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Abstract
Agent-based modeling plays an essential role in gaining in-
sights into biology, sociology, economics, and other fields.
However, many existing agent-based simulation platforms
are not suitable for large-scale studies due to the low perfor-
mance of the underlying simulation engines. To overcome
this limitation, we present a novel high-performance simula-
tion engine.

We identify three key challenges for which we present the
following solutions. First, to maximize parallelization, we
present an optimized grid to search for neighbors and paral-
lelize the merging of thread-local results. Second, we reduce
the memory access latency with a NUMA-aware agent itera-
tor, agent sorting with a space-filling curve, and a custom
heap memory allocator. Third, we present a mechanism to
omit the collision force calculation under certain conditions.

Our evaluation shows an order of magnitude improvement
over Biocellion, three orders of magnitude speedup over
Cortex3D andNetLogo, and the ability to simulate 1.72 billion
agents on a single server.

Supplementary Materials, including instructions to repro-
duce the results, are available at: https://doi.org/10.5281/
zenodo.6463816

CCSConcepts: •Computingmethodologies→Massively
parallel andhigh-performance simulations;Agent / dis-
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1 Introduction
Agent-based modeling (ABM) allows to simulate complex dy-
namics in a wide range of research fields. ABM has been used
to answer research questions in biology [28, 41, 71], sociol-
ogy [18], economics [63], technology [48], business [54], and
more fields [37]. Agents are individual entities that, among
others, can represent subcellular structures to simulate the
growth of a neuron, a cell to investigate cancer development,
or a person to simulate the spread of infectious diseases [10].
The actions of an agent are defined through instances of
class behavior. Possible behaviors are neurite bifurcation,
uncontrolled cell division, or infection.
Agent-based models are developed in an iterative way,

during which an initial model is increasingly refined until
it matches with observed data [56, 65]. Model parameters
that cannot be derived from the literature are determined
through optimization. An optimization algorithm generates
a parameter set, executes the model, and evaluates the error
with respect to observed data until the error converges to a
local or global minimum. This loop might also contain an
uncertainty analysis to evaluate the robustness of a solution
[38]. Consequently, the model must be simulated many times.

The simulation engine’s performance limits the scale of the
model and determines how often the model can be simulated.
Thus, performance is a key issue for simulating models on
extreme scales that might one day be able to simulate all 86
billion neurons in the brain [7]. It is also crucial for smaller-
scale simulations to explore vast parameter space, analyze
parameter uncertainty, repeat the simulation often enough
to reach statistical significance, and develop models rapidly.

To achieve these goals, we present a novel simulation en-
gine called BioDynaMo, which is optimized for high perfor-
mance and scalability. During its development, we identify
the following three main performance challenges.

Challenge 1: To fully utilize systems with high processor
core counts, the parallel part of the simulation engine has to
be maximized (see Amdahl’s law [3]). Although it is easy to
parallelize the loop over all agents (Algorithm 1), our bench-
marks revealed two operations whose level of parallelization
has a significant performance impact. First, building the en-
vironment index, which is used to determine the neighbors
of an agent. The literature describes various radial-neighbor
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search algorithms with different design trade offs between
build and search performance. Second, combining thread-
local results at the end of each iteration.

Challenge 2: ABMs are predominantly memory-bound
due to two reasons. First, the behavior of agents often has
low arithmetic intensity. Second, ABM can be very dynamic.
During a simulation, agents move through space, change
their behavior, and are created and destroyed. Consequently,
the neighborhood of an agent changes continuously, lead-
ing to an irregular memory access pattern and poor cache
utilization. This results in large data movement between the
main memory and the processor cores.

Challenge 3: Under certain conditions, the expensive cal-
culation of mechanical forces between agents is redundant
(Section 5). These forces are for example used in tissue mod-
els to determine the displacement of agents. The challenge
is identifying those agents for which the pairwise force cal-
culation can be safely omitted.

BioDynaMo addresses these challenges with the following
new optimizations. To maximize the parallelization (Chal-
lenge 1), we develop an optimized uniform grid to search
for agent neighbors and fully parallelize the addition and
removal of agents. We address the data movement bottleneck
(Challenge 2) in software by (i) optimizing the iteration over
all agents on systems with non-uniform memory architec-
ture, (ii) sorting agents and their neighbors to improve the
cache hit rate and minimize access to remote DRAM, and
(iii) introducing a pool memory allocator. To avoid redun-
dant mechanical force calculations (Challenge 3), we add a
mechanism to detect agents for which we can guarantee that
the resulting force will not move the agent.
These mechanisms make BioDynaMo nearly an order of

magnitude more efficient than Biocellion and three orders
of magnitude faster than Cortex3D and NetLogo. The per-
formance improvements account for a median speedup of
159× compared to BioDynaMo’s standard implementation
with all optimizations turned off. As a result, BioDynaMo is
able to simulate 1.72 billion agents on one server. The main
contributions of this paper are as follows.

• We present a novel high-performance agent-based sim-
ulation engine. The engine can be used in many do-
mains due to its modular software design and features
a specialization for neuroscience, capable of simulating
the development of neurons.

• Wepresent six optimizations tomaximize performance
(Section 3–5). These insights are transferable and can
be used to improve the performance of other agent-
based simulators.

• We present an in-depth evaluation of BioDynaMo’s
performance using five different simulations (Section 6).
This comprehensive analysis provides insights for users
of BioDynaMo into which parameters yield the best
performance and hints for developers of future agent-
based simulation tools.

2 BioDynaMo’s Simulation Engine
This Section gives an overview of BioDynaMo and its com-
ponents. BioDynaMo is written in C++, uses OpenMP [51]
for shared-memory parallelism, and is available under the
Apache 2.0 open-source license.

Breitwieser et al. [10] describe the user-facing features
of the BioDynaMo platform and detail its modular software
design and ease-of-use by means of three use cases in the
domains of neuroscience, epidemiology, and oncology.
BioDynaMo is a hybrid framework able to utilize multi-

core CPUs and GPUs. This paper focuses on the CPU version,
which has two major advantages. First, the CPU version can
simulate many more agents than a GPU version. The reason
is that GPUs have typically significantly smaller memory
than CPUs. For example, our benchmark hardware has 12×
more memory than the current flagship GPU from NVidia,
the A100 [50]. Second, the CPU version improves the usabil-
ity and flexibility for our broad user community, who often
only have a Matlab [29] or R [62] coding background. In Bio-
DynaMo, users create simulations by writing C++ code. A
GPU-only version would require users to write CUDA code
to define new agents, behaviors, and other user-defined com-
ponents. Therefore, BioDynaMo only offloads computations
to the GPU, transparently to the user [25].
The main objects in agent-based simulations are agents,

behaviors, and operations. Agents (e.g., a cancer cell) have at-
tributes that are updated through behaviors and operations.
Behaviors (e.g., uncontrolled cell division) are functions that
can be assigned and removed from an agent and give users
fine-grained control over the actions of an agent. In contrast,
Agent operations are executed for each agent. For example,
to calculate the mechanical forces between agents and exe-
cute all individual behaviors of an agent. The second type
of operation, called standalone operation is executed once
per iteration to perform a specific task (e.g., visualization).
A characteristic property of agent-based simulation is local
interaction. BioDynaMo provides a common interface for
different neighbor search algorithms called environment. Be-
sides the uniform grid detailed in Section 3.1, BioDynaMo
features a kd-tree based on nanoflann [9] and octree based
on the publication of Behley et al. [8].

