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Introduction

When an investor wants to invest his funds, he needs to construct a portfolio and manage
the portfolio or let it be constructed and managed by a portfolio manager. Let us first,
before continuing, introduce and define the process of portfolio construction as will be used
throughout this thesis report. After defining the portfolio construction process, different
strategies for portfolio management will be introduced shortly and finally, the goal of this
thesis project will be introduced. The portfolio manager considered in this thesis, is a private
wealth portfolio manager, which means that the managed portfolios are owned by private
individuals who own more than e500.000.

Portfolio Construction

The process of portfolio construction is in this report defined as follows: An investor goes to
a portfolio manager to invest his funds. When the investor is investing his money he will take
on risk, but the amount of risk that is taken depends on the securities that are contained in
his portfolio. Therefore the risk profile of the investor should be determined. The risk profile
of the investor is determined by the risk the investor is willing to take, often identified by an
inquiry, and the risk the investor is able to take. The risk profile should be identified by the
portfolio manager. The risk profile can range from for example very defensive, which implies
very low risk, to very aggressive, which implies a very high risk.

Once the portfolio manager knows the risk profile of the
Asset class percentage

Equity 80%
Govt. Bonds 5%
Corp. Bonds 5%
Cash 10%

Table 1: Strategic asset alloca-
tion.

investor, the can put together a Strategic Asset Allocation
(SAA). This SAA is a specific (theoretic) diversification of
funds to asset classes such that the risk of the SAA matches
the risk profile. Examples of an asset class are shares,
bonds, commodities and cash. An example of a SAA is
shown in table 1. To illustrate the risk of an SAA: the risk
of having cash is low, therefore a low risk SAA might con-
tain a lot of cash. The risk of investing in equity is higher,
so a risky SAA might contain a lot of equity.

The risk of investing an asset class can be measured by using a benchmark, this is a predefined
norm, that shows behaviour that is assumed to be representative for the asset class. Examples
of a benchmark are the AEX index, Dow Jones index and the S&P 500.

To complete the portfolio construction, the portfolio manager will choose securities from the
asset classes to the portfolio according to the proportions of the SAA.
The process of creating an investment portfolio is illustrated by figure 1.
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Figure 1: Process of creating a investment portfolio.

Portfolio Management

After the actual portfolio is constructed, the portfolio should be managed. There are several
strategies to manage the portfolio: the first strategy is called the ‘buy-and-hold’ strategy,
which means that the portfolio will not be adjusted after construction. This is a passive
management strategy.

A second strategy is the opposite of the buy-and-hold strategy and is called active manage-
ment. It means that after the portfolio construction, the portfolio manager actively adjusts
the portfolio such that the returns will be higher due to right timing and selection.

A third strategy is called rebalance-to-risk, which means that the portfolio manager monitors
the portfolio and when the risk of the portfolio does not match the risk profile of the investor
anymore, the portfolio manager will adjust the portfolio such that the portfolio will match
the risk profile again. Another rebalance strategy is to rebalance-to-plan: the SAA allocates
a specific weight to each asset class, however, due to changes in the market, it is possible that
after a while the weights of the portfolio do not match the weights if the SAA anymore, the
strategy rebalance to weights is to evaluate the weights of the portfolio after a predetermined
period and rebalance the portfolio according to the weights of the SAA.

Goal

Because securities do not follow the exact same ‘path’ as the benchmark, and the portfolio
manager determines what securities within an asset class are chosen, the risk of the actual
portfolio might deviate from the risk of the SAA. As long as this deviation falls within the
boundaries of the risk profile, there is no problem or reason to interfere. However, when the
risk does not fall within the boundaries anymore, there is a risk mismatch between the actual
portfolio and the SAA.

The goal of this thesis project is to find or construct a methodology to identify the mismatch
between portfolio risk and the SAA risk, identify the causes of this mismatch and investigate
the possibilities to create a computerized monitoring system to prevent future SAA mismatch.
This process will ensure that an investor is not exposed to risk that he is not able or willing
to take and still be able to reach his investment objectives.
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Structure

In order to reach the goals that were formulated, the thesis project will consist of the following
three parts:

(i) theoretic analysis

(ii) practical application

(iii) Implementation, Results and Conclusion

In the theoretic part, first part of the problem will be analyzed. Main questions to be
answered are: ‘What is risk?’, ‘What is Strategic Asset Allocation?’, ‘How should risk be
measured?’ (i.e. ex-post versus ex-ante and VaR vs. cVaR vs. standard deviation vs. ...),
‘What methodology is already available?’ and ‘What statistical tests can be used to detect a
deviation?’.

After answering these questions a clear methodology of identifying risk mismatch is formulated
in different steps in the practical application.

In the final part, the results from the practical application will be implemented and evaluated,
the analysis will be applied to investigate the possibilities of implementing a risk mismatch
warning system.
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Part I

Theoretic Analysis
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Chapter 1

Risk and the strategic asset
allocation

In this introductory chapter two basic notions will be introduced: risk and the strategic asset
allocation. In the first section the concept of risk is explained and in the second section
the strategic asset allocation is (further) introduced and some widely used basic models are
introduced.

1.1 Risk

Before we can dive into the subject of risk management, we should take a look at the meaning
of risk and the different types of risk. Risk is the potential of a negative side-effect or result
of some event. This event could be anything: painting a house, skydiving, going for a walk in
the park, investing in the company of your sister or buying some stocks. The negative effects
of these events can differ per person. For example when someone, let him call John, decides
to go for a walk in the park, but he knows that his annoying neighbour, who he really hates
to talk to, is home and there is a possibility that he runs into him when going to the park,
he is taking a risk. This example illustrates that it is not easy to quantify risk. John just
does not like talking to his neighbour and his mood might worsen, but no actual value can be
appointed to this risk. Another risk of going outside is that while walking to the park, John
might be run over by a bus, since the probability of being run over by a bus is very small,
even smaller when John is careful, he will face this risk, however, since it is much more likely
that John runs into his neighbour, he might decide to stay in.

The example above illustrates that both the probability of occurrence of the side-effect and
the impact of the side effect plays an important role in the assessment of the willingness to
take the risk. Since everyone values risk in a different way, it is difficult to assign an objective
measure to it and so it is not easily quantified.

Because risk is a general concept different types of risk are specified, examples are health
risk, safety risk and financial risk. In this thesis financial risk is considered. When talking
of financial risk, is is easier to give a value to the risk. In [Bowman, 1980], Edward Bowman
introduces (financial) risk as follows: “Risk is the concept which captures the uncertainty
(...) associated with the outcome of resource commitments.” Formulated differently, financial
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risk is the risk of a financial loss as a result of some financial investment, this loss can be
quantified by money. In chapter 2 different measures for risk are mentioned and explained.

Within financial risk there are also many different types of financial risk. A financial institu-
tion mainly faces the following risks [McNeil et al., 2005]:

Systemic risk is the risk that the entire financial system collapses. Cause of this collapse
are the interdependency of banks. If a healthy bank has lend to an unhealthy bank,
and this bank collapses, the healthy bank might not be able to absorb this shock and
as a result go into default.

Default risk is the risk that a borrower of money cannot fulfill his repayment obligation, it
is also called credit risk. This borrower could be an individual, but also a firm, country
or a bank.

Market risk is also called systematic risk and should not be confused with systemic risk.
Market risk is the risk that the value of a portfolio will decrease due to changes in the
market. Market risk can be subdivided into different risk factors: equity risk, interest
rate risk, currency (or exchange rate) risk and commodity risk. Market risk contains the
risk that stock prices, commodity prices, currencies and interest rates or their implied
volatilities change.

Operational risk encompasses the risks of operating a firm. This includes the possibility
of a shortcoming in the performance of the personnel, systems and processes. Jérôme
Kerviel is an example of an employee that caused damage. He was a banker at Société
Générale and performed illicit transactions in futures, that caused a loss of e4,9 billion
[NRC Handelsblad, 2008]. Also the risk of failure in systems, a blackout or earthquakes
are operational risk.

Liquidity risk is related to the speed of the finalization of transactions. When a transaction
is not completed in time to make a profit, the transaction might even result in a loss.
This risk is called liquidity risk.

Reputational risk is related to the degree of trustworthiness of a bank. When a bank is
blamed for a certain negative event, clients might, as a result, withdraw their funds
resulting in a downward spiral.

Not all of the types of risk listed are relevant for this thesis. A portfolio manager cannot
influence, for example, systemic, operational and liquidity risk. The goal of the thesis is
to detect a mismatch in risk of a portfolio and its strategic asset allocation. The risk of a
portfolio, which is a collection of single securities, is mainly affected by the conditions of the
market and the main task of the portfolio manager is therefore to ensure that the market
risk of the portfolio matches with the risk profile of the owner of the portfolio. So, the risk
considered in this thesis is mainly market risk.

Finally, another type of risk that finance-related firms are facing is model risk. Model risk is
risk on a different level than the types of risks listed above, but certainly worth mentioning.
Model risk is the risk that models that are used for trading strategies or risk management are
incorrect. This risk factor will always exist since it is not possible to design a model which
can exactly reflect reality. If this would be the case, a market would not exist.
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1.2 Strategic asset allocation

Strategic Asset Allocation (SAA) is the long term optimal portfolio allocation to different asset
classes with respect to the risk profile of an investor. The SAA is the result of a risk-return
trade-off and is adjusted to the risk appetite or risk profile of the investor. The risk profiles
range from extremely defensive, which implies a low risk tolerance, to extremely aggressive,
which implies a high risk tolerance. Examples of asset classes are commodities, cash, equities
and bonds. Other factors that may be taken into account in the SAA are possible (periodical)
withdrawals and deposits. An example of a strategic asset allocation was given in table 1 in
the introduction.

To determine the optimal choice of allocation of funds to different asset classes (e.g. stocks,
bonds, cash) portfolio managers use mathematical models. Many different models are avail-
able, but in this chapter we will consider Markowitz’s modern portfolio theory (MPT) the
capital asset pricing model (CAPM) and arbitrage pricing theory (APT).

Modern portfolio theory

Markowitz introduced in the 1950s Modern Portfolio Theory (MPT). Markowitz wrote in
1952, that at that moment the common way of creating and managing a portfolio was to
“maximize the discounted (or capitalized) value of future returns” [Markowitz, 1952]. As
a result, diversified portfolios would never be preferred over a non-diversified portfolio (i.e.
a portfolio containing only one security). In the same article Markowitz introduced a new
framework: mean-variance optimization.

The framework of mean-variance optimization was defined in [Markowitz, 1952] as follows:
Let Ri be a normally distributed random variable, which represents the return of the ith

security, E[Ri] = µi is the expected return of security i, σij is the covariance between Ri
and Rj and ωi portfolio weight of security i with

∑
ωi = 1. Now the return of the portfolio

containing n securities is given by:

(1.1) R =

n∑
i=1

ωiRi.

The weights ωi can be determined by the portfolio manager, although the condition ωi ≥ 0
should hold.
Now, the expected return and variance of return, which is here considered as the measure for
risk, are given by:

(1.2) E := E[R] =

n∑
i=1

ωiµi V := Var(R) =

n∑
i=1

n∑
j=1

ωiωjσij

The feasible combinations of the ωi’s (i.e. ωi ≥ 0 for all i ∈ {1, ..., n} and
∑n

i=1 ωi = 1 are
satisfied), which are all possible portfolios, give a range of all possible values for E and V .
For these values, Markowitz introduced the mean-variance rule. The rule states that “the
investor would (or should) want to select one of those portfolios [...] with minimum V for
given E or more and maximum E for given V or less” [Markowitz, 1952], in other words: the
portfolio which has minimum risk for given return or more, or maximum return for given risk
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Figure 1.1: Expected return and variance of return of possible portfolios for two (red), three (blue)
and four (green) asset classes.
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or less should be chosen. The portfolios that satisfy this rule are called efficient portfolios.
When the mean and variance of these portfolios are plotted in a graph with the variance of
return and expected return on the axes, the efficient portfolios form what is called an efficient
frontier.

A practical example of mean-variance analysis is shown in figure 1.1. In the two graphs in
figure 1.1, every dot represents a portfolio with specific weights assigned to the assets. The red
dots represent portfolios containing two assets, the blue dots represent three-asset portfolios
and the green dots represent four-asset portfolios.

The two different graphs represent a different set of asset returns, but within the graphs the
returns remain constant and the position is solely determined by the weights assigned to the
different assets. The horizontal position denotes the variance of the portfolio, the vertical
position denotes the expected value of the portfolio.

The efficient frontier of for example the two-asset portfolio in the lower graph in figure 1.1
is given by the upper half of the red arc, since for all portfolios the values of the variance of
return, the maximum expected return is higher on the upper arc, than on the lower arc.

The implications of MPT are that a higher return goes hand in hand with a higher risk.
Although this model is an obvious improvement of the in that time existing theories, it also
has its flaws. One important limitation is the (exclusive) use of standard deviation as a risk
measure.

The Capital Asset Pricing Model (CAPM) is built on the ideas of Markowitz described above.
Among others, Sharpe and Treynor, some of their efforts are mentioned in section 2.4, have
independently introduced the CAPM [Sharpe, 1966],[French, 2002]. As its name suggests, the
CAPM is an asset pricing model.

The model is defined as follows:

E[Ri] = Rf + βi (E[Rm]−Rf ) ,(1.3)

where Ri = required return on asset i;

Rf = risk-free return;

Rm = return of the market;

βi = measure of risk, see equation (2.36) in section 2.4.

The model gives a required return that an asset should have, taking the risk β into account,
to perform –in terms of return– as well as the market does.

As mentioned earlier, β gives the volatility of an asset or portfolio compared to the volatility
of the market, so when an asset has β = 1, the asset is expected to behave as the market,
and so the asset should fulfill the equation E[Ri] = E[Rm].

However, when the β = 2, the return of the market is 10% and the risk-free return is 2.5%,
to compensate for the excess risk taken, the required return of the asset should be E[Ri] =
2.5% + 2 · (10%− 2.5%) = 17.5%. After the required return is calculated, it can be compared
with the estimated rate of return to determine whether the asset is worth investing in.
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Arbitrage pricing theory

The CAPM is a so-called single-factor model. Factor models are asset pricing models where
the price of the asset depends on different factors. In the case of the CAPM it is one factor.
The factor is the excess return on the market, also called the market factor. Compared to
a single-factor model like the CAPM, multi-factor models take multiple factors into account.
The arbitrage price theory (APT), introduced by Ross in 1976 [Ross, 1976], induces that a
multi-factor model determines the right rate of return. If the asset price deviates from the
expected end of period price discounted at the rate implied by the model, the asset is over
or under priced. When this happens arbitrageurs can make a riskless profit and by their
interventions the asset price will return to the right price.

Multi-factor models have the following form:

(1.4) Ri −Rf = αi +
n∑
j=1

βijFj + εi,

where αi is a constant, βij is the sensitivity of factor j to asset i, Fj is factor j and εi is asset
i’s individual shock with E[εi] = 0. These factors should affect expected returns, and should
not be captured by the market factor. Examples of factors are risk factors and macroeconomic
factors like unemployment and GDP growth.

The advantage of the APT compared to the CAPM is that APT has less restrictive assump-
tions.
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Chapter 2

Risk measures

In the previous chapter, the concept of risk was introduced. In this chapter several measures
to quantify risk will be introduced. The goal of this chapter is to find a measure, or a
combination of measures which to be able to assign a number to the risk level of a portfolio.
In order to find this measure or these measures, first the difference between ex-post and ex-
ante measures is explained, then several risk measures and their properties will be discussed,
and finally a framework to determine the ‘quality’ of the measures will be introduced.

Before getting started, it should be established which variable (e.g. profit, loss, return) is
used to denote the value of a portfolio or security. The risk of a security or portfolio is based
on the values of this variable.

The reason for this is that when, for example, the variable considered denotes loss, a big,
positive number is not good, as a negative number denotes profit, on the other hand when
talking about a return, a positive number denotes profit and a negative number is a loss.
Therefore, to be consistent and clear, throughout this thesis risk will be determined using a
return distribution, which means that negative values are losses.

Let us define variables concerning portfolios and returns. When a portfolio contains n secu-
rities, and at time t = 0, an amount of X0,i euro (or dollars, Swiss francs, etc.) is invested in
asset i, then the total return of security i at time t is

(2.1) Rt,i =
Xt,i

Xt−1,i
,

which is the payoff of the security per euro invested. The rate of return is then defined as:
ri = X1i−X0i

X0i
. So, the following will hold: X1i = (1 + ri)X0i. The log return of a security i at

time t is defined as:

(2.2) LRti = ln(Xt,i)− ln(Xt−1,i) = ln

(
Xt,i

Xt−1,i

)
.

The log return is often used to analyze financial data because it takes the ratio of two data
points into account, instead of absolute difference. Therefore, data series of, for example,
different currencies, can easily be analyzed without having to exchange one of the series to
the other currency.
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The amount invested in the portfolio at time t is Xt = Xt,1 +Xt,2 + · · ·+Xt,n. The portfolio
weight, the percentage of the portfolio invested in security i, is defined as:

(2.3) ωt,i =
Xt,i

Xt
and

n∑
i=1

ωt,i = 1.

