firstly, as the name suggests, the steady-state amplitude of the linear
harmonic oscillator indeed scales linearly with the force F that is applied. Secondly, the
phase of the oscillations, 8, is dependent on neither the driving force F nor the oscilla-
tion amplitude X.

These two equations lay the basic principles to understand oscillators that are being
employed in current day technologies, yet, not surprisingly, it is only an approximation
of the governing physics that is only valid when they are operated at small amplitudes
where nonlinearities aren’t influencing the dynamic response. This approximation is of-
ten valid in practice, as most of the resonators cannot reach these amplitudes, either
because they are too strongly damped or undergo structural failure before the onset of
nonlinear response. However, recent advances in lithography techniques and material
science have enabled the manufacturing of micro/nano-structures with enormous as-
pect ratios and record yield strengths. Naturally, these structures can safely reach rela-
tive (with respect to their characteristic length) oscillation amplitudes orders of magni-
tude greater than their predecessors, resulting in a dynamic response which can not be
explained anymore by the well established linear harmonic oscillator model. Although
nanomechanical structures with high aspect ratios can operate at greater relative am-
plitudes, their signal output is much weaker due to their reduced size, that might stay
below the noise level of the output signal at low oscillation amplitudes. The range be-
tween the lowest linear operation amplitude above the noise level and the operation
amplitude where nonlinearities emerge is called the dynamic range. In fact, for some
of these resonators at the nanoscale, the dynamic range is almost non-existent and they
practically can be only operated in the nonlinear regime, as their output signals are be-
low or extremely close to the noise level for oscillation amplitudes that remain in the
linear regime.
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1.2. NONLINEAR MICRO/NANOMECHANICAL RESONATORS

For nonlinear micro/nanomechanical resonators, including graphene resonators, as-
sumptions of linear stiffness and damping quickly fail at high amplitude oscillations.
The experiments reveal that the effective stiffness and energy dissipation in these sys-
tems are amplitude dependent [23]. Thus generally, a modified version of the linear
harmonic oscillator is employed to describe the motion of these systems, which is the
so called Duffing-van der Pol oscillator:

mw
mi+kix+ k3x3+Tox+rnlx2x=Fcos(a)dt). (1.5)

where k3 is the Duffing coefficient that defines the nonlinear cubic stiffness and 7,,;, the
coefficient of nonlinear damping.

1.2.1. NONLINEAR STIFENESS

Even though the origins of nonlinear effects to be encountered are numerous at the
nanoscale (such as electrostatic potentials, mechanical couplings, van der Waals forces
and so on), the primary root to nonlinear stiffness ks, that is encountered in these res-
onators is purely geometrical, which is also the case for graphene resonators. In fact, a
system with only linear springs can generate effective nonlinear stiffness purely due to
geometry. The effect is very fundamental and can be intuitively demonstrated by a sim-
ple model: Imagine a mass m that is attached to two springs with stiffness k from each
side to a wall at their neutral lengths L, a very basic representation of a string resonator
(see Fig. 1.1). The resonator operates in the z degree-of-freedom. As the mass displaces

_TZ

Figure 1.1: Schematic of the toy string resonator model.

in z, the springs will elongate such that their lengths will be Rs = v/ z2 + L2. The force per
spring can be expressed as Fs = k(L — R;). The total force in the z degree-of-freedom,
using the trigonometric relations, can be written as:

z 9 ( r kzL
—_—— - z7— —
Vz?+ 12 Vz?+ L2
Already we can see that the linear spring forces translate to z degree-of-freedom with a

linear and nonlinear part. We can Taylor expand the nonlinear force term around z =0,
which results in the F;:

F,=2k(L—Ry) (1.6)

k 5 5 k s
Fz:—Z(kz—(kz—ﬁz +0(z )))z—ﬁz 1.7)
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At moderately high amplitudes, the resulting force can be approximated as a cubic non-
linear spring, which is purely a consequence of geometry. This source of nonlinearity
is called geometric nonlinearity, since it occurs due to the geometry, and is not caused
by material nonlinearities. It is not so different for more sophisticated models of these
resonators (although the mathematics is more cumbersome), which we demonstrate in
the following chapters.

The consequences of this amplitude dependent stiffness on the dynamics are re-
markable. Depending on the sign of ks, as the oscillation amplitudes grow, the res-
onator either gets stiffer (ks > 0) or softer (k3 < 0), as the effective stiffness of the sys-
tem is kefr = ki + k3 (x?) avg- This amplitude dependent stiffness of the system results in
an amplitude dependent resonance frequency, where the resonance of the system is a
function of the oscillation amplitude (Fig. 1.2). Furthermore, the nonlinear resonance
curve becomes multi-stable, for a single drive frequency, there can be found two stable
and one unstable solution.

a) k,<0 k=0 k,>0 b) /2

SS

-n/2

wd wd

Figure 1.2: Steady-state frequency responses of Duffing-van der Pol equation, with different Duffing coeffi-
cients. Solid lines are stable and dashed lines are unstable solutions. a) Steady-state amplitude with respect to
drive frequency. b) Steady-state phase with respect to drive frequency.

The form of this dependence can be obtained by solving for the steady-state am-
plitude of the Duffing-van der Pol oscillator (Eq. (1.5)). Approximations of the steady-
state solution to this nonlinear differential equation can be analytically obtained by us-
ing various methods, such as secular perturbation theory, rotating wave approximation
and harmonic balancing (the latter two are also used in following chapters), resulting
in similar outcomes. Using secular perturbation theory [23], it is possible to obtain the
equations for the steady-state amplitude x;:

2
( z )
2mw?
0
x?s = 5 (1.8)
2
wa—wo _ 3 ks .2 1 17Ty 2
( wo 8 mw3 Xss| + (ZQ * 8 mawo xss)
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and phase 0;:
'3'50 + %xﬁs
0,5 = arctan T (1.9
m(wq — wo) — m?)xss

We can obtain the nonlinear resonance frequencies of the amplitude equation using the
dofs _
dwg —

fact that at the peak amplitude 0, resulting in:

3 ks
Wy =Wo+=—— X0 (1.10)
wo

where w,,; is the nonlinear resonance peak frequency, where x,,, is the peak ampli-
tude. Looking at equations (1.8), (1.9) and (1.10), one can immediately recognize the
interplay between the amplitude, resonance frequency and phase of the oscillations, as
they are functions of one another. Unlike the linear harmonic oscillator, this interplay
results in the conversion of any noise in the driving force or amplitude of the resonator
to frequency noise. This is one of the big challenges nonlinear resonators pose in terms
of frequency stability [24], [25], though luckily, the origins are well understood, contrary
to nonlinear damping.

1.2.2. AMPLITUDE DEPENDENT DISSIPATION

Most people are not foreign to the concept of a damping force that depends nonlinearly
on the velocity, as every physics or mechanical engineering student was probably taught
during fluid dynamics classes that viscous drag scales with the square of velocity. How-
ever the form of nonlinear damping x?x we study here is special in the sense that its
nonlinearity comes from the displacement x. The further you are from the equilibrium
position x = 0, the stronger the energy is dissipated.

In the frequency response, nonlinear damping will result in a decrease of responsivity
in the nonlinear oscillation amplitude, such that the peak amplitude of the resonator is
not anymore linearly dependent on the force and Q factor but also a nonlinear function
of the nonlinear damping coefficient 7,,; (Fig. 1.3a and b). Furthermore, in time domain,
decay rates during ringdowns from high amplitude oscillations will be determined by
both Q factor and 7,,;, while when the ringdown oscillations reach the linear regime, the
effective decay rate will solely depend on the Q factor, like a linear resonator (Fig. 1.3c).

In the realm of carbon based nanoresonators, such as suspended carbon nanotubes
and graphene membranes, nonlinear damping was first detected by the observation of
drive dependent resonance linewidths Af = f3/2Q, where fy = wo/27 [26]. The obser-
vation was that, as the resonators were driven at higher amplitudes, a broadening of the
resonances were observed, resulting in an increase of linewidths, which assuming linear
damping, is not a function of the oscillation amplitude. This provoked the assumption of
linear damping in these systems to be reexamined. In the end, the experimental results
were empirically explained by the nonlinear damping model x?x, but the origins of the
phenomenon were not clear. Previously, this term was proposed to explain observations
of nonlinear damping in a MEMS resonator [27], based on a viscoelastic material model.
The material in this model was assumed to have a complex Young’s modulus, that repre-
sents a time delay between the occurrence of stresses and the associated strains, gener-
ating nonlinear damping for geometrically nonlinear motion [28], [29]. However in both
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studies, the nonlinear dissipation rates determined from the experiments were signifi-
cantly higher than those predicted by the viscoelastic model, revealing the existence of
distinct underlying physics. This provoked many others to pursue the root of this phe-
nomenon. Other than the material properties, there were two other significant origins
that were investigated. These were based on the interaction of the mechanical mode
either with in-plane phonons or other internal modes of the structure. Theoretically it
was shown that nonlinear damping could also emerge from these origins [30], [31], yet
strong experimental evidence was only obtained for the latter [32].

a) I I I I b) I I IResponsivitiJ decreases
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Figure 1.3: Consequences of nonlinear damping in frequency and time domain responses. a) Evolution of the
responsivity of a forced Duffing-van der Pol oscillator with increasing driving force, in the absence of nonlinear
damping. b) Evolution of the responsivity of a forced Duffing-van der Pol oscillator in the presence of nonlinear
damping. As the driving force and thus oscillation amplitude increase, the responsivity of the system decrease
with 7,; > 0. c) Ringdown of a nanoresonator with nonlinear damping (adapted from [32]), where Xeny is
the envelope amplitude of the oscillations. For ringdowns from low amplitude oscillations, the dissipation
rate is constant (shown in red) and determined by the Q factor of the resonator. For the ringdowns from high
amplitude oscillations (shown in blue), we can see two dissipation rates, one that is governed by both 7,,; and
Q factor, and a second one which is governed only by the Q factor.
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1.2.3. NONLINEAR INTERMODAL COUPLING AND INTERNAL ENERGY PATH-
WAYS

Modeling these resonators as single degree of freedom systems is based on the presump-
tion that, in relatively small oscillation amplitudes, the linear superposition of eigen-
modes is sufficient to explain these systems’ overall dynamics, which are by definition
orthogonal and do not transfer energy to one another. At high amplitude oscillations
however, this approximation fails as the inherent nonlinear coupling of the structure be-
comes significant and energy that is being stored in an individual mode starts leaking to
others. In nonlinear dynamics, this problem is actually one of the earliest to be explored
computationally. In 1955, Fermi et. al [33], simulated a one-dimensional string by con-
sidering a chain of up to 64 masses connected by linear springs that are perturbed with
quadratic and cubic nonlinear terms. It was anticipated that, if the free oscillation of the
system is simulated with non-zero initial energy at an eigenmode, the energy would leak
into all other modes and thermalize, leading to a state of equipartition. But in contrast
to expectations, the system did not thermalize; instead, energy kept returning to the
initial mode in a complicated quasi-periodic manner. Discovery of this phenomenon,
later named the FPUT (Fermi-Pasta-Ulam-Tsingou) problem, gave rise to a new direc-
tion of research in nonlinear dynamics. However, the study of this problem in real-world
mechanical systems is typically limited by the dissipation or the weak nonlinearity of
these systems such that they are unable to retain their energy and stay at the nonlin-
ear regime for the duration necessary to observe this phenomenon. Nevertheless, using
molecular dynamic simulations it was numerically shown that, for graphene resonators,
the nonlinear inter-modal energy transfer sets a fundamental lower bound for the effec-
tive dissipation of the fundamental mode [34]. To date, this was not able to be shown
experimentally, as these simulations assume a closed system, which is far from reality
where the environmental losses are dominant.

1.3. AIM AND OUTLINE OF THE THESIS

In the previous sections I tried to make clear that understanding the nonlinear dynamics
and energy dissipation in nanomechanical resonators is crucial. Achieving this, espe-
cially for the energy dissipation, is not trivial, as a variety of potential origins have over-
lapping effects on the motion. Distinguishing a single dissipation mechanism is only
possible by either eliminating all of the others or being able to control the strength of a
single mechanism.

In this thesis, the reader will find a study of nonlinear dissipation pathways in 2-D
material resonators, through the coupling of the internal mechanical modes and physics
of these resonators. In most of the chapters, the resonators are brought to special dy-
namical and physical conditions to enhance and therefore distinguish the effects of sin-
gular nonlinear dissipation mechanisms. As these mechanisms are promoted, as a con-
sequence, exotic nonlinear phenomena emerge in the dynamics, which are also explored.

In Chapter 2, we start by studying the nonlinear dissipation in a graphene nanores-
onator that is parametrically excited. We drive the resonator at different power levels
and frequencies and observe an anomalous increase in the nonlinear dissipation when
the fundamental mode of the structure interacts with a higher mode. We explain the
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observations with an analytical two degrees-of-freedom model that links the nonlinear
dissipation to the interaction. Later in Chapter 3, we provide a general framework and
methodology for modelling the global nonlinear dynamics of nanoresonators. We uti-
lize finite element simulations to build multi-modal reduced-order models of nanores-
onators and compare our results to experiments on a graphene nanoresonator, with
good qualitative agreement. In Chapter 4, we explore a different way to promote inter-
modal interactions, where we expose a graphene nanoresonator to an external electric
field and break its out-of-plane symmetry. For certain conditions, this results in a strong
one-to-two internal resonance amongst its modes, generating a mechanical frequency
comb at higher drive levels. We study this exotic dynamic phenomenon using a contin-
uum mechanics model and show its origins. Finally in Chapter 5, we study the dynamics
of FePS3-based heterostructure membranes near a magnetic phase transition, where we
observe a pronounced enhancement of the resonator’s nonlinear stiffness and damping
parameters. We explain these observations with a model that is based on the coupling of
mechanics to the magnetic order.

The combined results of these studies demonstrate the significance of nonlinear cou-
pling for the energy dissipation in graphene and other 2-D material resonators driven
in the nonlinear regime. By linking the complex dynamics of these resonators to their
physics, these results not only shed light on the fundamental question of dissipation in
these devices, but also provide tools in order to take advantage of their intricate nonlin-
ear dynamics.



TUNING NONLINEAR DAMPING IN
GRAPHENE NANORESONATORS BY
PARAMETRIC-DIRECT INTERNAL
RESONANCE

Mechanical sources of nonlinear damping play a central role in modern physics, from
solid-state physics to thermodynamics. The microscopic theory of mechanical dissipa-
tion suggests that nonlinear damping of a resonant mode can be strongly enhanced when
it is coupled to a vibration mode that is close to twice its resonance frequency. To date,
no experimental evidence of this enhancement has been realized. In this chapter, we ex-
perimentally show that nanoresonators driven into parametric-direct internal resonance
provide supporting evidence for the microscopic theory of nonlinear dissipation. By regu-
lating the drive level, we tune the parametric resonance of a graphene nanodrum over a
range of 40-70 MHz to reach successive two-to-one internal resonances, leading to a nearly
two-fold increase of the nonlinear damping. Our study opens up a route towards utiliz-
ing modal interactions and parametric resonance to realize resonators with engineered
nonlinear dissipation over wide frequency range.

This chapter has been published in Nature Communications 12, 1099 (2021).
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2.1. INTRODUCTION

N nature, from macro to nano scale, dynamical systems evolve towards thermal equi-

librium while exchanging energy with their surroundings. Dissipative mechanisms
that mediate this equilibration, convert energy from the dynamical system of interest to
heat in an environmental bath. This process can be intricate, nonlinear, and in most
cases hidden behind the veil of linear viscous damping, which is merely an approxi-
mation valid for small amplitude oscillations. In the last decade, nonlinear dissipation
has attracted much attention with applications that span nanomechanics [26], materi-
als science [28], biomechanics [35], thermodynamics [34], spintronics [36] and quantum
information [37]. It has been shown that the nonlinear dissipation process follows the
empirical force model F; = —7,; x?% where T, is the nonlinear damping coefficient,
x is the displacement and x velocity. To date, the physical mechanism from which this
empirical damping force originates has remained ambiguous, with a diverse range of
phenomena being held responsible including viscoelasticity [27], phonon-phonon in-
teractions [30], [38], Akhiezer relaxation [31], and mode coupling [32]. The fact that
nonlinear damping can stem from multiple origins simultaneously, makes isolating one
route from the others a daunting task, especially since the nonlinear damping coefficient
Ty is perceived to be a fixed parameter that unlike stiffness [39]-[41], quality factor [42],
and nonlinear stiffness [43]-[45], cannot be tuned easily. Amongst the different mech-
anisms that affect nonlinear damping, intermodal coupling is particularly interesting,
as it can be enhanced near internal resonance (IR), a special condition at which the ra-
tio of the resonance frequencies of the coupled modes is a rational number [46]. This
phenomenon has frequently been observed in nano/micro-mechanical resonators [47]-
[56]. At internal resonance, modes can interact strongly even if their nonlinear coupling
is relatively weak. Interestingly, internal resonance is closely related to the effective stift-
ness of resonance modes, and can therefore be manipulated by careful engineering of
the geometry of mechanical systems, their spring hardening nonlinearity [22], [57], and
electrostatic spring softening [48]. Internal resonance also finds its route in the micro-
scopic theory of dissipation proposed back in 1975, where it was hypothesized to lead
to a significantly shorter relaxation time if there exists a resonance mode in the vicin-
ity of twice the resonance frequency of the driven mode in the density of states [58].
Here we demonstrate that nonlinear damping of graphene nanodrums can be strongly
enhanced by parametric-direct internal resonance, providing supporting evidence for
the microscopic theory of nonlinear dissipation [31], [58]. To achieve this, we bring the
fundamental mode of the nanodrum into parametric resonance at twice its resonance
frequency, allowing it to be tuned over a wide frequency range from 40-70 MHz. We ex-
tract the nonlinear damping as a function of the parametric drive level, and observe that
itincreases as much as 80 % when the frequency shift of the parametric resonance brings
it into internal resonance with a higher mode. By comparing the characteristic depen-
dence of the nonlinear damping coefficient on parametric drive to a theoretical model,
we confirm that internal resonance can be held accountable for the significant increase
in nonlinear damping.
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Figure 2.1: Nonlinear dynamic response of a graphene nanodrum near 2:1 internal resonance. (a)
Fabry-Pérot interferometry with thermomechanical actuation and microscope image of the graphene. Exper-
iments are performed in vacuum at 10~3 mbar. Red laser is used to detect the motion of the graphene drum
and the blue laser is used to optothermally actuate it. In the figure; BE: Beam expander, QWP: Quarter wave
plate, PBS: Polarized beam splitter, PD: Photodiode, DM: Dichroic mirror, VNA: Vector network analyzer, Vaci, !
Analyzer port, Vac,,,.: Excitation port. In the device schematic, Si and SiO, layers are represented by orange
and blue colors, respectively. (b) Direct frequency response curve of the device(motion amplitude vs. drive
frequency), showing multiple resonances (Drive level = -12.6 dBm). The mode shapes are simulated by COM-
SOL. Resonance peaks are associated with f;;,7, (5 where m represents the number of nodal diameters, n nodal
circles and k = 1,2 stand for the first and second asymmetric degenerate modes. Dashed line shows 2fp 1,
which is the drive frequency where the parametric resonance of mode fy 1 is activated. (c) Parametric reso-
nance curves(calibrated motion amplitude vs. drive frequency), driven at twice the detection frequency. As
the parametric resonance curves approach the 2:1 internal resonance(IR), fgnp first locks to 2:1 IR frequency
and consecutively saddle-node bifurcation surges to a higher frequency and amplitude. Agnp and fgnp stand
for the amplitude and frequency of saddle-node bifurcation. (d) Variation of the nonlinear damping 7,,; as a
function of drive F;. Dashed lines represent different regimes of nonlinear damping. White region represents
a constant nonlinear damping, purple region an increase in nonlinear damping in the vicinity of 2:1 IR and
orange region an increase in nonlinear damping due to IR with a higher mode.
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2.2. FREQUENCY RESPONSE MEASUREMENTS ON A NONLINEAR
GRAPHENE NANODRUM

Experiments are performed on a 10 nm thick multilayer graphene nanodrum with a di-
ameter of 5 um, that is transferred over a cavity etched in a layer of SiO, with a depth of
285 nm. A blue laser is used to thermomechanically actuate the membrane, where a red
laser is being used to detect the motion, using interferometry (see Methods for details).
A schematic of the set-up is shown in Fig 1a.

By sweeping the drive frequency we obtain the frequency response of the nanodrum
in which multiple directly driven resonance modes can be identified (Fig. 2.1b). We
find the fundamental axisymmetric mode of vibration at f ;=20.1 MHz and several other
modes, of which the two modes, at fz(’ll) =47.4 MHz and fz(,zl)=50.0 MHz, are of particular
interest. This is because, to study the effect of internal resonance on nonlinear damp-
ing, we aim to achieve a two-to one (2:1) internal resonance by parametrically driving
the fundamental mode, such that it coincides with one of the higher frequency modes.
The frequency ratios fz('ll) /fo1 = 2.3 and f;?/ fo,1 = 2.4 are close to the factor 2, however
additional frequency tuning is needed to reach the 2:1 internal resonance condition.

The parametric resonance can be clearly observed by modulating the tension of the
nanodrum at frequency wr with the blue laser while using a frequency converter in the
VNA to measure the amplitude at wr/2 as shown in Fig. 2.1c. By increasing the para-
metric drive, we observe a Duffing-type geometric nonlinearity over a large frequency
range, such that the parametrically driven fundamental resonance can be tuned across

successive 2:1 internal resonance conditions with modes fz(ll) and fz(zl) , Tespectively.

2.2.1. EXTRACTING EXPERIMENTAL NONLINEAR PARAMETERS
In Fig. 2.1c we observe that the parametric resonance curves follow a common response
until they reach the saddle-node bifurcation frequency fsng above which the paramet-
ric resonance curve reaches its peak amplitude Agyg and drops down to low amplitude.
We note that the value of Agnp can be used to determine the degree of nonlinear damp-
ing [23]. Therefore, to extract the nonlinear damping coefficient 7,,;; of mode f;; from
the curves in Fig. 2.1c, we use the following single mode model to describe the system
dynamics:

X+ w%xl + yx3 =F1x1cos(wpt) — 211X — Zrnux%jcl, (2.1)

inwhich w; = 27 fj ; is the eigenfrequency of the axisymmetric mode of the nanodrum, y
is its Duffing constant and F; and wr are the parametric drive amplitude and frequency,
respectively. Moreover, 27; = w1/Q is the linear damping coefficient, with Q being the
quality factor, and 7, is the nonlinear damping term of van der Pol type that prevents
the parametric resonance amplitude Asnyp from increasing to infinity [23], [59] at higher
driving frequencies since | Asnp ?x 2F; Q—4) /7y . To identify the parameters govern-
ing the device dynamics from the measurements in Fig. 2.1c, we use equation (2.1) and
obtain good fits of the parametric resonance curves using 7,; and y as fit parameters
(see Appendix Al).
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ENHANCED NONLINEAR DAMPING
As we gradually increase the drive level, fsyp increases until it reaches the vicinity of

the internal resonance, where we observe an increase in 7, (Fig. 2.1d). Whereas fsng
dfsns

dR

down close to f, |, locking the saddle-node-bifurcation frequency when fsng =~ 45 MHz.

At the same time, 7y; increases significantly at the associated parametric drive levels,

providing the possibility to tune nonlinear damping up to two-folds by controlling Fj, as
seen in Fig. 2.1d.

