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ABSTRACT

We propose a generalization of the adaptive N-Intertwined Mean-Field Approximation (aNIMFA) model studied in Achterberg and Sensi
[Nonlinear Dyn. 111, 12657–12670 (2023)] to a heterogeneous network of communities. In particular, the multigroup aNIMFA model
describes the impact of both local and global disease awareness on the spread of a disease in a network. We obtain results on the existence
and stability of the equilibria of the system, in terms of the basic reproduction number R0. Assuming individuals have no reason to decrease
their contacts in the absence of disease, we show that the basic reproduction number R0 is equivalent to the basic reproduction number of
the NIMFA model on static networks. Based on numerical simulations, we demonstrate that with just two communities periodic behavior
can occur, which contrasts the case with only a single community, in which periodicity was ruled out analytically. We also find that breaking
connections between communities is more fruitful compared to breaking connections within communities to reduce the disease outbreak on
dense networks, but both strategies are viable in networks with fewer links. Finally, we emphasize that our method of modeling adaptivity is
not limited to Susceptible–Infected–Susceptible models, but has huge potential to be applied in other compartmental models in epidemiology.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0246228

We propose a mathematical model of infectious disease spreading
among a network of communities, in which each community may
adapt to the current state of the epidemic. This adaptivity is mod-
eled through an increase or decrease in interactions of individuals
both within and between communities. We provide a general for-
mula for the basic reproduction number R0, we use this threshold
quantity to establish analytical results, and finally we showcase
the potential of our model with numerous numerical simulations.

I. INTRODUCTION

During epidemic outbreaks without access to medicines, vac-
cines, and other pharmaceutical prevention measures, the only pos-
sibility to reduce the spread of the outbreak is by contact avoidance.
If the choice for contact avoidance is based on the prevalence of the
disease in the population, we call it adaptivity. Various approaches
have been suggested to model the response of individuals to an

epidemic. A common approach is to apply an SIR-like (Suscep-
tible–Infected–Recovered) compartmental model by including an
Aware compartment.1–5 Aware individuals are conscious of the
ongoing disease and are, therefore, more cautious toward contact
with other individuals. Thus, aware individuals are less likely to be
infected. Moreover, some authors included the possibility of cor-
ruption of information spreading throughout a population,6–8 which
has been very problematic throughout the COVID-19 pandemic, in
particular.9

Other authors suggested local rules to model personal risk
mitigation using link rewiring schemes10 or link-breaking rules.11,12

These models primarily consider the personal decisions of nodes to
apply mitigation strategies, who generally base their decision on the
presence of the disease in the local neighborhood around that node.
On the contrary, the overall presence of the disease in the population
is often neglected. A recent paper, conversely, proposed an interest-
ing game-theoretical approach to the coupling of infectious disease
spreading and global awareness.13
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In reality, both personal risk perception and global knowl-
edge of the disease persistence in the population play a role in
the mitigation strategy. Here, we propose a multigroup adaptive
SIS (Susceptible–Infected–Susceptible) model, based on the simple
model for adaptive SIS epidemics.14 The multigroup approach is
convenient for describing heterogeneity among agents using a sys-
tem of ODEs, by considering the evolution of a disease in a network
of communities.15–23 The disease evolves both within each com-
munity, in which homogeneous mixing is assumed, and between
communities, depending on the strength of the links between those
communities. The size of a community may vary between house-
holds to entire countries. Besides the usual split-up of the population
in geographically separated groups, the communities mentioned
above could also represent age groups in the population and they are
widely used for applications with real data to simulate the incidence
of a disease stratified by age groups.24–26

Even though the disease dynamics of the aNIMFA model is
extremely simplified (only an SIS model is utilized), we expect the
dynamics to be very rich and should be able to accurately capture
many aspects of group-level risk mitigation during epidemic out-
breaks. In particular, we show that periodic solutions may occur in
an asymmetric network with just two communities, which contrasts
the case with a single community, in which it was proven that limit
cycles cannot occur.14

The paper is structured as follows. In Sec. II, we introduce
our multigroup generalization of the aNIMFA model. In Sec. III,
we compute the basic reproduction number and prove the exis-
tence and stability of the disease-free equilibrium (DFE). Then,
we prove the existence of at least one endemic equilibrium (EE)
when the basic reproduction number is (slightly) larger than one.
Section IV showcases various numerical case studies of the aNI-
MFA model, including the emergence of periodic behavior in just
two communities. We conclude with Sec. V.

