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Summary 
 

In this masters project, a technical feasibility study will be performed on a floating 

thoroughfare that is able to operate in several locations and facilitate traffic under all 

circumstances.  A pilot-based road section that is coming right out of a groundwater-rich 

part of the (primary) Dutch traffic network was the basis for the computational model. The 

floating thoroughfare was modelled as a multibody system and simulations were made 

with the help of a computer program. Traffic, schematized as a series of moving, 

concentrated loads, was determined and implemented in the computational model. 

Following that, wave diffraction, as simplification of the fluid dynamics, was assessed and 

implemented. Different simulations were made in the time domain, thereby simulating the 

vertical acceleration and angle of the deck due to a single vehicle motion and the resonant 

behaviour, exhibiting by a series of vehicles.  This resulted in a properly working system, 

although some joint properties and the length of all body sections needed to be adjusted to 

meet the requirements for 120km/h. Also, the sensitivity of the system was analysed with 

a parameter study. This allows third parties to design the physical joints in the preliminary 

stage, for example. A frequency domain response analysis was performed in order to give 

insight in the accelerations at different frequencies. 
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1 Introduction 
 

Developing floating thoroughfares for all kind of purposes has become more interesting in 

the past decades. The focus of this report will be on the Dutch infrastructural traffic 

network. This sound quite unfamiliar but making (a part of) this network (able to) float, is 

interesting from a political, economical and practical point of view. Floatation will 

accomplish: 

� a rate of accessibility of surface water to dry infrastructure what fits the 

governmental future policy to ‘reclaim land for water’. 

� a sustainable solution where (ground)water and infrastructure (read: traffic net) 

meet each other; water does not ‘harm’ these structures. 

� the highest rate of flexibility when maintenance or network expansion is required. 

 

From previous research, it appeared that the smaller a floating structure becomes, the 

stronger its performance depend on the environment. To guarantee for accessibility, even 

when weather conditions become bad, it is necessary for them being placed in an 

excavation or behind a breakwater, where it is more or less unexposed to troubled water. 

 

Although many studies were performed on floating structures in general, just a single 

study was performed on floating thoroughfares in the Netherlands, what does not meet the 

necessary requirements. The floating thoroughfare that was tested – and never applied – 

was designed for traffic velocities until 80 km/h and must be able to withstand currents 

and wave attack at a specific location. A floating thoroughfare which becomes part of the 

traffic network, however, must have nothing to fear from currents and waves but the more 

from traffic.  

 

Even without waves and currents, a floating thoroughfare has a complex dynamic 

behaviour. Many structural and hydraulic factors influences the hydrodynamic behaviour, 

that have not been studied so far. Neither by real time testing nor by a proper simulation 

model. The development of a computational, analytic, simulation model as well as the 

assessment of the influence of structural and hydraulic factors on the model’s dynamic 

behaviour (sensibility analysis) is the main objective of this study. 

 
With this knowledge, the model can be used as a design tool to determine the magnitude 

of factors yet in an early stage of the design process. The model can then answer the 

questions whether or not floating thoroughfares can be suitable for a wide application. So, 

apart from the engineering problem to develop a model and to assess the importance of 

the structural factors, it has to be determined whether a floating thoroughfare can be a 

feasible solution from a theoretical point of view. 

 

It is therefore important to schematize the problem to be a base for later, when real 

objectives present themselves and more detailed assessment and model testing is 

required. 
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The structure of this report is as follows: 

 

Section 2:  A brief review will be given on historic development of floating bridges.  

Next, we attempt to categorize the newest type of floating thoroughfare  

 

Section 3: Section 3 will provide information about the pilot as pioneer for this  

project. This section end up with future possibilities for application of a  

floating thoroughfare.   

 

Section 4: The problem definition and main objective will be discussed here. An input  

/ output diagram for computation will pass the review as well 

 

Section 5: The schematization of the floating thoroughfare as a multibody system  

will be elaborated in section 5 

 

Section 6: In section 6 the model will be programmed in Matlab and eigen motions  

will be validated and checked 

 

Section 7: Traffic in its state of appearance will be discussed here 

 

Section 8: Wave diffraction will be studied and programmed for implementing in the  

   multibody system  

 

Section 9: Traffic and wave diffraction will be implemented in the multibody system,  

parameters of ‘tuning tools’ will be calculated and validated with data from  

the prototype and the joint’s configuration will be examined in this section 

 

Section 10: A frequency domain response analysis will be performed 

 

Section 11: Finally, in section 11, conclusions will be drawn and recommendations on  

further research will be given 
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2 Definition(s) and alternatives 
 

What is a floating thoroughfare? 

 

From a historical point of view, it is impossible to define an ambiguous answer to this 

question. Throughout the ages, (socio-) economical, political and industrial developments 

contributed to the multifaceted development of these type of constructions. Although 

configurations differ considerably, floating thoroughfares always arouse from the primary 

demand to satisfy the need for travelling from A to B across water.  

 

The increased pressure on the traffic network and the policy to ‘reclaim land for water’ are 

examples of real-time socio-economical and political development in the Netherlands. In 

the Dutch modern society, however, demands become more comprehensive as well; 

nowadays, not the need for transport across water but an integral and sustainable 

approach to the transport problem is normative. To this background, the following 

definition has been encountered to answer the question here: 

 

A floating thoroughfare is a road that is supported by floating bodies, instead of sand 

bodies or irremovable supports, and therefore it is able to move with the groundwater level 

and water level of a river or canal. 

 

The primary function of a modern floating thoroughfare is obviously equal to the function 

of a traditional road or ordinary bridge: ‘serving for a safe and comfort passage for traffic 

under different kinds of (climatologically) circumstances’. For appropriating a permanent 

(read: lasting) position in the Dutch infrastructure, however, it is not enough for a floating 

thoroughfare to meet the functional requirements. A floating thoroughfare must be more 

attractive or feasible than a road or bridge as well. Being attractive or feasible depend on 

how a floating thoroughfare is able to anticipate on recent and future demands and 

development.  

In the definition, a new solution (‘supported…supports’), dimension (‘move…level’) and 

application (‘in a river or canal’) is introduced for a future road. These ingredients serve as 

a basis for an attractive and feasible solution.  

 

In this section, a short review will be given on decisive development that gave the floating 

thoroughfare its multiple faces. After this, we will briefly discuss the road constructing 

methods and instantly try to categorize the latest idea of the floating thoroughfare. 

 

2.1 Highlights in historic development 

Since ancient times, people are used to travel across water differently than by boats. From 

records, it is known that the first floating bridge, as predecessor of the floating 

thoroughfare, was already invented in China in the 11th century BC. What the Chinese did, 

in fact, was making bridge sections out of two or more boats and a (wooden) deck, 

manoeuvred them into position and anchored them. From an anchored point, the bridge 

was repeatedly extended in this manner until the upper side was reached.  
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Due to this design principle, these bridges could also easily be deconstructed and, if 

section parts are not too heavy, carried, what made them very popular in wartime. Since it 

was often more feasible to construct a floating in stead of a suspension bridge, the 

primitive design of a floating bridge even lasts until early modern periods. 

 

As late as the second half of the 19th century, the design of floating bridges eventually 

developed rapidly. Due to the industrial revolution, modern materials were applied and the 

boats were replaced by barge-or-boat-like pontoons, changing the name into ‘pontoon 

bridge’. Later, in the beginning of the 20th century, pontoon bridges were constructed that 

could also carry light automotive vehicles. 

 

During the World Wars, pontoons were extensively used by both the army and the 

civilians, particularly by the Red Army, which developed fast assault pontoon bridging 

techniques to facilitate their offensive operations. Due to fast installation requirements, 

these designs were adapted to be self supporting, and therefore supporting barges or 

boats were omitted. To an almost comparable extend was the development of permanent 

pontoon bridges, looming up in sheltered areas, where it was not considered economically 

feasible to suspend a bridge between anchored piers. Unfortunately, in those days, 

research could not prevent that many of these structures had to be broken down in their 

early days or even collapsed.  

 

After the Second World War, research professionalized because of many negative 

experiences from both the military and the civilian field. Most of the time, dislodgement 

and inundation of bridges could be contended with a load limit. However, more often it 

happened that other unrecognizable phenomena dominate the behaviour of the bridge. 

When a bridge is induced to sway or oscillate due to the regular stride of a group of 

soldiers or by other types of repeated loads, it can cause hazardous situations and damage 

to the bridge as well. A lot of research was performed on these topics. 

 

In modern times, due to extensive research, pontoon bridges emerge when they are 

economically and technically more feasible than a suspension bridge even when the 

crossings are more than a mile. In the military field, these structures have repeatedly been 

optimized being now the most modern variant of the pontoon bridge, the Assault Float 

Ribbon Bridge.  

 

2.2 Categorization of modern floating thoroughfares 

From the pontoon bridge development and the nomenclature in the definition, it can be 

concluded that competition between floating thoroughfares and (fixed) bridges, analogous 

to floating bridges and fixed bridges, can be expected. However, nothing is farther from 

the truth. As a matter of fact, it is economically and practically no longer feasible to 

construct a floating thoroughfare between two opposite sides of a river or canal instead of 

a bridge, with exclusion of a few exceptions. For example, when a bridge is closed for 

maintenance and a duplicate road is necessary to fulfil the bridge’s task. It is for this 

reason that the words: ‘river’ and ‘canal’ in the definition must be read in its broadest 

perspective; i.e. as ‘spatial elements to construct on’ instead of ‘obstacles for traffic’. From 
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this perspective, the latest idea of the floating thoroughfare comes closer to a road than a 

(floating) bridge. 

 

Assigned as road, floating thoroughfares are not everywhere feasible: in the Holocene 

regions of the Netherlands, where soft soils dominate the infrastructural domain, roads 

that are going to be (re)constructed are susceptible for a floating alternative.  

Traffic –in particular- in these regions is served by the savings of construction time and low 

maintenance. Unfortunately, this involves (very) high construction costs. At the same 

time, it holds that, without taking special measures, the shorter the construction time must 

be, the larger the settlement becomes and therefore the higher the maintenance costs will 

rise, generally speaking. Due to special measures, for example, maintenance and 

settlements can be reduced while construction time can be saved as well. We distinguish 

four types of special measures (methods) by their capacity to oppose settlement (figure 

2.1): 

� Traditional method on sand (sand bodies) including preloading. The road bed 

(capping layer) is filled with sand. Preloading is required to minimize the primary 

settlement. 

� Settlement-reducing method (without preloading). The road bed is filled with EPS 

(Extruded Poly Styrene) or porous concrete. Light weight materials are used to 

reduce the settlement. 

� Settlement-forcing method. The road bed is filled with sand and inside the soft 

subsoil, the air pressure will be decreased (BeauDrain) and the groundwater level 

lowered (IFCO) to perform the soil to consolidate quicker than normal to reduce 

the settlement. 

� Settlement-free method. These constructions are diverse: self-supporting 

constructions are able to transfer loads via concrete slabs and piles to the solid 

ground. A variant is the armed soil construction for which concrete slabs are 

replaced by a road bed with geo-grids or geo-textiles as armour layer.  

 

In the ‘floating method’, preliminary roadwork will mainly include excavating and damming 

of the soft soil while the water table will be maintained. The ‘floating method’ has 

technically the most agreement with a settlement-free method, since road structures are 

‘decoupled’ from the subsidence-sensible subsoil. The fundamental difference between 

both methods is that (fluctuating) (ground) water is considered as threat for the 

settlement-free method and as construction element in the ‘floating method’.  

 

From a technical, (socio-) economical and political point of view, the ‘floating method’ is 

needed to overcome (fluctuating) (ground) water problems which will assume increasing 

seriousness. This new type of road construction method outshines all other methods in the 

field of sustainability, but - if it involves small floating elements- in the field of flexibility as 

well. Small elements can be installed rapidly, are transportable and (re)usable at other 

locations.  

 

Once a complete floating thoroughfare is installed, as part of a (primary) traffic network, it 

must meet the serviceability and safety demands associated with this traffic network. 

Unlike floating bridges, floating thoroughfares are expected to be accessible for high speed  
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traffic, even when weather conditions become bad. The technical feasibility will be 

investigated in this report. 

 

 

 
Traditional method on sand including pre-loading 

 
Settlement-reducing method (without preloading) 

 
Settlement-forcing method (IFCO) 

 
Settlement-free method (Kyoto-road) 

Figure 2.1 conventional road construction methods 
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3 Argumentation and most recent research 
Since the Second World War, many studies and tests were performed to develop floating 

bridges and thoroughfares. These studies were necessarily addressed to unrecognizable 

phenomena (sway, resonance, etc.) which caused a lot of trouble.  

Recently, in the Netherlands, research was appointed to a new phenomenon on this topic: 

induced vibrations by modern traffic. The objective of this study was to develop a new type 

of floating thoroughfare that can be applied to accomplish: ‘the transfer of vehicles from 

the traffic to the fairway network’. Unfortunately, this research was suspended because of 

too much subjectivity around the concept idea.  

 

In this section, a short review will be given on the unsuccessful prototype study and the 

possibilities for future floating thoroughfares. 

 

3.1 Why floating thoroughfares? 

The main reason to construct a floating thoroughfare is that, due to a (fluctuating) 

(ground) water level, other construction methods become insufficient or inapplicable. 

Floating thoroughfares are literally gaining ground because the (ground)water level is 

forecast to rise during decades to come and water containment is expected to present 

serious challenges. Consequently, in the vicinity of rivers, (wet) land is yet assigned as 

flooding basin and more of these political measures will follow.  

 

In the meantime, whether an unconventional construction method is feasible, depend - like 

conventional construction methods- strongly on local conditions as water table, soil 

structure, overhead clearance, etc.  

 

For conventional construction methods, calculation models are developed for comparing 

the pro’s and cons in a transparent and objective way. In these models, settings are 

calculated in proportion to construction time and construction and maintenance costs. On 

the basis of an ‘arbitrary soil configuration’ for West Netherlands, Deltares1 has studied 

outcomes of 4 available models to six conventional methods, which are illustrated in figure 

2.1. Outcomes of this study are evaluated in the table of figure 3.1 and compared with the 

traditional method on soft soils.  

 

Through the outcomes of this study, critical pro’s and cons of the floating construction 

method can be appointed and assessed without making use of the models themselves.  

 

In the utmost right column of figure 3.1, outcomes associated with the floating 

construction method are printed in bold type. Regarding the table, we may assume that 

there is agreement with self supporting construction methods and with EPS construction 

methods to a less extent. The criterion of ‘construction costs’ has profound implications 

and although ‘unknown’ in this stage, it is expected being not in favour of the floating 

construction method. This is a consequence of its innovative character as well as extensive 

demands on the performance, expressed in material and labour costs. Anyhow, costs  

 
1 refers to publication in journal Land+Water 3/2008 
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efficiency is indispensable, since self supporting construction methods are offered cost 

efficiently too. Recently, engineers have developed the Kyoto-road, in which the traditional 

road bed with concrete piles is replaced by dredged silt, a waste product, with much 

cheaper wooden piles.  

From a technical and practical point of view, spatial occupation and construction time are 

positive indicators in favour of the floating construction method; for example, a floating 

double-lane road is approximately 20 meters wide, while a traditional double-lane road, 1 

meter above the ground, is measuring less than 45 meters. Construction time is saved due 

to a superstructure that can easily be constructed out of prefabricated elements. Moreover,  

prefabrication gives a surplus value to maintenance costs and time as well.  

 

It is important to realize that outcomes are related to the traditional method and based on 

a standard configuration. This means that for site-specific situations, outcomes may vary 

and models must determine if a floating thoroughfare is feasible or not in that situation. 

 

 

 
1 water balance should not be limited, but maintained. What this maintaining will be is unknown in this stage. 

 

Construction method Criterion Indicator 

Trad

. 

IFCO BeauDrain Light 

weight 

EPS Self  

support 

floating 

Technical 

specification 

 

 

 

 

Costs 

 

 

 

Time 

 

Remaining 

 

 

 

 

 

 

Plainness, rel. setting 

Spatial occupation 

Damage to cables, 

conduit and buildings 

Damage to road  due to  

increase of capacity 

Construction costs 

Costs for limiting effect 

on water balance 

Maintenance costs 

Construction time 

Time for maintenance 

Experience 

Sensible for right 

performance 

Restriction due to 

underground infrastr. 

Sensibility for 

interference (rise water 

level, loading) 

Construction phases, 

logistics 

0 

0 

0 

 

0 

 

0 

0 

 

0 

0 

0 

0 

0 

 

0 

 

0 

 

 

0 

+ 

+ 

+ 

 

- 

 

- 

0/- 

 

+ 

+ 

+ 

0 

- 

 

0 

 

0 

 

 

 

+ 

+ 

+ 

 

- 

 

- 

0/- 

 

+ 

+ 

+ 

0 

- 

 

0 

 

0 

 

 

Location 

dependent 

+ 

+ 

+ 

 

+ 

 

- 

0 

 

+ 

+ 

+ 

0 

- 

 

- 

 

- 

 

 

 

++ 

+ 

++ 

 

++ 

 

-- 

0/- 

 

++ 

++ 

++ 

0 

-- 

 

-- 

 

-- 

 

 

 

++ 

+ 

++ 

 

++ 

 

-- 

0 

 

++ 

++ 

++ 

- 

- 

 

- 

 

-- 

 

 

 

++ 

++ 

++ 

 

NA 

 

-- 

01 

 

++ 

++ 

++ 

-- 

-- 

 

- 

 

+/++ 

 

 

 

+ = favourable, 0 = neutral, - = unfavourable 

Figure 3.1 table with score of diverse construction methods relative to traditional method 
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3.2 Unsuccessful prototype study 

Expectations ran high in advance of the first study on floating thoroughfares in the 

Netherlands. Research should determine whether long-term infrastructural bottle-necks 

can be addressed through these structures. To increase the chance of success, it was the 

idea to create support as broad as possible. Therefore, this study was performed in 

cooperation of trade and industry, social organisations and knowledge institutes, under the 

auspices of the Dutch Directorate General for Public Works and Water management (RWS).  

 

The main infrastructural bottle-neck is the inflexibility of the nearly overcrowded traffic 

(and railway) network, that is actually getting worse. Because the third network, the 

fairway network, is just partially crowded by ships and vessels, the idea arose to pursue 

for uniformity amongst all three networks. The ‘transfer’ of vehicles from the traffic net to 

the fairway net was considered as the key to the inflexibility problem, in a short and long 

term.  

 

A new pilot was launched as part of the innovation programme ‘Wegen naar de Toekomst’ 

(roads to the future) in order to examine the feasibility of the vehicle transfer (figure 3.2).  

 

Theoretical research concentrated on testing and monitoring of a prototype. A single-lane 

prototype was located in a river and subjected to a vehicle that crossed the structure with 

30, 50 and 80 km/h. A short description and some important characteristics of this 

prototype can be found in Appendix I. The prototype passed the tests, but despite this 

success, developers did not manage to find a suitable location, designation or application. 

The following has been given as reason for this: 

� Tests were addressed to small. Technically, the potential for testing is limited by 

the small size of the structure. Speeds were limited to 80 km/h and extensive tests 

with several vehicles on the road were not included. Moreover, site-specific testing 

was chosen over in situ testing so the link with reality essentially did not exist. 

� The design was too exuberant. Based on ideas of trade and industry, a consortium1 

developed a aluminium prototype with intelligent links between the pontoons. 

Principles as standardisation, little maintenance, recyclable, transportability and 

prefabrication were held in the design, what made the prototype less suitable as 

permanent solution. Due to transportability, the pontoons can be carried by lorries, 

however, their limited size excludes the lorries of making use of this passage. 

Furthermore, in this temporary performance, it is way too expensive for 

application. (€5.6 million for 70 meters of thoroughfare!) 

 

Both arguments have their origin in one and the same argument: the idea would have 

remained subjective. This is because to much freedom was included in the pilot while 

basically no real objectives were formulated. There was also the case that, because of the 

broad support, the pilot would be ‘adversely’ affected. “People would feel nothing for an 

innovation in this form”. This was later (in 2004) confirmed in a development project 

(‘Doorwerking Drijvende Weg’) and for this reason the research was temporally suspended. 

 

 
1 Bayard Aluminium Constructies, DHV Milieu en Infrastructuur, TNO – Bouw and XX-architecten formed the 
consortium, named: ‘De Bouwsteen Combinatie’ 
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3.3 Possible applications in the near future 

As a result of increasing urbanization and industry, in the coming years, there will be more 

traffic in the Netherlands. A growth of 20%1, compared to the level of 2000, is forecast for 

the next decade to come, what is comparable to the growth in past decade. Direct 

consequences of this growth will be that travel times are ‘uncertain’ and delays will 

increase enormously. In 2020, 13% of all vehicular movements over 50 kilometres is 

maximum 20% longer or shorter than expected and at shorter distances 10 minutes longer 

or shorter than expected. In 2000 this was just 8%. On the primary traffic network, delays 

in 2020 will be almost twice as long as in 2000 and for the Randstad2, where most of the 

trips are smaller than 30 kilometres, it can rise even harder. 

Traffic jams have direct financial consequences for businesses. The social costs of 

congestion amount to € 1.7 billion in 2020. This concerns the costs of direct travel time 

loss, valued to travel motives. These costs are further rising by the unreliability of travel 

time and fallback behaviour to avoid congestion.  

 

The negative scenarios here underlie the Dutch national traffic and transport policy, which 

is currently in force3. The traffic and transport policy, documented in the traffic and 

transportation plan ‘Nota Mobiliteit 2004’ (Note Mobility 2004), is aiming for ‘reliable’ and 

‘acceptable’ travel times all over the (primary) traffic network. As a consequence of this, 

the economic losses reduces but even more important: the economic centres in the 

infrastructure are made internationally competitive what is necessary to consolidate the 

economic position of the Netherlands. The ambition of the policy makers (government 

represented by the ministry for transport) is that ‘reliability’ increases to 95% 

(‘uncertainty’ reduces to 5%) and that qualities about ‘acceptability’ (in terms of delay) are 

fulfilled. The latter demand is for (ring)roads in urban less stringent as for highways. 

 
1 all values are likely to be adjusted in relation to the economic crisis of 2008-2009. 
2 the rim-shaped agglomeration of cities in the western part of the Netherlands   
3 the Note goes through the process of a planning key-decision (pkb) in accordance to the Law on Spatial Planning 
(WRO) and has a duration of 15 years. 

 
Figure 3.2 targets in the study for a floating thoroughfare 

Innovation programme: 
Wegen naar de Toekomst (WnT) 

(roads to the future) 

Pilot: 
De Nieuwe Waterweg 
(the new waterway) 

Prototype: 
‘De Bouwsteen over water’ 

(the building stone across water) 

Target: 
Develop long-term solutions  

(until 2030) for traffic network 

Target: 
Examine feasibility of vehicle transfer 

 with floating thoroughfares 

Target: 
Testing and monitoring  

of a prototype 
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The quality drawn up in the Note is: 

� An average travel time during rush hours is maximum 1.5 times longer than an 

average travel time during other daily hours on a highway. 

� An average travel time during rush hours is maximum 2 times longer than an 

average travel time during other daily hours on a (ring)road in an urban 

environment.  

 

The question is how to live up to the ambition? The Note proposes packages of measures 

that can be distinguished by ‘mobility-enhancing’ measures and ‘mobility abatement 

strategies’, which often prove to be innovative.  

 

The main asset in the hands of the government concerning ‘mobility abatement strategies’ 

is undoubtedly price policy. Or in other words: a charge per kilometre. The Dutch central 

planning office (CPB) bases calculations on two different forms of price policy: a uniform 

charge per kilometre1 and a place and time dependent charge2. These charges have 

distinct effects on ‘reliability’, ’vehicle-loss-hours’ (as a measure of delay) and other 

scenarios as road safety and emissions but are –except for safety- much more effective 

with respect to the present-day fixed taxes policy anyway. Calculations show that 95% 

more ‘vehicle-loss-hours’ can be expected in 2020 when policy remain unchanged. The 

change-over to a uniform charge per kilometre yield a 30% reduction while the change-

over to a place and time dependent charge yield an 80% reduction. Due to heavier charges 

during rush hours, the place and time dependent charge is very effective in controlling 

‘vehicle-loss-hours’ since people are discouraged from driving in places where most 

‘vehicle-loss-hours’ are obtained. Price policy has a similar effect on ‘reliability’; positive, 

and a place and time dependent charge turns out to be more effective than a uniform 

charge, 90% compared to 88%. However, the fact that calculated levels are still below the 

quality levels, confirms that price policy alone is not enough to fulfil the ambition here.  

 

According to the Note, it may even be assumed that all ‘mobility abatement strategies’ 

together, i.e. the most efficient transport streams within the infrastructure with the 

possibilities of today, are insufficient to fulfil the ambition here.  

 

The focus in the Note lies on ‘mobility-enhancement’, i.e. enhancement and further 

expansion of the (primary) traffic network. With ‘enhancement’ is primarily intended: 

(further) ‘use’. Examples are ramp metering, ramp and/or exit closure, improvement of 

connections in the secondary traffic network or separation of traffic streaming. Utilization 

measures are preferred because of their relative ease and inexpensiveness. With the 

advantage on road safety and emissions, traffic management measures, such as a 

dynamic overtaking ban for lorries and speed adjustments, are favourable as well. 

Unfortunately, utilization and traffic management measures have restrictions and in many 

cases the quality level is not achieved or sometimes the quality is even getting worse. 

When the traffic net capacity is already at its limits, the chance on losing quality is the 

greatest. Applying an integral approach to bottle-necks must prevent that a problem shift 

 
1 use is made of turning  €2.5 billion in fixed car tax to a used-based charge. 
2 use is made of a charge to place and time with a concomitant reduction of fixed car tax by approximately € 700 
million per year. 
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occurs, what is quite common in these situations. With bottle-necks is meant: locations 

where quality levels are not achieved. Figure 3.3 shows the bottle-necks to be solved in 

order to satisfy the drawn up quantities. Due to the currently inflexible and overcrowded 

state of the primary (and secondary) traffic network, it often becomes too complicated to 

solve bottle-necks through utilization alone, what leaves no other alternative than 

 

 
Figure 3.3 bottle-neck locations (black)  in the Netherlands  
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expansion or construction. The Note recommends road widening stronger than 

constructing new roads. Only parallel to the most intensively used roads, new roads are 

planned. These will make the traffic network less sensible for interference so that travel 

times less ‘uncertain’ than before. In a few cases, however, will be invested in alternatives 

to road widening, for example on (ring)roads in an urban area where physical space can be 

scarce.  

 

One disadvantage of more asphalt is more maintenance. In the period 2011-2020, an 

amount of approximately €900 million per year will be spend on maintenance only. Since 

the government intends to clear off outstanding maintenance as well, the total costs can 

rise over a billion euros per year. Extra maintenance result in extra costs but is also 

detrimental to road or network accessibility. Nowadays, 5% of all vehicle delays is caused 

by maintenance activity. Expressed in ‘vehicle-delay-hours’ this becomes: 3.3 million1! 

Therefore, the aim is to diminish traffic hindrance on the one side and keeping the total 

maintenance costs over the reference period (lifecycle costs) as low as possible on the 

other side.  