Fig. 2.1c also shows that above a certain critical parametric drive level F ¢ it, the fre-

quency locking barrier at fsng = 45 MHz is broken and fsng suddenly jumps to a higher

frequency (= 5 MHz higher), and a corresponding larger Asyg. We label this increase

in the rate dﬁé\l‘B by “surge" in Fig. 2.1c, where an abrupt increase in the amplitude-

frequency response is observed to occur above a critical drive level F} ;. Interestingly,
even above Fj ¢j; a further increase in 7y; is observed with increasing drive amplitude,
indicating that a similar frequency-locking occurs when the parametric resonance peak
reaches the second internal resonance at fsnp = fz(zl) Similar nonlinear phenomena are
also showcased in a second nanodrum undergoing parametric-direct modal interaction,
confirming the reproducibility of the observed physics (see Appendix A2).

increases with parametric drive F;, Fig. 2.1c shows that its rate of increase slows

1

2.3. THEORETICAL MODEL: 2:1 PARAMETRIC-DIRECT INTER-

NAL RESONANCE

Although the single mode model in equation (2.1) can capture the response of the para-
metric resonance, it can only do so by introducing a non-physical drive level dependent
nonlinear damping coefficient 7)) (F1) (Fig. 2.1d). Therefore, to study the physical origin
of our observation, we extend the model by introducing a second mode whose motion is
described by generalized coordinate x,. Moreover, to describe the coupling between the
interacting modes at the 2:1 internal resonance, we use the single term coupling poten-
tial Uep = axf X, (see Appendix A3). The coupled equations of motion in the presence of
this potential become:

. 2 3 0Ucp . 2.
X +oixp+yxy + o =F1x)cos(wpt) — 211X — 2T 1 X7 X1,
1
. 2 0Ugp )
X2 +wyx2 + % =Fycos(wpt) —2T2X7. (2.2)

The 2 mode model describes a parametrically driven mode with generalized coordinate
x1 coupled to x, that has eigenfrequency w; = 2n fz('ll), damping ratio 7, and is directly
driven by a harmonic force with magnitude F,.

To understand the dynamics of the system observed experimentally and described by
the model in equation (2.2), it is convenient to switch to the rotating frame of reference
by transforming x; and x, to complex amplitude form (see Appendix A4). This transfor-
mation reveals a system of equations that predicts the response of the resonator as the
drive parameters (F;, F», and wr) are varied. Solving the coupled system at steady-state
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yields the following algebraic equation for the amplitude a; of the first mode:

2

2 2
a 3 a
T+ (g + @)L |+ Awl—(—y+d2Aw2)—1]
4 wWFr 4
_ 1 2 ~2 2
= — [P+ @(F + 20pA0z Fi Ryl ), 2.3)
40%

where Aw; = wr/2—wy and Aw; = wr — w; are the frequency detuning from the primary
and the secondary eigenfrequencies, and @ = a?/ [w%(r% + Aa)g)] is the rescaled cou-
pling strength. Essentially, the first squared term in (2.3) captures the effect of damping
on the parametric resonance amplitude a;, the second term captures the effect of non-
linear coupling on the stiffness and driving frequency, and the term on the right side is
the effective parametric drive. From the rescaled coupling strength @ and equation (2.3)
it can be seen that the coupling @ shows a large peak close to the 2:1 internal resonance
where |[Aw»| = 0. In addition, equation (2.3) shows that mode 2 will always dissipate en-
ergy from mode 1 once coupled, and that, the 2 mode model accounts for an increase
in the effective nonlinear damping parameter (7, = Tpnp) + @72) near internal reso-
nance, in accordance with the observed peak in 7,; with the single mode model in Fig
1d. It is also interesting to note that, this observation in steady-state is different from
what has been reported in [52] for transient nonlinear free vibrations of coupled modes
where it was important that 7, > 7, to observe nonlinear damping. The 2 mode model
of equation (2.3) allows us to obtain good fits of the parametric resonance curves in Fig.
2.1b, with a constant Tpeff = 3.4 x 10%! (Hz/m?) determined far from internal resonance
and a single coupling strength a = 2.2 x 10%? (Hz?/m) which intrinsically accounts for the
variation of Te¢ near internal resonance. These fits can be found in Appendix A5, and
demonstrate that the 2 mode model is in agreement with the experiments for constant
parameter values, without requiring drive level dependent fit parameters.

We note that the extracted nonlinear damping parameter fits the Duffing response at
fo,1 with good accuracy too (See Appendix A6).

2.3.1. MODEL RESPONSE

To understand the physics associated with the frequency-locking and amplitude-frequency

surge, we use the experimentally extracted fit parameters from the 2 mode model and
numerically generate parametric resonance curves using equation (2.3) for a large range
of drive amplitudes (see Fig. 2.2a). We see that for small drive levels, an upward fre-
quency sweep will follow the parametric resonance curve and then will lock and jump-
down at the first saddle-node bifurcation (SNB1) frequency, that lies close to fsng = 2(11)
At higher parametric drive levels, the parametric resonance has a stable path to traverse
the internal resonance towards a group of stable states at higher frequencies.

A more extensive investigation of this phenomenon can be carried out by perform-
ing bifurcation analysis of the steady-state solutions (see Appendix A4). The bifurcation
analysis reveals two saddle-node bifurcations near the singular region of the internal
resonance, one at the end of the first path (SNB1) and another at the beginning of the
second path (SNB2) (Fig. 2.2b). As the drive amplitude increases, the bifurcation pair
starts to move towards each other until they annihilate one another to form a stable so-
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Figure 2.2: Parametric-direct internal resonance. (a) Color map of the analytical model response curves ob-
tained by using the fitted parameters from experiments. Colors correspond to frequency response(motion
amplitude vs. drive frequency) solutions with a certain parametric drive level. Black lines show samples from
these solutions where solid lines are stable and dashed lines are unstable solutions. White dashed line is where
parametric resonance meets with interacting mode and undergoes internal resonance. (b) The underlying
route of the amplitude-frequency surge is revealed by tracing the evolution of saddle-node bifurcations (green
and red squares represent theoretical SNB1 and SNB2, whereas experimental SNB1 is represented by crosses)
of the parametric resonance curves.
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lution at the connecting point, which we labeled as "surge". It is also possible to observe
that the rate at which saddle-node pairs approach each other dramatically drops near
the internal resonance condition, demonstrating the "locking" which we also observed
in the experiments.

2.3.2. COMPARISON TO EXPERIMENTAL RESULTS

To check how closely the 2 mode model captures the variation of 7y, close to the in-
ternal resonance condition, we follow a reverse path, and fit the numerically generated
resonance curves of Fig. 2.2a using the single mode model of equation (2.3) with 7,;
as the fit parameter. In this way, we track the variation of 7y; in the single mode model
with the parametric drive F;, similar to what we observed experimentally and reported
in Fig. 2.1c. The result of this fit is shown in Fig. 2.3a, where a similar anomalous change
of nonlinear damping is obtained for the 2 mode model.

The variation of nonlinear damping affects the total damping (sum oflinear and non-
linear dissipation) of the resonator too. It is of interest to study how large this effect is. In
Fig. 2.3b we report the variation in the ratio of the linear damping 7, and the amplitude-
dependent total damping T = (w1/Q+0.257 et X11%) [23] in the spectral neighborhood
of fz('ll), and observe a sudden decrease in the vicinity of internal resonance. This abrupt
change in the total damping is well captured by the 2 mode model. With the increase in
the drive amplitude, 7,/7 values of this model though, deviate from those of the ex-
periments due to a subsequent internal resonance at f2(21) ! fo,1 = 2.4 that is not included
in our theoretical analysis. The dependence of 71 /7, on frequency shows that near in-
ternal resonance the total damping of the fundamental mode increases nearly by 80%.

2.4. DISCUSSION

We note that increased nonlinear damping near internal resonance was also observed
in [32]. In that work nonlinear damping was studied using ringdown measurements,
with 2 modes brought close to an internal resonance by electrostatic gating. The in-
creased nonlinear damping was attributed to a direct-direct 3:1 internal resonance, that
as shown theoretically in Ref. [52] leads to a high order (quintic) nonlinear damping
term. Conversely, in our work two modes are brought into parametric-direct 2:1 internal
resonance by adjusting the parametric drive level. This results in a nonlinear damping
term that already comes into play at smaller amplitudes because it is of lower (cubic)
order, as discussed in Ref. [52]. Moreover, the nonlinear damping mechanism in [32]
is approximately described by two exponential decays with crossovers from (71 +72)/2
to 71, which implies that similar to [52], 72 > 1) is required to observe positive nonlin-
ear damping. This is in contrast with the damping mechanism we describe where the
effective nonlinear damping actually increases for smaller 7, (see equation (2.3)).

Since the tension of the nanodrum can be manipulated by laser heating, we can fur-
ther investigate the tunability of the nonlinear damping by increasing the laser power
and detecting the range over which 2:1 internal resonance conditions may occur. When
increasing the blue laser power and modulation, we observe the parametrically actuated
signal also in the direct detection mode (like in Fig. 2.1b) due to optical readout nonlin-
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Figure 2.3: Measurements and fits of the effective nonlinear damping. (a) Variation of the effective nonlin-
ear damping parameter (7o) With respect to parametric drive. The 7, is obtained by fitting the numeri-
cally generated curves of Fig. 2.2a as the fit parameter. Dashed lines represent different regimes of nonlinear
damping. White regions represent a constant nonlinear damping and purple region represents an increase in
nonlinear damping in the vicinity of 2:1 IR. (b) Comparison of the ratio between linear damping(z) and total
damping(ztot). In the figure, blue and red dashed lines represent 71 /7ot obtained from uncoupled and cou-
pled models, whereas black crosses represent experiments.
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earities [60]. As a result a superposition of Fig. 2.1b and 2.1c is obtained, as shown in
Fig. 2.13. We note that the enhanced laser power increases membrane tension which
moves fp,1 upward by a few MHz, but also allows us to reach even higher parametric
modulation. In this configuration we achieve a frequency shift in fsxg from 40-70 MHz,
corresponding to as much as 75 % tuning of the mechanical motion frequency. This large
tuning can increase the number of successive internal resonances that can be reached
even further, to reach modal interactions between the parametric mode fj; and direct
modes fz(i) and fpo (see Fig. 2.13). As a result, multiple amplitude-frequency surges
can be detected in the large frequency range of 30 MHz over which nonlinear damping
coefficient can be tuned. In summary we study the tunability of nonlinear damping in

T T N
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Figure 2.4: Nonlinear frequency response measurements at high drive powers. The parametric resonance in-
teracts successively with multiple directly driven modes of vibration. The arrows in the figure show successive
amplitude-frequency surges. Starting from the dashed line, shaded area represents the region where nonlinear
damping is tunable.

a graphene nanomechanical resonator, where the fundamental mode is parametrically
driven to interact with a higher mode. When the system is brought near a 2:1 internal
resonance, a significant increase in nonlinear damping is observed. In addition, the rate
of increase of the parametric resonance frequency reduces in a certain locking regime,
potentially stabilizing the values of fsyg and Asng, which could potentially aid frequency
noise reduction [49]. Interestingly, as the drive level is further increased beyond the criti-
callevel F} ¢rit, this locking barrier is broken, resulting in a surge in fsng and amplitude of
the resonator. These phenomena were studied experimentally, and could be accounted
for using a 2 mode theoretical model. The described mechanism can isolate and dif-
ferentiate mode coupling induced nonlinear damping from other dissipation sources,
and sheds light on the origins of nonlinear dissipation in nanomechanical resonators.
It also provides a way to controllably tune nonlinear damping which complements ex-
isting methods for tuning linear damping [42], linear stiffness [39]-[41] and nonlinear
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stiffness[43]-[45], extending our toolset to adapt and study the rich nonlinear dynamics
of nanoresonators.

2.5. METHODS

2.5.1. SAMPLE FABRICATION

Devices are fabricated using standard electron-beam(e-beam) lithography and dry etch-
ing techniques. A positive e-beam resist, ARP-6200 is spin coated on a Si wafer with 285
nm of thermally grown SiO,. The cavity patterns ranging from 2 - 10 um in diameter
are exposed using the Vistec EBPG 5000+ and developed. The exposed SiO, are subse-
quently etched away in a reactive ion etcher using a mixture of CHF3 and Ar gas until all
the SiO» is etched away and the Si exposed. Graphene flakes are exfoliated from natural
crystals and dry transferred on top of cavities.

2.5.2. LASER INTERFEROMETRY

The experiments are performed at room temperature in a vacuum chamber (103 mbar).
A power modulated blue laser (1 = 405 nm) is used to thermomechanically actuate the
nanodrum. The motion is then read-out the motion using a red laser (1 = 633 nm) whose
reflected intensity is modulated by the motion of the nanodrum in a Fabry-Pérot etalon
formed by the graphene and the Si back mirror (Fig. 2.1a). The reflected red laser inten-
sity from the center of the drum is detected using a photodiode, whose response is read
by the same Vector Network Analyzer (VNA) that modulates the blue laser. The mea-
sured VNA signal is then converted to displacement in nanometers using a nonlinear
optical calibration method [60] (see Appendix A7).
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2.6. APPENDIX A

2.6.1. A1: MODEL FITS USING THE SINGLE MODE EQUATION

In this section, we use equation (2.1) to fit the experimental data. The fittings are carried
out by using an algorithm that compares measurements to the analytical solution [23] to
sequentially extract the model parameters. To fit the data, information about resonance
frequency w; and damping coefficient 7, are directly extracted from the measurements.
The linear quality factor Q of the resonator is determined at low drive level to be 454 and
has been fixed throughout the fitting procedure. Moreover, the magnitude of the para-
metric drive F; at low driving powers is estimated by tracing the locus of the pitch-fork
bifurcation points (Mathieu tongue) as shown in Fig. 2.5. However, for higher power
levels, the bifurcation points did not give reliable information due to frequency fluctu-
ations. Thus, to obtain the parametric forces at high drive powers, we use lower force
levels (known from Mathieu tongue) and extrapolate using the ratios between the ap-
plied voltage/power levels from the VNA and the forces such that Fy pign = Fl,low%- In
other words, we assume that the drive levels applied in the experiments using the VNA
are linearly related to the force felt by the resonator.

Once F) is estimated, y is fitted by minimizing the curvatures of the hardening type
nonlinearity observed in the experiments and the model. Finally, to match the peak am-
plitudes observed in the experiments, the nonlinear damping coefficient 7,; is used as
the fitting parameter such that the saddle-node bifurcation amplitude (Asyg) and fre-
quency (fsnp) are within 0.1% error of the Agnypg and fsnp obtained experimentally. In
Fig. 2.6 we report the fitted curves and their associated y and 7,;;. Fits are associated
with the experimental curves (Fig. 2.1c) that are repeated with labels as Fig. 2.7 for con-
vinience.

]0'\4
T
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1 1 1 1 1 1 1 1 1 1 1 1
39.7 39.8 399 40 40.1 40.2 40.3 40.4 40.5 40.6 40.7
Frequency (MHz)

Figure 2.5: Determination of parametric excitation levels. The Mathieu tongue(blue) associated with the
experimental pitch-fork bifurcation frequencies is used to extract parametric excitation levels(red).
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Figure 2.6: Single mode model fits. Frequency response measurements (black) and corresponding fits (blue)
obtained by using the single mode model. The solid and dashed lines in the figure represent stable and unsta-
ble numerical solutions, respectively.

2.6.2. A2: EXPERIMENT ON A SECOND NANODRUM

Here we present additional experimental evidence of a parametric-direct internal reso-
nance in a second graphene nanodrum that is 14 nm thick and has a radius of 2.5 ym.
Fig. 2.8a shows the direct response and Fig. 2.8b the parametric resonance where the
internal resonance frequency fig occurs close to 2.3 times the fundamental mode, and
after which an amplitude-frequency surge is apparent.

2.6.3. A3: NORMAL FORM OF THE EQUATIONS OF MOTION
In the absence of damping and external forces, the geometrically nonlinear equations of
motion for plates and membranes can be written in the following discretized form [61]

xk+wkxk+ZZa(k)xnxp+ZZZy;k;lxnxpxl=0, vkeN, (2.4)
nop ol

where wy is the eigenfrequency of the k" mode x;, and a(k) and y(nk;l are quadratic
and cubic nonlinear terms, respectively. For a two mode system (k = 2), the nonlinear
equations become

D 2 1 n.2, .01 1 1 1
X1 +w1x1 + a(u)xl + aiz)xlxg + aéz)xz +)/(H)1x1 +y§1)2x1 X2 +7/(12)2x1x2 +y52)2x2 =0, (2.5)

2) .2 2 2) .2 2 2 2

X2 + w2x2 + oc(n)x1 + d(lz)xle + océz)x2 + y(n)lxl + 7’51)2’61 X2 + ylzlexz + ygz)zxz =0. (2.6)
Note that many of the nonlinear terms in equation (2.5) and (2.6) are non-resonant,
and hence, can be eliminated via a normal form transformation [62]. To recover the
resonant terms (which cannot be eliminated from the normal form) in a 2:1 internal res-
onance condition (w, =~ 2w1), here instead we assume harmonic motion of the form x; ~
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Figure 2.7: Experimental parametric resonance curves. Experimental frequency response curves from Fig.
2.1c, labelled to corresponding fitted curves in Fig. 2.6

cos(w1 t) and x, = cos(2w1 t) as a first approximation. Inserting these relations in equa-
tion (2.5) reveals that the terms xzf = ?—lcos(a)l 1)+ %cos(3a)1 t) and x1x2 = %(cos(wl 1)+
cos(3a)1 1) in the first equation of motion are trivially resonant. The same holds for the
term x1 2 1+ cos(2w t)), which can be viewed as a resonant term for equation (2.6).
Furthermore, in order to obtain the most simple model for the considered dynamical
system, we neglect the contribution of the dispersive coupling terms x; x% in equation
(2.5) and x% x1 in equation (2.6) (which only shift the resonance frequency of each mode
in amount that is proportional to the amplitude square of the other mode), and the Duft-
ing nonlinearity of the second mode (which is assumed to operate below the Duffing
threshold). Therefore, the governing equations of motion reduce to

X1 +w? 1%+ a(llz)xlxg +y§11)1x1 =0, 2.7)

Xo + w2x2 + a(lzl) xf 0. (2.8)

We note that equations (2.7) and (2.8) are the normal form of the conservative dynam-
ical system of interest, with y(lll)lzy being the Duffing nonlinearity of the first mode,
and a= a(l)lz a(z)

Uep = axfxg.

is the coupling coefficient, which stems from a single-term potential

2.6.4. A4: SLOW DYNAMIC EQUATIONS AND BIFURCATION ANALYSIS
In order to investigate the experimentally observed physics in our graphene nanodrum,
we use the normal form of the equations obtained in the previous section in the presence
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Figure 2.8: Frequency response measurements. Frequency response of (a) direct and (b) parametric reso-
nance in a second graphene nanodrum, showing the parametric-direct interaction.

of damping and external forcing terms. The resulting equations then read

X + w%xl +yxf +2axpx; = Fixjcos(wpt) — 211X —ZTnllexl, (2.9)

Xo + w%xg + axf =Fycos(wgt) — 212Xy, (2.10)

in which 7; and 7, are the damping coefficients associated with modes 1 and 2, respec-
tively. F) is the parametric drive, F, is the direct drive, and 7, is the van der Pol type

nonlinear damping term added to the equation of motion to avoid unbounded paramet-
ric resonance [23].

Applying the rotating wave approximation (RWA):

x1(8) = A1 (D) exp(iwpt/2) + A (1) exp(—iwpt/2),

X1(t) = (iwp/2)[A1(t) exp(iwpt/2) —AT(I) exp(—iwrt/2)],

X2 = Ax (D) expliwpt) + A (1) exp(—iwpt),

X = iwplAz(D) expliwpt) — A; (1) exp(—iwpt)], (2.11)

where A; and A}*. are the complex-amplitude of the j* mode and its complex-conjugate,
respectively, and introducing the detuning parameters Awy = wr/2 - w1, Aws = wF — w2,
we obtain the following evolution equations for the complex amplitudes

. 2 . 3)/ 2 2i F1 *
Ay =—|T1+T1nlALlI"+ 1| Awy — —| A A+ —|aAy— — Al’ (2.12)
wWFr wWFr 4
. . 1 2 FZ
Ay =—(To+iAwr) Ay + — (,lAl -—. (2.13)
Za)F 2

At steady-state A j =0. Thus, from equation (2.13) we find that the steady-state complex-
amplitude of the second mode Aj;; is given by

28s

n b (s~ 2 2.14)

B 20573 + Aw?) Iss ™
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Hence, by substituting equation (2.14) into equation (2.12), we obtain a single equation
for the steady-state complex-amplitude of the first mode Aj g as follows

a1y ) , 3y a’Aw, ’
T1+ Tnll“'ﬁ |Arssl® | Arss+i |Awy — [ — IR URN [Arssl® | Atss
wF(Tz+Aw2) WF wF(rz+Aw2)
i a(ity +Aw
- alits + Awa) : 22)1«"2 Al (2.15)
20 wp(12+Aw2)

Taking the magnitude squared of both sides of equation (2.15), we find the intensity of
the non-trivial response of the first mode 4|A; ssl? = a% as the positive roots of the equa-
tion

2 2

a’t, as 3y a’Aw; as
T\ Tant =7 | T Awy - e e a2
wF(Tz+Aw2) 4 wr wF(12+Aw2) 4
1 aF(aFs + 2wrAws F,
- 2, 2( 22 ' F . 2F1) 2.16)
4a)F wF(12+Aw2)

We note that equation (2.16) is a quadratic equation in af. Thus, in addition to the trivial
solution a; = 0, which is always a solution, we are left with, at most, two additional pos-
itive solutions for a;. Therefore, the non-trivial steady-state solutions of the first mode
x1 = a) cos(wpt/2 + 1) is fully described by equation (2.16) and the following equation
for the phase

. a(iTy+Aw,)
20wp Wp(T5+Aw3)
= = R (2.17)

* 2
2 a . 3 27 a
1ss @ |4 Aw: — |2 4 ¥A02 |5
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From equation (2.14) we also find the steady-state solution of the second mode Ay =
agei¢’2 /2. Thus, the solution a,; of equation (2.16) along with equations (2.14)-(2.17) give
complete description of the system non-trivial steady-state solutions. Note that the peak
amplitude of the first mode Asyp can be calculated by differentiation of equation (2.16)
with respect to wr and setting da%/ dwr = 0. To the leading order approximation, the
expression for the peak amplitude Agyp is given by

1/2

24/75 + Aw3 [w5.(15 + Aw3) F + aFa(aFs + 20pAwy F) |7 — 40415 + Aw3) T

W5 (15 + Aw3) Ty + AT,

2
Agng =
(2.18)

Instability threshold of the trivial solution
In order to find the conditions under which the trivial solution of the first mode a; =
0 loses its stability, we linearize equations (2.12) and (2.13) around Ajss = 0, Aggs =
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_ (iT2+Aw2) By

tora+AG))” and obtain the eigenvalues of the resulting linear system
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5A = — (1 +iAw)bA, —ZL FL+ 5|64, 2.19)

WE wp (15 + Aw)

§Ay = —(T2+ iAwy)8 Ay. (2.20)

Note that equations (2.19) and (2.20) are uncoupled, and hence, we can analyze each

equation separately. equation (2.20) can be readily solved to yield § Ay = § A, (0)e~ (T2 +iAw2)?,

Consequently, § A, decays to zero for all 7, > 0. Similarly, we seek a solution for equation
(2.19) in the form 6 A; = |6 A; |01 At where 6¢ and A are real. By substitution of the
solution into equation (2.19) we find that

aF(aF +2wpAws Fr)
22 2 -
Wi (75 + Aws)

1
A=—tit\|— |2+
40

Awi. (2.21)

Thus, for A > 0, the trivial solution of the first mode a; = 0 is unstable (i.e., there is a
supercritical pitchfork bifurcation). The boundaries, which define the domains of the
instability, form the Mathieu tongue and are given by

aF(aF +2wpAwo Fr)
2 (42 2
wi(T5 + Aws)

40% (T3 + Aw?) = F + (2.22)

Note that the same condition can be obtained from equation (2.16) by taking the limit
a) — 0.

