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ABSTRACT Safe deployment of neural networks to classify time series in safety-critical applications relies
on the ability of the classifier to detect data that does not originate from the same distribution as the training
data. The aim of this paper is to propose a framework for detecting whether time-series data is sampled from
a different distribution than the training data, known as the problem of out-of-distribution (OOD) detection.
We propose a novel distance-based OOD method for time-series data using a hierarchical clustering method
together with dynamic time-warping to measure the difference between a new data instance and the training
set. The method is evaluated in the context of mechanical ventilation, a safety critical application, using
both simulated and clinical datasets. Results of the mechanical ventilation use case demonstrate that the
proposed approach effectively detects out-of-distribution data and improves classification performance in
diverse settings.

INDEX TERMS Mechanical ventilation, out-of-distribution detection, safety in machine learning, time-

series analysis.

I. INTRODUCTION

In recent years, many real-world applications have incorpo-
rated neural networks to classify time-series data and thereby
improve their performance. In safety-critical applications,
such as mechanical ventilation in healthcare, it is important
that these neural networks are robust, quantify uncertainty,
and detect data that is not only from a different realization,
but is from a different distribution, i.e., a stocastic process,
than the training data, also called out-of-distribution (OOD)
data, see Fig. 1. If this detection is accurately performed, it
can be ensured that the neural network is only deployed on
data for which it can reliable perform classification. With-
out OOD detection, neural networks tend to predict these
out-of-distribution data wrongly with high-confidence, which
might lead to catastrophic consequences [1]. At the same time,
out-of-distribution data is common in applications where
there is a limited training set, which is often the case for
time-series data. Therefore, it is crucial to detect the OOD
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FIGURE 1. lllustration of out-of-distribution data for time-series data.

data, ignore the output of the classification algorithm and give
control over classification back to the user in this situation.
OOD detection is conceptually related to fault detection. In
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fault-detection of dynamical systems, the goal is to detect
faulty behavior from healthy system behavior or to diagnose
different faulty behaviors. Furthermore, fault detection is a
crucial part of fault-tolerant control design.

Recently, substantial research has been conducted on the
topic of OOD detection in the image domain [2], [3], [4].
However, OOD detection in time series pose different chal-
lenges due to their unique characteristics: time series contain
temporal relations while images contain spatial relations; val-
ues of a time series are continuous while pixel values in
images are from the categorical set {0, 1, ..., 255}. Therefore,
image OOD detection techniques, including the approaches
in [5], are not directly applicable for OOD detection of time
series.

In this paper, we focus on OOD detection for time-series
classification networks. The decision on OOD must be taken
solely based on the raw time-series data, i.e., on the input of
the classification network. This is different from prior works
as we do not rely on labels or high-level features extracted by
the classification network. Consequently, the method is char-
acterized as an unsupervised OOD detection approach. It is
emphasized that the decision should not be taken based on the
(intermediate) output of the classification network, because
neural networks are insensitive to the difference between ID
and OOD samples. Furthermore, a stand-alone OOD detector
can be used as an extension to pre-trained networks. Addi-
tionally, the decision criteria for OOD must be interpretable
since this helps users of safety-critical applications to gain
trust more easily in the classification and OOD detection.
Lastly, a computationally efficient method that requires little
data storage improves the chance of it being added to existing
applications. Thus, the developed method must satisfy the
following requirements:

1) Only the new time-series input data and the training set

(without labels) are available for OOD detection,

2) The OOD decision criteria must be user-friendly,

3) The method must be computationally efficient without

requiring much storage capacity.

Two relevant methods for OOD detection of time series are
available in the literature. In [6], two deep generative models
are designed to find a seasonal ratio score, which works by
dividing a time-series signal into its seasonal patterns and
random noise. It then compares new data to the expected
patterns. If data deviates substantially it is classified as OOD.
In [7], time-series data are converted into features and latent
distributions to apply already existing OOD techniques from
the image domain. Both methods achieve superior results to
their respective benchmarks, but conflict with requirements (i)
and (ii) because users of the classification (outside the field of
machine learning) have difficulty to interpret OOD decision
criteria.

A method that satisfies the requirements is distance-based
OOD detection, see [5]. This method is an intuitive manner
to detect OOD examples, if an example is far away in terms
of a well-defined distance measure from the training set, then
it is OOD. However, a distance-based metric for time-series
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OOD detection is challenging because small misalignments
between time series typically result in a large distance. Note
that a distance-based metric on the latent features extracted
from the classifier is not applicable as it conflicts with require-
ment (i). Furthermore, it is not computationally tractable to
compute the distance between a new example and the entire
training set due to the size of this set.

Training set size can be reduced through clustering tech-
niques. The combination of OOD detection and clustering
is previously researched in [8] and [9], where both studies
demonstrate the potential of distance-based methods applied
to learned feature representations for detecting OOD instances
in image data. However, these methods are not applicable to
time-series data and do not align with the constraint specified
in requirement (i).

Although several methods have been presented to detect
OOD samples, at present none satisfies (i)-(ii)-(iii). The aim
of this paper is to develop a method that solves these chal-
lenges by reducing the training set size via clustering and
compare a new time-series sample with the reduced training
set by means of a time-invariant distance measure. Hence, the
main contribution of this paper is a design methodology for a
distance-based time-series OOD detector.

Note that the main contribution can be directly extended
to the domain of fault detection in dynamical systems. Faulty
behavior can potentially be distinguished from healthy behav-
ior using the presented distance-based method. Furthermore,
the reliability of data-driven fault detectors can be confirmed
through outofdistribution (OOD) detection. These detectors
remain trustworthy only when the new timeseries data gen-
erated by the system closely match the data on which the
detector was trained. The OOD detection approach introduced
in this thesis makes such validation feasible.