II. THE MULTIGROUP aNIMFA MODEL

Achterberg and Sensi14 introduced a simple model for adaptive
SIS epidemics in a well-mixed population. The model is given by

dy

dt
= −δy + βy(1 − y)z, (1a)

dz

dt
= −ζ zfbr(y) + ξ(1 − z)fcr(y), (1b)

feasible region 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

where y, z represent the fraction of infected nodes (known as the
prevalence) and the fraction of existing connections in the popula-
tion, respectively. The fraction of infected nodes in (1a) decreases
based on recovery (first term with rate δ) and increases based
on infections (second term with rate β). The link density in (1b)
decreases (first term) based on the link-breaking process fbr with
rate ζ and increases (second term) with the link-creation process
fcr(y) with rate ξ . The functional responses fbr and fcr capture human
behavior and describe the people’s response to the ongoing epi-
demic. In particular, the functional responses fbr and fcr depend
directly on the prevalence y. It is assumed that fbr and fcr are
non-negative functions, i.e., fbr(y), fcr(y) ≥ 0 for all 0 ≤ y ≤ 1.

FIG. 1. Interaction within and between two connected communities i and j. Solid
lines: change of state of individuals within one community; dashed lines: inter--
community infections. Notice that the position of the susceptible and infected
compartments is switched from the top and the bottom row.

Here, we propose a generalization of (1) to n heterogeneous
groups,

dyi

dt
= −δiyi + (1 − yi)

n
∑

j=1

βijyjzij, (2a)

dzij

dt
= −ζijzijfbr,ij(yi, yj, ȳ) + ξij(1 − zij)fcr,ij(yi, yj, ȳ), (2b)

ȳ =
1

n

n
∑

j=1

yj, (2c)

feasible region 0 ≤ yi ≤ 1, 0 ≤ zij ≤ 1 for 1 ≤ i, j ≤ n,

where yi is the local prevalence in group i, zij is the link density
between group j and i (which is not necessarily equal to zji), δi is
the curing rate of group i, βij is the infection rate from group j to
group i, ζij is the link-breaking rate between groups j and i, ξij is
the link-creation rate between groups j and i, and ȳ is the global
prevalence (or simply the prevalence) of the infectious disease in the
whole population, i.e., the average prevalence over all communities.
We are implicitly assuming here that all communities have the same
size. In general, the functional responses fbr,ij and fcr,ij can be different
between each couple of communities. In particular, when i = j, the
functional responses fbr,ii and fcr,ii describe the different responses of
each community i to the internal spread of the infectious disease. We
represent the exemplifying flow within and between two connected
communities in Fig. 1.

We remark that we only need to keep track of the frac-
tion of Infected individuals in each community, since susceptible
individuals are exactly 1 − yi at all times, as we are considering
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an SIS model with no demography spreading in a network of
communities with normalized populations.

The n communities can be represented as n nodes in a graph G,
where each node represents one community. The links in the graph
G constitute the connections βji from community i to community
j. We assume the graph G is strongly connected [i.e., the adjacency
matrix B = (βij) is irreducible]. Although the infection rate βij may
be positive from community j to i, the adaptive weight zij may
become (temporarily) zero due to the link-adaptivity process. On
the other hand, a non-existent link βij = 0 in the adjacency matrix B
can never yield a time-varying (positive) link weight zij > 0, because
there is simply no interaction from community j to i. Consequently,
one may choose to ignore entirely the ODEs corresponding to zij

for which βij = 0 or set the corresponding adaptivity functions and
parameters to zero.

From a biological point of view, a natural assumption would
be to consider all δi equal, since they represent the inverse of the
recovery rate of the same disease. However, each region may have
a different healthcare quality, leading to potentially slightly differ-
ent recovery rates δi. Therefore, we keep the model (2) as general as
possible.

Equation (2) is coined the multigroup adaptive N-Intertwined
Mean-Field Approximation (multigroup aNIMFA), named after the
NIMFA model.27 On a technical note, Eq. (2) contains at most
n + n2 equations (one for each community, and at most n2 for the
connections among them), not n, but we will adhere to the definition
(2) due to its analogy to the static NIMFA model.27 We assume the
parameters δi, βij, ζij, ξij can be different for each node and link and
are assumed to be non-negative. The standard NIMFA model with
link weights zij = zij(0) is recovered if ζij = ξij = 0 for all i and j.
Furthermore, fbr,ij and fcr,ij are assumed to be non-negative for all
0 ≤ y ≤ 1 and all i and j. We emphasize here that the link density in
the aNIMFA model is not necessarily symmetric, i.e., zij 6= zji. This
allows us to capture unilateral decisions to limit or encourage move-
ment between community i and community j, but not vice versa.
For example, we can think of some country A which lifts restrictions
on incoming flights from another country B, even though country B
still discourages its inhabitants to travel.