Stability of the non-trivial steady-state solutions and local bifurcation analysis
To investigate the stability of the non-trivial steady-state solutions (which are found from
equations (2.14), (2.16) and (2.17)), we superimpose a perturbation du = (6A1,642)T on
the non-trivial fixed-points of equations (2.12) and (2.13) ug = (Alss, Azss) T, linearize
in terms of the perturbed variables, and obtain the following pair of linear complex
evolution-equations for the perturbation du

. ) 6
SAy == |71 +2T 1| Arssl? + i (Awl - w—Y|Alss|2)] 0A
F
i (F _ 2ia -
—|Tan A2+ — |2 —2a s —3yA§SS)] SA1+=—A1550 Az, (2.23)
wWF 2 wWFr
. ia
0Ay =— A1350A1 — (T2 + iAw2)0 As. (2.24)
WF

Using Cartesian notations for the perturbations § A; = g; + ipj, equations (2.23) and
(2.24) can be written as ¢y + ip1 = fi+if> and g2 + ip2 = f3 + i fa. Thus, by taking the
real and imaginary part of these equations, we obtain a set of four linear real evolution-
equations for the perturbation quadratures 7 = J -1, where 1 = (q1, p1, G2, p2) ) Jum =
0fn!0nml Ay, A, - Therefore, the stability of the fixed points are determined by the eigen-
values A of J, which are the roots of the following characteristic polynomial
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Figure 2.9: Theoretical parametric resonance curves. The parameter values used for the curves are: 71 =
0.0025,7,;; = 0.175,72 = 0.00764,a = 0.17,y = 3.7,w1 = 1,02 = 2.29,F, = 0.13F;. The magenta/dark-
blue/light-blue/green/yellow/red curves are the first mode response curve for drive amplitudes F; =
0.18,0.15,0.1,0.07,0.05,0.03. The grey vertical dashed line shows the frequency of the second mode, and the
black curve show the loci of the saddle-node bifurcations.

Consequently, there is a saddle-node bifurcation whenever ¢, = 0, and Hopf bifur-
cation whenever Az = c3(cac; — ¢3) — ¢4 cf = 0. Furthermore, near the Hopf threshold
(A3 = 0), the frequency of the limit cycle is given by 1,2 = +iQp, Qi[ = c3/c;. Note
that the condition for the saddle-node bifurcation ¢4 = 0 can also be obtained by dif-
ferentiating equation (2.16) with respect to the drive frequency wr, and requiring that
dorld af =0 (i.e., requirement of vertical tangency in the response curve). Fig. 2.9 shows
the response curves for several values of drive amplitude F; along with the locus of the
saddle-node bifurcations, and an indication of the second mode frequency (assuming
that wy = 2.29w)). It is clear from the figure that as the driving amplitude F) increases,
the gap between the first two saddle-node bifurcations decreases. At a critical drive level
(the magenta response curve), these two saddle-node bifurcations annihilate each other
and the response becomes continuous.



2.6. APPENDIX A 29

2.6.5. A5: MODEL FITS USING THE COUPLED MODEL

To fit with the coupled model, equations (2.9) and (2.10) are used. The parameters from
the single mode fits in the uncoupled regime (at the force levels where the coupling ef-
fects are negligible) have been taken as base parameters, since they are intrinsic to the
modes themselves. This leaves only 2 additional parameters for fitting, namely the cou-
pling strength a and the direct forcing F». Before the interaction, F, can be directly ob-
tained from the measurements, however during the interaction the individual amplitude
of the second mode is hidden beneath the parametric resonance curve. Thus, we assume
alinear relation between F) and F; such that F> = ¢, F; so as to estimate the contribu-
tion of F, in the coupled mode dynamics. Finally, we use a as the fit parameter and
minimize the error between the resonance peak (Asng) of the model and experimental
data.

Parametric Excitation = 2.010e+14 (Hz%) Parametric Excitation = 2.263e+14 (Hz?) Parametric Excitation = 2.598e+14 (Hz’) Parametric Excitation = 2.868e+14 (Hz?)
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Figure 2.10: 2 mode coupled model fits. Frequency response measurements (black) and corresponding fits
(pink) obtained by using the 2 mode coupled model. The solid and dashed lines in the figure represent stable
and unstable numerical solutions, respectively.

In Fig. 2.10 we report the fits to the experimental data using the coupled model(labelled
to their corresponding experimental curves in Fig. 2.7), and in Table 2.1, we report the
fitted values. We note that the curves with different parametric excitation are fitted with
constant parameters.

Table 2.1: Parameter set extracted from the fits of Fig. 2.10

wq wy T1 T2

1.262 x 108 (rad/s) 2.841 x 108 (rad/s) 2.781 x 10° (Hz) 2.185 x 108 (Hz)
Tni Y a Cpm

3.139 x 10%! (Hz/m?) | 1.205 x 103! (Hz/m)? | 2.213 x 10%? (Hz?/m) | 1.585x 1079 (m)
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2.6.6. A6: EFFECT OF NONLINEAR DAMPING ON THE DIRECT RESONANCE

The effect of nonlinear damping can also be seen in the decaying responsivity of the
Duffing response as the drive level increases(see Fig. 2.11) [23]. In order to check the con-
sistency of the extracted nonlinear damping from parametric resonance, here we fit the
direct response using the extracted intrinsic damping(z,;) and Duffing nonlinearity(y)
reported in Table 2.1. Fig. 2.12 shows reasonably good fits for different drive levels. equa-
tion (2.1) has been used as the model for these fits with a modification of the direct drive
term(considering only direct excitation i.e. F} x;cos(wrt) has changed to Fycos(wr1)).
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e | 3 1
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Figure 2.11: Responsivity measurements of the direct mode. At higher drive levels decrease in responsivity is
observed due to nonlinear damping.
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Figure 2.12: Model fits (black) to the experimental direct resonance curves from Fig. 2.11. Model parameters
from Table 2.1 have been used for all fits.

2.6.7. A7: AMPLITUDE CALIBRATION

We measure the response of the graphene membrane in Volts from a Fabry—Pérot inter-
ferometer and convert the readings to nanometers using the nonlinear optical trans-
duction technique presented in [60]. We note that for thin membranes and for high
back-mirror reflectively, the reflected intensity I(#) of the optical read-out can be ap-
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proximated by

I(t)= A+ Bcos (471 ) (2.26)

g+x(n) )
where A and B are constants, X(f) = xsin(wrt) is the membrane displacement, g is the
cavity depth, and A is the wave-length of the light used for measurement. The reflected
intensity I(#) in equation (2.26) is a nonlinear function of the membrane displacement,
and therefore, the read-out of a monochromatic signal will contain higher-order har-
monics. The amplitude of these harmonics can be obtained from a Fourier expansion of
the intensity I(#) = }_ I, sin(nwrt), and harmonic balancing of equation (2.26). This
will lead to the following relations for the first (I,,,) and the third (I3,,) harmonics of
the motion [60]:

Ly, = —Bnxsin(ng) + = Bx *n3sin(ng), (2.27)
I3y = —ﬂBJﬁn3 sin(ng), (2.28)

in which n = 4n/A. Taking the ratio of the two harmonics, one can find the motion am-
plitude as follows:

_2v6 o ! hop

. (2.29)
n 1+313wF/Ile

We can then obtain the linear transduction coefficient C;¢5, = x/ 114, by averaging mul-
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Figure 2.13: Calibration method. (a) Nonlinear optical effect observed in the Duffing response has been used
for amplitude calibration. (b) First and third harmonics arising from optical nonlinearity. The ratio of these
harmonics are used to determine oscillation amplitude.

tiple data points on the nonlinear resonance curves in Fig. 2.13, in order to calibrate the
response where I3, is below the noise level. The value we obtain for our experiments
is Ceony = 7.92 x 10~7 (m/V). We also note that, above certain amplitudes, saturation of




2. TUNING NONLINEAR DAMPING IN GRAPHENE NANORESONATORS BY
32 PARAMETRIC-DIRECT INTERNAL RESONANCE

the resonance frequency curves become apparent for which the nonlinear transduction
error becomes significant. We correct for this using [60]

1
Xp = (1 + gxznz) X. (2.30)



MULTI-MODE NONLINEAR
DYNAMICS OF NANOMECHANICAL
RESONATORS

Mechanical nonlinearities dominate the motion of nanoresonators already at relatively
small oscillation amplitudes. Although single and coupled two-degrees-of-freedom mod-
els have been used to account for experimentally observed nonlinear effects, it is shown
that these models quickly deviate from experimental findings when multiple modes in-
fluence the nonlinear response. Here, we present a nonlinear reduced-order modelling
methodology based on FEM simulations for capturing the global nonlinear dynamics of
nanomechanical resonators. Our physics-based approach obtains the quadratic and cu-
bic nonlinearities of resonators over a wide frequency range that spans 70 MHz. To quali-
tatively validate our approach, we perform experiments on a graphene nanodrum driven
opto-thermally and show that the model can replicate diverse ranges of nonlinear phe-
nomena, including multi-stability, parametric resonance, and different internal resonances
without considering any empirical nonlinear fitting parameters. By providing a direct link
between microscopic geometry, material parameters, and nonlinear dynamic response,
we clarify the physical significance of nonlinear parameters that are obtained from fitting
the dynamics of nanomechanical systems, and provide a route for designing devices with
desired nonlinear behaviour.

This chapter is under review for publication in the journal Physical Review Applied.
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3.1. INTRODUCTION

Anomechanical resonators are the devices of choice for high-performance sensing
N since they respond to minuscule forces [10], [63], [64]. More recently, they have
emerged as ideal systems for exploring nonlinear dynamic phenomena. Thanks to their
high force sensitivity they are easily driven into the nonlinear regime [65]. Their small
mass leads to high resonance frequencies, which facilitates high-speed measurements
and, especially in ultra-thin resonators, the high aspect ratio allows tuning of tension
and resonance frequencies to explore a variety of nonlinear phenomena [66].

When nanomechancial devices are driven into resonance, already at small ampli-
tudes Duffing nonlinearities precipitate in the motion, leading to softening- or hardening-
type nonlinear responses [23]. When the nonlinear regime is traversed further, with the
increase in drive amplitude, other eigenmodes begin to partake in the motion through
autoparametric excitations and nonlinear intermodal couplings [46]. In this nonlinear
domain, many studies have reported significant impact of these nonlinear couplings on
the effective dissipation and stiffness of the vibration modes [32], [67]. A number of
exotic nonlinear phenomena have also been showcased, ranging from frequency noise
suppression [49] and intermodal storage of mechanical energy [51], [68], to the genera-
tion of mechanical frequency combs [53], [69].

Efforts made to date in explaining nonlinear phenomena often rely on proposing
analytical nonlinear low-degrees-of-freedom (DOFs) models that are fit to the experi-
mental data to prove their validity. However, since there is no direct link between the
magnitude of the resulting fit parameters and the geometry or material properties of the
nanomechanical device, it is difficult to evaluate whether these models are the only ones
that can account for the experimental data, and which parameters are the most relevant.
Moreover, since there is no direct link between the model parameters and the underlying
physics, it is difficult to extract device information from the fitting. A realistic descrip-
tion of the complex nonlinear dynamics of nanoresonators with pure analytical methods
such as rotating-wave approximation [70] or harmonic balancing [22] is not always suf-
ficiently accurate, because analytical methods are constrained to a limited number of
DOFs. Purely numerical methods such as molecular dynamics or dynamic nonlinear
Finite Element Method (FEM) simulations may resolve this issue, yet they are compu-
tationally expensive [34], [71] and provide less insight. Therefore, an intermediate ap-
proach, whereby analytical multi-mode nonlinear dynamic models are constructed from
the physical device properties using numerical methods, can be extremely valuable for
the precise and fast analysis of the nonlinear dynamics of nanomechanical systems.

In this article we develop and utilize a physics-based Reduced-Order Model (ROM) to
characterize multi-mode nonlinear dynamics of nanomechanical resonators over a wide
frequency range. Our approach makes use of FEM simulations to probe the geometric
nonlinearities of nanoresonators for a large number of coupled vibrational modes. To
validate our method, we perform experiments on a graphene nanodrum that is driven
opto-thermally into the strong mode coupling regime. We show that the physics-based
model can capture the response of the seven directly excited and two parametrically ex-
cited modes of the graphene nanodrum from linear to nonlinear regime, in a frequency
range that spans 70 MHz. The model uses the Young’s modulus and pre-stress to ob-
tain the coupling coefficients, thus providing insight into the influence of geometric and
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Figure 3.1: Measuring the motion of a nonlinear graphene nanodrum. (a) Schematic of the measurement
setup. BE, PBS, BS, QWP, DM and VNA stand for beam expander, polarized beam splitter, beam splitter,
quarter-wave plate, dichroic mirror and vector network analyzer, respectively. (b) Measurements reveal a
range of nonlinear dynamic phenomena for the graphene nanodrum at relatively small amplitudes. At high
drive levels, graphene nanodrum exhibits complex nonlinear behavior where the frequency response shows
hardening nonlinearity, signatures of nonlinear damping, parametric resonance, mode couplings and internal
resonances. The labels fpm are frequencies associated with circular drum mode shapes that are found from
FEM simulations. Here, p stands for the number of nodal lines and m is the number of nodal circles.

physical parameters on the coupled dynamics of nanomechanical resonators. Since the
method is FEM-based, it can be applied further to nanomechanical devices of virtually
any geometry, allowing predicting and designing a variety of nonlinear phenomena.

3.1.1. EXPERIMENTAL MODEL SYSTEM

As an experimental model system for demonstrating the method, we probe the complex
dynamics of a graphene nanodrum resonator. The resonator is fabricated by dry trans-
fer of i = 10nm thick multi-layer graphene over a d = 5pm diameter and 285nm deep
circular cavity, etched in a layer of SiO; on a Si substrate. To study the mechanical vibra-
tions of the nanodrum, we opto-thermally drive it using a blue laser (1 = 405nm) and
measure its response by a red laser (1 = 633nm) using laser interferometry (Fig. 3.1a). At
low drive powers, a linear set of resonance peaks can be obtained, showing the activation
of multiple modes of vibration that we can identify easily using FEM simulations. As the
drive level is increased, the nanoresonator quickly shows signs of nonlinearity (Fig. 3.1b).
Itis possible to observe the well-studied Duffing (hardening type) nonlinearity in several
modes already at relatively small amplitudes (below —6 dBm).

By further increasing the drive level, we notice rapid activation of a plethora of non-
linear dynamic responses. For instance, when the excitation frequency is tuned to twice
the resonance frequency of the modes fj; and fj 1, it is possible to detect strong para-
metric resonances [59]. Since the tension of the nanodrum is directly related to its stiff-
ness, modulation of the tension via opto-thermal actuation parametrically excites the
nanodrum. Consequently, for conditions where the drive is strong enough, period dou-
bling instabilities emerge, resulting in parametric resonances [59]. These resonances
can reach high amplitudes and span wide frequency ranges thanks to the Duffing hard-
ening nonlinearity. Especially at drive frequencies where the frequencies of these modes
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satisfy internal resonance conditions [46], they strongly interact with other modes of vi-
bration. This can be observed in Fig. 3.1b at drive levels above 2 dBm, around the region
where the parametrically driven fy; and the directly driven f,; are interacting. As the
parametric response of fy; approaches f», it is also possible to observe a decrease in
the responsivity as well as a reduction in the rate of increase in the nonlinear frequency
of the parametric resonance — a phenomenon that we label as “locking” in Fig. 3.1b. Only
after a certain drive level is reached, this “locking” barrier is surpassed, and the paramet-
ric resonance surges to a higher amplitude and frequency [67]. Other than this apparent
interaction, a similar coupled dynamic response can be noticed in the neighborhood of
the parametrically driven f;,; and directly driven f3 ;.

Another interesting observation is the decrease in the responsivity of the nanores-
onator for the directly driven modes of vibration with the increase in drive level (see
the nonlinear response around fy; and fp2 in Fig. 3.1b for instance). This reduction,
which is a result of the emergence of nonlinear dissipation [23], was first observed in
resonators that can reach strong nonlinear regime [26]. It was recently shown that such
nonlinear dissipation process could also be mediated when two modes of vibration are
coupled via internal resonance [67]. Capturing such nonlinear dissipation processes by
analytical means, however, when multiple modes are contributing to the response, is far
from being trivial. In order to deepen our understanding of these complex multi-modal
interactions, we thus introduce a FEM-based ROM model [72].

3.2. REDUCED-ORDER MODELLING PROTOCOL

The method for modelling the complex dynamics showcased in Fig. 3.1b consists of five
steps, starting with the generation of a FEM model of the nano device (step I in Fig. 3.2).
For this purpose, any FEM software package that can handle geometric nonlinearities
can be used (we have chosen to use COMSOL in this work). The FEM model of the
circular graphene nanodrum resonator uses plate elements and fixed boundary condi-
tion. We use the literature values for the mass density and Poisson’s ratio of graphene
to be p = 2267kgm 3 and v = 0.16. As the geometry of the resonator is already known
from optical microscopy and Atomic Force Microscopy (AFM) measurements, this leaves
only two unknown parameters to be determined for building the model, namely the pre-
tension and the Young’s modulus of the nanodrum. Since the linear resonance frequen-
cies of the graphene membrane are dominated by the pre-tension, we can extract its
value from frequency response measurements at low drive levels. However, if only the
fundamental frequency is taken into account when determining the pre-tension, it is not
possible to explain the splitting of the asymmetric modes, like fl(,ll) and fl(i) in Fig. 3.3a. In
a perfectly symmetric drum, these eigenmodes are degenerate, i.e., they have the same
frequency. But in practice, there is a mismatch in the tension along the in-plane axes
that causes these modes to have slightly different frequencies. The frequencies of the
first degenerate mode, together with the fundamental frequency, are enough to extract
the tension in the membrane by matching the experimental linear resonance frequen-
cies of the first three modes in the FEM analysis. By doing this we found the pre-tension
in the membrane to be T, = 0.321Nm~! and Ty = 0.257Nm~! for two perpendicular
axes in the plane. To find Young’s modulus of the graphene nanodrum we then used
the linear resonance frequencies of the higher modes following the method described
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Figure 3.2: The flowchart of the ROM procedure for nonlinear dynamic simulations. The frequency response
and AFM measurements are used to extract the physical parameters for building the FE model, which is then
utilized to obtain linear and nonlinear reaction forces of the device, given prescribed displacements in terms
of superposition of eigenmodes. These forces are then used for extracting the coefficients of nonlinear terms
in the ROM [72]. Finally the nonlinear multi-mode model is simulated numerically to obtain the full nonlinear
dynamic response.
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Figure 3.3: The simulated linear and nonlinear dynamic responses of the ROM. a) Frequency response mea-
surements at linear regime are used for extracting the pre-tension and Young’s Modulus of the membrane. b)
The simulated nonlinear frequency response of the graphene nanodrum, where g is the direct drive inten-
sity and y is the parametric drive intensity. It is possible to capture the experimentally observed nonlinear
phenomena using the ROM, such as hardening nonlinearities, parametric resonances and internal resonance
induced physics such as frequency locking and amplitude surge. Bifurcation points are also detected during
numerical simulations, diamond indicators stand for period doubling bifurcations (PD), whereas circles stand
for the Neimark-Sacker bifurcation (NS).
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in [73]; we found a Young’s modulus of 410 MPa (Fig. 3.3a), which is within the values
reported in the literature [74], [75].

By performing linear vibration analysis in the FEM software, we can now obtain the
n x n linear mass and stiffness matrices (K and M, respectively), as well as the eigen-
values w; and eigenmode matrix ®, where n is the number of DOFs used in the FEM
simulations (step II in Fig. 3.2). Therefore, for an n-dimensional displacement vector X
in the FEM model, we obtain the following set of discrete equations:

MX()+CX(t)+KX(t)+ HX() = F(p), 3.1

where X denotes acceleration, X velocity, H the nonlinear force vector, and F(z) is the
nodal force vector. Here, the linear damping matrix C accounts for dissipation. Currently
nonlinear damping is not yet included in the equation of motion, although viscous ma-
terial damping might be added via an imaginary term in the material’s Young modulus.
Evidently, in a finely meshed FEM model, the large number of degrees of freedom n in
Eq. (3.1) in combination with the wide frequency range, makes it practically impossi-
ble to use the FEM for simulating nonlinear dynamic responses like those in Fig. 3.1b.
Therefore, we use a subset L of the n eigenmodes for explaining the observed physics,
where L <« n. This mathematically means reducing the number of DOFs to only a few
that are capable of replicating the nonlinear dynamics of the full model. To do so, we use
the modal coordinate transformation X = ®¢, expressing the displacement as a super-
position of eigenmode shapes, and only select a subset @, of eigenvectors, such that
q is the L-dimensional modal amplitude vector. Using this transformation, Eq. (3.1) can
be re-written in modal coordinates as

M)+ Cq(t)+ Kq(t) +n(q(t) = F(p), (3.2)

where M = ®T M®, C = ®7C®, K= dTK®, n=d" Hand F(t) = dTF(1).

From the linear FEM eigenmode simulation, all these matrices and vectors except 7
can be determined (step I-III in Fig. 3.2). To obtain this nonlinear matrix we perform
multiple nonlinear stationary FEM simulations, with suitably chosen displacements X,
along the Stiffness Evaluation Procedure (STEP, see IV in Fig. 3.2) that we briefly outline
in what follows and along the lines of Ref. [72].

For any nodal displacement vector X = X, the reaction forces can be transformed
into the modal domain and used for the extraction of nonlinear internal forces of the
nanodrum. We do this by carefully prescribing nodal displacement vectors X¢, to calcu-
late the corresponding linear reaction forces F, since F;, = KX,. After finding the linear
reaction forces, we perform a full nonlinear static analysis in the FEM package, consid-
ering that the nanodrum is subjected to the same displacement vector X., and obtain
the total nodal reaction force Fr. By subtracting the linear reaction forces from this full
static solution, i.e., Fyi, = H(X,) = Fr(X;) — KX,, we then obtain the nonlinear reaction
force and map that on the subset of eigenmodes selected as follows: 1 = Fy = ®7 Fyp,
(see steps IIT and IV in Fig. 3.2). We finally expand this nonlinear reaction force for every
mode of vibration in terms of quadratic and cubic nonlinear terms as follows:

L

L L
n"=% Y allgja+ Y Y Y b a;aca (3.3)
j=lk=j j=lk=jl=k
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where r stands for the rth equation of motion also associated with the rth mode, and j,
k, | are the mode numbers. Furthermore, L is the number of modes that is being consid-
ered in the ROM. We note that these cubic and quadratic nonlinear terms for single or
two-mode models are commonly used to simulate nonlinear dynamics of nanomechan-
ical resonators. However, here we extract them purely from geometric nonlinearities and
can expand that to any number of modes of vibration, up to the number of DOFs that is
being considered in the FEM simulations.

The procedure explained above enables us to generate a set of linearly indepen-
dent Fyr, equations by applying different displacement vectors X.(¢,), 7 ={1,... L}; these
are selected such that they are superpositions of eigenvectors ¢, where each combi-
nation provides unique information about a nonlinear term through simulations, e.g.,
Xe=%¢;iqj+Prqgr = $1q;. In order to obtain information about the nonlinear reaction
forces, the modal amplitudes in the displacement vector X, should be chosen such that
the nano device reaches the geometric nonlinear regime.