An additional contribution is the demonstration of the ef-
fectiveness of this methodology on a case-study concerning
the real-life safety-critical control application of mechanical
ventilation. In mechanical ventilation, a supervisory control
strategy is employed to reduce patient ventilator asynchrony
(PVA), which is of crucial importance to reduce the length
of hospital stays and mortality rates [10]. To enable such
a strategy, it is necessary to detect PVA using a classifica-
tion network. However, these classifiers are typically trained
on limited data sets, highlighting the need for an OOD de-
tector to ensure safe deployment of the supervisory control
system.

The outline is as follows. In Section II, the problem setting
of OOD is described. In Section III, the novel methodology
for OOD detection is presented. Thereafter, in Section IV, the
application of mechanical ventilation is introduced in the con-
text of OOD detection. In Section V, results of the mechanical
ventilation case-study are shown. Finally, in Section VI, the
conclusions and recommendations are presented.

Il. PROBLEM SETTING OF OOD DATA DETECTION

The definition of out-of-distribution data detection and the
problem setting is first introduced through an example in
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Section II-A. Thereafter, the general definition and problem
setting are presented in Section II-B.

A. OOD DATA DETECTION EXAMPLE
Let a time series x(¢) € R, with time ¢, be generated by the
system

x(t) = g(0,1) = sinrO()t +6(2)), (1)

where 6 is the parameter vector 6 = [0(1), 0(2)] € R?. Each
time series has a label y € {0, 1}. An instance (the time-series
signal) is classified as ‘high-frequency’, i.e., it has label y = 1,
if 61 > 3 Hz. The parameter vector 6 is a realization of the
random variable ®, where

O ~ P(A) =Uo,101 X U—x 7) ()

with P(A) a probability distribution, A = {0, 10, —7, 7} the
shape parameters of the distribution and U, ;) a continuous
uniform distribution on the interval [a, b].

Suppose a training set contains data for the parameter
set 0 = {0y, ..., 6y}, resulting in m different realizations of
the random variable ®, such that 6;(1) € [0, 5], and 6;(2) €
[0, %71] Vie {1, ..., m}. With these m realizations, the gen-
eral (or prior) distribution p(®) = P(A) is conditioned as the
conditional (posterior) distribution

p(®|0) ~ U[0’5] X u[O,%n]' 3)

The classifier fyn is trained for a dataset that corresponds
to the posterior distribution p(®|0), while ideally we want
to train it for a dataset that covers the whole input space,
i.e., P(A). A new instance x,, with unknown label y, arrives
generated with 6, = [8, 0], which is unknown to the classifier.
The question becomes whether x, = g(6,) is likely from the
conditional distribution p(®|@), which should only be deter-
mined based on information on x;, and x (since clearly y, is not
available). If this is not the case then the instance is classified
as out-of-distribution.

The problem setting is defined explicitly as: how to design a
methodology to decide, only on the basis of x,, and x, whether
Xy, s likely drawn from the distribution in (3), and thus is in-
distribution, or not, and thus is out-of-distribution.

B. PROBLEM DEFINITION
More specifically to the application at hand, consider a system
g(0, 1), generating time series x(¢) = g(0, t) characterized by
the parameter vector € R” with r the number of parameters
in 6. This system generates a multivariate time series x(t) €
R?, where ¢ is the time and b the dimension of the multi-
variate time series. Each sequence has a variable length P and
is uniformly sampled at rate f;, yielding a discrete time series
x € X = R"*P_This time series contains implicit information
about the corresponding categorical label y € J = Nxo.
Further analysis of the time series, e.g., by a human expert,
makes the label y explicit. This is generally time-consuming
and challenging. Therefore, a classifier fNn : X — ) is de-
signed that automatically detects the label y from the input
x. In this paper, it is assumed that a classifier is trained
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FIGURE 2. Simplified schematic representation of the out-of-distribution
definition for a process with two parameters ©(1) and ©(2). A sample
(Xn, yn) generated by the parameter vector 6, is out-of-distribution if it is
unlikely that 6, belongs to the conditional probability p(©|6).

using the training set (¥,y), where ¥ = {%|, %2, ..., X} and
y = {91, %, ..., 9m}. These training instances are generated
with m underlying parameter vectors 0 = {51 0y, .., ém}.
Each parameter vector §; is sampled from the random variable
® ~ P(A) where A are the shape parameters of the probabil-
ity distribution P. The general distribution p(®) = P(A) is
visualized in Fig. 2 by the green ellipse.

Ideally, a classifier fyn : X — ) is trained on a set (¥, )
with a set @ that entirely captures the general distribution
p(®). In practice, only a finite number of realizations are
available through measurements, making it impossible to span
the entire distribution p(®). Instead the classifier is trained on
the observed set (x = g(#),y), where @ is the set of parameter
vectors visualized by the blue crosses in Fig. 2. The observed
data conditions the general distribution as p(®|@), which is
represented by the blue ellipse in Fig. 2. This conditional
distribution reflects the probability density of ® constrained
to the set of observed data 6. From a Bayesian perspective, the
prior distribution p(®) is updated with the likelihood p(6|®)
via Bayes’ rule

2(6]8) = p(0|®)p(®)’

p(0)

where p(0) = f p(0|®)p(®)d® ensures normalization, to
find the posterior distribution. The likelihood p(0|®) :=
[T, p(6i1©) (under the assumption that each realization 6; is
independent) describes how probable the measured 6; is for a
given ©. The conditional distribution represents the coverage
of the parameter space due to the fact that the finite number of
realizations @ represent only a subset of all possible realization
from p(®).

Now, we measure a new instance x, € R? with unknown
label y,, generated by an unknown parameter vector 6,. Our
goal is to assess whether it is likely that 6,,, the purple cross in
Fig. 2, is a realization from the conditional distribution p(®|8)
or not. If p(6,|0) is large (to be defined more precisely later)
then the instance x,, is called in-distribution (ID) otherwise the
instance x;, is called out-of-distribution (OOD). Note that the
definition of OOD on distribution level cannot be used in the

“4)
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OOD detection method and that only the measurements {x, y}
are available. Furthermore, it is worth noting that the problem
definition can be generalized to non-parametric distributions,
making the definition applicable to a broader class of models.
The problem setting is defined explicitly as: how to design a
methodology to decide, only on the basis of x;, and x, whether
Xy, is likely drawn from the posterior distribution p(®|#), and
thus is in-distribution, or not, and thus is out-of-distribution.