 

Implementing these measures will cost the Dutch government big money; € 21.5 billion, 

which is far beyond the governmental budget. To reduce the expenses, construction will be 

attached to a price policy, so that € 7 billion flows back via charges. Priority is also given to 

main routes which are most interesting from an economical point of view. Since the routes 

include three highways, the A2, A4 and A12, they are known as the ‘triple-A’-routes. 

Figure 3.4 shows the ‘triple-A’-routes, which are largely located in the Randstad. 

 

 
1 updated data from RWS, until June 2009. Vehicle-loss-hours on primary network = 65.9 million hours 

 

Route Characteristic feature 

A2 Highest rate of employment congestion from international business services (Amsterdam) and ‘high-

tech’ industry (Eindhoven) 

A4 The international route (together with A16) relevant to connect Schiphol Airport (with trading industry 

around Amsterdam) with the main ports in the Rhine-Schelde delta (Rotterdam and Antwerp) 

A12 Forms a stable connection (together with A15) between Randstad and Utrecht, Utrecht and the KAN-

region and the KAN-region with the Rühr-region in Germany.  
Figure 3.4 ‘triple-A’ routes  
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Reducing expenses whilst  satisfying ambitions is achievable by the package: construction-

utilization-pricing. The CPB accordingly calculates a reduction in delays of 15% 

(construction-utilization-uniform charge) over and 35% (construction-utilization-time and 

space dependent charge) below the reference level! Whether or not qualities about 

average travel times are met, must still be examined locally. For critical bottle-neck 

locations, on ring roads around Utrecht, Rotterdam and Eindhoven, calculations are 

optimistic: 9, 18 and 14 minutes, respectively, where 9,18 and 24 minutes (2 times 

longer) is the limit. The ‘reliability’ of travel times is guaranteed by 96% in case of 

construction-utilization-time and space dependent charge. (94% in case of construction-

utilization-uniform charge). 

 

In figure 3.5, the reservation of new routes is designated by dashed lines. Most of them 

are inside the ‘triple-A’ zone, due to the priority status. For most routes, the planning 

studies already commenced, just a few are still on hold. 

 

 

Planning studies are designed for searching an optimal solution, through collecting and 

assessing (with models of section 3.1) of several solutions, when situations are complex. A 

decisive factor in the assessment of new road sections in the Western part of the 

Netherlands is the permanent existence of high water tables. Experience shows that 

(large-scale) groundwater reduction can have disastrous consequences for agriculture 

since salinity can occur. Because salinity is common in coastal areas, precaution is needed 

when building (sections of) the A4, A5, the N11-extension and the A13-A16 connection to 

avoid damaging the environment.  

 

Route Feature Status of study in 2010 

A4 Hoogvliet - Klaaswaal Completion of A4 Not started 

A4 Delft - Schiedam Parallel connection for A13 Started 

A4 Dinteloord – Bergen op Zoom Completion of A4 Started 

A5 2nd Coentunnel – westrandweg (Ring)road A10 discharge Started 

A6 – A9 Road extension Started 

A13 – A16 Road extension Started 

N11 – A44 Road extension Not Started  
Figure 3.5 new routes and potential places for road widening inside the ‘triple-A’ zone  
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Often, the problem is solved with return drainage, in which drained water will be pumped 

into the ground again, but at a respectable distance from the source. However, when the 

water balance continues to pass salt, the question must be asked again whether drainage 

is still desirable. 

 

In figure 3.5, roads that are suitable for widening – in and around the ‘triple-A’- are 

highlighted in blue. Usually, roads are suitable for widening from an economical and 

technical point of view, but sometimes, they are not, what gives rise to the start of a 

planning study. An example is the planning study for a highway on stilts on the route A27 

Utrecht-Breda as an alternative to an extra wide highway. Assessment factors were the 

lack of overhead space and poor soil conditions on site. Within the triple-A zone, there are 

several routes for which space and soil factors play a decisive role; (ring) roads around the 

city of Rotterdam and sections of the A4, A12 and A13 highways, for example.  

A so-called ‘high option’ is actually a little attractive option because it is very expensive 

and it ruins the landscape. It is therefore important to first explore all  ‘possibilities’ aimed 

at maximum utilization of overhead space.  

 

Which type of construction (method) will be applied is generally determined by 

construction and maintenance costs. However, due to a growing impact of roadwork on 

traffic, in the nearby future, a lower construction time or maintenance period becomes 

even more important than costs! A result is a shift in the way of tender. The contractor - 

instead of the government - is managing the road or road section and time overrun or 

profits will be punished or rewarded by the government. Consequently, in road 

construction, the emphasis is placed on the lifecycle rather than on which material, method 

or type of construction will be applied. 

 

3.4 Conclusions 

Theoretical research on developing a new kind of floating thoroughfare for the Netherlands 

was recently suspended because practical research on application of this structure became 

disappointing. During the research program, an insuperable gap between theory and 

practice was inadvertently created. This resulted in a thoroughfare that proved to be 

suitable for the river location in stead of feasible for contending long-term bottle-necks on 

the Dutch (primary) traffic network. 

 

From subsection 3.3, it can be concluded that, on the short term, a reopening of the 

practical research seems to be out of the question. There is no urgency since all bottle-

necks have theoretically proven to be solvable through a combination of constructing-

utilization-pricing, thus without technical innovation on road construction. However, we 

deliberately write ‘seems’ because the responsibility for development of technical 

innovations is passed more and more on to business and industry. Business and industry is 

eager for (sustainable) innovation especially when short-term gains can be achieved. The 

sector takes the lead in developing innovations when it becomes convinced about, for 

example, the fall of the annual €1.7 bilion of social costs by congestion and the creation of 

new jobs. As soon as business and industry acknowledges the benefits of a floating 
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thoroughfare, the application of these structures will probably not wait very long and 

research can be reopend. 
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4 Problem definition and objectives 

 

A floating thoroughfare is a technically feasible structure. 

 

This is a true but narrow statement. Basically, this is true for one specific location where 

the structure was subjected to the motion of a single test vehicle. So, if this structure is 

also feasible outside the location, when vehicle tests are intensified and extended to more 

realistic situations, is still unknown.  

 

Model tests must prove that floating thoroughfares can be feasible for a wider application 

from a technical point of view. An ‘arbitrarily’ chosen road section in the Dutch (primary) 

traffic network, were poor soil and groundwater dominate the area, represents the decisive 

situation for the case. The problems that have to be solved and the objectives in this 

investigation are discussed in this section. The steps to be taken in the calculation process 

will be illustrated by a flow diagram at the end of this section. 

 

If a floating thoroughfare is feasible within a broader context, i.e. when it is subjected to 

extensive vehicle movements outside the location, cannot be established on the basis of 

the test results. 

 

4.1 Problem definition 

In the pilot, the prototype was designed for traffic velocities until 80 km/h and it must be 

able to withstand currents and wave attack at that specific location. Unlike the prototype, a 

floating thoroughfare which becomes part of the Dutch (primairy) traffic network will not 

be exposed to currents and waves. However, it will have just more to fear of traffic.  

 

The main problem of this thesis is how to realize (model) a floating thoroughfare that is 

able to facilitate as a safe and comfortable passage for traffic. 

 

4.2 Objectives 

A floating thoroughfare has to be developed that is capable of carrying traffic (single and 

multiple vehicle(s) with max. velocity: 120 km/h) to such a level that it can become a 

feasible alternative for a conventional road. Floating thoroughfares have a quite complex 

dynamic behaviour, even if currents and waves are not involved. Many structural and 

hydraulic factors influence the (hydro)dynamic behaviour, however, no study had been 

performed on these factors within the scope of floating thoroughfares. Neither by testing 

nor by a proper simulation model. With this knowledge, a model can be created to 

determine the magnitude of these factors at various traffic conditions. The model can be 

used as design tool to construct a preliminary, theoretical design yet in an early stage of 

the design process. The main objective of this thesis is therefore twofold: 

- to develop a computational, analytic, model of a floating thoroughfare as well as to 

assess the influence of structural and hydraulic factors on the dynamic behaviour 

(sensitivity analysis). 
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- to use the model to prove that a floating thoroughfare is feasible in many 

applications from a technical point of view.  

 

It is crucial to realize the importance of a pilot as a pioneer when creating a model. Under 

specified circumstances, it can be applied as verification tool, but most important, it can be 

used as prediction tool as well. For example, some realistic, decisive traffic conditions can 

be predefined from the pilot what reduces the number of (computational) tests for the 

model significantly.  

 

4.3 Input - / output model 

For the following sections, an input- / output model is used for the objectives for the 

previous subsection to prove to come up to expectations.  

 

The floating thoroughfare will be simulated numerically in Matlab and modelled as a rigid 

multibody system. For the calculations, the ODE23s solver, as presented in section 6, will 

be applied. ODE means: Ordinary Differential Equation. 

 

The output of the model consists of rotations and displacements of all pontoon sections 

(bodies) that are involved. Since boundary conditions are denoted as accelerations, 

displacements will be differentiated twice in time. 

 

The input of the model is divided into structural and hydrodynamic parameters. Structural 

parameters are discussed in section 5 and, initially, the parameters hold in the pilot will be 

reference parameters for the sensitivity analysis. Hydrodynamic parameters are calculated 

from an external, wave diffraction model, to optimize the hydrodynamic behaviour in the 

model.  

 

After inserting the rigid multibody system in the ODE23s solver, the eigenmotion will be 

validated and correctness of all input will be checked by decoupling of the system. Then 

traffic in its proposed state of appearance will be implemented as well as the 

hydrodynamic parameters. The forced vibrations will be calculated  
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Figure 4.1 schematization input- / output 

Structural parameters (section 5) 
 

- Number of pontoons; (body elements) 
- Length; (first, second, field element) 
- Width; 
- Height; 
- Mass; 
- Joint stiffness; (end joint, intermediate joints) 
- Joint damping; (end joint, intermediate joints) 

 

Rigid multibody system (section 5) 
� � �My Cy Ky 0�� �  

Traffic as  
excitation force 

(section 7)  
 

- Single vehicle; 
- Multiple vehicle; 

Hydrodynamic parameters  
(section 8) 

 
- Added mass; 
- Hydrodynamic distributed 

stiffness;  
- Hydrodynamic distributed 

damping; 
 

Wave diffraction  
(section 8) 

 
- Number of waves involved; 
- Depth;  
- Wave frequency; 

 

Check and input  
ODE system  
(section 6) 

 

Rigid multibody system (section 9) 
� �t� � �My Cy Ky F�� �  

Displacement, rotation y 
vertical / rotational 

 acceleration y��   

 

Frequency  
response  
analysis  

(section 10) 
 

Requirements  
of safety and 
serviceability  
(section 9) 

 

input 

output 
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5 Schematization of the floating thoroughfare 

 
For modelling, a proper translation of the floating thoroughfare’s mechanism is essential. 

The mechanism can be schematized with masses, springs and dampers, which is obviously 

an idealization.  

In this section, the mass, stiffness and damping matrices are determined after clearing up 

the proposed idealization. 

 

5.1 Idealization 

 

Each pontoon is rectangular and box-shaped and does not bend. Bending of a pontoon is 

negligible with respect to internal displacements in the joints.  

 

The floating thoroughfare will be modelled as a rigid multibody system with N bodies. The 

interconnected bodies facilitate a two degrees of freedom motion (vertical and rotational) 

per body, except for the end or closing bodies which will perform only the rotational 

motion. Figure 5.1 shows the schematization of the system. 

 

No horizontal motion is assumed to occur in the multibody system. The hinges govern only 

vertical support to the floating highway what is in good agreement with the real situation. 

5.2 Mass moment of inertia and mass of body 

The bodies are rectangular shaped. Body height and width are constant in time and in 

space and the mass centre coincide the geometric centre. The applied simplifications are 

only justified for modelling purposes.  

 

The mass of an single body can be calculated from: 

 

0m hBL��           (5.1) 

 

Where: 

0� : body density; 3
0 102.5 /kg m� �  

L : body Length; 3.5L m� 1  

h : height of body; 1.6h m�  

B : width of body; 5.4B m�  

 

 
1  For the present being equal for all bodies, but becomes adaptable for 1,NL  if necessary in section 6 and 7.  

 
Figure 5.1 schematization of multibody system 
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This leads to a mass of 3100 kg. Since the axes of rotation of closing and intermediate 

bodies have different positions their mass moments of inertia about these axes will be 

unequal. Taking the origins of the body reference to the mass centre of the body, the 

inertial moments becomes:  

 

� �

� � � �

21, 1, 1, 2 2
0

2 2 2
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1
4 13317.0

12

1
3825.4 2 1

12

N N N

i i i

J hBL L h kgm

J hBL L h kgm for i i N

�

�

� �
� � �� �

� �
� �

� � � � � �� �
� �

   (5.2) 

 

In which: 

N : total number of bodies; 20N � 1 

i : body number  

 

The applied formulas are elaborated in Appendix III.  

 

5.3 Mass Matrix    

The mass matrix of the total system is diagonal. This is the result of decoupling mass and 

inertia by shifting the origins of the body references to the mass centre of each body. The 

mass matrix M  has the form: 
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M

� � �

� � �

    (5.3) 

 

Since the vertical degree of freedom is omitted, the mass of the closing bodies is zero in 

the matrix, so analogous to equation 5.2 we write: 

 

 � �
1,

0

0

3100 2 1

N

i i

m

m hBL kg for i i N�

�

� � � � �
     (5.4) 

 

5.4 Body stiffness matrix: first, second and field body 

In principle, two physical elements contribute to the stiffness properties of the system:  

� Joint elements 

� Fluid foundation 

 

 
1  20N  is the prototype number, in  section 6 and 10, the value can differ from 20.  
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How the design of joints for the new type of floating thoroughfare will look like, is unknown 

in this stage of the investigation. Basically, the calculated joint stiffness is the basis for the 

preliminary design. Assuming that joints will react ‘stiff’ in the vertical direction and that 

an infinitesimally small internal displacement is allowed, the joint elements can be 

modelled in its mechanically simplest form, i.e. as vertical linear spring elements (figure 

5.1). We assume further that, as a matter of refinement, manipulation of two joints -

between the closing and intermediate bodies- can be done independently from all others. 

The reason for this is twofold: firstly, we expect them to behave differently with respect to 

the neighbouring ones while a more equivalent behaviour is desirable and secondly, one of 

the two topics of interest in this thesis concerns entering the system by vehicles so this 

measure creates also a more effective and easier way to manipulate the dynamic 

behaviour of the floating structure.  

 

Concerning the fluid foundation, initially, Archimedes Law, as a rough approximation will 

provide stiffness parameters for buoyancy. In case of vertical equilibrium we will find with 

a fluid density of 31000kg m� � and a gravitational acceleration of 29.81g m s� :  

 
1

, 52974d w dk k gB N m m�� � �        (5.5) 

 

Where a couple of equally distributed springs experiences the buoyancy phenomenon. 

Subscript d  and w  indicate that stiffness is distributed and initiated in the w-direction. 

‘Averaged’ expressions can be found for the angular motion as shown in figure 5.2. Similar 

substitution leads to: 

 

� � � �

� � � � � �

2 21, 1, 1, 1
,

2 2 1
,

1 1
216311

3 3
1 1

54078 2 1
12 12

N N N
d d

i i i
d d

k gB L k L Nm rad m

k gB L k L Nm rad m for i i N

�

�

�

�

� � �
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(5.6)

 
 

In section 8, another interpretation will be introduced, making also use of the damping 

capacity of the fluid; the wave diffraction approximation. Therefore, we explicitly denote 

buoyancy approximation or wave diffraction approximation if an indistinct situation will be 

announced.  
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Figure 5.2 stiffness parameters for buoyancy 
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5.4.1 Derivation of body stiffness matrices 

The derivation of the body stiffness matrices can be found in Appendix II. The matrices are 

subtracted from the force vector iF  and the displacement 

vector y : 

 

1
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� �� �

i iF K y     (5.7) 

 

The following non-zero integers are determined for the first body, � �1i � : 
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3
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i i
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i i i
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       (5.8) 

 

2,4k  has the same expression as in equation 5.8 , 2,5k as well as 2,6k  are zero now but 2,1k  

and 2,2k  are non zero for the last body � �i N� . They read:  

 
 1

2,1 2,2, 2i i i
cl clk k L k k L L�� � � �        (5.9) 

 
The second body with� �2i �  gives: 
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    (5.10) 

 

Where for the last but one body differs from the second by: 
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       (5.11) 

 

At last, the field bodies � �3 2i i N� � �  denote: 
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     (5.12) 

 

In the functions 5.8-12, clk and intk  are joint stiffness parameters associated with the 

location of that specific joint. The stiffness matrix of the total system can be assembled 

with the body stiffness matrices as we subsequently superpose the decoupled motions to 

one vector. With the use of Matlab, it is an easy task to assemble a large system, see 

Appendix V.2. 

 

5.5 Body damping matrix: first, second and field body 

It is not clear now if energy by traffic induced motion need to be absorbed in order to 

satisfy safety and serviceability demands. Nevertheless, we expect  the joint elements be 

able to dissipate energy if necessary so the element is equipped with a (vertical) dashpot, 

see figure 5.1. Concerning the fluid foundation, the wave diffraction approximation will 

simulate the effect of pushing aside fluid (water) beneath the structure during a downward 

motion. Equally distributed dashpots will exhibit the estimated physical behaviour. 

 

5.5.1 Derivation of body damping matrices 

The derivation of the body damping- and stiffness matrices has been done simultaneously 

in Appendix II.  Because proportional damping ( to only K ) will be obtained equation 5.8 

transforms into: 
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    (5.13) 

 

In which iC  is related to the time derivative of the displacement vector y  (viscous 

damping). In practice, iC can be constructed out of  iK  by simply replacing all  k ’s  by c ’s  

(in equation 5.8-12). 
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6 Numerical simulation with Matlab 

 

In continuation of the previous section, the rigid multibody system will be analysed by a 

numerical integration method for solving the initial value problems. Numerical integration 

will be preferred instead of analytical solutions with eigenvalue problems, because the 

number of degrees of freedom can be large. Once the programming ended, the system’s 

eigenvalues need to be validated and checked on input errors, for example. 

 

6.1 Numerical solver 

The equation of motion can be written as: 

 
 � �t� � �My Cy Ky F�� �          (6.1) 

   

Where M ,C  and K  are 2 2N �  -by- 2 2N �  matrices and y  and F  are 1 –by- 2 2N �  

vectors. Like many other computing devices, Matlab’s ODE solvers deal with a 

discretisation methods for first order ordinary differential equations (ODE’s) and cannot 

(directly) cope with higher order ODE’s. A variable transformation will tackle that problem: 

With a state space formulation as result, equality 2 1�y y� is substituted into equation 6.1: 

 

� �
2 1

2 2 1 t

�

� � �

y y

My Cy Ky F

�

�
        (6.2) 

 

Or in matrix notation: 

 

� �
11

22 t
� �� �� � � �� �

� � � �� �� � � �� �
� �� �� � � �� � � �

2N-2 2N-2 2N-2 2N-2

2N-2

0I 0 yy 0 I
F0 M yy -K -C

�

�
     (6.3) 

 

Where: 

2N-20 :  2 2N �  -by- 2 2N �  null matrices 

2N-2I :  2 2N �  -by- 2 2N �  identity matrix 

Since the mass matrix is a constant matrix, we are forced to use the ODE 23s solver for 

this problem. In general, the ODE 23s solver solves all ODE’s in the form: 

 
� �,y f t y�M �           (6.4) 

 

Where: 
M :  explicit, constant mass matrix.  

y� :  general velocity coordinate or vector. 

� �,f y t : right hand side of the ODE, dependent of y and t (not necessary). 

 

with the initial value: 

 
 � �0 0y t y�           (6.5) 
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The ODE 23s solver is based on a modified Rosenbrock formula1 of order 2 and is a so 

called one step solver. This implies that for every time step the state will be recalculated. 

Besides this, the solver allows us to insert tolerance criteria (or relative tolerance of 
310� and absolute tolerance of 610�  by default) in order to prevent unstable and divergent 

computation. If the first calculation step does not satisfy the tolerance criteria, a next will 

follow with a smaller step size. The solver provides on the one hand output in the form of a 

mixed velocity/displacement vector of size 2 2N �  while on the other hand the argument  

 
� � � ��t,y ode23s odefun,tspan,y0,options ;     (6.6) 

 

Where: 

� �t,y  :  solution matrix y  where each row corresponds to a time  

returned in the column vector t  . 

odefun :  function that evaluates the right side of the ODE. 

tspan :  vector specifying the interval of integration  

y0 :   vector of initial conditions. 

options:  optional integration argument using the odeset-function 

 

need to be specified as input. Examples can be looked up in Appendix V.3. 

 

6.2 Validation of dynamic behaviour; spreading of frequencies   

In this subsection, the dynamic behaviour will be examined by imposing an initial 

displacement of say 0.1 m to the system after it was decoupled by its different (visco-) 

elastic elements; a model with exclusive spring-dashpot elements between the bodies and 

a model in which hinges perform the connection between the bodies as they are subjected 

to an elastic foundation. Both models will provide insight in the nature (magnitude and 

spreading) of the principal or natural frequencies of the multibody system which we want 

to investigate. We expect the system with elastic foundation to vibrate in the lower modes, 

whereas the other system vibrates in the higher ones. Decoupling, however, is permitted 

as long as the system is linear. The superposition principle holds so that back around, 

enumeration lead to natural frequencies of the total, uncoupled system, as schematized in 

figure 6.1. In general, validation is justified as long as the displacements are small. 

 

Figure 6.1 schematization of superimposed system 

 

 

 

 

 
1  we implicitly allow the state –space system to reduce to a Rosenbrock system for discretization. This is a method 
to deal with singular matrices. 
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6.2.1 Decoupled system 

The schematization of both systems is shown in figure 6.2 and the homogeneous equations 

can be denoted as: 

 
 � � �My Cy Ky 0�� �          (6.7)  

 

Figure 6.2 schematization of decoupled system 

 

Because the damping is arbitrary (not proportional) the well known method for the Modal 

analysis [2] does not provide an uncoupled system. A more general procedure must be 

used. Equation 6.7 can be reformulated in a space state formulation, therefore a new 

variable must be introduced: 
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� �

y
y

y

�
�           (6.8) 

 

Substitution of equation 6.8 into equation 6.7 gives: 

 
-� �� � � �
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M 00 M 0
y y

0 KM C 0
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This can be summarized as: 

 

 � �My Ky 0�� �� �           (6.10) 

 

Where 
� �

� � �
� �

2N-20 M
M

M C
� and 

-� �
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� �

2N-2

2N-2

M 0
K

0 K
� . With  as the complex-conjugate eigenvalue 

matrix of -1M K� �  and E  is the corresponding eigenvector equation 6.10 can be transformed 

by its orthogonality property into: 

 
� �� � � �� � � � �T T T TE My E Ky E MEy E KEy M y K y = 0� � �� � � � � �� � � � � �     (6.11) 
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This is a fully decoupled differential equation. By multiplying the left hand side of this 

equation with � �-1
*M� and with the help of relation � � �

-1
* *M K� �  we find: 

 

 � �� �y y 0�� �           (6.12) 

 

Where  is a diagonal matrix with � �1 4 4n for n n N� � � �  on the main diagonal. 

Substitution of equation 6.8 (with ��y Ey� �  from equation 6.11) into 6.12 leads to: 

 

 � �0 1 4 4n n ny y for n n N�� � � � ��       (6.13) 

 
since 0ny � . Because we are only interested in displacements, the general coordinates 

must be replaced by a displacement variable. Because 
T

n n ny w �� � �� � (see equation II.2) 

equation 6.13 changes into: 

 

 � �0 1 2 4n n nw w for n n N�� � � � ��       (6.14) 

 

in which n  is halved minus two, since � �0 1,
T

n ny for n N�� � �� �  

With � � �
-1

* *M K  Matlab can determine 0,n�  as has been done in Appendix V.2. As an 

example we set the boundary condition at 0.1n nm� �  and the number of bodies 5N �  in 

order to govern clear graphs for both cases. The (real part of the) homogeneous solution 

becomes: 

 

 � � � � � � � �0,Re

0,cos Im 1 2 4n t

n n nw t e t for n n N
�

�
� �� � � � �� � � � �� �    (6.15) 

 

Where: 
0.1n nm� �  

5N �  

 

Let us focus on the model with hinged bodies on the elastic foundation first. The following 

natural frequencies are calculated by Matlab:  

 

0,1 0,3 0,5 0 7.734i� � �� � � �  

 

The even numbered frequencies, 0,2� , 0,4�
 

and 0,6�  are the complex conjugates of 

respectively 0,1� , 0,3�
 
and 0,5� . As can be seen in equation 6.15,  the real and imaginary 

values of the natural frequencies govern respectively the damping and oscillating motion in 

the system. The system will vibrate in 3 vertical modes that do not damp out. The modes 

should oscillate in the same frequency, the so called cut-off frequency. The formula for the 

cut-off frequency reads [2]: 

 

 0
0

dk
A

�
�

�           (6.16) 

 
With 3

0 102.5kg m� � , 28.64A m� and 152974dk N m m� , the natural frequency equals: 
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 0 7.734 /rad s� �          (6.17) 

 

what validates the hinged multibody system with an elastic foundation. Figure 6.3 shows 

the response of the system in time.  

 

 
Figure 6.3 response of hinged bodies on an elastic foundation to an initial displacement of 0.1m 

 

The second model with exclusive spring-dashpot elements between the bodies moves with 

the following natural frequencies: 
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where we keep the joint stiffness values proportional to the buoyancy stiffness value, 
4

/ int 6 *10clk N m� , and the joint damping at 1% of this value. As previously denoted, 

0,2� , 0,4�
 

and 0,6�  are the complex conjugates of respectively 0,1� , 0,3�
 

and 0,5� . As 

previously assumed, the (non-zero) natural frequencies found here are slightly higher than 

the fundamental natural frequencies due to the elastic foundation, see equation 6.15. 

Subsequently, if we also focus on the real values of the natural frequencies, we see (in a 

broader spectrum than shown here) that the damping capacity increases as the system 

oscillates quicker. As a matter of fact, the configuration of the joints in particular will be 

quite important for controlling the forced vibrations exerted by (high speed) traffic load. 

The single natural frequency, 0,5� , with close-to-zero values causes a motion that is 

around a non-zero mean, just like a chain that experiences no support in the middle. This 

in contrast to the hinged multibody system with elastic foundation that is perfectly 

balanced at this point. Figure 6.4 shows the response of the system in time. 
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6.2.2 Superimposed system 

With superposition of the decoupled systems the superimposed system as depicted in 

figure 6.5 will obviously return. 

 

Figure 6.5 schematization of superimposed system 

 

The following natural frequencies are associated with the superimposed system: 

 0,1

0,3

4
0,5

0.720 14.004

0.422 11.969

6.802*10 7.430

i

i

i

�

�

� �

� �

� �

� �

 

 

The (squared) frequencies must be equal to the (quadratic) sum of the frequencies of both 

decoupled systems, according to the superposition principle. This is approximately true; 

the superimposed system vibrates in three vertical modes from which the undamped third 

mode is quite similar to the modes from the hinged model with elastic foundation. The first 

and second modes, however, resemble the damped modes from the model with spring-

dashpot elements better, but the oscillation is larger due to the foundation. In the 

response of the superimposed system, in figure 6.6, these findings can be observed as 

well; in the first five seconds, there is an apparent contribution of spring-dashpot elements 

to the response. After five seconds the contribution of the spring-daspot elements has 

vanished leaving behind the oscillatory response of the foundation, but with a reduced 

amplitude.  