The agent-based simulation algorithm (Algorithm 1) com-
prises two steps. First, users have to define the starting condi-
tion of the model (L1) in which agents, behaviors, operations,
and any other resource are created. Second, the simulation
engine executes this model for a number of iterations (L2–
19). The engine executes all agent operations for each agent
(L7–12) and all standalone operations (L12–14). Standalone
operations can be further separated into operations that must
be executed at the beginning of the iteration (e.g., to update
the environment index [L3-5]) or the end (e.g., visualization
[L16-18]). There are two barriers synchronizing threads (L6
and L15).
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Algorithm 1: Simulation algorithm
1 ModelInitialization()

2 for 𝑖 ∈ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
3 for 𝑜𝑝 ∈ 𝑝𝑟𝑒_𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4 𝑜𝑝 () ;
5 end
6 wait()

7 parallel for 𝑎 ∈ 𝑎𝑔𝑒𝑛𝑡𝑠 do
8 for 𝑜𝑝 ∈ 𝑎𝑔𝑒𝑛𝑡_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
9 𝑜𝑝 (𝑎) ;

10 end
11 end
12 for 𝑜𝑝 ∈ 𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
13 𝑜𝑝 () ;
14 end
15 wait()

16 for 𝑜𝑝 ∈ 𝑝𝑜𝑠𝑡_𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
17 𝑜𝑝 () ;
18 end
19 end

3 Maximize Parallelization
3.1 Grid-based Neighbor Search
Determining the neighbors of an agent is a pre-condition for
all agent interactions. For example, the infection behavior in
an epidemiological model requires information if any of the
immediate neighbors is infected. In this context, it is essen-
tial to find neighbors fast and efficiently and minimize the
build time of the required index. Building an index in every
iteration has a high cost, as shown in the evaluation section.
We exploit the fact that the interaction radius is known at
the beginning of the iteration. For this fixed-radius search
problem, a grid-based solution is a good choice because the
box of an agent can be determined in constant time using
the agent’s position [8]. This is confirmed by our evalua-
tion in Section 6.9. The build stage in which all agents are
assigned to a box can be easily parallelized. In the search
stage, the grid determines all neighbors by iterating over all
agents in the same box and the surrounding boxes. In 3D
space, we consider the 3x3x3 cube of boxes surrounding and
including the query box. All agents inside a box are stored
in an array-based linked list. The box only needs to store
the start index and the number of elements it contains. To
avoid zeroing all boxes at the beginning of the build stage,
we add a timestamp attribute to each box, updated when-
ever an agent is added. Consequently, we can determine that
a box is empty if the simulation and box timestamp is dif-
ferent. Therefore, we can build the grid in 𝑂 (#𝑎𝑔𝑒𝑛𝑡𝑠) time
instead of 𝑂 (#𝑎𝑔𝑒𝑛𝑡𝑠 + #𝑏𝑜𝑥𝑒𝑠), which is relevant for large
simulation spaces that are not fully populated.

The array-based linked list uses the same agent indices as
in the ResourceManager. The ResourceManager, an essen-
tial class in the simulation engine, stores raw agent pointers
and offers functions to add, remove, get, and iterate over
agents. Thus, it also benefits from the memory layout opti-
mization presented in Section 4.2. This optimization reduces
the distance in memory of agents that are close in space. Con-
sequently, linked list elements will be closer to each other,
improving the cache hit rate of traversing the linked list dur-
ing the search stage of the grid. The described grid implemen-
tation can be found in the class UniformGridEnvironment.

3.2 Adding and Removing Agents in Parallel
To maximize the theoretically achievable speedup described
in Amdahl’s law [3], we maximize the parallel part of the sim-
ulation by parallelizing the addition and removal of agents.
By default, BioDynaMo stores a thread-local copy of ad-
ditions and removals and commits them to the Resource-
Manager at the end of each iteration.

Additions are trivial; the engine determines the total num-
ber of additions, grows the data structures in the Resource-
Manager, and adds the agent pointers in parallel. In con-
trast, the parallelization of removals is a more elaborate
process because we disallow empty vector elements in the
ResourceManager. If the simulation engine has to remove
an agent stored in the middle of the vector, it must swap it
with the last element before shrinking it. The following algo-
rithm aims at performing the necessary swaps and updates
in dependent data structures in parallel. Figure 1 illustrates
the parallelized algorithm simplified for a single NUMA do-
main. This example assumes a simulation with seven agents
represented with identifier 1–7 and two threads, which re-
move three agents from the simulation. These agents are
highlighted with a grey background. The other colors serve
as a visual aid to track the agents that must be swapped.
The algorithm comprises five main steps. First, the algo-

rithm determines the total number of removed agents, calcu-
lates the new size of the vector (𝑜𝑙𝑑_𝑠𝑖𝑧𝑒 − 𝑟𝑒𝑚𝑜𝑣𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠),
and initializes two auxiliary arrays. The size of the auxiliary
arrays equals the number of removed agents. The new vector
size is indicated by the vertical line between indexes three
and four in Figure 1.
Second, each thread iterates over its vector of removed

agents and fills the auxiliary arrays. If the agent is stored
to the left of the new size index, it must be moved to the
right. Therefore the algorithm inserts the element index
into the array 𝑡𝑜_𝑟𝑖𝑔ℎ𝑡 . If the agent is stored to the right of
the new size, we insert a one into array 𝑛𝑜𝑡_𝑡𝑜_𝑙𝑒 𝑓 𝑡 at the
index: 𝑖𝑑𝑥 − 𝑛𝑒𝑤_𝑠𝑖𝑧𝑒 . The maximum index used to access
elements in the auxiliary array is smaller than the number
of removed agents and is independent of the number of
remaining agents.

5 2 1 8 7 3 6

0 1 2 3 4 5 6

Removed agents:                             Thread 0: {2, 8}            Thread 1: {7}

1. Initialize not_to_left0 0 0to_right

2. Fill 1 3 not_to_left1 0 0to_right

3. Reorder 1 3 to_left5 0 6to_right

2 0 1 1#swaps

4. Swap 1 3 to_left5 0 6to_right

Thread 0 Thread 1

ResourceManager::agents_

5. Resize 5 3 1 6

idx

Figure 1. Parallel agent removal mechanism
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Third, we partition the two auxiliary arrays into blocks
corresponding to the total number of threads. A thread iter-
ates over its auxiliary block, moves entries to the beginning
if they indicate a swap, and stores a counter in the #swaps
array. For the 𝑡𝑜_𝑟𝑖𝑔ℎ𝑡 array, the algorithm skips or over-
writes elements with the value𝑈 𝐼𝑁𝑇_𝑀𝐴𝑋 . In this step, the
semantic of the 𝑛𝑜𝑡_𝑡𝑜_𝑙𝑒 𝑓 𝑡 array changes to 𝑡𝑜_𝑙𝑒 𝑓 𝑡 . Thus,
the algorithm looks for all zeros in the array, replaces them
with the value 𝑎𝑟𝑟𝑎𝑦_𝑖𝑛𝑑𝑒𝑥 + 𝑛𝑒𝑤_𝑠𝑖𝑧𝑒 , and moves them to
the beginning of the block.