3.2.1. EXTRACTION OF NONLINEAR FORCES

To clarify the procedure outlined above, we demonstrate how the nonlinear coefficients
of the ROM can be derived for two hypothetical generalized coordinates, g; and g.. We
start by determining the uncoupled nonlinear coefficients of the system. For the first
generalized coordinate g;, we construct displacement vectors X, from ¢, such that only
nonlinear terms associated with g, are activated:

Xy =+d14q1, (3.4)
Xo =—-¢p14:1. (3.5)

This results in two equations with two unknowns:

Fox =al)g + b)), a3, 3.6)
FQ 00) = al) g7 - b}, 47, 3.7)

which can be solved to obtain agll) and bgll)l, that are namely the quadratic and cubic

uncoupled nonlinear terms for the modal coordinate g;. Similarly, by prescribing the
system to move on its second eigenmode ¢, we can obtain aézz) and b;zz)z. Next, in order
to determine the coupled terms, we use the superposition of the eigenmodes as follows:

X3 = +hiq1+daqo,
Xo = —hrq1—d2qo,
X5 = +P1q1— P29, (3.8)

which results in the following set of 3 equations with a;», b112, b211 as unknowns:
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(1) _ 1) 2 @ 3 (1) 1 2
Fyp(X3)  =ayyqy+ by gy +ay, qige + ay, 4,

n 2 (1) 2 m .3
+b175,q1 G2 + by 1G5 + by, G5,

Fi () =ai)ai - by} af +ai) gz + @) a}
M 2 0)) 2_ 31 3
~by15d192 = b5y @105 — bagy @)
Ryl (Xs) =ai)ai+ by 4 - @iy 112 + @z a}
1 1
_bil)z aiqz + biz)qu a5~ bélz)zqg- (3.9)
(r)
jk
thanks to the previous step, the coupling terms between two modes (as.rlg ,and b;.rk)l where
j =k # 1, etc.) can be found by solving these three linearly independent equations
(Eq. (3.9)). In case of coupling between 3 modes of vibration, the third mode’s eigenvec-
tor shall also be included in the prescribed displacement, i.e., X; = ¢;q; + Prqr + P14,
and a similar procedure shall be followed to obtain b;.rk)l, where j # k # [. We note

that this procedure can be generalized and easily applied to a system with L number
of modes.

The number of eigenmodes to consider depends on the complexity of the problem
and the dynamic range of interest. In our study, and in order to replicate the nonlinear
dynamics observed in Fig. 3.1b, we used 11 out-of-plane modes in a frequency range that
spans 20 MHz to 90 MHz. For convenience, we compare in Tab. 3.1 the coupling terms
for the first two axisymmetric modes of an ideal (with uniform tension) nanodrum, ob-
tained analytically (see Appendix BI) [69] with the FE-based ROM approach explained
here. We also provide the quadratic and cubic nonlinear terms of the experimentally
tested graphene nanodrum for seven modes of vibration in Appendix B2. As additional
examples, we also provide the nonlinear ROM parameters extracted from this protocol
for various other nanomechanical systems such as nanomechanical strings and rectan-
gular membrane resonators in Appendix B2.

It is important to mention that the ROM approach sketched here can also account
for the influence of in-plane modes of vibration on the nonlinear terms associated with
out-of-plane DOFs. This is of great importance for probing nonlinear stiffness terms
with accuracy since it has been shown that neglecting the influence of in-plane modes
could result in overestimation of the stiffness [22], [76]. In the analytical setting, effects
of in-plane modes could be condensed into the out-of-plane modes by assuming zero
in-plane inertia since they have orders of magnitude higher frequencies, thus from the
frame of reference of out-of-plane modes, act almost instantaneously. In this way they
can be treated statically and their effects can be condensed into the out-of-plane modes,
without having to calculate their inertial effects [77]. Instead of including the in-plane
modes, the FEM method described here can automatically include their effect more ef-
ficiently by leaving the in-plane displacements free (instead of fixed) while applying the
out-of plane membrane displacement X.. As such, in-plane effects are automatically
condensed into the nonlinear parameters out-of-plane modes. After the construction
of n and the nonlinear ROM, we incorporate the coupled nonlinear differential equa-

Since all of the uncoupled parameters (a’;,’ and b;.rk)l where j = k = ) are already known
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Analytic STEP
Mode 1 | Mode?2 | Mode 1 | Mode 2
bi11 2.84 -0.57 2.84 -0.57
byoo -3.32 22.76 -3.29 22.9
b112 -1.73 9.25 -1.71 9.27
bi2s 9.25 -9.96 9.27 -9.85

Table 3.1: Comparison of the nonlinear coupling coefficients for the first two axisymmetric modes of the
graphene nanodrum obtained by an analytical method and the ROM approach. Coefficients are normalized
by ¢ = Eh/r? where E is the Young modulus, & is the thickness and r is the radius of the membrane. We note
that the quadratic coupling terms are all zero for a flat symmetric membrane.

tions in a numerical continuation package (AUTO) [78] and obtain the steady-state re-
sponse for different drive frequencies and drive levels, i.e., the frequency response (step
Vin Fig. 3.2). We utilize the numerical continuation software also to detect bifurcations
in the system, which are crucial for understanding the complex nonlinear dynamics of
nanoresonators.

3.3. SIMULATIONS OF THE REDUCED-ORDER MODEL
We simulate the ROM for different direct and parametric drive levels, FOp = Fgr) +FD

par’
where Fgr) =J"Bcos(wgt) and Flgg)r =] g,y cos(wgt), with y denoting the parametric
drive intensity, § the direct drive intensity, and J the force mapping vector. We shall note
that in order to obtain the modal forces /" we use the Duffing shift in the frequency of
the high amplitude saddle-node points per drive level. For simplicity, in our simulations
we use the Q factor of the fundamental mode (Q = 180) for all the modes.

Fig. 3.3b shows the simulated frequency response of the nonlinear ROM for vari-
ous drive levels. Simulations are in good qualitative agreement with the experimental
frequency responses in both linear and nonlinear regimes. Although it was attempted
to obtain quantitative agreement in the nonlinear regime, this was not fully achieved,
possibly due to small imperfections in the membrane that deviate its behavior from
the FE model. Similar to experiments, it is possible to observe period doubling bifur-
cations of modes fy; and f;,; around wg =2fj,; and wg =2 f1,1 caused by the parametric
drive. When the first parametric resonance reaches the vicinity of the second asymmet-
ricmode f5 1, it suffers areduction in the simulated responsivity in Fig. 3.3b which is con-
sistent with the experimental observation in Fig. 3.1b. We also see the frequency locking
at the internal resonance. With further increase in the drive level, similar to the experi-
ments, we observe that the frequency locking “barrier” is broken, and the frequency of
parametric resonance peak surges to 3.5 times the frequency of the fundamental mode
fo,1- After the surge, we also note the presence of the Neimark-Sacker bifurcation nearby
the internal resonance at w;/wo = 2.538, which indicates the emergence of aperiodic
oscillations [69], [79].

The experiments and simulations depicted in Figs. 3.1b and 3.3 demonstrate that,
rather than being governed by just two DOFs, the complex motion of the graphene nan-
odrum around 2.5fp; is a combination of interactions between multiple modes of vi-
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Figure 3.4: Simulated overall nonlinear dynamic response of the graphene membrane at principal paramet-
ric resonance of fj ;. a) Simulated shape of the membrane at maximum amplitude level during its parametric
resonance at specific drive frequencies, displayed on the experimental parametric resonance curve. Solid lines
indicate stable solutions whereas dashed lines indicate unstable ones. b) Full simulated frequency response at
the principal parametric resonance of mode fj 1, showing activation of many other modes in the system dur-
ing the strong parametric resonance, specially around the internal resonance region w z/wgo = 2.538. c) Shape
of the membrane during a period of oscillation at internal resonance (w;/wo = 2.538), displaying multiple
mode shapes within a single period of oscillation with different frequencies. Ty is a single period of mode fp ;.
Amplitude of the response is amplified for visual convenience.

bration. We examine the contribution of numerous vibrational modes in the vicinity of
the first parametric resonance in order to trace the energy redistribution among various
interacting modes. Fig. 3.4a shows strong activation of multiple modes at the internal
resonance point, where axisymmetric modes fp 2 and fy 3 (mode numbers 6 and 15) with
asymmetric mode f>; (mode number 4) are most notably excited. Time responses of the
modes during one period of f;; oscillation at w;/wg = 2.538 are also shown for conve-
nience (Appendix B3). A more visual representation of the time signals can be obtained
by using the modal amplitudes g from AUTO to superpose the FEM mode shapes ¢,
thereby reconstructing the total mechanical response and the deflection shape X of the
graphene nanodrum during internal resonance (see Fig. 3.4b and 3.4¢). If we analyze the
nanodrum shape at its maximum amplitude level during an oscillation, we can see that
the effective deflection shape is unique near the internal resonance point (Fig. 3.4b). Dis-
secting the total motion of the membrane by taking snapshots at different times during
a single period of the fundamental mode fy,; (Fig. 3.4c) further reveals the strong influ-
ence of the multi-modal interaction. It is possible to clearly observe the emergence of
other mode shapes during a single oscillation of f ; parametric resonance. These simu-
lations clearly showcase the energy pathways that lead to the aforementioned nonlinear
dissipation phenomenon, not only at the clearly visible internal resonance, but also at
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responses that look regular, like the direct resonance of fy ;. When the global frequency
response per mode is analyzed, it is also possible to see the autoparametric activation of
multiple modes around the fj; where most of the energy ends up in fy3 (see Appendix
B3).

3.4. DISCUSSION

We note that the favored energy pathways for each system will be distinct due to vari-
ations in pre-tension, geometry, and material properties. These physical parameters
dictate the system’s capacity to “internally resonate”, due to their effects on the non-
linear terms and resonance frequencies. In the literature, it is common to model non-
linear systems by disregarding the effects of multi-modal interactions, especially if there
are no other visible modes contributing to the measurement data. Most of the time, as
discussed before, this results in using empirical fit parameters to explain the observa-
tions. In this case, the assumption is that, all the interactions effectively renormalize the
terms in the single mode equation (generally being Duffing or Duffing-van der Pol). The
downfall of this assumption is that, in reality, the effects of multi-modal interactions are
amplitude and drive frequency dependent [67], whereas re-normalization through em-
pirical fit parameters assumes constant effects. This means that such simplistic models,
at best, will agree with the experiments only for a snapshot of frequency response and
cannot explain the overall dynamics at higher drive levels and for wide frequency ranges.
Utilizing a method that fully relies on physical parameters and includes as many modes
as needed, automatically resolves this problem, while clearly displaying the enigmatic
nature of these intermodal interactions and energy dissipation pathways.

In summary, we utilized a nonlinear ROM technique to characterize the multi-modal
interactions of nanomechanical resonators. We used FEM simulations as the basis to de-
velop our physics-based model, that relies purely on measurable quantities from exper-
iments. We calculated the linear and nonlinear internal forces using FEM simulations to
extract quadratic and cubic nonlinear terms for constructing the full nonlinear ROM. By
simulating the response curves with the model and comparing the results to nonlinear
dynamic measurements of a graphene nanodrum resonator, we showed that the model
can replicate complex nonlinear intermodal interactions. Moreover, by tracking simul-
taneous activation of modal amplitudes, we have identified intermodal energy transfer
pathways mediated by nonlinear couplings between multiple modes of vibration. Our
study provides an efficient and accurate protocol for modelling complex nonlinear dy-
namics of nanomechanical resonators in a global manner, purely based on material and
geometrical parameters. As a result, we anticipate that this protocol will not only aid
in explaining the multi-mode nonlinear dynamics of nanoresonators, but will also serve
as a framework for designing optimized nanoresonators that can take advantage of the
powerful phenomena that nonlinear dynamics has to offer [80], [81].
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3.5. APPENDIX B

3.5.1. B1: ANALYTICAL MODEL FOR AN IDEAL MEMBRANE WITH TWO-DEGREES-
OF-FREEDOM

In order to benchmark the method provided in the main section, we use the Rayleigh-

Ritz approach to obtain the equations of motion for a circular membrane [22], [61], [69].

The elastic strain energy of the drum is obtained as

2n rR Eh , ) 1—v ,
U :fo fo —2(1 7 (er, +€pg +2VEr € + > yre)rdrde, (3.10)

in which h is the thickness of the drum, R is the radius, E is the Young’s modulus, and v is
the Poisson’s ratio. Moreover, €,, €gg, and y g are the normal and shear strains. During
axisymmetric oscillations y,¢ = 0, and the normal strains are obtained in terms of the
transverse deflection (w) and radial displacement () of the drum as follows

e S )
€gp = % (3.12)

In Eq.(4.4), wy is the initial transverse displacement of the drum associated with zero
initial stress, and is equal to zero when assuming ideal symmetric membrane. By taking
into account the modal interactions between the first two axisymmetric eigenmodes and
fixed boundary conditions (z = w = 0), the solution is approximated as

w=q0)o(Z15) + (0o 2%, (3.13)

n .
u=upr+r(R-rY y;orit, (3.14)
j=1

where u is the initial radial displacement due to pre-tension ny, and q; and g» are gen-
eralized coordinates associated with the first and the second axisymmetric mode of the
drum, respectively. Moreover, J is the Bessel function of order zero and Z; and Z; are its
first two roots. We Taylor approximate ]O(Zl %) to 10th order and ]()(Zg%) to 14th order
to accurately capture the mode shapes. In addition, y; are the radial generalized coor-
dinates and 7 is the number of these coordinates retained in the approximation where

convergence is achieved at n = 8.
The kinetic energy of the drum is then obtained as

1 2n R
T= -phf f w?rdrdo, (3.15)
20 Jo Jo
in which the overdot represents differentiation with respect to time ¢, and p is the mass

density.
Next, we obtain Lagrange equations as follows:

= L= (3.16)
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where Z is the Lagrangian (£ = T — U), resulting in the equations:

5 o, 2, 0 12, 4,1 3, 1) 2 (1) 2,31 3 _
migi+kiqi+ag] gy +ag, q1ga+as, G5 +b17,G7 +by15,G1 G2+ b5 G1G5+ b5, G5 =0, (3.17)

= @ 2, @ @ 2 12 3,02 2 @ 2.1 3 _
maGa+koga+ay] gi+ayy qrga+ag, gs+bi7,q1+by7,q7 g2 +by5, 1G5 +bygy gs =0, (3.18)

in which ag.r,z and b;.rk)l are the quadratic and cubic nonlinear terms. It is possible to
express the coefficients in the equations of motion in terms of mechanical and geometric

properties of the drum as follows
k 2.4
w =L =22 |00 (3.19a)
m; R\ ph
k; 5.5
wp == =22 |10, (3.19b)
my R\ ph
h

b\ = 2.841;—2, b = —0.57%? (3.190)
by, = —3.32%?, by, = 22.76%? (3.19d)
b\, = —1.73%}21, b?, = 9.25% (3.19¢)
b\, = 9.25%?, by, = —9.96% (3.191)

(r)

in which the coefficients were evaluated assuming v = 0.16. The quadratic terms gy

are all zero due to the ideal symmetric membrane assumption (wp = 0).

3.5.2. B2: NONLINEAR REDUCED-ORDER MODEL PARAMETERS FOR DIF-

FERENT NANOMECHANICAL RESONATORS

Here we provide the nonlinear reduced-order model parameters extracted using the
STEP method [72], for the graphene nanodrum discussed in the main section, as well
as a rectangular membrane and a string resonator. In the following tables, it is possible
to find the definitions of the physical parameters for each model, dimensional prefactors
for the terms in the nonlinear reduced-order model, and the dimensionless coefficients
for the nonlinear terms. We note that for flat ideal circular, square and string resonators,
the quadratic nonlinear terms are nonexistent for out-of-plane modes in the absence of
in-plane modes.

REDUCED-ORDER MODEL PARAMETERS FOR THE EXPERIMENTAL GRAPHENE DRUM
Reduced-order model of the graphene drum provided here is based on a finite element
(FE) model constructed in COMSOL, considering fixed boundary condition with plate
elements. Eigenmodes of the graphene drum can be found in Fig. 3.5. The description
of model parameters, scaling values and linear modal parameters can be found in Ap-
pendix Tables 3.2, 3.3 and 3.4. We construct the model using the first three axisymmetric
and first four asymmetric out-of-plane modes of the structure, excluding their degener-
ates. Nonlinear coefficients can be found in Appendix Table 3.5.
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Table 3.2: Parameters for the graphene drum resonator

Parameter Formula Units
E - Pa

h - m

R - m

v - -

o - kg/m3
g - Pa

0 ph kg/m?
To oh Nm™!

Table 3.3: Scaling values for the graphene drum equations

Description
Young'’s modulus
Thickness

Radius

Poisson’s ratio
Density

Stress

Mass per unit area
Membrane tension

Linear Nonlinear

mg ko Wo Adim  bdim
2.405 [T Eh

aR?hp T, =42 =1 =
R p R

Table 3.4: Dimensionless linear modal values for the experimental graphene drum from the main section.
Eigenfrequencies are normalized w.r.t. the fundamental mode (w1). Modes: 1, 2,4, 6,7, 9, 15

Eq. 1 Eq. 2 Eq. 3
m/m; 0.204 0.195 0.183
k/ko 5.78 16.5 34.6
w/wy 1 1.73 2.59

Eq. 4 Eq. 5 Eq. 6 Eq. 7

0.103 0.192 0.118 0.0698
24.2 68.3 55.4 64.9

2.89 3.54 4.07 5.73
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Table 3.5: Dimensionless nonlinear coefficients for the graphene drum (v = 0.16) from the main section.

Modes: 1,2, 4,6,7,9, 15

bin
b112
by13
by14
by15
by16
byy7
D122
D123
b124
b125
b126
b127
by33
by34
by35
D136
by37
D144
bigs
b1
b1a7
b155
b156
by57
b166
byg7
by77
bo22
D223
b2y
baos5
(775
bo7
by33
bp34
by35
by36
bp37
bo44
ba45
boge
boy7
bas55
bas56
bys57
bae6
bae7
ba77
b333
b334
D335
D336
b337
b344
b3ys5
b346
b347
b355
b3s56
b357
D366
b3g7
b377
byagq
byys5
byse
baa7
bys5
bys6
bys57
D466
byg7
by77
bs55
D556
bs57
b5
bsg7
bs77
bee6
bgg7
bg77
b777

Eq. 1
2.55
0
0.942
4.02
0.00058
0.00128
-1.61
8.61
—-0.143
0.00129
—-0.826
-8.12
-0.0667
9.88
2.13
-0.0277
—0.00152
—0.0863
10.8
0.0254
0.0829
5.92
12.1
1.45
-0.032
16.1
—0.033
14.4
0
-5.73
3.83
0.00146
0.00194
—-2.48
0.00075
0.00452
-13.5
7.3
—0.0112
—0.000933
0.605
-14.3
0.0374
—0.000489
—0.00483
2.13
0.00243
—-0.108
—0.00664
0.476
1.35
—0.000782
0.00211
—7.59
3.5
—-0.00534
-0.00706
4.81

—0.000543

0.00566
-10.9

0.00617

—-0.308
0.00192

—0.00265
2.89
0.0108
113

Eq. 2

0

8.57
—0.000283
—0.000585
—0.434
—4.05

0.000168

0

-11.8
7.69
0.174
0.0522
=5.07
0.000849
0.000409
-13.7
7.33
—0.000881
—0.000906
0.634
—14.4
—0.00501
—0.000487
0.02
2.16
0.00254
0.161
—0.00684
18.7
—0.00272
—0.00433
5.81
=21
0.000901
45.2
12.9
—0.224
0.0157
12.8
16
0.00898
—0.0382
7.29

7.68
—0.000293
0.00491
—0.0452

15.5

Eq.3

0.313
—0.000307

9.79

1.07
—0.00109

0.000289
—0.0469
—5.82

0.349

0.0838

-13.7

7.31

0.0861

1.46

2.83

0.22

0.085

-15.3

3.54

0.0135

0.0383

4.86

1.18

7.02
—0.000708

—0.000908
45.2
6.42
—0.00434
—0.00157
6.38
—0.00485
—0.00523
64
-10.9
—-0.0207
—0.00287
203
7.73
0.0448
0.00469
—0.00451
15.6
—0.0148
-9.17
—0.00488
44.9
12.2
—-0.0168
—0.00299
0.53
45.4
0.0276
—0.00618
17.6
121
224
0.00302
54.9
—0.00329
45.1
0.121
—0.00516
—0.00338
5.31
2.54
58.3
—0.0417
6.39
0.0228
2.08
0.000385
—0.00135
—6.49
—0.0296
-14
—0.00334
0.0039
11.9
0.0118
—-0.814

Eq. 4
1.34
—0.000596
1.07
10.8
0.00124
—0.000762
2.96
3.82
0.0771
0.167
0.625
-14.5
0.0629
1.37
6.92
—0.000755
0.019
4.82
17.4
0.133
0.167
16.3
-1.01
2.27
—-0.0264
16.8
-0.0053
14.3
—0.00143
6.43
16
0.00156
-0.00127
3.55
—0.00484
-0.0825
20.3
7.74
—0.0566
—0.00374
-7.81
-28.1
0.237
—-0.00145
-0.0111
-2.74
0.00474
-11.7
—-0.0109
4.06
45.4
—0.000288
-0.0106
8.78

Eq.5
0.000204
—-0.426
—-0.00111
0.00124
12
0.711
0.000479
0.00154
-13.8
0.621
0.434
0.0669
2.17
—0.000543
0.00248
1.95
6.94
0.0112
0.00168

—0.000223
121

11.2

—0.00705

—0.00526
5.01

58.3

—0.0412
0.000372

—-0.145

Eq. 6
0.000435
—4.05
0.000244
—0.000745
0.71
15.9
0.0028
0.00208
7.28
-14.5
0.0744
0.26
0.158
0.00217
—0.000509
6.94
-9.79
—0.00304
—0.000612
2.25
34
0.0132
0.00579
0.293
—-0.336
—0.0112

Eq.7
—-0.529
0.000196
—0.0467
2.96
0.000527
0.0028
14.2
—2.56
0.0707
0.08
217
0.184
0.361
—-7.65
4.82
—0.0145
—0.00623
10.5
8.08
—0.0204
—-0.00671
28.8
—-11.1
-0.336
0.136
2.66
0.144
3.13
0.000362
6.38
3.57
—-0.00925
0.0126
22.2
—0.00498
—0.0346
15.6
-9.19
—0.158
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(a) 1°* mode (b) 2™ mode (c) 3' mode
“ O
(d) 4** mode (e) 5" mode (f) 6" mode
P O
(g) 7" mode (h) 8™ mode (i) 9*" mode
&
(j) 10" mode (k) 11*" mode (1) 12 mode
LSF
(m) 13** mode (n) 14" mode (0) 15" mode

Figure 3.5: Eigenmodes of the graphene drum resonator.
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REDUCED-ORDER MODEL PARAMETERS FOR A SQUARE MEMBRANE RESONATOR
Reduced-order model of an ideal square membrane provided here is based on an FE
model constructed in COMSOL, considering pinned boundary conditions with mem-
brane elements. Eigenmodes of the square drum can be found in Fig. 3.6. The descrip-
tion of model parameters, scaling values and linear modal parameters can be found in
Appendix Tables 3.6, 3.7 and 3.8. We construct the model using the first eleven out-
of-plane modes of the structure, excluding their degenerates, resulting in seven modes.
Nonlinear coefficients can be found in Appendix Table 3.9.