1il. OOD METHODOLOGY

In this section, the methodology of the distance-based OOD
time-series detector is presented. Firstly, the methodology is
concisely presented in a stepwise manner in Section III-A.
Thereafter, each step of the methodolgy is explained in more
detail. In Section III-B, the time-invariant distance mea-
sure (Dynamic-Time Warping (DTW)) is introduced that is
used to properly align two time series. Subsequently, the
training set reduction method (Agglomerative Hierarchical
Clustering (AHC)) is introduced in Section III-C. Lastly, In
Section III-D, a method for the OOD distance threshold com-
putation is presented.

A. DISTANCE-BASED OUT OF DISTRIBUTION DATA
DETECTION

Given that x, is measured and that 6, remains (partly)
unknown, we aim to evaluate whether 6, belongs to the con-
ditional distribution p(®|@) solely based on the knowledge of
X, and the training data (x, y). Note that parameter set @ of the
training set is considered to be unknown. This evaluation is
done using a distance-based detector A(.), which is defined as
follows:

1 ifd, > d* D
hdy,d*) =1 == (OOD), )
0 ifd, <d* (ID).

Where d* is the OOD threshold and d,, the distance between
the new example x;,, and the most similar instances from the
training set x, i.e.,

) dpTw (Xn, X;). (6)

The distance function dptw aligns two signals in time via
a non-linear mapping and computes the Euclidean distance
between two dynamically time-warped signals [11].

Computing the DTW distance dptw between a new exam-
ple x, and the entire training set is computational demanding
with the number of operations of the order O(mT?), where
T is the length of the time series. If the size of the training
set (m) is large, then computing dpTw becomes intractable.
Therefore, we propose a clustering method to reduce the train-
ing set size. Clustering enables us to select only the most
representative samples x* = {x], ..., xg} from the training
set, where K is the number of clusters. More specifically,
the clustering method that is used, is Agglomerative hierar-
chical clustering [12]. In a distance-based method, an OOD
threshold d* in (5) is necessary to evaluate the samples. This
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threshold is computed based on the distance between the train-
ing set x and the most representative samples x*.

Let us now make the proposed approach for OOD explicit
in a step-wise approach. The following steps are conducted
(and shown in Fig. 3) to design the OOD distance-based de-
tector A(.) in (5):

1) Compute the dynamic time-warping (DTW) dis-

tance between all instances from the training set
X = {xl, .. .,xm}, i.e., D(i, ]) =S dDTw(x,',xj') Vi,j €
{1,2, ..., m}, where m is the number of instances in the
training set (see Subsection III-B for the definition of
dpTtw), see also Fig. 3.1.

2) Cluster the training set x into K clusters using the
dynamic time-warping distances D and agglomerative
hierarchical clustering with complete linkage (see Sub-
section III-C for details). This leads to the clusters
¢ ={cy, ..., cx}, where each cluster ¢; contains one or
multiple instances from x, see also Fig. 3.2.

3) Compute the most representative instance in each clus-
ter. The most representative instance is the instance with
the smallest maximum distance to the other instances,
ie.,

X, = argmin,c.. Igléx(dmw(u, v)), (7
a

where (u, v) are instances within cluster ¢, with a €
{1,2, ..., K}. This results in the set of most representa-
tive instances x* = {x{, ..., xg}, where K < m, see the
bold crosses in Fig. 3.3.
4) Compute the OOD threshold d*:
a) Define x := x\x* = {x,, ..., x,}, where (\) is the
set difference operator and Z = m — K.
b) Compute the smallest distance dy between all
samples in x and the representative instances x*
using

dy(i) = aeHlinK} dptw(x;, X))

Vie(l,...Z). (8)

c) Fit a probability density function on dg using
maximum likelihood and determine the 99.5%
confidence bound, which is defined as the OOD
threshold d* (see Subsection III-D for more de-
tails), see also Fig. 3.4.

5) Compute distance

dprw (Xn, X;) )
,,,,, K}
which is the minimal distance between the new in-
stance x, and the most representative instances x* =
{x], ..., xx}, see Fig. 3.5 and 3.6.
6) The OOD detector determines whether an instance is ID
or OOD with (5).

The methodology is a design procedure for a distance-based
out-of-distribution data detector. In the upcoming sections,
certain aspects of the methodology are explained in more
detail.

239



VAN DE KAMP ET AL.: TIME-SERIES OUT-OF-DISTRIBUTION DATA DETECTION IN MECHANICAL VENTILATION

X X X
*
x € x 11 .
Cco 8 12
X X
Tk X
X X Cy4 X% x)
X cs X X b
~ Z* b ~
/7 N K / N
4 ’ \ 5 6. ] \
! b L=~ d I K PR
\ , ’ AN \ , ’ S
s ! N v AID LY \
~_ - I ‘;& 1 -~_ - I 1
\ N, ! 2 CEERY 1
R ’ 5op <4 p
* A Pad S e
d ,/ \\ —~d>:: ’/ \\OOD o
” ~ ~
’ \ % AN 1 \ v’ N
1 1 ' I (I
X 1 \ ® [
* S AN r,dl ‘s g
- \\ ,/ ~o - OOD\? //

FIGURE 3. Schematic representation of the 0OD detector design methodology.
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FIGURE 4. Schematic representation of the nonlinear temporal warping
effort of DTW with respect to the Euclidean distance. On the top, the
unwarped signals (—) and ( ) aligned by the Euclidean distance
measure are shown together with the sample-wise error (—). In the
bottom left, the unwarped signals aligned by DTW are shown. On the
bottom right, the dynamically time-warped signals are shown, where the
open dots represent the repeated data points. The Euclidean distance of
the warped signals is much smaller compared to the Euclidean distance of
the original signals.

