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Abstract

Nowcasting high-intensity precipitation is crucial for emergency services and municipal-
ities when making weather-dependent decisions. This research implements and trains a
deep generative model for nowcasting using a cleaned precipitation radar composite dataset
spanning 15 years, with a 5-minute temporal and 1 km spatial resolution.

We propose and apply a method for speckle-like clutter removal to enhance data quality,
particularly for high-intensity precipitation rates. The deep generative model is trained with
two data sampling strategies to balance the data and improve the accuracy of high-intensity
precipitation forecasts. Model performance is evaluated using several standard metrics, and
we propose an adaptation to one metric to quantify a score to peak anticipation time in
precipitation nowcasting. We also compare our model’s performance with a state-of-the-art
deterministic Lagrangian extrapolation-based nowcasting system.

Our results show that the proposed data quality improvement method effectively removes
certain errors from historical radar data. Although the deep generative model currently
scores low on the standard metrics, the model trained with a focus on high-intensity pre-
cipitation shows an improved score to peak anticipation time. Both deep generative models
exhibit less blurring compared to the state-of-the-art model and, in some cases, perform
similarly or outperform it.
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1
Introduction

High-intensity precipitation is a driver for many natural hazardous events that can cause
severe damage to crops and infrastructure, disrupting society and can even cause loss of life
(Ayzel et al., 2019; Douris et al., 2023; Manola et al., 2020; Xu et al., 2022). These high inten-
sities are expected to increase in number in Western Europe due to a warmer atmosphere
being able to hold more moisture (Lenderink and Van Meijgaard, 2010), which leads to the
need for better early warning systems to support authorities in weather-dependent decision-
making (Ji et al., 2023; Lin, 2022). Traditionally Numerical Weather Prediction (NWP) is used
to forecast future precipitation based on governing equations of atmospheric dynamics and
continuous data assimilation (Han et al., 2023). NWPs do however have limitations for short
lead times (<6 h) in terms of accuracy, spatiotemporal resolution, and computation time for
operational purposes (Berenguer et al., 2012; Imhoff et al., 2020; Pierce et al., 2012). Now-
casting is used to resolve the precipitation forecast for short lead times (Zhang et al., 2023).
Modern precipitation nowcasting algorithms often rely on the extrapolation of observations
by ground-based radars (Lebedev et al., 2019).

1.1. Research motivation
Nowcasting is traditionally done by estimating the apparent movement of radar precipita-
tion fields using optical flow or variational echo tracking by extrapolating the observations
into the future (Foresti et al., 2016; Grecu and Krajewski, 2000; Pulkkinen et al., 2019). The
emergence of deep learning methods in the field of nowcasting provides new opportuni-
ties for developing new models that may learn to predict spatial and temporal structures
of precipitation fields (Bi, 2022). Nowcasting deep learning methods have shown accurate
prediction for low-intensity precipitation. However, they often produce poor results for high
intensities and their predictions become blurry and unrealistic at longer lead times (Ravuri
et al., 2021).

In many deep learning methods the extremes are often handled as outliers and are often
ignored (Bi, 2022). This leads to the outputs from precipitation estimators being highly
skewed towards lower values, resulting in fewer high-intensity precipitation in their pre-
dictions (Hayatbini et al., 2019). These extremes are however important to predict, as the
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2 1. Introduction

high-intensity precipitation can lead to flooding and loss of life. This leads to the need of
the development of new algorithms that do not under represent these extremes.

To overcome the blurry predictions, the use of generative models was proposed to generate
more realistic video prediction, which can be applied to radar echo extrapolation prediction
(Liu and Lee, 2020; Wang et al., 2021; Xu et al., 2022). These generative models utilize a
training strategy developed by Goodfellow et al. (2014) and this type of architecture is called
a Generative Adversarial Network (GAN). These methods have shown great potential, and
a deeper understanding of these models is required to improve their predictive capabilities
for precipitation.

The main objective of this thesis is to enhance the understanding of deep learning nowcast-
ing models regarding their predictive capability of high-intensity precipitation. Addition-
ally, this research seeks to gain a deeper understanding of training data cleansing as well
as the influence of training data sampling on these models. By achieving these aims, valu-
able insights will be provided, leading to improved algorithm development in the field of
precipitation nowcasting.

1.2. Research objective
The aim of this research is to implement and train the Deep Generative Model of Radar
(DGMR), as first described by Ravuri et al. (2021), on a new radar dataset cleaned of speckle-
like clutter as well as gain more insight into the effect of data sampling during training of
deep learning nowcasting models. This is achieved by analysing and processing the training
data and by applying two training strategies with the aim of improving the capability of
DGMR to predict high-intensity precipitation events in the Netherlands. The effectiveness
of the training strategies is evaluated with metrics and compared to S-PROG as benchmark
on some events to show some of the strengths and limitations of these training strategies.
The code for the model was taken from Elsmann (2023).

1. How can the data be processed to improve the data quality for high-intensity pre-
cipitation events in the Netherlands?

2. In what ways can a Generative Adversarial Network (GAN) be trained with radar
images to improve the prediction for high-intensity precipitation events in the Nether-
lands?

3. How does this model, under different training strategies, compare to S-PROG, a
state-of-the-art extrapolation based nowcasting system?



2
Related research

In Section 2.1 the concept of Generative Adversarial Network (GAN) is introduced and
some earlier work in weather prediction using GANs are highlighted. The models used in
this research are introduced in Section 2.2.

2.1. Generative Adversarial Networks background
A commonly used training strategy of machine learning is supervised learning, where a
dataset of example inputs and example outputs are used to learn to map the input to an
output (Goodfellow et al., 2020). Generative models do not follow this training method
as they use an unsupervised learning approach. They have the goal to study a collection
of training examples and learn the probability distribution that is used to generate these
examples to make predictions. The training of these networks is however difficult and
for this reason adversarial networks have been proposed (Goodfellow et al., 2014). Here
a generative model and an adversary, a discriminative model, compete against each other in
a minimax game, which is a Generative Adversarial Network (GAN).

In simple terms, the generator’s objective is to generate samples from noise that can fool the
discriminator (Schreurs, 2021). This is done with a mapping function, G(z; θ(G)), that takes
noise, z, with a set of learnable parameters, defined by θ(G), so it can map noise to realis-
tic samples (Goodfellow et al., 2020) and it tries to minimize how often the discriminator
correctly labels the generated samples.

The discriminator’s objective is to detect if a presented sample is a generated sample or a
real sample (Schreurs, 2021). The discriminator does this by examining real and generated
samples, x, and returns an estimate D(x; θ(D)). The discriminator tries to maximize correctly
labeling the presented samples (Goodfellow et al., 2020).

In this adversarial setup, the generator, G, and discriminator, D, are put into a two-player
minimax game, where the aim is to optimize the value function, V(G, D), representing the
skill of each model. This value function is given by:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ex∼pz(z)[log(1 − D(G(z)))] (2.1)

3



4 2. Related research

Variations of this training approach have been used to improve generative models for differ-
ent tasks, including video prediction (Clark et al., 2019) and text-to-image generation (Zhang
et al., 2016). Several methods for the training process of GANs with a variety of applications
have been proposed to stabilize the training process (Arjovsky et al., 2017; Brock et al., 2018;
Karras et al., 2017; Saito et al., 2018; Salimans et al., 2016).

2.1.1. Earlier GAN applications in weather prediction

Bihlo (2020) uses a conditional Generative Adversarial Network (cGAN) to learn the physics
underlying for the geopotential height of the 500 hPa pressure layer, the two-meter temper-
ature and the total precipitation. The cGAN is fed input data to condition the output on by
giving more context to the model of the initial conditions it uses to make a forecast (Mirza
and Osindero, 2014). In the case of Bihlo (2020) this conditional input is European Centre
for Medium Range Weather Forecasts (ECMWF) data of the past day to predict the next 24
hours for the given input feature. The generator follows a U-Net architecture based on Isola
et al. (2018) and initially proposed by Ronneberger et al. (2015). The same model architec-
ture is retrained for each feature by training on that feature alone. To investigate whether
meaningful statistical information could be obtained, they run an ensemble of slightly dif-
ferent cGANs by introducing Monte-Carlo dropout layers into the model architecture. Three
case studies show that the forecasts made for the geopotential height and two-meter tem-
perature captures the ground truth well for all lead times. However the total precipitation
is not always correctly captured in the ensemble for all lead times. This indicates that the
total precipitation is difficult to forecast correctly for these lead times using only the total
precipitation as context for the model. These results have not been compared to another
model as a benchmark.

Choi and Kim (2022) designed a cGAN based model for advanced precipitation nowcasting
with good prediction performance for dam basins in South-Korea. The generator is based
on the same U-net architecture from Isola et al. (2018) and is trained for each dam basin
separately, using different transfer learning strategies to develop a precipitation nowcasting
model for different dam basins. The generator only predicts the next frame and by applying
a recursive process it achieved adequate performance up to 80 minutes, where other shown
state-of-the-art models could only achieve this performance up to 60 minutes. However, their
model has the tendency to underestimate intense precipitation events, which may be due to
data imbalance as there are few intense precipitation events in the training set compared to
lower precipitation rates.

Duncan et al. (2022) applied a GAN that integrates multi-scale semantic structure and style
information to allow them to synthesize physically realistic fine-scale precipitation features
with realistic high-intensity precipitation. This is done by fusing features at different spatial
scales in the generator and have separate discriminators for each spatial scale to improve
their predictive capability. The model outperforms a leading NWP model in skill up to 1-2
day lead time. Their analysis shows that their models as well as the used NWP underesti-
mate the extremes that occur in the ground truth.

Jing et al. (2019) developed Adversarial Extrapolation Neural Network (AENN), which uses
the last 5 precipitation radar frames to return an extrapolation for 30, 60 and 90 minutes.
They have shown that their model outperforms other models significantly and it can gen-
erate accurate and realistic extrapolation echoes by making use of GAN to avoid blurry
predictions. The model was trained and tested on five CINRAD/SA doppler weather radars
provided by the National Meteorological Information Center of China. The examples show
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that the data contains several radar error sources which may have influenced the model
performance as well as the evaluation. Furthermore, the quantitative evaluation does not
compare the performance of AENN to the other benchmark models for high precipitation
rates. This model has also been applied to weather radar in the Netherlands by Schreurs
(2021), where the inclusion of the adversarial loss during training has been demonstrated to
reduce the blurriness compared to a training setup without the adversarial loss.