 

 
Figure 6.4 response of  interconnected bodies with spring-dashpot elements to initial  

                          displacement of 0.1m 
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Figure 6.6 response of infinite beam to initial displacement of 0.1m  
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7 Idealization of traffic 
 

For modelling, a proper translation of the traffic induced forces is crucial. In proportion of 

the topic of interest, traffic will be modelled as single vehicle and multiple vehicles. A 

single vehicle need to be constructed for the study of impact-like vibrations near the 

entrance of the structure and multiple vehicles when resonant vibrations are generated. 

7.1 Design vehicle and design velocity 

The design vehicle and the design velocity are the main design criteria for the floating 

highway structure. According to the standard1 the design vehicle is defined to be an 

imaginary –non-existing- vehicle which represents all vehicles in a country or all vehicles 

that will cross the structure. This implies that all its features are determined statistically, 

what means that data is lumped in its 5th or 95th percentile. Since the design of the 

structure is already known (= pilot project design), the design vehicle is also known; a 

passenger car. Some specifications are depicted in figure 7.1: 

 

 
Feature Magnitude percentile 

Length 

Width 

Height 

Bottom space 

Turning circle 

Trace width 

Wheel base 

Maximum speed 

Minimum deceleration 

Mass  

4.74 m 

1.77 m 

1.73 m 

0.10 m 

11.50 m 

1.50 m 

2.76 m 

42 m/s (150 km/h) 

5.2 m/s2 

1990 kg 

95 

95 

100 

0 

95 

95 

95 

5 

95 

95 

Figure 7.1 table with specifications of design vehicle: passenger car (A.S.V.V. 2004) 

 

For the sake of simplicity and to create an upper bound for calculation, the traffic load 

induced by passenger car(s) will be implemented in the one dimensional model as two 

concentrated vertical loads, near the front and rear wheels. See figure 7.2. The mass 

distribution will be assumed 50/502 Such schematization ensures that all energy of the 

vehicle is transmitted to the structure so that maximum vibrations will be experienced in 

any situation. In reality, however, shock absorbers (viscous dampers) and springs in the  

 
1  NOA 2007, ‘Nieuwe Ontwerprichtlijnen Autosnelwegen’ (new directive for designing highways) and A.S.V.V. 2004, 
  ‘Aanbevelingen verkeersvoorzieningen voor bebouwde kom (recommendations traffic facilities in urban areas) 
2 Depends on many factors such as speed, suspension, tire pressure, dynamic vehicle movement, etc,therefore not in  
  standards. 50/50 is considered a broad estimate.  
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car’s suspension dissipate energy and consequently reduce the vibration amplitudes near 

the wheels. The schematization of both systems is exhibited in figure 7.3. A second 

simplification encounters the velocity of the passenger car. The velocity will be kept 

constant in time because propagation speed of the vertical waves in the structure is also 

constant in time. Resonant vibrations are most likely to occur now. Design velocities are 

30, 50, 80, 100 and 120 km/h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2 Traffic load by single vehicle 

The traffic load as a single force in vector form has been derived in Appendix III.  The 

vector dependent not only in time but must also be discretized in time intervals, depending 

on which body the force is located at a certain time. This excitation force vector � �tF  can 

be written as sequence of vectors (matrix): 
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(7.1) 

 
With: 

 
� � � �. .

i

i i i
r c

F P

M t P ct x

�

� �
         (7.2) 

  

Where: 
iF :  traffic induced force at body i , vP m g�  

vm :  mass of design vehicle 

 
Figure 7.2 schematization of applied forces                                

 
Figure 7.3 schematization two different types of energy transfer 
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� �iM t : time related moment due to traffic induced force 

c :  integer for the constant velocity of the traffic induced force 
it :  time associated with the position of the traffic induced force. 

. .
i
r cx :  horizontal distance between origin and rotational centre of  

body i 
   ( 1

. . 0r cx � , because rotational centre coincides origin). 

 

The size of  the matrix is determined by the number of degrees of freedom in and the 

number of time intervals: 2 2N �  by N . Time intervals are equally distributed since c  is a 

constant integer and denotes for � �1i i N� � : 
 

 1

1 1

i i
i i it L c t L c�� �

� �� �
� �
� �         (7.3) 

 

Where 0 0L � . In Matlab the composed vector in expression 7.1 can easily be programmed 

by executing if  and else  statements for integers, as showed in Appendix V.3. To 

complete the model for a single vehicle, the single vector must be split up in two equally 

sized vectors, which differ from each other only by a time variable. With � �P t1 2F  located at 

the front wheels, the rear wheels appear to have a time delay of wb c with respect to the 

front, so for the rear wheels we denote: 
 
 � � � � � �P wbt t - wb c t - t� 1 2 1/2PF F = F       (7.4) 

 
Where wb  stands for wheel base. The total excitation for the vehicle becomes now: 
 
 � � � � � �P P wbt t + t - tt 1 2 1 2F = F F        (7.5) 

 
In next sections, we deliberately omit the notation P1 2  when we denote � �P t1 2F . 

 

7.3 Traffic load by multiple vehicle 

For multiple vehicle simulation just a(n) (infinite) series of the vectors in expression 7.5 

has to be superposed to the excitation. The total excitation force in case of constantly 

distanced multiple vehicle yields: 
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(7.6)

  
Where: 

gt : time interval corresponding to the spatial gap between succeeding vehicles 

mdt : time interval corresponding to the mutual distance of succeeding vehicles 

( md g wbt t t� � ). In section 6, a critical situation will be investigated when mdt  
equals e

t� , i.e. time of revolution corresponding to the structure’s natural 

frequency 
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Input of these series of vectors requires a sudden stop. Basically, when simulation ends. 

During simulation, an unknown number of vehicles cross the left end of the structure. This 

number, noted as nv , is approximated by end mdt t . The last term of expression 7.6 will be 

implemented as follows: 

 

� � � �
1

0 0

nv

wb md
w v

t t -wt - vt
� �
� �tF = F        (7.7) 

 

In which v has been cut off by the number of vehicles (nv ). After using the conditional 

statements to construct a single force vector, the multiple force vector will be constructed 

by looping all forces with different time variables and sticking them together afterward. 

Appendix V.3 shows an appropriate Matlab code. 
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8 Wave diffraction 
 
Wave diffraction will be studied [4,5] and used to optimise the multibody system as 

proposed in section 5. This implies first that we investigate numerically the effect of the 

frequency of different acting loads both on the vibration amplitudes of the fluid and on the 

amount of fluid that will be displaced in the neighbourhood of a single floating body 

element. Next, distributed parameters for stiffness and damping and added mass can be 

assessed as a result of this study. 

 

8.1 Steady state vibrations for the vertical motion 

The static situation is shown in figure 8.1.  

 

 
Figure 8.1 flow diagram with applied boundaries in case of the steady state vibrations for vertical  
                          motion   

 

By making use of plausible (read: linear) assumptions for fluid, body and load (see figure 

8.1) the boundary value problem can be solved analytically in the frequency domain, as 

has been done in Appendix VI. After some algebra we find the body deflection in case of a 

periodic equally distributed load1: 
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With the system: 
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(8.2) 

 
Where: 

,j m : number of residue 

� : scattering frequency of frequency domain (Fourier Transform [3]) 

H : dimensionless fluid depth 

2'K : Fourier Transform of dispersion relation (derivative) of surfaces waves on 

interface body / fluid. (subscript refers to x -domain, 1: free surface , 2:  

 
1  body deflection expressed in residual coordinates [3].  
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interface body / fluid) 
K� : Fourier Transform of dispersion relation on interval � �|x L x� � � .  

(subscript refers to domain, a plus for � �|x L x� � � , a minus for 

� �| 0x x�� � � , per definition: 2 1K K K K� � � ) 

x : dimensionless coordinate 

L : dimensionless body length 

� : (complex) amplitude of surface wave travelling from the right edge  

of the plate � �x L�  to the right 

� : (complex) amplitude of surface wave travelling from the left edge  

of the plate � �0x �  to the left 

 

The analysis starts with carrying out a series of calculations for the following values of the 

physical quantities:  

� fluid depth 0 1.1H m�  

� external force 2
0 1000q N m�  

� body length 0 3.5L m�  

� body density 3
0 102.5kg m� �  

� fluid density 31000kg m� �  

� body height 0 1.6h m�  

� external period 0.85 ;1 ;1.5 ;2 ;4pT s s s s s� .  

The values are stored in the text-file hydrodynamic parameters.txt and linked to different 

M-files. Hydrodynamic parameters.txt can be viewed in Appendix V.1. 

 

For the fluid depth we hold the lower bound and all other dimensions are conform the 

dimensions in the pilot. Fluid density and body density will be defined for the initial draft 

and the period of the acting load will be kept variable to fulfil the aim of this investigation. 

For the construction of calculations of complex amplitudes and body deflections, we refer 

to the Matlab codes (M-files) in Appendix V.4. In the M-files, residual coordinates 

(zeros/poles) need to be defined before getting looped into other functions. Appendix IV 

tells us that an infinite number of residual coordinates are involved: one real coordinate 

and an infinite number of imaginary coordinates for each analyticity domain (Appendix VI, 

figure IV.2).  

 

Now an important question is: is it possible to approach the infinite number by a finite 

number ( mN )? If yes, how large must mN  be?  

 

According to Cauchy’s Residue Theorem [3], the residual coordinates in the complex 

frequency plane correspond to the scattering frequencies of the propagating waves in the 

frequency domain. Furthermore, real and imaginary coordinates are subjected to 

oscillating and exponentially decaying waves, respectively, so we may conclude that an 

induced superimposed one-directional (surface)wave is built out of one oscillating wave 

and an infinite number of exponentially decaying waves. Arranging the number of 

coordinates (in figure IV.2) from zero, near the origin, to infinity, along the imaginary axis, 

the higher number correspond automatically to the faster decaying waves (or modes). 

Approaching infinity by mN  will discard the fastest decaying modes only. In figure 8.2 we 

have plotted the body deflection versus the relative body length for various external 
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periods. It can be seen here that curves converge to the horizontal axis when mN  is 

increasing. Since relative displacements (= vertical displacement / total length) are in the 

order of 1%, a rounding off error on the vertical displacement is acceptable when smaller 

than 1% of 1% ( 42 *10 m�� ). This implies that infinity may be replaced by 80mN �  when 

applying the algorithm denoted in Appendix VI. Expression 8.1 can consequently be 

rewritten into: 
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(8.3) 

 
Where: 

mN :  number of modes (= imaginary residual coordinates) 

 

Successful plots can only be made for 1.5 ;2 ;4pT s s s�  since the smaller periods give 

inaccurate results in this model. This can be checked in Appendix VI.8. 

 

 
Figure 8.2 vibration amplitudes in case of equally distributed load for Tp = 1.5 s, 2 s and 4 s  
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8.1.1 Distributed stiffness and damping  

Focussing on the graphs once again, long waves rule the body domain and converge to 

almost flat wave(peak)s when mN  increases. This can be explained as follows: the larger 

mN  is taken, the more decaying modes are generated and the more the amplitude will be 

suppressed. When mN goes to infinity, monotonous waves and discontinuous edges will be 

exhibited, like we expect to observe in nature. In the opposite direction, when mN  is taken 

small enough, (wave)mode shapes become transparent by the formation of troughs and 

crests. It proves that for these large oscillation periods the displacements are mainly due 

to the action of the load. Therefore, under long wave conditions (load induced oscillation) 

when mN  is sufficiently large, we are allowed to derive a time-independent averaged value 

for displacement � �w x  as follows: 
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(8.4) 

 

where the rigid body is supposed to maintain an everlasting contact with the fluid. From 

the midpoint value of � �w x  distributed stiffness and damping parameters will be derived 

and used as input for the multibody system. Subsequently, we introduce Kappa as 

� � � �� �0Bq w x� � �  and per definition dk  and dc  read: 
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        (8.5) 

 

where Re  and Im  concerns the real and imaginary part of Kappa, respectively. 

Figure 8.3 gives a table with calculated damping and stiffness parameters for the periods 

1.5 ,2 ,4pT s s s� . Negative stiffness is supposed to be unexpected, since it can be 

interpreted as negative floatation. However, its magnitude is not as high as what has been 

calculated. When appealing for midpoint values for approximated averaged values, we 

accept the deviation error by measuring at the wave crests. For 1.5 ,4pT s s�  there exist 

positive deviation and for 2pT s� , negative deviation, overrating respectively positive and 

negative stiffness values. The same happens for negative damping, but negative damping 

has to be expected here as well. Negative damping indicates energy absorbance to 

possibly perform resonant amplification. Consequently, the higher the load oscillates, the 

larger the probability for resonance and the lower the load oscillates, the more and longer 

the fluid will be pushed aside and the more the body will be submitted to a damped 

motion. 
 

 

 
Figure 8.3 bar graph with distributed stiffness and damping parameters for Nm=80 
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8.1.2 Added mass 

Added mass or added fluid mass will be derived and used to pre-assess the natural 

frequency of the multibody system in order to measure the stiffness and damping 

parameters from the previous subsection as good as possible. The adjective ‘added’ refers 

to the ‘extra’ mass that influences the vibrating motion of a floating (or immersed) object, 

according to Bessel [6]. For the schematization, we may assume that the fluid simply will 

be pushed aside due to vibrations. This is, obviously, a rough approximation since we 

assume that the amount of fluid that will be pushed aside equals the amount displaced 

fluid. The fluid limitation does not change and therefore it does not fully agree with reality. 

However, when load oscillations are high enough, the amplitude of the movement is 

significantly smaller than geometric measures, this is approximately true. When calculating 

added mass, the influence of the (free surface) waves may be ignored if frequencies are 

high. Also, it may be assumed that the flow (beneath the body element) has no influence 

on the added mass. Consequently, the fluid flows across the entire area are in-phase and 

therefore proportional to the velocity of the body. The relationship between the vibrating 

velocity and the potential at the interface body / fluid is the measure of the added mass: 

 

 � � � � � � � �� �,0 ,0 1 tanham j j

w
x x H

t
� � � � �

�
� �

�
     (8.6) 

 

Where: 

� �,0x� :  fluid velocity potential at the interface body / fluid 

� �,0
w
x

t
�
�

:  vibrating velocity at the interface   

 

The variable am�  represents an estimation of the influence depth of the body that 

appeared to be constant over the x  domain and to depend only on the frequency. It is 

sufficient now to multiply am�  with the fluid density and the body length in order to obtain 

the added mass (per metre width):  
 
 � � � �f amm L� � � ��          (8.7) 

 
Where: 

� :  dimensionless fluid density 

L :  dimensionless body length 

 
Outcomes for fm  have been enclosed in the graph of figure 8.4. It is obvious that relation 

between fm  and pT  is linear, since linearized approximations are involved.  

 

 
Figure 8.4 graph with frequency dependent fm  representing added mass for Nm=80 
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8.1.3 Added stiffness and damping 

Since waves and currents are out of the scope of this thesis, added stiffness and damping 

are out of the scope as well. 
 

8.1.4 Short wave approximation; resonant amplification + singular 
matrix validation 

The short wave approximation can be applied within specific bounds. The upper bound is 

defined by the rate between body- and wave length. If the body length is significantly 

smaller than the wavelength, then body kinematics is primarily controlled by a long wave, 

which curve can be outlined by approximately the first mode only.  

In the accessory algorithm we find that in matrix jmc  the column corresponding to 0�  is 

significantly larger than all other columns. By setting all other elements to zero, basically, 

all decaying modes close to the edges are neglected. As a result, expression 8.1 for the 

body deflection in case of a periodic equally distributed load remains unchanged, however, 

the complex amplitudes in the system 8.2 can explicitly be denoted now: 
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(8.8) 

 
Where: 

0 :  number corresponding to real residue   

 

the complete derivation can be seen in Appendix IV.6. 

 

8.1.4.1 Resonant amplification 

From expression 8.6 we may expect an increase in the amplitude height due to the 

external load, but it is, as discussed before, not for one-hundred percent certain if 

resonant amplification will occur. Therefore, the objective is to evaluate the conditions 

under which resonant vibrations will be exhibited. This can be done by examining the 

nature of waves, i.e. incoming, reflecting or transmitting waves. Expressions for these 

waves are derived in the form of complex amplitudes being subtracted from formulas in 

Appendix IV.6. These complex amplitudes are denoted as R  for reflection and T  for 

transmission and are associated with waves at infinite distance from both edges of the 

body element. All decaying waves have vanished at infinity and under ‘short wave 

conditions’ these waves may be neglected at the edges too. The reflected wave at the left 

edge of the body element compensates the incoming wave. Beneath the body reflected 

and transmitted waves propagate because of the physical edges, as shown in figure 8.5.  
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Figure 8.5 waves in the x-domain 
 

The main part of the body deflection is a superposition of two waves of the same length: 

transmitted into the fluid beneath the body and reflected from the other edge. If these 

waves are in phase, then the deflection amplitude is doubled. Zero reflection correspond to 

total transmission. Both expressions for complex amplitude R  and T  are evaluated in 

Appendix IV.6 and yields: 
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Where for computation purpose the symbol �  will be replaced by mN  and the complex 

amplitudes �  and �  attributes to equation 8.1. With allowance for normalisation, we 

transform reflection and transmission amplitudes into ditto coefficients by obtaining 

normalized values for R  and T : 

 

 
� �
� �

norm

norm

R R R T

T T R T

� �

� �          
(8.11)

 

 

Where: 
R :  absolute value of R 

T :  absolute value of T 

 

For normalized reflection and transmitted wave coefficients the following equality follows 

from equation 8.9: 

    
 1norm normR T� �          (8.12) 

 

Resonant amplification corresponds to zero reflection and therefore it is sufficient to 

evaluate 0R �  in order to satisfy this section’s objective. Under ‘short wave conditions’ 

and to retain only the solitairy oscillating wave in the expression for R  it is allowed to 

rewrite expression 8.9 as follows: 
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where R  is evaluated in residue 0�  as an expression of 00c . Both real and imaginary part 

in the bracketed term of this expression must be zero for 0R �  what leaves 00c  to be 

equal to: 

 

 0

0

� �
� �

�
�            (8.14) 

 
Since 0� and �

 
are real values, we may say that 00Im 0c �� �� � . Substituting 00Im 0c �� �� �  in 

expression 8.8 for 00c  result in the next equality: 

 
 � �2

0 0 1,2,..Arg K L k k� � ��� � � � �� �        (8.15) 

 

what must be true for resonant amplification. As can be viewed in figure 8.6, none of the 

predefined periods satisfy equality 8.15, concluding that we do not deal with resonant 

amplification. Nevertheless, (strong) amplification can be expected where the imaginary 

value for c  is closest to zero. For example, we refer to 1.5pT s� , where large amplitudes 

are expected because of negative damping. As early as the stage of derivation at equations 

8.9 and 8.10, to be precise, it could already be seen that the possibility for resonant 

amplification is always zero. By comparing both equations with each other, zero reflection 

can only be achieved when simultaneously zero transmission will be achieved, so in a case 

when no waves are propagating. The bracketed terms are under all circumstances identical 

since the complex amplitudes are equal for this symmetric case to return a fifty-fifty wave 

coefficient distribution.  

 

Concluding this subsection, resonant amplitudes will never be experienced when the load is 

vibrating in firmly large periods and the fluid depth is kept at its minimum level. This is in 

good agreement with comparable investigations [4,5]. 

 

 
Figure 8.6 application of equality 8.15 to predefined periods 

 

8.1.4.2 Singular matrix validation 

The second objective of this subsection is to ‘discuss’ a proper boundary value for an 

approximated computation that must replace the ‘exact’ computation for the complex 

amplitudes �  and �  when singularities are involved. See for the theorem Appendix IV.5. 

Because of singularities there exist not only one unique solution what might lead to 

unreliable outcomes, especially when values are close to zero. To avoid this, the smallest 

entries must be set to zero, while the largest ones remain untouched in the matrix. Until 
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this point, for all performed computations only the first singularity is significantly large 

(Thus, the others must be set to zero). Therefore, the approximated computation is a so 

called rank-one-computation. For the lack of a proper numerical boundary value (floating 

point tolerance would be insufficient) we establish an intuitive way to evaluate the second 

singularity: short wave approximation. Within the bounds, the shortwave approximation 

can give sufficient good results because it simply evade singular matrix computation. In 

the graph of figure 8.7, we demonstrate a boundary condition for which the rank-two-

computation ( 2t � ) will probably be more reliable with respect to a rank–one-

computation. For the determination the trial-and-error-method has been applied, from 

which some unsuccessful attempts are gathered in Appendix IV.8. Note that the transition 

is marked by the (modal) shape of the curves rather than the level of coincidence. We 

must bear in mind that the conditions to use the short wave approximation are not optimal 

in this case since L  is not much bigger than one. The lower bound of the second entry is 

equal to around 0.12  when 80mN �  and attributes to a period of 1.5pT s�  in combination 

with a fluid depth of 0 1.6H m� .  

 

 
Figure 8.7 intuitive determination of boundary condition for second singularity  

 

8.1.5 Steady state vibrations for variable fluid depth 

As previously assumed, we also carried out a second series of calculations with variable 

quantities for the fluid depth 0H  because we are also interested in an upper bound for fluid 

depth. Unfortunately, this easiest kind of approach to the problem turned out not to be 

successful. We see that the deeper fluid becomes, the more crests and troughs start to 

grow to contribute to inaccurate modelling. However, this wave growth can be 

compensated by inserting more decaying waves, at least when load induced oscillation 

periods are performed, i.e. higher periods. Figure 8.8 gives an example of applying a 

larger depth first and let mN  grow afterward to demonstrate that calculations for 

0 1.6H m�  can be performed with comparable accuracy with respect to 0 1.1H m� . Further 

steps in fluid depth increase will eventually correspond all to flat curves by a growing 

amount of waves. Therefore, the bound is not mathematical but purely physical and 

follows from the linear wave theory, that characterizes the fluid by its ‘depth/wavelength’- 

relationship. Specifically, we mean that the field of applicability of the wave diffraction 

method is bounded at the point where rotating particles inside our short waves do not feel 

the bottom anymore. Roughly estimating, the maximum fluid depth will be approximately 

0 1.6H m�  using the rule of thumb for deep water and surface gravity waves. For depths 

larger than 1.6m , 0 1.6H m�  can be implemented as upper bound.  
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Figure 8.8 example of vibration amplitudes for Tp = 1.5s with variable wave heights  

 

8.2 Steady state vibrations for rotational motion 

In the multibody system, besides the vertical motion also rotational motion will be 

performed by the acting load. Rotational motion can be simulated by simply reshaping the 

time periodic load into a prismatic form. The static situation is depicted in figure 8.9.  

Vibrating amplitudes will be evaluated in a manner analogously to the ones attributed to 

the vertical motion. This is possible because body and fluid properties do not change shape 

in the new situation. 

 

 

The expression for the body deflection is identical too, however, the derivation of the 

damping and stiffness parameters requires an expression for the angle of rotation in the 

formula. By taking the derivative to x, expression 8.1 transforms into: 
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With the system: 
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Figure 8.9 flow diagram with applied boundaries in case of the steady state vibrations for  
                          rotational  motion   
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In Appendix IV, the corresponding algorithm has been reconstructed from the original one 

with different values for jf . All relevant formulas are summarized in Appendix IV.6.  

 

For 1.5 ;2 ;4pT s s s�  and 20,50,80,100mN �  in total six graphs are obtained in which 

vibration angles and amplitudes are plotted on the relative length scale. These graphs are 

shown in the figures 8.10 and 8.11. 

 

 
Figure 8.10 vibration angles in case of prismatic shaped loads for Tp = 1.5 , 2 and 4 s  



Traffic induced vibrations in floating thoroughfares 

 50  

 
Figure 8.11 vibration amplitudes in case of prismatic shaped loads for Tp = 1.5 , 2 and 4 s 

 

The graphs show the convergent tendency of the curves when mN  increases, just like in 

section 8.1. Unlike these graphs, mode shapes become badly visible, but it seems to be a 

scaling problem. In figure 8.11, in which mode shapes are quite well visible, anti-

symmetrical shapes do sharply emerge for 20mN �  induced by corresponding triangular 

and trapezoidal shaped loads. Concentrating on the edges, lines do no longer coincide and 

triangular load induced deflections turns out to be somewhat larger than the trapezoidal 

load induced deflections at the right edge. At the left edge, the opposite can be observed: 

triangular load induced deflections are slightly smaller. By elaborating the system in 

expression 8.17, the exact rate in complex amplitudes will be derived to establish our 

observations:  
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         (8.18) 

 

In expression 8.18, the subscripts c  and i  refer to respectively the triangular and 

trapezoidal shaped loads, to be subjected to respectively closed and intermediate body 

rotations. Note that when a positive displacement is directed downward, j� , the (complex) 

amplitude of the rightward propagating wave will be enhanced by the additional term since 

both terms are positive whereas j� , the amplitude of the leftward propagating wave, will 

be suppressed since j�  is negative. A load concentration at the right for the triangular load 

obviously result in amplitude enhancement at the right. However, if mN  increases, 

additional terms die out rapidly and balance the amplitudes as long as the loads have 

equal magnitudes, thus: 
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Equal magnitudes means equal displacements independent of the load’s (shape) 

distribution1. Therefore, we may define one average value for � �x�  for both cases which 

yields: 
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(8.20) 

 

in which mN  is taken sufficiently large and for which the average value will be approached 

by the midpoint value, excluding discontinuous edges in calculation. In the definition for 

dk  and dc  in expression 8.5 we define Kappa as:  

 

� � � �� �0 0BM x L� � ��          (8.21) 

 

where 2
0, 0 01 3cM q L�  and  2

0, 0 01 12iM q L�
 

Figure 8.12 gives damping and stiffness 

parameters for the periods 1.5 ,2 ,4pT s s s�  for both types of loads. Analysing the 

parameters, a rate of four is everywhere to discover. This can directly be derived from the 

moment rate in expression 8.21 since we calculated equal averaged rotation angles. As 

early as section 5, the ratio of four has deliberately been derived here since we calculated 

buoyancy forces as a function of the same rotation angle. 

As for the vertical case, negative stiffness for 2pT s�  emerges too in figure 8.13, but when 

it comes to damping the tables are turned. Now, the probability for resonance is bigger 

when motions are slower. This implies that it makes indeed a big difference how 

propagating waves are being generated, by vertical perturbation of the fluid surface or by 

seesawing the surface, for an optimal energy transfer. Anyhow, resonance or no 

resonance, vibration amplitudes are, on the average, significantly bigger here; up to more 

than 30 times larger near the edges for 2pT s� . 