B. DYNAMIC-TIME WARPING

Dynamic time-warping (DTW) [11] finds the similarity be-
tween two different time series by allowing non-linear trans-
formations on both signals, see Fig. 4. Two time-series signals
are temporally aligned by local repetition of points in both
signals (the open circles in the bottom right plot of Fig. 4).
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Hereby, the Euclidean distance between the two signals is
minimized.

Normally, it is challenging to compare time series based on
the Euclidean distance because small timing misalignments
result in large distances; however, this is solved with DTW as
shown in Fig. 4. Two time-series signals with similar shape but
a small timing mismatch are shown. Computing the Euclidean
distance results in a large error as shown by the red line in
the top plot of Fig. 4. In the bottom left plot of Fig. 4, DTW
finds a new alignment, which results in the bottom right plot.
Using the Euclidean distance on the warped signals results
in a much smaller distance (red line in the bottom right),
confirming that the signals are indeed similar. The advantage
of DTW over correlation methods is that the distance between
two time-series signals is determined after a non-linear trans-
formation (in time) that aligns time-series signals based on
their shape. If the signals are not (non-linearly) transformed
in such a manner, then the signals do not appear to be similar
in distance-based metrics.

In this paper, we deal with dependent multivariate time
series, where a change in one signal affects all other signals.
This dependency implies that all signals follow the same tem-
poral structure. Therefore, aligning one signal is sufficient to
synchronize the entire time series. Hereby, eliminating b — 1
computations and as a result reducing the computation time
significantly. If the channels within a multi-variate time series
are coupled but drift independently, then a full multivariate
DTW is necessary. A single signal of the time series is defined
as z; := x;, where k € {1,2, ..., b} is the «-th signal of x;.
The DTW-distance dprw is defined as the distance between
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C1 Cy4 Ve 2
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FIGURE 5. lllustration of the agglomerative hierarchical clustering method,
where the user-defined amount of clusters is set to K = 4. Each cross is a
time-series data instance.

time-warped signals with the optimal warping path 7*:

dprw (X, Xj) © = czx(2i, 2j)

= min ¢z (2, 7;), (10)
meA
where ¢, (.) is a local cost function, A is the set of admissible
warping paths . In Appendix A, further details regarding the
cost function, warping paths, and implementation of DTW are
given.
For the clustering, which is described next, the DTW dis-
tance between every instance in the training set x needs to be
computed, i.e., D(i, j) = dprw (x;, x;) Vi, j € {1,2,...,m}.

C. AGGLOMERATIVE HIERARCHICAL CLUSTERING WITH
DTw

As stated in Section III-A, computing the DTW distance
between a new instance x, and the entire training set is
intractable if the training set is large due to the computa-
tional burden of computing DTW. Therefore, it is necessary
to reduce the size of the training set for the OOD distance
comparison; hereby the computation time is reduced from
O@mT?) to O(KT?), with K the number of clusters.

By applying clustering, the training set is systematically
partioned divided into groups (clusters), where the data in-
stances are similar. Selecting a representative instance from
each cluster (to be used for the OOD detection) enables a
substantial reduction in the training set size while preserv-
ing the diversity of the shapes in the training set. Clustering
is preferred over random selection because time-series data
often exhibit class imbalance, i.e., certain shapes are over-
represented in the training set. Statistically, random selection
tends to favor the most common shapes while neglecting the
under-represented shapes or classes. In contrast, the cluster-
based approach in this paper ensures that the reduced training
set is of limited size and contains all shape variations.

In this paper, an Agglomerative Hierarchical Clustering
(AHC) method is used that progressively merges clusters
based on a similarity measure. It does not require an iterative
optimization procedure to converge; hence, this algorithm al-
ways finds the best solution invariant of the initial conditions.
In AHC, every instance is considered a cluster at the start,
see the crosses on the horizontal axis in Fig. 5. Progressively,
instances are merged into clusters using the DTW similarity
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measure until the user-defined number of clusters is achieved
(e.g., K = 4 in Fig. 5). The distance between the clusters can
be defined in multiple ways and is referred to as the linkage
method [12].

The distance between clusters is measured using the com-
plete linkage distance measure. Note that the triangle inequal-
ity does not hold when using the DTW distance as measure.
The distance between clusters is measured using the complete
linkage distance measure. This linkage method is chosen be-
cause it can ensure that every instance in a cluster is at most
some threshold DTW distance apart without relying on the
triangle inequality. Other linkage methods (e.g., single link-
age or centroid-based linkage methods) rely on the triangle
inequality to guarantee that every instance is close to the other
instances in a cluster; therefore, these linkage methods cannot
be used. The complete linkage distance measure is defined
as the distance between the least similar instances within two
clusters, i.e.,

o(cr,cg) = max dprw(u, v), (11)

UeC,, VEC

where ¢, and c, are the two selected clusters. Data instances
(or clusters) are merged if their complete linkage distance
o is smallest among all possible pairs of data instances (or
clusters). In Appendix B, the AHC procedure with complete
linkage is presented. After iteratively solving the AHC proce-
dure, we obtain a set of clusters which contain one or multiple
instances from the training set, e.g., c; = {x2, X100, X519} and
cx = {x1}.

After the clustering, it is possible to find the most represen-
tative instance in each cluster and thereby reducing the size
of the training set massively. The most representative instance
within a cluster is the instance with the minimal maximum
distance to the other instances within that cluster, i.e.,

X, = argmin, .. Iglezif(dmw(u, v)), (12)
where (u,v) are instances within cluster ¢, with a €
{1, ..., K}. The size of the training set is reduced from m to K
instances using the above described method, which decreases
the amount of evaluations that need to be done for the compu-
tation of d,, to

dprw (Xn, X7). 13)
K}

A lower value for K results in a larger reduction; however,
if K is too low, valuable time series information is lost. The
value for K is application-specific and should be chosen at
least as large as the number of classes for the classification
task. Note that AHC computes the clusters for all values of K.
This property enables computationally efficient experimenta-
tion with different values of K to support its tuning.