2.1 Ex-ante vs. ex-post

The risk of a portfolio or security can be assessed both in advance and by looking back. Risk
which is assessed by looking back is called ex-post risk assessment and it means that risk is
measured based on historical data of a portfolio and assumes that the past is representative
for future results. When risk is assessed beforehand, which is called ex-ante risk assessment,
the risk is assessed by looking forward by using for example scenario analysis.

Scenario analysis is a kind of Monte Carlo simulation. Based on several economic variables
such as inflation, employment, etc. a thousand economic scenarios are created. The idea is
that these scenarios represent all possible paths and outcomes of, for example, a benchmark or
a portfolio. Based on these scenarios, some measures which are discussed below, can be used
as an ex-ante measure. The variance (and standard deviation, semi-standard deviation and
semivariance), is one of these measures. In section 2.3 a Monte Carlo method for calculating
the Value-at-Risk (VaR) is described, so the VaR can also be seen as an ex-ante risk measure,
the Conditional value-at-risk (CVaR) can also be calculated using scenarios.

All measures that are listed in this chapter can both be used as an ex-post and an ex-ante
measure. To calculate the ex-post measures, only historical data are needed to compute the
risk measures, however, one has to keep in mind that ex-post measures do not necessarily
provide a good insight into the future. When using ex-ante measures, one has to keep in mind
that when the risk of single securities in portfolios is measured, every single security should
be modeled on its own, which could be a lot of work.

2.2 Standard deviation & variance

The first measure that is introduced is very basic, very common and important in probability
theory: the standard deviation. The standard deviation indicates how far the elements of
a dataset lie from the mean of the dataset. Directly related to the standard deviation is
variance. The variance of a dataset is the squared standard deviation and is sometimes also
called volatility. The variance and standard deviation of random variable X are defined as:

Var(X) = σ2 = E
[
(X − E[X])2

]
(2.4)

= E[X2]− E[X]2

σ =
√
E[X2]− E[X]2(2.5)
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When an (n× 1) vector x1, x2, ..., xn is a sample of random variable X, the sample variance
and sample standard deviation are represented by:

s2 =
1

n− 1

n∑
i=1

(xi − x)2(2.6)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2.(2.7)

The expected rate of return of a portfolio as defined above is given by: E[r] =
∑n

i=1 ωiE[ri].
Now, the variance of the rate of return is:

σ2 = Var(r) = Var(ω1r1 + ω2r2 + ...+ ωnrn)(2.8)

=
n∑
i=1

n∑
j=1

ωiωjCov(ri, rj)

=

n∑
i=1

n∑
j=1

ωiωj (E[rirj ]− E[ri]E[rj ])

The spread of the return can be seen as a measure for risk, when the spread is concentrated
around the expected return, it is more likely that the return will not deviate much from the
expected return, which can be interpreted as low risk. When the spread is not at all con-
centrated around the expected return, chances are high that the return deviates significantly
from the expected return, so the risk can be considered as high.

Equation (2.8) also shows that the variance of a portfolio can decrease, when the portfolio is
well diversified. Take for example a portfolio A containing two securities, with equal weights
(i.e. ω1 = ω2 = 1

2) and let us assume that Var(r1) = Var(r2) = C > 0 and that the securities
are independent, so Cov(r1, r2) = 0, and on the other hand a portfolio B containing only one
security, security 1. Now, we have Var(rA) = ω2

1 Var(r1) + ω2
2 Var(r2) + 2ω1ω2 Cov(r1, r2) =

1
4Var(r1) + 1

4Var(r2) = 1
2C < C = Var(r1) = Var(rB). The variance of the second portfolio

is twice as high as the variance of the first, diversified portfolio. The assets in this example
were independent, however, if the covariance would have been negative, which means that
the returns of the assets move in the opposite direction, the variance would have been even
lower. This is a first illustration of the concept of hedging.

A downside of the variance is that it measures the spread of the data, but it does not say
anything about extreme events. Another downside of the variance is that it is a symmetric
measure: it depends both on positive and negative deviations. So, when the distribution of a
random variable is asymmetric, the variance may not be a correct reflection of the actual risk,
as it only gives accurate results when the distribution of the random variable is symmetric.
[Lleo, 2009]

However, there is a remedy for this problem which is called the semi-deviation and accom-
panying semi-variance. These measures only take into account the negative (or positive)
deviations from the mean, but this measure still does not take extreme risk into account.
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2.3 Extreme value theory & tail risk measures

The tail of a distribution is the end part of a distribution of a random variable, characterized
by low probabilities but high deviation from the mean. The concept is easily understood
when visualized: in figure 2.1 both left and right ends can be called the tails.

Figure 2.1: Probability density func-
tion of a N(0, 1)-distribution.

Since the probability of a random variable ending up
in the tail is (very) small it is tempting to ignore these
values. However, when ignoring the occurrence of the
values in the tail, the results of models using this ran-
dom variable are often too optimistic. This is easy to
understand when we are considering a random vari-
able that represents the return of a portfolio: although
the probability of the return of the portfolio being -2.5
is very small, the implications can be significant. To
measure this kind of risk, the concept of tail risk was
introduced. [Yamai & Yoshiba, 2002]

There are different ways of defining the tail risk, a prac-
tical example of the definition is the risk that the ran-
dom variable lies at least three times the standard deviation from the mean. Another more
theoretical description is: “tail risk is the risk that a large move in a portfolio is greater than
what is implied by traditional risk management”[DB, 2010].

Extreme value theory (EVT) provides the framework for the analysis of the tail. From this
framework different measures for risk, or specifically tail risk, can be derived. These measures,
also called extreme risk measures, are the value-at-risk (VaR) and the Conditional value at
risk (CVaR) or expected shortfall (ES).

Extreme value theory

In [McNeil, 1999] McNeil defines extreme value theory (EVT) as: “Extreme value theory is
a method for modeling and measuring extreme risks”. EVT is a method to estimate the
probability distribution of the tail, based on available data. A challenge in estimating this
distribution is the choice of the bound of which values are considered ‘extreme’. On the one
hand a threshold that is too low gives a scarce amount of data points, on the other hand, a
threshold that is too high will not produce a valid distribution.

In EVT there are basically two approaches to determine the tail distribution. These methods
are distinguished by the manner of selecting the extreme value. The peaks-over-threshold-
model selects all data points that exceed a given threshold. The block maxima model selects
from every ‘block’ of data points the maximum value. Both methods can be applied when it
is assumed that the random variable comes from a common distribution. In the next sections
both methods will be introduced.

The models described below estimate the upper tail of a distribution, but can be analo-
gously used for lower tails. Both models are discussed elaborately in many different articles,
the description of the models below is based on the articles of McNeil and Gilli & Këllezi
[McNeil, 1999, Gilli & Këllezi, 2006].
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Block maxima model

When (X1, X2, . . . , Xn) are the observations of some event, the observations are grouped in
blocks (unordered). For example, when one has quarterly data of some statistic, the data
may be subdivided into blocks, each of which represents one year. Every block will contain
four occurrences. In formula form this is written as follows: when there are n blocks, with
m occurrences each, i.e. ((X1,1, . . . , X1,m, X2,1, . . . , X2,m, . . . , Xn,1, . . . , Xn,m). Of each block,
the maximum is:

(2.9) Mj = max {Xj,1, Xj,2, . . . , Xj,m}

As a result a dataset of n occurrences is formed: (M1,M2, . . . ,Mn). Now the Fisher-Tipett
theorem, which states that on a dataset of extreme values, an extreme value distribution H(x)
can be fitted for sufficiently large m, can be applied [McNeil, 1996]. The fitting distribution
is given by:

(2.10) H(x) = Hξ

(
x− µ
σ

)
,

where Hξ(x), which is called the generalized extreme value distribution (GEV), is given by:

(2.11) Hξ(x) =

{
e−(1+ξx)

−1/ξ
ξ 6= 0;

e−e
−x

ξ = 0.

The maximum likelihood estimation (MLE) method is used to find ξ̂, µ̂ and σ̂. To give an
idea of the interpretation of this distribution: the value H−1

ξ̂,µ̂,σ̂
(1 − 1

k ) is the return of the

portfolio that will be expected to be (negatively) exceeded once every k years. [McNeil, 1999]

Peaks-over-threshold model

The general idea of the peaks-over-threshold (POT) model is equivalent to the block maxima
model. However, instead of using the maximal occurrences of every ‘block’, the POT model
uses all occurrences that exceed a certain value u. We call n the number of realizations of the
random variable and Nu is the number of realizations that exceed u. With the distribution
function of some random variable given by F (x) = P (Xi ≤ x), the distribution of its tail,
which is defined as all values of the random variable exceeding u, is given by:

Fu(y) = P (X − u ≤ y |X > u)(2.12)

=
F (y + u)− F (u)

1− F (u)
.

This is called the excess distribution. As a result of the theorem of Pickands, Balkema and
De Haan [Gilli & Këllezi, 2006], the generalized Pareto distribution (GPD) can be fitted to
this tail and, for some threshold value u, the excess distribution, may be exactly given by the
GPD:

(2.13) Fu(y) = Gξ,ζ(y),
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where the GPD is defined as:

(2.14) Gξ,ζ(x) =


1− (1 + ξx

ζ )
− 1
ξ when ξ < 0, where 0 ≤ x ≤ − ζ

ξ ,

1− (1 + ξx
ζ )
− 1
ξ when ξ > 0, where x ≥ 0,

1− e
x
ζ when ξ = 0, where x ≥ 0,

with ζ > 0. When we substitute (2.13) in equation (2.12) and set x = u + y, such that we
get:

Fu(x− u) =
F (x)− F (u)

1− F (u)
(2.15)

Fu(x− u) · (1− F (u)) = F (x)− F (u)

F (x) = (1− F (u))Gξ,ζ(x− u) + F (u),

for x > u. To make an estimate F̂ (x), we replace F (u) by its estimator n−Nu
n . The values ξ̂

and ζ̂ are estimated by the MLE method. We have the following tail estimator, when ξ̂ 6= 0
and x > u:

F̂ (x) = (1− F (u))Gξ,ζ(x− u) + F (u)(2.16)

=

(
1− n−Nu

n

)1−

(
1 +

ξ̂(x− u)

ζ̂

)− 1

ξ̂

+
n−Nu

n

= 1− Nu

n

(
1 +

ξ̂(x− u)

ζ̂

)− 1

ξ̂

.

When ξ̂ = 0 and x > u, the tail estimator takes the following form:

F̂ (x) = (1− F (u))Gξ,ζ(x− u) + F (u)(2.17)

=

(
1− n−Nu

n

)(
1− e

x−u
ζ̂

)
+
n−Nu

n

= 1− n−Nu

n
− e

x−u
ζ̂ +

n−Nu

n
e
x−u
ζ̂ +

n−Nu

n

= 1− Nu

n
e
x−u
ζ̂ .

Function F̂ (x), for x > u, gives the distribution of the tail. We can use this tail distribution
or the tail distribution from the block maxima model to measure risk. There are two common
tail risk measures the value-at-risk and conditional value at risk. These risk measures will be
discussed in the next sections.

Value at risk

When one has a probability distribution of the return of a security, portfolio or any other item,
the (100− γ%) value at risk (VaR) is the value at the boundary of the confidence interval at
confidence level γ. This is a measure of exposure to risk. To illustrate this concept, we take
a look at figure 2.2. We assume that there is an asset and its return is N(0, 1) distributed.
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Figure 2.2: 95% Value at Risk (VaR) with a N(0,1) distribution.

The 100 − 95% one-day VaR is −1.64, so the probability that tomorrow’s value of the asset
is below −1.64 is 5%. The VaR is in principal a measure of downside risk, but as opposed to
the negative VaR, there is also a positive VaR, which lies at the other side of the mean.

The VaR is easy to calculate when the distribution of the return of the security or portfolio,
is known. With the cumulative distribution function given by F (x) = P (X ≤ x), the value
at risk at risk level γ is defined as:

(2.18) VaRγ(X) = F−1(γ).

When the distribution of the tail is known from the POT model or block maxima model, for
probability γ > F (u) a VaR estimate is given by the inverse of the distribution function. For
the POT model this means:

γ = F̂ (q) ⇐⇒ q = F̂−1(γ) = V̂aRγ(X),(2.19)

V̂aRγ,ξ̂ 6=0(X) = u+
ζ̂

ξ̂

(
n

Nu
(1− γ)−ξ̂ − 1

)
,(2.20)

V̂aRγ,ξ̂=0(X) = u− ζ̂ ln

(
1− n

Nu
(1− γ)

)
.(2.21)

However, when the actual distribution of the random variable is not known. There are three
methods to compute the VaR, firstly the variance-covariance method, secondly historical
simulation methods and thirdly Monte Carlo simulation methods [Aniūnas et al., 2009].

The variance-covariance method assumes that the random variable, in this case the return
of a security, has a normal distribution and that therefore, the 95% VaR is given by µ− 2σ
and the 99% by µ − 2.33σ. In order to calculate the VaR, one needs to find σ and plug it
in the formula. One calculates the variance according to formula (2.8), the accompanying
covariance matrix is calculated based on historical data. [Aniūnas et al., 2009].

The method based on historical simulation is rather basic. To calculate the VaR of the return
of a security, the time series of the return of the security is used. From the time series a dataset
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is created which contains the day-to-day changes in returns, and the dataset is ordered. The
99% positive VaR is the 99% precentile of the dataset and the 99% negative VaR is the 1%
precentile. To give recent events more influence on the VaR, it is possible to assign weights
in the dataset prior to ordering. [Aniūnas et al., 2009].

The method based on Monte Carlo simulation is very similar to the historical simulation, how-
ever instead of having a dataset based on historical data, the dataset is created by simulation
of future asset prices [Aniūnas et al., 2009].

All three methods are based on historical data, the historical simulation fully by definition
and the Monte Carlo simulation to some extent. The main disadvantage of the historical
simulation method, because it implies that the history will repeat itself. The use of historical
data is also a drawback of the variance-covariance method, and the assumption that the
returns are normally distributed cannot generally be accepted, since there are many more
outliers than the normal distribution accounts for. The computation of the covariance matrix
is responsible for the accuracy of this method, and depends on historical data. The main
drawback of the Monte Carlo method is that in order to get an accurate simulation, many
paths have to be computed and this can be costly. In general, the Monte Carlo simulation
is more difficult. However, of the three methods, the Monte Carlo method seems the most
flexible when choosing a distribution for the returns. It also relies the least on historical data.

These methods to compute the VaR are not too difficult, however, the methods all have
their downsides, which makes the computation of the VaR unreliable. Also, when the VaR is
used as a risk measure it should be taken into account that the estimated VaR is often too
optimistic. The VaR mainly indicates where the tail of the distribution begins, information
about the thickness of the tail is not given. In a normal distribution outliers are very unlikely,
while in practice outliers are not that unlikely. As a result, when a firm only considers VaR
as a risk measure, the firm may actually be exposed to much higher risk.

The main disadvantage of the VaR is that it does not take the distribution of the tail into
consideration, the possible distributions of the tail with equal VaR can be very different.
Another negative feature of the VaR is that since the VaR only returns a boundary, which can
can be easily adjusted by adjusting the portfolio. VaR can be more easily manipulated than
other measures. Portfolio managers might use this to take a higher risk than is allowed and
mask this risk by influencing the VaR such that the risk criterion is met [Aniūnas et al., 2009].
In other words, the VaR is not a coherent risk measure.

Manipulating the VaR is rather easy, Dańıelsson explains it as follows [Dańıelsson, 2000]:
assume that a portfolio contains one asset and that the actual VaR of the portfolio is given
by VaRa. The desired VaR level is given by VaRd, the cumulative return distribution of the
portfolio is sketched in figure 2.3.

Now when a portfolio manager buys a put option with strike price Kp = VaRd + ε, ε > 0,
the return of the portfolio will be represented by the dashed vertical blue line, until it crosses
the distribution, from that point on, the return will again be given by the solid orange line.
The reasoning is as follows: when the return of the portfolio is less than the strike price, the
manager will exercise the option, sell the portfolio and get a return of Kp.
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Figure 2.3: Graph of manipulation of the VaR.

With the put option, the manager should
write a call option with strike price Kc =
VaRa − ε < Kp, ε > 0. As a result, when
the return of the portfolio is less than the
strike price Kc, the holder of the option
will not exercise the option, however, when
the return is higher, the option holder will
exercise the option and buy the asset for
Kc.

Finally, the manager should buy a call op-
tion with strike price Kp. Now the return
distribution is a combination of four pieces

of distribution, first, until Kc, the orange solid line, then until Kp the dashed red line. From
the point that the dashed red and the dashed blue line cross, the distribution follows the
dashed blue line and finally from the point the dashed blue line and solid orange line cross,
the distribution will follow the solid orange line again.

This strategy is easy to implement and will mask the actual VaR. This example illustrates
that the VaR is easily manipulated.

There are some problems, both in computing the VaR and manipulating the VaR. The VaR
may also cause problems when interpreting the measure: the VaR only returns the value at
which certain boundary is crossed. This means that two random variables with equal VaR
can have completely different (tail) distributions. A variable which has a fat, short tail can
be considered less risky than a variable with a long thin tail, which may give rise to a very
big loss.

In spite of all negative features of the VaR, it is a very popular measure. This might be
because it reflects the risk in a very clear manner and, although the methods to calculate the
VaR are not too accurate, the VaR is easy to calculate.