2.2. Nowcasting models
This research is performed using the GAN based deep learning model proposed by Ravuri
et al. (2021) called Deep Generative Model of Radar (DGMR). The model performance is
compared to the optical flow based extrapolation model proposed by Seed (2003) and im-
plemented using PySTEPS (Pulkkinen et al., 2019). Both models and some earlier work with
these models are described here.

2.2.1. Deep Generative Model of Radar (DGMR)

Ravuri et al. (2021) developed DGMR, a conditional generative model for precipitation now-
casting. Their model takes four consecutive radar observations, the past 20 minutes, and
use these as context to generate multiple forecasts for the next 18 frames, 90 minutes. The
generator of the model takes the context frames and latent variables as input and is trained
using two discriminators and a regularization term. A spatial discriminator is used, which
is a convolutional neural network that tries to distinguish individual observed radar frames
from generated frames to ensure spatial consistency and discourage blurry predictions. A
temporal discriminator is used, which is a 3D convolutional neural network which tries to
distinguish observed and generated radar sequences to impose temporal consistency. The
regularization term is used to further improve accuracy by penalizing deviations at a grid
cell level between the radar sequences and the model predictive mean as computed with
multiple samples.

The model was trained and evaluated on a radar composite over the United Kingdom from
the Met Office RadarNet4 network with 15 C-band dual polarization radars (Ravuri et al.,
2021). A schematic overview of the model training can be seen in Figure 2.1. After training,
only the generator is used to make forecasts. The model was evaluated against PySTEPS, a
radar only version of the MetNet model from Sønderby et al. (2020) and the U-Net encoder-
decoder model similar to Agrawal et al. (2019) and Ayzel et al. (2020). Both a quantitative
verification with commonly-used verification measurements was performed as well as a
qualitative assessment with expert forecasters. However the U-Net model was not used in
the qualitative assessment with expert forecasters. According to Ravuri et al. (2021) their
generative model was judged to be more accurate and useful than PySTEPS or the MetNet
model according to the professional forecasters. According to the quantitative evaluation,
the DGMR is competitive compared to the baseline models, provides more accurate prob-
abilistic forecasts and preserves the statistical properties of precipitation across spatial and
temporal scales without blurring.

Frenkiel (2022) validated the generator of the pre-trained DGMR on the weather radar data
from 2021 in the Netherlands and compared it to forecasts made with S-PROG. They found
that the model performance is in line with the performance claimed by Ravuri et al. (2021),
but that improvements could be made when the model is re-trained on the Dutch radar
data. Elsmann (2023) trained DGMR on rain gauge adjusted radar data from 2008 up to
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Figure 2.1.: Schematic diagram of the model architecture showing the generator with spatial
latent variables Z. Image taken from Ravuri et al. (2021).

and including 2015 in the Netherlands. They also made a version of the model which takes
Echo Top Height (ETH) as extra input for context. More information on this dataset can be
found in Appendix E. They claim that the dataset is made up of a radar composite using 2
C-band radars, however one of the specified locations only became operational in 2016. The
two DGMR versions were quantitatively evaluated on a set of verification metrics, however
without comparing them to the performance of a benchmark model. The version including
ETH as extra input showed an improved forecast for low precipitation rate events as well as
large scale high precipitation rate events. Forecasts for small-scale high precipitation rates
did not improve.

2.2.2. Spectral prognosis (S-PROG)
The S-PROG model consists of three components, the estimation of the advection field,
decomposition of the field into Fourier components and a model for the scale-dependent
Lagrangian evolution of the field (Seed, 2003). The decomposition is done using fast Fourier
transformation and transformed back to the spatial domain, resulting in a cascade of a
number of levels representing a different scale. Separate second-order auto-regressive pro-
cesses are applied to each cascade level to account for the dynamic scaling of precipitation
(Pulkkinen et al., 2019). The Lagrangian evolution is applied to each cascade level and then
summed together to get the forecast. Both the precipitation intensity and motion field are
assumed to be stationary with Lagrangian persistence and can therefore be implemented
without training the model.

The open-source implementation of S-PROG is done using PySTEPS from Pulkkinen et al.
(2019) as a benchmark in this study.



3
Data

In Section 3.1 the radar reflectivity dataset is introduced. Some of the preprocessing done
by the KNMI of the radar reflectivity dataset is shown in Section 3.2.

3.1. KNMI radar reflectivity data
The KNMI currently uses two dual-polarized C-band radar systems to measure the precip-
itation reflectivity. These radars make 14 scans every 5 minutes under elevation angles of
0.3, 0.4, 0.8, 1.1, 2.0, 3.0, 4.5, 6.0, 8.0, 10.0, 12.0, 15.0, 20.0, and 25.0 degrees. The reflectiv-
ity product used here is the archive of the real time radar reflectivity composites, named
radar_tar_refl_composites, which only use the scans at 0.3, 1.1, 2.0 and 3.0 degrees. These
scans are used to generate a single image for each radar at an equivalent elevation of 1500
m, the Constant Altitude Plan Position Indicator (CAPPI). The two radar images are then
combined by applying a weighted average of the radar reflectivities (Wessels, 2006). The
resolution of the product is 1 × 1 km and is provided every 5 minutes. This product is
downloaded from the data platform of the KNMI and starts on January 1, 2008, at 00:00
UTC. The data up to December 31, 2022 at 23:55 UTC is used. The archive of the radar
reflectivity composites is used as it contains the same data available to an operational now-
casting system.

There are several sources of error when measuring the precipitation reflectivity, an overview
of which can be seen in Figure 3.1. Some of these error sources can give high reflectivity
values in isolated pixels without precipitation and when the radome is wet, it can give
strong attenuation and reduce the reflectivity values (Holleman and Beekhuis, 2005). These
are some of the limitations of using radar reflectivity to determine precipitation intensities.

Two single-polarized C-band radars were initially located in De Bilt and Den Helder and
these systems have been upgraded in 2016/2017 to the current radar systems. Due to high-
rise buildings in the vicinity of the radar system in De Bilt, the radar system was relocated
to Herwijnen to reduce the ground clutter and shielding that these buildings caused. Both
radar systems received several upgrades during this period to enhance the quality by using
polarimetric weather radars and replacing the radar sensors with modern low-maintenance

7



8 3. Data

Figure 3.1.: Sources of error affecting radar measurement of precipitation from
www.knmi.nl/research/observations-data-technology/projects/quality-enhancement-of-
quantitative-precipitation-estimates.

radars (Leijnse et al., 2016). The extent of the radar reflectivity product with context of the
old and current radar locations is illustrated in Figure 3.2.

Figure 3.2.: Image extent (700× 765 pixels) from the radar reflectivity product from the Royal
Netherlands Meteorological Institute (KNMI) and the radar extents (320 km) for the old
locations (De Bilt and Den Helder) and the current locations (Herwijnen and Den Helder).

The KNMI products are provided in HDF5 files, containing an 8-bit (0− 255) 2D-array (700×
765 pixels) with 0.5 dBZ intervals where the highest value of 255 represents a no-data pixel.
These array values are transformed from their 8-bit values to dBZ with the transformation
Equation 3.1.

dBZ = (8-bit value × 0.5)− 32.0 (3.1)

The Marshall-Palmer Z − R relation, Equation 3.2, is often used as an approximation for the
relation between the radar reflectivity factor Z and R in mm/h (Marshall and Palmer, 1948).
Since the KNMI provides the data in dBZ, which is 10log10(Z), the Marshall-Palmer Z − R
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relation expressed in dBZ is used given by Equation 3.3 as defined by Wessels (2006).

Z = 200R1.6 (3.2)
dBZ = 16 log10 R + 23 (3.3)

3.2. Data preprocessing
Holleman and Beekhuis (2005) describe how the fluctuations of the received power echoes in
dB are analysed within each processed range bin. The standard deviation spectra of clutter
and precipitation are different but overlap and this is used to filter out about 45% of the
clutter signals. The clutter flags are set per range sample, of 1 by 1 km, depending on the
observed standard deviation spectra and indicate that there may be clutter in that range
sample. The two neighbouring range bins are also checked and the decision is made if the
range sample contains clutter or not. A schematic overview of the clutter flag evaluation for
a single sample can be seen in Figure 3.3 where it is shown represented in a conical view of
the radar, with the view angle as the azimuth and the distance from the radar as the range.
This method has been applied to the radar reflectivity dataset used in this research prior to
the upgrade of the radars to Doppler systems, however it may fail to correctly flag clutter
when it occurs within a precipitation field.

Figure 3.3.: Schematic view of the procedure on clutter removal. The central range bin and
the two neighbours are marked in black and dark grey, respectively and are used for the
clutter flag. This figure is taken from Leijnse et al. (2016).

Leijnse et al. (2016) describes a method for using the Doppler spectrum as a method of
detecting clutter as it contains information on the distribution of radial velocities of the
samples. Ground clutter can easily be recognized in a Doppler spectrum as it produces a
narrow peak centered around the zero velocity, an example of which can be seen in Figure
3.4. The ground clutter is then removed by applying a steep high-pass filter to the Doppler
signals frequency domain. Finally, a speckle filter is applied, where speckle indicates isolated
range samples with valid data and neighbours with no data. This method was applied to
the dataset since the radar systems have been upgraded on the Den Helder location and the
introduction of the radar in Herwijnen.

As stated on the data platform of the KNMI, the volume scans of each radar generate a single
image per radar that represents the reflectivity at 1500 meters. The two radar images are
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Figure 3.4.: A Doppler spectrum containing a peak indicating ground clutter centered at
zero velocity. This figure is taken from Doviak and Zrnić (1993).

then combined into a single image by taking a weighted average of the radar reflectivities
where the weights are a function of the distance to the radar. After the processing for the
clutter removal and constructing the composite, the radar composite is made available on
the data platform of the KNMI under the name radar_reflectivity_composites version 2.0.

An example of clutter that remains in the composite when applying the method described
by Holleman and Beekhuis (2005) can be seen in Figure 3.5. A circular pattern with speckle-
like clutter can be identified around the Den Helder radar station. However, the reflections
measured to the East around the border with Germany move sporadically over time and are
also caused by non-precipitation targets. Since nowcasting ideally is done on precipitation
only, the non-precipitation targets will from now on be called errors. It can also be seen that
some pixels with high precipitation rates within the larger precipitation field to the West do
not move with the precipitation field itself. These areas representing high-intensity precipi-
tation rates remain on the same location, but their intensity changes over time depending on
the precipitation field that moves over those locations. This is most likely caused by ground
clutter which has not been removed in this example as the method described by Leijnse et al.
(2016) was not applied. The ground clutter is most pronounced over sea and influences the
precipitation rates that are inferred.