D. O0OD THRESHOLD COMPUTATION

The threshold for OOD detection is determined based solely
on the training set. By definition the training samples belong
to the conditional distribution p(®|#) and are defined as in-
distribution (ID). Subsequently, the OOD threshold is found
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by computing the maximum distance between all training
points and the representative instances (see Fig. 3.4).

First, we define a set of all training samples without the
representative instances x := x\x* = {x,, ..., x,}, where (\)
is the set difference operator. The smallest distance of all
instances in x to the representative instances x*™ is computed
using the DTW distance and stored in d 4 as

(14)
The distances in dyg are used to determine the threshold
for OOD detection. By definition, all training samples should
be in-distribution, because these samples condition the dis-
tribution. Therefore, it is logical to set the OOD distance to
the largest distance in dy. However, there are always some
outliers and noise in the training data; therefore, we set the
OOD threshold such that the probability is 99.5% that the
instances from the training set are in-distribution. Note that
this threshold is user-defined and application-specific. To find
the threshold, we first need to fit a distribution to dq and,
subsequently, determine the 99.5% confidence interval.

Let I'(y) be the distribution with probability density func-
tion f(dyq|y) that is the best fit for dyy, where y are the
shape parameters of the distribution. To estimate the shape
parameters, the maximum likelihood L(y|dy) = f(dwly) is
optimized via

y = argmax, log L(yldw). (15)

As a result of this optimization, the shape parameters
of the probability density function f(d|y) are estimated.
Subsequently, the 99.5% probability threshold is found with

d* = dyg 59, = F71(09957 J’))s (16)

where F~!(.) is the inverse of the cumulative density function
F()= f_(go f(z|p)dz. This threshold should be computed
for each training set and each set might be exhibiting another
distribution. In the case-study, in Section V, the gamma distri-
bution is the best fit for this distribution.

IV. OOD DETECTION IN MECHANICAL VENTILATION
An example of a real-world application in a safety-critical
environment is the detection of patient-ventilator asynchrony
(PVA) in mechanical ventilation [13]. Patient-ventilator asyn-
chrony is a mismatch in demand between patient and ven-
tilator which is associated with longer hospital stays and
increased mortality [10], [14]. Automatic detection of PVA
is enabled by neural networks [15], [16]. These networks are
trained on real patient data. Gathering this data is a time-
consuming, privacy-sensitive, and challenging process. As a
result, only limited datasets are available that contain data
from within one medical facility. Therefore, training a neural
network that is able to detect PVA in all different patient
ventilator combinations is practically infeasible.

Therefore, detection of out-of-distribution data is of crucial
importance because the neural network always comes across
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FIGURE 6. Schematic illustration of the patient-ventilator hose system.
Each sub-component contains multiple parameters ¢; used to characterize
that particular part of the system.

instances it has not seen during training when deployed in
the medical field. Showing OOD data to the trained network
results in wrong predictions, possibly leading to wrong patient
treatments or false alarms, which results in patient discomfort
and longer hospital stays [10]. Therefore, it is crucial that
these OOD examples are detected and provided to the clini-
cian for human inspection.

Below, a description of the patient, ventilator, and hose
system is given and subsequently connected to the mathemat-
ical description of OOD as presented in Section II. Consider
the system shown in Fig. 6 that generates a patient-ventilator
breath based on three main components: a ventilator, a patient,
and a hose system. The system is characterized by the param-
eter vector 6 which is composed of three sub-vectors, each
describing a part of the system:

0= [Qpatients Bventilator ehose] . (17)
The patient parameters are denoted by
epatient = [Glung,charv Oeffort] > (13)

where Gjung char are the lung characteristics and Beffo describes
the patient breathing effort. The ventilator parameters are de-
noted by

Oventilator = [ebrandv esettings] . (19)

Where Oprang specifies the ventilator brand and 8gegrings rep-
resent the ventilator settings. The hose parameters are denoted
by

Ohose = [etypes Qhose,char] > (20)

where 0y is the type of hose set-up and Opoge char are the hose
characteristics. Eventually, we have the parameter vector 6 =
[6(1),...,60()] which contains [ parameters that characterize
the total patient-ventilator system.

Each realization of the parameter vector 6 defines a config-
uration of the system and generates a breath x(r) € X = R?,
through the generator x(t) = g(6,¢), forallt € {1, .., T} with
T the total signal length. The signals measured each breath are
the pressure at the patients mouthpiece p,y,, and patient flow
Opat» 1.€., X(t) = [paw(?), Qpat(t)]T. In Fig. 7, two different
realizations of x(¢) for two different 6 are given, where all

VOLUME 4, 2025



I EE E IEEE Open Journal of

= CSS Control Systems

12 7 12
= 10 Ll 10 02
2 2
& 8 g8
6 g
4 4
18 19 20 21 34 35 36
50 50
= el
& g
= 0 =) 0
-50 -50
18 19 20 21 34 35 36

FIGURE 7. An example of two different breaths with different
configurations of the parameter vectors 6, and 6,. Only the patient
breathing effort parameter .., is different between 6, and 6,, while all
other parameters are equal. This difference in breathing effort already
leads to a different flow (see x? and x2) shape and possibly a different
label y. The superscript in x} represents that the i-th signal of x; is
visualized.

parameters within 6 are equal except for Oetfor¢. This difference
leads already to different breaths as can be seen in Fig. 7.

The breath (information in x) contains implicit information
about the associated breath label y € Y = {1, 2, 3} represent-
ing the asynchrony type. This information is only available
after a clinical expert inspects x thereby making the label y
explicit. Hereby, it is assumed that two identical x’s have the
same asynchrony type y and two different asynchrony types
have different x’s. A set of m breaths with associated labels,
denoted by (x, y), is generated by processing m different real-
izations of 6 through g(.), such that

»Ym},and 0 = {61, ..., 0,,}.
2D

The generator g(.) is typically modelled as a dynamical
process [17]. The dataset (x, y) is used to train a classification
network fxn @ X — ) that maps an input breath x to its asyn-
chrony type y. Hereby, automating the process of the visual
inspection of asynchrony by a clinical expert [16].