Table 3.6: Parameters for a square membrane and string resonators

Parameter Formula Units Description

E - Pa Young’s modulus

h - m Thickness

L - m Length

v - - Poisson’s ratio

) - kg/m®  Density

o - Pa Stress

p ph kg/m? Mass per unit area
To oh Nm~! Membrane tension

Table 3.7: Scaling values for a square membrane resonator

Linear Nonlinear
my ko wo Adim bgim

2 /2 2T0 /A Eh
Php T —/=2 ) ———
L\ ¢ 1.27-0.97v 12

Table 3.8: Dimensionless linear modal values of a square membrane resonator for modes: 1, 2,4, 5,7, 9, 11.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7
mimy 0.25 0.215 0.25 0.206 0.154 0.227 0.248
k/ko 4.93 10.6 19.7 20.3 19.8 38.2 44.2

w/wy 1 1.58 2 2.24 2.55 2.92 3
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Table 3.9: Dimensionless nonlinear coefficients for a square membrane resonator modelled with modes: 1, 2,

4,5,7,9,11.

b1
bi12
bn3
b114
b5
b1
bnz
b122
b123
b1o4
b5
b126
b127
D133
D134
D135
b136
b137
b44
bias
biae
b7
D155
Dby56
by57
b166
b167
b177
b2
b3
boy
bo5
b226
bao7
by33
ba34
by35
b3
ba37
bo4s
boys
b6
bag7
D55
base
bas7
bogp
bog7
ba77
b333
b334
b335
b33
b3z7
D344
b345
b346
b347
b3s5
b3s6
b3s7
b3ep
b3g7
bs77
Dys4
bays
byap
baa7
bys5
bysp
bys7
bye6
bye7
by77
D555
bs56
bs57
bsep
bs67
bs77
be66
be67
be77
b777

Eq. 1
3.65
0
0

—0.242
0

0
—0.144
11.6
—0.0597
—0.0514
2.29
—2.32
0.0561
15.2
-0.019
—0.0147
—-0.0233
0.0116
16.4
—-0.0133
—0.0633
-1.16
12.9
—2.53
0.0263
31.8
0.061
27.4
—0.000165
10.5
291
—0.000944
—0.00146
0.307
—0.000749
—0.0416
-14.1
-8.21
—0.00833
0
4.56
8.12
0.0902
—0.00367
—0.000602

0.000617
1.21
0.00161
—0.0036
8.21
0
0.00929
—-0.0278
0.00647
53
-9.82
—-0.0299
-1.73
—0.0406
0.0107
0.767
—0.00148
0.00254
—-20.1
1.66
—8.43
0.0719
9.98
0.195
0.215
—0.000449
0.00139

Eq.2
0
11.6
0
0
1.15
-1.13
—0.000263
—0.000387
20.7
5.63
-0.057
-0.126
0.791
—0.000448
0.00178
-14
—8.18
0.00107
0
4.48
8.01
0.00215
—-0.00323
—0.0488
-18.2
0.0107
-9.15
0
21.9
0.000308
0

—-0.34
—5.86
0.00135
58.2
4.4
0.0428
—0.0898
16.4
58.7
—0.0935
-0.169
-12
51
-13.5
0.0616
79.4
0.121
70
—0.0005
0

-28.9
-2.01
—0.00274

0.00294
=79
37.8
0.0126
—0.00847
0.0311
—65.1
0.0104
11.6
—0.00793
0.000402
34.5
21.2
0.00305
—0.00814

2000622

Eq.3
0
0
15.2
—0.000418
0.000103
—0.000234
—-0.00117
10.4
—-0.303
—-0.0362
-14.1
-8.16
0.0117
0.00201
2.29
-0.121
-0.14
16.5
0
0.00381
0.00551
-0.00516

2.24
0.00268
—0.000207
8.17
—0.0025

—-0.115

—0.000215
0.0113
67
—-0.0623
—0.0846
8.55
96.5
7.38
0.00507
145
0.0688
156
0.000369
0.00503
—0.00315
—-0.00774
5.52
-16.9
—0.00488
1.16
-0.00207
0.0231
0.00986
—0.0263
713
—-0.0138
-19.6
0.00627
—-0.0311
-12.7
—0.0549
0.0474

Eq. 4
—0.0807
-0.000267
—0.000269
16.4
—0.000291
—0.000123
—0.634

2.87
—0.0311
—-0.385

4.49

8

0.0806

1.2
-0.186
—0.00515
—0.0121
—0.00781

2.26
-0.175
-0.26

-39.3

1.64
-8.34

0.0259

9.94

0.189

0.2

0.000103

2.24
58.7
—0.00286

0.00451
-6.03
-0.00113
-0.19
=79

0
—0.000231
12.9
-1.27
0.000812
—0.000952
-13.7
4.47
-0.193
—0.0441
-18.2
0.00178
0.000313
10.3
-9.85
0.00765
—0.00141
3.1
—8.47
—0.000571
—0.00101
—0.148
5.39
0.0026
-17.8
0.0051
-0.117
0.00278
—0.00307
51
-6.71
0.00768
—28.8
—7.88
—0.224
0.144
—64.9
34.5
—-0.267
-0.116
—26.9
-20.2
20.7

240
-0.136
—0.0374
—0.251
—-0.00117

Eq. 6
—0.000131
-1.17

0
—0.000154
-1.27
31.8

0.00159
—-0.0015
—-8.35

7.54
—0.0697
—0.494
-8.97
—0.00327

0.00695
-9.72
-3.8
—0.00699

0.00465
—8.76
19.2

0.0115
—0.00147
—-0.267

-17.6
—0.0312
1

—0.0057
-1.95
0.0003
0.00554
-6.71
79.3
—0.00178
—2.03
37.6
0.0697
—0.495
11.6
211
-0.195
—0.904
—58.7
10.4
46
0.128
4.87
0.535
36.4
0.000402
0.00373
3.74
145
—0.00483
—0.000892
—-16.8
2
—-0.0017
—0.0255
-0.235
-19.5
—-0.097

Eq.7
—0.0466
—0.000234
-0.00112
-0.635

0.00107
0.00211
274
0.367
-0.109
0.179
-18
-9.19
-0.397

0.000453
8.15
—6.02
0.00785
—0.000829
69.9
—0.0032
0.0978
—64.9
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-

(a) 1°* mode (b) 2™ mode

(d) 5" mode

(g) 11*" mode (h) 12** mode

Figure 3.6: Eigenmodes of a square membrane resonator.
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REDUCED-ORDER MODEL PARAMETERS FOR A STRING RESONATOR

Reduced-order model of an ideal string resonator provided here is based on an FE model
constructed in COMSOL, considering pinned boundary condition with truss elements.
The description of model parameters, scaling values and linear modal parameters can
be found in Appendix Tables 3.6, 3.10 and 3.11. We construct the model using the first
three out-of-plane and first three in-plane modes of the structure. Nonlinear coefficients
can be found in the Appendix Tables 3.12 and 3.13.

Table 3.10: Scaling values for a string resonator

Linear Nonlinear
my koout kOin woout woin adil’l’l hdim
gA EA 1 Jo 1 |/E EA EA
pAL — —  — /= =4/ = — —
L L 2t\p L\p L2 L3

Table 3.11: Dimensionless linear modal values of a string resonator. Eigenfrequencies are normalized w.r.t. the
fundamental mode (w1). Note that Eq. 4, Eq. 5 & Eq. 6 describe in-plane modes.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq.5 Eq. 6
mimg 0.5 0.5 0.499 0.5 0.501 0.497
kil ko 4.93 19.7 44.4 4.97 19.9 44.6
w/wy 1 2 3 23.6 47.2 70.9

Table 3.12: Quadratic nonlinear coefficients for a string resonator modelled with modes: first three out-of-
plane modes (correspond to 1, 2, 3 in the table) and first three in-plane modes (correspond to 4, 5, 6 in the

table)

ann
a2
a3
ais
ais
a1
ax
a3
axy
azs
a6
ass
as4
ass
aze
a4
ass
ase
ass
ase
age

Eq. 1

0

0

0

15.5
—0.000152
—0.00132

0

0
0
0 -12
0
0
46.5
-93.1
—0.00108
0

SO OO0 oo oo oOO0OoORROOOOC OO OOCOC

=== -]

Eq. 2

Eq. 3
0
0
0
46.5
-93.1
0.00806

oS o oo

—-0.00116
-0.00173
—418

(=== -]

Eq. 4
7.75
0
46.5
0

.000349

oo ocooCcocococooo

|
w
3
IS

0
1.12x 103
0

Eq.5
—0.000153
0
-93.1

~0.00173
0
0
0
-186
0
1.12x 103
0
0
—0.0111

Eq. 6
—-0.0014
0
0.00646
0

1.12x 103
0

0

0.0162

0
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Table 3.13: Cubic nonlinear coefficients for a string resonator modelled with modes: first three out-of-plane
modes (that correspond to 1, 2, 3 in the table) and first three in-plane modes (that correspond to 4, 5, 6 in the
table)

Eq.1 Eq. 2 Eq.3 Eq. 4 Eq.5 Eq. 6
b1 18.3 0 18.3 0 0 0

bi12 0 146 0 0 0 0

b1z 54.8 0 328 0 0 0

bi1a 0 0 0 48.7 -48.8 0.00533
b11s 0 0 0 -48.8 195 146

biie 0 0 0 0.00403 146 437

b122 146 0 219 0 0 0

b123 0 438 0 0 0 0

b124 0 0 0 0 0 0

b125 0 0 0 0 0 0

b126 0 0 0 0 0 0

bisz 328 0 -0.0227 0 0 0

b134 0 0 0 146 -292 -437

bi3s 0 0 0 -292 -0.00655 876

b13e 0 0 0 —437 876 —0.0632
D144 48.7 0 73 0 0 0

bus -97.5 0 -292 0 0 0

biss 0.00747 0 -437 0 0 0

biss 195 0 —0.00386 0 0 0

bisg 292 0 876 0 0 0

bigs 437 0 -0.0141 0 0 0

booo 0 292 0 0 0 0

boo3 219 0 1.31x103 0 0 0

booa 0 0 0 292 0 —-292

boos 0 0 0 0 781 0

boe 0 0 0 -292 0 1.75x 103
bo33 0 1.31x10% 0 0 0 0

b234 0 0 0 0 0 0

bo3s 0 0 0 0 0 0

b236 0 0 0 0 0 0

boss 0 292 0 0 0 0

b24s5 0 0 0 0 0 0

boae 0 -583 0 0 0 0

boss 0 781 0 0 0 0

base 0 0 0 0 0 0

boss 0 1.75x 103 0 0 0 0

b333 0.00417 0 1.48 x 10% 0 0 0

b334 0 0 0 438 -439 0.0182
bs3s 0 0 0 -439 1.76x 103 —0.0141
b33 0 0 0 0.00627 0.00105 3.93x10%
b3as 73 0 438 0 0 0

bgss —292 0 -877 0 0 0

b3sg —437 0 0.0373 0 0 0

b3ss 0.000582 0 1.76 x 103 0 0 0

b3sg 876 0 -0.0161 0 0 0

bses  —0.011 0 3.93x10% 0 0 0

[om 0 0 0 292 0 -290

baas 0 0 0 0 2.34x 103 0

bass 0 0 0 -875 0 5.24x 103
Dass 0 0 0 234x103 0 -3.51x103
base 0 0 0 0 -7.02x 103 0

bass 0 0 0 5.24x 103 0 0.502
bss5 0 0 0 0 47 %103 0

bss6 0 0 0 -3.51x103 0 2.1 x10%
bses 0 0 0 0 2.1 x104 0

bess 0 0 0 0.132 0 2.35x10%
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Figure 3.7: Time responses of each mode during a period of oscillation for the graphene drum undergoing
internal resonance at w;/wp = 2.538.

3.5.3. B3: DYNAMIC RESPONSE OF THE GRAPHENE DRUM DURING INTER-

NAL RESONANCE

In Chapter 2 main section, experiments were displayed where complex nonlinear phe-
nomena occur, one of which is internal resonance caused by the interaction of the para-
metric resonance of the first mode with other modes of vibration. In the simulations,
these observations were replicated. Here, we further investigate this response. In Fig.
3.7, we show the time response of each mode during once cycle of the internal resonance
atwg/wo =2.538. Itis possible to observe strong activation of multiple modes. The dom-
inant modes are the first three axisymmetric modes fy 1, fo2 and fo 3 (mode numbers 1,
6, 15) together with asymmetric mode f,; (mode number 4). This is also clear in the
overall frequency responses in Appendix Figs. 3.8 and 3.9 with all the simulated modes.
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Figure 3.8: Simulated modal frequency response for excitation level § = 14.32 and y = 2.5, before the surge.
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Figure 3.9: Simulated modal frequency response for excitation level = 26.22 and y = 3.2, after the surge.



SYMMETRY-BREAKING INDUCED
FREQUENCY COMBS IN GRAPHENE
RESONATORS

Nonlinearities are inherent to the dynamics of two-dimensional materials. Phenomena
like intermodal coupling already arise at amplitudes of only a few nanometers, and a
range of unexplored effects still awaits to be harnessed. Here, we demonstrate a route for
generating mechanical frequency combs in graphene resonators undergoing symmetry-
breaking forces. We use electrostatic force to break the membrane’s out-of-plane symmetry
and tune its resonance frequency towards a one-to-two internal resonance, thus achieving
strong coupling between two of its mechanical modes. When increasing the drive level,
we observe splitting of the fundamental resonance peak, followed by the emergence of a
frequency comb regime. We attribute the observed physics to a non-symmetric restoring
potential, and show that the frequency comb regime is mediated by Neimark bifurcation
of the periodic solution. These results demonstrate that mechanical frequency combs and
chaotic dynamics in 2D material resonators can emerge near internal resonances due to
symmetry-breaking.

This chapter has been published in Nano Letters 2022, 22, 15, 6048-6054
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4.1. INTRODUCTION

ANOMECHANICAL resonators made of two-dimensional (2D) materials are ideal for
N exploring nonlinear dynamic phenomena. Owing to their atomic thickness and
high flexibility, forces in the pN range can already trigger large-amplitude oscillations
in these membranes and drive them into nonlinear regime [22], [26]. Tension modula-
tion via electrostatic actuation [82]-[84] and opto-thermal forces [59], [85] serve as prac-
tical knobs to tune mechanical nonlinearity of 2D material membranes, and can lead to
a wealth of nonlinear phenomena including multi-stability [44], parametric resonance
[59], [67], parametric amplification [86], [87], high-frequency tuning [40], [88], stochastic
switching [89], and mode coupling [90], [91].

Amongst different nonlinear phenomena that emerge in 2D material membranes,
mode coupling is particularly interesting as it allows for the transfer of energy between
vibrational states of single [90] or coupled 2D resonators [92]. Mode coupling is also
closely linked to nonlinear dissipation [52], [67], and can be tuned utilizing internal reso-
nance (IR); a condition at which two or more resonance frequencies become commensu-
rate. The application of IR in mechanical resonators spans from frequency division [93]
and time-keeping [49], [94] to enhancing the sensitivity of scanning probe techniques
[95].

Here, we present a mechanism for generating frequency combs by symmetry-breaking,
that exploits internal resonances of a few-nm-thick graphene resonator. We make use
of the extreme flexibility of graphene to controllably break its out-of-plane symmetry
by bending it using electrostatic force, and achieve one-to-two (1:2) IR between its dis-
tinct mechanical modes. Unlike recent demonstrations of frequency comb generation in
graphene that require strong coupling of the suspended membrane with a high quality
factor SiN, substrate [96], here we show that by careful tuning of the intermodal cou-
pling between two modes of vibration in a single resonator, frequency combs can be
generated. As a result of this 1:2 modal interaction, we observe splitting of the reso-
nance peak at a critical gate voltage and drive level, leading to equally spaced spectral
lines near the fundamental resonance. By using an analytical model that accounts for
the broken symmetry and comprises quadratic coupling terms, we account for the char-
acteristic dependence of the frequency comb region on the membrane tension and de-
flection amplitude, and confirm that symmetry-broken mechanics lies at the root of the
observations.

4.2, MEASUREMENTS

Experiments are performed on a 15 nm thick exfoliated graphene flake, transferred over
a circular cavity of 8 um diameter and 220 nm depth forming a drum resonator. The
motion of graphene is read-out in a Fabry-Pérot interferometer where a red helium-neon
laser (A = 633 nm) is used to probe the motion [66], [97], (see Fig. 4.1a, ¢). The drum is
driven opto-thermally using a power modulated blue laser (1 = 485 nm), and to control
the static deflection of the drum, a local gate electrode is placed at the bottom of the
cavity, see Fig. 4.1b. Moreover, to reduce damping by the surrounding gas, the sample is
measured in a vacuum chamber with pressure < 10~* mbar.

By sweeping the modulation frequency f of the blue laser using a Vector Network An-
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alyzer (VNA), we observe multiple directly-driven resonances, appearing as pronounced
peaks in the resonator’s spectral response (Fig. 4.1d). Among them, the primary and
secondary axisymmetric modes of the drum can be readily identified at fo; = 7.0MHz
(Qo,1 = 80) and fp2 = 15.8MHz (Qp2 = 40), with fp 2/ fo,1=2.25, close to the theoretically
predicted ratio of 2.29 for a membrane [98]. We note that the resonance frequencies de-
pend strongly on the membrane tension, which we can tune via the electrostatic force
generated by the electrostatic gate electrode.

4.2.1. FREQUENCY RESPONSE OF THE SYMMETRY-BROKEN NANODRUM

By sweeping the gate voltage Vg, we control the tension in the membrane and alter the
out of plane offset (see Appendix C1). The electrostatic force pulls the drum out of its ini-
tial flat configuration, and breaks its out-of-plane symmetry [99]. This broken-symmetry
can have significant influence on the dynamics of the resonator, especially in the non-
linear regime, where the resonant response deviates from the common Duffing model,
because it introduces quadratic terms in the nonlinear stiffness [70].

We note that increasing V; causes the resonance frequencies of the drum to shift at
different rates (see Appendix Figure 4.5). At a certain critical voltage Vig= 7V we observe
(Fig. 4.1e) splitting of the fundamental resonance peak at fir=22.73 MHz, which we at-
tribute to the occurrence of a 1:2 internal resonance with a higher mode, since it occurs
when the frequency of a higher mode at 44 MHz is exactly twice that of the fundamental
mode, see Fig. 4.2a. Besides splitting, the height of both resonance peaks also dimin-
ishes close to Vi, providing evidence for the presence of 1:2 IR and energy redistribution
between the interacting modes.

By driving the drum at elevated blue laser powers and performing upward frequency
sweeps, we observe in Fig. 4.2b a butterfly-shaped response, consisting of two Duffing-
like asymmetric resonances, one of which bending to lower and the other to higher fre-
quency, indicating that one of the split peaks experiences a spring softening, and the
other a spring hardening nonlinearity (similar responses have been observed in other
nonlinear resonators undergoing IR [50], [100]-[102]). Interestingly, at the maximum
drive level (10 dBm), the strong coupling between the resonant modes yields the emer-
gence of a third peak in the middle of the split region at frequency fir = 22.73 MHz (see
Fig. 4.2¢).

4.2.2. EMERGENCE OF THE FREQUENCY COMB

In order to investigate this unconventional response in depth, we drive the graphene
drum to the critical voltage Vi required to observe the split peak at fig, and used a Zurich
UHFLI to analyze the fast oscillations of the drum at high drive powers. By simultane-
ously tracing the response spectrum while sweeping the driving frequency around fir
we noticed that for driving frequencies outside the region where the middle peak was
spotted, the motion is harmonic. However, close to fig, the spectral response suddenly
changes and a frequency comb is observed consisting of multiple equally spaced peaks
near fir (see Fig. 4.2d and Fig. 4.2e and Appendix C2).
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Figure 4.1: Graphene drum measurements. (a) Schematic of the optical set-up for actuating and detecting
the motion of graphene. The drum is actuated via a blue laser at a certain frequency set by a Vector Network
Analyzer (VNA), and the motion is read-out using a red laser. (b) Schematic of the resonating graphene drum
with electrical contacts. (c) Optical micrograph of the graphene drum. (d) Frequency response of the resonator
at neutral gate voltage (Vz=0V). Here, Finite Element Simulations are performed to determine the frequencies
of axisymmetric modes of vibration. (e) Variation of the fundamental frequency of the drum f; ; as a function
of the gate voltage Vg, showing a state of splitting at Vjg ~7V and frequency fig = 22.73 MHz.
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Figure 4.2: Measured intermodal coupling of the graphene resonator. (a) Evolution of the fundamental and
a higher resonance peaks close to the gate voltage of 7.1V, measured via VNA, at -10 dBm drive level. (b) Evo-
lution of the 1:2 IR response upon increasing the drive power. (c) A third peak emerges at fig. (d) Fast Fourier
Transform (FFT) measurements at high drive powers while sweeping the blue laser modulation frequency f,
showing the presence of sidebands at fig. The white dashed line in (d) is a line-cute of the FFT map, that is
zoomed in on (e) to show equally spaced sideband frequencies.
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4.3. THEORETICAL MODEL: 1:2 INTERNAL RESONANCE
To explain the nonlinear physics associated with the observed dynamics and frequency
comb near IR in a system with broken-symmetry, we present an analytical model to
derive the system’s Lagrangian and obtain the governing equations of motion (See Ap-
pendix C3). For the model, we accounted up to third order nonlinearities, since the
graphene drum we study, outside the internal resonance regime, exhibits a slight Duff-
ing response even at the highest drive levels. We approximate the coupled motion by
only considering the drum’s first two axisymmetric modes of vibration with frequencies
fo,1 and fo 2 (see Fig. 4.1d). For an ideal circular membrane, the ratio of these first two
axisymmetric modes can be tuned to approach fy2/ fo,1 = 2 by changing the tension dis-
tribution. These variations in tension distribution might originate from variations in the
electrostatic force if the distance to the gate electrode is non-uniform due to membrane
deflection, wrinkling or buckling. Moreover, to account for the broken-symmetry me-
chanics, we model the drum with a static deflection from its undeformed state, that has
the shape of its fundamental mode shape [61], with an amplitude Wjy. This leads to the
presence of both quadratic and cubic coupling terms in the equations of motion. How-
ever, we note that not all the terms in a 1:2 IR are resonant [67], and retain only the rele-
vant terms to obtain the following set of simplified equations near the IR (See Appendix
C4):

J'é+(kx+Tx)x+yx3+1xx+2axq:Fcos(Qt), 4.1)

G+ (kg+Tq)q+T4G+ax®=0. (4.2)

Here, x and q are the generalized coordinates which represent the first and second ax-
isymmetric mode of the graphene membrane respectively, kx and k; are the intrinsic
mode stiffness and T and T, represent added stiffness due to electrostatic tuning of the
tension. 7, and 74 are the linear damping coefficients of the generalized coordinates.
Moreover, ¥ is the Duffing coefficient, and «a is the coupling strength that can be deter-
mined analytically in terms of the offset shape and modes of vibration (See Appendix
C3). Finally, F is the forcing amplitude and Q = 27 f; is the excitation frequency. All the
terms in Egs. 4.1 and 4.2 are mass normalized.

4.3.1. SIMULATIONS

In order to investigate the resonant interaction numerically, we time-integrate the equa-
tions of motion. We start by recording the time response of the system at Q far from res-
onance and sweep 2 through the 1:2 IR condition. Simulations are performed first at a
low driving level that is associated with the linear harmonic oscillator response and then
F is increased until the specific characteristics of the nonlinear interaction such as mode
splitting appear. We perform our simulations using nonlinear parameters y = 5.78 x 103°
(Hz/m)?, @ = 1.97 x 10?* (Hz?/m). These values correspond to the analytical model of a
15 nm thick drum with a diameter of 8 um assuming Young’s modulus of E = 1 TPa, and
initial axisymmetric offset amplitude of 90 nm.

Fig. 4.3a shows the modelled variation of the resonance frequency as a function of
the applied tension (7). By changing the tension Ty, the fundamental resonance fre-
quency fp1 is tuned and a peak splitting, similar to that in Fig. 4.1e, is observed near the
internal resonance frequency fig.
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The splitting phenomenon becomes more apparent at elevated drive powers (see
Fig. 4.3b), similar to the experimental observations in Fig. 4.2c. This leads to the emer-
gence of a similar butterfly-shaped responsivity x/F, as the nonlinear coupling becomes
stronger at higher drive levels, where energy leaks to the interacting mode. The butterfly
shaped split is a direct consequence of the 1:2 IR and can be understood by obtaining
the nonlinear frequency response function of equations (4.1) and (4.2) analytically (See
Appendix C3). Interestingly, we also note the presence of the third middle peak in our
simulation. In Fig. 4.3c, it can be seen that this peak indeed appears within the split
region, at zero detuning from IR condition, confirming that 1:2 IR that follows from the
equations of motion Eqgs. 4.1 and 4.2, can be held accountable for our experimental ob-
servations.

In Fig. 4.3c it can be also noted that when driving near frr the second generalized
coordinate g shows an enhanced amplitude, with a response that resembles that of x. It
is important to note that in the experiments, the middle peak observed at fig is only due
to the fundamental amplitude x, since our measurements are performed in a homodyne
detection scheme.