Conditional value at risk and other measures related to VaR

Because the VaR has pitfalls, an alternative for it was derived: the conditional value at risk
(CVaR). The general idea is that the CVaR measures the conditional mean of the tail which
is cut off at the γ-level VaR. Or, as formulated in [Acerbi, 2002], the “average of the γ · 100%
worst losses”.

There is a lot of literature available on the subject of the CVaR. Some articles are quite
technical, and some are less technical. Because of the variety of the literature the CVaR has
many names: expected shortfall (ES), worst conditional expectation (WCoE), average value
at risk (AVaR), expected tail loss (ETL), tail mean (TM) tail conditional expectation (TCE)
and, of course, conditional value at risk (CVaR).

In some literature the definitions that accompany this name are the same ([Mazaheri, 2008],
[Föllmer & Schied, 2008]), but in other articles different definitions have different names
([Artzner et al., 1999], [Acerbi & Tasche, 2002], [Lleo, 2009]). The, sometimes very subtle,
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differences in definitions are mostly caused by the assumptions on the distribution of the ran-
dom variable. For example, in [Artzner et al., 1999] five different definitions are given, these
are the CVaR, TCE, WCE, ES and TM. These different definitions, however, coincide when
the distribution of the random variable is continuous. When the distribution of the random
variable is discontinuous, differences may occur, although they are quite subtle.

An example of this difference when distributions are discontinuous is given in [Lleo, 2009],
where a distinction between two definitions is made. The different measures are the expected
shortfall and the conditional value at risk. Their definitions are as follows:

ESγ(X) :=
1

γ

∫ γ

0
F−1X (p) dp,(2.22)

CVaRγ(X) := E[X|X ≤ F−1X (γ)] = E[X|X ≤ VaRγ(X)].(2.23)

When the tail distribution is defined through either the block maxima model, or the POT
model, the CVaR is defined as:

(2.24) CVaRγ(X) = VaRγ(X) + E[X −VaRγ(X)|X > VaRγ(X)],

where the second term of the right-hand side is the mean of the excess distribution FVaRγ(X)(y).

The mean of the Gξ,ζ(y) distribution is ζ
1−ξ . As we have introduced Fu(y) as the tail distri-

bution of F (x), we can introduce a distribution of the tail FVaRγ(X)(y), when VaRγ(X) > u,

by replacing ζ = ζ + ξ(Varγ(X) − u). Now the mean of this distribution is
ζ+ξ(VaRγ(X)−u)

1−ξ .
When all estimates are substituted, we get the following formulas for the CVaR:

ĈVaRγ(X) = V̂aRγ(X) + E[X − V̂aRγ(X)|X > V̂aRγ(X)](2.25)

ĈVaRγ(X) = V̂aRγ(X) +
ζ̂ + ξ̂(V̂aRγ(X)− u)

1− ξ̂
(2.26)

ĈVaRγ(X) =
̂VaRγ(X)

1− ξ̂
+
ζ̂ − ξ̂u
1− ξ̂

.(2.27)

Depending on the choice of variable and distribution, the CVaR can also be defined as
CVaRγ(X) = E[X|X > VaRγ(X)]. For convenience we will use the generic name CVaR
for the concept of the measure that is defined by “average of the γ · 100% worst losses”.

Another risk measure that is closely related to the CVaR, but actually is not really identical
to the CVaR, is the Worst Case Expectation (WCaE). The WCaE can be used when the
actual distribution of the random variable is not known, but the family to which it belongs
is. When we call the family of distributions P, with the ith distribution, i ∈ 1, ..., n given by
Pi then the worst case expectation at confidence level γ is defined by:

(2.28) WCaEγ(X) = sup
Pi∈P

CVaRγ(X).

The CVaR and its related measures give better representations of the risk than the VaR,
as we will see in section 2.6, but they also have their downsides. A disadvantage of the
CVaR is that only the tail is considered. CVaR does not say anything about the rest of the
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distribution: it will not be possible to choose the best security from two securities with equal
CVaR but otherwise completely different distributions. This argument is also valid for the
VaR. Contrary to the VaR, the CVaR is not easily manipulated, because the CVaR accounts
for the whole tail. Another issue is that the CVaR depends on the VaR, since it is the expected
value, given that the value does not exceed the VaR [Uryasev, 2000].

2.4 Relative measures of risk

The standard deviation, variance and tail risk measures all measure the risk of one specific
security or portfolio, stand alone, these measures do not give complete information. Only
when these measures are also known for other securities or portfolios, a comparison can be
made.
Another group of risk measures are the relative measures of risk. In these measures a ‘com-
parison’ is already processed, and therefore these measures are often applied to a portfolio
instead of a single security. There are many different relative measures of risk and a few of
them will be introduced below.

Tracking error

The main property of the tracking error (TE) is that it measures the deviation of the actual
portfolio from a benchmark portfolio. As a result, many portfolio optimizing models are based
on minimizing the tracking error or tracking error volatility. The tracking error volatility or
tracking error variance is the variability of the deviation of the managed portfolio return and
the benchmark return [Roll, 1992].

There are different methods to measure the tracking error. Five different tracking errors
are defined in [Rudolf et al., 1999]. To illustrate the relevance of the existence of multiple
definitions and the properties of the different definitions, below various different TE’s are
stated. TE1 is the most elementary tracking error, TE2-TE6 are from [Rudolf et al., 1999],
finally TE7 is an example of how also the variance can be used for the tracking error.

Let RB be a (T × 1) vector of benchmark returns for times t = 1, 2, ..., T , and let RP be a
(T × n) matrix of n asset returns for times t = 1, 2, ..., T . Let ω be an (n × 1)-vector with
portfolio weights of the assets, an important condition for this vector is that

∑n
i=1 ωi = 1

so that the portfolio sums up to 100%. Finally, let matrices RP and RB be matrices that
contain only the rows τ for which RPτω < RBτ , which are all points at time τ at which the
deviations of the portfolio from the benchmark are negative. So,

TE1 := 1′(RB −RPω) =

T∑
i=1

RBi −RPi1ω1 −RPi2ω2 − ...−RPinωn;(2.29)

TE2 := 1′(|RB −RPω|) =
T∑
i=1

|RBi −RPi1ω1 −RPi2ω2 − ...−RPinωn| ;(2.30)

TE3 := 1′(
∣∣RB −RPω

∣∣);(2.31)

TE4 := (RB −RPω)′(RB −RPω) =

T∑
i=1

(RBi −RPi1ω1 − ...−RPinωn)2;(2.32)
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TE5 := max
i
{|RB −RPω|} ;(2.33)

TE6 := max
i

{∣∣RB −RPω
∣∣} ;(2.34)

TE7 := Var(RB −RPω) = E[(RB −RPω)2]− (E[(RB −RPω)])2,(2.35)

where 1′ denotes the transpose of a vector of ones. TE1 is a very basic tracking error, it is
just the sum of the differences between the portfolio return and the benchmark return for
every t. TE1 assigns a positive value to a positive deviation of portfolio return compared to
the benchmark return, but it assigns a negative value when the return of the portfolio is lower
than the benchmark. A result of this is that equal (positive and negative) values cancel each
other out. In theory this means that a portfolio that has very high deviation, but where the
positive and negative deviations are of equal value, can have tracking error 0.

In tracking error TE2, the problem of outliers which cancel each other out is resolved by
assigning a positive value to both positive and negative deviations by the absolute value.
This ensures that in portfolio optimizing models which use the tracking error as a minimizer,
both positive and negative outliers are penalized.
TE3 has the same linear form, but only takes into account those rows in the equation for
which the condition RPmω < RBm , this means that a deviation relative to the benchmark is
not taken into account when it is an advantageous deviation. This implies that the model is
not penalized for positive outliers, but they also do not cancel out negative outliers.

TE4 is a simple quadratic tracking error, the properties of a quadratic tracking error are
that larger outliers have a larger influence on the tracking error. A second property of the
quadratic tracking error is that the square ensures that all deviations are positive and thus,
negative values do not cancel out positive values.

TE5 just addresses the highest (absolute) deviation of all deviations of assets. This tracking
error does not take into account the second largest and all other deviations. TE6 is a com-
bination of TE3 and TE5 and gives the maximum deviation that is disadvantageous for the
return of the portfolio.

Finally, TE7 is the variance of the deviation of the portfolio from the benchmark. One can
argue that the tracking error already is some sort of volatility measure, because is measures
the deviation of a variable relative to another variable. So TE7 can be interpreted as the
variance of the volatility.

In this section we have seen several definitions for the tracking error, but there are many more
definitions of the tracking error. These seven examples give an insight in the usefulness.

Parameter β

The β of a portfolio is the volatility of a single security compared to the volatility of a whole
portfolio or the whole market. In formula form it is defined as:

β =
Cov(Rp, Rm)

Var(Rm)
,(2.36)

where Rp = return of the portfolio,

Rm = return of the market.
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Parameter β represents the relation between the volatility of the portfolio in relation to the
volatility of the market. When the value of β equals 1, an increase of the market return of
10% should imply an equal increase of the portfolio return. However, when the value of β
equals 2, a 10% increase of the market should lead to a 2 ·10% = 20% increase of the portfolio.
The β can be considered to be a measure for market risk. [Hübner, 2005]

Sharpe ratio

The Sharpe ratio is defined by the excess return of a portfolio relative to the risk free rate
per unit of risk, when the risk is considered to be measured by the variance. In formula form
it is given by:

S =
Rp −Rf

σ
,(2.37)

where Rp = return of the portfolio,

Rf = risk free return,

σ2 = Var(Rp −Rf ) = variance of the difference.

Instead of the risk free return, Rf , sometimes the value 0 is used. A higher Sharpe ratio
implies a better performing portfolio. The Sharpe ratio gives a good insight in the trade-off
risk versus return, a high return is good, but not if the risk taken to get this return is too high.
The Sharpe ratio gives a clear insight in how well a portfolio has performed. [Hübner, 2005]

Treynor ratio

The Treynor ratio gives the excess return compared to the risk free return per unit of β:

T =
Rp −Rf

β
,(2.38)

where Rp = return of the portfolio,

Rf = risk free return,

β = β of the portfolio.

The Sharpe ratio measures the excess return per unit of risk, whereas the Treynor ratio
measures the excess return per unit of market risk. [Hübner, 2005]

Information ratio

The information ratio is similar to the Sharpe ratio, but it does not measure return compared
to the risk-free rate, but compared to the benchmark return :

IR =
Rp −Rb

σ
,(2.39)

where Rp = return of the portfolio,

Rb = benchmark return,

σ2 = Var(Rp −Rb) = variance of the difference.

(See [Hübner, 2005])
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Jensen’s α

Jensen’s alpha is a measure of the performance. Jensen [Jensen, 1967] formulates it as follows:
“it represents the average incremental rate of return on the portfolio per unit time which is
due solely to the managers ability to forecast future security prices” . In formula form it is
given by :

α = (Rp −Rf )− β [Rm −Rf ] + ε(2.40)

where Rp = return of the portfolio,

Rf = risk free return,

Rm = return of the market portfolio,

ε = error term with E[ε] = 0.

When α > 0, the portfolio manager is performing well, when α < 0 the portfolio manager
performed worse than the market. [Hübner, 2005]

2.5 Greeks

There is another group of risk measures, called the Greeks, which are risk measures mainly
applicable to options. These measures will not be needed in the remainder of this thesis, but
to be complete they will be discussed very briefly in this section.

The Greeks represent the sensitivities of prices of options to changes in for example the
underlying asset price, volatility or time. The price of an option can be determined by the
Black-Scholes model. There are several different variables and parameters on which the Black-
Scholes solution depends, and therefore there are also several Greeks. We will address the
three most important ones, given by:

(2.41) ∆ =
∂V

∂S
; ν =

∂V

∂σ
; Θ =

∂V

∂τ
;

where V is the value of the option, S is the price of the underlying asset, σ is the volatility
and τ is time. These sensitivities of the price of an option when the variables change, can be
considered to be risk measures.

2.6 Which measure(s) to use

In the previous sections various measures for risk have been discussed, with their advantages
and disadvantages. However, these (dis)advantages are not easily comparable. In [Lleo, 2009]
classes of risk measures are named, each with its own properties. The classes are monetary
risk measures, coherent risk measures, convex risk measures and spectral risk measures. In
the next sections, these classes will be defined, as in [Lleo, 2009].

Monetary measures of risk

Monetary risk measures are in [Lleo, 2009] defined as the group risk measures, that return the
value of the amount of a risk-free investment r (so r could be an amount of cash) that needs
to be added to the portfolio in order to make the risk of the underlying investment (i.e. single
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security, portfolio, etc.) acceptable. To illustrate: when one owns a portfolio with a monetary
profit and loss (P & L) X, the risk measure is determined by the minimal riskless investment
r that should be added to the portfolio, so that the risk of the investment is acceptable.
Or in formula form:

(2.42) ρ(X) = min
r∈R
{investment in a position [X + r] is acceptable}

In [Föllmer & Schied, 2008], a monetary measure of risk satisfies on top of this condition the
following conditions:

Translation invariance or cash invariance Adding a risk-free instrument r, for example
cash, to an existing position, decreases the risk by an equal amount:

(2.43) ρ(X + r) = ρ(X)− r.

Monotonicity If the return of asset X is less or equal to the return of asset Y , then the risk
of asset X must be greater or equal:

(2.44) X ≤ Y =⇒ ρ(X) ≥ ρ(Y ).

The monotonicity is best explained when ρ is considered as capital requirement. If the profit
of Y is always higher than or equal to the profit of X, i.e. Y ≥ X, then the minimal amount
of cash that needs to be added to Y , to make the risk of it acceptable, is less than the amount
that needs to be added to X to make the risk acceptable, i.e. ρ(X) ≥ ρ(Y ).
The translation invariance can be similarly explained: if an amount of cash is added to a
portfolio, the additional capital needed to satisfy the capital requirements of the portfolio is
obviously lowered.

Convex measures of risk

A convex risk measure is a special case of a monetary risk measure, thus it satisfies the
properties of a monetary risk measure. Next to that, it also satisfies the following property:

Convexity When a portfolio is diversified, the risk of the total diversified portfolio is smaller
than or equal to the risk of the separate assets:

(2.45) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1.

In section 2.2 this principle has been illustrated for the variance.

Coherent measures of Risk

Artzner, Delbaen, Eber and Heath proposed in [Artzner et al., 1999] the notion of coher-
ent risk measures. A coherent risk measure is a special case of a convex risk measure. In
[Lleo, 2009] the properties of a coherent risk measure are stated as follows:

Subadditivity For assets X and Y , the risk of the portfolio of the combined assets is smaller
than the risk of the separate assets:

(2.46) ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
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Positive homogeneity When the position of asset X is increased by some rate k , then the
risk of the investment increases by the same proportion k:

(2.47) k · ρ(X) = ρ(k ·X).

Since a coherent measure of risk also is a monetary measure of risk and a convex measure
of risk, a coherent risk measure satisfies the monotone, convex and translation invariance
properties. However, the property of subadditivity is equivalent to the property of convexity
when λ = 1

2 . So even without defining convexity, a coherent risk measure automatically is a
convex risk measure.

The subadditivity ensures, just as convexity, that portfolio diversification cannot increase the
risk of the portfolio. The positive homogeneity ensures that the risk of having k times position
X is equal to the risk of having position k ·X.

In [Acerbi, 2002], Acerbi derives the following statement: “a measure is coherent if it assigns
bigger weights to worse cases”.

Spectral measures of risk

Spectral measures of risk are coherent measures of risk which are ‘customized’ by multiplica-
tion by a risk-aversion formula.

In [Acerbi, 2002], the spectral risk measure is constructed as follows: Acerbi argues that if ρ
is a one parameter family of coherent risk measures, γ ∈ [a, b], then, for any measure dµ(γ) in

[a, b] with
∫ b
a γ dµ(γ) = 1, the statistic defined as ρ =

∫ b
a dµ(γ) ργ is a coherent risk measure.

(proposition 2.2 in [Acerbi, 2002].)

When FX(x) is a cumulative distribution function of some P&L, X, and F−1X (p) is its inverse
distribution function, we define the expected shortfall as:

(2.48) ESγ(X) = −1

γ

∫ γ

0
F−1X (p)dp.

When we assume that the expected shortfall is coherent, we can define

Mµ(X) =

∫ 1

0
dµ(γ) γ ESγ(X)

= −
∫ 1

0
dµ(γ)

∫ γ

0
F−1X (p) dp

= −
∫ 1

0
F−1X (p) dp

∫ 1

p
dµ(γ)

= −
∫ 1

0
F−1X (p)φ(p) dp,

= Mφ(X)
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where φ(p) =
∫ 1
p dµ(γ). Now, according to the proposition of Acerbi, Mµ(X) is coherent if∫ 1

0 γ dµ(γ) = 1. The following holds:∫ 1

0
φ(p) dp =

∫ 1

0
dp

∫ 1

p
dµ(γ) =

∫ 1

0
dµ(γ)

∫ γ

0
dp =

∫ 1

0
dµ(γ) γ = 1.