 
1  Linear surface gravity waves from a different ‘source’ transform to identical waves because of their dispersion 
relation. 
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8.2.1 Resonant amplification 

Resonant amplification or resonance occurs when energy from the vibrating load will be 

transferred to the fluid to locally increase the (average) fluid level. The objective is to 

evaluate new conditions for which resonance will occur, in the same way as has been done 

in section 8.1.3.1. In section 8.1.3.1, we described how maximum body deflections can be 

created by the interaction of propagating reflected and transmitted waves. It is necessary 

for the waves to be in phase right beneath the body to grow to a maximum level. To 

appeal for maximum rotation, however, waves of the same length must obviously get into 

phase too but both ends of the body must be in a phase shift of half the wave length ( p� ) 

to get to extreme pitching motions. This explains why lower oscillations are most likely to 

cause for resonance in the pitched motion, because the corresponding period reads: 

 

 
0

2.13p
pT s

gH

�
� �          (8.22) 

 

when 0 1.1H m�  and 02 7p L m� � � . In the same time, there must be zero reflection at 

minus infinity for maximum transmission near the body as well. Transmitted and reflected 

waves are expressed as complex amplitudes R  and T  Both expressions are evaluated in 

Appendix IV.7 and yields: 
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Where for the computation the symbol �  will be replaced by mN  and the complex 

amplitudes �  and �  attributes to equation 8.11. After normalization, we evaluate 0R �  

twice from a simplified version of expression 8.17: 

 

 
Figure 8.12 histogram with distributed stiffness and damping parameters for rotation 
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(8.25) 

 

in which all decaying waves have been omitted and in which 00c  has been adapted. Both 

real and imaginary part in the bracketed term of this expression must be zero for 0R � . 

Substitution of 0R �  into expressions 5.25 gives: 
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  (8.26) 

 

which must be true for resonant amplification. In case of four predefined periods no 

resonance will occur, according to figure 8.13. In line with subsection 8.1.3.1, strong 

amplification can be expected where 0R � . For 4pT s�  largest amplitudes are obtained 

and expected because of negative damping in combination with positive stiffness. Positive 

stiffness must be addressed to the previous sentence since negative damping is even 

stronger at 2pT s�  but in combination with negative stiffness, apparently, amplification 

will be suppressed.  

For the same reason, 2.13pT s�  does not satisfy our predefined expectations as well. 

Applying equations 8.9 and 8.10 to the problem, a fifty-fifty wave coefficient distribution 

will be calculated in every situation, to fall back again into the conclusion of section 

8.1.3.1. Unfortunately, the lack of information from comparable investigations makes it 

impossible to validate the outcome.  

 

 
Figure 8.13 application of equation 8.26 to predefined oscillation periods left  and right  
                          images distinguish situation with triangular and trapezoidal  resp. 
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9 Implementing traffic to an optimized rigid multibody 
system 

 
In previous sections especially the qualitative aspects of traffic and wave diffraction has 

been considered. In this section, quantitative aspects, dimensions and hydraulic parameter 

values, will be determined for implementation into the rigid multibody system. 
 

9.1 Acceptable serviceability and safety level 

According to TNO Bouw en Ondergrond and TNO Voertuigentechniek, driving a vehicle with 

80 km/h across a floating thoroughfare will be experienced as ‘comfortable’ when vertical 

accelerations and rotation angles of the deck do not exceed ten percent of the gravitational 

acceleration and five degrees, respectively. However, what this comfort level will be when 

this vehicle reaches 100 km/h or 120 km/h is unknown and, therefore, must be 

determined. Determining the vertical acceleration levels, we introduce the following 

assumption: the comfort level will be fully correlated with the total amount of energy of 

the vehicle. In other words: when a certain energy level has been exceeded, the passage 

felt no longer pleasant. This energy level is supposed to be constant. The total amount of 

energy equals the kinetic energy and the potential or ‘stored’ energy. Ignoring rotational 

energy from the wheels, gearbox losses, etc, kinetic energy of the vehicle is a function of 

vehicle mass and (squared) velocity. Potential energy is stored in mass, gravitational 

acceleration and position of the vehicle. Since mass, gravitation and position are constants 

and acceleration level is known for 80 km/h, the ratio between vehicle velocity squared 

and vertical acceleration is constant too when the total energy level is constant. The 

acceleration levels can therefore be derived as follows: 

 

 
� �
� �

2

max, max,802

80 3.6

3.6
ca a

c
�            (9.1) 

 
Where: 

max,ca :  vertical acceleration level of the vehicle corresponding with velocity c  

 

The vertical acceleration level of the vehicle corresponding to 80 km/h is denoted as max,ca . 

Strictly speaking, this value is not exactly ten percent of g , since vehicle suspension and 

tires always reduce the vehicle acceleration relatively to the deck. Regarding the model, 

we are allowed to neglect this influence, causing a reduction of 45 and 65 percent for 100 

and 120km/h, respectively, with respect to the 80km/h level. In figure 9.1, different levels 

are resembled in a graph.  

As it comes to the level of rotation angles, appealing to the Dutch code NOA 2007, the 

limitation demand for five degrees can be excluded by the recommendation of 1.8 degrees  

for 80 km/h. According to the code, 1.35 degrees is recommended for 100 and 120 km/h. 

Figure 9.1 shows the percentages of the gradients versus different vehicle velocities, in a 

manner analogous to the code.  
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Figure 9.1 bar graphs with maximum vertical acceleration levels and gradient percentages for  
                          different vehicle velocities 
 

9.2 Implementing wave diffraction 

This subject has indirectly been announced in subsection 5.3: optimization of the rigid 

multibody system by implementing wave diffraction. In this subsection, we predefine 

hydrodynamic parameters and try out if the multibody system behaves differently with 

respect to a buoyancy-based-system. 
 

9.2.1 Hydrodynamic parameters  

 

The natural frequency of the multibody system will be applied as input argument for the 

external frequency in the wave diffraction model in order to derive appropriate 

hydrodynamic parameters. However, this approach leads to implicit computational steps to 

be taken. The natural frequency depend on added mass and stiffness and, in turn, added 

mass and stiffness are output arguments of the wave diffraction model. To illustrate the 

calculation procedure, the (parameter) relationship between the wave diffraction model 

and a simple mass-spring model with inclusion of added mass and buoyancy stiffness is 

schematically depicted in figure 9.2. Since frequency and stiffness parameters are 

collective in- and output variables for both models, we will plot two graphs (one for the 

wave diffraction model and one for the mass-spring model) in one figure with frequency 

and stiffness on both axes. The natural frequency with corresponding stiffness parameter 

can be found where both lines intersect.  

 

Stiffness from the wave diffraction model is calculated with Matlab, whereas buoyancy 

stiffness can be obtained by the formula:  

 

 
Figure 9.2 relationship between wave diffraction and mass-spring model 
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 � �2
0 0d fk A Bm� �� �          (9.2) 

 

which is a result of a variable transformation of expression 6.18 with inclusion of added 

mass. In expression 9.2, 0 2 pT� �� and 3
0 102.5kg m� � , 28.64A m�  and 5.4B m� . All 

remaining variables are conform section 8.1. A ‘trial and error’ – calculation then shows 

that the intersection point has the following coordinates: � �12.778 ;0.053s MN m m   

 

The calculation of the intersection point can be made much quicker if buoyancy stiffness is 

determined by static buoyancy. Expression 9.2 changes into: 

 

 � �2
0 0d fk A Bm gB� � �� � �         (9.3) 

 

A wave diffraction model, with frequency as input and added mass and damping as output 

arguments, would be sufficient enough to obtain the unknown coordinate, as schematically 

indicated in the figure below. From expression 9.2, an alternative expression (with respect 

to expression 8.6) for added mass,  

 
 2

0 0f t bm g h m m� � �� � � �        (9.4) 

 

with 1.6h A B m� �  can be derived. This expression provides insight in how the mass is 

composed; the first term represents the total mass ( tm ) and the second term the mass of 

a pontoon (body element) ( bm ) per square meter horizontal plane.  

 

Completion of 2.778pT s�  result in 2
, 1753.9f wm kg m�  what implies an invariant 

influence depth of 1.75am m� � . This is a new requirement in the preliminary design of the 

floating thoroughfare. For 2.778pT s� , Matlab generates for the corresponding damping 

parameter 1
, 66.84d wc MNs m m� .  

 

 

For rotational motions, new natural frequencies must be derived with corresponding 

hydrodynamic parameters. Therefore, we may reassume the stiffness parameters 

independent of the frequency and equal to the static buoyancy value. However, the 

algorithm for the added mass is not valid anymore, fm is no longer constant over the body 

length. See figure 9.4.  

 

 
Figure 9.3  alternative calculation scheme  
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Nevertheless, a solution to this problem is still straightforward; since we are interested in 

an acceptable average value in stead of a fully analytic description, we choose to introduce 

an equivalent value for fm . This can be done by the ‘trial and error’ method; once the 

natural frequency is known from the wave diffraction model, the equivalent value for the 

added mass, ,fm � , can be estimated from the buoyancy model. 

 

 Accordingly, with 1
, 0.216 0.054dk MNm rad m� �  the period reads 2.018pT s� . For  

2.018pT s�  we obtain  2
, 797.5fm kg m� �  for closed and 2

, 672.9fm kg m� � for 

intermediate positioned bodies. The corresponding damping parameters are 
1

, 67.12 16.78dc MNms rad m� � � � .  

 

Successively, figure 9.5 shows graphically the coordinates: � �12.778 ;0.053s MN m m  and 

figure 9.6 will affirm the coordinates: � �12.018 ;0.216s MNm m m  for both the vertical and 

rotational case. 

 
Figure 9.4 added mass cannot be taken constant over the x domain in case of rotation. 

 
Figure 9.5 from the top downward: added mass versus period, determination period and stiffness  
                          parameter and body displacement corresponding to a period of 2.778s 
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9.2.2 Wave diffraction versus buoyancy 

The (hydro)dynamic behaviour of the floating thoroughfare is supposed to be realistically 

simulated when parameters, obtained by the wave diffraction approximation, will be 

implemented in the multibody system. Against our better judgement, we used to 

implement parameters obtained via a static equilibrium consideration (static buoyancy) 

because of ease and simplicity. Suppose that two systems, a wave diffraction-based-

system and a buoyancy-based-system, behave quite similar, then buoyancy will be 

preferred in stead of wave diffraction. Therefore, in this subsection, we will concentrate on 

(dis)similarities in the responses of both systems, for example, when systems move in 

their eigen motion. For convenience, we reconsider the uncoupled or superimposed system 

from subsection 6.2.2, in which a series of five bodies will be submitted to an initial 

displacement of 0.1m. Figure 9.7 displays a schematization belonging to systems that are 

distinguished by hydrodynamic parameters: buoyancy ( dk ), buoyancy + added mass 

( ,d fk m ) and wave diffraction approximation ( , ,d f dk m c ). 

 

 
Figure 9.6  from the top downward: determination period and stiffness parameter (closed body),  
                           body angle/displacement corresponding to a period of 2,018s . 
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The natural frequencies in case of simple buoyancy can be read out of subsection 6.2.2. 

The values are:  
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Taking into account the added mass of 2

, 1753.9f wm kg m�  
( 2

, 797.5 /672.9fm kg m� � ), a new equilibrium will be found for frequencies:   
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In case of wave diffraction, with 1

, 66.84d wc MNs m m�  

( 1
, 67.12 16.78dc MNms rad m� � � � ), the natural frequencies become:  
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Preceding any graphical judgement, numerical judgement already tells us that something 

does not strike the right note here! By reconstructing the (fictitious) composed system’s 

displacement out of equation  

 

 � � � � � � � �0Re

0cos Im 1 2 4
n tn n

nw t A e t for n n N
�

�
� �� � � � �� � � �� �     (9.5) 

 

with: 0.1nA nm�  and 5N � , it becomes clear why; in the plot for wave diffraction, 

unrealistic unstable behaviour serves our true suspicion in a graphical way. Causality in 

this case is quite clear; wrong damping output is the consequence of wrong frequencies, 

 
Figure 9.7 from the top downward:  buoyancy approximation, buoyancy + added mass and wave  
                          diffraction approximation  
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since (negative) damping attributes to instability. An explanation is however less clear, but 

it is doing some good if we think in terms of conditions and concessions. From the wave 

diffraction approximation, parameters are generated under steady state conditions. If they 

were generated under non-steady conditions, for example in eigen motions, values would 

have been different. A plausible explanation according to section 8; calculating w  halfway 

the body when dealing with a (slightly) curved interfaces overestimates the amount of 

energy (read: damping) through the edges. Since calculation at 0x �  and x L�  is out of 

the question for the same reason, we are forced to do concessions to come to an 

appropriate answer; ‘least inaccurate’ calculation is expected to coincide with calculation 

just outside the body, where ‘interface errors’ literally fade away. At the free surface, 

displacement w  seems much larger and therefore new damping values are even much 

smaller than before ( ,d wc  is more than thousand times smaller and ,dc �  more than hundred 

thousand times smaller than before.) To be quite positive about the new magnitudes, we 

examine the following commentary: 

� vertical damping is close to critical which is in good agreement with reality. The 

critical damping value reads: 1
, , 02 46845d w crc m Ns m m�� �  which is 70  percent 

(in stead of 0.07 percent) of vertical damping capacity! Now, over damping 

becomes reliable. The minor importance of rotational damping however is in 

assessable but no less reliable for the same reason. 

� negative (real parts in the) natural or eigen frequencies do not exist in a system in 
which cl/intc  is brought down to zero. With 46 *10cl/intk = N m , the series of test 

frequencies becomes:          
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what adds value to the credibility of the new found magnitudes once again. Critical 

is the first mode because it contains the lowest positive real integer of all natural 

frequencies.

 

Output, numerical or graphical, from wave diffraction is expected to be quite 

similar to output from buoyancy and added mass. At first sight, it seems 

paradoxical – answering the objective question with this comment – but it is not: 

aiming at recalculated frequencies for wave diffraction1:    
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it states that both systems have - by approximation- identical fundamental modes. 

In figure 9.8, responses with comparable amplitudes over the time interval 

underline that there is similarity to some extent. On the other hand, differences 

‘diverge’ from the second to the third mode – to an over damped versus a typically

 

 
1  Besides dc , pT  (and through it fm ) must be revaluated, however, the effect is negligible according to the 

steepness in the graphs of figures 9.5 and 9.6 and therefore this is omitted. 
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under-damped mode – to emphasize that actually dissimilarities will dominate the total 

system (including rotation). This limits the replacement of a wave diffraction 

approximation to a certain extent.

 

 

 

9.3 Model verification 

In this subsection, we implement a vehicle with constant speed as two external 

concentrated moving loads to the optimized multibody system for model verification 

purposes. In this sentence, the word ‘optimized’ refers to the inclusion of the wave 

diffraction approximation. Model verification as objective requires a proper translation of 

field conditions to match the computational model (multibody system) with the prototype 

as good as possible. To this end, we verify the model, in which the joint stiffness and 

damping parameters work as ‘tuning tools’. 

 

9.3.1 Field conditions 

Field conditions will be specified by (new) vehicle characteristics, measurement locations 

and track dimensions.  

 

Firstly, vehicle characteristics are not equal to design characteristics proposed in section 7: 

TNO Voertuigentechniek performed the series of tests with a BMW, type 520i and 

accordingly we account for a mass reduction (1990 – 1535 = 455kg) and wheel base 

stretching (2.88 – 2.76 = 0.12m). Secondly, measurements are categorized by vehicle and 

 
Figure 9.8 response of superimposed system to an initial displacement of 0.1m in case of  
                          buoyancy, buoyancy with added mass and wave diffraction, respectively. 
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track measurements and by design velocities. For 30, 50, 80 and >80 km/h, six or seven 

tests were employed and, at the same time, vehicle and track kinematics have been 

measured. In TNO-report “Testresultaten prototype Drijvende Weg” (Test results prototype 

Floating Thoroughfare) 2003 all data of the prototype has been documented. Measuring 

track kinematics, a couple of sensors have been lined up along both edges. Lining up 

against driving direction, at one, nine and fifteen meter distance from zero (i.e. at 

40.75x m�  or 1.5m ahead from the centre of the twelfth pontoon) six devices were 

installed that return the data signal. Thirdly, the track length was 70 meters.  

 

When the test vehicle had a speed of 30 km/h the measured vertical displacements are 

practically the best displacements for verification. From the series of six with 30 km/h, the 

third is most valuable, see figure 9.19.  

 

During the test measurement, the test driver was surely most successful in driving a 

steady 30 km/h on the interval for which the vehicle passes the structure (between 18.2 

and 26.6 seconds approximately). Besides this, he did not lurch too much either (velocities 

perpendicular to the driving direction are close to zero). The corresponding displacements 

can distinctively be seen in figure 9.10.  

 

 

 
Figure 9.9 test vehicle velocity against time  (filename: KQ0WG30, nrs: 03) 
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Before the major impact, at 4.15, 4.87 and 6.25 seconds, the measured pontoon has 

already been brought into movement, as if the pontoon ‘feels’ the vehicle earlier. When the 

major impact occurs, the vehicle has yet been passed away for a second or more. This can 

be confirmed by calculating the average time from the distance over the structure divided 

by the average velocity. At the moment of crossing, time runs for 3.21, 3.93 and 4.89 

seconds at waypoint 15, 9 and 1 respectively. According to the graph, at this time the 

corresponding pontoon reaches the top just before the big impact. (this proves that 

masses are inert) After contact, oscillation continues while the motion slowly fade away. 

The unexpected variations between the track edges (North and South sides) can not be 

explained by driving performances as was noticed before. It is more likely for wind waves 

(max. period of 1 second) which were artificially generated during the tests to put in an 

appearance. This can more or less be confirmed by the existence of initial displacements, 

which applies only due to an external factor like wind waves. Nevertheless, ‘clean’ tests are 

not available so we must deal with these ‘imperfections’. 

 

 

 

 

 

 
Figure 9.10  recorded displacements at waypoints 15, 9 and 1 
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9.3.2 Varying the joint damping 

By implementing field conditions together with the hydrodynamic parameters from section 

9.2.1 in the multibody system, the tests can be simulated as well. Figure 9.11 shows the 

schematization of the system.   

 

Figure 9.11 schematization of multibody system for verification. 

 

In the compilation of all structural and hydrodynamic parameters of figure 9.13, joint 

stiffness ( /cl intk ) and damping ( /cl intc ) are undetermined. Therefore, these two sets of 

parameters are exclusive variables in computation. In stead of throwing ourselves upon a 

time consuming parameter study now, we prefer trying to save computational time by 

analysing the joint dynamic behaviour first. Analysing here yields the determination of 

points of application and vectors related to all dynamic forces that exist through (material) 

stiffness and friction. Once the analysis has been done, magnitudes of these forces and 

their kinematical displacements will be estimated (for example from figure 9.10) in order 

to assess values for /cl intk  and /cl intc  with:  

 

 � �
/ max

/ max

ˆ

ˆ4

cl int k

cl int c

k F w

c F w� �

�

�    
     (9.6) 

 

In equation 9.6, kF  and cF  are reaction forces developed through stiffness and damping 

and maxŵ  denotes the maximum kinematical deflection. The damping approximation is 

based on a periodical damping by coulomb or dry friction [2].  

 

In figure 9.12, the most important elements in the joints, the row locks, are schematically 

drawn in fixated (left) and non-fixated (right) position. To illustrate how a closed row lock 

looks like, a photograph has been included here too. 
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The mechanism of the joint is based on ‘fixed’ rotation near the deck of the structure 

exhibiting the desired smooth transition from body to body under motion. In the design, a 

convex-shaped rib at the end of a body fits perfectly to the concave-shaped rib at the end 

of its adjacent body. A row lock keeps both ribs into position. Imagine that when a vehicle 

passes, a friction force will be initiated along the convex-concave plane if  the ribs move 

relatively from each other. Only if the row lock is fixated (locked), the upper claw of the 

lock respond with a force (small red arrows in figure 9.12) that initiates this friction force. 

Due to (coulomb) friction, the structural motion is a damped motion. In the lowest claw of 

the lock, also a reaction force (large red arrows in figure 9.12) will be developed which 

could even become bigger than its upper neighbour (big external moments), but there will 

be no damping. Due to these forces, the structural deflections are minimized. Hence, it can 

be concluded that all row locks react ‘stiff’ whereas the concave-convex-shaped ribs 

provides for damping.  

 

Taking the next step toward a solution, force magnitudes will be derived by applying the 

dynamic equilibrium consideration around a joint. Therefore, the mechanical 

schematization must satisfy the prototype schematization as good as possible. However, 

this requirement is unsatisfied as long as vertical dashpots and ditto springs perform the 

joint mechanical conditions for the model (see figure 9.11). Replacing them, for example, 

by rotational (coulomb) dampers and horizontal (linear) springs is a major step in the right 

direction, but since equations of motion change radically then (Appendix II and III), we 

accept the consequences of continuing in order to save ourselves from more discomfort.  

 

Unfortunately, in this stage, concessions to the model means concessions to validation. 

This means that only frequencies and eigen motions, when amplitudes are small, can be 

validated. A positive consequence is that it becomes easier to obtain ‘equivalent’ structural 

parameters now; it follows that / 0cl intk N m�  because vertical springs deliver no 

contribution to horizontal (material) stiffness. Only /cl intc  turns out to be unknown making 

the implementation of a parameter study much more straightforward. A ‘best fit’ can be 

agreed for 3
/ 1 2 *10cl intc Ns m� � .  

 

 

 

 
Figure 9.12 autoCAD drawing of cross-section and a close up of a row lock 
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Figure 9.13 recorded and simulated displacements at waypoints 15, 9 and 1  

 

The displacements from the multibody system should be equal to the mean of the 

measured displacements, at the North- and Southside, theoretically speaking. For the 

greater part this is certainly not true, according to figure 9.13, but when body motion is no 

longer exerted by the vehicle (in approximately the second half of the graphs) this is 

nearly true. Although the data is not free of noise, it is quite certain that concessions are 

causing the largest deviation in displacement output. The following arguments must be 

carried out: 

� There is initial movement growing in time. Or in other words: the closer to 

waypoint 1, the more the initial displacement is intensified. This is the result of a 

‘stiffer’ connection that passes through (vehicle) energy much faster. Another 

explanation could be found in the generation of propagating waves. By suppressing 

the fluid surface beneath on body repeatedly, waves are generated that propagate 

toward other bodies. In the model, this phenomenon is neglected since wave 

diffraction from the bodies is calculated individually. These waves, however, could 

become critical only if the wave velocity comes close to the vehicle velocity. For an 

average depth of five meters, the wave velocity in formula form reads: 

 

� �0tanhwave

g
c H k

k
�

     
  (9.7)

 

     
 

in which the wave number 02k L�� . After implicit calculation, the answer to 

equation 9.7 is 4.3wavec m s�  which is about two times slower with respect to the 

vehicle velocity(!) It is unlikely for propagating waves to significantly participate in 

the initial displacement.   
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� Significantly large displacements in the prototype are opposed by the joint 

mechanism. In the multibody system, these will not be opposed.  

� There exist an out-of-the-phase difference that is annulated in the graph for 

verification purposes. Measurements must be corrected by 1 and 3.5 meters for 

waypoint 1 and 9 respectively. If we increase /cl intk , the phase difference 

decreases. However, /cl intk
 
is not capable for verification. Damping parameters 

/cl intc and dc and frequency related parameters pT  ( fm ) are capable and they 

more or less succeeded the test. 

� An interface condition for the joint is: no internal displacements are allowed. Inside 

the joints, internal displacements will always occur but by increasing /cl intc
 
and/or 

/cl intk , they can be minimized. Using the equalities of 9.8, this can be checked for 

the validated model:  
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(9.8) 

 

Figure 9.14 proves that – irrespective of whether it is safe to drive across such 

structure or not - there is a mismatch with the prototype.  

 

As a final remark, it must be noticed that external waves will be kept outside the scope of 

this thesis. Because their size, it is expected for them to be of minor importance for the 

structural movement. 

 
Figure 9.14 mutual displacement between coupled bodies due to internal displacements in 
                          joints; at x = 49. 52.5 and 56 m respectively,  



9 Implementing traffic to an optimized rigid multibody system 

 69  

9.4 Parameter study 

Due to the difference between joint mechanisms in the multibody system and the 

prototype, model verification could not be fully implemented. Nevertheless, performing 

simulations with the optimized rigid multibody system makes sense as long as the 

system’s hydrodynamic behaviour is ‘credible’ and internal displacements can be 

manipulated by structural parameters.  

For this reason, a parameterstudy will be conducted on the multibody system. The 

parameters are the number of bodies, the length of the bodies and ‘tuning tools’ for the 

joints, respectively N , iL , /cl intc and /cl intk . To avoid complex or statistical traffic 

simulations, as discussed in section 4, we propose two scenarios as criterion for the road: 

1. Entering the structure by a solitary vehicle that exerts the most extreme 

deflection. 

2. Allowing a series of equally distant vehicles with identical velocities to create 

instability to the structure. 

Based on these scenarios, simulations are repeated with different designvelocities, 

beginning at 80 and ending at 120 km/h. 

 

9.4.1 Reference model verification  

Preceding the parameter study, we must realize the importance of a verified reference 

model. After verification, parameter quantities are much easier to be found. Because 

questionable representations of structural movements underlie the parameter quantities of 

the present reference model:  

 
20N � , 3.5iL m� , 3

/ 1.5*10cl intc Ns m�  and / 0cl intk N m� ,  

 

this verification need to be completed. A completion can be arranged via requirements 

denoted in subsection 9.1 but there is no guarantee that it works. In order to meet these 

requirements, displacements are less important, but angles and acceleration all the more. 

In formula form, we must satisfy: 

 

max,

max

c ca a

� �

�

�
             (9.9) 

 

in which ca  and �  are the vertical deck acceleration and the deck gradient, respectively. 

max,ca and max�  represent the upper bounds for both measures, that depend on the 

(design)velocity. ca  and �  will be calculated with Matlab trough � �t,y  , output of the 

ODE23-solver. The corresponding code can be found in Appendix V3. In the Matlab output, 

�  appears at uneven entries in the displacement vector y  but for ca  an extra 

transformation is required to the matrix equation of motion: 

 

� �t� � �My Cy Ky F�� �         (9.10) 

 

Dividing the LHS and RHS of the equation by M  (or multiplying by -1M ) and making y��  

free in the LHS, we obtain from equation 9.10: 
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� �� �t� � � �-1y M Cy Ky F�� �         (9.11) 

 

in which the matrices M , C  and K  are known and the vectors y�  and y  and � �tF  are 

previously determined per time step. Hence, ca  appears on even entries in the 

acceleration vector y��  and applies to the centre of gravity of each body. Inside the force 

vector � �tF , vehicle characteristics must be replaced by design vehicle characteristics.  

 

Far away from waypoint 15, 9 and 1, in 3.5x m� , unstable behaviour for 30 km/h is  

generated as can be seen in figure 9.15. Furthermore, the reference model turns out to be 

impractical too; with / 0cl intk N m�  and letting /cl intc  further increase, accelerations and 

displacements will continue in time. This is obviously a complete nonsense. From a 

practical point of view, /cl intk  will be upgraded to a minimum of 34 *10 N m  in order to 

get rid of instability throughout the system. Graphical results pertaining to 51*10 N m
 
are 

shown in figure 9.16 for a clear confirmation. 