In the fourth step, we can finally perform the swaps. The
algorithm calculates the prefix sum of the two #𝑠𝑤𝑎𝑝𝑠 arrays
and partitions the swaps among all threads. Each thread can
determine the indices based on the prefix sum of #𝑠𝑤𝑎𝑝𝑠 .

Lastly, the algorithm completes the removal by shrinking
the vector to𝑛𝑒𝑤_𝑠𝑖𝑧𝑒 . This algorithm requires𝑂 (𝑟𝑒𝑚𝑜𝑣𝑒𝑑_-
𝑎𝑔𝑒𝑛𝑡𝑠) time and space and parallelizes steps 1–4.

4 Optimize Memory Layout
4.1 NUMA-Aware Iteration
BioDynaMo supports systems with multiple NUMA domains.
We add a mechanism to match threads with agents from the
same NUMA domain tominimize the traffic to remote DRAM
because OpenMP does not provide this functionality.
Figure 2 shows a server with two NUMA domains (ND0,

ND1) corresponding to two CPUs with two threads each (T0
& T1, T2 & T3). The CPUs have a local DRAM with shorter
memory access latency than the remoteDRAM. The agents in
the simulation are balanced between the twoNUMAdomains
(see Section 4.2). The ResourceManager maintains a vector
of agent pointers for each NUMA domain 1 . To iterate over
agents in a NUMA-aware way, BioDynaMo first partitions
these vectors into blocks of agent pointers of the same size
2 . Second, these blocks are partitioned among the threads
from the matching NUMA domain 3 . Threads process the
assigned blocks in parallel. Figure 2 shows processed blocks
with a background color of the corresponding thread.

BioDynaMo

ResourceManager

Pointers to agents in ND0 Pointers to agents in ND1

T2

Hardware

Simulation

T0 T1 T3

1

2

3

NUMA-aware iteration:

45

CPU
T0, T1

ND 0

DRAM

CPU
T2, T3

ND 1

DRAM

Agents

Pointers to agents in ND1Pointers to agents in ND0

Figure 2. NUMA-aware iteration

We implement a two-level work-stealing mechanism to
avoid imbalanced execution times across threads. First, a
thread can steal a block from a different thread from the
sameNUMAdomain (e.g., 4 ). Second, if the thread’s NUMA
domain has already finished all work, the thread can steal
work from a different NUMA domain (e.g., 5 ).

4.2 Agent Sorting and Balancing
To accelerate the memory-bound simulations, we must in-
crease the cache hit ratio and load balance the agents among
NUMA domains to minimize remote DRAM accesses. In Sec-
tion 4.1 and Figure 2, we assume this is already the case. This
section presents an efficient algorithm to achieve this goal
by sorting the agents’ memory locations and preserving the
neighborhood relations in 3D.

Preserving the neighborhood relation and reducing the di-
mensionality is themain characteristic of space-filling curves
(e.g., Morton order [44] or Hilbert curve [26]). We compared
the performance of the Morton order with the Hilbert curve
using an oncological simulation [10] and observed a neg-
ligible performance improvement of 0.54% from using the
Hilbert curve. Higher costs to decode the Hilbert curve offset
small gains for the agent operations. Therefore, we use the
Morton order because it results in simpler code.
Figure 3 and the following description present the algo-

rithm in 2D space, but the same principles apply in 3D. In
BioDynaMo, the neighborhood information is stored in the
implementation of the environment interface. Since the uni-
form grid environment performs best, as shown in the eval-
uation section (Section 6.9), we utilize its characteristics to
achieve fast sorting and balancing. We assume the following

a

b c,d

e

f

g,
j

0 1 2

0

1

2

0

x
y

h,i

{0,0}{5,1}{6,2}{8,4}

A  Agents in 3x3 grid

10

0 1

2 3

4 5

6 7

8 9

11

12 13

14 15

0 1 2 3

3

0

1

2

0

x
y

C  Morton order of 4x4 grid

D  Determine offsets

0-3 4 5 6 7 8 9 10 1511 12 13 14

0 4 5 5 6 6 7 8 98 8 9 9box counter

offset 0 0 0 1 1 2 2 2 63 4 4 5

box Morton code

1

3 4

2

5

6 7 8

0 1 2

0

1

2

0

x
y

0

B  Grid box indices

E  Determine Morton order

0 1 2 3 4 6 8 9 12

0 1 1 2 1 1 3 0 1

0 1 2 4 5 6 9 9 10

= Morton order

agents per box

prefix sum

G  Sort and balance

a b c d e f g h i j

NUMA domain 1NUMA domain 0

T0

ResourceManager::agents_[1]ResourceManager::agents_[0]

T1 T2 T3

offsets

0 1 2 3 4 5 6 7 8index

+ offsets 0 1 2 4

F  Partition

x[0,3] y[0,3]

x[0,1] y[0,1] x[2,3] y[2,3]

found gap T F F T F T F F TT T F T

y[2,3]x[0,1]y[0,1]x[2,3]

Figure 3. Agent sorting and balancing mechanism
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scenario. Agents are stored in a 3×3 uniform grid (A). The
simulation runs on a system with two NUMA domains and
two threads per domain, resulting in four threads. The grid
boxes are stored in a flattened array. Figure 3B shows the box
indices for x and y coordinates. We apply a Morton order
space-filling curve [44] on the uniform grid (C). Our goal is
to sort the agents in the nine boxes in increasing Morton
order. The Morton order is only contiguous for quadratic
simulation spaces where the length is a power of two. There-
fore, C shows a 4×4 grid. For the 3×3 simulation space, there
are gaps between Morton code four and six, six and eight,
and nine and twelve.