In an epidemic context, it is reasonable to assume that the
breaking (respectively, creation) of contacts is non-decreasing (non-
increasing) with respect to the current prevalence. Indeed, during
epidemic peaks, people are more likely to isolate, and during periods
of low prevalence, people are likely to enhance their social activities.
Mathematically, this translates in the functions fbr,ij and fcr,ij being
non-decreasing and non-increasing in all their arguments, respec-
tively. For the remainder of this work, we focus on the epidemic
case and, therefore, assume non-decreasing fbr,ij and non-increasing
fcr,ij.

Equations (2) describe the interplay between local and global
awareness, where the functional response of the individuals to the
disease is based on the local prevalences yi and yj, and global preva-
lence ȳ, respectively. Similarly, the aNIMFA model distinguishes
between the within-link-density zii and cross-link-density zij, which
allows for different or targeted counter-measures in specific com-
munities.

We remark that system (2) may be derived as a mean field limit
of a stochastic model, as was done in Refs. 28 and 29. In particular, it

is a generalization of Eq. (4),29 which allows us to include non-local
information on the prevalence in the adaptivity mechanism.

Prior to investigating specific case studies, we first prove several
results for the general case of system (2).

III. ANALYTICAL RESULTS

In this section, we provide numerous analytical results con-
cerning system (2).

A. Boundedness of the feasible region

In the following Lemma, we prove that system (2) evolves in

the biologically relevant region [0, 1]n+n2
.

Lemma 1. Consider a solution of system (2) starting at
yi(0) ∈ [0, 1] and zij(0) ∈ [0, 1] for all i and j. Recall that
fbr,ij(yi, yj, ȳ), fcr,ij(yi, yj, ȳ) ≥ 0 for all yi, yj, ȳ ∈ [0, 1] and all i, j. Then,
yi(t), zij(t) ∈ [0, 1] for all t ≥ 0 and all i and j.

Proof. We calculate

dyi

dt

∣

∣

∣

∣

yi=0

=
∑

j6=i

βijyjzij ≥ 0,
dyi

dt

∣

∣

∣

∣

yi=1

= −δi < 0,

dzij

dt

∣

∣

∣

∣

zij=0

= ξijfcr,ij(yi, yj, ȳ) ≥ 0,

dzij

dt

∣

∣

∣

∣

zij=1

= −ζijfbr,ij(yi, yj, ȳ) ≤ 0,

which proves the forward invariance in the interval [0, 1] of each yi,
i = 1, . . . , n, and zij, i, j = 1, . . . , n. �

B. Disease-free equilibrium

The disease-free equilibrium (DFE) of system (2) corresponds
to the state in which the prevalence in each community is zero, i.e.,
yi = 0 for i = 1, 2, . . . , n. Consequently, the link densities at the DFE
are

zDFE
ij =

ξijfcr,ij(0)

ζijfbr,ij(0) + ξijfcr,ij(0)
,

where, for ease of notation, we write fbr,ij(0) := fbr,ij(0, 0, 0) and
fcr,ij(0) := fcr,ij(0, 0, 0).

C. Basic reproduction number

We apply the Next Generation Matrix method30 to compute
the basic reproduction number R0 of system (2). We evaluate the
Jacobian relative to the variables yi at the DFE and write it as

J = M − V,

where

Mij = βijz
DFE
ij , V = diag(δ1, . . . , δn).

Notice that the matrix M represents infections, whereas the matrix
V represents recovery. Then, the basic reproduction number R0
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follows as the largest eigenvalue ρ of the matrix F,

R0 = ρ(F), (3)

where

F = MV−1 =

(

βij

δi

zDFE
ij

)

1≤i,j≤n

. (4)

Next, we consider the following two special cases.
Assuming complete homogeneity of the parameters, i.e.,

δi = δ, βij = β , ζij = ζ , ξij = ξ , fcr,ij(y) = fcr(y) and fbr,ij(y) = fbr(y)
for all i, j, the matrix F becomes a rank 1 matrix, since all its entries
are equal. Then, R0 is exactly equal to n times the basic reproduction
number for a single community14 (Sec. 3.4), namely,

R0,hom = n
β

δ

ξ fcr(0)

ζ fbr(0) + ξ fcr(0)
.