To ensure that Mφ(X) satisfies the properties of a coherent risk measure, φ(p) should be an
“admissible” risk spectrum, as it is called in [Acerbi, 2002]. An element φ ∈ L1[a, b] is an
“admissible” risk spectrum if:

(i) φ is positive, i.e. if for all I ⊂ [a, b],
∫
I φ(p) dp ≥ 0,

(ii) φ is decreasing, i.e. if ∀q ∈ [a, b] and ∀ε > 0 such that [q−ε, q+ε] ⊂ [a, b],
∫ q
q−ε φ(p) dp ≥∫ q+ε

q φ(p) dp,

(iii) ‖φ‖ = 1.

Let Mφ(X) be defined by Mφ(X) = −
∫ 1
0 F

−1
X (p)φ(p) dp with φ ∈ L1([0, 1]). If φ(p) is

an admissible risk spectrum, then Mφ(X) is a risk measure. The admissible risk spectrum
φ ∈ L1([0, 1]) is called the “risk aversion function”; the risk measure Mφ(X) will be called
the “spectral risk measure” generated by φ.

The risk aversion function can be seen as a function that gives weights to the area that is
integrated. Since the risk aversion function is decreasing it assigns higher weights to worse
values.

Comparison of classes

Now that the classes of risk measures are defined, we can decide to which class the measure
that we will use to measure the risk, has to belong to. First, measures of risk that do not satisfy
the subadditivity condition might not properly measure the risk of a diversified portfolio and
we therefore conclude that a risk measure must at least be convex. When a measure is
also coherent or even a spectral risk measure it would be helpful, since the measure is then
adjustable to different risk aversion functions. However, a convex risk measure has satisfactory
properties itself. From the measures that are discussed above, the only spectral measures of
risk are the CVaR or ES, when the distribution of the random variable is continuous. VaR
only is a monetary risk measure.

2.7 Use of risk measures in practice

In the previous section a variety of risk measures has been introduced, however their use in
practice has not yet been discussed. In the article of Amenc et al. [Amenc et al., 2011] the
results of a questionnaire for portfolio managers was published. In the questionnaire handed
out to portfolio managers of both small and large firms, the portfolio managers indicated how
they measure the risk of a portfolio. The results of this article are discussed below.

When portfolio managers were asked whether they set absolute risk objectives in portfolio
optimization, most reported that they use tail risk and average risk. For portfolio optimization
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the measures that are mainly used are VaR, CVaR and variance. Firms also use relative risk
objectives for portfolio optimization, however, to a lesser extent than absolute risk measures.
Most firms indicated that they use the tracking error to measure relative risk.

Although this is interesting, the information that is really relevant is how the firms measure
risk when the portfolio is implemented. When the firms were asked how they calculate extreme
risk when implementing portfolio optimization, almost a quarter of the respondents answered
that they do not calculate extreme risk measures. Most respondents use VaR and some use
CVaR. Another notable result is that most firms that use VaR, measure VaR by assuming
the normal distribution, which is not a sophisticated manner to measure.

To measure the absolute performance of a portfolio, almost three-quarters of the respondents
answered that they use the Sharpe ratio. Also the average return in excess of the risk free
rate was a popular measure. Amenc et al. argue that these measures are popular because of
their simplicity.

The results of the survey of Amenc et al. imply that most firms assess risk by easy-to-use
risk measures and often do not consider extreme risk. Based on the questionnaires, Amenc
et al. gained a more general insight: large firms are more likely to use sophisticated methods
than small firms.

2.8 Conclusion

An important conclusion is that every risk measure that was named, has its merits and its
demerits. Therefore, it may make sense to use more than one measure to determine the risk
of a portfolio. Here a combination of risk measures is suggested.

The CVaR appears to have valuable properties, it is a spectral measure of risk when the distri-
bution of the random variable is continuous and a convex risk measure when it is discontinuous
[Lleo, 2009]. The downside of the CVaR is that it only considers the tail, a measure that would
complement the CVaR, should take the behaviour of the other part of the distribution into
account. As a second risk measure the standard deviation will therefore be chosen, which
also is a convex risk measure and is easily calculated. The standard deviation and CVaR give
complementary information about the risk of a security: the CVaR gives information on the
size of the tail and the standard deviation on the body of the return distribution. Together
they may give a more complete report on the risk.
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Chapter 3

Available methodology

In order to develop new methodology to assess the existence of a mismatch between risk profile
and strategic asset allocation, insight in the existing methodology and tools is necessary. In
this chapter the relevant tools of Ortec Finance and other important suppliers of investment
performance systems will be evaluated. Of every tool two aspects are discussed:

� In what way does the tool provide insight in the portfolio?

� How does the tool monitor risk?

3.1 Ortec Finance

Ortec Finance is a Dutch firm that supplies technology and advice on risk and return man-
agement. Ortec Finance has several finance related specialties, one of them is private wealth
management.

OPAL Wealth Planner

OPAL is the abbreviation of Optimized Personal Asset and Liability management. OPAL
Wealth Planner is the tool which is developed by Ortec Finance for private banks. The
main goal of the tool is to list the (private) investment objectives and preferences of a client,
determine the client’s risk profile and create an optimal asset allocation. The optimal asset
allocation is determined with the help of a scenario set, which is a set of 500 possible economic
scenarios. Based on these scenarios, a scenario analysis can be performed, which is a kind of
Monte Carlo analysis.

In figure 3.1 an example of the results of a scenario analysis is shown. Each light blue line
represents the development through time of one scenario. The horizontal red line represents
the target capital, the scenarios that are at the end of the period –which is in this case January

2032– below this line, do not reach the target capital. The orange line represents the 10th

percentile scenario, i.e. of all scenarios, 10% lies below this line at the end of the period. The

green line represents the 90th percentile scenario, so 90% of the scenario lie at the end of

the period below the green line. The blue line represents the expected scenario, or the 50th

percentile.
With the help of this graph it can be assessed how realistic the objective of the investment,
in this case e180.000, is, with the current allocation.
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Figure 3.1: Example of the use of scenario analysis.

In OPAL Wealth Planner Professional, the advisor can create a custom-made portfolio based
on a mean-variance method. The portfolio can be determined up to asset class level, the
actual allocation on security level is determined by the advisor. The investment strategy of
the portfolio can be set to rebalance-to-plan and buy and hold.

In OPAL Wealth Planner Professional the composition of the portfolio can be viewed on asset
level. The percentages of the portfolio assigned to each asset class can be viewed in a graph
and in a table. Also the composition of different portfolios from different risk profiles can be
compared.

The risk of the portfolio can be assessed by the scenario analysis which was discussed above.
To see whether or not a portfolio is feasible can also be determined in a portfolio graph. In
figure 3.2 such a graph is shown. On the horizontal axis the risk is defined by the standard
deviation (see section 2.2 for the details), the vertical axis represents the feasibility of the
objectives. The squares represent an income objective (over a certain range of time a certain
amount of money is withdrawn from the portfolio periodically), the circles represent a capital
objective (at a certain point of time a fixed amount of money should be available). Each
(vertical) pair of one square and one circle represents a risk profile, the pair at the most
left-hand side is the least risky pair, so it is the most defensive risk profile. The pair on the
right hand side is the most risky pair, so it is the most aggressive risk profile. The white
circle and square pair is, in this case, the optimal fit for the client.

The orange areas represent combinations that either do not fit the risk attitude or have a
feasibility below 50%. The red area represents combinations that both do not fit the risk
attitude and have feasibility below 50%. The remaining areas are feasible with an increasing
desirability.

PEARL

PEARL is a performance evaluation system which consists of two parts: a calculation manager
and a web portal. The calculation manager represents the engine of the system; it performs
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Figure 3.2: Portfolio graph in OPAL.

the calculations and manages the data. The web portal is the user interface which data
analysts can use for their analyses. In this section the PEARL Web Portal will be briefly
discussed.

Figure 3.3: Overview of a portfolio in
a tree.

In PEARL the portfolio is represented by a tree. On
the highest level the portfolio is shown and the port-
folio is subdivided into asset classes, sub-asset classes
and finally the portfolio can be viewed on single secu-
rity level. In figure 3.3 an example of such a tree is
presented.

At each level, a report table and several graphs can
be viewed. Different reports can be put together in
PEARL. For example, a basic report which contains of
each level the benchmark and portfolio weights and the
benchmark and portfolio returns, a currency overlay
report, where the risk exposure of the portfolio to the
change in exchange rates is shown, and an attribution
report, where the allocation and selection effects of the
assets in a portfolio are listed. Graphs are also available
in the reports.

PEARL also offers the opportunity to make a risk re-
port, as the most common risk measures are available, such as the standard deviation, tracking
error, Treynor ratio and Sharpe ratio. The VaR and CVaR, however, are not available. The
variables can, again, be viewed at the portfolio level, asset class level, sub-asset class level or
security level.
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Figure 3.4: Risk map report of a portfolio in RiskMetrics WealthBench. The red shaded areas
represent risky assets.

3.2 MSCI

MSCI is a world leading firm in investment decision support tools. MSCI is divested from
Morgan Stanley and has acquired among others RiskMetrics, a spin-off of J.P. Morgan’s risk
department, and Barra Inc. MSCI provides two tools that have relevant features: RiskMet-
rics WealthBench, RiskMetrics RiskManager and Barra Portfolio Manager. These will be
discussed below.

RiskMetrics WealthBench

RiskMetrics WealthBench is MSCI’s private wealth management tool. It assists advisors to
construct a clients’ portfolio, based on the desires and objectives of the client. WealthBench
takes the risk appetite of the client into account and determines an optimal asset alloca-
tion. Based on the data in the system, the advisor can choose the appropriate securities.
WealthBench focuses on market risk.

The portfolio of a client can be analyzed both at asset class level and security level. The
system can measure the risk under different market conditions, such as historical events like
Black Monday (October 19, 1987) in a present day environment and model the impact of
changes in a portfolio.

When additional services from MSCI are acquired, advisors can also use WealthBench to
manage the portfolio of the client pro-actively, [MSCI, 2011]. These additional services ap-
pear to be the monitoring of the gap between the actual portfolio and the (strategic) asset
allocation, but this is not explicitly mentioned.

WealthBench has several reporting possibilities, an example of a risk report component of a
portfolio is shown in figure 3.41. Figure 3.4 presents a risk map, all assets are represented by
squares where the surface area represents the portfolio weights and the colour represents the

1Picture from: http://www.msci.com/resources/pdfs/Product_Documentation_WealthBench.pdf
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riskiness of an asset. The reports that are available are of presentation quality and can be
custom built.

The measures for risk that are available in WealthBench are:

� Standard deviation,

� RiskGrades,

� Value at Risk (VaR),

� Expected Shortfall,

� Risk Impact (marginal contribution),

� Diversification Benefit,

� Max Drawdown.

RiskGrades (RG) is a measure of volatility developed by RiskMetrics, ranging from 0 to 1000.
100 is the average RG value of major equity market indices during normal market conditions
from 1995 to 1999 [Kim & Mina, 2001], a portfolio with RG 150 is twice as risky as a portfolio
with RG 75.
The risk impact is the unit of change in risk per unit of change in the position of the asset,
or in formula form: ∂r

∂xi
, where xi is the position in asset i and r is the risk of the portfolio

which can be represented by, for example, the tracking error.
The maximum drawdown is the biggest decrease that the return of a portfolio, given by X(t),
has experienced in a given time frame [0, T ], formally given by:

(3.1) MDD(T ) = max
τ∈[0,T ]

{
max
t∈[0,τ ]

X(t)−X(τ)

}
.

The relative risk measures available in WealthBench are:

� α, see section 2.4,

� β, see section 2.4,

� R-Squared (R2),

� Tracking error, see section 2.4,

� Information ratio, see section 2.4,

� Capture ratios,

R-squared or R2, ranging from 0 to 100, is a measure to see to which extent the performance
of the portfolio is determined by the benchmark index. A value of 100 represents a portfolio
of which the performance is entirely determined by the benchmark.
The capture ratio measures the performance of a portfolio manager. The capture ratio is
given by:

(3.2) Market Capture Ratio =
Manager’s Returns

Market’s Returns
· 100.

RiskMetrics RiskManager

RiskMetrics RiskManager is a tool to manage risk of a portfolio. RiskManager contains a
market data viewer, a portfolio viewer, a report builder, stress testing and what-if analysis.
RiskManager assesses both market risk and default risk. Contrary to WealthBench, RiskMan-
ager is not a solution for private banks, where the reports are constructed to inform a client,
RiskManager is meant for a broader use. The process of RiskManager is represented by figure
3.52.

*
2Picture from: http://www.msci.com/resources/factsheets/RiskMetrics_RiskManager.pdf
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Insight in the portfolio

To learn more about RiskManager or to arrange a demo, go to 
http://www.msci.com/products/risk_management_analytics/riskmanager/.

RiskManager Integrated Offering
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Identify, measure and manage risk.

Figure 3.5: RiskManager process.

In the portfolio viewer, clients can ana-
lyze their portfolio. Next to the portfo-
lio, the market data viewer provides 10
years of daily historical data for more
than 750,000 time series across 85 mar-
kets.

RiskMetrics RiskManager gives a great
variety of possibilities to assess the risk
of a portfolio and report the risk. Risk-
Manager offers the possibilities to create
a customized report with drag-and-drop.
A what-if analysis of the portfolio can
be executed, which is an analysis of the
portfolio under circumstances assigned by the portfolio manager. Also a stress test of the
portfolio can be executed. These properties can provide insight in the risk to which the
portfolio holder is exposed. RiskManager uses multiple VaR methodologies to provide market
exposures and sensitivities.

Barra Portfolio Manager is a relatively new tool –launched December 13, 2010– for portfolio
managers. The tool can be used within a firm by different departments like research, sales and
marketing and portfolio management, with each department having its own type of access.

Barra Portfolio Manager uses Barra Optimizer to create portfolios. Also, Barra Optimizer
can be used to set up a rebalance cycle for portfolio management, as well as a pre-trade
‘what if’ analysis, which gives insight in the possible performance of potential changes in the
portfolio.

Barra Portfolio Manager can identify sources of risk specified to industry, style, market, or
specific risk sources and determine which factors are the largest contributors to the portfolios
risk and return. The change of a risk profile of the portfolio can be forecasted by time series
of risk.

3.3 Morningstar

Morningstar provides investment research, and developed both a web platform, freely acces-
sible for individuals, as well as software for institutions and advisors. The software has a
modular set-up. It is more focused on portfolio construction and management.

In Morningstar’s Portfolio Builder, the process of building a portfolio is performed in a step-
wise fashion. One of these steps consists of determining the risk tolerance of the client by a
questionnaire.

In the Advisor Workstation, the so-called Portfolio X-Ray function provides a detailed over-
view of the portfolio composition. In figure 3.63 a part of the Portfolio X-Ray is shown. The

3Picture from:
http://corporate.morningstar.com/nl/documents/SampleReports/AWS/UK_AWS_SampleReport_XRay.pdf.
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Asset Allocation Portfolio %

Country (Example: UK) Equity 17.00
European Equity 18.00
US Equity 15.00
Bond 1 10.00
Bond 2 10.00
Cash 25.00
Other 3.00
Not Classified 2.00

100.00

Asset Allocation Top Ten Countries

Equity Style Portfolio

Market Cap ($Mil) 00,000.00
Price/Earnings 00.00

Price/Cash Flow 00.00

Price/Book 0.00

Price/Sales 0.00

Fixed-Income Style Portfolio

Avg Eff Duration (Yrs) 0.00
Avg Eff Maturity (Yrs) 0.00
Avg Credit Quality AAA

Assets % Name Type Sector Country

30.10 Fidelity Special Situations Mutual Fund Financial Services United Kingdom
18.74 Cash Cash — United Kingdom
17.15 iShares DJ Euro STIOXX Mid Cap ETF — Germany
14.22 SSga World Government Bond ex US Bond Index Bond Healthcare United Kingdom

5.20 Royal Dutch Petroleum Equity Energy United Kingdom
0.23 Residential Property Residential Property — United Kingdom
0.23 British American Tobacco Mutual Fund Financial Services United Kingdom
0.23 Spangler Multi-Manager Henge Fund Hedge Fund — Germany
0.23 Royal Dutch Petroleum Equity Energy United Kingdom

Equity %

k Manufacturing 29.06

s Consumer Goods 9.37
d Materials 10.88
f Energy 5.95
g Utilities 2.86

Equity %

hInformation 22.66

r Software 4.71
t Hardware 9.86
y Media 4.20
u Telecom 3.89

Equity %

j Services 48.24

i Health Care 14.60
o Consumer Services 8.99
p Business Services 4.09
a Financial 20.56

World Regions

Portfolio %

Americas 99.67

North America 98.16
Cent & Latin Am-Emrg 1.51

Portfolio %

Greater Europe 0.31

United Kingdom 0.31
West Europe-ex UK 0.00
Emerging Europe 0.00
Africa 0.00

Portfolio %

Market Maturity

Developed Markets 0.31
Emerging Markets 0.00
Not Available 0.00

Portfolio %

Greater Asia 0.00

Japan 0.00
Australasia 0.00
Asia-4 Tigers-Emrg 0.00
Asia-ex 4 Tigers-Emrg 0.00

Investment Style 
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Figure 3.6: Components of the X-Ray of Morningstar.
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Figure 3.7: The risk tolerance structure of Morningstar’s Advisor Workstation.