The algorithm comprises three main steps. First, the algo-
rithm determines the sequence of boxes in Morton order (D,
E). Second, the algorithm partitions the boxes into segments
that balance agents among NUMA domains and threads (F).
Third, the algorithm stores the agents in their new position
in the resource manager (G). In Figure 3, we selected four
boxes and colored them in red, green, blue, and yellow to
quickly find the corresponding entries for contained agents,
box index, and Morton code. The boxes outside the simula-
tion space have a grey background.
In the first main step (D, E), we determine all gaps be-

tween grid boxes in simulation space (D) to avoid a costly
sorting operation or iteration over all 𝑁 × 𝑁 boxes, where
𝑁 is the next higher power of two of𝑚𝑎𝑥 (𝑥,𝑦). We exploit
the fact that the Morton order corresponds to a depth-first
traversal of a quadtree, in which each box is a leaf in the
tree. Leaves whose boxes are outside the simulation space
are considered empty. Similarly, an inner node is empty if all
of its corresponding leaves are outside the simulation space.
If all the corresponding boxes of an inner node are inside the
simulation space (i.e., the inner node has a perfect subtree),
we say the inner node is complete. The quadtree is only an
abstraction and does not need to be constructed. It is only
necessary to store the current traversal path, which requires
𝑂 (𝑙𝑜𝑔(#𝑏𝑜𝑥𝑒𝑠)) space.

The mechanism in D uses three auxiliary variables: box
counter, offsets, and found_gap, which are initialized to zero,
zero, and true. The matrix in Figure 3D shows the three vari-
ables before the update of the current traversal step. The
algorithm traverses the tree depth-first and continues to the
next deeper tree level only if the current node is neither com-
plete nor empty. In this case, the variables are not changed.
If a complete inner node or leave inside the simulation space
is found and the found_gap variable is true, the algorithm
adds an entry with the current box counter and offset val-
ues in the offsets array and clears found_gap. Afterward,
the box counter variable is incremented by the number of
leaves in its subtree or one if it was a leave, irrespectively
of the former value of found_gap. Empty nodes or leaves
are handled similarly. The offset variable is incremented by
the number of empty leaves in the subtree of an empty node
or one if it is an empty leave. Additionally, the found_gap

variable is set to true. The algorithm keeps track of the x
and y intervals to calculate (in constant time) the number of
leaves in a subtree and determine if an inner node is entirely,
partially, or not inside the simulation space.
With the already sorted offsets array, the Morton order

can be determined in linear time by iterating over all indices
and adding the corresponding offset (E).
In the second main step (F), the algorithm iterates over

all boxes in Morton order and fills an auxiliary array with
the number of agents in each box. Afterward, the algorithm
calculates the prefix sum of the auxiliary array in a parallel
work-efficient manner [34] and partitions the total number
of agents in the simulation such that each NUMA domain
receives a share corresponding to its number of threads.
Inside a NUMA domain, the agents are further partitioned
such that each thread in this domain receives an equal share.

In the third main step (G), the threads copy the agents and
store the pointer in the new position in the resource manager.
The simulation engine can immediately free obsolete agents’
memory or delete all old copies after the step is finished. The
latter requiresmorememory butmight improve performance
due to amore optimalmemory layout in conjunctionwith the
BioDynaMo memory allocator (Section 4.3). The presented
algorithm runs in 𝑂 (#𝑎𝑔𝑒𝑛𝑡𝑠 + #𝑏𝑜𝑥𝑒𝑠) time and space and
parallelizes steps E–G.

4.3 BioDynaMo Memory Allocator
To improve the performance of the simulation engine, we
present a custom dynamic memory allocator which improves
the memory layout of the most frequently allocated objects:
agents and behaviors. Our solution builds upon pool alloca-
tors due to their constant time allocation performance. Pool
allocators divide a memory block into equal-sized elements
and store pointers to free elements in a linked list.
We create multiple instances of these allocators because

they can only return memory elements of one size. As a
result, agents and behaviors with distinct sizes are separated
and stored in a columnar way. We separate the pool allocator
into multiple NUMA domains (class NumaPoolAllocator)
to fully control where memory is allocated. The NumaPool-
Allocator has a central free-list and thread-private ones
to minimize synchronization between threads. List nodes,
which correspond to free memory locations, can be migrated
between thread private and the central list, which is essential
to avoid memory leaks. Migrations are triggered if a thread-
private list exceeds a specific memory threshold. Lists mini-
mize these migrations, and thus thread synchronization, by
maintaining additional skip lists. These skip lists support
migrations of a large number of elements in constant time.

Memory is allocated in large blocks with exponentially in-
creasing sizes controlled by the parameter mem_mgr_growth_-
rate. The initialization of these memory blocks, which in-
cludes list node generation, is performed on-demand in smaller
segments to minimize the worst-case allocation time.
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Every allocated memory block is divided into N-page
aligned segments (Figure 4A), where N can be set with param-
eter mem_mgr_aligned_pages_shift. The linked list nodes
are stored inside free memory elements and do not require
extra space. At the beginning of each N-aligned segment, we
write the pointer to the corresponding NumaPoolAllocator
instance. Therefore, allocated memory elements can obtain
this pointer in constant time, based on their memory address.
This solution enables constant time deallocations (see Fig-
ure 4b) but wastes memory in three ways. First, memory
blocks are allocated using numa_alloc_onnode (libnuma
[5]). This function does not return N-page aligned point-
ers and causes unusable regions at the beginning and the
end, which sum up to 𝑁 ∗ 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 bytes. Second, there
might not be enough space to place a whole element at the
end of an N-page aligned segment. Elements must not cross
N-page aligned borders because it would overwrite the nec-
essary metadata. Third, the metadata requires the size of a
pointer, which is eight bytes on 64-bit hardware. The amount
of wasted memory is bounded by the following equation:
𝑁 ∗ 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 + 𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒 +𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 . Despite this
memory overhead, our performance evaluation shows that
the BioDynaMo pool allocator uses on average less mem-
ory than ptmalloc2 and jemalloc [19]. Another side effect
of this design choice is that the allocation size is limited by
𝑁 ∗ 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 −𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 .

5 Omit Collision Force Calculation
The most time-consuming operation in the tissue models
presented in Section 6.1 is the calculation of the displacement
of agents based on all mechanical forces. For this purpose, the
simulation engine has to calculate pairwise collision forces
between agents and their neighbors implemented in the class
InteractionForce. By default, BioDynaMo uses the force
calculation method detailed in the Cortex3D paper [70]. We
observe that simulations can contain a significant amount
of regions where agents do not move. Neural development
simulations, for example, might only have an active growth
front, while the remaining part of the neuron is unchanged.

Memory Block

N-page aligned segment

free memory 
elements

NumaPoolAllocator*

increasing memory addresses

allocated
element

list node
pointing to next

free element

unused
memory

A    Layout

NumaPoolAllocator*

allocator.numa_id 
== thread.numa_id

T
free_list_[thread_id].push(p)

central_list_.push(p)
F

B    Deallocation

Figure 4. BioDynaMo’s memory allocator

Therefore, we present a mechanism to detect agents for
which it is safe to skip the expensive force calculation. We
call these agents static. The following four conditions must
be fulfilled in the last iteration: (i) the agent and none of its
neighbors moved (ii) the agent’s and neighbors’ attributes
did not change in a way that could increase the pairwise force
(e.g., larger diameter), or the resulting displacement, (iii) new
agents were not added within the interaction radius of the
agent, and (iv) there is maximum one neighbor force which
is non-zero. The detection mechanism is closely tied to the
InteractionForce implementation (see [10]), as condition
two implies, and might have to be adjusted if a different force
implementation is used.