If instead we assume no link-breaking at zero prevalence, i.e.,
fbr,ij(0) = 0 for all i, j, then the steady-state link density zDFE

ij = 1 for

all i, j and the matrix

F = MV−1 =

(

βij

δi

)

1≤i,j≤n

is completely independent of ζ , ξ , fbr, and fcr. Thus, the basic
reproduction number R0 is completely independent of the network
dynamics, but not from the network topology, and is equivalent to
the NIMFA model on a static topology. This can be explained by the
local nature of R0 around the DFE; the definition of this threshold
quantity is fundamentally related to the local stability of the DFE.
Hence, if in the absence of infection the number of contacts between
individuals is not decreased, the topology of the network (and not
the network dynamics) completely characterizes the potential spread
of the disease.

D. Stability of the DFE

We now use definition (3) to prove Theorem 2.
Theorem 2. Assume that fbr,ij(yi, yj, ȳ) and fcr,ij(yi, yj, ȳ) are,

respectively, non-decreasing and non-increasing in all their argu-
ments for all i, j. Then, the DFE of system (2) is globally stable when
R0 < 1.

Proof. First, we prove that all the prevalence variables yi → 0
as t → +∞ when R0 < 1.

Recall that, from our assumptions, fbr,ij and fcr,ij are, respec-
tively, non-decreasing and non-increasing in all their arguments.
Then, for each triple (yi, yj, ȳ), we have fbr,ij(0) ≤ fbr,ij(yi, yj, ȳ) and
fcr,ij(0) ≥ fcr,ij(yi, yj, ȳ), respectively. Then,

dzij

dt
≤ −ζ zijfbr,ij(0) + ξ(1 − zij)fcr,ij(0),

from which we can deduce

lim sup
t→∞

zij(t) ≤ zDFE
ij .

This means that, for each ε1 > 0, there exists a time tε1 such that, for
t ≥ tε1 and for all i, j, we have

zij(t) ≤ zDFE
ij + ε1.

This means that, for t ≥ tε1 , we can bound the first n ODEs of (2)
from above, using, moreover, the fact that (1 − yi) ≤ 1, by

dyi

dt
≤ −δiyi +

N
∑

j=1

βijyj(z
DFE
ij + ε1). (5)

Consider the following auxiliary system, which is obtained by taking
equality in (5),

dwi

dt
= −δiwi +

N
∑

j=1

βijwj(z
DFE
ij + ε1). (6)

Defining the vector w := (w1, . . . , wn), we can rewrite (6) as

dw

dt
= (M(ε1) − V)w, (7)

where V = diag(δi), as in the definition of R0, and M(ε1)

= (βij(z
DFE
ij + ε1))ij

. We invoke the following Lemma:

Lemma 3 (Lemma 2 in Van den Driessche and
Watmough30). If M is non-negative and V is a non-singular
M-matrix, then R0 = ρ(MV−1) < 1 if and only if all eigenvalues of
(M − V) have negative real parts.

By picking ε1 small enough, we can ensure ρ(M(ε1)V
−1) < 1.

Then, from Lemma 3, for all i we have wi(t) → 0 as t → ∞, which
implies, by comparison, that yi(t) → 0 as t → ∞.

This means that, for each ε2 > 0, there exists a time tε2 such
that, for t > tε2 and for i = 1, . . . , n, we have

yi ≤ ε2. (8)

By substituting (8) in the ODEs for zij, and recalling our assumption
of monotonicity of fcr,ij and fbr,ij, we obtain the following inequalities:

z′
ij ≥ −ζ zijfbr,ij(ε2, ε2, ε2) + ξ(1 − zij)fcr,ij(ε2, ε2, ε2), (9)

from which we can deduce

lim inf
t→∞

zij(t) ≥
ξijfcr,ij(ε2, ε2, ε2)

ζijfbr,ij(ε2, ε2, ε2) + ξijfcr,ij(ε2, ε2, ε2)
.

Taking ε1, ε2 → 0 concludes the proof. �

We conclude the results on stability of the DFE with the
following intuitive Corollary:

Corollary 4. The DFE is locally (hence, globally) unstable
when R0 > 1.

The proof of Corollary 4 coincides, up to extremely minor
adjustments, with the second half of the proof of Theorem 1 in Van
den Driessche and Watmough,30 which in turn makes use of a few
smaller results presented in the same paper; for the sake of brevity,
we do not repeat it here.