4.3.2. NEIMARK BIFURCATION AND QUASI-PERIODIC RESPONSE

To better understand the mechanism that lies at the centre of our observation, we inves-
tigated the stability of the solution branches using a numerical continuation software
package (AUTO). We found that the middle peak appears in a region that is confined be-
tween two Neimark bifurcations (red dashed lines in Fig. 4.3c and Appendix C4). Similar
to the Hopf bifurcation, at which a fixed point becomes a limit cycle, at a Neimark bifur-
cation (also known as the secondary Hopf bifurcation) a periodic orbit becomes a quasi-
periodic orbit [103]. Quasi-periodic motion is characterized by a closed invariant curve
in the Poincaré map of the phase space that is known to result in amplitude-modulated
motion, and thus the emergence of frequency combs in the spectral response [61]. To
investigate the spectral characteristics of the quasi-periodic oscillations, we swept the
excitation frequency Q in the spectral neighborhood of the region confined by the two
Neimark bifurcations, and analyzed the time response of the nonlinear equations, simi-
lar to [102]. Fig. 4.3d shows the frequency content of the simulated time signal inside and
outside this region. It can be observed that the frequencies around fy are discretely sep-
arated from each other, creating a frequency comb that was nonexistent before reaching
the onset of Neimark bifurcation, resembling the frequency comb in Fig. 4.2d. We also
show that the time-dependent motion becomes amplitude modulated when entering
the Neimark bifurcation region (see Fig. 4.3e), while having constant amplitude out-
side of that region. Interestingly, numerical simulations also show signatures of chaotic
states upon amplification of the drive level, suggesting that 1:2 IR and broken-symmetry
mechanics can represent the onset of a transition from quasi-periodic to chaotic oscilla-
tions in 2D material resonators (see Fig. 4.4a), and can be tuned by manipulating the in-
termodal couplings and vibrational states of the drum. However we note that, although
the numerical model does capture the most relevant features of the experimental sys-
tem near the onset of IR, this does not guarantee that this correspondence continues
at higher driving levels up to the onset of chaos, where other nonlinearities could also
play arole. Further experiments will be therefore needed to prove the presented route to
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Figure 4.3: Modal interaction simulations at the normalized drive level F = F/(27 fy,1 h) = 0.0015, where h is
the thickness of the drum. Generalized coordinates are also normalized with respect to the thickness, such
that X = x/h and g = q/h. (a) Frequency response of the fundamental mode as the tension of the membrane
is increased. At zero detuning from IR, mode splitting occurs. (b) Frequency response simulations with differ-
ent drive levels at zero detuning from IR. As the drive level is increased, nonlinear coupling becomes stronger,
and both softening and hardening nonlinearities emerge. (c) After a critical drive level, Neimark bifurcations
emerge (depicted by red dashed lines) and at the region confined by these bifurcations, the steady state os-
cillations become quasi-periodic, generating frequency combs around the resonance frequency. (d) FFT map
at the vicinity of IR and critical force level. Frequency combs emerge at the center of the split region, where
equally spaced comb elements appear, surrounding the main resonance peak. Inset above is the FFT at the IR
condition, showing the normalized wave amplitude (NWA), representing the white dashed line cut of the FFT
map. (e) In time domain, this bifurcation leads to amplitude-modulated response.
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chaos near broken-symmetry induced 1:2 IR.

4.4, DISCUSSION

By simulating the equations of motion at IR while sweeping the parameters, it is also
possible to show that the Neimark bifurcations and thus frequency comb generation is
sensitive to mechanical parameters of the system. At 1:2 IR, where the Neimark bifur-
cation is activated, any change in mechanical properties of the drum will be reflected
in the frequency spectrum, as a change in the comb intensity, spacing, and population.
Figs. 4.4b and 4.4c reveal the sensitivity of these combs to the drum offset and tension,
which were obtained by sweeping the initial offset (broken-symmetry) amplitude and
T,. These combs only appear if there is sufficient quadratic nonlinear coupling induced
by the broken symmetry, since the terms responsible of the internal resonance are di-
rectly related to the membrane offset and diminish in the absence of it (See Appendix
C3). If there is no broken symmetry, the system is symmetric upon inverting the x and q
coordinates and all forces Fyyq; 0bey Fiprai(X, q) = —Forai(—X, —q), such that there are
only odd (linear and cubic) terms in the equations of motion and therefore no 1:2 inter-
action and associated combs. Increases in the membrane offset influences both comb
spacing and population. Furthermore, near IR, the frequency comb can be used as a sen-
sitive probe for changes in the parameters of the two interacting modes. Any shift in the
resonance frequency of the coupled modes results in changes in comb spacings, mak-
ing it possible to simultaneously probe changes in both frequencies by solely measuring
the response of the fundamental mode after the Neimark bifurcation. External parame-
ters like drive power and drive frequency are also observed to influence frequency comb
region, and serve as controls for tuning comb intensity, spacing, and population (See
Appendix C5).

In summary, we demonstrate a route for generating frequency combs in the nonlin-
ear response of graphene drums that utilizes broken symmetry and 1:2 internal reso-
nance. Unlike other methods that use multiple wave mixing [104], [105], resonant non-
linear friction [106], or SNIC bifurcation [53], to generate mechanical frequency combs,
the presented method makes use of an electrostatic gate to controllably tune frequency
combs that are mediated by broken-symmetry. When the drum is brought close to the
broken-symmetry induced 1:2 IR, we observe strong splitting of the fundamental res-
onance peak, exhibiting both softening and hardening nonlinearity. Between the split
peaks, we observe resonant interactions when driving at relatively high powers, that
are generated by Neimark bifurcations of the periodic motion. This regime hosts quasi-
periodic oscillations that are held accountable for the observed frequency combs. The
experimentally observed phenomena were explained using a continuum mechanics model
of a deflected drum with 1:2 IR between its first two axisymmetric modes. Emerging from
the inherent geometric nonlinearities, mechanical frequency combs are closely linked
to the mechanical properties of 2D materials, including tension, Young’s modulus and
broken-symmetry, and thus can be utilized for probing these properties and tracing their
variations with frequency and drive levels [96]. There are many examples in recent years
where internal resonance in NEMS/MEMS systems has been utilized to enhance the fre-
quency stability of resonant sensors [49], [107]-[109]. In these systems, it has also been
shown that frequency combs can be used as an alternative approach for resonance fre-
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Figure 4.4: Numerical simulations showing the evolution of phase spaces and sensitivity of frequency comb
generation in a graphene drum with broken-symmetry and 1:2 IR to (b) offset amplitude (c) tension varia-
tion at the drive level F = 0.0025. a) Bifurcation diagram of the graphene drum at 1:2 IR, showcasing a quasi-
periodic route to chaos. b) Offset amplitude Wy has been swept while the FFT of the time signal is being
extracted in each step. As the offset increases, so does the boundaries of Neimark bifurcation and comb pop-
ulation. c) Added stiffness due to the tension change, Ty, has been swept while the FFT of the time signal is

being extracted in each step, as the added tension moves the resonance frequencies with respect to the 1:2 IR
condition.
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quency tracking [110]. The internal resonance mechanism described here complements
available toolsets in utilizing modal interactions of micro and nanomechanical systems
and paves the way towards controllable use of IR for sensing physical properties of 2D
materials and mechanical frequency comb generation.
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4.5. APPENDIX C

4.5.1. C1: EVOLUTION OF THE OVERALL FREQUENCY RESPONSE WITH GATE

VOLTAGE

In Fig. 4.5a (bottom panel) we show the evolution of the resonance frequencies of our
graphene drum as a function of the applied gate voltage, and in top panel we show the
frequency spectrum at Vy=1.9 V. We observe that change of the gate voltage changes
the resonance frequencies at different rates, providing the possibility to obtain IR con-
ditions. ~ 3V is a striking feature of this mapping where there is an abrupt jump in the
resonance frequencies. The observation coincides with a rapid change in the observed
color of the drum (Fig. 4.5b), which points towards a rapid adjustment in the equilib-
rium position of the oscillator, i.e. snap-through instability (buckling). This is expected,
if the membrane cavity is sealed very well in the atmospheric pressure, where it bulges
upwards inside the vacuum chamber due to the pressure difference. This means that
center of the membrane is above the surface level of the substrate confirming the pres-
ence of initial static deflection. The electrostatic attraction between the membrane and
the bottom of the cavity, above the threshold voltage, slowly lowers the center of the
membrane, until a critical voltage where an instant jump in the resonance frequencies
occurs.

4.5.2. C2: ADDITIONAL EXPERIMENTAL RESULT

Here, we provide additional experimental result of the same device with different ten-
sion and pressure levels, where the 1:2 IR condition was met (Fig. 4.6a). Similar to the
main results, we see a nonlinear splitting of the peak as the drive level is increased. Fur-
thermore, in the center of the splitting, the third peak is observed due to Neimark bifur-
caitons. The bifurcation gives birth to quasi-periodic motion, which is measured, ob-
served as an amplitude modulated response (see Fig. 4.6b).

4.5.3. C3: EQUATIONS OF MOTION
To obtain the governing equations of the circular drum, we use the Rayleigh-Ritz ap-
proach. The elastic strain energy of the circular drum is obtained as

(R ER o, 1-v ,
U= fo /0 209 (err +€py +2VErrEgg + Tyre)rdrdﬂ, (4.3)
in which £ is the thickness of the drum, R is the radius, E is the Young’s modulus, and v is
the Poisson’s ratio. Moreover, €,,, €gg, and ¢ are the normal and shear strains. During
axisymmetric oscillations y,9 = 0, and the normal strains are obtained in terms of the
transverse deflection (w) and radial displacement (u) of the drum as follows

ou 10 dwy(0
= 2 ) (2] ),
€00 = % (4.5)

In equation (4.4), wy is the initial transverse displacement of the drum associated with
zero initial stress. Assuming modal interactions between the first two axisymmetric
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Figure 4.5: Graphene membrane subjected to electrostatic force. (a) Evolution of the resonance frequencies
of the membrane as a function of the gate voltage: The resonator showcases several resonance peaks which
evolve by applying gate voltage. Note the sudden jump in the resonance frequencies close to the gate voltage of
~ 3V which suggest a state of buckling instability. (b) Snapshots of the membrane under the test (left circular
object), before and after the buckling, taken by an optical camera.

eigenmodes and fixed boundary conditions (z = w = 0), the solution is approximated
as

r r
w=x(0Jo(pr ﬁ) + qu)]o(ﬁZE); (4.6)
n .
u=upr+r(R-rY yjri-t 4.7)
=1

where 1y is the initial radial displacement due to pre-tension ny, and x and g are gen-
eralized coordinates associated with the first and the second axisymmetric mode of the
drum, respectively. Moreover, Jj is the Bessel function of order zero and 8, and S, are its
first two roots. In addition, y; are the radial generalized coordinates and r is the number
of these coordinates retained in the approximation. Moreover, we assume that the initial
offset wy has the same form of the first axisymmetric mode with known amplitude Wy,
thus:

wy = WoJo (,31 %), (4.8)
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Figure 4.6: Additional experimental results at 1:2 IR. a) As the drive level is increased, the nonlinear split-
ting occurs. At higher levels, the central peak is also visible. b) Time signal inside and outside the Neimark
bifurcation region. Inside the Neimark bifurcation response becomes quasi-periodic, displaying an ampltiude
modulation.

The kinetic energy of the drum is then obtained as

1 2n rR
T=—-ph f f w?rdrde, (4.9)
2 o Jo

in which the overdot represents differentiation with respect to time ¢, and p is the mass
density. Next, Lagrange equations of motion are obtained [22] leading to the following
set of coupled equations

m,2, M m 2 .1 M ) L 3 _
x+w1x+a11x ta,Xq+ayq +ymx +Y112x q+y122xq +y222q =0, (4.10)

g+ wzq + a(lzl)xz + aizz)xq + a;zz) qz + yizl)lx + y(lzl)zx q+ ygzz)zxq + ygzz)zq =0, 4.11)

in which a(k) and y* 1 are the quadratic and cubic nonlinear terms. It is worth not-
ing that in equatlons (4.10) and (4.11) not all terms are resonant. To recover the res-
onant terms under 1:2 IR condition (wy = 2w;1), we assume harmonic motion of the
form x = cos(w; t) and g = cos(2w; t) as a first approximation Inserting these relations
in equatlons (4.10) and (4.11) shows that the terms x° = 1 3 cos(w 1) + 1 cos(3a)1t) and
xq =3 (cos(w1 1+ cos(3w1 1) 1n the first equation of motion are tr1v1ally resonant. The
same holds for the term x2 (1 +cos(2w t)) which can be viewed as a resonant term 1n
equation (4.11). Ina 51m11ar fashlon it can be shown that the cubic coupling terms xq?
and g°x are dispersive terms. Therefore, the governing equations of motion can reduce
to

x+w1x+a(112) q+y§11)1x =0, (4.12a)

G+wiq+adx*=0. (4.12b)
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Equations (4.12) are the normal form of a coupled oscillator undergoing 1:2 IR, and
assuming that the second mode does not surpass its Duffing nonlinearity. Itis interesting
to note that frequencies w; and w», the coupling term a(llz) = Za(lzl) = 2a, and the Duffing

nonlinearity ygll)l =7 can be expressed in terms of mechanical and geometric properties

of the drum as follows
24 no (4.13a)
wl = — _— . a
'R oh

5.5 no
=—4/—, 4.13b
w2 = o ( )
TEhW
a=10.794———, (4.13¢)
RZ
_JTEh
Y= 09?, (413(1)

in which a and y are evaluated assuming v = 0.16. We note that the Duffing nonlin-
earity y depends on the Young’s modulus and Poisson’s ratio of the drum [22] while the
quadratic coupling @ in addition depends on the initial deformation wy. In other words,
in the absence of Wj, mechanically, no quadratic coupling exists between the first two
eigenmodes of the drum. Moreover, as mentioned above, one can show that in the 1:2
internal resonance scenario, the full model (equations (4.10) and (4.11)) and the normal
form model (equations (4.12)) behave the same qualitatively where they both replicate
the observed behavior (Fig. 4.7), with only differences in the peak frequencies and the
amplitudes due to dispersive terms. Both models display a butterfly shaped response,
where left-hand side of the resonance undergoes softening and right-hand side under-
goes hardening. This is a direct outcome of 1:2 IR and can be intuitively understood by
assuming harmonic motion of the form x = Xcos(Qt+8), g = Qcos(2Qt + ). One can
see from equations (4.1) and (4.2) in the main text that

3
X[ -0%+Qa+ ZyX2]2+r§QZX2 =F?, (4.14a)

B aX?
20402 -2Q74 - w3)

Q (4.14b)

where w? = ky + Ty and w3 = kg + T, assuming ¥ = 26. We note that equations (4.14a)
and (4.14b) are approximate solutions that are found by only accounting for the funda-
mental harmonics and discarding higher order harmonics. By inserting equation (4.14a)

in (4.14b), one can see that the effective nonlinearityis y.rf = 2(@2112—()2(1,,—(05) + %yXZ. Re-
calling that close to 1:2 IR, w2 = 2w, for Q < w; and by assuming relatively small Duffing
constant y and linear damping coefficient 7, effective nonlinearity becomes y,.r¢ <0
and thus the response is softening at the left side of the resonance, whereas at the right
side where Q > w1, the effective nonlinearity becomes y.rr > 0, showing a hardening

response. This gives rise to the butterfly shaped split observed in the experiments.
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Figure 4.7: Comparison of full model (equations (4.10) and (4.11)) to normal form model (equation (4.12)).
Solid lines depict stable solutions whereas dashed lines depict unstable solutions. Black circles depict the
boundaries of the Neimark bifurcation. Physical parameters that are mentioned in the main paper were used
in both simulations, with drive F = 0.002.

4.5.4. C4: ADDITIONAL SIMULATIONS

Following on simulations in Figure 4.3, here we provide additional simulations. Fig. 4.8
shows the frequency response at the internal resonance condition, obtained by the nu-
merical continuation software (AUTO). The Neimark bifurcations are obtained at the
points where the motion becomes quasi-periodic in the time integration simulations,
also shown in the main text. Furthermore, we investigate the evolution of the phase
space as the drive frequency passes the 1:2 IR condition (Fig. 4.9). It is possible to
observe that, the periodic motion of the resonator turns to quasi-periodic oscillation
(which can be also seen from the Poincaré maps) when the bifurcation is triggered (at
fal fir = 0.9951). The phase space afterwards shows an ergodic behavior till f;/ fir =
1.0043 where the system regains its stable periodic motion through the second Neimark
bifurcation. Increasing the drive levels further increases the complexity of the Poincaré
maps (Fig. 4.10) as the system starts to exhibit chaotic oscillations.
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4.5.5. C5: SENSITIVITY OF THE FREQUENCY COMBS TO THE EXTERNAL DRIVE
AT 1:2 IR

The sensitivity of the comb spacing to the drive frequency can be also studied using our
model. In Fig. 4.11a it is possible to trace the evolution of the frequency combs as the
drive level is increased. Higher drive levels enlarge the Neimark bifurcation region and
enrich the spectral response by increasing the comb population, until a certain drive
level where the response of the system becomes chaotic. In Fig. 4.11b and c we show the
variation of comb spacing (A f) with respect to the drive frequency in the region medi-
ated by Neimark bifurcations, in experiment (from the measurements in Fig. 4.2d) and
simulations (from the results in Fig. 4.3d). It can be seen that the comb spacing is sensi-
tive to the drive frequency.
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Figure 4.11: Evolution of the frequency comb. (a) As the drive level is increased, the Neimark bifurcation is
triggered, giving birth to the frequency comb region. Comb population increases further at high drive levels
until the response becomes chaotic. (b) Experimental frequency spacings of the frequency comb as the drive
frequency is swept through the 1:2 IR, derived from the results of Fig. 4.2d. (c) Simulated frequency spacings
of the frequency comb as the drive frequency is swept through the 1:2 IR, derived from the results of Fig. 4.3d.







NONLINEAR NANOMECHANICAL
COUPLING TO
ANTIFERROMAGNETIC ORDER VIA
MAGNETOSTRICTION

Nanomechanical resonances of two-dimensional (2D) materials are probes for condensed-
matter physics, offering new insights into the magnetic and electronic phase transitions.
Despite extensive research, the influence of second-order phase transitions on nonlinear
dynamics of 2D membranes has remained largely unknown. Here, we investigate nonlin-
ear magneto-mechanical coupling to antiferromagnetic order in suspended FePS; -based
heterostructure membranes. By analyzing the motion of these membranes as a function of
temperature, we observe renormalization of both nonlinear stiffness and damping close
to the Néel temperature Tn. We explain these observations with an analytical magne-
tostriction model, describing the nonlinear dissipation mechanism arising in our mea-
surements. Our findings thus provide previously unexplored insights into the thermo-
dynamics and magneto-mechanical energy dissipation mechanisms in nanomechanical
resonators due to the phase change of materials.

The contents of this chapter are from a manuscript under preparation, in collaboration with Makars Sigkins
(who has major contributions in the making of this chapter), Maurits Houmes, Samuel Mafas-Valero, Eugenio
Coronado, Yaroslav M. Blanter, Herre S. J. van der Zant, Peter G. Steeneken and Farbod Alijani.
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5.1. INTRODUCTION

HE mechanical properties of two-dimensional (2D) materials have been extensively
T studied [111], [112] due to their potential for use in a variety of applications, such
as sensing [10], [112], [113] and energy transduction [32], [65], [66]. Different degrees of
freedom are utilized in coupling the motion dynamics of such devices to both internal
and external stimuli [65], [66], ranging from coupling to photons [114], [115], phonons
[31], [116], [117] and electrons [118]-[120], to an interaction between multiple resonators
at a distance [92], [117]. Owing to their small mass and ultra-thin nature, these mem-
branes can easily operate in a nonlinear regime of motion, where elastic effects [22], in-
ternal resonances [67], [69] and various internal dissipation mechanisms [26], [31], [32],
[67] dictate their motion dynamics.

Recently, there has been a growing interest to use nanomechanical vibrations of 2D
materials as practical knobs to infer the elastic and thermodynamic properties of these
membranes [66]. Examples include nonlinear dynamic characterization of their elas-
tic properties [22], probing magnetic [121]-[127] and electronic phase transitions [120],
[121]. Among them, the ability of these membranes to detect magnetic phase change
in the absence of an applied magnetic field [121], [123], [125] has opened up new av-
enues for developing self-sensitive magnetic nano-electromechanical (NEMS) devices
[65], [66]. This approach relies on the coupling between the magnetic and mechanical
properties of the 2D material, which allows for highly sensitive detection of magneti-
sation [122], [127] and thermodynamics of magnetic phases [121], [123]. Yet, the con-
sequences of the magneto-mechanics in nonlinear motion regime of these membranes
have remained largely unexplored.

Here, we investigate the nonlinear coupling mechanisms between nanomechanics
and antiferromagnetic order in membranes made of FePS;3-based heterostructures. We
study the changes in both nonlinear stiffness and nonlinear damping as a result of the
antiferromagnetic phase transition near the Néel temperature Ty of FePS3 [121], [128].
Consequently, we substantiate these observations with a magnetostriction model, re-
vealing and providing a description of the magneto-mechanical dissipation mechanism,
as a previously unexplored source of nonlinear damping in 2D material membranes.

5.2. MEASUREMENTS OF GRAPHENE/FEPS3 HETEROSTRUCTURE

NANORESONATORS

To create a freestanding membrane, we suspend 9.5 + 0.6 nm thin layer of FePS3 over a
pre-defined circular cavity of r = 1.5 ym in radius in a Si/SiO, substrate (Fig. 5.1a). To im-
prove thermal management in the FePS3 layer [129] and electrically contact it, we cover
the membrane with multi-layer graphene (MLG) of 2.0 + 0.7 nm thickness which acts as
an excellent heat sink [130], [131]. These MLG/FePS3 heterostructure membranes are
then placed into a closed-cycle cryostat chamber with optical access and cooled to cryo-
genic temperatures. At a specific temperature T set by the local sample heater, we mea-
sure the amplitude x of the membrane’s fundamental mode of vibration in response to
the low-power opto-thermal drive using a laser interferometry technique [97], [121] (see
Methods and Fig. 5.1a-c). We then fit the measured resonance peak (gray-filled circles)
to the linear harmonic oscillator model (solid blue line) and extract the corresponding



5.2. MEASUREMENTS OF GRAPHENE/FEPS3 HETEROSTRUCTURE NANORESONATORS 79

a
C
0.10 |- Poige ! e Experiment -
———— PBS ;
D b‘\ Fit
Switch N4 0.08 P,. =0 dBm
LD CM e ac
in out \ < T = 52 K
“ HV LMembrane E
VNA L P 0.06
si g
Q
b 4 K cryostat E 0.04
0.02
0.00 EEeet=r : = ,
53.1 53.4 53.7 54.0 54.3 54.6
w/ 2 (MHz)
T T 60
Antiferromagnetic Paramagnetic

wy/ 2 (MHz)
-d(f2)[dT (MHZ2 K")

36 1 1 | 1

50 70 90 110 130 150
Temperature (K)

Figure 5.1: Membrane resonator made of MLG/FePS3 heterostructure. (a) Schematic of the laser interferom-
eter measurement setup (see Methods). PD is the photodiode, LD - the laser diode CM - the cold (dichroic)
mirror, PBS - the polarized beam splitter, VNA - the vector network analyzer. (b) Optical image of the sam-
ple. (c) The measured resonance peak amplitude of the fundamental membrane mode of vibration (filled gray
dots). The solid blue line is fit to the linear damped harmonic oscillator model. The inset shows the schematic
of the device cross-section. A vertical dashed line indicates extracted wq. (d) The resonance frequency wq as
a function of temperature, extracted from the fit similar to (c) (filled blue dots). Connected gray dots are the
corresponding derivative of the f02 with respect to temperature. A vertical dashed line indicates extracted Ty.
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resonance frequency wy(T) =27 fo(T), as shown in Fig. 5.1c.