Condition four is needed because we want to allow agents
to shrink and to be removed from the simulation without
setting the agents in this region to not static. Consequently,
we have to ensure that two or more neighbor forces did not
cancel each other out in the previous iteration.
The simulation engine monitors if any of the conditions

are violated for each agent and sets the affected agents to not
static. In this process, a distinction has to be made whether
the changed attribute affects only the current agent or also
its neighbors. If, for example, a static agent moves, the agent
and all its neighbors will be affected, while a change to the
agent’s force threshold, which must be exceeded to move
the agent, only affects itself.

6 Evaluation
6.1 Benchmark Simulations
We use five simulations to evaluate the performance of the
simulation engine: cell proliferation, cell clustering, and use
cases in the domains of epidemiology, neuroscience, and
oncology. These simulations use double-precision floating
point variables and are described in detail in [10]. Table 1
shows that these simulations cover a broad spectrum of
performance-related simulation characteristics and contain
information about the number of agents, diffusion volumes,
and iterations executed. We set the number of agents be-
tween two and 12.6 million to keep the total execution time
of all benchmarks manageable. This is necessary due to the
slow execution of the various baselines. In addition, Sec-
tion 6.4 shows a benchmark in which each simulation is
executed with one billion agents. Also the comparison with
Biocellion contains a benchmark with 1.72 billion cells.
6.2 Experimental Setup and Reproducibility
All tests were executed in a Docker container with an Ubuntu
20.04 based image. Table 2 gives an overview of the main
parameters of the three servers we used to evaluate the
performance of BioDynaMo. If it is not explicitly mentioned,
assume that System A was used to execute a benchmark.

We provide additional evaluations, detailed instructions to
reproduce the results, all code, a self-contained docker image,
and raw measurement data in the supplementary materials
(https://doi.org/10.5281/zenodo.6463816).
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Table 1. Performance-relevant simulation characteristics.
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Create new agents during simulation ✗ ✗ ✗

Delete agents during simulation ✗

Agents modify neighbors ✗

Load imbalance ✗ ✗

Agents move randomly ✗ ✗

Simulation uses diffusion ✗ ✗

Simulation has static regions ✗

Number of iterations 500 1000 1000 500 288
Number of agents (in millions) 12.6 2 10 9 10
Number of diffusion volumes 0 54m 0 65k 0

Table 2. Benchmark hardware
System Memory CPU OS

A 504 GB Four Intel(R) Xeon(R) E7-8890 v3 CPUs@ 2.50GHz
with a total of 72 physical cores, two threads per
core and four NUMA domains.

CentOS
7.9.2009B 1008 GB

C 62 GB
Two Intel(R) Xeon(R) E5-2683 v3 CPUs@ 2.00GHz
with a total of 28 physical cores, two threads per
core and two NUMA domains.

CentOS
Stream 8

6.3 General Performance Metrics
We characterize the agent-based simulation workload by
breaking down the operation’s execution time, and exploring
microarchitecture inefficiencies.
The following benchmarks were performed with all op-

timizations enabled. Figure 5 shows a breakdown of all op-
erations in our benchmark simulations. The majority of the
runtime is spent in agent operations (median: 76.3%) which
subsumes, among others, the execution of behaviors, cal-
culation of mechanical forces, discretization, and detection
of static regions. Rebuilding the uniform grid environment
at every time step is the second biggest runtime contribu-
tor, 4.09–36.5% (median: 18.0%). The epidemiology use case
considers a wider environment that manifests itself in an
increased update time. The average cost of agent sorting in
its optimal setting (Figure 12) is 0.180%–6.33%. Since adding
and removing agents is parallelized, iterations’ setup and
tear down consume only 2.66% (max) of the execution time.
In the microarchitecture analysis, we observe that the

benchmark simulations are primarily memory-bound. We
lose between 31.8 and 47.2% of processor pipeline slots be-
cause the operands are not available.
6.4 Runtime and Space Complexity
We analyze the runtime and memory consumption of Bio-
DynaMo on System B by increasing the number of agents
from 103 to 109 for each simulation (Figure 6). With one
thousand agents, the execution time for one iteration is on
average 1.21 ms and increases only slightly until 105 agents
(2.80ms). From there on, runtime increases linearly to one
billion agents in which one iteration takes between 6.41 and
38.1 seconds to execute. A similar trend can be observed

Figure 5. Operation runtime breakdown (left) and microar-
chitecture analysis (right)

for the memory consumption of BioDynaMo (using double-
precision floating point values), which remains below 1.60
GB until 106 agents and increases linearly to a maximum
between 245 and 564 GB.

The number of agents that BioDynaMo can simulate is not
fundamentally limited to one billion. The maximum depends
only on the available memory of the underlying hardware
and the tolerable execution time.

6.5 Comparison with Biocellion
We compare BioDynaMo with Biocellion [31], an agent-
based framework for tissue models optimized for perfor-
mance. We implement the cell sorting simulation presented
in the Biocellion paper (Section 3.1) in BioDynaMo and use
identical model parameters. The visualization of the BioDy-
naMo simulation with 50k cells (Figure 7a) demonstrates a
good agreement with the Biocellion results in Fig. 3a in [31].

Since we do not have access to the Biocellion code, because
it is proprietary software, we compare BioDynaMo to the
performance results provided in [31]. First, we replicate the
benchmark with 26.8 million agents using 16 CPU cores. For
Biocellion, Khang et al. [31] used a system with two Intel
Xeon E5-2670 CPUs with 2.6 GHz. We execute BioDynaMo
on System C with a comparable CPU and limit the number
of CPU cores to 16 to ensure a fair comparison. We observe
that BioDynaMo is 4.14× faster than Biocellion. BioDynaMo
executes one iteration in 1.80s (averaged over 500 iterations),
while Biocellion requires 7.48s.

Second, we consider the Biocellion benchmark in which
Kang et al. executed 1.72 billion cells on a cluster with 4096
CPU cores (128 nodes with two AMD Opteron 6271 Inter-
lago 2.1 GHz CPUs per node). We execute the BioDynaMo
simulation with the same number of cells on a single node
(System B). Although BioDynaMo requires 26.3s per iter-
ation, which is 5.90× slower than Biocellion, BioDynaMo
uses 56.9× fewer CPU cores. Therefore, we conclude that the
performance per CPU core of BioDynaMo is 9.64× more effi-
cient than Biocellion. We repeat the experiment with 281.4
million cells to verify the last observation. Biocellion requires
4.37s per iteration (extracted from Figure 3b in [31]) using 21
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Figure 6. Runtime per iteration and memory consumption
analysis as the number of agents varies from 103 to 109

.