The KNMI is continuously working on improving the clutter filtering and improving the
quantitative precipitation estimation, further improving the quality of the radar product for
precipitation nowcasting. See for a recent overview Overeem et al. (2020, 2021).
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Figure 3.5.: Precipitation rates with speckle-like clutter in a circle around the Den Helder
radar location as well as ground clutter representing more than 160 mm/h within the
precipitation field over the North Sea based on radar reflectivity on October 31st, 2014,
times given in UTC.





4
Methodology

First a method for removing speckle-like clutter in the historical radar data is introduced in
Section 4.1. Then an event weighting method to use for selecting training data as well as
how to use it during training is introduced in Section 4.2. The data preparation and training
setup of DGMR are described in Section 4.3. Finally, the the verification methods used in
this research are described in Section 4.4.

4.1. Speckle-like clutter cleaning
Since GAN models try to recreate the structure of the training data, it is important to remove
these errors from the radar as suggested by Elsmann (2023), especially those with high dBZ
values as the focus of this research is on high-intensity precipitation events. To highlight
these values, density maps for exceeding 50 dBZ are generated for two full years to show
where these reflectivity values occur. According to the Marshall-Palmer Z − R relation, 50
dBZ corresponds to an intensity of 48.7 mm/h. The first year is 2008, under the clutter
removal scheme described by Holleman and Beekhuis (2005), the second year is 2022, under
the improved clutter removal scheme as described by Leijnse et al. (2016). This approach for
showing the areas effected by clutter with high intensities was also performed by Van der
Kooij (2021) and can be seen in Figure 4.2. In 2008 the areas with high density exceeding
50 dBZ closely represent the main shipping routes on the North Sea from Figure 4.1 as
concluded by Van der Kooij (2021). In 2022 these ship tracks have lower densities, due to the
improved clutter removal by the KNMI, but some areas with high reflectivity values align
with the location of wind farms, also seen in Figure 4.1. These error sources can pose an
issue for training precipitation nowcasting models on historic radar reflectivity data.

To remove the speckle-like clutter, a morphological clutter removal scheme is performed on
each frame of the radar composite. First all pixels are converted to a wetmask, which is
a binary map where 1 indicates rain rates exceeding 0.1 mm/h and 0 indicates rain rates
lower than 0.1 mm/h. Then one or more erosion steps are performed where a boundary of
the regions is removed from the wetmask. Then one or more dilation steps are performed
where the boundaries are enlarged. This process of first applying erosion and then dilation
is called opening. This method removes small areas with reflectivity which may be errors.

13
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Figure 4.1.: Density maps for exceeding 50 dBZ for the years 2008 and 2022.

Figure 4.2.: Vessel density map, retrieved from www.vesselfinder.com (left); Wind farms in
2020, in red, and planned, in green, on the North Sea, retrieved from www.wins50.nl
(right).
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Errors within larger reflectivity areas are not removed with this method. An example of
small precipitation fields with nearby clutter can be seen in Figure 4.3 and an example on
large precipitation fields without clutter can be seen in Figure 4.4.

(a) Original. (b) Wetmask. (c) Erosion. (d) Dilation. (e) Cleaned.

Figure 4.3.: Morphological operations example on small precipitation fields with clutter.

(a) Original. (b) Wetmask. (c) Erosion. (d) Dilation. (e) Cleaned.

Figure 4.4.: Morphological operations example on large precipitation field without clutter.

Several settings for this method have been tried to find a balance between removing speckle-
like errors from the data and not removing too much from the precipitation fields them-
selves. These settings vary with the number of erosion and dilation steps that are performed.
These settings are indicated with two numbers, the first indicating the number of erosion
steps that are performed first, followed by the number of dilation steps. The tested settings
are: 2-2, 3-2, 3-3, 4-3 and 4-4.

These settings are evaluated by remaking the density figures for 2008 and 2022 after cleanup
with these settings, as Figure 4.2, to indicate how much clutter with high reflectivity values
is removed. Furthermore, histograms of the original and remaining intensity values are
made for several events to give an indication of how much of the precipitation is removed.
A balance between removing clutter and keeping high precipitation values is picked, 3-3,
and applied to the full radar reflectivity dataset before further steps such as training the
precipitation nowcasting models.

4.2. Data sampling method and application

First the event weighting method, in the form of theImportance Sampling Weight (ISW) is
introduced in Section 4.2.1, followed by the application of these weights during training in
Section 4.2.2 and ending with how incomplete events were handled in Section 4.2.3.
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4.2.1. Importance Sampling Weight (ISW)

To reduce the number of examples containing little precipitation and to focus on high-
intensity precipitation rates, a sampling strategy is devised. The model needs 22 consecutive
frames (110 minutes) of 256 × 256, this will be defined as an event. A smaller research
domain is selected which is used to determine the importance sampling weights, these can
be seen in Figure 4.5. The model input is centered on De Bilt, based on the domain used
by Elsmann (2023). The research domain starts 32 km from the edge of the model input as
it cannot be expected that the model predicts what is coming from outside the model input
domain. Due to the remaining clutter over the ocean after applying the clutter cleaning
method from Section 4.1, the research domain is not taken over the ocean.

Figure 4.5.: The image extent of 700 × 765 in which the data is provided. The radar extent
where there are radar measurements. The model input of 256 × 256 and the research
domain of 134 × 192.

An event is taken and the precipitation rates of the cleaned data are xn,c, where c indexes
over C = T × h × w. The ISW is then determined using Equation 4.1 where P is the power
parameter to tune the importance of precipitation rates higher than 1 mm/h in events. The
weights were calculated for P = 1.0, P = 1.5 and P = 2.0.

ISWe = ∑
C
(xn,c)

P (4.1)

Events are sorted based on their ISW and the highest 20% are used to train and validate
the model to only select the events with precipitation within the research domain. In earlier
work with the DGMR model, the importance sampling was used to randomly sample events
to construct the training dataset where all events have a minimum probability of being
selected, introducing events with no precipitation into the training data (Elsmann, 2023;
Ravuri et al., 2021). With the new method, no random sampling is used when selecting
the events within the dataset. The distribution of events with an ISW in the highest 20%
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per month in the 2008-2022 dataset can be seen in Figure 4.6. This shows that there are
more events selected in June, July and August. It can also be seen that with a higher power
parameter more events are selected for May, June, July, August and September. It can also
be seen that fewer events are selected in January, February, March, April, November and
December with a higher power parameter.

Figure 4.6.: The number of events per month in the 2008-2022 dataset after selecting the
highest 20% for the different power parameter values.

4.2.2. Training strategies
Two training strategies are used, the first where the ISW is used as a threshold to sample
the events on during the training with replacement, further described as the unweighted
method. All events have an equal probability of being selected during the training with this
threshold method and they can occur multiple times. The threshold will be the top 20% of
weights with P = 2.0. P = 2.0 is selected as this emphasises events with higher precipitation
rates, especially high-intensity precipitation rates. The second training method uses the
ISW to determine the probability of selecting an event during training with Equation 4.2,
further called the weighted method. Here the sum is only taken over the highest m weights,
within the top 20% of weights to ensure that the sum of all probabilities add up to 1. In this
weighted method the events are again drawn with replacement and the training is focused
more on events with higher weights where higher precipitation intensities occur. This focus
can be seen in Figure 4.7 showing the probability of selecting an event, where the events
are sorted on the ISW. Due to the higher probability of selecting events with a high weight,
P = 2.0 is used as the ISW during training.

qe =
ISWe

∑m ISW
(4.2)
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Figure 4.7.: The probability of selecting event e, qe, for the top 20% events in the 2008-2022
dataset for the different power parameter values. The events are sorted on the ISW.

4.2.3. Incomplete events
The single image provided as the reflectivity composite on the data platform of the KNMI is
a combination of the data of two radar systems. To ensure that this is homogeneous in the
training data, a check is performed on all time steps to ensure that the radar reflectivity is
available and is covered by two radar systems, one at Den Helder and another at either De
Bilt or Herwijnen. Out of all possible events in the dataset, 1,577,931 events, this restriction
removes 118,243 events, or around 7.5%. The code base of DGMR is based on the work
from Elsmann (2023), which also included a model version where the Echo Top Height
(ETH) product of the KNMI was used. Due to this the ETH dataset was also checked on
the availability and coverage, removing a further 11,496 events, or 0.7%. More information
about this product and an analysis of precipitation rates and ETH can be read in Appendix
E. Events with one or more frames without full coverage from both radar products are
assigned an ISW of zero and will therefor not be used during training.
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4.3. DGMR model training

First, the processing for the training data is explained, including the training, validation and
test split of the dataset where the distribution of the events is shown in Section 4.3.1. After
this, the changes to the DGMR model as well as the settings for the experiments are shown
in Section 4.3.2.

4.3.1. Data preparation

After the weights have been calculated for all valid events and the top 20% have been se-
lected, 315,591 events remain in the dataset where Figure 4.8 shows how many there are per
year. The dataset has to be split into a training, validation and test set. To prevent many
consecutive events, which are closely correlated to each other, being split among these three
sets, the training set will consist of all events from 2008 up to and including 2020, the valida-
tion set has all events from 2021 and the test set 2022. This results in 279,766 training events,
18,822 validation events and 17,003 test events, the distribution per month being shown in
Figure 4.9.

Figure 4.8.: The number of top 20% events per year in the dataset.

In the original work with this version of the DGMR model from Elsmann (2023), the Pre-
cipitation data as well as ETH data, see Appendix E, were saved in TFRecord files where
one file contained the data of a single day. However, this has two limitations, the first being
that valid events that have frames in two days have not been included, leaving out all events
with the first input frame, t−20, at 22:15 UTC up to 00:00 UTC, being about 7.3% of all valid
events. Second of all, this storage method leaves poor control over the probability of se-
lecting each event individually during training as each TFRecord file may contain up to 267
events. Therefore, the precipitation data is stored in TFRecords, where each file is a valid
event with a weight in the top 20% since only these will be used during training. While pro-
ducing the TFRecord files, all pixels with an precipitation rate over 200 mm/h where set to
200 mm/h. Values higher than 200 mm/h may be erroneous in nature or indicate hail, this
reduces some extreme values, some even over 1.000 mm/h as the model will be penalized
significantly when it is unable to predict these extremes.
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Figure 4.9.: The number of top 20% events per month for the training set on the left and the
validation and test set on the right.