FFFFF top 10% in the category
FFFF the next 22.5% in the category
FFF the middle 35% in the category
FF the next 22.5% in the category
F the last 10 % in the category

Table 3.1: Distribution of stars is the Morningstar Rating.

portfolio is decomposed in four different ways: according to asset classes, world regions, stock
sectors and, finally, investment style. The Portfolio X-Ray also contains a list of the portfolio
contents with the annualized 3 months, 1 year, 3 years and 5 years return.

Morningstar does not provide any insight in the risk of the portfolio. A risk assessment report
is available, but it only provides information about the risk tolerance of the client, and does
not relate this tolerance level to the risk level of the portfolio. In figure 3.74 the composition
of a client’s risk tolerance is illustrated. In the planning module, investment goals of the client
can be managed and reviewed.

Morningstar also developed a rank measure called Morningstar Rating which employs a scale
of one to five stars. The rating gives a qualitative assessment of a funds’ past risk and return
performance. The funds are categorized and within the categories, a risk adjusted return
measure is used to rank the funds. The stars are appointed to the funds according to the
guidelines stated in table 3.1.

It is not clear which risk measures are available in the Morningstar software.

3.4 SimCorp Dimension

SimCorp is a company which develops asset management solutions and is based in Denmark.
The main product of SimCorp is SimCorp Dimension, which is a modular system. Different
modules can be acquired, that are merged into one tailor-made system. The complete system
provides solutions for the front, middle and back office of financial companies.

Because SimCorp Dimension is a complete system, it focuses mainly on mitigating opera-
tional risk and is not specifically developed for portfolio optimization and management. The

4Picture from: http://corporate.morningstar.com/nl/asp/imageloader.aspx?image=../images/ADV_

AWO_SP2D_1b_w.gif&title=Morningstar.
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mitigation of operational risk is achieved via the completeness of the system: the system can
both execute analyses of portfolios and strategies and actually execute trades. The fact that
this is one system, prevent errors and makes it possible to detect errors and their origin.

However, the completeness of the system prevents it from being one of the specialized niche
systems, which focus on developing private wealth management systems and looking into more
detail. Since SimCorp Dimension does not focus on market risk, the specifics of portfolio and
(market) risk monitoring are not clear.
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Chapter 4

Hypothesis tests

When looking at two datasets, just comparing the values of the means, standard deviations
and distributions, absolute or relative, is not sufficient to judge whether or not, the means,
standard deviations or distributions differ sufficiently to state that the difference is significant.
The application of statistics can help to make this distinction, take several properties of the
datasets into account and judge whether a hypothesis should be accepted or rejected.

A hypothesis test can be used when, in this case, the risk measures of different datasets are
compared, or to determine whether two datasets originate from the same distribution. There-
fore, in this chapter several statistical tests for different applications, with their advantages
and disadvantages will be introduced.

The statistical tests are introduced to answer the following three questions:

1. Do two data samples come from the same distribution?

2. Do the standard deviations of two data samples deviate significantly?

3. Do the CVaRs of two data samples deviate significantly?

These questions will be discussed in the second part of this thesis.

In the first section distribution tests, to test whether two data samples originate from the same
distribution, are discussed. In the second section some tests to detect statistical differences
of means and standard deviations are discussed.

4.1 Goodness-of-fit and two-sample tests

Other than significance tests, goodness-of-fit tests check whether a certain dataset can be
fitted to a pre-specified distribution. A related test is a two-sample test, testing whether two
data samples originate from the same distribution, which is not necessarily predefined.

In [Darling, 1957], the goodness-of-fit test and the two-sample test are formally introduced as
follows: let X1, X2, ..., Xn be independent variables drawn from a distribution with cumulative
distribution function G(x) = P (Xi < x). Then the empirical distribution function, the
distribution of the actual draws, Fn(x), can be defined as follows: Fn(x) = k

n , if k observations
are less or equal than x, for k = 0, 1, ..., n. The empirical distribution function represents the
observed distribution [Anderson & Darling, 1952].
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When F (x) is a given distribution, the null and alternative hypotheses of goodness-of-fit tests
are:

H0 : G(x) = F (x), for all x,(4.1)

H1 : G(x) 6= F (x).

When we have the same sample from continuous distribution, G(x), as in the goodness-of-fit
test, and when Y1, Y2, ..., Yn represents a sample from distribution H(x) = P (Yi < x), we can
formulate the hypotheses of the two-sample problem:

H ′0 : G(x) = H(x), for all x,(4.2)

H ′1 : G(x) 6= H(x).

The specifics of well-known goodness-of-fit and two-sample tests are discussed next: first
Pearson’s Chi-squared (χ2) test will be addressed briefly then the Kolmogorov-Smirnov test,
Cramér-Von Mises test and finally the Anderson-Darling test are discussed.

Chi-squared goodness-of-fit test

The (Pearson) Chi-squared goodness-of-fit test was first formulated in 1900 by Karl Pear-
son. When X ′1, X

′
2, ..., X

′
n are observed frequencies from a distribution, which has theoretical

frequencies X1, X2, ..., Xn, then the statistic is given by:

(4.3) X2 =
n∑
i=1

(X ′i −Xi)
2

Xi
.

The statistic represents a “standard deviation of the standard deviation” [Plackett, 1983].
To determine whether the null-hypothesis should be accepted or rejected, the p-value p =
P (X2 > χd) is determined. The number of degrees of freedom d is n − p where p is the
reduction in degrees of freedom.

Kolmogorov-Smirnov test

The two-sided Kolmogorov-Smirnov test statistic is a result of a series of theorems that
are listed in an article by Kolmogorov [Kolmogorov, 1941]), which in turn is based on the
work of Smirnov. The first building blocks of the method are the following theorems from
[Kolmogorov, 1941].

Theorem 1 If a function F (x) is continuous, then the distribution law of the
quantities

(4.4) Dn = sup |F (x)− Fn(x)|
√
n

does not depend on F (x),where Fn(x) is the empirical distribution function.

Theorem 2 Whatever be the distribution function of F (x), the probability

(4.5) P (Dn ≤ λ) ≥ Φn(λ),
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where Φn(λ) tends to Φ(λ) uniformly as n→∞, and

(4.6) Φ(λ) = P (K ≤ λ) =
∞∑

i=−∞
(−1)ie−2i

2λ2 .

These theorems lead to the Kolmogorov-Smirnov goodness-of-fit test. Kolmogorov extended
the results also to the two-sample Kolmogorov-Smirnov test. The accompanying theorem
from [Kolmogorov, 1941] is stated below.

Theorem 3 If the probability law F (x) is continuous, then the probability,

(4.7) P

{
sup |Fn(x)−Gm(x)| ≤ λ

√
n+m

nm

}
= Φn,m(λ),

is independent of the function F (x). If n and m are indefinitely increased, subject
to the restriction that the ratio n/m remains between two fixed numbers 0 < a1 <
n
m < a2 <∞, then

(4.8) Φn,m(λ)→ Φ(λ).

In general, in the cases where the probability law F (x) is absolutely arbitrary, we
have

(4.9) P

{
sup |Fn(x)−Gm(x)| ≤ λ

√
n+m

nm

}
≤ Φn,m(λ).

This leads to a distribution-free statistic for the two-sided Kolmogorov-Smirnov test:

(4.10) Dn,m =

√
nm

n+m
sup

x∈[−∞,∞]
|Fn(x)−Gm(x)| .

This statistic is just the largest distance between two datasets that are ordered from small
to large values. In the one-sample case the statistic is the largest distance between the
empirical distribution and the chosen distribution. In figure 4.1 a graph of two (hypothetical)
empirical distributions and their difference at x = 0.03 is shown. The fact that the statistic
is distribution-free is the main advantage of the test. When the distributions are continuous,
the null hypothesis is rejected when Dn,m is sufficiently large, or, more specifically when
Dn,m > Kα, where P (K ≤ Kα) = 1− α and Φ(λ) = P (K ≤ λ).

Cramér-Von Mises test

The (one-sided) Cramér-Von Mises test was at first designed to test the hypothesis formulated
in formula (4.1): a goodness of fit test. Anderson extended in [Anderson, 1962] the test to
a two-sample test, used to test the hypothesis from formula (4.2). The idea behind the test
is that when data originate from the same distribution, every order of ri’s and si’s is equally
likely to occur.
The Cramér-Von Mises criterion is derived and given by:

(4.11) ω2 =

∫ ∞
−∞

[Fn(x)− F (x)]2 dF (x),
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Figure 4.1: Empirical distributions of Fn(x) and Gm(x) and their difference at x = 0.03.

where Fn(x) is the empirical distribution function as defined above. From this criterion the
one-sample test statistic is given by:

(4.12) T = nω2 =
1

12n

n∑
i=1

2i− 1

2n
− F (xi).

The two-sample alternative of the Cramér-Von Mises criterion is given by Anderson in
[Anderson, 1962]:

(4.13) T =
nm

n+m

∫ ∞
−∞

[Fn(x)−Gm(x)]2 dHn+m(x),

where Gm(x) is the empirical distribution function of the second data sample and (n +
m)Hn+m(x) = nFn(x)+mGm(x) is the empirical distribution function of both samples. The
Lebesgue-Stieltjes integral of equation (4.13) is the following sum:

(4.14) T =
nm

(n+m)2


n∑
i=1

[Fn(xi)−Gm(xi)]
2 +

m∑
j=1

[Fn(xj)−Gm(xj)]
2

 .

In [Anderson, 1962], Anderson simplifies this equation to the following test statistic:

T =
U

nm(n+m)
− 4mn− 1

6(m+ n)
, where(4.15)

U = n
n∑
i=1

(ri − i)2 +m
m∑
j=1

(si − i)2,(4.16)

where ri, i = 1, ..., n and sj , j = 1, ...,m are the rankings of the joint dataset.

The Cramér-Von Mises test rejects the null hypothesis when the value for T is too large. The
exact critical values are listed in [Anderson, 1962].
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Anderson-Darling test

Figure 4.2: Graph of weight function
ψ(t) = [t(1− t)]−1

.

In [Anderson & Darling, 1952], Anderson and Darling
consider the following statistic:

ω2 =

∫ ∞
−∞

[Fn(x)− F (x)]2 ψ[F (x)]dF (x)

with weight function ψ(t), 0 ≤ t ≤ 1, ψ ≥ 0 . When
ψ = 1, the formula leads to the Cramér-Von Mises
test, introduced in the previous section. According to
[Anderson & Darling, 1954] the advantage of assigning
a weight function is that the statistic becomes more
flexible.

In [Anderson & Darling, 1954], Anderson and Darling
introduce what is known as the Anderson-Darling test. This test uses the specific weight
function ψ(t) = [t(1 − t)]−1, which “has the effect of weighting the tails heavily since this
function is large near t = 0 and t = 1” [Anderson & Darling, 1954]. In figure 4.2 a graph
to illustrate this effect is shown. In [Anderson & Darling, 1954] the test statistic for the
Anderson-Darling test is finally derived.

When ui = F (xi), the Anderson-Darling statistic is given by:

(4.17) W 2
n = −n− 1

n

n∑
i=1

(2i− 1) [lnui + ln(1− un−i+1)] .

4.2 Significant difference of mean and standard deviation

The literature on significance tests for the mean and standard deviation is rich. Below five
tests will be introduced: the Student’s F -test, T -test, ANOVA, Wilcoxon signed rank test,
Sign test and the sampling distribution method.

F -test

The F -test can be used to test the hypothesis that the sample standard deviations of two
data samples that originate from normal distributions have different standard deviations.

(4.18) H0 : σX = σY H1 : σX 6= σY ,

where X1, X2, ..., Xn and Y1, Y2, ..., Ym are two samples that are assumed to come from the
normal distributions with mean µX and µY and standard deviations σX and σY . The F -test
statistic, is given by:

(4.19) F =
S2
X

S2
Y

,

where SX and SY are the sample standard deviations. When the ratio is close to one, the
standard deviations can be considered equal. To find the exact boundary for at significance
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level α, the F -distribution is considered: test statistic F has an F -distribution with n−1 and
m− 1 degrees of freedom.

The F -test is easy to execute, but the normality assumption narrows the tests’ possible field
of application enormously. [Freund & Wilson, 2003]

Student’s T -test

The student’s T -test is a very common used statistical test. The T -test can, among other
applications, be used to compare the means of two data samples.

When X1, X2, ..., Xn are samples from a normal distribution with unknown mean, the null
and alternative hypotheses to test whether µ0 is the mean of the distribution are formulated
as follows:

(4.20) H0 : µ = µ0 H1 : µ 6= µ0,

The difference between µ and µ0 under H0 is 0. When the actual deviation is for example
smaller than 0.1, it seems small, however, when the standard deviation is also small, the
difference is not actually small [Dekking et al, 2007]. Therefore the T -test statistic corrects
for the standard deviation. The T-test statistic is given by:

(4.21) T =
X̄n − µ0
Sn
√
n
,

where n is the sample size, X̄n is the sample mean and Sn is the sample standard deviation.
When the data sample comes from the normal distribution, T has a T -distribution with n−1
degrees of freedom, so the p-value can be looked up in a table. When the data do not come
from a normal distribution, but the sample size is large (n ≥ 30), the distribution of T can
be approximated by a N(0, 1) distribution. [Dekking et al, 2007]

To see whether the means of two data samples, X1 and X2, are equal, the T -test can also be
executed, only with a slightly different statistic:

(4.22) T =
X̄1 − X̄2√
S2
1/n+ S2

2/m
,

where X̄1 and X̄2 are the sample means, n and m are the sample sizes and S1 and S2 are the
sample standard deviations.

The advantage of the Student’s T -test is that the statistic is calculated easily and the con-
clusions are clear, but a major disadvantage is that it is assumed that the data come from a
normal distribution and unless the sample size is large, the test is not applicable to non-normal
data samples.

ANOVA

ANOVA, or Analysis of Variance, is a collection of statistical techniques to test, among other
things, whether the means of two or more datasets are different or not. When applied to two
datasets, the results of the T-test and ANOVA give similar results.
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The idea behind the ANOVA techniques, specifically the one-way ANOVA, is to test whether
the deviation from the means is due to an error:

(4.23) Xij = µ+ αi + εij , i = 1, ..., n, j = 1, ...,m,

or if it is structural. In this formula, n represents the number of different groups, each group
representing a data sample of size m. The null hypothesis will be that the ‘group factor’ does
not play a roll or:

(4.24) H0 : α1 = α2 = ... = αn = 0

Compared to the T -test, ANOVA can easily compare means of multiple datasets, where with
the T -test only two series are compared, on the other hand the same disadvantage as the
T -test, its normality requirement, unfortunately also holds. [Freund & Wilson, 2003]

Wilcoxon signed rank test

When the means of two samples are compared, one can use a T -test, however, the T -test
cannot be generally applied when the data do not come from a normal distribution. The
Wilcoxon signed rank test can be applied to non-normal, paired data. The test was introduced
by and named after Frank Wilcoxon. When two data samples are considered, Xi, Yi, i =
1, ..., n, the following steps are followed to calculate test statistic T [Wilcoxon, 1945]:

1. The differences between the two samples are calculated: di = Xi − Yi.

2. The absolute values |di| are ranked, the smallest difference getting rank 1, the largest
difference rank n− k where k is the number of di’s with value 0.

3. The original signs (+ and -) are added to the ranks. All positive ranks are summed to
T+ and all negative signs are summed to T−:

T− =
n−k∑
i=1

{Rank(|di|)|di < 0} ,(4.25)

T+ =

n−k∑
i=1

{Rank(di)|di > 0} .(4.26)

4. The final statistic is:

(4.27) T = min {T+, T−} .

The values for which the null hypothesis should be accepted (or rejected) are available in a
table5. In [Wilcoxon, 1945], Wilcoxon also introduces a similar test for unpaired data, which
later became known as the Mann-Whitney test.

Although the Wilcoxon signed rank test does not make any assumption on the distribution of
the data samples, it is necessary that the data come from a symmetric distribution. Wilcoxon
mentions in [Wilcoxon, 1945] also a simpler test, for which such an assumption is unnecessary.
In the next section this test, the sign test, will be introduced.

5Pearson E.S. and Hartley, H.O., ed. (1972). Biometrika Tables for Statisticians. 2. Cambridge University
Press. pp. 117123, Tables 54, 55.
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Sign test

The idea behind the sign test is that when the means of two data samples are the same,
the differences between the (paired) data samples, are as many times bigger than 0 as they
are smaller. So when two data samples X1, X2, ..., Xn and Y1, Y2, ..., Yn are considered, the
number of Xi’s that are smaller than Yi’s is as high as the number of Xi’s that are larger
than Yi’s. The data points for which Xi = Yi are not considered, this reduces the number of
data points di = Xi − Yi to m = n− k where k is the number of di’s for which di = 0.

The test statistic W is the number of di’s for which di = Xi − Yi > 0. The hypothesis that is
tested is:

H0 : p = P (X > Y ) = 0.5,(4.28)

H1 : p = P (X > Y ) 6= 0.5,

Under H0, the test statistic W will follow a binomial distribution with p = 0.5: W ∼
B(m, 0.5). Assuming that W > m/2, the p-value is calculated by:

(4.29) p = P (W ≥ w) =
m∑
i=w

(
m

i

)
pi(1− p)m−i.