(a) (b)

Figure 7. (a) Final simulation state after executing the Bio-
cellion cell sorting model on BioDynaMo. (b) Performance
evaluation of the BioDynaMo optimizations with a model
with 28.6 million cells on System B (left) and System C lim-
ited to 16 physical CPU cores (right). The Biocellion paper
[31] provides only a measurement for the latter benchmark.

nodes with a total of 672 CPU cores. The BioDynaMo simula-
tion on System B with 72 CPU cores runs in almost identical
4.24s per iteration. This result confirms our observation that
BioDynaMo is an order of magnitude more efficient than
Biocellion.

We evaluate the impact of our optimizations to provide in-
sights into the question of why BioDynaMo processes 4.14×
more agents per CPU core in the first benchmark and 9.64×
in the second. Therefore, we execute the relevant optimiza-
tions with 26.8 million cells on System C limited to 16 CPU
cores and System B with 72 CPU cores. Figure 7b shows
that the difference can largely be explained by the memory
optimizations having a more significant impact on machines
with higher CPU core count.

6.6 Comparison with Cortex3D and NetLogo
We also compare with capable single-thread tools to evaluate
the parallel overhead of the BioDynaMo implementation [40].
We choose Cortex3D [70] due to its similarity with the neu-
roscience features of BioDynaMo and select NetLogo [68] as
a representative for an easy-to-use general-purpose tool. We
extend the experiments from [10] by analyzing the impact
of the presented performance improvements and comparing
the memory consumption. This benchmark uses different
simulation parameters for agents, diffusion volumes, and
iterations, than shown in Table 1. The first four benchmarks
in Figure 8 are small-scale benchmarks using between 2k
and 30k agents and 0–128k diffusion volumes. These bench-
marks run for 100–1000 iterations and only use one thread

because Cortex3D and NetLogo are not parallelized. The “epi-
demiology (medium-scale)” benchmark contains 100k agents
and uses 144 threads. NetLogo only benefits from parallel
garbage collection in this scenario. In the “BioDynaMo stan-
dard implementation”, all optimizations are turned off, and
the kd-tree environment is used.
We make the following observations. For the small-scale

simulations using one thread, BioDynaMo achieves a speedup
of up to 78.8× while using 2.49× less memory. We observe
three orders of magnitude speedup and two orders of mag-
nitude reduction in memory consumption for the medium-
scale benchmark in which all threads were used.
The median speedup of the BioDynaMo standard imple-

mentation is 15.5×. The optimized uniform grid of BioDy-
naMo boosts performance in all benchmarks (median: 2.18×)
but has the most significant impact if parallelization is used
(45.5×). Memory layout optimizations improve the runtime
of medium-scale simulations by 26.2%, but not for small-
scale ones. The memory layout optimizations comprise the
NUMA-aware iteration (Section 4.1), agent sorting and bal-
ancing (Section 4.2), and memory allocator (Section 4.3). Due
to the interdependency between these individual optimiza-
tions, we subsumed them into one category. Similarly, extra
memory usage during the agent sorting and balancing stage
(Section 4.2) has only a slight performance impact (median
speedup: 4.82%). However, the static region optimization dra-
matically improves the performance in the neuroscience use
case (speedup 9.22×). Although the mechanism’s overhead
reduces the speedup for simulations without static regions,
this is not problematic. The modeler usually knows this char-
acteristic a priori and only enables the mechanism if static re-
gions are expected (see parameter detect_static_agents).

6.7 Optimization Overview
We assess the performance of the presented optimizations
using larger-scale simulations (Table 1) by enabling optimiza-
tions step-by-step (Figure 9). The baseline in this comparison
is the BioDynaMo standard implementation introduced in
Section 6.6. We make the following observations.
The BioDynaMo optimizations improve overall perfor-

mance between 33.1× and 524× (median: 159×). These bench-
marks confirm the speedup of BioDynaMo’s optimized uni-
form grid that we observed in comparison with Cortex3D
and NetLogo. For these larger-scale simulations, the mag-
nitude of the speedup increases up to 184× with a median
of 27.4×. A similar observation can be made for the static
region detection mechanism, albeit with reduced magnitude
(speedup: 3.22×). The main difference between the compari-
son with Cortex3D and NetLogo and this benchmark is the
impact of the memory layout optimizations of agents and be-
haviors and the usage of extra memory during agent sorting.
The maximum speedup is up to 5.30× (median: 2.96×) and up
to 2.07× (median: 1.09×), respectively. Only the Biocellion
benchmark in Figure 7b shows a bigger impact.
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single-threaded comparison multi-threaded comparison

Figure 8. Performance comparison with Cortex3D and Net-
Logo after the optimizations are progressively switched on.

Figure 9. Speedup (top) and memory consumption (bottom)
compared with the BioDynaMo standard implementation
after the optimizations are progressively switched on.

The simulation time of the oncology use case, the only
benchmark that removes agents from the simulation is re-
duced by 31.7% using the “parallel removal” optimization
described in Section 3.2. The optimizations increase the me-
dian memory consumption by a mere 1.77%, which increases
to 55.6% by enabling the use of extra memory during sorting.

6.8 Scalability
We evaluate the scalability of BioDynaMo using the com-
plete simulations lasting between 288 and 1000 iterations
and perform a strong scaling analysis with different opti-
mizations enabled. The strong scaling analysis is performed
with ten iterations.

Figure 10a illustrates the excellent scalability of BioDy-
naMo for complete simulations (i.e., executing all iterations).
The speedup using 72 physical cores with hyperthreading
enabled is between 60.7× and 74.0× (median 64.7×) com-
pared to serial execution. Section 6.6 shows that BioDynaMo
with one CPU core is more than 23× faster than Cortex3D.
If we combine this result with the scalability analysis, which

(a) Whole simulation scalability (b) Legend for (c)

(c) Cell proliferation
Figure 10. (a) Simulation scalability using the whole simu-
lation. (b–c) Detailed strong scaling analysis using only ten
time steps. The left plot shows the speedup with respect to
a single-thread execution, while the right plot presents the
total runtime. Plots for the remaining simulations can be
found in the supplementary materials.

shows that BioDynaMo with 72 CPU cores is more than 60×
faster than one CPU core, we can conclude that BioDynaMo
is up to three orders of magnitude faster than Cortex3D.
Figure 10c shows the strong scaling analysis for the cell

proliferation simulation with ten iterations after progres-
sively switching on the presented optimizations. The left plot
shows the speedup with respect to a single-thread execution,
and the right plot presents the average runtime in millisec-
onds to highlight the absolute differences between various
optimizations and the reduction in runtime with increasing
threads. We make the following observations. The BioDy-
naMo standard implementation scales poorly due to the se-
rial build of the kd-tree environment, which is improved
considerably by using BioDynaMo’s optimized uniform grid
(Section 3.1). The memory optimizations (Section 4) fully
achieve their desired effect and allow BioDynaMo to scale
across NUMA domains and high CPU-core counts.