The set of parameter vectors @ contains m realizations of the
random variable ® that is governed by the distribution p(®).
The distribution p(®) reflects all possible configurations of all
patient, ventilator, and hose systems over the entire world. The
classifier fnn is trained on a limited amount of realizations;
hence, only a subset of the distribution p(®) is observed.
As visualized in Fig. 2, where the training set (blue crosses)
conditions the general distribution p(®) as p(®|@). Thus, the
classifier is trained on the conditional distribution p(©®|@).

In a new scenario, we measure a breath x, that contains
implicit knowledge about the unknown breath label y,. The
aim is to assess whether (x,, y,) could plausibly have been
produced by the generator g(6,) where 6, is a realization that
belongs to the conditional distribution p(®1#), as visualized

x={xi, .. xmby={,..
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by Fig. 2. A realization 6, that is unlikely to belong to the con-
ditional distribution p(®|8) is defined as an out-of-distribution
realization, and thus x, is defined as an out-of-distribution
breath.

In a clinical situation, 6, is unknown, making it impossible
to test directly if 6, belongs to p(®|0) via p(6,]0). Instead,
we want to determine if the breath is out-of-distribution based
on the distance between x, and (x,y), using the method as
described in Section III. In the next section, a case-study is
presented where the OOD detection method is validated with
the mechanical ventilation case-study.

V. CASE-STUDY: OOD DETECTION IN MECHANICAL
VENTILATION

In this section, the results of the mechanical ventilation case-
study are presented. In Section V-A, the results of a simulation
case-study are shown. Here, a situation is investigated where
a slight change in ventilator settings results in a shift in
asynchrony labels leading to OOD instances. In Section V-B,
the results of clinical case-study are presented. Mechanical
ventilation data from two hospitals are used in the analysis to
see if the method is able to detect whether data from a different
medical facility is detected as OOD.

A. SEVERE ASYNCHRONY TYPE USE-CASE (SYNTHETIC
DATA)

In this section, the results of the use-case with synthetic data
are presented. First, the details of the use-case are introduced
and thereafter results of the methodology as explained in Sec-
tion IIT are shown.

A. DESCRIPTION USE-CASE

The first use-case contains synthetic patient data. This data
is generated with the system as described in Section IV. To
motivate the choice for this use-case, the data included in the
training set is defined first. Thereafter, the potential OOD data
is introduced.

For the synthetic training set, a set of parameter vectors
Osyn = {Osyn.1, - - ., Osyn,m} is designed; thereby, the distribu-
tion p(®) is conditioned as p(®|fsy,). The set of parameter
vectors By, contains variations in Opagient and Oseqings While
the ventilator brand and hose system are equal for all con-
figurations. With the set of parameter vectors 6y, the set
Xgyn is generated that contains three different (a)synchrony
labels yg,, € {1,2, 3}, respectively, normal inspiration, early
cycling, and delayed cycling (see [16] for the definition of
these asynchronies). The potential OOD instances X, syn are
generated by changing the patient effort and ventilator set-
tings of one realization of the parameter vector 6y,, leading
to a shift in asynchrony types (adding a double triggering
asynchrony y, syn = 4), such thaty, ., € {1,2, 3, 4} whichis
different from the training set.

The double-trigger asynchrony is not included in the train-
ing set, hence, it is impossible for the PVA classifier to classify
this instance correctly. Therefore, the OOD detector needs
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FIGURE 8. Division of the synthetic training set over 50 different clusters with the most representative breath x; displayed as the bold black line (—).

The clusters are numbered from 1 to 50 from the top left to the bottom right.

to detect these potential OOD breathing instances. The hy-
pothesis is that double-triggers should be easily detectable
because the waveforms in x; sy, labeled as double-triggers
are rather different from the waveforms in xgy,, meaning that
dpTW (Xn,syn, Xsyn) s large.

A. RESULTS SYNTHETIC DATA

In this result section, we showcase the methodology as ex-
plained in Section III and analyse the performance of the OOD
detector based on the accuracy of the PVA classifier before
and after removing the detected OOD samples. In Fig. 8§,
the training data xgy, is clustered into 50 clusters using the
DTW-distance. The most representative breath of each cluster
x is indicated by the black line. It is shown that agglomerative
hierarchical clustering based on the DTW distance results
in clusters where the breaths in each cluster have similar
shapes. It can also be seen that different clusters still have
the same shape, so the amount of clusters K can potentially
be further optimized. For this use-case, we are not inter-
ested in the optimal cluster number, but only in the proof of
principle.

After finding the clusters with their representative breaths,
the OOD threshold is determined based on the distance be-
tween the training samples and the representative breaths
d 4syn- Subsequently, the minimal distances d, sy, between
the set of new instances x, sy, and representative breaths x*
are calculated. The results are shown in Fig. 9. A breath of
x, is defined as OOD if the distance dpop is larger than the
OOD threshold d*. The OOD treshold is determined by fitting
a Gamma distribution on dgsyn (because all distances are
larger than zero) and finding the 99.5% confidence interval.
In Fig. 9, every breath above the red dotted line, which is
the OOD threshold d*, is OOD. The figure shows some il-
lustrative examples of the flow waveforms of breaths in x,, syn
(in blue) and the most representative breath (in black) of the
cluster they belong to. This result confirms the hypothesis that
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FIGURE 9. 00D distance d, sy between the new synthetic samples x, syn
and their most representative cluster x;. The red dotted line is the 00D
threshold d*. The numbers at each breath are the cluster number they are
closest to. It can be seen that all double trigger asynchronies (breath
number 27,28,29), the ones where the flow peaks two times, are all
detected as out-of-distribution.

double-trigger asynchronies (ysyn =4) are different from
all the other breaths, and as a result have a large distance
dy,syn between the x,, sy, instances and the most representative
breaths xg,.