E. Endemic equilibria

We now prove, under slightly more restrictive assumptions
than R0 > 1, the existence of (at least one) endemic equilibrium
(EE), in which the prevalence in each community is strictly positive,
i.e., yi > 0 for i = 1, 2, . . . , n. Indeed, assuming that at equilibrium
one yi > 0 necessarily means that all adjacent communities must
have a strictly positive prevalence in equilibrium. Since the net-
work is assumed to be strongly connected, this implies that all yi
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are strictly positive at the EE. We remark that, in all generality, we
cannot prove stability nor instability of the EE(s). We do not prove
uniqueness and, as we shall see in Sec. IV, system (2) admits limit
cycles even in a network with only two communities.

Theorem 5. Assume that the matrix F from Eq. (4) is such that
the minimum row/column sum is strictly bigger than 1. Then, system
(2) admits at least one EE.

Proof. We know that

min row/column sum of F ≤ ρ(F) ≤ max row/column sum of F,

hence under our assumption, ρ(F) = R0 > 1. An equilibrium of
system (2) necessarily satisfies

z∗
ij =

ξijfcr,ij(yi, yj, ȳ)

ζijfbr,ij(yi, yj, ȳ) + ξijfcr,ij(yi, yj, ȳ)
.

Substituting this expression for z∗
ij in the first n equations of (2), we

obtain

− δiyi + (1 − yi)

n
∑

j=1

βijyj

ξijfcr,ij(yi, yj, ȳ)

ζijfbr,ij(yi, yj, ȳ) + ξijfcr,ij(yi, yj, ȳ)
= 0.

(10)
Since

dyi

dt

∣

∣

∣

∣

yi=1

= −δi < 0,

if we show that for some small ε > 0 we have

dyi

dt

∣

∣

∣

∣

yi=ε

> 0,

for all i, we can apply the Poincaré–Miranda Theorem31,32 to con-
clude the existence of at least one EE.

If we study the sign of (10) at yi = ε for all i, we obtain

− δiε + (1 − ε)

n
∑

j=1

βijε
ξijfcr,ij(ε, ε, ε)

ζijfbr,ij(ε, ε, ε) + ξijfcr,ij(ε, ε, ε)
> 0. (11)

We can simplify both sides of Eq. (11) by ε and rearrange it to obtain

n
∑

j=1

βij

δi

ξijfcr,ij(ε, ε, ε)

ζijfbr,ij(ε, ε, ε) + ξijfcr,ij(ε, ε, ε)
>

1

1 − ε
. (12)

If we take ε → 0, the previous equation coincides with requiring
that the sum of row i of the matrix F (4) is (strictly) greater than
1. This must hold for all i, which is a consequence of our assumption
on the minimum of such sums. Then, (12) holds for ε > 1 small
enough. This concludes the proof. �

We conjecture the following based on our extensive numerical
simulations:

Conjecture 6. System (2) admits at least one EE when R0 > 1.
We remark, moreover, that the number of EE heavily depends

on the specific choices for the function fcr,ij, fbr,ij. In order to reach
stronger conclusions on their cardinality and stability, one needs to
either select specific examples or impose additional conditions.

TABLE I. Parameters used for case study 1, see Fig. 2. These values were obtained

by sampling, respectively: β ij ∼U([0, 1.2]), δ i =U([0, 0.5]), ζ ij ∼U([0, 1]), ξ ij ∼U([0,

1]) for i, j= 1, 2, where U denotes the uniform distribution.

Parameter Value

n 2

β ij

(

0.52 0.66
0.03 0.52

)

δ1 = δ2 0.50

ζ ij

(

0.42 0.20
0.33 0.62

)

ξ ij

(

0.30 0.62
0.27 0.53

)

zij(0)

(

1 1
1 1

)

y(0) (0.2, 0)

IV. NUMERICAL SIMULATIONS

The complexity of the governing equations (2) complicates
deriving further results on the dynamics. We, therefore, resort to
numerical simulations of system (2) in specific scenarios. The sim-
ulations in this section have been executed in Matlab and are based
on a simple Forward Euler scheme with time step 1t = 0.01 of sys-
tem (2). In the simulations, we were careful to account for the fact
that the adaptivity of the weights zij may vary the intensity of con-
tacts between two communities connected by the corresponding βij,
but does not create new connections not encoded in the adjacency
matrix B. This consideration ensures that the numerical implemen-
tation is efficient, as it reduces the number of differential equations
that need to be integrated. The parameters δi, βij, ζij, and ξij are all
rates, i.e., 1 over unit time.