6.9 Neighbor Search Algorithm Comparison
Figure 11 compares three different neighbor search algo-
rithms: BioDynaMo’s uniform grid, UniBN’s octree [8], and
the kd-tree from nanoflann [9]. To ensure a fair comparison,
we turned off agent sorting for all algorithms because it is
currently only implemented for the uniform grid. We val-
idate our choice for the octree bucket size and nanoflann
depth parameter and observe that the used parameters are
within 4.20% of the optimum runtime. The left column in
Figure 11 shows the result for four NUMA domains and
144 threads, while the right column shows results for one
NUMA domain and 18 threads. We analyzed four properties
of these radial neighbor search methods: runtime impact on
the whole simulation, build and search time of the index, and
memory consumption (Figure 11). We measure the search
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(a) Whole simulation

(b) Build time

(c) Search time (indirect)

(d)Memory consumption
Figure 11. Neighbor search algorithm comparison (left col-
umn: four NUMA domains and 144 threads, right column:
one NUMA domain and 18 threads).

time indirectly by comparing the agent operation runtimes.
This operation contains the initial neighbor searches and
thus provides information on how fast searches are executed.
The BioDynaMo uniform grid implementation shows its

benefits not only in the pure build time comparison but also
in the full simulation analysis. Although a significant build
time difference in comparison to the kd-tree and octree is
expected (because the build process is serial), the magnitude
between 255 and 983× on four NUMA domains is surprising.
The uniform grid outperforms the other algorithms also
during the search stage for all simulations.
Simulations using BioDynaMo’s uniform grid implemen-

tation are up to 191× faster than the kd-tree implementation
while consuming only 11% more memory in the worst case.

6.10 Agent Sorting and Balancing
This section evaluates the impact of agent sorting and bal-
ancing (Section 4.2) on the simulation runtime for one and
four NUMA domains. To this extent, we perform a parameter
study with varying agent sorting frequencies for each simu-
lation. Figure 12 shows the speedup for four NUMA domains
(left) and one NUMA domain (right). The baselines in both
cases are simulations without agent sorting. An agent sort-
ing frequency of one means that the operation is executed
in every iteration; similarly, a frequency of ten would mean
that the operation is executed every ten iterations.

Figure 12.Agent sorting and balancing speedup for different
execution frequencies (left: four NUMA domains and 144
threads, right: one NUMA domain and 18 threads).

Load balancing of agents among NUMA domains greatly
impacts performance even on systems without NUMA ar-
chitecture. This stems from the fact that agent sorting aligns
agents that are close in space also in memory.

The oncology and cell clustering simulations benefit most
of this performance improvement (peak speedup of 5.77 and
4.56× for four NUMA domains). Both simulations are initial-
ized with a random distribution of agents. Although the epi-
demiology simulation is also initialized randomly, its agents
also move randomly with large distances between iterations.
This behavior reduces the alignment improvements signifi-
cantly (peak speedup 1.14× for four NUMA domains). The
cell proliferation simulation is initialized with a 3D grid
of cells, which improves the alignment compared to the
worst-case random initialization. Therefore, the maximum
obtained speedup is reduced to 1.82× (four NUMA domains).
Suppose we change the initialization of the cell prolifera-
tion simulation to random, the maximum speedup increases
to 4.68×. This optimization performs below average for the
neuroscience simulation. This simulation only has an ac-
tive growth front, while the remaining part remains static.
The static agent detection mechanism exploits this fact and
avoids calculating mechanical forces for the static regions.
Therefore, the number of neighbor accesses is significantly
reduced, and thus the benefits of aligned agents. If static
region detection is disabled, agent sorting and balancing
improve the runtime by 3.80× at a frequency of 20.

7 Related Work
ABM tools: To our knowledge, this is the first paper to
present an agent-based simulation engine capable of simulat-
ing neuroscientific models with billions of agents. Biocellion
[31] and Timothy [14] can also simulate one billion agents,
but neither of them support simulations in the demanding
computational neuroscience domain. Our performance eval-
uation shows that BioDynaMo is 9.64× more efficient than
Biocellion [31] for a simulation with 1.72 billion agents. Fur-
thermore, BioDynaMo is three orders of magnitude faster
than the popular neuroscientific simulator Cortex3D [70],
and the general-purpose tool NetLogo [68] on our bench-
mark hardware. Other tools [20, 42, 55] also support large-
scale models, but only show simulations of up to 106 agents.
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Memory layout optimizations:Datamovement between
main memory and processor cores is a fundamental bottle-
neck in today’s computing systems [46]. Recent research
in computer architecture explores new approaches to ad-
dress this bottleneck, such as processing-in-memory, i.e.,
placing compute capability closer to the data [2, 23]. Agent-
based simulation tools are also negatively impacted by the
data movement bottleneck. We address this problem in soft-
ware with a better memory layout resulting in more efficient
bandwidth utilization and data reuse in caches. Space-filling
curves [26, 44, 52] can improve the memory layout by align-
ing objects that are close in 3D space. Therefore, these curves
are frequently used to optimize geometric data structures
[6, 8] and molecular dynamics simulations [4, 21, 47]. To
our knowledge, none of the other agent-based simulation
frameworks (e.g., [11, 13, 15, 17, 20, 31, 32, 35, 36, 39, 42, 49,
55, 59, 61, 66, 68, 70]) use space-filling curves to improve the
cache hit rate and minimize the amount of remote DRAM
accesses. We introduce this proven technique to the agent-
based workload and present a mechanism to determine the
Morton order of a non-cubic grid in linear time.

Neighbor search: Agent-based simulation platforms use
various neighbor search algorithms: Delaunay triangulation
[70], octree [24], and grid-based approaches [31, 55, 68].
Grids are also commonly used on the GPU [1, 8, 16, 22, 27].
Depending on the dataset and specific search query ([fixed-
]radius neighbor search or k-nearest neighbors), the litera-
ture recommends different algorithms [8, 67]. Our contribu-
tion lies in the efficient implementation and integration of
the uniform grid into the simulation engine and in providing
insights into the performance differences for the agent-based
workload.

Performance evaluation: To our knowledge, this pa-
per presents the most comprehensive performance analysis
of an agent-based simulation platform. Existing platforms
report only limited performance results, including simula-
tion execution times and occasionally scalability analyses
[12, 20, 31, 36, 42, 70]. Performance data can also be found
in model papers [45, 60] and in works that focus on hard-
ware accelerators [69]. We improve upon these works by
providing an in-depth analysis of each performance-relevant
component. Efforts in the direction of a standard agent-based
benchmark have been made by Moreno et al. [43] and Rous-
set et al. [57]. However, these synthetic benchmarks fall
short of representing a realistic range of agent-based sim-
ulations by over-simplifying memory access patterns and
assuming that agents always move randomly. Compared to
these, our benchmark simulations cover a broader spectrum
of performance relevant simulation metrics (see Table 1).

Comparison outside the ABM field: Other particle-
based applications, such as molecular dynamics (MD) [33, 53,
64], astrophysics (AP) [58], or computational fluid dynamic
(CFD) [30] simulations often face similar computational chal-
lenges to improve the performance of large-scale simulations.