 

With a new reference,  

 

20N � , 3.5iL m� , 3
/ 1.5*10cl intc Ns m�  and 3

/ 4 *10cl intk N m� ,  

 

the demand for safe and comfort accelerations max,c ca a�  is effectively satisfied.  

 

 

 

 
Figure 9.15 simulation with x = 3.5 m and c = 30 km/h 
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9.4.2 Entering structure with single vehicle 

Simulations with 80, 100 and 120 km/h will complete simulations with 30 km/h. Outcomes 

associated with 30 km/h will be used as reference for simulations with 80 km/h and until 

120km/h, the procedure will be repeated. Complying for economical and technical feasible 

solutions, the following strategy holds: After a miscalculation, we start evaluating /cl intc  

(or /cl intk ) and only when attempts are no longer successful, we move on to 2,19L . The 

remaining lengths together, denoted as � �� �| 1,20 3 18iL for i i i� � � �  will be evaluated 

when 2,19L  gives no satisfying results anymore. As a matter of fact, manipulation by 

distributed parameters over the joints and 1,20L  as ‘tuning tools’ are determined to be 

unsuccessful, as can be seen in Appendix VI. For each simulation, just one parameter 

differs from the reference model. 

 

There is a 8.4 seconds-lasting-contact between vehicle and structure, when driving 80 

km/h. On this interval, from figure 9.17 it can be seen that conditions have been stabilized 

at the entrance of the structure. 

 
Figure 9.16  simulation with 5

/ 1*10cl intk N m�  , x = 3.5 m and c = 30  km/h 
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In figure 9.18, 4 graphs have been plotted with /cl intc  and /cl intk  versus quality measures 

ca  and � . It can be noticed that acceleration ca  gradually increases when /cl intk  increases 

and that there is no significant decrease until /cl intc  increases. Angle � , on the other hand, 

gradually decreases everywhere in the graphs and furthermore it comes nowhere close to 

the upper bound of 1.8 degrees. It seems sufficient to upgrade /cl intc  to 51*10 Ns m
 
in 

order to meet the requirements and to get rid of unrealistic stabilized conditions as well.  

 

 
Figure 9.17  simulation with  x = 3.5 m and c = 80 km/h 

 
Figure 9.18 simulation with 7 different values for /cl intk  and /cl intc  when c = 80 km/h 
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The simulative output belonging to 100 km/h resembles the 80 km/h output quite well, but 

since requirements are tightening up, new simulations must follow. Focussing on 

accelerations in figure 9.18, through /cl intk , we are able to tune the structural stability and 

no longer the vertical accelerations. Through /cl intc , we are able to tune accelerations 

although there is no much room for tuning. Accelerations increase only when /cl intc  

exceeds 54 *10 Ns m  and therefore a significant drop must come through 2,19L . 

 

It is important to realize that pontoon stretching involves extensive computation due to 

correlation between body length and added mass and body length and fluid damping.  

 

For a couple of iL quantities, fm and dc  are determined and resembled in figure 9.19. The 

second row in figure 9.20 underlines the success of this measure; when 2,19 5L m� , 
20.65ca m s� . Further optimization ensures that 20.65ca m s�  can be achieved by a 

combination of 5
/ 4 *10cl intc Ns m�  and 2,19 4L m�  and a new reference embodies the 

parameters:  

 

20N � , � �3.5 | 1,20 3 18iL m i i i� � � � � , 2,19 4L m�  5
/ 4 *10cl intc Ns m�  and 

3
/ 4 *10cl intk N m� . 

 

 

 
Figure 9.19 added mass and distributed damping relative to the body length iL . In the right bar      
                          graph, blue and magenta represent the closed and intermediate body values, resp. 
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Even with 120 km/h on the clock, surpricingly similar results are obtained compared to 100 

km/h. Once again, new simulations must be employed because of new requirements. 

 

Since 20.45ca m s� , there is no room to manoeuvre for both /cl intk  and /cl intc  and 

therefore we fully count on iL . Tuning iL  is most efficient when accelerations in the 

system do not vary too much from each other, what can be maintained by respecting the 

following relationship between 2,19L  and iL : 

 

 � �2,19 1 | 1,20 3 18iL L m i i i� � � � � �       (9.10) 

 

Figure 9.21 proves that ,maxc ca a�  is true as long as � �2,19 5.5 4.5iL m L m� �  making an 

average body 1.5 times longer. The dashed line proves that accelerations halfway the 

structure stay close to the critical extremes due to the body stretch. Figures 9.22 and 9.23 

separately display the critical responses for: 

 

20N � , � �4.5 | 1,20 3 18iL m i i i� � � � � , 2,19 5.5L m�  5
/ 4 *10cl intc Ns m�  and 

3
/ 4 *10cl intk N m� . 

 

in case of 120 km/h and 30-100 km/h, respectively. 

 
Figure 9.20 simulation with 7 different values for /cl intc  and 2,19L  when c = 100 km/h    

 
Figure 9.21 simulation with 5 different values for 2,19L  when c = 120 km/h    

                           ( � �2,19 1 | 1, 3 2iL L m i i N i N� � � � � � �  
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Figure 9.22  simulation with  x = 4.5 m and c = 120 km/h 

 
Figure 9.23  simulations with  x = 4.5 m and c = 30, 50 80 and 100 km/h 
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Two final observations should be made in response of the figures 9.22 and 9.23 : 

1. new parameter quantities minimizes the system’s maximal mutual 

displacement to just 3 to 4 mm for 120 km/h! The discontinuities in the 

system’s horizontal alignment do not hinder a solitary vehicle, but still can be 

annoying for following vehicles. 

2. in the oscillatory course of accelerations, sharp peaks loom up as discordant 

notes. Per plot, 4 of them are noticeable; the fist one occurs when front wheels 

releases the first and enters the second pontoon and the second one follows 

from the back wheels. Two secondary peaks represent the responses that 

belong to releasing the second and entering the third pontoon. The higher the 

velocity becomes, the narrower the peaks are and consequently for large 

values of c their influence may be neglected. In case of low velocities, 

however, the peaks are wide enough to make themselves felt, but they do not 

exceed the bounds anymore.  

 

9.4.3 Resonance by multiple vehicle 

Resonance, characterized from nuisance to seriously hazardous, can be developed when 

frequencies through an external load (excitation frequencies) come close to (one of the) 

eigen frequencies governed by the multibody system. It develops through magnitude as 

well as cyclic appearance of an external load, becoming in-phase with the (harmonic) 

movement of the structure itself. A cyclic appearance can be simulated by taking a(n) 

(infinite) series of equally distant vehicles with identical speeds to exert to the multibody 

system. The vehicle’s mutual distance (md ) and velocity c  are then key parameters in 

computation because these determine the critical frequency. Apart from this, the length of 

the structure is important to create enough space for many vehicles to govern the 

‘undesired’ instability. Critical frequencies are complex eigen frequencies with a negative 

real part. One eigen frequency out of 38 (76 including complex conjugates) fulfils this 

condition: 

 

0,19 0.010 2.799i� � � �   

 

What implies that when vehicles passes every 2 2.799 2.24s� � , there is a chance to 

generate resonant behaviour. Hence, per (design) velocity, all critical values for md can be 

defined and figure 9.24 shows the results thereof:  
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Velocity c [km/h] Critical mutual distance md [m] 

30 

50 

80 

100 

120 

18.7 

31.2 

49.9 

62.3 

74.8 

Figure 9.24 table with values for critical mutual  

                          distance 

 

Using Matlab codes in Appendix V.3, plots as made in fig 9.25 – 9.28 for different places 

and velocities evidently show the presence of resonance in this situation. Via cyclic 

appearance, apparently, these vehicles are able to exhibit forces that are big enough to 

transfer the energy for resonance too.  

    

 
 

 
Figure 9.25  simulation with  , x = 4.5 m, md = 74.8 m  and c = 120 km/h 
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Figure 9.26  simulation with  , x = 4.5 m , md = 18.7, 31.2, 49.9, 62.3 m and c = 30, 50, 80 and  

                           100 km/h 

 
Figure 9.27  simulation with  , x = 41.5 m, md = 74.8 m  and c = 120 km/h 
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After simulating virtual resonance under predetermined conditions, the question arises if 

resonance will occur in real time situations under the same conditions.  

 

In section 2, we noted that hazardous oscillations can occur in floating bridges when these 

structures are induced by various types of repetitive occurring dynamic loads. Until the 

time that this particular question can be answered, we can only refer to comparative 

research or other experience.  

 

Nevertheless, if resonance takes place under all circumstances, what could we do for 

safety? From a technical point of view, ‘shifting’ the system’s eigenfrequency outside the 

bounds of the excitation frequency can be attempted first. Bounds can be found in 

distances which are theoretically unrealizable for passenger cars or which are unpractical 

for humans to survey. A second attempt is perhaps trying to diminish (acceleration-) 

amplitudes, what could be enough for safety too. To find out – if and to what extent – the 

eigenfrequency anticipates to (one of the) ‘tuning tools’ we make use of a so-called 

Frequency-domain response analysis. We will treat this analysis in section 10 and therefore 

we come back to all of this later.  

 

Besides technical measures, informative measures may also be undertaken. One could 

think for example of warning systems but these are quite expensive and therefore not as 

indispensable as they look like at first sight.  
 

 
Figure 9.28  simulation with  , x = 41.5 m , md = 18.7, 31.2, 49.9, 62.3 m and c = 30, 50, 80 and  
                           100 km/h 
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9.5 Configuration of joint 

Joints are physically the most important elements in the thoroughfares design. If a 

thoroughfare is safe for traffic depend – especially for 80c km h� - on how the joints are 

performing. Designers from XX-architecten managed to design a functional and esthetical 

sound version of them, but with this typically temporary character. This was laid down in 

rules and elaborated in design principles.  

 

In the design process for permanent joints, principles must be abandoned and others must 

be developed. For permanent purposes, basic principles as simplicity, ability to a fast 

(de)coupling and reliability are very valuable for joints; their number becomes in 

numerous when a road is many times longer than the prototype. 

 

As constructor, we limit ourselves to provide the technical data for the (preliminary) 

design. the data contains all the maximum forces that occur in the joints due to relocation, 

the same forces we discussed in subsection 9.3.2. The magnitude of these forces can be 
determined by regrouping equation 5.7 and 5.13 around joint j  and omitting all 

hydrodynamic parameters:  
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     (9.12) 

 
j
kF and j

cF are force vectors composed from reaction forces in the damper and (material) 

stiffness of joint j  due to translation and rotation of adjacent bodies. The forces are time-

dependent variables and only the maximum values are important. Therefore vector 

expression 9.12 must be reduced to a scalar expression: 
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j j
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          (9.13) 

 

For controlling safety and comfort, besides the forces, also the maximum internal 

displacement per joint will be determined. This can be done by a consideration of mutual 

body displacements, as illustrated in subsection 9.3.2. Analogously, we write:  
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(9.14) 

 
And for the same reason the maximum internal displacement per joint reads: 

 

 � �
max

j j
maxw w� � �          (9.15) 
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Figure 9.29 maximum joint forces and internal displacments 

 

Figure 9.29 evaluates the maximum forces acting on all joints as result of vehicle 

movement. What immediately catches the eye is a force concentration near the entrance 

of the structure in contrast to a monotonous course in the field. This confirms that the 

right decision is made about one of the two critical scenarios proposed for the parameter 

study: the impact at the entrance.  

 

Large forces implies large internal displacements. The corresponding maximum internal 

displacements in all joints are just 2 mm on average, but with 8mm of deviation in case of 

30 km/h. This is typically for the second joint since the second pontoon is longer than its 

neighbours and thus governing a stronger pitching motion than its neighbours as well.  
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10 Frequency-domain response analysis 
 
With the frequency-domain response analysis, the amplitude of the steady state output of 

a system as a function of the input frequency can be determined. The objective is to 

examine the critical input frequency, elaborated in section 9, and measures that are 

effective (tuning tools) in affecting the quantity and (acceleration) amplitudes attributed to 

this frequency.  

10.1 Multiple vehicle: approximated accelerations of the deck 

As stated in section 6, the complex modal analysis must be applied for the calculation.  

 

The equations of motion gives: 

 
 � �t� � �My Cy Ky F�� �          (10.1)  

 
Where M ,C  and K  are 2 2N �  -by- 2 2N �  matrices and y  and F  are 1 –by- 2 2N �  

vectors. � �tF  is approximated by the harmonic function: 

 

 � � � �ˆcost t��F F          (10.2) 

 

with F̂  as amplitude what describes the repetitive character when a sequence of equally 

distant vehicles are involved. Proceeding with equality signs only, the harmonic force can 

also be written as the real part of a complex function, with complex amplitude: 

 

 � � � � � � � �ˆcos cos Re i tt t e �� � � �� �� � � �F F F       (10.3) 

 

 The particular solution to equation 10.1 equals: 

 

 � � � � � �� �cost t� � � �� �y y         (10.4) 

 

Or in the form of the real part of a complex function with complex amplitude: 

 

 � � � �Re i tt e ��� �� � �y y          (10.5) 

 

We will simplify the nomenclature by omitting the symbol Re  and - at the end of the 

operation.- the imaginary part is disregarded. Substituting equation 10.3 and 10.5 into 

10.1 yields: 

 

 � � � � � � � �2 i t� � � � �� � � �My Cy Ky F       (10.6) 

 

which is the force displacement relationship expressed in complex amplitudes. With the 

dynamic-stiffness coefficient � �yF �S , equation 10.6 changes into: 

 

 � � � � � � � � � �2
yFt i� � � � �� � � � �F M C K y S y      (10.7) 
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With the dynamic –flexibility coefficient or transfer function � � � � 1

yF yF� �
�

H = S , the 

maximum real amplitude follows from: 

 

 � � � � � �yF� � �y = H F          (10.8) 

 

Because a synchronic force is applied (see equation 10.2), the phase angles are zero and 

consequently equation 10.8 can be written as: 

 

 � � � � � �yF� � �y = H F         (10.9) 

 

Now, the transfer function for the synchronic force � � � �ˆcost t��F F  is acting on all 

degrees of freedom and not fixed in one point, so:  
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2 2

1
i i

N

yF y F
i

� �
�

�
�H = H         (10.10)  

 

expecting the central body in the system to give the striking results. Actually, we are 

interested in the acceleration of the structure, more than the displacement. Therefore the 

amplitude of the acceleration can be derived by the amplitude of the displacement by 
taking the derivative to t  twice: 

 

  � � � � � �2i t i td
t e e

dt
� �� � �� � �y y y��        (10.11) 

 

Now the amplitudes of the accelerations becomes: 
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Conform equation 10.9, the transfer function for the acceleration is: 
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The transfer function is determined with the Matlab code of Appendix V.5 and distinguished 

graphically by phases in the parameter study (figure 10.1) – in which the effect of /cl intc  

and /cl intk  is noticeable - , by the number of bodies (figure 10.2) and various body lengths 

(figure 10.3) to serve the objective of this section.  
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Figure 10.1 validates the critical input frequency value of 2.8rad s  as the only critical 

frequency in the system. The transfer function behaves very consistent to the ‘tuning tools’ 

concerning the frequency, accept for 2,19L ,which is responsible for the step from 3.2rad s  

to 2.8rad s . However, the effect is so small that the problem is shifted rather than solved, 

returning to the ‘safety problem’ in subsection 9.4.3. A small arithmetic sample to illustrate 

this:  

 

 
Figure 10.1  transfer function applied to different phases in the parameter study 

 
Figure 10.2 transfer function of the multibody system (verified model) of the acceleration of the deck 
                          by a synchronic load on all bodies.  

 
Figure 10.3  transfer function of the multibody system applied to a different body length        

                          � �� �2,19 1 | 1,20 3 18iL L m for i i i� � � � � �  
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2,19 5.5 9.5L m m� �  yield 2.8 2.16rad s rad s� � �  according to figure 10.3. The 

vehicles critical distance md  shifts from 49.9 meter to 64.6 meter for 80 km/h, what 

approximates the initial value for 100km/h, see figure 9.24.  

 

Concluding this attempt, it is quite unlikely with these tools to realize system improvement 

as such that the critical input frequency ‘shifts’ to outside the bound of ‘technical feasibility’ 

and ‘human capability’, as was noted in subsection 9.4.3. ‘Shifting’ is therefore out of the 

question.  

 

In contrast to the consistent behaviour concerning the frequency, the transfer function 

behaves quite inconsistent to the ‘tuning tools’ concerning the maximum (acceleration) 

amplitude and 2,19L , once again, is giving the best results. Suppressing the (acceleration) 

amplitude to gain more time for drivers to adjust their speed can be the most valuable 

solution for the time being. In the verified model, however, there is theoretically no margin 

in the vertical acceleration for 120 km/h, see figures 9.22 and 9.25. Still, 
2,19 5.5 6.5L m m� �  already ensures a � �4 31 7*10 2.8*10 *100% 75%� �� �  amplitude 

reduction, according to figure 10.3. This implies that a maximum of 21.8m s devaluates to 
20.45m s , what gives more time to anticipate than the simulation time in the figures. 
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11 Conclusion and recommendations 
 

11.1 Conclusions 

� Displacements in the vertical plane dominate the deformation in the multibody 

system. The choice for a rigid multibody system is therefore justified. It is 

important to realize that calculated displacements are maximum displacements 

since traffic is schematized as (a series of) moving concentrated loads 

� The natural mode is governed by the fluid whereas the higher modes exist because 

of the joint mechanism with vertical dampers and springs.  

� The computational model is only semi feasible for validation since its virtual joint 

mechanisms exhibit a different behaviour with respect to the prototype 

mechanisms. Validation is justified if and only if fluid properties are considered. 

The wave diffraction approximation, describing the fluid motion, responds quite 

realistically, even when approximation is taken to extremes with intuitively 

obtained damping parameters.  

� The free vibrations in the system are mainly damped by the hydrodynamic 

properties of the system. By tuning structural properties, the system can be made 

less sensible for unstable behaviour and internal joint displacements can be 

limited.  

� The forced vibrations and vibrating accelerations in the system are effectively 

controlled by structural properties as joint properties and the body length. If the 

structure is built out of 4.5 metre long elements, while each connection between 

the elements can handle a maximum force in the order of 40 kN, it is even safe 

and comfortable to drive 120 km/h. 

� Resonance can occur through the hydrodynamic properties of the system. Allowing 

a series of equally distant vehicles to the system all forces together will provide 

enough energy to generate resonance. The critical mutual distance between 

vehicles is executable in reality, but there is no danger, since there is enough time 

for a driver to respond to a hazardous situation. 

� The spectral analysis and the simulations in the time domain will give almost the 

same results.  

 

11.2 Recommendations 

� The prototype joint mechanism should replace the joint mechanism in the 

multibody system to improve model verification. 

� Improvement and further elaboration of the wave diffraction approximation which 

takes into account the fluid viscosity. In reality, there will be mud as much as 

water on the site what is better in attenuating the structural movement. Mud will 

stick to the structure to some extent. 

� The structure has a relatively small density with 102.5 kg/m3. A larger density 

(mass) leads to smaller vibrations and accelerations, but also to higher 

transportation costs. This problem can be avoided by the intake of fluid in the 

structure, what gives a bigger mass only in its final position. Not only the pontoon 
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mass can be reduced, it has the benefit of an extra damping property since 

parametric damping can occur.  

� Tests should be extended to include heavier vehicles like trucks.  

� It should be examined if a horizontal and lateral motion will be of consequence.  
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I Description and characteristics of the prototype 
 

The prototype was tested in Hedel and consisted of floating aluminium units (pontoons) 

with joints at both ends to facilitate connection to neighbouring units. Each of the floating 

units has dimensions of  3.5m x 5.4m x 1.6m (length x width x height) and has a weight of 

3100 kg. Extra units can easily been inserted. Special attention was paid to the joints, 

which were executed as row locks with a fixate-facility to keep the locks into position. 

 

 
Figure I.1 photograph of prototype in Hedel 

 

The fixate-facility gives extra stiffness to the joints in order to exhibit smooth transitions 

under different circumstances. Between end-unit and land a special ‘land-flap’ 

(aanlandingsklep) was placed; at the unit-side connected as a fixed hinge and the 

landward-side as a sliding hinge. As a result of this, no ‘unwanted forces’ can enter the 

structure. Measurements to the prototype were executed under normal conditions (traffic 

and current perpendicular to the structure of 1 m/s) and under special conditions where 

the structure is also exposed to (spectral) waves and wind pressure. These measurements 

required extra equipment as mooring piles and external floats. Mooring piles must provide 

its horizontal fixation. External floats provided more stability and protected the deck from 

spilling water during a wave attack.  

 

The total length of the structure, including the ‘land-flaps’, was 70 metres. The total width 

was 8.6 metres and near the land-flaps 10.45 metres.  

 

Only passenger cars (weight: 2 tons, max. velocity: 80 km/h), an incidental vehicle from 

the emergency service (weight 8-10 tons, max. velocity: 30 km/h) and pedestrians were 

allowed to make use of the passage.  

 

Deflections, stresses and its dynamic behaviour were recorded by TNO Bouw en 

Ondergrond, while TNO Voertuigtechniek collected data from the vehicles to determine the 

comfort level. Regarding the comfort level, a maximum vertical acceleration of the deck of 
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1/10 of the gravitational acceleration and a maximum angle of rotation of 5 degrees were 

predefined. With regard to the maximum angle of rotation the designers maintained the 

Dutch standard for designing ‘conservative’ non-highway structures (RONA) for traffic with 

maximum velocity of 80 km/h. The prototype met all demands of safety and serviceability.  

 

 
Figure I.2 photograph of prototype with test vehicle 
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II Derivation of body stiffness and – damping matrices 
 

The aim is to find a relation between force and displacement or velocity of each body that 

can be expressed in respectively a body stiffness or - damping matrix. Since we consider 

infinitesimally small displacements, the system becomes linear and the so called 

displacement method [2] can be applied. In this case, the displacement method offers a 

quick and stable alternative for determination of elementary matrices with respect to the 

method based on Lagrange’s equation of Appendix III.  

 

The derivation process starts with drawing the system in two different positions per body 

in which in turn one degree of freedom is assumed positive while the others were hold 

fixed. This implies that they are zero. The external forces can be derived and after 

balancing them we immediately write the Newton-Euler equation for each body: 
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The body matrices for both stiffness and damping can be composed from: 
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    (II.3) 

 

Equation II.2 and II.3 show that the degree of freedom of body i  only affects the 

degree(s) of freedom of the body that is directly attached to it, body 1i  and 1i . Figure 

II.1-8 visualizes the displacement method as explained above for all (generalized) bodies.  
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Figure II.1 kinetic force of body 2 and kinematical forces affecting the vertical (l) and angular  

                          (r) degree of freedom of body 1 

 

 
Figure II.2 kinetic force of body 3 and kinematical forces affecting the vertical degree of  

                          freedom of body 2 

 

 
Figure II.3 kinetic force of body 1 and 3 and kinematic forces affecting the angular degree of  

                          freedom of body 2 
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Figure II.4 kinetic force of body i-1 and i+1 and kinematical forces affecting the vertical degree of  

                          freedom of body i 
 

 
Figure II.5 kinetic force of body i-1 and i+1 and kinematical forces affecting the angular degree of  

                          freedom of body i 

 

 
Figure II.6 kinetic force of body N-2 and N  and kinematical forces affecting the vertical degree of  

                          freedom of body N-1 
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Figure II.7 kinetic force of body N-2 and N and kinematical forces affecting the angular degree of  

                          freedom of body N-1 

                       
Figure II.8 kinetic force of body N-1 and kinematical forces affecting the vertical (l) and angular  

                          degree of freedom of body N 
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III Validation equation of motion; derivation via Lagrange’s 
equation 
 

Since the direct application of Newton’s second law becomes difficult when large scale 

bodies are considered, the introduction of D’Alembert’s principle and the Lagrange’s 

equation to derive the dynamic equations of motions is almost indispensable. In contrast 

to Newton’s second law, the application of Lagrange’s equation requires scalar quantities 

such as the kinetic energy, potential energy and virtual work. However, if all motions may 

be considered as infinitesimally small and all springs in the system as linear, what is to 

some extent well accepted, also the direct application of Newton’s second law requires 

scalar quantities as independent external forces, as shown in section 2 and II.  

The aim of this section is to derive the dynamic equations of motion via a vector analysis 

containing the Lagrange’s equation as an consistent tool for verification purposes.  

 

III.1 Rigid body Mechanics, Kinematics and Dynamics 

The configuration of a body in the two dimensional system need four independent 

coordinates, i.e. two coordinates for translation and two coordinates for the orientation of 

the body. These coordinates are called generalized coordinates. In the coordinate system, 

1 2X X  is denoted as the axes of the inertial frame fixed in time and 1 2
i iX X as the axes of the 

global frame of reference fixed in the origin of body i . (we explicitly use the vector 

notation 1 2X X  instead of the Cartesian coordinates xy ) Now, by introducing vectors 

(including properties) between the frames and the body i  mechanics, kinematics and 

dynamics of a rigid body can be described. 