We present three case studies on the multigroup aNIMFA
model, each discussing a key aspect of the interplay between infec-
tious disease dynamics and disease awareness.

The codes used to produce the simulations contained in this
section are available in the GitHub repository.33 The parameters for
case study 1 are provided in Table I, while the parameters for case
studies 2 and 3 can be generated from the codes by using the pro-
vided random seed. All the figures are based on a single realization
of the code. Refer to the Data Availability section for the codes used
to produce all the figures.

A. Case study 1: Periodic behavior

Due to the interplay between disease dynamics and human
behavior, one would expect that periodicity emerges naturally in
the multigroup aNIMFA model. For the aNIMFA model in one
isolated community, it was recently proven that the dynamical equa-
tions do not admit periodic behavior.14 For the multigroup aNIMFA
model, we demonstrate here that periodicity may occur with just
two communities for certain choices of the functional responses fbr

and fcr.
We consider system (2) on a small network of n = 2 communi-

ties and consider an asymmetry in the functional responses between
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FIG. 2. Case study 1: Effect of asymmetric response between two communities. Parameters are listed in Table I. (a) Local and average prevalence; (b) link densities. We
observe a quick convergence toward a stable limit cycle, representing the endemicity of the disease alternating between high and low prevalence in the population.

the two communities. We assume identical internal policies,

fcr,ii(yi, ȳ) = 1{yi≤0.2}, fbr,ii(yi, ȳ) = 1{yi>0.2}, i = 1, 2,

meaning a strict lockdown is imposed within each community as
soon as the internal prevalence exceeds a threshold value of 0.2,
regardless of the average global prevalence. Oppositely, we assume
that connections between the two communities are governed by
asymmetrical rules,

fcr,12(y1, y2, ȳ) = 1{y2≤0.1}, fbr,12(y1, y2, ȳ) = 1{y2>0.1},

fcr,21(y1, y2, ȳ) = 1 − y1y2, fbr,21(y1, y2, ȳ) = y1y2.

This choice results, for values of the parameters corresponding to
R0 ≈ 1.33, in local and average prevalence, as well as all the link
densities, quickly approaching stable limit cycles, as illustrated in
Fig. 2.

This asymmetry can be interpreted as community 1 being the
“hub” in this network of communities and community 2 being a
peripheral node. The same behavior can be observed with bigger
communities, for example, a star network of n ≥ 3 communities
with asymmetric responses between hub and peripheral nodes and
vice versa. However, the simplest case of n = 2 presented in Fig. 2,
which corresponds to a system of only six ODEs, perfectly exempli-
fies the potential of our modeling approach in producing complex
behavior starting from a simple SIS epidemic model.

Even though the provided functional responses contain indica-
tor functions, which are not C1-functions over the interval [0, 1], we
emphasize that other choices of fcr,ii, fbr,ii, fcr,ij, and fbr,ij can also lead
to periodic behavior. The benefit of having C1-functions is that the
solution is guaranteed to be unique. One method is to approximate
the indicator function, for which we verified that periodic solutions
also occur. We refer, for a few options of smooth approximations of
the indicator function, to Chapter 5.3 in Evans.34

Lastly, we remark that the existence of limit cycles is completely
independent of the dependence of awareness on the global preva-
lence ȳ. We investigate the influence of the dependence on the global
prevalence in Sec. IV C.

B. Case study 2: Internal and external connections

To mitigate epidemics, policymakers have several tools avail-
able. In the early phases of an epidemic, in which vaccines and drugs
are still unavailable, only Non-Pharmaceutical Interventions (NPIs)
can be utilized. Link-breaking policies are an important part of these
NPIs. It is, however, not immediately clear whether it is preferable
to remove connections within or between communities. By includ-
ing a parameter in the system which weighs the relative magnitude
of the corresponding response functions, we model a range of pos-
sible scenarios, ranging from total internal awareness and adaptivity
(i.e., containment measures are taken within each community) to
completely total external awareness (i.e., containment measures are
taken between each couple of connected communities). We do so by
considering the following choice for our functions:

fbr,ii = cy2
i ,

fbr,ij =
1

c
yiyj.