The performance of the PVA classifier before
and after filtering of the OOD samples is shown in
Fig. 10. The OOD detector is able to filter out all the
double-trigger breaths. This improves the accuracy of the
classifiction because all double-triggers are all wrongly
classified, i.e., not on the diagonal of the confusion matrix in
Fig. 10. Especially, the double-trigger that is classified as a
normal breath by the classifier (a false negative) results in a
lot of discomfort for the patient if no appropriate actions are
taken.

By detecting the breath as OOD and sending this informa-
tion to a clinician, a more accurate analysis can be conducted
by the clinician to assess whether the breath is asynchronous
or not. If the breath is considered to be asynchrony, the
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FIGURE 10. Confusion matrix of PVA classifier for the entire x, sy, set
before and after filtering of the 00D samples. The grey squares remain
unchanged after filtering, while the dark and light grey triangles show the
changes. The labels in the bottom row are all flagged as OOD breaths by
the OOD detector.

clinician can act by changing the ventilator settings if
needed.

B. DIFFERENT HOSPITAL DATA USE-CASE (CLINICAL DATA)
In this section, the results of the clinical data use-case are
presented. First, the details of the use-cases are introduced
and thereafter results of the methodology as explained in
Section IIT are shown.

B. DESCRIPTION USE-CASE

The second use-case contains clinical patient data from two
separate hospitals. Data from the Fondazione I.R.C.C.S. Poli-
clinco San Matteo (Pavia, Italy) [15] is used as training data
and data from Maasstad hospital (Rotterdam, the Netherlands)
is used as potential OOD data. In contrast to the synthetic
use-case, little information is available regarding the param-
eter vectors i, and 0, qjin. The only available information
is that data from both facilities are gathered from different
adult patients on different ventilator brands with different
hose systems. The training data conditions the distribution of
all patient, hose, ventilator combinations p(®) as p(®|6jin ).
Now, we want to know whether it is likely that the set of pa-
rameter vectors 6, cjin belongs to the conditional distribution
P(O10iin ).

The training data contains three different (a)synchrony
types y.in € {1, 2, 3}, normal breathing, early cycling, and
premature cycling, respectively. The potential OOD data from
Maasstad contains also other asynchronies which are com-
bined into one type leading to y,, ., € {1,2, 3, 4}. Based on
the results from the synthetic use-case, it is expected that the
OOD detector finds all breaths in x, i, that have another
asynchrony type compared to y ;-

B. RESULTS CLINICAL DATA

In this result section, we showcase the methodology as ex-
plained in Section III and analyse the performance of the OOD
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detector based on the accuracy of the PVA classifier before
and after removing the detected OOD samples. In Fig. 11,
the training data xj, is clustered into 50 clusters using the
DTW-distance. The most representative breath of each cluster
x is indicated by the black line. It is shown that agglomerative
hierarchical clustering based on the DTW distance results in
clusters where the breaths in each cluster have similar shapes
and there are not many clusters that have the same shape.
Hence, the user-defined amount of clusters is chosen correctly.
Furthermore, it can be observed that some clusters contain
breaths that are atypical due to a malfunction of the ventilator
(e.g., clusters 30, 35, and 49). In the future, it would be better
to exclude these breaths before clustering.

After finding the clusters with their representative breaths,
the OOD threshold is determined and the minimal distances
d, in between the set of new instances x,, jin and representa-
tive breaths x™* are calculated. In Fig. 12, dq c}in is shown for
the clinical set. The distribution that is the best fit for this data
is a gamma distribution, because it support inputs between
[0, c0) and it is flexible in its shape. The estimated probability
density function becomes f(dqclin|7 ), Which is displayed by
the red line in Fig. 12. Note that this line is scaled to match
the bar chart. To find the threshold for OOD instances we use
the 99.5% probability threshold, i.e.,

d* = dog s, = F~' (0.995]9),

which gives the threshold d* as indicated by the red dashed
line in Fig. 13.

The distance computation between x, c;in are shown in
Fig. 13. A breath of x,, ¢jin is defined as OOD if the distance
d, is larger than the OOD threshold d*. In Fig. 13, this is
every breath above the red dotted line. The figure shows some
illustrative examples of the flow waveforms of breaths in x,,
(in blue) and breath of the most representative breath (in
black) of the cluster they belong to. In general, it is shown
that most breaths are close to the OOD threshold, which is an
indication that other ventilators indeed produce other types of
waveforms. However, not all breaths are classified as OOD,
meaning that data from another hospital is not necessarily
OOD by definition. Furthermore, it is shown that the double-
trigger asynchronies (breath number 8 and 13) are clearly
detected as OOD, similar to the synthetic data case because
they belong to an asynchrony type not present in the training
Set Yclin-

The performance of the PVA classifier before and after
filtering of the OOD samples is shown in Fig. 14. The OOD
detector is able to filter out all the asynchrony types that are
not available during training. This is shown by the bottom
row of Fig. 14. Furthermore, we see that the PVA classifier
produces 5 false positives (the third column in Fig. 14 ex-
cluding the diagonal element) before detection of the OOD
samples. The OOD samples are filtered out after the OOD
data detection, leading to O false positives. In that sense, the
OOD detector improves the detection performance of the PVA
classifier for this use-case. The OOD detector also excludes
correctly classified breaths (i.e., the instances on the diagonal

(22)
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FIGURE 11. Division of the clinical training set over 50 different clusters with the most representative breath x;, displayed as the bold black line (—).

The clusters are numbered from 1 to 50 from the top left to the bottom right.
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FIGURE 12. Distribution of distance between representative breaths and
training data d.q jin-

in Fig. 14) from the set. Two possible explanations exist for
this: either the OOD detector filtered some in-distribution
(ID) samples, or the classification network correctly classified
the OOD samples (by chance). However, with the avail-
able clinical data, it is not possible to determine the exact
cause.