III.1.1 Mechanics / Kinematics 

 

 
Figure III.1 body coordinate system 
 

The global position of an arbitrary point ip  on the body i  can be defined (figure III.1) as: 
 

i i i� �r R u            (III.1) 
 
 
 
Where:  
ir :  global position of point ip  
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iR :  position vector of the origin io of the body reference 
iu :  position vector of point ip in the body coordinate system 

 

Unlike deformable bodies, the distance between io and ip  remains constant during the 

body motion i.e. iu  is constant in time. Now sticking to the inertial reference this vector, 

however, need to be transformed to the inertial frame. This can be obtained by developing 

a transformation matrix iA : Firstly, i�  is introduced as the angle that describes the body 

orientation and secondly unit vectors need to be sketched in both frames. The relation 

between the unit vectors in both frames now determines the matrix, as shown in equality 

III.2:  
 

1 1 2

1 22
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sin cos sin cos
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A      (III.2) 

 
For infinitesimal rotations variant matrix iA can be derived as follows: 
 

sin cos sin 1
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A      (III.3) 

 
Equation III.1 after transformation becomes: 
 
 i i i iu� �r R A           (III.4) 
 
Where: 
iA :  rotation matrix for body i  
iu :  position vector of point ip  in the body coordinate system 

 

Position vector iR  and angle scalar i�  describes respectively the body translation and 

orientation. These coordinates, also called generalized coordinates, can be used to describe 

the body configuration i.e. the position, velocity and acceleration in an arbitrary point on 

the body i . i
rq  represents the vector of the generalized coordinates. i.e.: 

 

 1 2

Ti i i i
r R R �� �� � �q          (III.5) 

  
Where: 

1
iR :  position of the origin io of the body reference in 1X  direction 

2
iR :  position of the origin io of the body reference in 2X  direction 
i� :  angle that describes the orientation of the body (or angle between 1X  and  

1

iX ) 

 

The position vector as described above has been determined already as vector ir . See 

equation III.4. In order to obtain the velocity vector a simply differentiation of equation 

III.4 with respect to time will hold. This yields: 
 
 i i i i iu� � �v  r R A� ��          (III.6) 
 
Where:  
iv :  velocity vector of point ip  
iR� :  velocity vector of the origin io of the body reference 
iA� :  rotation matrix for body i  differentiated with respect to time 

 



III Validation equation of motion; derivation via Lagrange’s equation 

   

The definition of i� , the angular velocity vector of body i , reads; 
 
 3

i i i� �� i�           (III.7) 

 
Where: 
i�� :  angular velocity of body i  with respect to io  

3
ii :  unit vector that passes through point ip and is perpendicular to 1

ii  and 2
ii  

 

By differentiating equation III.6 with respect to time , an expression for the acceleration 

vector can be obtained in terms of the coordinates i
rq  and their derivatives after 

introducing the equality � �i i i i i i iu u� �� � � �A A u�  to rewrite equation III.6, as follows:  
 
 i i i i i i i� �� � � � � �a v  R u u��� ��        (III.8) 
 
Where: 
ia :  acceleration vector of point ip  
iR�� :  acceleration vector of the origin io of the body reference 
i�� :  angular acceleration of the body i  
iu� :   velocity vector of point ip  

 
If the angular acceleration vector i� of body i  will be denoted as: 
 
 3

i i i� �� i��           (III.9) 

 
Where: 
i��� :  angular acceleration of body i  with respect to io  

 

and we use the equality � �i i i i i i iu u� �� � � �A A u�  again, the acceleration vector of point 

ip  can be written in the familiar vector form as: 
 

 � �i i i i i i i� � �� � � � � �a R u u��        (III.10) 

 
Where: 
i i� �u : tangential component of the acceleration of point ip  with respect to io  

� �i i i� �� �u : normal component of the acceleration of point ip  with respect to io  

 

III.1.2 Dynamics 

The dynamic equations which will be derived by a vector analysis and by the displacement 

method are called Newton-Euler equations. The part that describes the translation of the 

body is called the Newton equations and the part that describes the orientation of the body 

is called the Euler equations. In this case of only vertical translation and orientation in a 

two dimensional space, the Newton Euler equation reduces to two scalar equations that 

can be written for body i as: 
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Where: 
im :  total mass of the rigid body i  

2
ia :   scalar that defines the vertical acceleration of the centre of mass of body i  
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iF :  scalar representing vertical forces acting on the body centre of mass 
iJ :  mass moment of inertia defined with respect to the centre of mass 
i��� :  angular acceleration of the rigid body i with respect to the centre of mass 
iM :  moment acting on the body 

 

As will be shown in the next paragraphs, the choice for the body reference to be the centre 

of mass of the body leads to significant simplifications in the form of the dynamic 

equations. Newton-Euler equations have no inertia coupling between the translational and 

rotational coordinates of the rigid body.  

 

III.2 Virtual work and generalized forces 

An essential step in the Lagrange formulation of the dynamic equations of the multibody 

systems is the evaluation of the generalized forces associated with the system generalized 

coordinates. In this section, the generalized forces (consisting of external forces, constraint 

forces and/or inertial forces) are introduced by application of virtual work, starting with a 

brief summary of virtual work. 
 

III.2.1 Virtual work 

Virtual work of a force is defined to be the dot product of the force with the virtual change 

in the position vector of the point of application of the force, in this case: arbitrary point 
ip on the body i . Coming back to the regular notation, the formula for virtual work of body 

i  yields: 
 
 i iT i

pW� �� F r           (III.12) 

 
Where: 

iW� :  scalar for virtual work of body i  
iTF :  (transposed) vector for external, constraint and/or inertial forces 
i
p�r :  virtual change in the position vector of point ip  

 

A transformation of the position vector to generalized coordinates can be obtained by 

application of the Taylor’s expansion: 
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Where: 

i
p

jq

�

�

r
:  derivative of the position vector with respect to its generalized coordinate 

jq� :  virtual change in the position vector of point ip expressed in generalized  

coordinates 
 

III.2.2 Generalized forces 

Generalized forces denotes all forces in a point that ‘causes’ the change in position of that 

specific point associated with its generalized coordinates. Making a next step toward the 

formulation of the dynamic equations, the principle of virtual work can, for this moment of 

analysing, be used to derive an expression for the generalized forces. 
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Considering dynamic equilibrium the resultant of the forces acting on a rigid body is equal 

to the rate of change of momentum of this body. i.e.: 
 
 0i i i ior� � �F P F P� �         (III.14) 
 
Where: 
iF :  sum of forces acting on the body i  
iP� :  rate of change in momentum of the body 

according to Newton’s second law. The dynamic equilibrium implies that the virtual work of 

all bodies together is zero, so from equation III.12 and III.14 we obtain: 
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0 0
N N

i i i i i i i
e c
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Where: 
N :  notation for the total number of the bodies 
i
eF :  vector containing the sum of the external forces 
i
cF :  vector containing sum of the constraint forces 

 

 
Figure III.2 spring-damper element as generalized force 

 

 
Figure III.3 buoyancy as generalized force 
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Figure III.4 traffic as generalized force 
 

By writing down the second term in equation III.14 with a dichotomy in the vector force, 

we emphasize that there is a structural difference between external forces and constraint 

forces. External forces, composed of traffic forces and buoyancy forces, are independent 

forces with respect to all remaining bodies in the multibody system and constraint forces 

(joint forces) are not independent. A second reason implies the difference in assigning 

point P  for the determination of virtual work. Initially, N  equations representing the 

external forces and 2 2N �  constraint equations will be obtained. But extended 

computation, however, will eliminate 2 2N �  constraint equations to N  constraint 

equations, but this will be treated in the next section.  

 

After substitution of equation III.15  into III.13 we obtain the so called D’Alembert’s 

principle: 
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by defining jQ to be all generalized forces affecting body j , the result yields: 
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Where: 

TQ :  (transposed) vector of generalized forces of the total multibody system. If  
the components of the vector of generalized coordinates is independent,  

0T �Q  
 

III.3 Kinetic energy and Lagrangian dynamics 

In this section, D’Alembert’s principle associated with the principle of  kinetic energy will 

pass the review. 

 

III.3.1 Kinetic energy 

Kinetic energy is per definition energy in a motion produced by forces. The kinetic energy 

formulation in the Lagrange’s equation can directly be derived form the balance of 

momentum, based on Newton’s second law: 
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 i i im F dt�r�           (III.18) 
 
Where: 
dt :  time step covering the balanced space or area 
 

Introducing a graph with iF dt on the vertical and ir�  on the horizontal axis the function will 

show a straight line for im  starting in the origin. Define iT  as the area beneath the 

function and the expression for kinetic energy reads: 
 

 
1 1
2 2

i i i i iT iT F dt m� �r r r� � �         (III.19) 

 

III.3.2 Lagrangian dynamics 

We define ir  to depend on a set of system generalized coordinates and time! Following the 

procedure from the preceding section of virtual work and generalized forces, we continue 

with rewriting the component of the generalized force associated with the generalized force 

for just one body: 
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The virtual work of the inertia force in equation III.12 can be rewritten for all inertia forces 

as: 
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Deductive computation, using expressions for kinetic energy (III.19), for D’Alemberts 

principle (III.20) and virtual work (III.21) including differentiation properties for ir��  in 

equation III.21, lead to the next expression for equation III.16, i.e. the D’Alembert’s – 

Lagrange equation [1]: 
 

 0j j
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Q q

dt q q
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       (III.22) 

 
 
If the generalized coordinates jq  are linearly independent, equation III.22 reduces to the 

Lagrange equation, which is given by: 
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        (III.23) 
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III.4 Derivation of the equations of motion using Lagrange’s equation 
 

 
Figure III.5 rigid multibody system for Lagrange formulation 
 

Thus far, the focus lies primarily on the theory of physical principles like mechanics, 

kinematics, virtual work, kinetic energy, etc. This section will be attributed to the system 

characteristic elements in the Lagrange equation, like the mass matrix of the rigid bodies 

and the implementation of the generalized forces. Figure III.5 shows the complete rigid 

multibody system for the Lagrange formulation. 

III.4.1 Mass matrix of rigid bodies 

Due to the difference in body rotation a different approach is required in the vector 

analysis concerning the mass matrices of rigid bodies. However, if the origins of the body 

references are attached to the mass centre of each body, simplified calculations can be 

performed; For both cases, closing and intermediate bodies, elimination of the inertia 

coupling becomes valid between the translation and the rotation of the body reference.  
 
The derivation of the mass matrices begins with rewriting the velocity vector of ip  
(equation III.6) as follows: 
 

i i i i i iu �� �r R A G�� ��          (III.24) 
 
Where: 

iu� :  skew matrix in which the integers denotes position of point ip  in the body  
coordinate system. 

iG :  matrix in which the integers denote the directional (unit) vectors. 
 
In addition, the latter term in equation III.6 was transformed as follows: in the equality  

� �i i i i i i iu u� �� � � �A A u�  from equation III.8 the cross product was replaced by a product 

of a skew matrix and a vector: � �i i i i i i i i i i iu u u u� � �� � � � �A A A A �� �  where, per definition 
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G . Thereby showing that the mass 

only rotates along the third axis. 
 

In partitioned form the velocity vector can be written for two different types of bodies as 

follows: 
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Where: 

30 :  3 x 3 null matrix, iR�  is zero because this length does not change in time 

3I :  3 x 3 identity matrix 

 

This expression can be substituted into equation III.19 in order to obtain an expression of 

kinetic energy as a product of the mass matrix and generalized velocity vectors: 
 

1
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Where 
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r �� �� � �q R  and  
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are subtracted from this expression, taking into account the rules of integration. One can 

verify that iM can be written as: 
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For � �|2 1i i N� � � , i
RRm  turns out to be a 3 x 3 mass matrix with integer im  on the main 

diagonal. im  denotes the total mass of the body i . the matrix i
Rm � which represents the 

inertia coupling between the translation and rotation of the body reference is zero for all 

cases because iu�  represents a skew matrix (no integers on the main diagonal) that implies 

the null matrix when it comes to integration with respect to the mass. It is possible to 

rewrite the integral in the equation for im�� , which yields: 
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 Where: 
 i

��I :  inertia tensor 
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i ji � :  mass moments of inertia 

 i ji � :  products of inertia 

 
During elaboration, we can encounter the following steps: 
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Substitution of above characters in the inertia tensor yields: 
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Substitution into equation (III.32) yields: 
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Defining the mass matrix M  of the total multibody system to be the sum of N  

independent iM matrices, we denote: 
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Where: 
iJ :  mass moment of inertia corresponding with scalar or integer from equation  

III.35 for body i .  
im :  mass of the body corresponding with the scalar or integer from equation  

III.29 representing the vertical motion 
 

III.4.2 Generalized forces 

Generalized forces are distinguished by their nature; Constraints versus non-constraints. 

Within the non-constraints we separate foundation related forces and traffic induced 

forces.   
  

III.4.2.1 Constraint or joint forces 

 

 
Figure III.6 illustrative example: derivation of the first joint force  
                          expressed in vectors 
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Joint forces will be characterized by spring-damper elements that interconnect the body 

elements. Realizing that a spring-damper element acts in a direction opposite to the 

direction of extension we may write virtual work due to joint forces affecting body i  as:  
  

� �1i ijT i i
p pW� � � �� � �F r r         (III.37) 

 
Where: 

iW� :   virtual work due to joint, constraint force j acting on body i . 
ijTF :   (transposed) vector of joint force j  acting on body i . 

� �1i i
p p� � ��r r :  virtual change in the position vector representing joint j . (located  

between body i  and its successive joint at the right hand side) 
 

Because damping and stiffness specifications of the joints (rowlocks) have not been 

measured in the pilot, no judgement is made about its performance. It is however the ease 

to (pre)suppose viscous damping and linear stiffness because of working with simple linear 

spring- damper elements and associated time-independent stiffness - and damping scalars 

or vectors, consequently. Rewriting ijTF as a product of the global position and global 

velocity vectors and substituting this into equations III.37, the expression for virtual work 

transforms into: 
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Where: 
jTk :  (transposed) stiffness vector representing the stiffness of joint j . 
jTc :  (transposed) damping vector representing the damping of joint j . 

 
In partitioned form equation III.38 can be written as: 
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Where: 
jTk :  stiffness vector in the body coordinate system. 
jTc :  damping vector in the body coordinate system. 

 

Writing virtual work in partitioned form makes subtraction of the expressions for the 

generalized forces easier, because: 
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Where: 
i T
RQ :  (transposed) vector of generalized forces associated with the generalized  

coordinate iR . 
i T
�Q :  (transposed) vector of generalized forces associated with the generalized  

coordinate i� . 
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In the model, the number of modified stiffness – and damping vectors (parameters) is 

limited to two; a distinction is made between intermediate joints and closing joints. We 

reject the number of modified joints to the number of inertial different body elements. To 

account for the differences between intermediate body elements / joints and closed body 

elements / joints we elaborate the vectors of generalized forces as follows:  
 

� �

� �

1

11 11 1 1 1 1 1
11

, | ,

1 ,
1

ii ijT jT i i i jT jT i i
ii

ii ijT jT i i i jT jT i i
ii

j -1T

i T
R

- u u i j i j

for i N
j N- u - u

-

�
��

�
��

�

�� �� � � � � �
��

�� � � �� �� �� � � �� � � � �� �� �� � � �� � �� �� � � �� �� � �
� � � �� � �� �� � � �� � �� � � ��� �� � � �� � � �� � �

�

�

RR
c c A G k k A

RR
c c A G k k A

c

Q

��
�

��
�

� �

� �

� �

1

1

1
1 1 1 1 1 1

1

ii ij-1T i i i j-1T j-1T i i
ii

ii ijT jT i i i jT jT i i
ii

i ij -1T j-1T i i i j-1T j-1T i i

i

u u

- u u

- u u

�
��

�
��

�
�

�

�

� �� � � � � �

�

� � � �� �� � � �� � � �� �� � � �� � � �� �
� � � �� �� � � �� � � �� �� � � �� � � �� �

� �� � �� �� � � �� �

RR
c A G k k A

RR
c c A G k k A

Rc c A G k k A

��
�

�
�

�

��
�

� �

11

1

11 11 1 1 1 1 1
11

, |2 ,
1i

i

ii ijT jT i i i jT jT i i
ii

i j i
for

j N

u - u

�

�
��

�

�

�� �� � � � � �
��

�
�
�
�
�
�
�
� �� �� ��
� �
� �
� �

�� ���
� � �� � �� � � ��� �� � ��� �� � � � ���
�� � � � �� �� � ��� �� � � �� �� � �� �� � � � �� � ��

R

RRc c A G k k A
��
�

 

� �

� �

1

1
1 1 1

1

111 1 1
1

i
jT i i jT i i i i i

i

iijT i i jT i i i i
i

i
jT i i jT i i i i i

i

iijT i i jT i i i i
i

i T

- u

u

- u

- u

� �

� �

� �

� �

�

�

�
�

�

�
�

�

�
� � �

�

��� � �
�

�� �� �� � �� �� � � � �� �
�

� � �� � �� �� �� � � �
�

� �� � �� �� � � �� �
� �� �
� �� �� � � �

�

R
c A u c A G A u

R
k A u k A A u

Rc A u c A G A u

R
k A u k A A u

Q

��
�

��
�

� �

� �

1

1

, | ,
1 ,

1

i
j-1T i i j-1T i i i i i

i

iij -1T i i j-1T i i i i
i

i
jT i i jT i i i i i

i

ijT i i jT i i i

i j i j
for i N

j N

- u

u

- u

u

� �

� �

� �

� �

�

�
�

�

�

�

�

�� ��
� � �� �� �
� � �� �� ��
�
�
�
��

� �� �� �� �� � � �� �
� �� � �� �� �� � � �

� �� � �� �� � � �� �

R
c A u c A G A u

R
k A u k A A u

R
c A u c A G A u

k A u k A A u

�
�

�

�
�

�

� �

1
1 1 1

1

111 1 1
1

1
1 1 1

1

1

i
i

i

i
j -1T i i j-1T i i i i i

i

iij -1T i i j-1T i i i i
i

i
jT i i jT i i i i i

i

jT i i jT i i

- u

u

u

- u

� �

� �

� �

�

�

�

�
�

�

�
� � �

�

��� � �
�

�
� � �

�

�

� �� � �� �� �� � � �
� �� � �� �� � � �� �
� �� �
� �� �� � � �

� �� �� �� �� � � �� �

R

R
c A u c A G A u

R
k A u k A A u

Rc A u c A G A u

k A u k A

��
�

��
�

� �
111 1
1

, | 2 ,

1

ii i i
i

i j i
for

j N

��
�

��� �
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��� �� �� �� �� �� �� �� �� ��� � � �

� �� � ��
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� ��� � �� ��� � �� � � �� ��

R
A u

  (III.41/42) 

 

The last step in derivation encloses the transformation of partitioned vectors and matrices 

into scalars to obtain simple scalar equations.  
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Joint forces are acting in vertical direction in the global frame and difference is required for 

intermediate and closing constraints, so: 
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Assuming an infinitesimally small size of the joint, the expressions for the generalized 

forces become purely functions of its generalized coordinates. If we apply: 
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consequently, we find for the position vector of point iP , denoted in equation III.4: 
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to be scalars that are constant in time for rigid bodies. 

Thus far, we derived expressions for virtual work for each element, affected by constraint 

forces from spring-dashpot elements. Taking into account all constraint forces, we must 

apply two more forces acting at the fixed positions of the system. The reason why we 

expelled introducing these constraint forces lies in the different approach of defining them. 

We will implement in the equations for virtual work two constraint equations: 
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in which we elaborate the so called ground constraints  

� �0 0 1 1
2 20, 0, 0, 0N NR R� �� �� � � �  and fill in the vector from equation III.46  to obtain the 

next equality: 
 
 � �2 2 | 1,i i iR L for i i N�� �         (III.48) 

 

Substitution of this equality into both expressions for the generalized joint forces, keeping 

in mind the limit of equation III.45, yields the scalar notation of the generalized joint 

forces for each element:   
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III.4.2.2 Buoyancy forces 

 

 
Figure III.7 illustrative example: derivation of the buoyancy force  
                          expressed in vectors and affecting the second body element  

 

The buoyancy force is a rectangular or trapezoidal shaped reactive force that will be 

reactivated against the bottom of a rigid body when it is pushed downward trough the fluid 

surface for the heave or pitch motion respectively. The relationship between force and 

displacement is linear once more and the fluid can be characterized by a field of springs 

(Winkler foundation). Lumping each distributed buoyancy force in its point of application, 

see figure III.7, makes it prompt sensible for a vector analysis. 

With the application of buoyancy forces to the problem we must realize that we agree 

restrictiveness in the multibody system once again. For example: the force on body i  is 

considered independent from all other forces in the multibody system. In reality, this will 

never happen although we may almost speak of zero correlation if infinitely small 

displacements are performed and when mutual distance between body elements is big 

enough. Another example contains allowance of negative (downward) values for buoyancy. 

Truly, there must be some static buoyancy to prevent 

losing contact with the fluid (figure). Moreover, drag 

forces along the sides of the bodies oppose the 

downward motion to make buoyancy forces to much 

optimistic when drag is neglected. After all, nothing 

has even been said about energy losses that emerge 

when fluid is pushed aside... 

 

In a manner analogously to virtual work of the joint force we write virtual work due to 

buoyancy forces affecting body i  as:  

 
i iT i

pW� �� �F r          (III.51) 

 
Where: 

iW� :  virtual work due to a buoyancy force acting on body i . 
iTF :  (transposed) vector of the buoyancy force acting on body i . 
i
p�r :  virtual change in the position vector located in the centre of gravity of the  

acting force.  
 

Rewriting ijTF as a product of the global position and global velocity vectors and 

substituting this into equations III.51, the expression for virtual work transforms into: 
 

 
Figure III.8 static buoyancy  
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Where: 
iT
dk :  (transposed) stiffness vector representing the distributed stiffness of the  

foundation governing body i . 
iT
dc :  (transposed) damping vector representing the distributed viscous damping  

governing body i . 
 

In partitioned form equation III.52 can be written as: 
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Henceforth, we write down immediately the expression the generalized forces:  
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and hold back deductive calculations. In III.54 and III.55 we reduce the vectors into 

scalars, because: 
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In which i i

dk gB�� and 0i
dc �  when purely buoyancy is considered and we took account 

for the next cross product by transformation to 
i
�Q : 
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III.4.2.3 Traffic induced forces 
 

 
Figure III.9 illustrative example: derivation of the traffic force  
                          expressed in vectors and affecting the second body element  
 

A traffic induced force can be modelled by a concentrated load P  which propagates on the 

domain: 
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�          (III.58) 

 

with a constant velocity c . We suppose the concentrated load P  resembles more or less 

the actual, more distributed vehicle induced force in particular this stage of research 

(vector analysis). In the modelling stage, for example, we reconstruct single and multiple 

vehicle induced loads from this concentrated load, in proportion of the topic of interest. A 

single vehicle can be reconstructed as two concentrated loads near the front and rear axis. 

In the algebra we apply superposition principle for two loads with a constant spatial offset 

or time delay. Creating multiple vehicles is then just an extension of the principle with 

more loads and ditto offsets. Shear forces, friction forces, energy dissipation via vehicle 

suspension, etc. are beyond the scope of the rigid multibody system analysis. 
 
We may recall for the third time the expression for virtual work, denoted in equation 
III.12: 
 

i iT i
pW� �� F r           (III.59) 

 
Where: 

iW� :  virtual work due to a traffic induced force acting on body i . 
iTF :  (transposed) vector of the induced force acting on body i . 

 

Unlike for joint forces and buoyancy forces, iTF is an independent integer with respect to its 

generalized coordinates, so we can directly rewrite equation III.59 in the partitioned form: 
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It is sufficient now to come up with the expressions obtained for both generalized forces: 
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in which we introduce a time dependent function if we replace the global position vector for 
iTF  by the following vector: 

 

0
Ti ct� � �� �r           (III.63) 

 
Where:  

c :  integer for the constant velocity of the traffic induced force. 

t :  time associated with the position of the traffic induced force. 
 

Substitution of equation III.63 into III.4 result in a scalar notation for ,1
i
pu : 

 

,1 1
i i
pu ct R� �           (III.64) 

 

Substituting expression III.64 into III.62 gives a time dependent expression for the 

generalized force associated with the generalized coordinate i� : 
 

� � � �2 1
i i iQ t P ct R� � �          (III.65) 

 

III.4.3 Newton-Euler matrix equation 

In this end section, the development of the previous sections can be used to construct the 

Newton-Euler matrix equation for a rigid body in our multibody system. 

To this end, we will use many of the obtained identities, in particular the relationship 

between the angular velocity and the time derivative of the orientational (i.e. Euler’s) 

coordinates. For convenience, however, and to avoid drowning in writing extended 

derivations we restrict ourselves to prescriptions only. 
 

If the joint reaction forces are treated as externally applied forces, Lagrange equation of 

motion can be written for all bodies as: 
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In which the bracketed term denotes the quadratic velocity vector. In the right hand side 

of equation III.66 the generalized and actual forces are composed as one vector. 

Henceforth, we elaborate all terms in equation III.66 separately, beginning with the left 
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hand side. Substituting matrix III.27 into equation III.25 produces a manageable equation 

for virtual work: 
 

 
1 1
2 2

i iT i i iT i i
RRT ��� �� �R m R m� � � �         (III.67) 

 

After substitution of equation III.67 into equation III.60, differentiation with respect to the 

generalized coordinates, velocities and time taking into account the chain rule of 

differentiation and equalities as i i i� �� �G  and 0i i� �� �G  and furthermore dividing the vector 
iTQ into its generalized integers, we end up with the following (uncoupled) matrix 

expression for equation III.66: 
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Concluding with a remark, it stated that 0i �G
�

, so the second term in the right side of the 

Euler equation disappears. Assembling expressions III.29 and III.35 for mass matrices and 

external force vectors in equations III.49, III.50, III.54, III.55, III.61 and III.62 to 

substitute into equation III.68 result in the applied matrix equation in general coordinates: 
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IV Wave diffraction 
 

The effect of the frequency and the nature of the acting load on the vibration amplitudes of 

the fluid in the neighbourhood of a rigid floating strip is investigated numerically. The word 

‘strip’ may be replaced by ‘body’ or ‘pontoon’.  
 
IV.1 Assumptions and problem formulation 
The static situation is illustrated in figure IV.1 and shows a floating strip which doesn’t 

perturb the water surface.  
 

 
Figure IV.1 flow diagram with applied boundaries in case of the steady state vibrations for vertical  
                          motion 
 

EI :  flexural rigidity 
h:   strip thickness 

0L :  strip length 

0H :  depth 
 

By using plausible assumptions for the fluid and the strip useful continuity equations and 

boundary conditions will be obtained. So, by making the fluid ideal and incompressible and 

keeping the flow irrotational the fluid velocity potential �  must satisfy the Laplace 

equation: 
 

� �00 | 0for y H y�� � � � �        (IV.1) 

 

The bottom can be characterized as impervious, so the boundary at the bottom for the 

fluid velocity potential: 
 

� �00 |for y y H
y
��

� � �
�

        (IV.2) 

 

For the upper boundary the following continuity expression is valid for the whole domain: 
 

 � �| 0
w
for y y

y t
�� �

� �
� �

        (IV.3) 

 
For the free surface Bernoulli’s equation can be transformed into: 
 

� � � �� �00 , | ,0 , , 0gw for x y x L y
t
��
� � � �� � � �

�
    (IV.4) 

 

Where: 

g :   gravitational acceleration 

w :   vertical displacement of the upper surface of the fluid 
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A time-periodic pressure with the form � � i tq x e �  acts on the strip. In this section a equally 

distributed load will be considered: 

 

 � � 0
i tq t q e ��           (IV.5) 

 

Where:   

0q : magnitude of the distributed load; 
 

Unlike 1D plate equations, in the continuity equation of the strip only inertia forces, 

pressure and external forces are balanced. Bending forces, however, will not occur in the 

rigid strip because of infinite rigidity. As a matter of fact, obtaining explicit analytic 

solutions for wave diffraction would not have been possible if a 1D plate equation with 

infinite rigidity was implemented. Therefore the next equation holds for the strip: 
   

� � � �
2

0 02 , | 0 , 0
w

h p q t for x y x L y
t

�
�

� � � � �
�

     (IV.6) 

 

Where: 

p :   hydrodynamic pressure; � �p t gw� �� � � � �  according to Bernoulli 

� :  fluid density 

0� :  strip or unit density 

� :  radian frequency 

The equation shows no dependency in x , but that does not mean that the water surface 

(w ) on the this interval stays flat all the time. As a consequence of this, the rigid strip can 

never stay in contact with the surface all the time while in the model it does. For that 

reason equation IV.6 may be applied as long as w  doesn’t vary too much within the 

boundaries of x . 
 