(13)

The constant c allows for the balancing of the importance of internal
and external responses to the epidemic. For c = 1, the link-breaking
functional response for external and internal connections is equiv-
alent. Otherwise, for c > 1, links are broken at a higher rate within
communities and for c < 1, links are broken at a higher rate between
communities. The remainder of the parameters and the structure of
the complete graph can be found in the codes provided in the Data
Availability section. Figure 3 depicts the time-evolving prevalence
and link densities for three different situations. As expected, high
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FIG. 3. Case study 2: Influence of breaking within or between communities on the prevalence and link densities. For each figure, we use n = 20 and the values of parameters
were obtained by sampling, respectively: βij ∼ U([0, 0.25]), δi = 1, ζij ∼ U([0, 2]), ξij ∼ U([0, 1]) for all i, j, where U denotes the uniform distribution, resulting in R0 = 2.53,
with the exception that we used for (a) c = 4, for (b) c = 1, and for (c) c = 0.25.

link-breaking rates within communities result in less links within
communities and vice versa.

Figure 3 also suggests that breaking connections between com-
munities may be preferable compared to breaking connections
within communities to reduce the epidemic outbreak. We quantify
the effectiveness of all methods using the peak prevalence yp and the
steady-state prevalence ȳ∞.

Figure 4(a) confirms for a wide range of c-values that breaking
connections between communities is more successful in reduc-
ing the epidemic outbreak size than breaking connections within
communities. We emphasize that this conclusion is highly depen-
dent on the choice of functional responses as well as the topology;
different choices may result in significantly different behavior.

In particular, when considering a cycle graph, where each com-
munity is only connected to its two nearest neighbors, the situation
changes drastically as observed in Fig. 4(b). Compared to the bal-
anced situation c = 1 where links are broken equally fast within and
between communities, both extremes c → 0 and c → ∞ appear to
be beneficial for reducing the spread. Most likely, the spread of the
disease can be diminished by one of two methods: (i) isolating com-
munities with many infections or (ii) preventing getting infected
by breaking connections between communities. This contrasts our
results for the all-to-all topology in Fig. 4(a), where the method of
quarantining communities (i.e., breaking links within communities)
does not work very well, because of the huge number of neighbor-
ing communities. Overall, we conclude that a cycle network is more

FIG. 4. Case study 2: Impact of the parameter c on the steady-state prevalence ȳ∞ and the peak prevalence yp in the (a) complete graph and (b) cycle graph. Parameters
are the same as Fig. 3, except for (b), we have chosen a different sampling for βij ∼ U([0, 1]), where U denotes the uniform distribution, such that R0 = 1.83. The horizontal
axis is shown on a logarithmic scale.
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FIG. 5. Case study 3: Balancing between local and global awareness of the disease: (a) within communities and (b) between communities showing the peak prevalence
(red triangles) and the steady-state prevalence (green circles). All curves are declining for increasing c values, but the steady-state prevalence within communities is
non-monotonic. Simulations are based on an Barabási–Albert graph with m0 = 3,m = 2, with the values of parameters sampling: δi = 1, ζij ∼ U([0, 2]), ξij ∼ U([0, 1]),
yi(0) = 0 for all i 6= 1 and y1(0) = 0.2 and zij(0) = 0 for all i, j, where U denotes the uniform distribution. Furthermore, (a) n = 20 nodes, βij ∼ U([0, 1]) such that
R0 = 2.93 and (b) n = 50 nodes, βij ∼ U([0, 0.8]) such that R0 = 2.60.

localized and quarantining is, therefore, more effective than on the
complete network.

C. Case study 3: Local vs global awareness

Besides the influence of external and internal functional
responses and the periodicity, another key aspect of the aNIMFA
model is the possible dependence on the functional responses on the
local and global prevalence, i.e., the choice for breaking and creating
links can be dependent on the local and global information on the
disease.

As in case study 2, the link-creation functional responses are
taken as

fcr,ii = 1 − y2
i ,

fcr,ij = 1 − yiyj,
(14)

and for the link-breaking mechanism, we pick

fbr,ii = y2
i ,

fbr,ij = c yiyj + (1 − c) ȳ2.
(15)

Here, the constant c balances between the breaking of links based on
completely local information (c = 1) and completely global infor-
mation (c = 0).

We emphasize that considering the global prevalence to make
decisions whether to break connections is fundamentally different
from taking all-to-all couplings. In a complete graph, the prevalence
of all nodes influences a node’s prevalence, whereas global awareness
uses the average of all node prevalences to influence the link density
directly, but cannot influence the node’s prevalence directly.