The fact that this test can be applied to non-normal, non-symmetric data samples of course
comes with disadvantages: the power of this test is not particularly strong. In [Cochran, 1937]
the efficiency of the test is calculated to be only is 63%. Efficiency is in the Encyclopedia of
Mathematics defined as follows: “a concept used to compare statistical procedures in a given
class with an optimal one.” [Encyclopedia of Mathematics].

Sampling distribution method

The sampling distribution is the distribution of a statistic, in this case the mean. To illustrate
the concept: let us say that from a standard normal distribution 1000 different data samples
are drawn. Each data sample has a sample mean: mi is the sample mean of the ith sample.
All these sample means can be considered as a data sample on its own: m1,m2, ...,m1000.
The sampling distribution is the distribution from which these realizations originate.

When the initial distribution is distributed normally with mean µ and standard deviation
σ, then the mean is also distributed normally with mean µ and standard deviation σ/

√
n,

where n is the number of samples that are available. Due to the central limit theorem,
when n is large, the sampling distribution of the mean, coming from any distribution, can be
approximated by a N(µ, σ/

√
n)-distribution. [Freund & Wilson, 2003]

When the sampling distribution of the mean of the first data sample is known, a α-confidence
interval can be constructed in which the mean of the data sample should fall to be able to
say that the means of both samples do not deviate.

When only one data sample is available, with the help of an empirical or parametric bootstrap,
additional samples can be generated. The empirical bootstrap uses the available data set to
determine the empirical distribution function. Subsequently, from the empirical distribution
a certain number of samples are drawn. [Dekking et al, 2007]
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The parametric bootstrap assumes that the distribution of the data sample is known and
uses the available dataset to estimate the parameters of the distribution with for example
maximum likelihood estimation. Now the random samples are drawn from the estimated
distribution.
The parametric bootstrap often gives a better approximation than the empirical bootstrap,
but the fact that the type of distribution of the data sample has to be known is a downside.
[Dekking et al, 2007]

To summarize the sampling distribution method: first a large number of data samples, based
on the first data sample, are drawn with the empirical bootstrap method. Then, from these
data samples, the sampling distribution and the accompanying confidence interval of the mean
are determined. When the mean of the second data sample falls within the α-level confidence
interval, the mean is not considered to deviate significantly, otherwise it will.

4.3 Conclusion

In tables 4.2 and 4.1, the different tests and their properties are summarized. As mentioned
before, these tests are used to answer three questions:

1. Do two data samples originate from the same distribution?

2. Do the standard deviations of two data samples deviate significantly?

3. Do the CVaRs of two data samples deviate significantly?

The first question can be answered using two-sample tests listed in table 4.1. The test that
will be used to answer the first question is the Kolmogorov-Smirnov test. The test is the
easiest to implement and does not give worse results than the other tests.

The second question can be answered using the F-test. The test requires normally distributed
data or a large (n ≥ 30) data sample. The samples that are going to be analyzed have sufficient
data points, since daily data of more than one month will be used, so the F-test can be applied.

The third question is most difficult question to answer, because no ready-to-use tests for
CVaR are available. However, finding the 5% CVaR of a data series is the same as finding
the mean of the 5% lowest values of the data series. Therefore a test to find the significance
of the difference in means of two data series will help us here. The difficulty is that the size of
resulting data samples is only 1/20th of the original data sample size, which means that the
sample might not contain more than 30 data points. Due to this restriction all tests except
for the sampling distribution method and sign test are eliminated.
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Name Advantages Disadvantages

Kolmogorov-Smirnov easy to perform
Cramér-Von Mises time consuming
Anderson-Darling gives weights to the tails time consuming
Chi-squared easy to perform basic

Table 4.1: Summary of all two-sided and goodness-of-fit tests and their properties

Name Advantages Disadvantages

F-test easy to perform normality or large sample needed
T-test easy to perform normality or large sample needed
ANOVA available for multiple data samples normality or large sample needed
Wilcoxon signed

has not many conditions symmetric distribution needed
rank test
Sign test has no conditions not very efficient
Sampling

works with little data many different steps
dist. method

Table 4.2: Summary of all tests for deviation in means and variances and their properties
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Part II

Practical application
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Chapter 5

Research method

After the theoretical analysis, the next step in the process is to determine how to model the
mismatch between the actual portfolio and the Strategic Asset Allocation (SAA). In figure
5.1, a schematic representation of the model is shown. The upper block represents the input of
the model, the lower block represents the output which are the results. The white block in the
middle is the method that is to be developed. The input can be subdivided into two groups:
the case specific information such as the state, which is different per client and contains the
SAA, the single securities and their weights in a portfolio. The other input group contains
the data of securities and benchmarks.

Figure 5.1: Schematic representation of the model.

As was concluded in the previous part, ex-
ante risk information is beneficial over ex-
post risk information, since ex-post infor-
mation does not give any indication of the
future. So it is preferred to use ex-ante sce-
narios to determine the risk of the portfolio
and the SAA. However, it will be impossi-
ble to model the ex-ante risk of each asset in
a portfolio separately, since there are many
different securities and it would take too
much time to determine how each security
should be modeled. Also the computing
time would be too long.

Thus, the assets of the portfolio have to
be divided into a limited number of differ-
ent classes which have similar properties.
When a proper distinction of classes is de-
termined, the portfolio can be projected or
mapped to these classes. Since then the
number of classes will be limited, it will be
possible to determine the ex-ante risk for
each class. When the classes are properly
defined, the risk of the collection of these classes should indeed be representative for the risk
of the actual portfolio.
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Figure 5.2: Schematic representation of mapping and some examples.

The process of appointing single securities to classes will throughout this thesis be called the
mapping. The different securities will be first sorted by asset class (e.g. equity, government
bonds etc.), followed by other different properties that this asset class has. The final classes
to which the securities are appointed are called sub-asset classes (SAC). In section 6.1 all
asset classes and their sub-asset classes are introduced separately. In figure 5.2 the process
of mapping a security to a sub-asset class is shown. In this figure also three examples of
securities that are mapped to a class are shown.

The method to find the deviation between SAA and actual portfolio can be subdivided into
the following steps.

1. Find a starting point for the mapping;

2. Check whether the classes can be represented by their securities (ex-post);

3. Determine the mapping;

4. Determine ways to find the ‘bandwidth’ of the allowed deviation;

5. Test the mapping (ex-post);

6. Compare the portfolio and SAA (ex-ante).

First, a starting point to appoint every security to a class should be found. This process is
described in section 6.1. When this basic mapping is determined it should be verified that a
small number of securities indeed can be represented by a class, this process is described in
section 6.2. When this is verified, obsolete classes should be identified and excluded from the
structure in order to optimize the number of classes. This is a trade-off between calculation
time and accuracy of the mapping. This process is described in section 6.3. A technique
to detect a deviation in risk should be found, which is described in section 7.1. After the
final mapping and a way to calculate risk, the bandwidths are determined. The mapping
is evaluated as described in section 7.2. Finally, the risk of the portfolio and SAA can be
compared, the details of this step are discussed in section 7.3.
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Chapter 6

Create the mapping

In this chapter the details of the first three steps of the method will be elaborately introduced.
In the first section, the starting point of the mapping is discussed, in the second section, the
validation of using the mapping is discussed and in the third section, the manner to determine
the final structure is introduced. Also the implementation of the second and third steps are
discussed. The first step does not have an implementation.

6.1 Starting point of the mapping

In this section the starting point of the mapping structure will be discussed. Below, of every
asset class several possible classifications to subdivide the asset class are introduced and
explained. The final basic structure of each asset class is also shown.

Finding a proper mapping of assets into classes is the main pitfall of this process. The
foundation of the classification lies in the different asset classes:

� Equity,

� Government Bonds,

� Corporate Bonds,

� Real Estate,

� Hedge Funds,

� Commodities,

� Private Equity,

� Cash,

� Convertibles,

� Infrastructures.

The SAA is defined on the asset class level. Per asset class an elaborate structure of possible
sub-asset classes (SAC) should be created, which can be considered as the starting point for
the mapping. This structure can consist of different levels.

Determining the structure of the tree, requires financial insight, and has been done by Ortec
previously.

When putting the structure together, several practical issues are considered:

1. For all potential sub-asset classes a benchmark should be available. The absence of a
suitable benchmark will make it impossible to compare the sub-asset class with other
classes and it will not be possible to model the sub-asset class with the Monte Carlo
scenario generator.
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Figure 6.1: Structure of asset class equity.

2. This study is performed in cooperation with Ortec Finance, which is a Dutch based
firm. The clients of Ortec Finance are mostly from The Netherlands, therefore, the
structure is created from a Dutch point of view. This implies a focus on Europe and
therefore more detailed European branches. When portfolio holders are based in the
USA a different structure would have to be created.

Considering these issues in the next sections, the different asset classes are discussed sepa-
rately.

Equity

To subdivide stocks into sub-asset classes, different kinds of classifications can be used. First
of all, they can be arranged in size, where as a measure of size the market capitalization is
taken, which is the stock price multiplied by the number of shares outstanding. Firms that
have a market capitalization between 10 and 200 billion dollars are defined as large cap. Mid
cap firms have a market capitalization that ranges from 2 to 10 billion dollars and small cap
firms have a market capitalization between 250 million and 2 billion dollars.
Equity can also be subdivided into region and sector (i.e. energy, consumer products, etc.). In
the selected structure, the sector classification is not admitted. The structure is represented
by figure 6.1.

Government Bonds

Government bonds are instruments of governments to raise money to fund the activities of the
government. Each country issues its own bonds (for now we ignore the fact that in the near
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future in the eurozone, eurobonds may be issued), so we have immediately a set of possible
sub-asset classes, namely, continents, regions and countries.
Governments issue bonds with different maturities, which also results in a set of possible
sub-asset classes. Another possible classification of the government bonds is according to
their rating. Credit rating agencies like Standard & Poor’s, Moody’s and Fitch study the
creditworthiness of the governments and based on their studies, they give the rating. A less
specific rating-linked classification is the distinction in Investment Grade (IG) and High Yield
(HY), all bonds with rating BBB or higher (i.e. AAA, AA+, AA, AA-, A+, A, A-, BBB+,
BBB and BBB-, or Moody’s’ equivalent) are defined as IG and all bonds with rating lower
than BBB are called HY.
Finally, there are two types of government bonds: nominal and index-linked bonds. Index-
linked bonds provide coupon payments that are linked to inflation, so there is no inflation
risk anymore, nominal bonds pay just the nominal coupon rate.

Government bonds can thus be classified in four ways: to region, maturity, rating and
inflation-linked or nominal coupon rates. With these possible classifications kept in mind,
the structure, with a focus on maturity and region, represented by figure 6.2, is proposed.
Not every possible region is specified in this structure, however, not of every region a bench-
mark was available or is interesting from a European point-of-view, therefore, for example
emerging markets are automatically represented by the nominal world or indexed-linked world
sub-asset classes.

Corporate Bonds

Corporate bonds, also called credits, are bonds issued by firms and have the same purpose as
government bonds. Therefore, corporate bonds could be classified in the same way, however,
these bonds can also be subdivided into sector related classes (corporate excl. financials,
government related, etc.). The mapping is created from a European point-of-view, therefore
Asia and the Pacific are excluded from the structure. The structure as in figure 6.3 is proposed.

Real Estate

There are different ways to invest in real estate. First of all, we have direct investments,
which means that funds are actually directly investing in buildings. Direct properties can be
subdivided into sectors6, e.g. residential, industrial, etc. The second way to invest in real
estate is through indirect investments. An indirect investment is an investment in a fund
which in turn (directly) invests in buildings. Indirect investments can be both listed and
unlisted, where listed means that the fund is listed on a stock exchange. Indirect unlisted
property investments can be subdivided in the different management styles: Core, value
added and opportunistic investments. A core fund is a low risk fund, which invests in stable
property, a value added fund is a higher risk fund, the properties in a value added fund need
some refurbishments, and an opportunistic fund is an even higher risk fund, which needs large
enhancements7. Of course, real estate, in each form, can also be subdivided into regions.

6Information from:
http://www.propertyfunds.org.au/index.php?option=com_content\&view=article\&id=65\&Itemid=119.

7As defined by the European Association for Investors in Non-listed Real Estate Vehicles (INREV) on:
http://inrev.org/index.php?option=com_coredef\&Itemid=5.
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Figure 6.2: Structure of asset class government bonds.
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Figure 6.3: Structure of asset class corporate bonds.

The structure for the asset class real estate is shown in figure 6.4. In the structures of
previous asset classes the Pacific was considered as a region and in this asset class the Pacific
and Middle-East are combined in the region named Far East, this is because the provider of
the benchmark data has chosen this divisions into regions.

Hedge Funds

Hedge funds are complicated investment vehicles and are not open for all investors. The
measure of performance of hedge fund managers is the absolute return. To maximize this
return, the hedge fund manager can use a broad set of available techniques and instruments
available to absolute returns [Connor & Woo, 2003].

Hedge Funds

Equity Hedge
Event Driven

Macro
FoF

Relative Value

Figure 6.5: Structure of asset
class hedge funds.

The firm Hedge Fund Research, Inc. (HFR) is specialized
in the analysis of hedge funds. HFR distinguishes four dif-
ferent hedge fund strategies: Equity Hedge, Event driven,
Macro and Relative value. These strategies are defined on
the website of HFR8, as well as in the paper of Connor &
Woo [Connor & Woo, 2003]. The definitions below are based
on both sources. An equity hedge strategy uses short and
long positions of securities to decrease market risk, when focusing on the selection of secu-
rities in order to maximize absolute returns. Event driven strategies focus on positions in
firms that are involved in events like mergers and bankruptcies. The macro strategy employs

8Information from http://www.hedgefundresearch.com/index.php?fuse=indices-str\#2703.
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Figure 6.4: Structure of asset class real estate.
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macroeconomic variables and their impact on securities to make a profit. The relative value
strategy uses the discrepancy between two related securities to make a profit.
Besides these different strategies, HFR also distinguishes ‘fund of funds’, which is also called
fund of hedge funds and is defined by Connor & Woo as a “managed portfolio of other hedge
funds” [Connor & Woo, 2003].

These strategies all have further specifications, one of them region, but the level of detail
becomes too high to also include these in the structure. The structure for the hedge funds
can be found in figure 6.5.

Private Equity

Private Equity

Venture Capital
Buy Out
Europe

North America
UK

Figure 6.6: Structure of asset
class private equity.

The European Private Equity and Venture Capital Associa-
tion (EVCA) defines in [EVCA, 2007] private equity as fol-
lows: “Private equity is the provision of equity capital by
financial investors – over the medium or long term – to non-
quoted companies with high-growth potential”. Private eq-
uity comes in two main styles: venture capital, which encom-
passes the investment in starting firms, and buyouts, which
encompasses a fund buying stocks of a company in order to restructure and improve the
company to sell it a few years later with a profit.
As with Hedge Funds, the styles venture capital and buyout can be subdivided into more
sub-asset classes, but considering the level of detail, it is chosen not to specify the sub-asset
classes further. Another way of classifying private equity is through region. In the end the
specification to region and to type cannot co-exist, since they overlap completely, therefore
one of these specification needs to be chosen. The structure of the asset class private equity
is represented by figure 6.6.

Commodities

Commodities

Commodities 
Futures

Gold

Livestock
Industrial Metals
Precious Metals

Energy
Agriculture

Figure 6.7: Structure of asset class
commodities.

Commodities are raw materials, used in the produc-
tion of goods. There are different ways to invest in
commodities: directly and indirectly in commodities
futures. A commodity future is a contract to buy (or
sell) a predetermined quantity of a particular commod-
ity for a predetermined price at a specific moment in
the future. Bloomberg, a provider of financial information has specified five categories of
commodities futures, namely9: energy, precious metals, agriculture, industrial metals and
livestock. The proposed tree is shown in figure 6.7.

Cash, Convertibles and Infrastructures

The potential sub-asset classes of currency are quite straightforward, the main currencies
(euro, Great British pound, U.S. dollar, Swiss franc and Japanese yen) are the main possible
sub-asset classes.

9From: http://www.bloomberg.com/markets/commodities/futures/.
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Figure 6.8: Schematic representation of goodness of fit single securities to benchmark.

Convertibles are a type of bonds that can be converted to a predefined number of stocks. The
convertible holder has the option to exercise the right to convert the bond into stocks. An
advantage of a convertible over normal bonds for a holder of the convertible is that when the
stock price increases, it might become profitable to convert the bond. On the other hand, the
buyers of convertibles will accept lower interest rates, because of the possibility to convert
the bonds.

Convertibles are common investment instruments and proper indices exist. However, it is not
possible to get the relevant data, so the branch convertibles is ignored for now.

Infrastructures can also be considered as an asset class, as Idzorek and Armstrong have
concluded in their article [Idzorek & Armstrong, 2009]. In the asset class infrastructures,
two main sub-asset classes can be identified, namely utilities and infrastructures excluding
utilities.

6.2 Validation and robustness of mapping

When a portfolio is subdivided into multiple sub-asset classes (SAC), to each SAC only a
handful of single securities will be appointed. The mapping makes use of the assumption
that a few single securities indeed can be represented by the benchmark of the SAC. This
assumption needs to be tested and moreover, a minimum number of securities needed for this
assumption to hold is needed. In other words, the goal of this step is to test the robustness
of the mapping: if, for example, five single securities can not be represented by the SAC
benchmark, the mapping should be adapted to a higher level so that more securities are
contained in the SAC. In figure 6.8 the schematic representation of this step is presented.