IV.2 Steady state formulation 
For the steady state condition the velocity potential can be represented in the form: 
 

� �, i tx y e �� ��          (IV.7) 

 
In what follows, the dimensionless variables 0 0 0, , ,q w w g q p q p� ��� �� � �  

0 0, , , ,x x l y y l t t L L l H H l�� � � � �  will be inserted and two new variables will be 

introduced; the characteristic length 2l g �� and the dimensionless draft 0d h l� �� . After 

substitution of expressions IV.1 into IV.7 the Laplace equation reads: 
 

 � �
2 2

2 2 0 | 0for y H y
x y
� �� �

� � � � �
� �

       (IV.8) 

 
In this way, the boundary condition at the bottom turns into: 
 

 � �0 |for y y H
y
��

� � �
�

        (IV.9) 

 

For the free surface, substitution of expression IV.7 into equation IV.4, taking the 

derivative to t  once and taking into account continuity expression of IV.3 are successively 

the steps to be taken to a steady state formulation: 
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� � � �� �0 , | ,0 , , 0for x y x L y
y
�

�
�

� � � �� � � �
�

     (IV.10) 

 
Analogous to the last substitution, the continuity equation can be obtained: 
 

� � � �1 , | 0 , 0d i for x y x L y
y
�

�
�

� � � � � �
�

     (IV.11) 

 

Where only the draft of the strip seems to affect the nature of the surface wave compared 

to its free relative. Furthermore, if 1d �  the inertia effect has been eliminated, what 

seems not realistic. If 0d � , the free surface is influenced by the external force only, what 

is also unrealistic.  
 
IV.3 Frequency domain analysis 
The analysis of the hydro elastic behaviour of the fluid in the neighbourhood of the rigid 

strip will be performed within the frame work of the linear theory. To this end, the system 

of partial differential equations, IV.8 until IV.11, will be transformed into the frequency 

domain with the help of the Fourier transformation technique. Defining Fourier Transforms 

implies that the radiation condition must be checked. Because there is no source of energy 

at infinity, all inward propagating waves are aphysical which means that they must be 

disregarded. The Fourier Transform formula reads: 
 

� � � �, , i xy x y e dx�� � �
�

��

� �         (IV.12) 

 

Where �  denotes the transformed velocity potential and �  the spectral frequency. 

Transformation of the Laplacian of  expression IV.8 result in � �2 2 2, 0y y� � � �� � � � . All �  

must satisfy this equation from which the general expression gives:  
 

� � � � � � � � � �1 2, cosh sinhy C y C y� � � � � �� �      (IV.13) 

 

Returning to the boundary condition at the bottom IV.9, the general expression becomes, 

after transformation and substitution of expression IV.9 into IV.13: 
 

 � � � � � �� � � �� �1, cosh coshy C y H H� � � � �� �      (IV.14) 

 

For the free surface condition IV.10 and the continuity condition IV.11, however, the 

transformation is less straightforward; it is very difficult to find a general transform that 

applies over the entire spatial domain for both equations. The Wiener-Hopf technique [3], 

as a matter of fact, is a popular method to avoid this problem by defining Fourier 

Transforms over the specified regions and then uses function-theoretic analysis to piece 

them together for the solution. To this background, both equations IV.10 and IV.11 will be 

constructed as follows: 
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     (IV.15) 

 

Where the subscript refers to the specified region. Integrals of equation IV.15 where the 

function �  is replaced by the free surface condition of IV.10 will be denoted by D :  
 
 � � � � � � � �1

i LD D D D e �� � � �� �� � �        (IV.16) 

 

and analogous expressions in which the continuity condition of IV.11 is taken as the 

integrand will be denoted by F : 
 
 � � � � � � � �1

i LF F F F e �� � � �� �� � �        (IV.17) 

 

After transformation of expression IV.10 and substitution of this result into IV.13 the 

general expression of D  will be: 
 

 � � � � � �� �1 tanh 1D C H� � � �� �        (IV.18) 

 

Where the last term is better known as the dispersion relation of free surface waves, 

� �1 tanh 1 0K H� �� � � . Following the same steps as for D , F  has the form: 
 

  � � � � � � � �� �1 1 tanh 1F C d H� � � �� � �       (IV.19) 

 

With � � � �2 1 tanh 1 0K d H� �� � � �
 
as dispersion relation. The dispersion relation is the 

ratio between energy and momentum of the wave. Finally, all integrands can be expressed 

in one equation. A little algebra shows that this equation yields: 
 

 � � � � � � � � � � � �11 1i L i LF e F e D K� �� � � � �� �� � � �      (IV.20) 

 

Where � � � � 0D D� �� �� �  comes from the boundary conditions, � � � � � �1 1 1i LF e �� �� �  and 

� � � � � �2 1K K K� � ��  are obtained via elimination of � �1C � .  
 

So far, finding an expression for IV.20 was quite a regular task, but elaborating this 

expression shall be far from regular. Elaborating the integrands of equation IV.20 means 

applying Cauchy’s residue theorem [3] because its variables are complex. According to 

Cauchy’s residue theorem the function’s analyticity domain and its singularities has to be 

known. Besides this, the Wiener-Hopf technique requires a factorization of the function, 

i.e. a decomposition over the two domains analogous to ��  and �� . Consequently, only 

K has singularities so that it may be represented in the factorized form as follows: 
 
 � � � � � �K K K� � �� ��          (IV.21) 

 

Where K  has two singularities (poles) on the real axis at the points 0��  and an infinite 

number of imaginary poles at � �| 1,2,...n in H for n n� �� � � � as n � � . If a situation 
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occurs with K  in the dominator of a function or integrand, then of course, the poles come 

from the nominator of K ; i.e. two poles on the real axis at the points ��  and an infinite 

number of imaginary poles at � �| 1,2,...n in H for n n� �� � � �  as n � �  and 1d � .  

 

The poles are calculated in Matlab with fzero  and fsolve  statements for real and 

imaginairy poles respectively as can be seen in Appendix V.4. 
 
The analyticity domains are shown in figure IV.2  
 

 
Figure IV.2 Analyticity domains  
 

Where: 

� � :  half plane where � � 1Im � �� �  with cuts around 0��  and ��  

� � :  half plane where � � 1Im � ��  with cuts around 0�  and �  

Choosing � �  and � �  as such leads to the most simplified mathematical expressions for 

the problem. With known analyticity domains explicit expressions can be accomplished for 

both integrands � �K ��  and � �K ��  In doing so, the Infinite Product Theorem [3] will be 

introduced as a useful tool. It says that � �K �  as an entire function, i.e. analytic on the 

entire domain, with simple zeros can be written as an infinite product in its poles as 

follows: 
 

 � � � � � � � �
1

0 exp ' 0 0 1 n

n n

K K K K e
�
��

� �
�

�

�

� �
� �� �� �� � � �

� �
�      (IV.22) 

 

Where: 

� �0K :   is 1 because � �K �  has no single root in the origin 

� � � �exp ' 0 0K K�� �� � : uniquely determined analytic function which means that the term  

before the product will have no roots in the complex plane. The term  



Traffic induced vibrations in floating thoroughfares 

   

is equal to 1 since � �' 0 0K � . Unlike [3], we use the 
2 2

0
2 2

� �
� �

�
�

-term in 

order to be able to subtract all real roots (zeros and poles) in the 

complex plane 

 

Equation (IV.22) reduces to: 
  

 � �
2 2

0
2 2

1

1 n

n n

K e
�
�� � �

�
� � �

�

�

� ��
� �� �� �� � �

�        (IV.23) 

 

 
Where � �K �  has been divided by two real zeros and multiplied with its two real poles. A 

useful expression for � �K ��  and � �K ��  follows after substitution of IV.23 into IV.21: 

 

 � � 0

1

1 n

n n

K e
�
�� � �

�
� � �

�

�
�

� ��
� �� �� �� � �

�        (IV.24) 

 

Coming back to the integrand equation of IV.20, two integrands are unknown; F  and D  

so two equations are needed to solve them. Therefore we multiply equation IV.20 by 

� �i Le K� ��
�  and after arranging functions by their analytic domains, we denote: 
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    (IV.25) 

 

Where on left- and right-hand sides of the equation we have functions which are analytic in 
the domains � �

 and � �
 respectively. Due to Cauchy’s Residue Theorem explicit 

expressions for the integrands � �U ��  and � �M ��  can be obtained as well as an additional 

third term in the equation. After dividing by � �K �� , the second equation becomes: 
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(IV.26) 

 
For the analytic continuation, we may define a function � �f �  which is analytic over the 

entire complex plane. Liouville’s theorem [3] states that as � � � and � � � �kf O� �� , 

then � �f �  is a polynomial of degree k� . For the behaviour of the functions � �F ��  and 

� �1D �  as � � � , we refer to earlier investigations [4,5]. It was determined there that the 
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order of both functions � �F ��  and � �1D �  is never higher than � �3
O

�
�

�
 and � �1

O
�

�
�

, 

1� �  respectively, due to conditions of local boundedness of energy. At infinity, the 

function � �K ��  is of the order � �0
O �  because 

1

1 1n

n n

e
�
��

�

�

�

� �
� �� �� �

� �
�  as � � � . As a result 

� �f �  cannot grow faster than � �1
�

�
 and the polynomial is zero if k  is negative. Thus, 

from IV.25: 
 

� �
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0
0

F
U M

K K K

�
� �

� � � �
�

� �
� � �
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(IV.27) 

 

And analogously, from equation IV.26: 
 

� �
� � � � � � � � � �1 1

0
0

F
V N

K K K

�
� �

� � � �
�

� �
� � �

� � � � �      (IV.28) 

 

Or going over to expressions with Cauchy’s integrals besides introducing a new function 

� � � � 1F� � � �� �� � :  
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(IV.29) 

 
and with � � � � 1F� � � �� �� �  for IV.28: 
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e d
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(IV.30) 

 
 

� �K ��  has zeros at � �| 1,2,...j for j j�� �  and in the origin and has poles at ��  and 

� �| 1,2,...j for j j�� � . The integrand has poles at 0,� ��  and � �| 1,2,...j for j j� �� � �  

 
IV.4 Solution of the system; determination of w, k, c and mf 
We will evaluate the equations IV.29 and IV.30 by the theory of residues for the solution of 

the system. Therefore equation IV.29 transforms into: 
 

� �
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mi L
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e

KK K
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�

     

(IV.31) 

 

after we divide left- and right-hand sides by 2
j� . For equation IV.30 this yields: 
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� �
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1
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j m
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e

KK K
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�
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�

�
     

(IV.32) 

 
We introduce new unknowns 
 

 
� �
� �

� �
� �2 2

,j j
j j

j j j jK K

� � � �
� �

� � � �
� �

� �

�
� �

�
       (IV.33) 

 



Traffic induced vibrations in floating thoroughfares 

   

For these unknowns, together with substitution of � � � �2
m m m mK� � � � �� �� � � , 

� � � �2
m m m mK� � � � �� ��

,
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��  ,
1
m j
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�� and per definition � � � �K K� �� �� �  and 

j j� �� �
, 

we obtain the system: 
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or in matrix form: 
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Where: 

� �
� � � �

2

2 '

mi L
m m

jm
j m m j

e K
c

K

�� �

� � � �
�

�

�
�

 

� � � �
1 2

3 3

1 1
0 0j j

j j

f f
K K� �� �

� � �  

 

Via the left-hand side of equation IV.25 or IV.26 the formula for body deflection � �w x  can 

be derived. Choosing arbitrarily the first equation gives: 
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(IV.36) 

 

After reconstruction, for � �1D �  we find: 
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Using equation IV.14 and IV.18 ( � � � �1D D� �� ) and the inverse Fourier transformation, we 

obtain: 
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After differentiation with respect to y  in 0y � , we write: 
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(IV.39)

 

 

 

In the outer integral the integration path must be chosen that it lies completely within the 

intersection of the domains � �
 and �

�
 We choose the same paths as we did for K ; on 

the real axis with cuts around 0��  and ��  from below and around the points 0�  and �  
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from above (figure IV.2). In the inner integral the integration path lies within the domain 
� �

. With analytic continuation, we define this integral over the entire domain using the 

theory of residues: 
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From IV.39 it follows that: 
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The body deflection can be determined from � � � �,0w x i x
y
��

�
�

. After substitution of IV.31 

and � � � �2
j j j jK� � � � �� �� �

 
into equation IV.41 we find for w : 
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(IV.42) 

 

The values of j�  and j�  comprehend the complex amplitudes of waves travelling from the 

right edges of the plate to the right and from the left edge to the left respectively. The 

deflection amplitude at the interface of strip and fluid appears to be variable, as a 

consequence of omitting the material properties (see section IV.1). With allowance for 

generalization, we may define the average value  
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(IV.43) 

 
For the realization of distributed stiffness and damping parameters we introduce Kappa as 

� � � �� �0 0q w x L� � �  when � �w x  is expressed in metric dimensions (Section IV.1). Per 

definition we note for the parameters 
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        (IV.44) 

 
Where Re  and Imconcerns the real and imaginary part of Kappa, respectively.  
From equation IV.38, exactly the same steps can be taken to express also � �,0x�  in 

residual coordinates. The term will be used to determine the following variable:  
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that will be accepted as a measure for added mass as a consequence of the vertical 

motion. The variable am�  represents an estimation of the influence depth of the body on 

the x  domain. When the frequency is high, this estimation is most secure. Elaboration of 

equation IV.45 lead to the simple formula: 

 

  � �� �1 tanham j jH� � ��          (IV.46) 

 

revealing that this variable is constant over the x  domain. It is sufficient now to multiply 

am�  with the fluid density and the body length in order to obtain the added mass (per 

metre width):  

 
 � � � �0f amm L� � � ��          (IV.47) 

 
Where � �am� �  is expressed in metric dimensions. 

 
IV.5 Additional to VI.4: Computational algorithm for complex amplitudes 
The matrix in equation IV.35 is (almost) singular what means that we cannot directly apply 

the (general) matrix operation � �� � �
-1

Ax b x A b  to the problem. In fact, there are 

infinitely many solutions for x  instead of one unique because of the existence of 

singularities1. In the field of linear algebra, there is a special tool available to deal with 

singularities: Singular Value Decomposition2 (SVD). SVD is an important factorization with 

applications for signal processing or statistics which can be used for constructing an 

approximated (complex) matrix for A , for example. For A  there exist in the field � a 

factorization of the form: 

 

 ��A USV           (IV.45) 

 

Where: 

U :   unitary matrix over �  

S :  diagonal matrix with non-negative numbers on the diagonal 
�V :   conjugate transpose of V . 

�V  is a unitary matrix over �  

 
The columns of V  form a set of orthonormal ‘input’ or ‘analysing’ basis vector directions of 

A . (these are the eigenvalues of �A A ) The columns of U  form a set of orthonormal 

‘output’ basis vector directions for A . (these are the eigenvalues of �AA ) The diagonal 

values in matrix S  are the singular values, which can be thought of as scalar ‘gain 

controls’ by which each corresponding input is multiplied to give a corresponding output. 

(these are the square roots of the eigenvalues of �AA  and �A A  that correspond with the 

same columns in U  and V . We aim at minimizing diagonal matrix S  into �S  with specific 

rank r  so that A  transforms into �A  as: 

 

 �� ��A USV           (IV.46) 

 

 
1  singularities are poles in calculus and complex analysis, but in the field of linear algebra, they are only definable. 
2  see Matlab manual or wikipedia website. 
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where �S  contains only the r  largest singular values (the other singular values are 

replaced by zero). Generally, the criterion for r  can only be estimated by signal processing 

or statistics, however, under favourable conditions it is allowed to simply reduce the 

number of r . In our case, all entries in S  are infinitesimally small, except for the first 

one. In other words: S  is almost a rank one matrix, thus 1r � . The reduced version of 

the SVD is called the truncated SVD and denotes: 

 

 t t t
�� ��A U SV           (IV.47) 

 

Only the t  column vectors of U  and t  row vectors of �V  corresponding to the t  largest 

singular values S  are calculated, with 1t � . It is obvious now that the truncated SVD is 

no longer an exact decomposition of the original matrix A , but as discussed here, is in a 

very useful sense the closest approximation to A  that can be achieved. In addition to 

section IV.4, the algorithm for matrix IV.35 slightly changes: 
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Matlab codes concerning the application of the SVD are listed in Appendix V.4. 

 
IV.6 Short wave approximation. Resonance amplification 
We will consider an uniform approximation to get around the difficulty of singular matrix 

computation. If the plate length is significantly smaller then the wavelength, then 1L �� . 

In the matrix the column corresponding to 0�  is significantly larger than all other columns. 

We may therefore consider a short wave approximation by setting the other elements to 

zero. This means that the potential (IV.38) close to the strip will be carried out only by one 

real mode while the other modes will be neglected since they damp out much faster. The 

system in equation IV.35 can clearly be inverted. As a result, we obtain the following 

explicit representations: jmc  reduces to: 
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From the system in IV.34 we derive: 
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and elaboration of IV.50 gives: 
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which replaces the exact complex amplitudes in equation IV.42: 
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(IV.52)

 

 

when mN  represent the number of modes taken into account. From the function IV.50 and 

IV.52 we expect an increase in the deflection amplitude under the action of the external 

load. As a result of this, we may expect resonant amplitudes to occur and therefore we 

need to evaluate the conditions under which these amplitudes will be exhibited. This can 

be done by consideration of the nature of the (surface) waves, i.e. by incoming, reflecting 

or transmitting waves. At the left edge of the strip, the diffracted potential is a reflected 

wave of the form:  

 

� �,0 i xx Re �� ��          (IV.53) 

 

and at the right edge the potential is represented by a transmitted wave of the form: 

 
 � �,0 i xx Te �� �          (IV.54) 

 

The reflected wave at the left edge of the strip compensates the incoming wave and also 

beneath the strip reflected and transmitted waves propagate because of the physical 

edges, as shown in figure IV.3.  
 

 
Figure IV.3 waves (potentials) in the x-domain 
 

The main part of the plate deflection is a superposition of two waves of the same length: 

transmitted into the fluid beneath the strip and reflected from the other edge. If these 

wave are in phase, then the deflection amplitude is doubled. Zero reflection correspond to 

total transmission correspond to maximum deflections beneath the strip. The complex 

amplitude R  can be determined by evaluating the residue at the point � ��  in expression 

IV.38 as follows: 
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(IV.55) 

 
Evaluating the residue at the point � �� � , the complex transmission amplitude T  reads: 
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where for the computation the symbol �  will be replaced by mN  and the complex 

amplitudes �  and �  attributes to equation IV.52. With allowance for normalisation, we 

transform reflection and transmission amplitudes into ditto coefficients by obtaining 

normalized values for R  and T : 
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Where: 

R :  absolute value of R 

T :  absolute value of T 

 

For normalized reflection and transmitted wave coefficients the following equality follows 

from equation IV.57: 

   
 1norm normR T� �          (IV.58) 

 

Resonant amplification corresponds to zero reflection and therefore it is sufficient to 

evaluate 0R �  in order to satisfy this section’s objectives. Under ‘short wave conditions’ 

and to retain only the one oscillation wave in the expression for R  we are able to rewrite 

expression VI.5 as follows: 
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where R  is evaluated in residue 0�  as an expression of 00c . Both real and imaginary part 

in the bracketed term of this expression must be zero for 0R �  what leaves 00c  to be 

equal to: 
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Since 0� and �

 
are real values, we may say that 00Im 0c �� �� � . Substituting 00Im 0c �� �� �  in 

expression IV.49 for 00c  result in the next equality: 
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what must be true for resonant amplification. Note that this expression is nothing more 

than a useful tool and not the exact solution to the problem. 

 
IV.7 Wave diffraction with different acting loads 
In the multibody system, besides the vertical motion also rotational motion will be 

performed by the acting load. Rotational motion can be simulated by simply reshaping the 

time periodic load into a prismatic form. Consequently, vibrating amplitudes can be 

evaluated in a manner analogously to the ones attributed to the vertical motion. We 

summarize relevant outcomes in table IV.1: 
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IV.8 Unsuccessful and invalid computation 
Calculations for the following values of physical quantities: fluid depth 0 1.1H m� , external 

force 0 1000q N� , body length 0 3.5L m� , body density 3
0 102.5kg m� � , fluid density 

31000kg m� �  and body height 0 1.6h m�  and external period 0.85 ;1pT s s�  bring 

along inaccurate results. The reason for this is that for these lower periods ‘irregularities’ 

will be generated that would not tend to smooth out by an increasing number of modes. 

This can be observed in the graphs that are plotted in figure IV 4. In both graphs, steep 

waves with large amplitudes are displayed and for the lowest period even beating takes 

place. However, here we accept only flat waves since we deliberately omit material 

properties in the plate equation, see Appendix VI.1. This can be explained as follows: 

without material properties, the rigid body element is modelled as a vibrating load 

(pressure) that perturbs the fluid surface. Consequently, waves will propagate in a zone 

with an increased fluctuating surface pressure. This is, obviously, a strong simplification, 

especially when steep waves are involved. From this it can be concluded that this method 

is not achieved for ‘smaller’ waves but for fairly long waves, i.e. for larger periods.  
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Figure VI.4 vibration amplitudes for Tp = 0.85s (lower bound) and Tp = 1s   

 

In addition to Appendix IV.5, the lower bound for the second singularity will be determined 

by trial-and error and thus unsuccessful computation can practically not be avoided. By 

introducing the short wave approximation to the problem, we gain ourselves an intuitive 

tool in ‘judging’ between the outcomes of a rank one and a rank two computation. For a 

reliable and proper judgement, conditions for the short wave approximation must be as 

optimal as possible. This implies that pT  must be as small as possible. For 80mN � , we 

choose 0H  to increase from 1.5m  with steps of 0.05m . Four corresponding plots can be 

viewed in figure IV.5. Note that a transition can be observed by the modal shape of the 

exact solution with 2t �
 
and when the short wave approximation and this solution comes 

close to each other. The corresponding value for the fluid depth is 0 1.6H m�  and the 

lower bound for the second singularity reads 0.12 , according to Matlab.  
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Figure IV.5 intuitive determination of boundary condition for second singularity 
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V Matlab codes 
 
V.1 Input parameters 
 
N L1 L2 L3 B h c_cl c_int k_cl k_int rho_0  
[nr] [m] [m] [m] [m] [m] [Ns/m] [Ns/m] [N/m] [N/m] [kg/m3]  
20 3.5 3.5 3.5 5.4 1.6 1.5e+3 1.5e+3 1e+5 1e+5 102.5  
P c wb md tend 
[N] [m/s] [m] [m]  [s] 
9761 8.333 2.76 0  16.25 
Figure V.1 structural parameters.txt 

 
H0 (>1) q0 L0 B Tp rho_0 rho h Nm *Nms/rad/m 
[m] [N/m2] [m] [m] [s] [kg/m3] [kg/m3] [m] [-] **Ns/m/m1 
1.6 1000 3.5 5.4 1.5 102.5 1000 1.6 80 
 
mf1_a mf2_v mf2_a mf3_v mf3_a cd1_a cd2_v cd2_a cd3_v cd3_a 
[kg/m2] [kg/m2] [kg/m2] [kg/m2] [kg/m2] [*] [**] [*] [**] [*]  
797.5 1753.9 672.9 1753.9 672.9 -6.7e+2 6.7e+4 -1.7e+2 6.7e+4 -1.7e+2  
Figure V.2 hydrodynamic parameters.txt 

 
V.2 Mass, Damping and Stiffness matrix and eigenfrequencies 
 
% input: 
% importing structural parameters(.txt): 
[N,L1,L2,L3,B,h,c_cl,c_int,k_cl,k_int,rho_0] =... 
    textread('structural parameters.txt',... 
    '%f %f %f %f %f %f %f %f %f %f %f',1,'headerlines',2); 
% in which: 
% N = number of bodies 
% L1,2,3 = length of first, second and third body element 
% B = body width 
% h = body height 
% c_cl = damping parameter of end joints 
% c_int = damping parameter of remaining joints 
% k_cl = stiffness parameter of end joints 
% k_int = stiffness parameter of remaining joints 
% rho_0 = body density 
 
% importing hydrodynamic parameters(.txt): 
[mf1_a,mf2_v,mf2_a,mf3_v,mf3_a,cd1_a,cd2_v,cd2_a,cd3_v,cd3_a] =... 
    textread('hydrodynamic parameters.txt',... 
    '%f %f %f %f %f %f %f %f %f %f',5,'headerlines',6); 
% in which: 
% mf2,3_v = added mass for vertical motion of second and third body element 
% mf1,2,3_a = (equivalent) added mass for rotational motion of first three elements 
% cd2,3_v = distributed damping for vertical motion of second and third body 
element 
% cd1,2,3_a = distributed damping for rotational motion of first three elements 
 
% remaining parameters form buoyancy: 
kd1_v=1000*9.81*B; kd2_v=kd1_v;kd3_v=kd2_v; %  
distributed stiffness for vertical motion  
kd1_a=1/3*kd1_v*L1^2;kd2_a=1/12*kd2_v*L2^2;kd3_a=1/12*kd3_v*L3^2; %  
distributed stiffness for rotational motion 
 
% symmetric multibody configuration: 
Lj=L3;LN_2=Lj;LN_1=L2;LN=L1; 
mfj_v=mf3_v;mfj_a=mf3_a;mfN_1_v=mf2_v;mfN_1_a=mf2_a;mfN_a=mf1_a; 
kdj_v=kd3_v;kdj_a=kd3_a;kdN_1_v=kd2_v;kdN_1_a=kd2_a;kdN_a=kd1_a; 
cdj_v=cd3_v;cdj_a=cd3_a;cdN_1_v=cd2_v;cdN_1_a=cd2_a;cdN_a=cd1_a; 
 
% mass of body element per square meter:  
mb=rho_0*h; 
   
% mass matrix M: 
M = zeros(2*N-2,2*N-2); %creates a 2N-2-by-2N-2 matrix, consisting of zeros 
M(1,1)=1/12*((2*L1)^2+h^2)*(B*(mb+mf1_a))*L1; 
M(2,2)=(B*(mb+mf2_v))*L2; 
M(3,3)=1/12*(L2^2+h^2)*(B*(mb+mf2_a))*L2; 
for j=4:2:2*N-6 
    M(j,j)=(B*(mb+mfj_v))*Lj; 
    M(j+1,j+1)=1/12*(Lj^2+h^2)*(B*(mb+mfj_a))*Lj; 
end; 
M(2*N-4,2*N-4)=(B*(mb+mfN_1_v))*LN_1; 
M(2*N-3,2*N-3)=1/12*(LN_1^2+h^2)*(B*(mb+mfN_1_a))*LN_1; 
M(2*N-2,2*N-2)=1/12*((2*LN)^2+h^2)*(B*(mb+mfN_a))*LN; 
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save('Mass','M'); 
 