For many graphs, graph sizes, functional responses, and homo-
geneous and heterogeneous parameters, the peak prevalence yp and
the steady-state prevalence ȳ∞ are the highest with only global
awareness (c = 0) and decrease monotonically with increasing c.
This is exemplified in Fig. 5(b) in a Barabási–Albert graph.35 The
reasoning is as follows. Even though using global information may
prevent spreading in some links on the network, it is only an aver-
age, necessarily also resulting in less link removals between other
communities. Specifically, the most vulnerable parts of the network,
i.e., those nodes with few infections and high neighboring infections,
have the most benefit by considering their neighbors directly instead
of information on the network as a whole. In total, we can only con-
clude that local information is superior to suppress an epidemic for
links between communities.

In another closely related scenario, we also balance between
local and global awareness, but now for the internal link densities
zii, which changes the link-breaking mechanisms to

fbr,ii = c y2
i + (1 − c) ȳ2,

fbr,ij = yiyj.
(16)

When a community with low prevalence is connected to a com-
munity with high prevalence, precautiously removing links within
its own community may help reduce the spread of the disease.
Figure 5(a) supports our hypothesis by demonstrating that the
steady-state prevalence ȳ∞ may exhibit non-monotonic behavior in
the parameter c. The effect of the parameter c is admittedly small, but
we believe the effect can be more substantial in larger networks. To
conclude, for link removals within communities, there is no supe-
rior strategy—depending on the network structure, the severity of
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the disease, and the network dynamics, using global information
may help reduce the spreading of the disease. We expect that global
information will become more important in larger networks, which
we leave as a direction for further research.

V. CONCLUSIONS

In this paper, we proposed a generalization of the aNIMFA
model investigated in Ref. 14 to a network of n communities. We
provided a formula for the well-known basic reproduction number
R0. We investigated the existence and stability of equilibria in the
system. As usual with this type of model, the stability of the disease-
free equilibrium depends on the threshold value R0 being smaller or
greater than 1. We also showed that at least one endemic equilibrium
exists under a condition slightly stronger than R0 > 1.

Lastly, we enhanced our analytical results through an exten-
sive numerical exploration of various case studies. In particular,
we showed that the multigroup aNIMFA model allows for periodic
orbits in a network with just two communities. We showcased this
fact with an asymmetric on/off strategy for the adaptivity between
communities, representing total lockdowns when the prevalence
reaches a given threshold. Then, we showed that breaking connec-
tions between communities is preferable over breaking connections
within communities in dense graphs, but in sparse networks (with
few links) both link-breaking strategies are viable approaches to
lessen the disease prevalence. Lastly, we measured the trade-off
between local and global awareness on the current state of the epi-
demic. In many scenarios, using local information appears superior
to using global awareness, but further research on larger networks is
required to fully support this claim.

Given that many of our conclusions are drawn based on
numerical solutions, it would be interesting to derive an analyti-
cal foundation of these results, while keeping restrictions on the
functional responses fbr,ij and fcr,ij as minimal as possible. Per-
haps, the monotonicity of the functional responses is sufficient to
deduce information on the asymptotic behavior of the system. Or
is there any other characteristic one could leverage to foresee rele-
vant characteristics of the system, e.g., the peak of prevalence or the
steady-state prevalence?

Moreover, we remark that our approach to the modeling of
adaptivity in the context of epidemic spreading can be easily gen-
eralized to more complex models. The main underlying hypothesis
of the systems presented here and in Ref. 14 is the SIS compart-
mental structure, which does not allow for any kind of immu-
nity. However, modeling the connectivity based on link densities
between nodes and viral states can be included in any multi-
group model, as a level of adaptation of the communities to the
evolution of an epidemic. In more complex models, such as the
SIR (Susceptible–Infected–Recovered), SIRS, SAIRS (Susceptible–
Asymptomatic–symptomatic Infectious–Recovered–Susceptible),
or SIRWS (Susceptible–Infectious–Recovered–Waning immunity–
Susceptible), incorporating disease awareness and adaptivity in the
system is crucial for improving its realism. Our approach to the sub-
ject is very simple and, therefore, well-suitable for wide applicability
in epidemics. In particular, one could consider a variation of system
(2) in which some of the parameters, e.g., βij, vary periodic in time,
mimicking seasonality.

Lastly, one may consider the inclusion of time-delayed mech-
anisms and multiple viruses spreading in the same population. For
the former, it could be interesting to investigate an adaptivity based
on, e.g., yesterday’s values on the prevalence, which are more real-
istically available than real-time ones. For the latter, one could have
different adaptivity strategies depending on how each virus is per-
ceived by the population, greatly increasing the complexity of the
dynamics.
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