4.3.2. Training setup

Two experiments are done on DelftBlue (Delft High Performance Computing Centre , DHPC)
using one NVIDIA Tesla V100S 32GB for each experiment due to the limited number of
GPU’s. Training may take up to 120 hours, after which it is automatically stopped to ensure
the limited number of available GPU’s can be used by other users. This severely limits the
resources and time required to train the full model to a stable state. To ensure the train-
ing reaches stability with one GPU and the time limitation, the blocks have been reduced
in size in the generator as well as the discriminators. This is done by reducing the size of
the convolution layers in the generator and the down-sampling blocks in the discriminators,
see Figures 4.10 and 4.11 for an overview. The original layout of the model can be seen in
Appendix D.

The training was done using TensorFlow (Adabi et al., 2016) 2.8.2 with a batch size of 16 and
100.000 training steps. The model takes the previous four radar observations, the previous 20
minutes, as context and forecasts for the next 18 frames, the next 90 minutes. The generator
and discriminator make use of the Adam optimizer, which was set to a learning rate of
5 × 10−5 and 2 × 10−4 respectively as was done by Elsmann (2023). The discriminators
are updated twice for every training step compared to once for the generator. Every 500
training steps, the model performs 100 validation steps to track the training progress. Both
experiments, one with the weighted selection scheme and another with the unweighted
selection scheme, as described in Section 4.2.2, are performed with the other settings left the
same.

4.4. Model verification

The forecasts of the two training strategies described in Section 4.2.2 are evaluated against
each other using metrics calculated on 1000 randomly selected events from the test set, which
are described in Sections 4.4.1 and 4.4.2. An adaptation of a metric used for determining
a models capability with forecasting the peak discharge in a catchment is introduced in
the form of the Peak Anticipation Time in Section 4.4.3. All metrics are calculated on the
research domain as described in Section 4.2.1. The predictions are also compared visually
on a subselection of test events against the predictions from S-PROG. A description of the
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Figure 4.10.: Schematic overview of the DGMR Generator with the Conditioning Stack where
the 4 input frames of size 256 × 256 are processed, the Latent Conditioning Stack where
noise from a Gaussian distribution is processed and fed towards the Output Stack where
18 output frames of size 256 × 256 are generated. Image taken from Elsmann (2023) with
further details of the blocks in Figure 4.11 and where changes to the size of blocks are
indicated in bolt.

selection of these test events is provided in Section 4.4.4. S-PROG was setup to take 4 input
frames and give 18 output frames to compare it with similar information as input and for
the same lead time as the generative model.
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Figure 4.11.: Discriminators, Latent Stack and the architecture of the Generator block, Down-
sampling block and Latent block used in DGMR, where changes to the size of blocks in
the Discriminators are indicated in bolt. Image taken from Ravuri et al. (2021).

4.4.1. Continuous metrics

Two continuous scores are calculated as a function of lead time. These are the Mean Absolute
Error (MAE) and Mean Squared Error (MSE).

MAE =
1

N × 134 × 192

N

∑
n=1

134

∑
i=1

192

∑
j=1

|Fi,j − Oi,j| (4.3)

MSE =
1

N × 134 × 192

N

∑
n=1

134

∑
i=1

192

∑
j=1

(Fi,j − Oi,j)
2 (4.4)

Where N is the number of samples, F the forecast and O the observed precipitation and the
area of the research domain is 134 by 192. The MSE puts more emphasis on larger errors.
Both metrics range from 0, a perfect score, to infinity. These metrics have been calculated on
the precipitation intensities in mm/h.

4.4.2. Categorical metrics

Categorical metrics are used to give a qualitative assessment of the forecast for different pre-
cipitation thresholds. The metrics used are Critical Success Index (CSI), Probability of De-
tection (POD), False Alarm Rate (FAR), F1 score and Fraction Skill Score (FSS). The forecasts
and observations are converted into binary maps depending on whether the pixel values
are above or below the threshold intensity values. The categorical metrics are computed
based on the four elements of the confusion matrix in Table 4.1. The considered intensity
thresholds are 1 mm/h, 10 mm/h and 20 mm/h.
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Table 4.1.: The confusion matrix outcomes.
Observation

Positive Negative

Forecast Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Critical Success Index (CSI) indicates how well the true positives correspond to the total
number of cases minus the true negative. It ranges from 0 to 1, where higher is better.

CSI =
TP

TP + FP + FN
(4.5)

Probability of Detection (POD) indicates how well the true positives correspond to the
observed positives. It ranges from 0 to 1, where higher is better and overpredictions tend to
give a better score.

POD =
TP

TP + FN
(4.6)

False Alarm Rate (FAR) indicates how many false positives are given as a fraction of the
total forecasted positives. It ranges from 0 to 1, where lower is better. Overpredictions will
give a worse score by increasing the FAR.

FAR =
FP

TP + FP
(4.7)

F1 indicates the balance between the precision, how many forecasted positives are true pos-
itive, and the recall, how many observed positives were correctly predicted (TP). It ranges
from 0 to 1, where higher is better.

F1 =
TP

TP + 0.5 × (FP + FN)
(4.8)

Fraction Skill Score (FSS) is a spatial verification score, which indicates the skill of a forecast
to predict above a given precipitation thresholds and for different spatial scales of size n. It
is calculated over lead time and ranges from 0 to 1, where higher is better (Roberts and Lean,
2008). The average FSS over all samples per scale and lead time is calculated.

FSS = 1 −
MSE(n)

MSE(n)re f
(4.9)

with

MSE(n) =
1

Nx Ny

Nx

∑
i=1

Ny

∑
j=1

(O(n)i,j − F(n)i,j)
2 (4.10)

MSE(n)re f =
1

Nx Ny

(
Nx

∑
i=1

Ny

∑
j=1

O2
(n)i,j +

Nx

∑
i=1

Ny

∑
j=1

F2
(n)i,j

)
(4.11)
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where Nx and Ny are the number of columns and rows in the radar data, i and j indicate
the row and column index of the fraction matrices respectively, and O(n)i,j and F(n)i,j are the
fraction of pixels exceeding the threshold precipitation intensity in the fraction matrix i, j of
the observation and forecast respectively.

The FSS is determined for windows of size 4 km, 8 km, 16 km and 32 km.

4.4.3. Peak Anticipation Time score
The Peak Anticipation Time (PAT), originally proposed by Imhoff et al. (2022) in the context
of hydrology, is the first issue time for which the maximum discharge was forecasted within
a given magnitude range. In this research, the PAT is applied to an image and will indicate
how often the peak precipitation within a window of a given size is forecasted within the
window and within a given magnitude range, for any given lead time. This method can be
applied to ensemble predictions or on deterministic predictions. It ranges from 0 to 1, where
higher is better.

For window i, j of size n × n it is determined if the maximum observed precipitation rate,
O(n)i,j, is above the threshold value. Then the remaining windows are assigned a 1 if the
maximum forecasted precipitation rate, F(n)i,j, is within a factor of tolerance, f , and 0 other-
wise.

W(n)i,j =

{
1, max (F(n)i,j)× f ≥ max (O(n)i,j) ≥

max (F(n)i,j)
f

0, else
(4.12)

The PAT is then calculated by taking the average of the values assigned to the windows that
have a maximum observed precipitation rate above the threshold value, W(n)i,j.

PAT = W(n)i,j (4.13)

The time aspect of the PAT is introduced by determining it for a single time step but with
different lead time, a simple representation of this is shown in Figure 4.12.

Figure 4.12.: A representation of the PAT-score being determined over lead time on a model
with 4 input frames and 8 output frames. The columns indicate the time in frames and
each row indicates how the PAT is determined for a given lead time in a number of frames.

The PAT-score is determined on a subselection of test events with a factor of tolerance of
1.5, with intensity thresholds of 1 mm/h, 10 mm/h and 20 mm/h and for windows of
size 4 km, 8 km, 16 km and 32 km. In part due to the random noise introduced in every
forecast generated by the generative model, forecasts can differ significantly when looking
at the same timestep. To reduce the random noise of the model influencing the PAT-score
significantly between two consecutive predictions, an ensemble of 10 forecasts is used to
determine the PAT-score also averaging the PAT-score over the ensemble.
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4.4.4. Test events verification
For the qualitative assessment of the models and for determining the PAT-score of the
trained models, 20 events were selected from the test set by looking for the highest ISW
using P = 2.0 as described in Section 4.2.1 to have the emphasis on events with high pre-
cipitation intensities. Since events starting 5 minutes apart have a lot of overlap, their ISW
will be very similar. To make sure that each event is unique, only the event with the highest
ISW is selected within a two hour time frame. These 20 events have some variance in the
behaviour of the precipitation field and similar events were removed as to focus on the be-
haviour of the model under completely different atmospheric conditions, reducing it to only
6 unique test events. These can be seen in Figure 4.13. This selection was done before the
model training was completed.

Figure 4.13.: The 6 unique test events used for qualitative assessment.

For all events the given time and date indicate the last of four input frames, at t = 0 min and
a short description of each event is focused on the behaviour within the research domain.

Event 1: 2022-05-19 12:05 A large precipitation field moving towards the Northeast with little
change to its shape. The maximum precipitation intensities are between 20 and 60 mm/h
but drop to just above 10 mm/h at end of the prediction and the median is approximately 2
mm/h for the entire duration.
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Event 2: 2022-09-08 20:25 A precipitation field covering up to a quarter of the research
domain moving towards the Northeast spreading in Northwest-Southeast direction. The
peak precipitation intensities are between 20 and 100 mm/h for some cells within the larger
precipitation field which may be of convective nature and the median is approximately 3
mm/h at the start and drops to 2 mm/h at the end of the event.

Event 3: 2022-12-23 12:20 A large precipitation field covering nearly the entire research
domain and moving towards the East and slightly to the North with barely any change in
shape of the precipitation field. The peak intensities are between 10 and 20 mm/h with a
median of 1 mm/h.

Event 4: 2022-08-17 01:55 Some smaller precipitation fields forming at the start of the event
and moving North. These are very likely formed due to convection and the peak intensities
are between 40 and 100 mm/h within the small convective cells. The median precipitation
intensity is around 1.5 mm/h and drops to 1 mm/h from t+60 minutes.