5.2.1. LINEAR VIBRATIONS NEAR PHASE TRANSITION

Following this procedure, we measure wy(7) in the temperature range from 52 to 150
K as shown in Fig. 5.1d. In the vicinity of T ~ 110 K (vertical dashed line in Fig. 5.1d)
the resonance frequency wo(7) exhibits the anomaly related to antiferromagnetic-to-
paramagnetic phase transition. This becomes even more prominent in the temperature
derivative of fOZ(T) (filled gray circles in Fig. 5.1d) - a quantity which is related to specific
heat ¢, (T) of the material through thermal expansion coefficient and thermodynamic
relations [121]. Thus, the temperature of the discontinuity in — d/;‘)z;T) can be used as a
measure of Ty at the transition from magnetic to non-magnetic state [121], [123]. This is
further supported by the fact that the measured Ty also corresponds to a peak in inverse
quality factor Q™ N(T) (see Appendix D1), which is expected to arise due to the increased
thermoelastic damping contribution near the phase transition [92], [121], [123].

5.2.2. NONLINEAR VIBRATIONS NEAR PHASE TRANSITION

After characterising the dynamics of the membrane in the linear regime at a low opto-
thermal driving force, we increase the driving power of the VNA P, from 0 to 8 dBm to
achieve higher force levels and observe nonlinear hardening behavior. Fig. 5.2a displays
an apparent Duffing response at T = 52 K and P, = 8 dBm, revealing bi-stable amplitude
branches that depend on the direction of the frequency sweep, indicating the presence
of nonlinear stiffness [22]. Furthermore, the responsivity of this Duffing response decays
as the drive levels are further increased (Fig. 5.2d), implying the presence of nonlinear
damping [67].

To investigate the temperature dependence of the nonlinear resonance, we measure
the normalized amplitude of membrane motion A, around wy(T) at 8 dBm of power
using backward frequency sweeps in the temperature range from 52 to 150 K and plot
it in Fig. 5.2b versus the difference between the driving frequency w and the measured
wo(T) in linear regime (Fig. 5.1d). In the vicinity of the phase transition temperature Ty,
we observe changes in the nonlinear frequency response of the membrane that seem
to be peculiar to the coupling to magnetic phase transition. Two major observations
can be made here. Firstly, the central position of the resonance peak at a higher driving
power is shifted near the Ty, indicating a change in linear membrane stiffness k;, and
thus the strain [121] (Figs. 5.2b and c). Secondly, the backbone slope of the Duffing re-
sponse notably, changes depending on the magnetic state of the membrane, again, with
the largest effect near Ty, indicating a change in nonlinear membrane stiffness ks [22]
(see Fig. 5.2¢). We have also performed additional control experiments on multiple sam-
ples using both optical and electrical excitation, where V, signal is applied between the
Si backgate of the chip and the conducting top layer of MLG, and confirm that these ob-
servations are reproducible and independent of the method of excitation (see Appendix
D2).
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Figure 5.2: Nonlinear dynamics of the MLG/FePS3 membrane. (a) The measured Duffing response of the
resonance peak from Fig. 5.1c at a higher excitation power (Pyc = 8 dBm). (b) Left panel: The colour map of the
normalized amplitude measured as a function of temperature in backward frequency sweep regime around
linear resonance frequency wq from Fig. 5.1d. The Néel temperature Ty from Fig. 5.1d is indicated with a black
dashed horizontal line. Right panel: the measured amplitude around wq from the right panel for P,c = 0 and
8 dBm at three temperature points corresponding to different magnetic phases. (c) The measured frequency
responses at 8 dBm for the same temperature points from (b) superimposed for comparison. (d) Responsivity
measurements in nonlinear regime for various drive levels, at T =111 K.
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5.3. NONLINEAR PARAMETER EXTRACTION

To carefully assess the findings of our experimental data, we fit the measured frequency
response curves to the Duffing-van der Pol oscillator model and extract the model pa-
rameters (see Appendix D3 and D4) for a given temperature range, as depicted in Fig. 5.3a:

- w
jé+w3x+yx3 :chos(wt)—a[)X—énlxzx, (5.1)

where F,, is the drive force amplitude, y is the nonlinear stiffness and ¢y is the nonlinear
damping term of van der Pol type [67], [132], all mass normalized. We start by extracting
the linear resonance frequency fy = wo/2m, as a function of the drive levels, as it can
increase at higher drive powers (Fig. 5.3b). Then, we extract the nonlinear stiffness term
v (Fig. 5.3¢) using the slope of the backbone curve. Consequently, we fix this value to fit
the forward frequency sweep response for extracting ¢, (Fig. 5.3d).

Extracted parameters reveal that, at a higher driving power and as the temperature
decreases, a notable anomalous peak with a consequent sharp drop is observed in y at
T < Ty (Fig. 5.3¢). This feature is also accompanied by a peak in ¢}, at approximately the
same temperature (Fig. 5.3d), indicating a prominent increase in the nonlinear dissipa-
tion in the antiferromagnetic phase regime. Furthermore, the shift in fy is quantified,
and it can be seen that it peaks around T = Ty (Fig. 5.3b).

5.4. THEORETICAL MODEL

We make an attempt to understand these observations with a theoretical model, by con-
sidering the elastic potential energy of the membrane Uy, the magnetic free energy
Up, of FePS3 and magneto-mechanical coupling via spontaneous magnetostriction Upyg
[121], [127], [133] (see Appendix D5):

Ut =Ug + Uy + Uy

[k o ks g
= [?x +Z)C + 5.2)
Aijoij(x) 12

2

+

)

a 2, B 4
Um,O“'E(T_TN)L +ZL

where x is the motion amplitude, k; and ks are the linear and nonlinear stiffnesses,
o0j(x) is the amplitude-dependent stress tensor, L the antiferromagnetic order parame-
ter in the direction of an easy-axis of FePS3, A;; the magnetostriction tensor, Up o is the
magnetic energy at paramagnetic state, and a, B are phenomenological positive con-
stants [133], [134]. By minimizing equation (5.2) with respect to L at x = 0, the ground
state order parameter L is obtained (see Appendix D5). When the membrane is in mo-
tion o= 0¢+04(X); 0y captures the pre-stress and other static stress contributions where
0, (x) is the oscillatory part of the stress. Therefore, the magnetic system will be out of
equilibrium, such that L(x) = Ly + L, (x), and thus becomes stress and amplitude depen-
dent. Subsequently, the rate of L(x) approaching the ground state L, (Fig. 5.4a) can be
set by the kinetic equation [135]-[137]:

dL _ oUt

a = —KE, (53)
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Figure 5.3: Fits of the experimental frequency response curves to the Duffing-van der Pol model. (a) Fit of
the equation (5.1) (orange solid lines) to the frequency response measurements for forward (black solid lines)
and backward sweeps (gray solid lines) at Pac = 10 dBm for different temperatures. The light blue region indi-
cates the antiferromagnetic phase of the membrane. (b) Linear resonance frequency 27 fy = wy fits at 10 dBm
drive level plotted relative to 0 dBm drive level linear resonance frequency fits, with respect to temperature.
(c) Connected blue dots are the measured y(T), extracted from the fits similar to (a) and normalized by the
53 K data point. (d) Connected blue dots are the measured ¢,;(T), extracted from the fits similar to (a) and
normalized by the 53 K data point.
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where ¢ is the time and « is the phenomenological kinetic coefficient. By linearizing
equation (5.3) via Taylor expanding around L (see Appendix D5), we obtain:

dL L
—C =0 % ALy, (%), (5.4)
dt T

[135], [136], [138]. Although typically magnetic relaxations are fast (in the order of pi-
coseconds) in antiferromagnets [139]-[141], in case of FePS3, long nanosecond-scale
relaxation times are required to relax the magnetic sub-lattice near the Ty due to the
strongly coupled ordering of spins to the slow process of interlayer shear [138] (see Ap-
pendix D5). L, (x) term then induces oscillations in L(x) at frequency 2w, as Ly ox 04
where o, o« x?, which can lag the membrane motion at sufficiently large 7 [138] pro-
ducing a delay in the coupled magneto-mechanical system (see Appendix D5).

In order to theoretically investigate the consequences of this delay in the dynam-
ics, we look into the steady-state response of the driven coupled magnetomechanical
system. To do this, we extract the equation of motion associated with the generalized

coordinate x, by defining the Lagrangian as £ = %mxz — Ut (See Appendix D5). Thus,

using the Lagrange equations, 7; 57 — 3 = 0, equation of motion governing x becomes

where 7 = is the magnetic relaxation time constant of the FePS3 membrane

A _,0 0
mi+kix+ksx® + §L§$ +ALyLy, o(x)
X

[+ 752
=F,cos(wt) — [nnx +T x, (5.5

where m is the effective mass of the resonator, kj = mwg is the linear non-magnetic stiff-
ness and k3 is the nonlinear non-magnetic Duffing constant. We consider a periodic
forcing with amplitude F, that is driving the system, together with a linear dissipation
related to quality factor Q and an intrinsic non-magnetic nonlinear damping with in-
tensity 7ny1. Solving the coupled system i.e. equations (5.4) and (5.5) using the harmonic
balance method (see Appendix D5) we obtain the steady-state amplitude equation that
is of the same form of the steady-state amplitude equation of the Duffing-van der Pol
equation (see Appendix D3), however the linear and nonlinear parameters are rescaled
due to the magneto-mechanical coupling, resulting in kj, the renormalized linear stiff-
ness:

2 Ec3 *
K = ki+ALG53 T<Ty 5.6)
"k T>Tg,
k3, the renormalized nonlinear stiffness of Duffing type:
12 E? c? 1 *
k; = ks =125 rawre T<IN (5.7)
k3 T>Tyg,
and 17, the renormalized nonlinear damping of van der Pol type [67], [132]:
A2 E2c T *
=Mt 2T g Ty 5.8)
Tnl T>Tyg,
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where E is the Young’s modulus and c3 a numerical factor that depends on membrane’s
Poisson’s ratio and its geometry [22].

There are couple of important consequences of these renormalizations. The renor-
malization of k; can lead to its increase or decrease, depending on the sign of A, and

as the temperature is decreased beyond Ty = Ty — M The Ty shift due to in-
creased stress/strain was previously demonstrated by applying a purely static external
force [121]. Likewise, at high amplitude oscillations, the dynamic change of the stress/strain
via a modulated force results in an additional effective static strain and related stress
term (see Appendix D5), which can reach up to 0.03% in similar systems [84]. The con-
tribution of the order parameter on effective linear stiffness we show here, k' o L(Z), is
studied and described with detail in a previous work [127].

Unlike the renormalization of ki, which is independent of dynamics of the order pa-
rameter L, the renormalization of the nonlinear parameters k3 and 7y, arise from the
oscillations in L. As a result, both k; and n;‘ﬂ are functions of characteristic times of the
coupled dynamic system, w and 7. From equation 5.7, it is possible to see that when
T < Ty, k; starts decaying with k; o —m. Assuming a temperature dependent
non-magnetic k3(7T), that is monotonically increasing with the decrease in temperature
(similar to what is measured in the experiments (Fig. 5.3c), this decay of magnetic origin
in k3 will generate a local peak at T = Ty,.

Furthermore, the renormalized nonlinear damping, 77;1 x m, at T < T;I, peaks
at 2wt =1 (see Appendix D5), resembling a Debye peak, whose maximum does not ap-
pear to be at w = 1/7 but rather at 2w = 1/7, and decreases for smaller and larger 7.
This behaviour can be understood intuitively as follows: if the oscillations are at a much
faster timescale of the coupled reservoir, such that 2w > 1/7, the reservoir does not have
enough time to relax and dissipate energy. On the contrary, when the oscillations are
at a much slower timescale than the coupled reservoir 2w <« 1/7, the reservoir almost
perfectly follows the oscillations, as if it is in equilibrium, with almost no delay, again
resulting in minimal dissipation [132]. Thus, the magnetic nonlinear damping contribu-
tion is only significant when the period of oscillations are comparable to two times the
magnetic relaxation time such that 2wt = 1.

For convenience, we plot the derived magnetostrictive model of equations (5.7) and
(5.8) in Fig. 5.4b and c. We assume temperature dependence for k3 from equation (5.7)
which is dominated by non-magnetic effects, as observed in the experiments (Fig. 5.3c),
producing the additional background-slope in k3 (T) below and above the Ty. As shown
in Fig. 5.4b with solid magenta line, equation (5.7) reproduces the measured decrease
of k3 in the proximity of Ty. At the same time, our model in Fig. 5.4c reproduces the
measured peak in 7, (T) at 2wo7 = 1. Notably, in a hypothetical case where 7 is insignif-
icantly short, i.e. T =0 in equations (5.7) and (5.8), the model still predicts the decrease
in k3 (T) at the T;‘I albeit discontinuous, while magnetic contribution to n’rkﬂ(T) vanishes,
as shown in Fig. 5.4b and c with dashed gray lines.




5. NONLINEAR NANOMECHANICAL COUPLING TO ANTIFERROMAGNETIC ORDER VIA

86 MAGNETOSTRICTION

a '\ =) . /

\ aramagnetic P
N\ P

< Antiferromagnetic N e

E ~ -

1 0 B ]

£

Relaxa\tm*
-L, 0 Ly

Order parameter, L

b —— c :
B 20t=11 Ty iy
: ~ & I
e /T S
&," [] 1 E) N
g L &
= o 5t
o o °
a ] ] © -
g - £
= ' = 37
2 J | 2 -1
~ /3 73
60 80 100 120 140 60 80 100 120 140
Temperature (K) Temperature (K)

Figure 5.4: Theoretical model. (a) Schematic of the magnetic free energy of the system with un-relaxed (orange
dot) and relaxed ground (blue dot) states indicated. (b) Effective nonlinear stiffness with respect to tempera-
ture from the equation (5.7) (solid magenta lines), assuming a linearly decreasing k3(7), at different magnetic
relaxation times 7. The light gray line indicates the non-magnetic k3(T) slope that is extracted by a linear fit
to T > 110 Kregion in Fig. 5.3c. (c) Effective nonlinear damping from the equation (5.8) (solid magenta lines),
at different magnetic relaxation times 7. Both in (b) and (c) dashed gray line indicates the scenario where 7 is
insignificantly short, i.e. 7 =0.
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5.5. MICROSCOPIC ORIGIN OF NONLINEAR DAMPING

When discussing the physical interpretation of the origin of this nonlinear damping, its
microscopic mechanism should be envisioned as a consequence of a nonlinear oscilla-
tor’s excited vibrational modes scattering off its own magnetic energy reservoir [31], [58].
This interaction then is accompanied by the energy transfer of two oscillation quanta
(2wp) for nonlinear damping [58]. Interestingly, the mechanism also finds its macro-
scopic similarities to magnetic internal friction arising due to a delay in Young’s modu-
lus relaxation near the Ty occurring in large-scale bulk of magnetic solids [135]-[137],
[142]-[145] with a crucial distinction at the nanoscale that it affects principally different
mechanical properties at twice the rate in the membrane case. Our analysis predicts the
observed nonlinear effect appearing solely as a result of modulation of antiferromag-
netic order parameter L(x) with dynamic strain via magnetostriction, delayed possibly
by spin-shear relaxation 7 [138], which is supported by the fact that A = 0 would varnish
all magnetic contributions to both k3 and n; . Perhaps, the same spin-shear relaxation
mechanism and corresponding slow 7 could also affect linear thermoelastic damping
contribution near the Ty [121] in case thermal relaxation in these membranes becomes
limited by an interlayer shear [138]. Yet, the latest experiments show that thermal relax-
ation time-scales in membranes of FePS3 are up to two orders of magnitude slower [146]
than spin-shear relaxation-related 7 considered in this work. Therefore, the presence of
substantial linear thermoelastic damping and observed nonlinear damping near the Ty
are not a direct consequence of one another [121], [146] in the absence of higher-order
geometric nonlinearities.

However, an indication for the presence of more intricate magneto-mechanical in-
teractions in the system is the discrepancy between the experiment and the model of
k; (T) shown in Fig. 5.4b, where we observe a peak-like feature near 2wt = 1, hinting
that the dynamics of the magnetic system around ground state Ly could be even higher
order. We also note that the role of other nonlinear effects, like nonlinearities in op-
tothermal response [60], [147], and resulting nonlinear terms in the magnetostrictive
actuation force [146] could be partly responsible for the observed changes in nonlinear
stiffness near the magnetic phase transition. Nevertheless, quantitatively confirming ei-
ther of these hypotheses would require further experimental evidence which lies outside
the scope of this work.

In conclusion, we demonstrate that the nonlinear dynamics of optothermally driven
nanomechanical FePS3-based heterostructure membrane resonators changes substan-
tially near the antiferromagnetic phase transition. We describe a magnetostrictive mech-
anism that can account for the observed temperature dependence of the nonlinear pa-
rameters and formulate a theoretical model to understand the phenomenon. Utilizing
the analytical magnetostriction model near the Néel temperature Ty, we demonstrate
that the previously unexplored magneto-mechanical dissipation mechanism could pos-
sibly affect nonlinear dynamics of magnetic membranes significantly, even in the ab-
sence of a magnetic field. We anticipate that our results can offer new understanding of
the thermodynamics and energy dissipation mechanisms due to magneto-mechanical
interactions in 2D materials, which is important for the development of novel magnetic
NEMS and spintronic devices.
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5.6. METHODS

5.6.1. SAMPLE FABRICATION AND CHARACTERISATION

We pre-pattern a diced Si/SiO, wafer with circular holes using e-beam lithography and
reactive ion etching. The holes have a radius of r = 1.5 ym and a cavity depth of 285 nm,
and the SiO; layer acts as electrical insulation between the 2D material membranes and
the bottom Si electrode. For electrostatic experiments, Pd electrodes are patterned on
top of Si/SiO2 chips using a lift-off technique to establish electrical contact with some
samples. To create suspended membranes, thin flakes of FePS3 and graphite crystals
are mechanically exfoliated and transferred onto the chip using the all-dry viscoelastic
stamping method [148] immediately after exfoliation. Flakes of van der Waals crystals
are exfoliated from high-quality synthetically grown crystals with known stoichiometry,
and deterministic stacking is performed to form heterostructures. To prevent degrada-
tion, samples are kept in an oxygen-free or vacuum environment directly after the fab-
rication. AFM height profile scans and inspection are performed in tapping mode on a
Bruker Dimension FastScan AFM. We typically use cantilevers with spring constants of
ke =30-40 N m~! for inspection. Error bars on reported thickness values are determined
by measuring multiple profile scans of the same flake.

5.6.2. LASER INTERFEROMETRY MEASUREMENTS

The sample is mounted on a xy piezo-positioning stage inside a dry optical 4 K cryo-
stat Montana Instruments Cryostation s50. Temperature sweeps are carried out using
a local sample heater at a rate of ~ 3 K min~! while maintaining the chamber pressure
below 10~ mbar. During data acquisition, the temperature is maintained constant with
~ 10 mK stability. A power-modulated blue diode laser with a wavelength of 405 nm is
used to optothermally excite the membrane’s motion, and the resulting membrane dis-
placement is measured using an interferometric detection with a He-Ne laser beam of
632 nm. The interferometer records the interfering reflections from the membrane and
the Si electrode underneath, and the data is processed by a vector network analyzer Ro-
hde & Schwarz ZNB4. All measurements are conducted with incident laser powers of
Preq < 8 uW and Py)e < 35 pW, with a laser spot size of 1 pm.
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5.7. APPENDIX D

5.7.1. D1: MECHANICAL DISSIPATION IN THE LINEAR REGIME

We plot the mechanical dissipation, the inverse of the quality factor, Q~!(T), of the
MLG/FePS3 resonator from Fig. 5.1 of the main section in Appendix Fig. 5.5. A notable
peak is visible at Ty = 110 K. We attribute this observation to an increase of the ther-
moelastic damping [149], [150] expected near the Ty in magnetic resonators as Q’1 x
¢y(T)T, where c,(T) is the temperature-dependent specific heat of FePS3 [92], [121],
[123].
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Figure 5.5: Inverse quality factor Q™! of the MLG/FePS3 membrane from Fig. 5.1 of the main section.

5.7.2. D2: REPRODUCIBILITY OF THE RESULTS

To check the reproducibility of the results in the main section, we did additional experi-
ments with more samples, using both optical and electrical excitation. In the latter case,
we applied an oscillating electric potential between the Si backgate of the chip and the
multilayer graphene that is covering the FePS3; membrane. Regardless of the excitation
method, at the phase transition temperature, the shift in the linear resonance frequency
fo that is reported in the main section at high amplitude oscillations was consistently
observed (Appendix Figs. 5.6 and 5.7). Similarly, the anomalies in nonlinear stiffness
and enhancement of nonlinear damping was also observed in both cases, supporting
that the origin of these observations is the nonlinear magneto-mechanical coupling and
not the method of excitation.
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Figure 5.6: Additional measurements of FePS3-Graphene resonators, electrostatically excited. Sample 1 is
the device presented in the main text. (a) and (g) are the optical microscope images of the nanodrums. (b)
and (h) display the linear resonance frequencies with respect to the temperature. (c), (d), (i) and (j) are the
forward and backward frequencies sweeps of the drums at three different temperatures, one before the phase
transition (blue), one at the phase transition (red) and one right after the phase transition (yellow). (e), (f), (k)
and (1) are the forward and backward frequency sweeps with the full temperature range.
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Figure 5.7: Additional measurements of FePS3-Graphene resonators, optothermally excited. (a), (g) and (m)
are the optical microscope images of the nanodrums. (b), (h) and (n) display the linear resonance frequencies
with respect to the temperature. (c), (d), (i), (j), (0) and (p) are the forward and backward frequencies sweeps of
the drums at three different temperatures, one before the phase transition (blue), one at the phase transition
(red) and one right after the phase transition (yellow). (e), (f), (k), (1), (q) and (r) are the forward and backward
frequency sweeps with the full temperature range.
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5.7.3. D3: STEADY-STATE EQUATIONS FOR THE DUFFING-VAN DER POL OS-

CILLATOR
We use the method of harmonic balancing to obtain the steady-state amplitude of the
Duffing-van der Pol oscillator:

5é+ng+yx3 = &cos(wt)— ﬂJ‘c—.fn]xzjc, (5.9

m Q
We approximate the motion by a single harmonic such that x = X cos (wt —6) where X
is the steady-state amplitude. Plugging x, x and ¥ into the equation of motion in Eq.
(5.9) results in an expression that consists of coefficients cos(wt), sin(w?), cos(3wt) and
sin(wt), such that Ry cos(w?) + Sy sin(wt) + Ry cos(Bwt) + Sy sin(Bwt) = 0. Since we are

interested in the fundamental harmonic w, we solve for R; = 0 and S; = 0 to obtain the
steady-state amplitude:

F, - - 3. 1 -
Ry = _Za} + Xw(z) cos(0) — Xw? cos(0) + ZXS}/COS(H)S + anow sin(6)

1. 3. 1.
+ZX3§n1w cos(0)?sin(0) + Zngcos(H) sin(0)? + ZXsfnlwsin(0)3 =0 (5.10)

1 _ 1_ - -
S = —anga) cos(8) — ZX3En1w cos(0)® + Xw% sin(0) — Xw?sin(0)
35 1 35
+ZX3ycos(0)zsin(0) - ZX3§nlw cos(0) sin(0)? + szysin(G)s =0 (5.11)
By solving R; and S; together, we obtain the equation for the steady-state amplitude:

2 2 2
e R R L e (5.12)

which can be expressed as a hexic equation in a:

X°® (% + _5fﬂw2 ) +Xx* (By(wg ) + {ni0ow” ) +X? ((M)z + (w% - wz)z) = (&)2
16 16 2 2Q Q m

(5.13)

5.7.4. D4: EXTRACTING EXPERIMENTAL PARAMETERS

In Chapter 5, to monitor the change in the stiffness and dissipation of the resonator,
we fit the experimental frequency responses to the equation (5.13), to extract Q, y, &y,
F,/m and wy. The fitting is done sequentially. First, Q factors are extracted from the
linewidths of linear resonance curves at low drive levels, before the onset of nonlinear-
ity. Next, wg can be extracted from the peak frequency at low drive levels, assuming it
stays constant with increasing drive levels. However we have observed a dependency
on drive level, possibly due to overheating from the optothermal drive, thus instead, we
extracted wy for each drive level separately. At the drive levels where the response is
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nonlinear, we correct for the wy using the inflection of the nonlinear resonance curve,

such that f4(w) = d 442 where f;4(wo) = 0 or the low saddle-node point obtained in the
reverse sweep. After obtaining Q and wy, it is possible to extract F,,/m by ﬁtting the off-
resonance response to a linear harmonic oscillator model, such that % + %2 0 9%+ wox = F—
After obtaining all the linear parameters, it is possible to extract nonlinear parameters Y
and ¢y,). Normalized Duffing coefficient y can be extracted using the slope of the square
of the frequency response, since y = (8wo/3)(Wmax — a)o)/a%,mx [23], where w4y is the
frequency and a4, is the amplitude of the experimental nonlinear resonance peak. Fi-
nally, we find ¢ by matching the peak amplitude, by using an optimizer to minimize
the objective fop; = |asi™ (En) — Amaxl, where asi™. is the peak amplitude of the simu-
lated model. In Appendix Fig. 5.8, we provide additional examples of the fitted curves
for convenience.
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Figure 5.8: Model fits to the experimental data for various temperatures at 10 dBm drive level. Blue line is
the experimental forward frequency sweep response, where orange line is in the reverse sweep response. Black
line with connected dots is the simulated model response with fitted parameters.
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5.7.5. D5: MAGNETOSTRICTIVE MODEL
DYNAMICS OF ANTIFERROMAGNETIC ORDER PARAMETER
The total potential energy of the system can be written down as follows:

Ut = Ug + U + Uns, (5.14)

where Uy is elastic potential energy, Uy, free energy of an antiferromagnet and Upys is
magnetostrictive coupling energy term. These take form of:

k k
U = s
2 4
A B
Up = Unpo + EL2 + ZL4 (5.15)

A,
Umns = EL o(x),

where k; and ks are linear and nonlinear stiffness, Un o is the magnetic free energy in a
disordered state, L = M) — M, is an antiferromagnetic order parameter along the easy-
axis of antiferromagnet defined as a difference of counter-aligned spin sub-lattice mag-
netisations M, », while A and B are phenomenological constants, A is a phenomenolog-
ical magnetostrictive coefficient, and o (x) is the bi-axial stress modulated by the mem-
brane deflection x.