VI. CONCLUSION AND RECOMMENDATIONS

In this paper, a novel distance-based method for Out-Of-
Distribution (OOD) data detection of time series for classi-
fication networks is presented. A data sample is detected as
in-distribution or out-of-distribution based on the Dynamic-
Time Warping (DTW) distance between the data sample and
the data from the training set. To efficiently determine the dis-
tance between the data sample and the entire training set, the
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FIGURE 13. 00D distance d, ., between the new clinical instances x,
and their most representative breath x;, from cluster a, where a € [1, K].
The red dotted line is the OOD threshold d*. The numbers at each breath
are the cluster number they are closest to. Most instances are detected as
00D (e.g., the double triggers in breath number 8 and 13), while very
similar breaths (e.g., breath number 2 and 5) are defined as in-distribution.

size of the training set is reduced by means of Agglomerative
Hierarchical Clustering (AHC). If a data sample is detected
as OOD, it is excluded from the data that is going through
the classification network. Hence, the classification network
produces more meaningful results. The OOD data samples
can be inspected afterwards by the user of the safety-critical
application.

The effectiveness of the distance based method for OOD
detection is tested on the use-case of Patient-Ventilator Asyn-
chrony (PVA) detection in mechanical ventilation. In this
use-case, we found that asynchrony classes not present in the
training set are always flagged by the designed OOD detector.
Furthermore, it is concluded that data from another hospital
with respect to the training data is not out-of-distribution by
definition. This is important for training PVA classifiers since
this means that it is not necessary to gather data from every
individual hospital to train a robust PVA classifier.
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For future research, clustering with DTW will be exploited
even further. In this paper, classic DTW is used based on
a univariate time series; however, for future research using
multivariate dynamic time-warping would also be interesting
because this would make the alignment invariant of distur-
bances. Besides that, employment of this OOD detection in a
real-world environment is valuable for future advancements.
Besides detection of OOD, this method also shows potential
for active learning. In particular, if instances are detected
as OOD they can be stored and eventually be added to the
training set. The last potential use-case for the clustering is
in the data selection for labeling. The reduction method se-
lects the most representative data of a large set that could
be given to expert to annotate only a subset of a large data
set that contains the most informative data. Additionally, the
presented method can be applied to other applications where
classification based on time series is conducted. Lastly, a
quantitative comparison with other OOD detection methods,
such as generative models or approaches based on latent
feature distances, would be beneficial to benchmark the per-
formance of the OOD detection method presented in this
paper. However, to do this, further advances in such ap-
proaches are necessary to make them applicable to time-series
data.

APPENDIX

A. DYNAMIC TIME-WARPING

Dynamic time-warping is described as follows. The dis-
crete measured time-series signals are defined as z; :=
(zi(1),zi(2), ..., zi(W)) of length W € N and z; := (z;(1),
zj(2), ...,z;(Q)) of length Q € N. To compare the samples
zi(w), zj(q) e R for w € {1,2,...,W}and g € {1,2,...,0}
we define a local distance measure

c: R xR — Ry. 23)
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Typically, ¢(z;(w), z;(g)) is small if samples are similar to
each other, and otherwise, c(z;(w), zj(¢)) is large. In this case,
the local cost is defined as

c(zi(w), zj(q)) = llzi(w) — zj(@)ll2. (24)

Evaluating the cost for each element pair in the sequence
of z; and z;, one obtains the cost matrix C € R‘;VOXQ, de-
fined by C(w,q) := c(zi(w), z;(g)). Then the goal is to
find an alignment path based on C with minimal overall
cost.

The next definition formalizes the notion of such an align-
ment path.

Definition 1: The (W, Q)-warping path is a se-
quence 1 :=(w(l),...,w(L)) with w()=(w;, q) €
{1,2,..., W} x{1,2,...,0}forl € {1,2,..., L}, where L at
least max(W, Q), satisfying the following three conditions:

1) Boundary conditions: mw(1)=(1,1) and n(L)=

W, 0)
2) Monotonicity conditions: w; < wy <...<w; and
g1 =q2=...=qL

3) step-size condition: w4 — 1 € {(1,0), (0, 1), (1, 1)}

forl € {1,2,...,L—1}

The (W, Q)-warping path # = (w (1), ..., m(L)) defines an
alignment between two sequences z; = (z;(1), ..., zi(W)) and
zj = (zj(1), ..., z;(Q)) by assigning the element z;(w; ) to the
element z;(g;). The boundary condition enforces that the first
elements (and last elements) of both sequences are aligned
with each other. The monotonicity and step-size conditions
ensure that no samples are omitted during alignment and no
repetitions occur.

The total cost of a warping path m between z; and z; with
respect to the local distance measure c is defined as:

L

cx(zinzj) = Y c@iw), 2j(qn))).

=1

(25)

Furthermore, the optimal warping path 7* has minimal
total distance among the set of all possible warping paths A.
The DTW distance dpTw is defined as the total distance of the
optimal warping path 7*:

dD W(xiaxj): —Cn'*(Zth)
p— 1 " i B 2
—melﬂcﬂ(z, Zj) (26)

where A is the admissible set of warping paths. The DTW
distance as defined in (26) is the distance between two multi-
variate time-series signals based on the warping of a selected
univariate time series using z; := x;.

B. AGGLOMERATIVE HIERARCHICAL CLUSTERING
The algorithm of the agglomerative hierarchical clustering
method with the complete linkage method is shown below.
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Algorithm 1: Agglomerative Hierarchical Clustering
With Complete Linkage.

Inputs:

The amount of clusters K
All instances in the training set x

Output:

Clusters ¢ := {cy, ..., ck}

Initialization:

Ry={ci=xili=1,2,...,m}
t=1

whilet < m — K do

arg min o(cy, ¢g) with
¢r Cs€R—1

o(cr,¢g):= max dprw(u,v)

UEC), VECS
define ¢g := ¢, Ucy
Ry = (Ri—1 —{cr, s} Uce
t=t+1

end
Cc = Rl‘
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