Event 5: 2022-02-20 20:55 A large precipitation field with high-intensity precipitation in a
line structure moving towards the East. This line structure was formed by a cold front
moving in from the West, giving peak precipitation intensities of 25 up to 52 mm/h while
the median precipitation rate was close to 0.5 mm/h for the entire duration.

Event 6: 2022-06-05 15:00 A large precipitation field covering nearly 80% of the research
domain moving slowly towards the North with an anti-clockwise rotation. The peak precip-
itation intensities are between 15 and 20 mm/h and drop to just below 10 mm/h at the end
of the event and the median intensity is around 1 mm/h.
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Results

First, the effect of the clutter cleanup method under different settings is analysed in Section
5.1. This analysis uses the density maps of 2008 and 2022 and examines the effect on two
example radar images throughout the training dataset. Next, the performances of the trained
models are analysed in Section 5.2. The average metrics from 1000 randomly sampled events,
uniformly selected from the top 20% of weights in the test set, are presented. The models are
then visually compared using the forecasts on six test events, using S-PROG as a benchmark
model. Finally, the performance of the two trained DGMR models regarding their predictive
capability of peak intensities over lead time is analysed using the Peak Anticipation Time
(PAT)-score on these six events.

5.1. Speckle-like clutter cleanup
The effect of different settings for the speckle-like clutter cleaning is evaluated by comparing
the original echo density plots for values above 50 dBZ in 2008 and 2022 to the density plots
after speckle-like clutter removal under various clutter removal settings in Section 5.1.1. To
demonstrate the impact of this clutter removal strategy on individual frames and its effect
on data removal in precipitation fields, two frames are shown in Section 5.1.2. The first with
speckle-like clutter and the second with several precipitation fields of different sizes.

5.1.1. Density maps
The density plots for 2008 and 2022 after cleanup are shown Figures 5.1 and 5.2, respectively.
In the 2008 plot, the density of the ship tracks is noticeably reduced for all settings, with the
4-3 strategy showing the most reduction. However, remnants of ship tracks persist in cer-
tain areas, particularly over the sea in the North-West, forming a ring-like pattern centered
around the Den Helder radar. Additionally, high reflectivity pixels persist off the coast of
Rotterdam under all settings, likely due to ground clutter at fixed locations. The presence
of residual clutter after cleanup suggests its possibly embedded within precipitation fields.
Furthermore, land areas with a high density of reflectivity exceeding 50 dBZ are entirely
cleared for all settings except 2-2. Remaining high reflectivity occurrences over land may be
due to precipitation events or other error sources without a fixed location.

27
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Figure 5.1.: Density maps for exceeding 50 dBZ for the year 2008 in the original dataset and
after applying the different speckle-like clutter cleanup settings.

Figure 5.2.: Density maps for exceeding 50 dBZ for the year 2022 in the original dataset and
after applying the different speckle-like clutter cleanup settings.

For 2022, some ship tracks remained visible in the original dataset. These are effectively
removed when three or more erosion steps are performed, with exceptions in the corners of
the image. The high reflectivities caused by wind warms persist after cleanup, suggesting
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that these occur within larger fields. Similarly, some high reflectivity occurres over land
and are not removed, likely due to them occuring within larger fields as well. These could
represent true precipitation of high intensity or errors resulting from the processing method
applied by KNMI. The density maps illustrate that increasing the number of erosion steps
removes more high reflectivity values from the data. They also show that fewer dilation
steps result in the removal of more high reflectivity values.

5.1.2. Illustration of clutter removal on example radar images
The clutter removal technique is evaluated on two examples. The first example, Figure
5.3, contains speckle-like clutter without precipitation. In this situation, the clutter filter
successfully removes over 95% of all the clutter, regardless of the chosen settings, see Figure
5.4 for more details. In the second example, Figure 5.5, both large and small precipitation
fields are present. Here over 50% of the lowest intensity is removed with the 3-2 and 4-3
settings, see Figure 5.6 for more details. Since speckle-like clutter is absent in this example,
a lower percentage of higher intensities is removed, as these high precipitation rates occur
within the precipitation fields away from the edge. More examples can be seen in Appendix
A.
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Figure 5.3.: Example of a radar image before and after cleanup under different settings taken
on July 2nd, 2009 at 10:00 UTC containing only speckle-like clutter.

Figure 5.4.: Extra detail for Figure 5.3. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).



5.1. Speckle-like clutter cleanup 31

Figure 5.5.: Example of a radar image before and after cleanup under different settings taken
on August 18th, 2011 at 17:00 UTC with several large and small precipitation fields with
little to no clutter.

Figure 5.6.: Extra detail for Figure 5.5. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).
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5.2. Nowcasting model results
The results from the model runs will be presented in two parts. The first part will contain the
commonly used metrics. The second part will contain the results from the forecasts made
on the test events, including the predictions made by S-PROG, along with the PAT-score of
the DGMR models for each event.

5.2.1. Metric results

Table 5.1 indicates poor performance by both models across all pixel-wise metrics, particu-
larly for intensities ≥ 10 mm/h and ≥ 20 mm/h. The weighted model demonstrates slightly
improved average performance on CSI, F1 and a larger improvement on POD for all inten-
sities. The unweighted model shows slightly improved performance on average for FAR.
This is attributed to the weighted model predicting higher intensities, resulting in improved
scores for CSI, POD and F1, but a worse result for FAR due to overestimation of the area
with these precipitation rates compared to the observations. Consequently, the POD sig-
nificantly increased with the weighted model compared the the unweighted model due to
overprediction.

Table 5.1.: Average categorical metrics on 1000 randomly sampled events from the test set for
different threshold values on the DGMR model under the two different training strategies.
Where (>) indicates higher values are better scores and (<) indicates that lower values are
better.

CSI (>) POD (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.106 0.007 0.002 0.416 0.034 0.014
Weighted 0.113 0.008 0.003 0.528 0.065 0.024

FAR (<) F1 (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.858 0.979 0.987 0.177 0.013 0.004
Weighted 0.861 0.988 0.992 0.188 0.015 0.006

From Figure 5.7, it can be seen that the MAE and MSE for the unweighted model is lower.
Both MAE values increase rapidly up to t+35 and t+45 for the unweighted and weighted
models, respectively, after which they stabilize. The MSE for both models increases rapidly
before decreasing for the unweighted model. The higher MAE and MSE values for the
weighted model are attributed to its tendency to predict higher precipitation rates over
larger areas, resulting in poorer results pixel-wise statistics statistics on average.

Figure 5.8 illustrates that the FSS decreases with a decreasing window scale for both models
and increasing intensity threshold. moreover, the weighted model tends to predict higher
precipitation rates on average, as evidenced by the higher FSS values for ≥ 10 mm/h and
≥ 20 mm/h across all lead times, except t+65 for ≥ 20 mm/h. However, the unweighted
model performs slightly better for ≥ 1 mm/h at lead times longer than t+40 on all scales,
owing to the weighted model’s tendency to overestimating lower intensities.

For an overview of model performance on these metrics for the top 1%, top 2%, top 5% and
top 10% events selected in the test set, see Appendix B.
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Figure 5.7.: Average Mean Absolute Error (MAE) and Mean Squared Error (MSE) on 1000
randomly sampled events from the test set on the DGMR model under the two different
training strategies.

Figure 5.8.: Average Fraction Skill Score (FSS) on 1000 randomly sampled events from the
test set for different threshold values on the DGMR model under the two different training
strategies, higher is better.

5.2.2. Test event forecasts
In the following Section, the forecasts for individual events, as described in Section 4.4.4, are
shown along with their scores. Additionally, all events are plotted on a linear scale, which
can be found in Appendix C.
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Figure 5.9.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 1, at t0 2022-05-19 12:05 UTC.

Figure 5.10.: The PAT-score for Event 1 of an ensemble of 10 of each model, at t+90 where
there is no observed precipitation intensity of ≥ 10 mm/h.

Forecast Event 1

From Figure 5.9, it’s evident that S-PROG forecasts gradually adopt a more generic and
rounded shape with lead time, smoothing and fading the precipitation fields. While the
unweighted model closely resembles the observation, it incorrectly predicts Northeast mo-
tion as directly Eastward. This motion discrepancy is also present in the weighted model,
suggesting that the model has learned the average wind direction of the training data rather
than accurately predicting the motion field of individual events.

Figure 5.10’s PAT-score of the weighted and unweighted DGMR models show both capture
peak intensities ≥ 1 mm/h from the start, yielding higher scores with larger scales. However,
the unweighted model outperforms the weighted model until t+30. For intensities ≥ 10
mm/h, the weighted model significantly outperforms the unweighted model, demonstrating
comparable performance for high intensities (≥ 10 mm/h) compared to intensities ≥ 1
mm/h.
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Figure 5.11.: Observation and unweighted and weighted DGMR and S-PROG predictions
for Event 2, at t0 2022-09-08 20:25 UTC.

Figure 5.12.: The PAT-score for Event 2 of an ensemble of 10 of each model, at t+90.

Forecast Event 2

In Figure 5.11, S-PROG forecasts excel at longer lead times, with both unweighted and
weighted DGMR models expanding the precipitation field but failing to capture high-intensity
areas effectively. This expansion aligns with findings in Elsmann (2023) with the DGMR
model. A parallel line structure emerges, particularly in the weighted model, when the
observed motion field deviates significantly from the average wind direction.

Figure 5.12’s PAT-score reflects these results, with both models performing well for intensi-
ties ≥ 1 mm/h, but the weighted model significantly outperforms the unweighted model for
intensities ≥ 10 mm/h. The weighted model also predicts precipitation rates ≥ 20 mm/h
within a factor of 1.5 of the observed rate from t+50 at larger window scales. However,
there’s a performance drop at t+25 and t+20, likely due to fewer cells with high precipitation
rates in the input frames at these lead times, leading to inaccurate predictions.
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Figure 5.13.: Observation and unweighted and weighted DGMR and S-PROG predictions
for Event 3, at t0 2022-12-23 12:20 UTC.

Figure 5.14.: The PAT-score for Event 3 of an ensemble of 10 of each model, at t+90 where
there is no observed precipitation intensity of ≥ 20 mm/h.