First the data series of the single securities are combined with different weights to form one
data series, which we call, in this section, the ‘portfolio’. The portfolio is represented by the
left-hand side of figure 6.8. The benchmark of the SAC to which the single securities belong,
is the second data series and it is represented by the right-hand side of the figure. To check
whether the portfolio can be represented by the benchmark, we test whether these two series,
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the portfolio and the benchmark, originate from the same distribution. In chapter 4 statistical
tests were introduced which can be used for this matter. The test that was decided upon was
the two-sample Kolmogorov-Smirnov test. This test was chosen because of its simplicity.

The test can be performed with different portfolios and with different confidence levels. Var-
ious portfolios will be put together with different weights and thus different levels of diversi-
fication. It is expected that the most diversified portfolios, which are the portfolios with the
most single securities, will fit the benchmark best.

Several interpretations of the results are possible: when in a portfolio securities are chosen
which perform as the benchmark, we conclude that the series will come from the same dis-
tribution. When most of the portfolios do not originate from the same distribution, it can
be concluded that the mapping is not valid. However, another conclusion can be that the
securities that were chosen in the portfolio, are too risky and have a negative effect on the
portfolio. This does not necessarily mean that the mapping is not valid, but simply that the
wrong securities are chosen within the SAC. Therefore, this test can also be used to monitor
this type of risk.

Implementation

Because it is difficult and very time-consuming to get data series of securities of all asset
classes, it was decided that the steps which are based on ex-post data of single securities are
only pursued for the asset class equity. This implies that besides this step, also the fifth step,
which is discussed in section 7.2 is only pursued for the asset class equity. Once these steps
are modeled for one asset class, it is, when the proper data are available, not difficult to also
use the model for the other asset classes.
The reason that the equity asset class is selected is that this asset class has a very elaborate
structure and data on stocks (contrary to corporate bonds, government bonds, etc.) are
widely available.

For the implementation, first representative stocks for each SAC in the tree should be found.
This is possible with the help of GoogleFinance. With a simple formula, daily price data of a
range of shares are available. When selecting the single securities from a SAC, the following
guidelines should be taken into account:

� well-known as well as less known firms should be represented;

� two firms should not come from the same sector;

� at least 3 years of daily data should be available;

� (when SAC consists of multiple countries) firms from as much different countries as
possible should be represented.

These guidelines are set, because otherwise the portfolio would not be representative for both
a real portfolio and the benchmark.

The securities in the lower level SAC, will also ‘fit’ in the higher level SAC. For example
when selecting BAM, a Dutch constructor, it will be appointed to the lowest level SAC LC
Eurozone, but it also fits in the parent SAC, LC Europe. Therefore, the study for those
higher level SACs can be performed with the same single securities.
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The exact number of securities per SAC on the lowest level of the tree is chosen to be five. This
number is chosen, because fewer stocks per SAC would not give a wide variety in portfolios,
but more than five stocks per SAC would be too many to fulfill the guidelines in the paragraph
above. The single securities that are selected are listed in appendix A.

The portfolios can be defined by assigning their weights with a random number generator,
but this will not ensure that each type of portfolio is represented. Therefore in the portfolios
containing 5 securities, all combinations of weights ωi = {0, 0.2, 0.4, 0.6, 0.8, 1} are assigned
to the securities. The portfolios that are selected are those portfolios for which the following
equation holds:

(6.1)

5∑
i=1

ωi = 1

This results in 126 unique portfolios, with different properties. For example, some of the
portfolios are well-diversified (for example those with weights ω1 = ... = ω5 = 0.2 and some of
the portfolios are poorly diversified (for example those with weights ω1 = ... = ω4 = 0, ω5 = 1.
Of course, the portfolio that has weights that are representative for the market capitalization,
is expected to fit the benchmark best. The higher level SACs also have 126 portfolios, since
then the model could without adjustments be used for these SACs.

The data series of the benchmarks of the SACs are available on the website of MSCI10. The
SACs for which the test is performed are on the lowest level in the tree, and three SACs have
a higher level in the tree, such that we can observe whether more than five single securities
give better results. These SACs are listed below.

� Japan large cap (LC),

� Pacific ex. Japan LC,

� USA LC,

� Canada LC,

� Eurozone LC,

� Europe ex Eurozone LC,

� Latin America LC,

� East Europe LC,

� Asia LC,

� Japan small cap (SC),

� Pacific ex. Japan SC,

� USA SC,

� Canada SC,

� Eurozone SC,

� Emerging markets SC,

� Developed markets LC,

� North America LC,

� Europe LC.

Now for each SAC, 126 pairs of data series are available, each pair contains a portfolio and
the SAC benchmark data series. The single securities series contain closing prices and the
benchmark series, indexed returns. The tests are performed with log returns of the data
series. The properties of log returns are discussed in chapter 2 and the formula to calculate
the log return is given by formula (2.2).

For each of the pairs the Kolmogorov-Smirnov test is applied at different significance levels:
α ∈ {0.1, 0.05, 0.025, 0.010, 0.005, 0.0025}. The results of this step are discussed in section 8.1.

10URL: http://www.msci.com/products/indices/size/small_cap/performance.html
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The results will either confirm the use of the mapping as defined before, or give an indication
that the mapping should be determined differently. When indeed more than five securities are
needed, perhaps a dynamic mapping should be created. The number of SACs in the mapping
structure then depends on the number of securities that are mapped to the SACs.

6.3 Ranking the SACs

With the starting point for the mapping proposed in section 6.1, we now determine whether
each sub-asset class (SAC) is indeed needed. Too many SACs will unnecessarily complicate
the process, since of each SAC a time-consuming ex-ante analysis should be performed. In
this section a method to eliminate obsolete SACs will be proposed.

Below, first the criteria to eliminate SACs that are not necessary are formulated. With the
help of these criteria the SACs will be ranked with respect to to their importance. This
process and its implementation will also be discussed below.

Criteria to eliminate obsolete SACs

An asset class is defined by Greer in [Greer, 1997] as follows: “An asset class is a set of assets
that bear some fundamental economic similarities to each other, and that have characteristics
that make them distinct from other assets that are not part of that class”.

This same definition can be used to define SACs. The question is: what are the properties
that make SACs distinct? No articles could be found that answered exactly this question.
However, there are different questions that lead to the same answer: What are the factors
in factor models, or what properties are used to define different asset classes, or what prop-
erties should be looked at when putting together a diversified portfolio. These questions are
answered in many articles, such as [Sharpe, 1992], [Stephan et al., 2000], [DeLisle, 2002] and
[Considine, 2008] and [Kitces, 2012].

The properties that come forward are the following:

1. Market size: This criterion is best explained by an example: When we consider the
asset class equity, we have the SAC LC North America, it could be possible to go into
more detail, namely specify LC Canada and the LC USA, however, when equity in the
USA takes credit for 95% of the North American market (determined by the market
capitalization, it is not interesting to actually split up the SAC LC North America.

2. Correlation: The correlation coefficient “measures the strength of the linear relation-
ship between two [...] variables” [Freund & Wilson, 2003]. When this strength is high,
the two variables are highly likely to perform alike. When the benchmarks of the SACs
have strong correlation it is a clear sign that the SACs are not too different and therefore,
one of them might be obsolete.

3. Risk characteristics: Since the main goal of this thesis is to determine deviation in
risk, the risk characteristics of the SACs are very important. When two benchmarks
have similar risk characteristics, why make a distinction between them when we are
looking for a difference in risk?
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4. Credit default spread: The credit default spread is another possible criterion. To
explain what a credit default spread is, first the concept of a credit default swap (CDS)
should be explained. One generally buys a CDS together with a security. The CDS acts
as an insurance against the event that the issuer of the security defaults. The credit
default spread is the fee that is payed to obtain a CDS. This fee can be considered as a
measure for default risk. However, since this spread is not available for all asset classes,
it is not possible to use this criterion in general.

These criteria give each on their own not enough information to decide on the elimination of a
SAC, but when the information of the first three criteria are considered together, it should be
possible to create a proper mapping structure. In the next section, the process of eliminating
SACs is discussed.

Ranking the SACs

To study which of the SACs should be eliminated it is possible to determine which asset classes
would be eliminated when the target number of SACs is for example 5, and subsequently
consider which SACs remain when the target is increased to 10, 15, 20, etc. Another, more
efficient, way to determine which SACs to remove is to make, within each asset class, a ranking
from most deviating SAC to least deviating SAC.

To summarize, the criteria that were established to rank the SACs are the following: market
capitalization, correlation and risk characteristics. The first two of these are quite specific,
however, the risk characteristics of the SACs can be measured and compared in different ways.
In chapter 2, we have chosen the CVaR and standard deviation to be the risk measures. These
will be used to detect the mismatch and we will also use these measures in this process.

Since the risk characteristics are subdivided into two risk measures, we have four criteria to
rank the SACs. For the ranking, the SACs are first subdivided into different groups. The
characteristics of the different groups are listed in table 6.2. An important criterion is the
market cap, because this was discussed in all articles. The second criterion is the relative
deviation of the standard deviation of the SAC compared to the standard deviation of the
SAC that is one level higher in the tree. Three levels of relative deviation in standard deviation
are defined, as in equations (6.2), (6.3) and (6.4) below.

To explain equation (6.2): when the standard deviation of higher-level SAC is given by σM,
the SACs for which the standard deviation deviates over 50% from σM are grouped in the
highest deviating group. The mid-level deviation is 25%, and the lowest-level deviation is
10%. When σM < 2 or σM > 10 the deviation is determined absolute, since the intervals
otherwise become, respectively, too small and too large.

A =


if σM ≤ 2 [σM −min(1, σM);σM + 1] ,
if 2 < σM < 10 [0.5 · σM; 1.5 · σM] ,
if σM ≥ 10 [σM − 5;σM + 5] .

(6.2)
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B =


if σM ≤ 2 [σM −min(0.5, σM);σM + 0.5] ,
if 2 < σM < 10 [0.75 · σM; 1.25 · σM] ,
if σM ≥ 10 [σM − 2.5;σM + 2.5] .

(6.3)

C =


if σM ≤ 2 [−∞;∞] ,
if 2 < σM < 10 [0.9 · σM; 1.1 · σM] ,
if σM ≥ 10 [σM − 1;σM + 1] .

(6.4)

The next criterion to subdivide the SACs into groups, is the correlation coefficient. When
the correlation between two samples is 1, they are dependent. We want to know for what
correlation, two samples are not dependent. The null hypothesis for this problem is:

H0 : ρ = 1(6.5)

H1 : ρ < 1.

The test statistic for this test is:

(6.6) t = (r − ρ)

√
n− 2√
1− r2

,

where r is the observed correlation coefficient and n is the sample size. Statistic t has a T -
distribution with n−2 degrees of freedom. If |t| > Tα,n−2 then the null hypothesis is rejected.
When n = 36, which is the number of data points when considering 3 years of monthly data,
and α = 0.001 then the correlation for which the hypothesis is rejected is 0.8. For a higher n
this correlation is higher and for a lower n this correlation is lower. To keep the requirements
as simple as possible, we will use this boundary for all datasets. This is possible since the
number of data points remains constant for each time horizon. When the correlation is lower
than 0.8, this is an indication that the SACs are different. A final way to distinguish the
SACs is to study whether the standard deviation is statistically different, which is done using
an F-test, introduced in chapter 4.

To illustrate the grouping of the SACs we will now give an example. In table 6.1 the (made-
up) properties of six SACs are shown, it is assumed, for simplicity, that they have the same
higher level SAC, namely BM. The relevant properties of BM are also shown in the table. The
standard deviation of BM is 5, which means that we have the following standard deviation
intervals: A = [2.5, 7.5], B = [3.75, 6.25] and C = [4.5, 5.5]. Also, the SACs have all market
cap > 10, so they will all fall in one of the following groups from table 6.2: 1, 2, 5, 6, 15 and 21.
The first criterion is whether the standard deviation will fall outside interval A = [2.5, 7.5],
the only SAC for which this is valid, is SAC 4, therefore SAC 4 will be placed in group
1. The second group has the criterium that the standard deviation falls outside interval B,
therefore SAC 1 will fall in group 2. Although the correlation coefficient is smaller than 0.8,
this SAC will not be placed into group 6 because the criterium of interval B is classified as
more important. Now SAC 2 will belong to in group 5, because 4 /∈ C. Then SAC 6 will fall
in group 5, SAC 4 in group 15 and SAC 6 in group 21. The groups from table 6.2, in which
the made-up SACs will be placed, are listed in the sixth column of table 6.1.

Within the groups, the SACs should also be ranked. This is done according to the conditions
listed in table 6.3. First the groups are sorted according to the first listed condition, which is
whether the F-test is significant or not. All SACs with a significant F-test are ranked higher
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market standard
correlation

different group
cap deviation (σX) F-test �

BM - 5 - - -

SAC 1 15 6.5 0.7 no 2
SAC 2 15 4 0.7 yes 5
SAC 3 15 10 0.9 no 1
SAC 4 15 4.8 0.9 yes 15
SAC 5 15 4.8 0.7 no 6
SAC 6 15 5.3 0.9 no 21

Table 6.1: Example of grouping the SACs

� first property second property

1 market cap > 10% σX /∈ A
2 market cap > 10% σX /∈ B
3 5% < market cap ≤ 10% σX /∈ A
4 5% < market cap ≤ 10% σX /∈ B
5 market cap > 10% σX /∈ C
6 market cap > 10% ρXM < 0.8
7 5% < market cap ≤ 10% σX /∈ C
8 5% < market cap ≤ 10% ρXM < 0.8
9 1% < market cap ≤ 5% σX /∈ A
10 1% < market cap ≤ 5% σX /∈ B
11 0 < market cap ≤ 1% σX /∈ A
12 0 < market cap ≤ 1% σX /∈ B
13 1% < market cap ≤ 5% σX /∈ C
14 1% < market cap ≤ 5% ρXM < 0.8
15 market cap > 10% σ deviates significantly
16 5% < market cap ≤ 10% σ deviates significantly
17 1% < market cap ≤ 5% σ deviates significantly
18 0 < market cap ≤ 1% σX /∈ C
19 0 < market cap ≤ 1% ρXM < 0.8
20 0 < market cap ≤ 1% σ deviates significantly
21 market cap > 10%
22 5% < market cap ≤ 10%
23 1% < market cap ≤ 5%
24 0 < market cap ≤ 1%
25 market cap = 0

Table 6.2: In the first column the order of ranking of the groups is listed, in the second column the
size of the market cap is listed and in the third column a second property to belong to the group is
listed.
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� sort on order if multiple classes fulfill the property

1 significant deviation σX classes with significant F-test have a higher ranking than
classes without significant F-test

2 correlation X is higher than Y if ρXM < ρYM < 0.8 and
|ρXM − ρYM| > 0.1

3 deviation σX vs. σM X is higher than Y if |σX − σM | > |σY − σM | and
||σX − σM | − |σY − σM || > 0.2

4 market cap X is higher than Y if MarketCapX > MarketCapY >
10% and |MarketCapX −MarketCapY| > 10%

5 highest deviating CVaR X is higher than Y if |CVaRX − CVaRM| > |CVaRY −
CVaRM| and
||CVaRX − CVaRM| − |CVaRY − CVaRM|| > 0.3

6 highest market cap

Table 6.3: The ranking of SACs within a group is determined by these properties in the order listed
in the second column. In the third column conditions to order the SACs are stated.

� Condition

1 σ /∈ A
2 σ /∈ B
3 σ /∈ C
4 ρXM < 0.8
5 significant deviation σ
6 highest deviating σ
7 highest deviating CVaR
8 lowest correlation

Table 6.4: Sorting conditions for asset classes for which the market cap is not available.

than the SACs without. The correlation is the next condition: the SACs which fulfill the
condition ρXM < 0.8 are sorted, with the lowest correlation having the highest rank, since a
lower correlation means that the benchmark M and SAC X are less dependent. However,
when two SACs, let us name them X and Y , both have a correlation coefficient that is lower
than 0.8 but differ less than 0.1 from each other, i.e. |ρXM − ρYM| < 0.1, then this difference
is not sufficiently large to decide that the SAC with the lowest correlation should be ranked
higher and then the next condition in table 6.3 is considered. The remaining conditions in
the table have similar requirements. When all factors we have named above are considered,
but none of them gives a definite answer on the ordering of the SACs, the size market cap
gives the final decision, no matter the size of the difference.

From some of the dataseries it is not possible to get the market capitalization. This is dealt
with by using the list in table 6.4, which is a combination of the tables 6.2 and 6.3. The
additional requirements that are listed in table 6.3 are also transferred, although they are not
specifically named.

When the SACs are all ranked, the next step is to determine the size of the final tree. Then
the lowest ranked SACs can be eliminated. This will be further discussed in section 7.2
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This exact classification system is not based on any literature, because no specific information
could be found. Also, it is unlikely that there is just one suitable system, every bank has its
own preferences, and this list of criteria can easily be adjusted. This list of criteria is just a
way to order the SACs.