% damping matrix C: 
C = zeros(2*N-2,2*N-2); %creates a 2N-2-by-2N-2 matrix, consisting of zeros (no 
w1,wN) 
C(1,1:3)=[c_cl*L1^2+cd1_a*L1,-c_cl*L1,0.5*c_cl*L1*L2]; 
C(2,1:5)=[-c_cl*L1,c_cl+c_int+cd2_v*L2,0.5*(c_int-c_cl)*L2,-c_int,... 
    0.5*c_int*L3];  
C(3,1:5)=[0.5*c_cl*L1*L2,0.5*(c_int-c_cl)*L2,0.25*(c_int+c_cl)*L2^2+... 
    cd2_a*L2,-0.5*c_int*L2,0.25*c_int*L2*L3]; 
for j=4:2:2*N-6 
    C(j,j-2:j+3)=[-c_int,-0.5*c_int*Lj,2*c_int+cdj_v*Lj,0,-c_int,... 
        0.5*c_int*Lj]; 
    C(j+1,j-2:j+3)=[0.5*c_int*Lj,0.25*c_int*Lj*Lj,0,0.5*c_int*Lj^2+... 
        cdj_a*Lj,-0.5*c_int*Lj,0.25*c_int*Lj^2]; 
end; 
C(2*N-4,2*N-6:2*N-2)=[-c_int,-0.5*c_int*LN_2,c_int+c_cl+cdN_1_v*... 
    LN_1,0.5*(c_cl-c_int)*LN_1,c_cl*LN]; 
C(2*N-3,2*N-6:2*N-2)=[0.5*c_int*LN_1,0.25*c_int*LN_2*LN_1,0.5*... 
    (c_cl-c_int)*LN_1,0.25*(c_cl+c_int)*LN_1^2+cdN_1_a*LN_1,0.5*... 
    c_cl*LN_1*LN]; 
C(2*N-2,2*N-4:2*N-2)=[c_cl*LN,0.5*c_cl*LN_1*LN,c_cl*LN^2+cdN_a*LN]; 
%correction pontoon length L according to L2 and LN_1 for coupling: 
C(4,3)=-0.5*c_int*L2; 
C(5,3)=0.25*c_int*L2*L3; 
C(2*N-6,2*N-3)=0.5*c_int*LN_1; 
C(2*N-5,2*N-3)=0.25*c_int*LN_2*LN_1; 
save ('Damping','C'); 
 
% stiffness matrix K: 
K = zeros(2*N-2,2*N-2); %creates a 2N-2-by-2N-2 matrix, consisting of zeros 
K(1,1:3)=[k_cl*L1^2+kd1_a*L1,-k_cl*L1,0.5*k_cl*L1*L2]; 
K(2,1:5)=[-k_cl*L1,k_cl+k_int+kd2_v*L2,0.5*(k_int-k_cl)*L2,-k_int,0.5*... 
    k_int*L3];  
K(3,1:5)=[0.5*k_cl*L1*L2,0.5*(k_int-k_cl)*L2,0.25*(k_int+k_cl)*L2^2+... 
    kd2_a*L2,-0.5*k_int*L2,0.25*k_int*L2*L3]; 
for j=4:2:2*N-6 
    K(j,j-2:j+3)=[-k_int,-0.5*k_int*Lj,2*k_int+kdj_v*Lj,0,-k_int,0.5*... 
        k_int*Lj]; 
    K(j+1,j-2:j+3)=[0.5*k_int*Lj,0.25*k_int*Lj*Lj,0,0.5*k_int*Lj^2+... 
        kdj_a*Lj,-0.5*k_int*Lj,0.25*k_int*Lj^2]; 
end; 
K(2*N-4,2*N-6:2*N-2)=[-k_int,-0.5*k_int*LN_2,k_int+k_cl+kdN_1_v*LN_1,0.5*... 
    (k_cl-k_int)*LN_1,k_cl*LN]; 
K(2*N-3,2*N-6:2*N-2)=[0.5*k_int*LN_1,0.25*k_int*LN_2*LN_1,0.5*... 
    (k_cl-k_int)*LN_1,0.25*(k_cl+k_int)*LN_1^2+kdN_1_a*LN_1,0.5*... 
    k_cl*LN_1*LN]; 
K(2*N-2,2*N-4:2*N-2)=[k_cl*LN,0.5*k_cl*LN_1*LN,k_cl*LN^2+kdN_a*LN]; 
%correction pontoon length L according to L2 and LN_1 for coupling: 
K(4,3)=-0.5*k_int*L2; 
K(5,3)=0.25*k_int*L2*L3; 
K(2*N-6,2*N-3)=0.5*k_int*LN_1; 
K(2*N-5,2*N-3)=0.25*k_int*LN_2*LN_1; 
save ('Stiffness','K'); 
 
% matrices for general damping case: 
M_tilda=[zeros(2*N-2,2*N-2),M;M,C]; 
K_tilda=[-M,zeros(2*N-2,2*N-2);zeros(2*N-2,2*N-2),K]; 
 
% eigenfrequency: 
[E,omega]=eig(K_tilda,M_tilda); 
 
% orthogonality property check: 
M_star=E'*M_tilda*E; 
K_star=E'*K_tilda*E; 
Figure V.3 matrices.m 
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V.3 Numerical simulation with ODE23-solver 
 
% input: 
% importing vehicle parameters from  structural parameters.txt: 
[P,c,wb,md,tend] = textread('structural parameters.txt',... 
    '%f %f %f %f %f',5,'headerlines',6); 
% in which: 
% P = concentrated load from vehicle 
% c = vehicle velocity 
% wb = wheel base 
% md = mutual distance between multiple vehicles 
% tend = end of simulation time 
 
% identity and mass matrix I and M: 
a=2*N-2; 
I = eye(a); % eye (n) creates an n-by-n matrix with ones on the main diagonal. 
load Mass % load mass from matrices.m, (run this file first) 
 
% initial conditions: 
y0=zeros(2*N-2,1); 
y0(1,1)=0; %displacement second element = 0 [m] 
ydot0=zeros(2*N-2,1); 
 
% floating point tolerance in dicretization: 
tol=zeros(1,4*N-4); 
tol(1,1:4*N-4)=1e-6; 
 
% output: 
% time vector T and displacement vector Y based on ODE23-solver  
% refers to function rigid_sv.m or rigid_mv.m, associated with single 
% sehicle or multiple vehicles, respectively. 
options = odeset('Mass',[I,zeros(2*N-2,2*N-2);zeros(2*N-2,2*N-2),M],... 
    'NormControl','on','Stats','on'); 
[T,Y] = ode23s(@rigid_sv,[0 tend],[y0 ydot0],options); 
Figure V.4 ODE23_rigid.m 
 
function dy = rigid_sv(t,y) 
% syntax: function dy = rigid_sv(t,y) 
% space state formulation equation of motion for a single vehicle 
% input: 
% importing structural parameters from parameters.txt: 
[N,L1,L2,L3] = textread('structural parameters.txt','%f',1,'headerlines',2);  
[P,c,wb,md] = textread('structural parameters.txt','%f %f %f %f',5,'headerlines',6); 
% symmetric multibody configuration: 
Lj=L3;LN_2=Lj;LN_1=L2;LN=L1; 
 
% identity, damping and stiffness matrix I,C and K: 
a=2*N-2; 
I = eye(a);  
load Damping 
load Stiffness 
 
%time between succeeding couple of wheels passing a point: 
twb = wb/c; 
 
% exitation vector: 
RHS = zeros(2*N-2,2);  
for w=0:1 %0->front wheels; 1->rear wheels 
    if (t>=w*twb&t<L1/c+w*twb) 
        RHS(1,w+1)=P*c*(t-w*twb); 
    else 
        RHS(1,w+1)=0; 
    end; 
    if (t>=L1/c+w*twb&t<(L1+L2)/c+w*twb) 
        RHS(2,w+1)=P; 
        RHS(3,w+1)=P*(c*(t-w*twb)-L1-0.5*L2); 
    else 
        RHS(2,w+1)=0; 
        RHS(3,w+1)=0; 
    end; 
    for j=0:2:2*N-10 
        if (t>=(L1+L2+0.5*j*Lj)/c+w*twb&t<(L1+L2+(0.5*j+1)*Lj)/c+w*twb) 
            RHS(4+j,w+1)=P; 
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            RHS(5+j,w+1)=P*(c*(t-w*twb)-(L1+L2+(0.5*j+0.5)*Lj)); 
        else 
            RHS(4+j,w+1)=0; 
            RHS(5+j,w+1)=0; 
        end 
    end; 
    if (t>=(L1+L2+(N-4)*Lj)/c+w*twb&t<(L1+L2+(N-4)*Lj+LN_1)/c+w*twb) 
        RHS(2*N-4,w+1)=P; 
        RHS(2*N-3,w+1)=P*(c*(t-w*twb)-(L1+L2+(N-4)*Lj+0.5*LN_1)); 
    else 
        RHS(2*N-4,w+1)=0; 
        RHS(2*N-3,w+1)=0; 
    end; 
    if (t>=(L1+L2+(N-4)*Lj+LN_1)+w*twb&t<(L1+L2+(N-4)*Lj+LN_1+LN)/c+w*twb) 
        RHS(2*N-2,w+1)=-P*(c*(t-w*twb)-(L1+L2+(N-4)*Lj+LN_1+0.5*LN)); 
    else 
        RHS(2*N-2,w+1)=0; 
    end; 
end; 
RHS_vector=RHS(:,1)+RHS(:,2); 
RHS_dubblevector=zeros(4*N-4,2); 
RHS_dubblevector=[zeros(2*N-2,1);RHS_vector]; 
 
% output: 
% dy as column vector (4*N-4 rows, 1 column) 
dy = zeros(4*N-4,1);  
A=[zeros(2*N-2,2*N-2),I;-K,-C]; 
dy=A*y+RHS_dubblevector; 
Figure V.5 rigid_sv.m 
 
function dy = rigid_mv(t,y) 
% syntax: function dy = rigid_mv(t,y) 
% space state formulation equation of motion for multile vehicles 
% input: 
% importing structural parameters from parameters.txt: 
[N,L1,L2,L3] = textread('structural parameters.txt','%f',1,'headerlines',2);  
[P,c,wb,md] = textread('structural parameters.txt','%f %f %f %f',5,'headerlines',6); 
% symmetric multibody configuration: 
Lj=L3;LN_2=Lj;LN_1=L2;LN=L1; 
 
% identity, damping and stiffness matrix I,C and K: 
a=2*N-2; 
I = eye(a);  
load Damping 
load Stiffness 
 
% time between succeeding couple of wheels passing a point: 
twb = wb/c; 
% time between succeeding passenger cars (mutual distance divided by 
% velocity): 
tmd = md/c; 
% number of passenger cars within time interval: 
nc = round(tend/tmd); 
 
% exitation vector: 
RHS = zeros(2*N-2,2*nc);  
% columns with forces and moments due to frontwheel and rearwheel 
% vehicle after vehicle 
for w=0:1 %0->front wheels; 1->rear wheels 
    for v=0:nc 
        if (t>=v*tmd+w*twb&t<L1/c+v*tmd+w*twb) 
            RHS(1,2*v+w+1)=P*c*(t-v*tmd-w*twb); 
        else 
            RHS(1,2*v+w+1)=0; 
        end; 
        if (t>=L1/c+v*tmd+w*twb&t<(L1+L2)/c+v*tmd+w*twb) 
            RHS(2,2*v+w+1)=P; 
            RHS(3,2*v+w+1)=P*(c*(t-v*tmd-w*twb)-L1-0.5*L2); 
        else 
            RHS(2,2*v+w+1)=0; 
            RHS(3,2*v+w+1)=0; 
        end; 
        for j=0:2:2*N-10 
            if (t>=(L1+L2+0.5*j*Lj)/c+v*tmd+w*twb&t<(L1+L2+(0.5*j+1)*... 
                    Lj)/c+v*tmd+w*twb) 
                RHS(4+j,2*v+w+1)=P; 
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                RHS(5+j,2*v+w+1)=P*(c*(t-v*tmd-w*twb)-(L1+L2+(0.5*j+0.5)*... 
                    Lj)); 
            else 
                RHS(4+j,2*v+w+1)=0; 
                RHS(5+j,2*v+w+1)=0; 
            end; 
        end; 
        if (t>=(L1+L2+(N-4)*Lj)/c+v*tmd+w*twb&t<(L1+L2+(N-4)*Lj+LN_1)/... 
                c+v*tmd+w*twb) 
            RHS(2*N-4,2*v+w+1)=P; 
            RHS(2*N-3,2*v+w+1)=P*(c*(t-v*tmd-w*twb)-(L1+L2+(N-4)*Lj+0.5*... 
                LN_1)); 
        else 
            RHS(2*N-4,2*v+w+1)=0; 
            RHS(2*N-3,2*v+w+1)=0; 
        end; 
        if (t>=(L1+L2+(N-4)*Lj+LN_1)+v*tmd+w*twb&t<(L1+L2+(N-4)*Lj+... 
                LN_1+LN)/c+v*tmd+w*twb) 
            RHS(2*N-2,2*v+w+1)=-P*(c*(t-v*tmd-w*twb)-(L1+L2+(N-4)*Lj+... 
                LN_1+0.5*LN)); 
        else 
            RHS(2*N-2,2*v+w+1)=0; 
        end; 
    end; 
end; 
for n=1:2*N-2 
    RHS_vector(n,1)=sum(RHS(n,:)); 
end; 
RHS_dubblevector=zeros(4*N-4,2); 
RHS_dubblevector=[zeros(2*N-2,1);RHS_vector]; 
 
% output: 
% dy as column vector (4*N-4 rows, 1 column) 
dy = zeros(4*N-4,1); % a column vector (4*N-4 rows, 1 column) 
A=[zeros(2*N-2,2*N-2),I;-K,-C]; 
dy=A*y+RHS_dubblevector; 
Figure V.5 rigid_mv.m 
 
V.4 Wave diffraction approximation 
 
function f = K1(x) 
% syntax: function f = K1(x) 
% describes dispersion relation for wave diffraction 
% approximation model 
% input: 
[H] = textread('hydrodynamic parameters.txt',... 
'%f',1,'headerlines',2); 
% output: 
f = x*tanh(x*H)-1 
Figure V.6 K1.m 
 
function f = K2_vr(x) 
% syntax: function f = K2_vr(x) 
% describes dispersion relation for wave diffraction 
% approximation model 
% input: 
[H,q0,L0,B,Tp,rho_0,rho,h] = ... 
textread('hydrodynamic parameters.txt',... 
'%f %f %f %f %f %f %f %f',1,'headerlines',2); 
% frequency, characteristic length and draft: 
omega=2*pi/Tp; 
l=9.81/omega^2; 
d=rho_0*h/(rho*l); 
% output: 
f = (1-d)*x*tanh(x*H)-1 
Figure V.7 K2_vr.m 
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% input: 
% importing from hydrodynamic parameters(.txt): 
[H,q0,L0,B,Tp,rho_0,rho,h,Nm] = ... 
textread('hydrodynamic parameters.txt',... 
'%f %f %f %f %f %f %f %f %f',1,'headerlines',2); 
% in which: 
% H = fluid depth 
% qo = periodic distributed load 
% L0 = body length 
% Tp = period 
% Nm = number of modes 
 
% characteristic length: 
omega=2*pi/Tp; 
l=9.81/omega^2; 
% (dimensionless) draft: 
d=rho_0*h/(rho*l); 
% dimensionless length of pontoon: 
L=L0/l; 
% computing imaginairy roots for K1: 
for n=1:1:Nm 
    options=optimset('Display','off'); 
    [a(n,1),check_K(n,1)] = fsolve(@K1,n*i*pi/H,options); 
end; 
% computing imaginairy roots for K2: 
for n=1:1:Nm 
    options=optimset('Display','off'); 
    [a(n,2),check_K(n,2)] = fsolve(@K2_vr,n*i*pi/H,options); 
    a(n,3)=a(n,2)-a(n,1);% checking convergence as N go to infinity 
end; 
% computing 2 real roots for K1 (+/- gamma): 
options=optimset('Display','iter'); 
    [gamma,check_gamma] = fzero(@K1,[0 2],options); 
    %increasing H means convergence of gamma to unity, 2 is upper bound 
% computing 2 real roots for K2 (+/- alpha_zero)if d<1: 
options=optimset('Display','off'); 
    [alpha_zero,check_alpha_zero] = fsolve(@K2_vr,1/(1-d),options); 
    %list for alpha (real + imaginary roots): 
for n=1:1:Nm 
alpha(1,1)=gamma; 
alpha(n+1,1)=a(n,1); 
end; 
for n=1:1:Nm 
alpha(1,2)=alpha_zero; 
alpha(n+1,2)=a(n,2); 
end; 
%g has singularities as a=n*pi*i/H as n goes to infinity 
for j=1:1:Nm+1 
    for m=1:1:Nm+1 
        for k=1:1:Nm 
            % constructing loop for g_plus(-a)= prod[(1-(ak/-a))*... 
            % exp(ak/-a),k:1..Nm]             
            g_plus_a2(k,m)=(1+(alpha(m,2)/a(k,2)))*exp(-alpha(m,2)/a(k,2)); 
            g_plus_a1(k,m)=(1+(alpha(m,2)/a(k,1)))*exp(-alpha(m,2)/a(k,1)); 
            prod_g_plus_a2(m,1)=prod(g_plus_a2(:,m)); 
            prod_g_plus_a1(m,1)=prod(g_plus_a1(:,m)); 
            g_plus_a(m,1)=prod_g_plus_a2(m,1)/prod_g_plus_a1(m,1);     
            % constructing loop for g_plus(-gamma)= prod[(1-(ak/-gamma))*... 
            % exp(ak/-gamma),k:1..N]             
            g_plus_g2(k,1)=(1+(gamma/a(k,2)))*exp(-gamma/a(k,2)); 
            g_plus_g1(k,1)=(1+(gamma/a(k,1)))*exp(-gamma/a(k,1)); 
            prod_g_plus_g2=prod(g_plus_g2(:,1)); 
            prod_g_plus_g1=prod(g_plus_g1(:,1)); 
            g_plus_g=prod_g_plus_g2/prod_g_plus_g1;             
        end 
        %K+(a): 
        K_plus_a(m,1)=((alpha(m,2)+alpha_zero)/(alpha(m,2)+gamma))*... 
            g_plus_a(m,1); 
        %K+(gamma): 
        K_plus_g =((gamma+alpha_zero)/(2*gamma))*g_plus_g; 
        %K-(0)= K+(0): 
        K_plus_0=alpha_zero/gamma; 
        %K1(a): 
        K1_a(m,1)=alpha(m,2)*tanh(alpha(m,2)*H)-1; 
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        %K1'(gamma): 
        K1_gd=tanh(gamma*H)+gamma*(1-(tanh(gamma*H))^2)*H; 
        %K2'(a): 
        K2_ad(m,1)=(1-d)*tanh(alpha(m,2)*H)+(1-d)*alpha(m,2)*(1-... 
            (tanh(alpha(m,2)*H))^2)*H; 
        %matrix for determination of eta and xi:    
        C(j,m)=alpha(m,2)^2*exp(i*alpha(m,2)*L)*(K_plus_a(m,1))^2*... 
            K1_a(m,1)/(alpha(j,2)^2*K2_ad(m,1)*(alpha(m,2)+alpha(j,2))); 
        %+ vectors in case of vertical vibrations: 
        f1(j,1)=1/(alpha(j,2)^3*K_plus_0); 
        f2(j,1)=f1(j,1);     
    end 
end 
 
%constructing eta(j)and xi(j) by (truncated)Singular Value-Decomposition: 
b = zeros(Nm+1,1); 
b = C*f1+f2; 
A = zeros(Nm+1,Nm+1); 
A = ones(Nm+1,Nm+1)-C^2; 
[U S V] = svd(A); %singular value decomposition 
s = svd(A); 
tol = max(size(A))*s(1)*eps;%floating point tolerance  
r = rank(A,tol);%rank computation 
tol = 0.05; 
r = rank(A,tol); 
Sinv = zeros(Nm+1,Nm+1); 
for e=1:1:r 
    Sinv(e,e) = inv(s(e)); 
end; 
xi_j = V'\(Sinv*(U\b)); 
eta_j = xi_j; 
 
% output: 
%constructing psi_0, psi_od, wx and wx_average from 0 to L: 
x_start=0/l; 
x_end=L0/l; 
x_step=(x_end-x_start)/(Nm); 
x=x_start:x_step:x_end; 
for jj=1:1:Nm+1 
    for kk=1:1:Nm+1 
        psi_0_jj(jj,kk)=alpha(jj,2)^2*K_plus_a(jj,1)/K2_ad(jj,1)*... 
        (exp(-i*alpha(jj,2)*(x(1,kk)-L))*xi_j(jj,1)+exp(i*alpha(jj,2)*... 
        x(1,kk))*eta_j(jj,1)); 
        psix_0(1,kk)=-i*sum(psi_0_jj(:,kk)); 
        psi_0d_jj(jj,kk)=psi_0_jj(jj,kk)*alpha(jj,2)*tanh(alpha(jj,2)*H); 
        psix_0d(1,kk)=-i*sum(psi_0d_jj(:,kk)); 
        wx(1,kk)=i*sum(psix_0d(1,kk)); 
    end 
    w_av_jj(jj,1)=tanh(alpha(jj,2)*H)/K2_ad(jj,1)*(alpha(jj,2)^2*... 
        K_plus_a(jj,1)*i*(1-exp(i*alpha(jj,2)*L))*(eta_j(jj,1)+xi_j(jj,1))); 
    wx_av=sum(w_av_jj(:,1)); 
     
    % reflecting and transmitted wave coefficients |R| and |T|: 
    R_jj(jj,1)=i/(K_plus_g*K1_gd)*(alpha(jj,2)^2*exp(i*alpha(jj,2)*L)*... 
        (K_plus_a(jj,1))^2*K1_a(jj,1)*xi_j(jj,1)/(K2_ad(jj,1)*... 
        (alpha(jj,2)-gamma))-1/(gamma*K_plus_0)); 
    R=sum(R_jj(:,1)); 
    T_jj(jj,1)=-i*exp(-i*gamma*L)/(K_plus_g*K1_gd)*(alpha(jj,2)^2*... 
        exp(i*alpha(jj,2)*L)*(K_plus_a(jj,1))^2*K1_a(jj,1)*eta_j(jj,1)/... 
        (K2_ad(jj,1)*(alpha(jj,2)-gamma))-1/(gamma*K_plus_0)); 
    T=sum(T_jj(:,1)); 
    T=squeeze(T); 
    % normalized: 
    R_norm=abs(R)/(abs(R)+abs(T)); 
    T_norm=abs(T)/(abs(R)+abs(T)); 
    % checking phase differences: 
    phase_R=angle(R); 
    phase_T=angle(T); 
    phase_diff=abs(phase_R-phase_T); 
    % checking condition |R|=0: 
    check_R_zero=imag((K_plus_a(1,1))^2)/real((K_plus_a(1,1))^2)+... 
        alpha_zero*L; 
end 
% re-enter dimensions: 
psi_0=psix_0*q0/(rho*omega); 
psi_0d=psix_0d*q0/(rho*omega*l); 
w=wx*q0/(rho*9.81); 
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w_av=wx_av*q0/(rho*9.81*L); 
w_m=mean(w);% mean value or midpoint value for w 
% distributed values for stiffness and damping: 
Kappa=B*q0/w_m; 
kd=real(Kappa); 
cd=imag(Kappa)/(i*omega); 
% added mass per meter width and length: 
alphax_am=psi_0./psi_0d; 
alpha_am=mean(alphax_am); 
mf=rho*alpha_am; 
Figure V.8 wavediffraction.m 
 
  %% 1 mode approximation (short wave approximation) %%       
        %matrix for determination of eta and xi:    
        C(j,m)=alpha(m,2)^2*exp(i*alpha(m,2)*L)*(K_plus_a(m,1))^2*... 
            K1_a(m,1)/(alpha(j,2)^2*K2_ad(m,1)*(alpha(m,2)+alpha(j,2))); 
        C_j0(j,1) = C(j,1); 
         
        %+ vectors in case of vertical vibrations: 
        f1(j,1)=1/(alpha(j,2)^3*K_plus_0); 
        f2(j,1)=f1(j,1); 
        f0_1=f1(1,1); 
        f0_2=f2(1,1);    
    end 
end 
 
%constructing eta(j)and xi(j) 1 mode approximation: 
C00=(abs(alpha_zero-gamma))/gamma; 
eta_j=C_j0*((f0_1+C00*f0_2)/(1-C00^2))+f2; 
xi_j=C_j0*((C00*f0_1+f0_2)/(1-C00^2))+f1; 
  %% end 1 mode approximation %% 
Figure V.9 short wave approximation eta and xi in wavediffraction.m 
 
V.5 Transfer function 
 
% this file calculates the transfer function of the acceleration in every  
% degree of freedom in the multibody system 
% input: 
[N] = textread('structural parameters.txt','%f',1,'headerlines',2); 
 
% mass, damping and stiffness matrix I,C and K: 
load Mass  
load Damping 
load Stiffness 
 
% output: 
% frequency steps: 
omega_end=5; 
stepsize=0.05; 
omega=0:stepsize:omega_end; 
omega_step=omega_end/stepsize+1; 
 
% frequency response function for acceleration: 
  for j=1:omega_step 
      S=-omega(j)^2*M+i*omega(j)*C+K; 
      H=S^-1; 
      H_y=abs(H); 
      H_am(:,j)=sum(H_y(:,:))*omega(j)^2; 
  end 
Figure V.6 FDA.m 
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VI Unsuccessful controlling of structural parameters  
 

The strategy in the parameter study, described in section 9.5, was initially more 

comprehensively measured out; after a miscalculation, we evaluated clk  first, since these 

tools are specially designed for manipulating the vertical acceleration at the entrance of 

the structure. Subsequently, intk  and /cl intk  -in that order- were evaluated in a manner 

analogously to clk .  

 

In figure VI.1 , 6 graphs have been plotted with /cl intk  , clk  and intk  versus quality 

measures ca  and � . It can be noticed that stiffness promotes accelerations while it 

opposes rotations, generally speaking. Stiffness as ‘tuning tool’ must be eliminated since 

accelerations should be slowed down rather than accelerated.  

 

 

Proceeding the strategy, the same steps for c  as for k  will be followed.  

 

Figure VI.2 shows 6 graphs with /cl intc  , clc  and intc  versus the quality measures ca  and 

� . It can be noticed that damping slows down accelerations now, irrespective of how it is 

distributed over the joints. Damping still slows down rotations, like in the stiffness 

response. Taking 5
/ 1*10cl intc Ns m�

 
yield 21ca m s� what meets the requirement 

max,c ca a� . Basically, intc  
must be 51.4 *10 Ns m�  and 51.4 *10clc Ns m��  in order to 

meet the requirement max,c ca a� . Therefore, the ‘damping tool’ will be used to damp all 

joints equally. Due to close to invariant gradients, linear interpolation close to the values is 

justified.  

 
Figure VI.1 simulation with 7 different values for /cl intk  ,  clk and intk  when c = 80 km/h 
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Since the body length manipulates the body acceleration too, iL  as ‘tuning tool’ is 

implemented apart from the damping tool. However, from an economical point of view, it 

is important to minimize stretching of the body length due to transportability. Therefore, 
1L and 2L , and due to a symmetric configuration, 20L and 19L were appointed for evaluation, 

since the corresponding bodies are closest to the critical location. Simulations with 7 

different values can be found in figure VI.3.  Initially, 1L can be eliminated as ‘tuning tool’ 

since 2L is the strongest tool. 

 

 
Figure IV.2  simulation with 7 different values for /cl intc  ,  clc and intc  when c = 80 km/h 

 
Figure 9.20 simulation with 7 different values for 1,20L  and 2,19L  when c = 100 km/h    
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