Forecast Event 3

In Figure 5.13, S-PROG exhibits the best forecasted motion, with the precipitation field mov-
ing towards the Northeast. However, in both the unweighted and weighted models, a paral-
lel line structure is observed, resulting in poor results for this event. Figure 5.14’s PAT-score
remains around 0.4 for both models when observations are ≥ 1 mm/h, with a slight increase
with shorter lead times. Initially, both models correctly forecast some intensities ≥ 10 mm/h,
particularly with the 32 km window scale in the weighted model, averaging around 0.8 for
every lead time. However, the PAT-score of the unweighted model and smaller window
scales of the weighted model drop immediately and begin to rise again around t+35. This
drop is attributed not to lower precipitation rates in the input frames, but to the formation of
the parallel lines extending higher precipitation rates further North and East due to the fore-
cast motion, which aligns with the observed motion towards the Northeast. The weighted
model’s quicker formation of lines, as well as the higher forecasted intensities, enable it to
predict peak intensities where ≥ 10 mm/h occur in the observation more frequently.
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Figure 5.15.: Observation and unweighted and weighted DGMR and S-PROG predictions
for Event 4, at t0 2022-08-17 01:55 UTC.

Figure 5.16.: The PAT-score for Event 4 of an ensemble of 10 of each model, at t+90.

Forecast Event 4

In Figure 5.15, S-Prog forecasts rapidly damping intensities, rendering it ineffective for this
convective event. Both DGMR models exhibit a similar structure and capture high-intensity
cells up to t+30, despite the overall growth in precipitation field size in the forecasts. The
weighted model performs best for the highest intensities but transitions to a parallel line
structure from t+75 onward, forecasting Eastward motion despite the observed Northward
movement of the precipitation field. Figure 5.16’s PAT-score differs in this case, with smaller
window scales often yielding higher scores due to the small size of convective cells and
their intense precipitation. The weighted model occasionally predicts these peak intensities
at short lead times and on small window scales, but struggles with larger window scales,
where predicting peak intensities with a factor of 1.5 remains challenging. Additionally,
both models experience intensity dampening at longer lead times, hindering their ability to
capture peak intensities of convective cells effectively.
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Figure 5.17.: Observation and unweighted and weighted DGMR and S-PROG predictions
for Event 5, at t0 2022-02-20 20:55 UTC.

Figure 5.18.: The PAT-score for Event 5 of an ensemble of 10 of each model, at t+90.

Forecast Event 5

In Figure 5.17, S-PROG’s forecast for the cold front is very poor, failing to capture the line
with high-intensity precipitation and placing it elsewhere within the precipitation field at
longer lead times. Both DGMR models initially predict higher precipitation rates near the
cold front until t+60, after which they forecast the line breaking up into multiple high-
intensity parts instead of remaining coherent. Additionally, the motion slows down, causing
both models to fall short of the observed position of the cold front to the East. Figure
5.18’s PAT-score reflects this performance, with both models performing poorly at long lead
times when observations are ≥ 10 mm/h and ≥ 20 mm/h. The weighted model shows
improvement from t+75 with a window scale of 32 km and from t+55 with a window scale of
16 km, attributed to the slower motion of the forecast. Both models achieve higher scores at
shorter lead times, with the weighted model reaching a PAT-score over 0.9 at t+10 for ≥ 10
mm/h and ≥ 20 mm/h, and up to 0.8 at 8 km and 0.4 at 4 km window scales.This indicates
the weighted model’s ability to accurately forecast the peak intensities of the cold front at
short lead times, both in intensity and location.
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Figure 5.19.: Observation and unweighted and weighted DGMR and S-PROG predictions
for Event 6, at t0 2022-06-05 15:00 UTC.

Figure 5.20.: The PAT-score for Event 6 of an ensemble of 10 of each model, at t+90 where
there is no observed precipitation intensity of ≥ 10 mm/h.

Forecast Event 6

In Figure 5.19, S-PROG produces the overall best forecast regarding the outline and move-
ment of the precipitation field. Both DGMR models fail to accurately forecast the rotation
and Northward movement of the precipitation field, breaking it up instead. Since the obser-
vation at t+90 has no precipitation intensity over 10 mm/h, only the PAT-score of ≥ 1 mm/h
could be determined, shown in Figure 5.20. Scores for both models improve slightly at
shorter lead times, with the unweighted model performing slightly better on average across
different window scales. However, at t+5, the PAT-score of the weighted model drops due to
overestimation, which fades with lead time, dropping within a factor of 1.5 of the observed
precipitation rate. In contrast, the unweighted model score jumps as it predicts within a
factor of 1.5 of the observed precipitation rates correctly at this lead time.





6
Discussion

Here the results from this research are further discussed. In Section 6.1 the results of the
speckle-like clutter removal strategy are discussed as well as the importance within opera-
tional nowcasting algorithms. The use of performance metrics in previous work is discussed
in Section 6.2. Furthermore the results of this research are compared to the results from
others. The splitting of the dataset as well as the comparison of the two training strategies
for the DGMR to S-PROG are further discussed in Section 6.3. Finally, the recommendations
on further research related to nowcasting are given in Section 6.4

6.1. Clutter removal

As stated in Section 3.1 the real time radar reflectivity product contains many error sources,
some with high reflectivity values that would give high precipitation rates. Dekker (2022)
has shown that training a nowcasting model on precipitation rates while the data contains
clutter could result in the model trying to predict the clutter. From that research it was con-
cluded that training on precipitation rates could only work if more extensive clutter removal
was performed. Several clutter removal strategies on radar images with precipitation rates
have been suggested by Schreurs (2021). They ended up discarding images from the dataset
based on the gradients of the pixel values. This would remove images containing clutter
from the training dataset. However the removal of input images to remove clutter cannot be
done on operational nowcasting systems.

The morphological clutter removal scheme, proposed in Section 4.1 to remove speckle-like
clutter, could be performed within an operational nowcasting system. When this method
was applied to the KNMI’s reflectivity dataset, from Section 5.1.1 it could be concluded that
it would remove some of the errors caused by ship tracks. However errors caused by ground
clutter, such as wind farms, are not removed for all settings that were tried. This indicates
that the remaining clutter is not speckle-like, but occurs either as large clutter fields, in the
case of with the wind farms, or within precipitation fields. Other clutter removal methods
are required to improve the dataset by removing these occurrences of clutter.
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When looking at what precipitation intensities are removed from radar images in Section
5.1.2, it was shown that more erosion steps remove more speckle-like clutter. Parts of pre-
cipitation fields or entire small precipitation fields can also be removed. More erosion steps
would result in larger parts of precipitation fields and even more small precipitation fields
being removed, which would reduce the quality of the data. It also showed that more erosion
steps than dilation steps would remove more of the edge of precipitation fields, consisting
mostly of low precipitation rates, influencing the shape of the precipitation fields in the
cleaned dataset as well as their size. Therefore a balance is required to preserve most of the
true precipitation while removing most speckle-like clutter from the dataset. This balance
can be found with 3 erosion steps and 3 dilation steps.

6.2. Performance metrics
In this study the DGMR model performance was determined using two continuous metrics,
MAE and MSE, and five categorical metrics in the form of CSI, POD, FAR, F1 and FSS. The
continuous metrics have been used by others before on the DGMR (Cambier van Nooten
et al., 2023; Elsmann, 2023; Frenkiel, 2022; Ravuri et al., 2021) and are in general often used
as a metric for nowcasting models. These have also used some of the categorical metrics.
However, the dataset it is applied to as well as which threshold values used vary quite a bit
(Woo and Wong, 2017; Niu et al., 2021; Jonnalagadda and Hashemi, 2023). Some compute
these metrics on the radar reflectivity values in dBZ instead of precipitation rates in mm/h,
applying these metrics on a logarithmic scale instead of a linear one. Some use 0.1 mm/h
as lowest threshold with these metrics, which indicates the performance of detecting pre-
cipitation, such as Elsmann (2023). Others use higher threshold values and don’t give an
indication of their models performance of detecting precipitation. These threshold values
could be 0.5 or 1 mm/h as their lowest threshold, as done by Frenkiel (2022) and Cam-
bier van Nooten et al. (2023) respectively. These different thresholds and scales could lead
to different results and should be selected depending on the goal of the study.

Frenkiel (2022) applied the pre-trained DGMR model to forecast precipitation in the Nether-
lands and evaluated its performance with the FSS. Elsmann (2023) trained the model and
also evaluated it with FSS, both with a threshold of 1 mm/h as done with this study. Unfor-
tunately, the scales used differ a bit and only some window scales are the same. However,
the overall shape of the different window scales follow each other. Where Frenkiel shows a
linear decrease in FSS over lead time, Elsmann and the results from this study show an initial
decrease in FSS which then becomes more stable with lead time. It has to be mentioned that
the results from Frenkiel indicate more skilful forecasts over all lead times. This is likely due
to the decreased model size from this study. Also, the models for both this study as well
as Elsmann’s were trained on about four times fewer iterations compared to the original
model. Furthermore, recently Antonio and Aitchison (2023) showed cases where the FSS
would indicate a skilful forecast, when in fact the forecast and observation were negatively
correlated. Since the FSS has been determined by taking the average over 1000 randomly
selected events, it is possible that some cases where this occurs are included.

The results show a slight improvement for the weighted training strategy compared to
the unweighted strategy on the CSI and F1. The POD is significantly improved with the
weighted model due to the tendency to overestimate. However, the MAE, MSE and FAR
show that the unweighted model has a higher score. For the MAE and MSE this is due to
the unweighted model being trained on all event types and intensities about as often as they
occur in the dataset. This is also reflected in the unweighted model having a higher score at
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longer lead times according to the FSS with a threshold of 1 mm/h, whereas the weighted
model has higher scores for higher threshold values.

The PAT-score indicates an improved ability to forecasting the maximum observed precipita-
tion rate over 10 mm/h within a factor of 1.5 more accurately with the weighted model, even
for long lead times in some events. However, for precipitation rates over 1 mm/h, there is
only a small improvement for short lead times on some events. In the few test events where
precipitation rates of more than 20 mm/h occurred on the frame tested, both models show
low forecasting skill at long lead times. The weighted model shows, at a longer lead time
than the unweighted model, skill for forecasting these maximum precipitation rates at large
window scales. Only at very short lead times does the unweighted model give some skill
for these high-intensity precipitation rates. With small window scales, both models only
show some skill at very short lead times. There is however one exception, in the case of a
convective event with many small precipitation fields with precipitation rates over 10 mm/h
the weighted model has more skill with smaller window scales compared to larger window
scales. This is due to the model having difficulty on long lead times with forecasting these
high intensities and thus only the small window scales being correct when the precipitation
rates are lower. Indicating a forecast as correct when it is within a factor of the observed
intensity could be a better indication of forecasting skill compared to metrics where the fore-
cast has to be higher than a given threshold value. In the latter case, a forecast of 100 mm/h
could be considered correct even if the observation was 10 mm/h, provided the threshold
was set lower than or equal to the observed precipitation rate. Furthermore, the PAT-score
also indicates when the model starts to become skilful in lead time, similar to FSS.