Let us first consider magnetic energy terms U, + Upys that describe the antiferromag-

netic phase:
A

2, By A
Um+Ums=Um,0+EL +ZL +§L o(x). (5.16)
Furthermore, we consider the ground state of magnetic system, in which case L shall
take the value at a minimum of its magnetic energy Uy, in zero stress conditions g = 0.

This energy minimum thus shall have extrema that satisfy w =0, where A>0
condition describes a disordered (paramagnetic) phase and A < 0 condition - an ordered
(antiferromagnetic) phase. Consequently, A = 0 describes the transition between these
phases. We thus define antiferromagnetic transition temperature or Néel temperature
Tx such thatitleads to A=0 at Ty as:

A=a(T - Ty, (5.17)

where a is a positive phenomenological constant, T is temperature and 8 = 0.5 the criti-
cal exponent. By plugging equation (5.17) to (5.15), we re-write the total potential energy
as follows:

Ut =Ug+ Uy + Upys

k k:
- [_1x2+_3x4
2 4

(5.18)

+ +

)

Unot S T-To 12+ 210] 4 [ 2o
mo0™y N 4 2

By minimizing Ut with respect to L, we next find the values of order parameter at the
ground state as follows:
oUT

aL a(T—Tn)L+BL3+ALo(x) =0, (5.19)
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which leads to the antiferromagnetic order parameter at the ground state at o = 0g:

— — T*-T
LO:i\/d(TN g) Aao:i\/a( v ] 520

This means that magnetostriction produces the rescaled Néel temperature Ty, as a func-
tion of g:

T;I =Tn—-—. (5.21)
Furthermore, assuming the total stress o (x) = 09 +0(x), where oy is the static stress and

0 (x) the dynamic stress that is modulated due to the membrane motion of amplitude
x, a stressed antiferromagnet at motion, i.e. o(x) # 0, produces the following relation

between L and Ty:
L(x) = J_r\/a(TN - 7;_ Ao(x) (5.22)

Here, an important observation from equation (5.22) is that L(x) is a function of stress
o(x), and thus membrane deflection x. Consequently, L(x)? from equation (5.22) takes

the form:
a(Tn—=T)—=A(og+0,(x)

B
where L, (x) is the dynamic term of the antiferromagnetic order parameter L. Since
membrane deflection x is modulated at a frequency f = w/2m, elastic waves are excited
in the antiferromagnet through the magnetostrictive coupling, where time dependence
of L is related to energy Ut by the kinetic equation [135]-[137]:

L(x)% = = (Lo + Loy (%)%, (5.23)

dL B KaUT (5.24)

dt oL’ ’
where « is the kinetic coefficient, that is assumed to be free of anomalies near Ty. Since
from equation (5.23) L = Ly + L,, is a sum of the equilibrium L, and the additional dy-
namic term L, produced by the small stresses o, we expand %LLT using Taylor series

around Lg:

ar. _ [9Ux U o (5.25)
T T R '

0L2
and obtain (assuming L,, < Ly):

dL
_d_;” = 2kBL3L, + kA0, (X) Lo. (5.26)
As originally shown by Landau and Khalatnikov [135], the time constant 7, that describes
the relaxation of an antiferromagnetic order parameter due to its dynamic term [136],
[137], can be defined from equation (5.26) as:

1 *
— I <T,
1 =4 2xa(Ty-T) N (5.27)
0o T> T;}
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COUPLED DYNAMICS OF THE MECHANICAL MODE AND THE ORDER PARAMETER

In order to obtain the steady state response of the mechanical degree of freedom x, that
is coupled to the magnetic order, we define the Lagrangian & = 5 Lmi? — Ur, and use the
Lagrange equation as follows:

49 9= 5.28
dt 0x  ox 5.28)

which yields
,00(x)
0x

where k) = mw%. Assuming that Ly >> L, and including linear dissipation related to the
quality factor Q, an intrinsic nonlinear dissipation of the van der Pol type with constant
intensity 7, and periodic forcing with the amplitude F,, with frequency w and phase vy,
coupled equations of motion can be written in the following form:

mi+kix+ksx®+A(Lo+Ly)

=0, (5.29)

A ,0 0
mi+kix+ k3x +— 2 2 (ggcx) +ALgL, c(;;x) =Fycos(wt+vy) - (nn1x2 + %)5@ (5.30)
Ly =—2KkBI3L, —xALyo (), (5.31)

where k; = mw?.

To proceed further, we define o (x) as:

E E
o(x) = - V)e(x) TR [0 + €0 (X)] =00+ 04 (), (5.32)

where € and €, (x) = C3 a- 1')x are the static and dynamic strain terms, respectively.

Moreover, r is the radlus of the membrane, E is the Young’s Modulus and cs is a di-
mensionless parameter that depends on the geometry and the Poisson’s ratio of the
membrane [22], [84]. Assuming the steady state is a periodic motion in the form of
x = X coswt, equation (5.32) leads to the static and dynamic stress terms:

00 = €0+ B2 X2 (5.33)

T a-w T A '
C3 52

0y(x) =E— X“cos2wt. (5.34)
4r2

To solve for the steady state response of the mechanical degree-of-freedom that is
coupled to the magnetic order, we start by solving the first order differential equation (5.31).
Using equations (5.27) and (5.34), we obtain the steady-state solution for L, in terms of
T
a?CytxkLoA2Twsin 2wt + cos2wt)

2(1+47%0?)

Lyss=— , (5.35)
where Cp = E5 5.

Consequently, to apply harmonic balancing to equation 5.30, we keep the assump-
tion of periodic motion at the steady state in the form of x = X coswt and plug in the
steady state solution of L, such that L, = L,ss. Considering only the fundamental har-
monic w, we find:
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3 C21/12 3 2 2 2
kg —2—— | X+ (Cu LA + m(w; — 0?) X | coswt— (5.36)
4( S73B(1 +412w2)) no 0
2 92
@ Nl + 216y A (3 4 000 & sinwt = F, cosycoswt— F,sinysinwt
4 B(1+472w?)

By equating the coefficients of the fundamental harmonic, namely sinwf and cosw? on
both sides, we obtain the following steady-state amplitude-frequency equation:

3 CAA? 3 2 2 2 ’
g —2 | X3+ (CuLiA+ m(w? —w?) X 5.37
(4( 3 3B(1+412w2)) ( nlLq ( 0 ) ) ( )

1 2TC2 AZ _ m _
+0? | = [nu+ ol 84+ %%
4 B(1+4712w?) Q

2
=F2. (5.38)

From this equation, it is possible to see that the coupling to the magnetic order leads to
anonlinear damping term 7}, of van der Pol type [67] at T < T such that:

2
* 20 1A% *
Mot =i+ B 505 B(1+47207) T<Ty

. (5.39)
77:11 =TInl T> T]f]

Similarly, due to the same coupling, the nonlinear stiffness of the Duffing type is rescaled,
such that:

P T T<T
e e e (5.40)
k; =k3 T> TITI
And finally, the linear stiffness is rescaled as:
* __ 2E_C *
ki =ki+ALg53 T<Ty ' (5.41)
ki =k T>Tg

It is worth noting from equation (5.39) that 17, is significant near 27w ~ 1 and peaks at
21w = 1. In previous work of Zhou, E et al [138], it was shown that in FePS3 the longest
magnetostriction-caused lattice relaxation time constant is related to a modulation of
monoclinic lattice angle by interlayer spin-shear coupling, which can be in order of sev-
eral tens of nanoseconds near Ty. These relaxation timescales are indeed expected to
lead to 27w = 1 and thus possibly cause significant nonlinear damping within the mea-
sured range of w.

By fitting experimental data from Zhou, E et al [138] to equation (5.27) (see Appendix
Fig. 5.9), we plot the expected temperature dependence of k; (T) and nl*ﬂ(T) (assuming
a minor temperature dependence of k3(T) due to other effects of non-magnetic nature)
in main section Fig. 5.4b and c.
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Figure 5.9: Thickness-normalized relaxation time constants 7(7) reported on samples of various thick-
nesses from Zhou, F. et al [138]. Solid magenta line - fitted to equation (5.27).



CONCLUSION AND OUTLOOK

HE aim of this thesis was to explore mode coupling driven nonlinear dissipation
T pathways in 2-D material resonators. We have studied the nonlinear dissipation in
these resonators in various conditions, such as different drive levels and frequencies as
well as different tensions, electrostatic fields and temperatures, while trying to explain
our observations with theoretical and numerical models. I now will summarize the re-
sults of those studies and provide an outlook to future routes for extending this work and
initial steps taken in that direction during my PhD thesis research.

NONLINEAR MODE COUPLING AND DISSIPATION

In Chapter 2, we started by studying the effects of intermodal coupling on nonlinear
dissipation, where we have investigated the nonlinear dynamic response of a optother-
mally excited graphene nanodrum resonator undergoing a parametric-direct internal
resonance. We analyzed the dissipation in the system near the internal resonance and
observed a dramatic increase in the nonlinear dissipation rate. To understand our ob-
servations, we built a coupled nonlinear two degrees-of-freedom model of the resonator,
that showed good agreement with the experimental observations. The model revealed
the connection between the observed nonlinear dissipation and drive frequency, cou-
pling strength and Q factor of the coupled mode.

The resulting expression for the nonlinear damping was very intuitive and captured
the core of the dissipation mechanism in a simple way. When calculated on the internal
resonance point, it is exactly proportional to the square of the coupling strength between
modes and Q factor of the coupled mode, 7,,; x a®Q>. If we put it into words, this math-
ematical expression is almost equivalent to a quantity that defines how efficiently each
oscillation of the first mode can be transferred and stored in the second mode. I believe
this is the fundamental question of dissipation through intermodal couplings. However,
to understand the effects of this phenomenon globally, this question had to be asked for
every mode in the system that is activated.

And this we did by developing a multi-modal reduced-order modeling procedure in
Chapter 3, that relied on purely physical and measurable parameters using finite ele-

99
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ment simulations to understand global dynamic response of nonlinear nanoresonators.
We have compared our simulations to experiments on a graphene resonator in a wide
range of frequencies and drive levels and found good qualitative description of the com-
plicated nonlinear dynamics of the structure.

It is remarkable that through this method, only based on material and geometric
parameters, we could determine the strength of these energy pathways virtually in any
nanoresonator. Obviously at this point, we had to ask for the aid of numerical contin-
uation simulations to make sense of the model, as the coupled equations become very
crowded and cannot be solved as simply as the two-degree-of-freedom scenario. Any-
how, simulations are still effective in displaying how the energy is distributed, as well as
detecting bifurcations.

NONLINEAR MODE COUPLING AND FREQUENCY COMBS

In Chapter 4, we investigated an exotic nonlinear dynamic phenomenon emerging from
the nonlinear coupling of internal modes due to symmetry-breaking forces. By using
electrostatic forces, we broke the out-of-plane symmetry of a graphene nanodrum res-
onator while tuning its resonance frequencies towards a one-to-two internal resonance,
activating a strong energy pathway among its two eigenmodes. At the high drive lev-
els, we observed the emergence of quasi-periodic oscillations that generate mechanical
frequency combs. To explain the observations, we constructed a continuum mechanics
model of the deflected drum which showed good agreement with the experiments, re-
vealing the origin of the frequency comb: Neimark bifurcation of the periodic solution.

Here the mechanical frequency comb is a direct result of purely the nonlinear dy-
namics of the resonator, without the need of a collective response of a resonator and a
complicated feedback circuit, nor a multi-frequency drive. In principle, the concept can
be applied to any nonlinear resonator which could be tuned to satisfy the one-to-two in-
ternal resonance condition and utilized in sensing applications to downscale and track
the frequencies of the system. We also pushed our simulations to even stronger nonlin-
ear regime and showed that a quasi-periodic route to chaos can occur in such a system
[103].

NONLINEAR COUPLING TO THE MAGNETIC ORDER

And finally in Chapter 5, we have investigated the nonlinear coupling not among eigen-
modes, but between the mechanics and microscopic physics of a 2-D material resonator.
We probed the nonlinear dynamics of FePS3-based heterostructure membranes under-
going phase transition at the Néel temperature, where they change their magnetic or-
der, from antiferromagnetic to paramagnetic. In our experiments, we observed dramatic
changes in the nonlinear stiffness and damping during this phase transition.

We have provided a possible explanation to these observations using an analyti-
cal magnetostriction model that attributes the observed phenomena to the magneto-
mechanical coupling of the structure. Yet we also note that it was previously shown that
there is an influence on the heat capacity of these membranes at the phase transition
[121], so the effect of thermoelasticity could be equally important in these observations.
Anyhow, the results make it clear that the changes in the magnetic order of the mate-
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rial can directly reflect on the linear and nonlinear dynamics of these resonators, where
the dynamic response can be used as a probe for the physics. Whether it is the slowing
down of the magnetic relaxation time or a peak in the thermal time constant at the phase
transition, it results in nonlinear dissipation, in a thematic consistency with the work.

6.1. OUTLOOK

Nonlinear phenomena in nanoscale is rich. As promised in the introduction, through
various studies, we have demonstrated examples of nonlinear dissipation pathways in
2-D resonators emerging due to nonlinear coupling of the internal mechanical modes to
each other and to microscopic physics. It is important to mention that by no means the
full spectrum of nonlinear dissipation effects was covered here. One can simply argue
that any mechanism that introduces an effective delay between stresses and the strains
can possibly result in nonlinear dissipation at high amplitudes via geometric nonlinear-
ity, besides their effects on linear dissipation. However the nonlinear mechanism we
studied here was perhaps one of the most fundamental to all structures, as it is purely
based on geometry. Hopefully through this work, we have made clear the importance
of the geometric nonlinearity in the context of nonlinear dissipation. Our studies ex-
pand beyond what is delivered in this work, as many interesting ideas emerged during
the process. Before the final words, in this section, I feel compelled to share certain con-
cepts that we have partially explored.

6.1.1. FREQUENCY STABILITY OF NONLINEAR 2-D MEMBRANE RESONATORS
For sensing and time keeping applications, currently nonlinear resonators aren't the first
devices of choice, due to the amplitude-frequency noise conversion of the Duffing re-
sponse at high amplitudes. However it has been also shown that the nonlinear modal
interactions might have the capability to stabilize these frequency fluctuations [49]. We
made similar suggestions in Chapter 2 while investigating the nonlinear dissipation that
is related to 2:1 parametric-direct internal resonance that we show is dependent on am-
plitude and drive frequency.

Hypothetically, one can already talk about a stabilizing effect in the vicinity of the
internal resonance where the nonlinear dissipation peaks. As we mentioned many times,
one of the consequences of nonlinear dissipation is the reduction in the responsivity
of the resonator. Naturally, the frequency where the nonlinear dissipation peaks in the
system will be the point where it least responds to fluctuations in the force, thus acting
as a more stable operation frequency.

In this direction, inspired by the multi-modal interactions we saw in many devices,
we have made initial measurements of frequency stability in graphene nanoresonators,
in order to study the effects of multi-modal interactions on the frequency stability [151].
In fact, we have observed an unexpected trend in the frequency stability of these res-
onators, with a minimum Allan deviation in arbitrary frequencies on the nonlinear res-
onance curve (Fig. 6.1). We suspect that this might be a consequence of the nonlin-
ear intermodal interactions, and if so, this mechanism can be further utilized by tun-
ing/engineering the tension and the geometry of these devices.
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Figure 6.1: Frequency stability of a nonlinear graphene nanoresonator (adapted from [151]). a) Allan devi-
ation of the nanodrum with respect to different phase set points while controlled by a phase-locked-loop. b)
Open-loop frequency response measurements of the drum, displaying the minimum Allan deviation at differ-
ent drive frequencies.

6.1.2. FERMI-PASTA-ULAM-TSINGOU PHYSICS IN NANORESONATORS

In chapter 3 we showed that a plethora of nonlinear dynamic phenomena that nanores-
onators exhibit could be linked to their physical and material properties. This opens up
the way for the study of fundamental nonlinear dynamics problems in nanomechani-
cal systems, such as the famous Fermi-Pasta-Ulam-Tsingou (FPUT) problem, as the de-
sired nonlinear coupling parameters could be achieved in real life nanoresonators. For
graphene resonators, even if FPUT behaviour was studied numerically [34], the experi-
mental realization is difficult due to low Q factors. Recently, an FPUT-like behavior was
observed in Brownian dynamics of carbon nanotubes [152], yet the tailoring of such de-
vices for desired nonlinear parameters is very challenging due to fabrication difficulties.

A good alternative for this study are the SizNy string resonators, as they are the best
representation of the original FPUT system (which was a chain of mass-spring systems),
and can provide very high Q factors and a lot of freedom in manufacturing. We made
preliminary experiments on Si3Ny string resonators, where we observed signatures of
multi-modal interactions both in frequency response and ringdown measurements, and
provide exemplary measurements in Figs. 6.2 and 6.3. In the frequency response mea-
surements (Fig. 6.2a), due to very high Q factors, even at the lowest drive levels of the
piezoelectrically actuated base, strings show a Duffing response. Furthermore, as the
drive levels were increased, signatures of internal resonance, such as the reduction in
responsivity and locking of the peak nonlinear resonance frequency, were observed.

Moreover, we measured an exotic response of the strings at high drive levels, where
the harmonics of the fundamental frequency were activated. This is specifically inter-
esting because in strings, harmonics correspond to resonance frequencies of the modes
as eigenfrequencies are at the integer harmonics of the fundamental mode. In the ring-
down measurements (Fig. 6.3a), it is possible to observe an anomalous region where the
harmonics of the fundamental mode interacts in the high amplitude regime, and after
the energy of harmonics diminishes, only then the amplitude starts to decays with a con-
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Figure 6.2: Frequency response measurements of a SizN, resonator. a) Responsivity measurement of a 1100
pm SizNy string resonator. b) Microscope image of a 1100 pm SizN4 string resonator.

stant rate. We check the frequencies of the system by applying Fast-Fourier-Transform
(FFT) at different drive frequencies (forward sweep) on the Duffing curve, and see the
emergence of many other frequencies after a specific drive frequency (Fig. 6.3b). Al-
though the observation is very interesting, we are suspicious that these results might be
the outcomes of sensing errors at high amplitudes (such as optical nonlinearities and
sensor saturation) and has to be investigated further (resonators were measured using a
Polytec Vibrometer and a Zurich Instruments Lock-in Amplifier).

Despite these results, a long term energy recurrence behaviour, which is the core of
FPUT problem, was not observed. Yet we suspect that with the careful design of geome-
try and the tension in these devices, nanomechanical manifestation of many fundamen-
tal nonlinear dynamics problems could be achieved, including FPUT behaviour [153].
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6.1.3. NONLINEAR DYNAMIC RESPONSE DUE TO HIGHER ORDER NONLIN-

EARITIES OF EXTERNAL POTENTIALS

We only covered geometric nonlinearities in this thesis, however nonlinearities from ex-
ternal potentials can easily influence the dynamics of nanoresonators, one of which is
the electric fields. Electrostatic fields are very frequently used to tune the resonance fre-
quencies of these devices or even shown to nullify the hardening nonlinearity, as the
electrostatic potential creates a nonlinear softening effect on the resonator [44]. If we
think of a common design, where the resonator is suspended over a gate electrode, de-
pending on the distance, the dominant order of nonlinearity will be different, as the elec-
trostatic force is proportional to inverse of the distance squared. Most of the time, the
nonlinearity that is observed are at most of third order. This is most probably because,
as the voltage is increased and distance is closed between the resonator and the gate
electrode, there is an immense increase in the Joule dissipation due to moving charges
under the strong electric field and thus the motion of the resonator is diminished, failing
to activate the higher order nonlinearities.

However, by taking advantage of the material properties of 2-D materials, this dissi-
pation effect can be minimized, for instance, in the case of resonators made of graphene
that is encapsulated in hexagonal boron nitride [154]. These structures can have supe-
rior electron mobility and thus can retain their motion even under strong electric fields.
As aresult, the effects of higher order nonlinearities are visible in the motion, where the
resonance curve transitions from softening to hardening multiple times. This means
that, just for a single frequency it could have up to 7 solutions (four stable and three
unstable), with multiple zero dispersion points [25], creating interesting possibilities in
terms of nonlinear dynamics. In Fig. 6.4 we provide exemplary numerical continuation
simulations, modeling such a device.

From a different perspective the nonlinear dynamics response under nonlinear po-
tentials can also be used for characterizing the nonlinear force itself. An example could
be the quantum mechanical Casimir effect [155], which results in a force that depends
on the fourth power of distance squared inverse. It is an attractive force between two un-
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static force is modelled as F, = c,;

charged conductive plates that can be explained by quantum fluctuations, a force that
can be detected in very short distances. In principle, the higher order nonlinearities
it introduces can be identified in the dynamics of a nanoresonator, which then can be
used for its characterization. The idea of utilizing nonlinear dynamics to characterize
nanoscale forces is not new, and in fact has been recently utilized in Atomic Force Mi-
croscopy [156]. However, the possibilities with 2-D mechanical resonators remain to be
investigated.
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nature and was able to see meaning in life that way. However this journey quickly turned
out to be one where you are tested not only in your intelligence, but in many other as-
pects, such as willpower, emotional resilience, determination, discipline, social skills,
even your physical condition, as the journey itself leads to a rather "unnatural" lifestyle
when compared to the rest of the society (not that the society lives a healthy lifestyle, but
anyway). Yet, I believe one really gets to know oneself through enduring challenges in all
aspects of life. The key to growth lies outside of the comfort zone, and believe me, doing
a PhD is not comfortable. I must say that the idea of who I thought I was before and after
this journey is quite different. I think that the people who made this journey possible in
the first place, and much more pleasant along the way, deserve to be the subject of its
final words.

Farbod, we met for the first time in your faculty famous "Engineering Dynamics"
class during my master’s studies, which earned you the best lecturer of 3ME award cou-
ple of times. Already at the moment I saw the way the class was taught, I was delighted,
your delivery of the content was very clear and passionate. Furthermore, you made the
structure of the course such that you could happily interact with the students and have
in-depth discussions already in the classroom, and still deliver all the content you had
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