LAMMPS [64], for example, also uses a grid-based structure
to determine neighbors.While LAMMPS stores neighbor lists
for each atom, which according to Thompson et al. [64] “con-
sumes the most memory of any data structure in LAMMPS”,
BioDynaMo does not need these lists and therefore saves
memory. BioDynaMo improves over LAMMPS and VASP
[33] by sorting agents using a space-filling curve (Section 4.2)
and using a custom memory allocator (Section 4.3) to re-
duce the memory access latency. A NUMA-aware thread
allocation mechanism, as the one used in BioDynaMo (Sec-
tion 4.1), is not needed in LAMMPS or VASP because both
tools support distributed parallelism with MPI. In this work,
we identify several computational challenges in ABM, which
we tackle by using methods inspired by MD, AP, and CFD.
The main difference between ABM and other particle-based
applications is that the computations can vary significantly
from each other in terms of arithmetic intensity, the number
of considered neighbors, data access patterns, and more, thus
posing diverse computational challenges.

8 Conclusion and Future Work
This paper presents a novel agent-based simulation engine
optimized for high performance and scalability. BioDynaMo
enables not only larger-scale simulations, but also helps re-
searchers of small scale studies with accelerated parameter
space exploration, and faster iterative development.

We identify general agent-based performance challenges
and provide six solutions to maximize parallelization, reduce
memory access latency and data transfers, and avoid unnec-
essary work. These solutions are transferable and can be
used to accelerate other agent-based simulation tools.

We present a comprehensive performance analysis to pro-
vide insights into the agent-based workload and to give our
users a better understanding of BioDynaMo’s capabilities.
We find that on our system, the presented optimizations
improve performance up to 524× (median 159×) and allow
BioDynaMo to scale to 72 physical processor cores with a
parallel efficiency of 91.7%. A comparison with state-of-the-
art tools shows that BioDynaMo is up to three orders of
magnitude faster. These performance characteristics enable
simulations with billions of agents, as demonstrated.
Our performance optimizations, which are effective on

machines with one or more NUMA domains, are an impor-
tant stepping stone towards a distributed simulation engine
with a hybrid MPI/OpenMP design. Ongoing work focuses
on realizing this distributed simulation engine capable of
dividing the computation among multiple nodes to push the
boundaries of agent-based simulation even further.
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A Artifact Description
This appendix contains a short summary of the instructions
to reproduce the results in the paper. The whole process
is fully automated and generates all plots and visualiza-
tions shown. The complete instructions can be found in
the SF1-readme.pdf file located at https://doi.org/10.5281/
zenodo.6463816 and https://github.com/CMU-SAFARI/
BioDynaMo.

List of Files: We provide the following supplementary files
on Zenodo (https://doi.org/10.5281/zenodo.6463816) as well
as the SAFARI Research Group’s Github page https://github.
com/CMU-SAFARI/BioDynaMo:

• SF0-additional-evaluations.pdf: This document
complements the main paper by providing additional
performance evaluations.

• SF1-readme.pdf: This document provides detailed
documentation, step-by-step instructions to set up the
systems and execute the benchmark scripts, and ideas
on how to reuse and repurpose this artifact.

• SF2-code.tar.gz: This archive contains all the nec-
essary code to produce all results shown in the paper.

• SF3-bdm-publication-image.tar.gz: This archive
contains a self-contained docker image to simplify
executing our benchmarks and aid long-term repro-
ducibility.

• SF4-raw-results.tar.gz: This archive contains the
raw results we obtained when we executed the bench-
marks on our systems.

A.1 Getting Started
Setting up a new system requires four steps. More details
can be found in Section 2 in SF1-readme.pdf.

1. Download and extract the code archive in Supplemen-
tary File SF2.

2. Install the following software packages on the host
machine: Docker (version >= 19.0.3), Intel Vtune sam-
pling driver (version 2022.2.0), and the Linux screen
command.

3. Load the docker image provided by Supplementary
File SF3.

4. Verify the setup by executing the following command
in the bdm-paper-examples directory: docker/run.sh
./run-functional-evaluation.sh.

A.2 Reproducing Results
We separate the benchmarks into multiple scripts with dif-
ferent memory and disk space requirements to allow re-
searchers with less powerful hardware to execute a subset
of benchmarks. To execute one of the scripts below, change
into the bdm-paper-examples directory, and pass the script
as parameter to the command docker/run.sh. More details
can be found in Section 4 in SF1-readme.pdf.
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• run-main.sh: This script executes the majority of
benchmarks described in the evaluation section of the
paper and outputs Figure 5 (left) and Figures 9–12.

• run-comparison-with-others.sh: This script exe-
cutes the comparison of BioDynaMo with Cortex3D
and NetLogo and outputs Figure 8.

• run-runtime-complexity.sh: This script analyses
the runtime and memory consumption of BioDynaMo,
with the number of agents increasing from 103 to 109,
and generates Figure 6.

• run-profiling.sh: This script performs the microar-
chitecture analysis for all simulations in Table 1 and
generates Figure 5 (right).

• run-biocellion-cmprsn-single-node.sh: This script
executes the small-scale comparison with Biocellion
and the optimization analysis in Figure 7b (right).

• run-biocellion-cmprsn-cluster.sh: This script ex-
ecutes the large-scale comparison with Biocellion, the

optimization analysis in Figure 7b (left), and renders
the visualization in Figure 7a.

A.3 Reusing and Repurposing the Artifact
Besides reproducing the results, researchers can build upon
our artifact in numerous ways. A non-exhaustive list of pos-
sibilities with detailed instructions is given in Section 5 in
SF1-readme.pdf. These possibilities include:

• Add additional benchmarks
• Evaluate the effectiveness of additional optimizations
• Evaluate BioDynaMo’s performance for additional sim-
ulations

A.4 Contact
Please contact us with any feedback or if you need any
help building on BioDynaMo. You can reach us at lukas.
breitwieser@gmail.com and omutlu@gmail.com.

188

mailto:lukas.breitwieser@gmail.com
mailto:lukas.breitwieser@gmail.com
mailto:omutlu@gmail.com

	Abstract
	1 Introduction
	2 BioDynaMo's Simulation Engine
	3 Maximize Parallelization
	3.1 Grid-based Neighbor Search
	3.2 Adding and Removing Agents in Parallel

	4 Optimize Memory Layout
	4.1 NUMA-Aware Iteration
	4.2 Agent Sorting and Balancing
	4.3 BioDynaMo Memory Allocator

	5 Omit Collision Force Calculation
	6 Evaluation
	6.1 Benchmark Simulations
	6.2 Experimental Setup and Reproducibility
	6.3 General Performance Metrics
	6.4 Runtime and Space Complexity
	6.5 Comparison with Biocellion
	6.6 Comparison with Cortex3D and NetLogo
	6.7 Optimization Overview
	6.8 Scalability
	6.9 Neighbor Search Algorithm Comparison
	6.10 Agent Sorting and Balancing

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Artifact Description
	A.1 Getting Started
	A.2 Reproducing Results
	A.3 Reusing and Repurposing the Artifact
	A.4 Contact