6.3. Event selection and model training
In some earlier work on the DGMR model, done by Ravuri et al. (2021) and Elsmann (2023),
the data was split differently. They selected a whole year for the test set and the remaining
years are split over the training and validation set by selecting the first day of each month for
the validation set and the other days in the training set. In other research using the DGMR
model, by Cambier van Nooten et al. (2023), the dataset was split similarly as with this
research, one year for the test set, one year for the validation set and remaining years for the
training set. Radar frames close in time to each other are similar, sharing a lot of information
that the frames contain. Splitting the training and validation data such that they often are
close to each other in time, would lead to using the information of the validation set in
the training process, resulting in data leakage (Liu et al., 2022). This would give the model
information about future samples and thus an improved performance on the validation set
compared to a real-world scenario where it does not have the information about future
samples.

Others have trained GAN’s for nowcasting without the use of weights during the training
process as the focus often lies on improving the model on average precipitation events (Jing
et al., 2019; Choi and Kim, 2022; Choi et al., 2023). These are often of smaller scale with
lower maximum precipitation intensities. Selecting events with precipitation based on the
ISW, as described in Section 4.2.1, is required to avoid training mainly on dry events which
do not have any information for the model to learn from. To then also use these weights
during training for selecting the events to train on with each step, allows the training data
to be re-balanced towards more extreme events. The results from Section 5.2 have shown
that the weighted training strategy improves many metrics for higher precipitation rates,
such as the CSI, POD and PAT-score. At the same time, it can also be concluded that this
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weighted training strategy results in lower scores on the metrics that indicate the average
performance, in the form of the MAE and MSE, showing that there is a trade-off between
performance on average events as compared to extreme events.

When comparing the trained models visually to S-PROG, they often under perform with
regards to forecasting the motion of the precipitation fields. Where S-PROG smooths and
fades with lead time, DGMR has no smoothing and less fading but at the cost of introducing
parallel line structures when the observed motion differs a lot from the average wind direc-
tion. The comparison is not completely fair, as the DGMR models only make forecasts using
information within the defined model domain of 256 × 256 whereas S-PROG constructs the
forecast using the image extent of 700 × 765 and only being evaluated on the smaller do-
main. This leads to S-PROG having more information to make forecasts for longer lead
times near the edge of the domain, therefor the focus of this comparison should be on the
research domain to reduce this effect.

To make forecasts over larger areas would require the model to be trained on a mosaic,
generalizing the model to the entire area. Another approach is by having multiple models,
each trained on a different partly overlapping section and learning precipitation patterns
caused by local conditions which are then combined into a single forecast over a larger area.
Furthermore, the reduced DGMR model size used in this research has a significant impact
on the performance, for instance forecasting the motion at long lead times to always be
towards the East. Zou (2023) looked into the effect of a reduced model size for a machine
learning nowcasting model and concluded that the reduced models were able to reproduce
similar structures to the original model size. There was however no mention of the model
motion being forecasted towards the same direction at long lead times for all events.

6.4. Recommendations
The dataset used in this research contains errors. Since GAN models try to recreate the
structure of the data, it is important to remove these errors. The speckle-like clutter removal
should be improved further, and additional data cleanup methods to remove other types
of errors should be investigated. Other types of errors that still pose issues in the current
dataset include radar spikes, large clutter fields, and clutter on fixed locations that occur
within precipitation fields.

Due to the higher occurrence of errors over the sea, events with the highest weight contained
many errors when the research domain shown in Figure 4.5 only had a 32 km boundary be-
tween it and the model input. Consequently, it was reduced in size to ensure that errors
over the sea, which have not been fully removed, did not influence the event weights and
the scores calculated when verifying the model performance. Increasing the size of the re-
search domain by following the coastline on the west side could expand the area on which
verification is done. This could potentially providing a better indication of the model per-
formance.

To sample more complex high precipitation rate events during training, the event weighting
could be further improved. The models currently have issues with forecasting motion, which
could be addressed within the weighting calculation by giving a higher weight to events with
non-homogeneous motion, such as rotation.

Other ways of making the training-validation-test split should be investigated. From Figure
4.9 it can be seen that the distribution of the top 20% events does not follow the same
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distribution for each subset. One way to improve this while still preventing data leakage is
to add all consecutive top 20% events to one subset at a time. When the weight has dropped
lower for a long enough duration, the next consecutive top 20% events can then be added
to another subset, reducing data leakage while spreading the data more evenly among the
subsets. Since the data preprocessing performed by KNMI as well as the changed radar
location, the current split results in the validation and test sets not containing any data from
the old setup while the training data has 9 years of the old setup and only 2 full years of
the new setup. This would be resolved with the proposed method constructing the training-
validation-test split.

During training, the model is currently penalized by the discriminators over the entire model
input. Over longer lead times this causes issues near the edges where the model lacks
context outside of the model input to make predictions. This may introduce artifacts into
the predictions near the edges. A possible method to prevent this is to decrease the area on
which the discriminators penalize the generator as lead time increases.

The model is currently limited to a fixed domain of 256 × 256 km. To make forecasts over
a larger area would require a different approach. Multiple models could be trained on
different, partly overlapping sections to learn local precipitation patterns and have their
forecasts combined into one forecast for the larger area. Another approach is to train a single
model on the different sections, generalizing the model forecasts over the entire area.

The generator and discriminators are reduced in size due to limited computational re-
sources. The quality of the forecasts can likely be improved by increasing the model to its
original size. Another improvement in forecasting high-intensity precipitation rates could
be achieved by providing more context, as was done by Elsmann (2023) with the inclusion
of ETH.

Many metrics commonly used in evaluating nowcasting models indicate the average perfor-
mance, but few exist that evaluate the performance on high-intensity precipitation specifi-
cally, which is important for early warning systems. More evaluation methods are needed
that can evaluate the performance for different goals, such as predicting high intensities or
total hourly precipitation in a catchment. The metrics most often used, such as the MAE,
MSE, and CSI are pixel-wise comparisons that may not be a fair evaluation depending on the
goal of the user. This should be taken into consideration when picking evaluation metrics.

The two training sampling strategies applied in this research show similar performance on
these common metrics, where they both have low scores. The only metric with a clear
difference between the two models is the PAT-score, which was specifically adapted to show
how often and with which lead time the peak precipitation rate could be forecasted correctly.
Since other metrics show similar performance, further investigation of the training sampling
is required to check if it improves the forecast of high-intensity precipitation rates.

The DGMR is also able to forecast an ensemble due to the inclusion of the Latent Con-
ditioning Stack in the model, introducing Gaussian noise when generating forecasts. The
quality and distribution of this ensemble should be investigated. How similar the ensemble
members are and if an ensemble captures the observation within its envelope for all lead
times is not yet known. Further investigation may lead to further improvements in ensemble
nowcasting for early warning systems.





7
Conclusion

This research aimed to improve the precipitation nowcast of high-intensity precipitation
events in the Netherlands using the Deep Generative Model of Radar (DGMR), a genera-
tive adversarial network based precipitation nowcasting algorithm. The following questions
were addressed:

How can the data be processed to improve the data quality for high-intensity precipita-
tion events in the Netherlands?
The dataset used spanned from 2008 to 2022 and was provided by the KNMI. It includes a
composite of radar reflectivity from two radar systems and required considerable prepro-
cessing due to the relocation of one radar system and updates to the processing done by the
KNMI. A speckle-like clutter removal method was applied to remove most speckle-like clut-
ter, which reduced errors caused by ship tracks and ground clutter over land. This method
improved the data quality of high-intensity precipitation rates caused by erroneous sources,
albeit at the cost of removing real precipitation fields smaller than 6 km. Several other types
of errors in larger structures, such as wind farms, were not removed. Further data prepro-
cessing is required to remove more errors while minimizing the removal of real precipitation
fields.

In what ways can a Generative Adversarial Network (GAN) be trained with radar images
to improve the prediction for high-intensity precipitation events in the Netherlands?
The DGMR was trained on the cleaned radar images using two training sampling strategies.
The weighted strategy prioritizes sampling events with higher precipitation rates, resulting
in better performance on Critical Success Index (CSI), Probability of Detection (POD), F1
and Peak Anticipation Time (PAT)-score. The unweighted strategy sampled events uni-
formly, resulting in better scores on Mean Absolute Error (MAE), Mean Squared Error
(MSE), and False Alarm Rate (FAR). These results show that the training sampling strat-
egy influences the model’s performance, with the weighted strategy improving the forecast
for high-intensity precipitation rates.

How does this model, under different training strategies, compare to S-PROG, a state-of-
the-art extrapolation based nowcasting system?
To compare the DGMR models’ forecast to those from S-PROG, six precipitation events
with different behaviours were selected. These comparisons show that DGMR can forecast
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high precipitation rates at longer lead times without blurring. However, S-PROG performed
better with forecasting the motion as well as lower precipitation rates for most events. Al-
though S-PROG outperforms DGMR in forecasting motion and low precipitation rates, the
DGMR models provide more detail and can forecast higher precipitation rates at longer lead
times.
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A
Clutter removal scheme

Some more example radar frames with the clutter removal scheme.
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56 A. Clutter removal scheme

Figure A.1.: Example of a radar image before and after cleanup under different settings
taken on June 28th, 2011 at 09:00 UTC with several precipitation fields of different sizes
and some speckle like clutter.

Figure A.2.: Extra detail for Figure A.1. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).
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Figure A.3.: Example of a radar image before and after cleanup under different settings taken
on May 23rd, 2012 at 20:00 UTC with some small precipitation fields with high intensities
and some speckle like clutter.

Figure A.4.: Extra detail for Figure A.3. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).



58 A. Clutter removal scheme

Figure A.5.: Example of a radar image before and after cleanup under different settings
taken on October 13th, 2013 at 05:00 UTC with a large precipitation field and no clutter.

Figure A.6.: Extra detail for Figure A.5. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).
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Figure A.7.: Example of a radar image before and after cleanup under different settings
taken on March 30th, 2014 at 06:00 UTC with heavy speckle clutter over the entire radar
images, most over the ocean.

Figure A.8.: Extra detail for Figure A.7. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).
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Figure A.9.: Example of a radar image before and after cleanup under different settings
taken on August 27th, 2019 at 17:00 UTC with some small precipitation fields with high
intensities, speckle like clutter as well as errors caused by wind farms.

Figure A.10.: Extra detail for Figure A.9. The number of pixels per intensity bin after cleaning
with the different settings compared to the original number of pixels (left). The number of
pixels per intensity bin after cleaning with the different settings compared to the original
number of pixels (right).
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Figure A.11.: Example of a radar image before and after cleanup under different settings
taken on July 14th, 2021 at 08:00 UTC with a large precipitation field and a few smaller
ones, as well as radar spikes in the top right.

Figure A.12.: Extra detail for Figure A.11. The number of pixels per intensity bin after
cleaning with the different settings compared to the original number of pixels (left). The
number of pixels per intensity bin after cleaning with the different settings compared to
the original number of pixels (right).





B
Metric results split on event weights

Table B.1.: Average categorical metrics on 7 randomly sampled events from the test set that
fall in the top 1% of weights for different threshold values on the DGMR model under the
two different training strategies. Where (>) indicates higher values are better scores and
(<) indicates that lower values are better.

CSI (>) POD (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.140 0.001 0.000 0.367 0.094 0.000
Weighted 0.076 0.004 0.001 0.551 0.064 0.002

FAR (<) F1 (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.758 0.999 1.000 0.240 0.002 0.000
Weighted 0.913 0.995 0.999 0.131 0.009 0.001

Table B.2.: Average categorical metrics on 38 randomly sampled events from the test set that
fall in the top 2% of weights for different threshold values on the DGMR model under the
two different training strategies. Where (>) indicates higher values are better scores and
(<) indicates that lower values are better.

CSI (>) POD (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.135 0.005 0.004 0.445 0.034 0.013
Weighted 0.074 0.006 0.006 0.477 0.042 0.009

FAR (<) F1 (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.812 0.977 0.984 0.220 0.011 0.008
Weighted 0.910 0.992 0.997 0.131 0.011 0.002
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64 B. Metric results split on event weights

Table B.3.: Average categorical metrics on 177 randomly sampled events from the test set that
fall in the top 5% of weights for different threshold values on the DGMR model under the
two different training strategies. Where (>) indicates higher values are better scores and
(<) indicates that lower values are better.

CSI (>) POD (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.107 0.009 0.005 0.430 0.042 0.021
Weighted 0.095 0.008 0.004 0.494 0.068 0.038

FAR (<) F1 (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.855 0.972 0.984 0.178 0.016 0.009
Weighted 0.885 0.988 0.990 0.162 0.016 0.008

Table B.4.: Average categorical metrics on 454 randomly sampled events from the test set that
fall in the top 10% of weights for different threshold values on the DGMR model under
the two different training strategies. Where (>) indicates higher values are better scores
and (<) indicates that lower values are better.

CSI (>) POD (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.101 0.007 0.003 0.415 0.032 0.014
Weighted 0.099 0.008 0.003 0.505 0.069 0.026

FAR (<) F1 (>)

≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h ≥ 1 mm/h ≥ 10 mm/h ≥ 20 mm/h

Unweighted 0.866 0.972 0.987 0.170 0.013 0.005
Weighted 0.881 0.989 0.993 0.167 0.014 0.006

Figure B.1.: Average Mean Absolute Error (MAE) and Mean Squared Error (MSE) on 1000
randomly sampled events, split on event weight thresholds from the test set on the DGMR
model under the two different training strategies. 7 top 1% events, 38 top 2% events, 177
top 5% events, 454 top 10% events and 1000 top 20% events.

Figure B.2.: Average Fraction Skill Score (FSS) on 7 randomly sampled top 1% events from
the test set for different threshold values on the DGMR model under the two different
training strategies, higher is better.
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Figure B.3.: Average Fraction Skill Score (FSS) on 38 randomly sampled top 2% events from
the test set for different threshold values on the DGMR model under the two different
training strategies, higher is better.

Figure B.4.: Average Fraction Skill Score (FSS) on 177 randomly sampled top 5% events from
the test set for different threshold values on the DGMR model under the two different
training strategies, higher is better.

Figure B.5.: Average Fraction Skill Score (FSS) on 454 randomly sampled top 10% events from
the test set for different threshold values on the DGMR model under the two different
training strategies, higher is better.





C
Test events in linear scale
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68 C. Test events in linear scale

Figure C.1.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 1, at t0 2022-05-19 12:05, plotted with a linear scale.

Figure C.2.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 2, at t0 2022-09-08 20:25, plotted with a linear scale.
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Figure C.3.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 3, at t0 2022-12-23 12:20, plotted with a linear scale.

Figure C.4.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 4, at t0 2022-08-17 01:55, plotted with a linear scale.



70 C. Test events in linear scale

Figure C.5.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 5, at t0 2022-02-20 20:55, plotted with a linear scale.

Figure C.6.: Observation and unweighted and weighted DGMR and S-PROG predictions for
Event 6, at t0 2022-06-05 15:00, plotted with a linear scale.



D
Original DGMR overview

Figure D.1.: Original discriminators, Latent Stack and the architecture of the Generator block,
Downsampling block and Latent block used in DGMR. Image taken from Ravuri et al.
(2021).
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72 D. Original DGMR overview

Figure D.2.: Schematic overview of the original DGMR Generator with the Conditioning
Stack where the 4 input frames of size 256 × 256 are processed, the Latent Conditioning
Stack where noise from a Gaussian distribution is processed and fed towards the Output
Stack where 18 output frames of size 256 × 256 are generated. Image taken from Elsmann
(2023) with further details of the blocks in Figure D.1.



E
Echo Top Height

E.1. Echo Top Height data

The KNMI radar systems make 14 scans with elevation angles of 0.3, 0.4, 0.8, 1.1, 2.0, 3.0, 4.5,
6.0, 8.0, 10.0, 12.0, 15.0, 20.0 and 25.0 degrees. The Echo Top Height (ETH) is then estimated
by taking the maximum height above the earth’s surface in kilometers with a reflectivity
exceeding 7 dBZ, corresponding to 0.1 mm/h. The two radar images are then combined by
taking the maximum ETH of the two images per pixel (Beekhuis and Holleman, 2008). The
resolution of the product is 1 × 1 km and it can be downloaded at the KNMI data platform
and starts on January 1, 2008, at 00:00 UTC.

The detection threshold of 7 dBZ might cause detection of spurious ETH values which
may originate from planes or reflections from the tropopause. Due to the limited amount
of elevation scans, there are gaps in the detection of ETH for the high elevation angles,
causing ring-shaped gradients of the ETH (Aberson, 2011). The ETH in combination with
the precipitation product can provide a simplistic form of the 3D structure of a precipitation
field by providing the elevation of the precipitation field.

E.2. Precipitation rate - ETH analysis method

The ETH are only taken between 1 and 15 km, the lower boundary to prevent too much
ground clutter and the top boundary as the cloud top height can reach up to 15 km during
the summer, but higher values may be errors (Aberson, 2011). The precipitation rates are
then plotted against the ETH for the test events from Section 4.4.4 in a pixel-wise manner
over the entire duration of the event for the research domain as shown in Figure 4.5. The
precipitation rate - ETH pairs are then binned on the precipitation rates, from 0.1 to 0.3
mm/h, 0.3 to 1.0 mm/h, 1.0 to 3.0 mm/h, 3.0 to 10.0 mm/h, 10.0 to 30.0 mm/h and 30.0 to
100.0 mm/h, as 100 mm/h is the highest occurring precipitation rate in these events. For
each bin the distribution of the occurring ETH is plotted using violin plots.
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74 E. Echo Top Height

E.3. Precipitation rate - ETH analysis results
In the ETH images from Figures E.1 and E.3 the ring-shaped gradients can be seen that are
caused by the gaps in the detection for high elevation angles. These could pose an issue
when the ETH is used as an input for a nowcasting model in situations where high ETH’s
occur. From all scatter plots showing the precipitation rate against the ETH as well as the
violin plots (Figures E.2, E.4, E.6, E.8, E.10 and E.12 it can be seen that the measured ETH
in general increases with precipitation rate. Especially the minimum ETH occurring at each
precipitation rate shows a clear increase.

Since this analysis is comparing the precipitation rate and ETH on the same time step, it can
be said that higher ETH’s in the event coincide with higher precipitation rate on average
on the same time step. Further research is required to see if ETH can give information on
precipitation rates at further lead times.
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Figure E.1.: The Precipitation rate (left) and ETH (right) from test event 1 at 2022-05-19 13:15
UTC.

Figure E.2.: The precipitation rate plotted against the ETH for the entire event duration
within the research domain (left) and the violin plots for the binned pairs (right) for test
event 1 at t0 2022-05-19 12:05 UTC.
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Figure E.3.: The Precipitation rate (left) and ETH (right) from test event 2 at 2022-09-08 20:25
UTC.

Figure E.4.: The precipitation rate plotted against the ETH for the entire event duration
within the research domain (left) and the violin plots for the binned pairs (right) for test
event 2 at t0 2022-09-08 20:25 UTC.
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Figure E.5.: The Precipitation rate (left) and ETH (right) from test event 3 at 2022-12-23 12:05
UTC.

Figure E.6.: The precipitation rate plotted against the ETH for the entire event duration
within the research domain (left) and the violin plots for the binned pairs (right) for test
event 3 at t0 2022-12-23 12:20 UTC.
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Figure E.7.: The Precipitation rate (left) and ETH (right) from test event 4 at 2022-08-17 02:05
UTC.

Figure E.8.: The precipitation rate plotted against the ETH for the entire event duration
within the research domain (left) and the violin plots for the binned pairs (right) for test
event 4 at t0 2022-08-17 01:55 UTC.



E.3. Precipitation rate - ETH analysis results 79

Figure E.9.: The Precipitation rate (left) and ETH (right) from test event 5 at 2022-02-20 22:00
UTC.

Figure E.10.: The precipitation rate plotted against the ETH for the entire event duration
within the research domain (left) and the violin plots for the binned pairs (right) for test
event 5 at t0 2022-02-20 20:55 UTC.



80 E. Echo Top Height

Figure E.11.: The Precipitation rate (left) and ETH (right) from test event 6 at 2022-06-05
15:05 UTC.

Figure E.12.: The precipitation rate plotted against the ETH for the entire event duration
within the research domain (left) and the violin plots for the binned pairs (right) for test
event 6 at t0 2022-06-05 15:00 UTC.
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