Implementation

In theory, each asset class should have one ranking, however, in some asset classes a clear
distinction in type of securities could be made. For example in the asset class Government
Bonds, these bonds can be subdivided into nominal and index-linked bonds. To prevent that,
all index-linked bonds get a high ranking and the nominal bonds a low ranking, and therefore
are possibly eliminated, the index-linked and nominal bonds are given two separate rankings.
Not all SACs are included in the ranking. This is explained using the same example, the
SACs‘nominal world and index-linked world bonds are not taken up in the ranking, because
if they end up at a low ranking, there is a chance that they are eliminated. When they are
eliminated, there would be no representation for the bonds from those SACs.

Of each SAC a historical benchmark data series is collected. These data series come from
different data providers such as MSCI (equity), Barclays (government bonds, credits) and
IPD (real estate). Of each series the necessary measures are calculated. These measures are:
standard deviation, CVaR and correlation and the outcome of the F-test (both with respect
to the ‘parent’ SAC). Of all benchmarks except for the direct real estate benchmarks, monthly
data are available. For the direct real estate SACs only quarterly or yearly data are available.
For the ranking a minimum of 10 data points should be available, otherwise the information
is not trustworthy.

The measures are calculated for two different time windows: 2009-2012 and 2002-2011. For
both windows the rankings are determined. The difference in these rankings gives informa-
tion about the time-sensitivity of the mapping: when the rankings differ significantly, it is
important to update the mapping periodically. When the mapping barely changes, there is
no acute need for this. Another positive result of a non time-sensitive mapping is that the
use of the ex-post determined mapping does not conflict with the ex-ante use of the mapping,
since the mapping is more likely to be constant over time.

The final rankings are included in appendix C and the results are discussed in section 8.2.
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Chapter 7

Risk budget, testing and the final
step

In this chapter the last three steps of the method, which were defined in chapter 5, are
explained in detail. In the first section the method to determine what risk is acceptable
is introduced. In the second section the mapping is tested with ex-post data. In the final
section, the last and most important step is discussed: the comparison of the SAA with the
actual portfolio with ex-ante data.

7.1 Risk measures and risk budget

After the process to determine a proper mapping is defined. A method to find a bandwidth
in which the acceptable values for the risk measures fall, from now on called risk budget,
should first be determined. Once the method to determine a risk budget is defined, it can
be applied to each sub-asset class (SAC) individually. This risk budget can be used for two
purposes. First to determine the optimal size of the mapping structure by comparing the risk
of mappings with different sizes, based on ex-post data. The other purpose is to compare the
mapping and the SAA based on ex-ante (and possibly also ex-post data, since the ex-post
and ex-ante data series contain similar data). An overview of the possible use of ex-post and
ex-ante data is presented in figure 7.1.

In this section the method to determine the risk budget will be discussed. Since for both
comparisons the same method will be applied, for the remainder of this chapter we consider a
comparison of the risk measures, the CVaR and standard deviation, between two data series:
series X and Y , where series X is the ‘benchmark’ series and Y is the series of which the
deviation from X should be determined. When a reference method is established, it will be
applied to both the ex-post and the ex-ante comparisons in sections 7.2 and 7.3, respectively.

In chapter 2, several risk measures were introduced and explained. The risk measures that
we will use are the CVaR and the standard deviation. When these measures are used to
determine the risk of series X and Y , there are several ways to determine for which values it
should be concluded that Y deviates too much from X:

1. absolute values,
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Figure 7.1: Overview of comparisons.

2. relative values,

3. statistical deviation.

An absolute bandwidth means that constants cCVaR and cσ are chosen, and the risk measures of
series Y , CVaR(Y ) and σ(Y ), should stay within a bandwidth of cCVaR and cσ from CVaR(X)
and σ(X) respectively. Formally this is written as:

(7.1) |CVaR(X)− CVaR(Y )| < cCVaR and |σ(X)− σ(Y )| < cσ.

A disadvantage is that when data series change over time, and for example increase signifi-
cantly over time the bandwidth will not correct itself. Therefore a relative bandwidth of p
percent, formally written as in formula (7.2) would seem more convenient. An example of the
properties of relative and absolute bandwidths is shown in figure 7.2. The blue shaded area
represents a relative bandwidth and the orange shaded area represents an absolute bandwidth.

(7.2) |CVaR(X)− CVaR(Y )| < pCVaR · CVaR(X) and |σ(X)− σ(Y )| < pσ · σ(X)
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Figure 7.2: A data series with both a relative
(blue) and absolute (orange) bandwidth.

This manner of defining a risk budget seems
basic, but to be able to set an appropriate
bound, knowledge on the subject is necessary
and even when this knowledge is present, de-
termining the bounds will still be subjective.
The solution to this problem is to turn to sta-
tistical tests.

In chapter 4 different types of statistical tests
were introduced and the possibility of using
statistical tests was also already discussed in
section 6.3. A simple F -test was used to de-
termine whether the standard deviation of a benchmark and its ‘parent’ benchmark were
significantly different or not. These statistical tests can also be used when a risk budget has
to be determined.

80



BM
-1,22 -1,13 -1,89 0,22 -0,95 1,37 1,3 0,52 -0,89 1,2
-0,85 -0,47 0,74 -0,89 0,54 -0,52 -0,61 0,52 1,53 -1,41

SS
0,58 0,04 0,11 0,67 0,29 -0,12 0,13 1,04 -0,76 1,23
0,84 -0,06 0,34 -0,51 1,52 1,34 2,36 0,02 -0,48 -0,33

Table 7.1: Data samples with data drawn from normal distributions (N(0, 1) and N(0.2, 0.8), rounded
to two decimals

When the value of the risk measure of the ‘benchmark series’ X is taken as the ‘true’ value
Risk(X), where the function Risk(X) is the risk defined as:

(7.3) Risk(X) =

{
CVaR(X), when the CVaR is taken as risk measure;
σ(X), when the standard deviation is taken as risk measure,

then the null and alternative hypothesis are formulated as follows:

(7.4) H0 : Risk(Y ) = Risk(X) H1 : Risk(Y ) 6= Risk(X).

When a proper statistical test is chosen, the critical values at a certain significance level α
of the test can act as the risk budget for benchmark series X. Let us illustrate this by an
example. Consider the normally distributed data samples listed in table 7.1, where BM is
the benchmark series and SS the single security series. When we take the standard deviation
as a risk measure then we have sample standard deviations SBM = 1.045 and SSS = 0.788,
the hypotheses will be:

(7.5) H0 : σSS = SBM = 1.045 H1 : σSS 6= SBM .

Since the data are distributed normally, we can use an F -test to see whether H0 can be
accepted. This test was introduced and explained in chapter 4. The F -statistic is calculated,
as

(7.6) F =
S2
X

S2
Y

=
1.0452

0.7882
= 1.761,

since both samples have size n = 20, we have to consider the F -distribution with n− 1 = 19
and n−1 = 19 degrees of freedom. When we take significance level α = 0.05, the upper level,
from which H0 will be rejected is f0.975,19,19 = 2.526, the lower level, until which H0 will be
rejected is f0.025,19,19 = 0.396. Since 0.396 < F = 1.761 < 2.168, H0 will not be rejected.

Now it is assumed that the two sample standard deviations are not statistically different.
However, we wish to know the risk budget of BM for significance level α = 0.05 and we know
that SBM = 1.045. We wish to find the values of SSS for which H0 gets rejected, or:

(7.7)


F > 2.526
S2
BM

S2
SS

> 2.526

1.0452

S2
SS

> 2.526

SSS < 0.658

and


F < 0.396
S2
BM

S2
SS

< 0.396

1.0452

S2
SS

< 0.396

SSS > 1.661.

So we have a risk budget for the BM series with significance level α = 0.05, namely
[0.658, 1.661]. This example was just to illustrate the concept of creating a risk budget based
on a significance test. In the next sections this concept will be worked out further for the risk
measures standard deviation and CVaR.
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Standard Deviation

In the example a test for the standard deviation was already used. The difference with
the real world case is that the data will not be drawn from a normal distribution and, as
was mentioned before, for financial data it is not generally true that the data are normally
distributed, which would imply that the F -test cannot be used. However, as in section 4.2 is
mentioned, when the data samples are large, the F -test can be used.

Because of the necessity of a large dataset, the data samples that are going to be used should
contain daily data, from at least 2 months year, this implies datasets of at least around 60
data points, large enough to pursue an F -test.

CVaR

In chapter 4 the test to be used to detect statistically different CVaR’s was presented. The
result was that the sampling distribution method should be used.

First the empirical bootstrap is used to find the sampling distribution of the mean of the 5%
lowest values. Then the α% confidence interval of this sampling distribution is created. This
confidence interval is the risk budget of the CVaR.

7.2 Test the mapping at different levels

As a result of the previous steps in the process a mapping with a priority ranking of all sub-
asset classes is available and for each benchmark a standard deviation and CVaR risk budget
can be constructed.

The next matter in defining a proper mapping structure is the decision on the number of SACs
that should be present up in the final structure. The final number of SACs that the structures
should contain is a trade-off between calculation time and accuracy of the mapping. The tree
should be sufficiently detailed to capture the development of each single security. However,
the idea behind the mapping is to reduce the number of items that should be modeled, so
the number of SACs should be restricted in some way. Although the number of asset classes
should be restricted, one must keep in mind that each security should be mapped to a proper
SAC. An important requirement of this tree is thus completeness.

Keeping this in mind, there are several strategies to determine the optimal structure:

1. Determine an optimal tree, without any restriction the in number of SACs.

2. Impose a restriction on the total number of SACs: find the optimal tree and cross off
the least distinctive SACs that fall outside the restricted amount.

3. Impose a restriction on the total number of SACs per asset class (i.e. government bonds,
equity, etc.): find the optimal tree per asset class and remove within this class the least
distinctive SACs. The restricted number of SACs can be different for the different asset
classes.

Of these three strategies the first one is not desirable, since it ignores the fact that the number
of SACs should be restricted to keep the model manageable. The third strategy will take more
effort compared to the second strategy, because each asset class must be studied to understand
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Figure 7.3: Paths the portfolio containing the data series will walk through.

what a reasonable number of asset classes is, while the quality of the result may not differ
that much. The second strategy will be used.

Because it will be too much work to generate results of the mapping for each number of
SACs in a tree, 5 different mapping levels are introduced. The different levels of mappings
are 0%, 25%, 50%, 75% and 100%. The 0% mapping takes only the minimum number of
sub-asset classes into account, the 100% mapping takes all sub-asset classes into account, the
25% mapping takes the 25% sub-asset classes into account that have the highest ranking with
the criteria formulated in section 6.3, and so on.

This step assesses which level of mapping is sufficient to accurately represent a portfolio.

In order to compare the mapping on different levels with the portfolios, of each SAC the
data series of several single securities as well as the data series of the benchmarks of the
SACs are obtained. First several portfolios will be put together with these single securities.
The composition of these portfolios can be done both randomly and according to different
strategies, such that for example both well-diversified but also poorly diversified portfolios are
obtained. An example of such a strategy is to give the portfolio weights that are representative
for the market cap.

Each of these portfolios will pass two paths, represented in figure 7.3. The upper path
represents the path where the risk and risk budgets (of both risk measures, CVaR and standard
deviation) will be determined on a single security (SS) level, the lower path represents the
path where the risk will be determined by the mapping, so on a sub-asset class (SAC) level.
Finally, the paths connect and the question whether the risk of the mapping falls within the
risk budget of the portfolio is answered.

As a result of each portfolio it is determined which levels of mapping fall into the risk budgets.
The final level of the mapping, which can be determined per asset class, will be the lowest
level that includes for the market cap portfolio within the risk budget. If for this portfolio the
risk of the 75% and 100% mapping falls within the risk budget, the 75% level will be chosen,
since the computation time will be lower with the 75% mapping.

Since of single securities only ex-post data are available, this whole process is executed with
ex-post data.

Implementation

First the implementation details of the upper path of figure 7.3 are discussed, followed by
the implementation details of the lower path. As mentioned in section 6.2, this step is only
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executed for the asset class equity. Also, the data of the same single securities are used as in
the second step, so the data series of 78 stocks are available.

Since it is not possible to get data on real investment portfolios of private banks, portfolios
have to be put together. An advantage of putting the portfolios together, is that certain prop-
erties can be assigned to the portfolios, such as degree of diversification. Another advantage
is that as many portfolios as desired can be constructed.

Apart from one portfolio, which will be representative for the market capitalization of the
market, the portfolios are put together randomly. The weight of a security is determined as
follows: a random draw from the Ber(0.5)-distribution is multiplied by the absolute value of
a random draw of the N(0, 1)-distribution. When the weights of all securities are determined,
they are normalized, such that the weights sum up to 1. The Bernoulli draw will ensure
that not every security is contained in each portfolio and the N(0, 1)-draw determines the
weight and ensures that more securities have a small contribution in the portfolio than a
large contribution. Of course, the parameters of the distributions and even the method to
put together the portfolios can be chosen differently, but this is not relevant at the moment.

The number of portfolios that are put together is not fixed. For the time being the number
of portfolios is set to 25, since this number gives a good variety of portfolios, and also ensures
a reasonable calculation time. The final part of the upper path consists of determining the
standard deviation and CVaR risk budget of each with the help of respectively the F-test and
the sampling distribution method, which are explained in chapter 4. These risk budgets can
be determined with different significance levels α ∈ {0.1, 0.05, 0.025, 0.010, 0.005, 0.0025}.

The path of the mapping in figure 7.3 is implemented as follows. Of each portfolio the mapping
is determined. This mapping is determined on different levels, to compare the results and see
what level is necessary for a proper mapping. Which SACs are excluded from the mapping,
is determined by the ranking. When an asset class has 12 ranked SACs, in the 75%-mapping
the SACs with ranking 1 through 9 are admitted and SACs with ranking 10 through 12 are
excluded. Of each mapping the CVaR and standard deviation are determined.

The final step is to check whether the risk of the mapping falls into the risk budget of the
accompanying portfolio. The decision what level of mapping is optimal, is made by looking
at the lowest percentage mapping that will fall into the risk budget of the actual portfolio.
The market cap portfolio is the most important portfolio for this check, since that portfolio
is the most representative, the other portfolios will give additional information. The results
of this step are listed in appendix D and discussed in section 8.3.

7.3 Mapping vs. SAA

All previous steps are preparatory for this last step. These steps are processed only once
and produce required input for the last step. The last step will be executed by a portfolio
manager for every client, while the previous steps are executed by a model implementator.
This step can be executed with both ex-ante and ex-post data, however the strength of the
process is that with the help of the mapping, ex-ante scenarios from a Monte Carlo scenario
generator can be used to determine the ex-ante deviation. Therefore all data used in this step
are ex-ante data, produced by the Monte Carlo scenario generator.
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Figure 7.4: Paths the SAA, portfolio and mapping will walk through.

The goal of this step is to determine whether the risk of a portfolio of a client, deviates
significantly from the risk of the strategic asset allocation (SAA). For this step the input is
three-fold: first of all the strategic asset allocation (SAA) of the client, second the current
portfolio of the client, and finally the mapping. A schematic representation and examples
of the mapping are shown in figure 5.2, which was introduced and explained in chapter 5.
The mapping is fixed for each client, while the SAA and the current portfolio vary per client.
When the three components are given, the final step can be represented by figure 7.4.

As is illustrated by the upper SAA-path in figure 7.4, first the risk and risk budget of the
SAA are determined, the concept of risk budget was introduced in section 7.1. In the lower
portfolio-path, first, the current portfolio will be mapped with the help of the mapping, and
then the risk of the mapped portfolio will be determined. The final check is whether the risk
of the current portfolio falls within the risk budget of the SAA. If it does, a positive signal
will be transmitted, if it does not a warning will be transmitted.

This procedure will be repeated for both CVaR and standard deviation, to give a complete
insight in the status of the portfolio.

Implementation

First the implementation of the SAA-path of figure 7.4 will be discussed, the implementation
of the portfolio-path will be discussed. The SAA is defined on asset class level and, as
explained in section 1.2, the SAA represents the risk appetite of the client. An example of an
SAA is listed in table 7.2.

First the risk budget of the SAA needs to be determined This is done with the help of the
Monte Carlo scenario generator. Of every asset class the benchmark is modeled, which leads
to 1000 scenarios per asset class. The scenarios have a horizon of over 32 years and the data
have a monthly frequency. The standard deviation and CVaR risk budget of an asset class are
determined with the help of the scenarios and will be determined for different time intervals:
6 months, 1 year, 3 years, 5 years, 10 years, 20 years and 30 years. In order to do this, each
scenario of the SAA should be calculated separately, with the weights of the SAA. Then, at
each point in time, the standard deviation and CVaR and their risk budgets of the log returns
can be determined. The properties of the log return are discussed in chapter 2. This can be
done on several different significance levels: α ∈ {0.1, 0.05, 0.025, 0.010, 0.005, 0.0025}.

The portfolio-path is implemented as follows. First the mapping of the portfolio will be
determined and of all SACs which occur in the selected mapping the benchmarks are modeled

with the Monte Carlo scenario generator. Then of each SAC the itinyth scenario is summed
according to its weight in the mapping. Since there are 1000 scenarios generated, this is
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repeated for each i = 1, . . . , 1000. For example, when the securities from figure 5.2 are
contained in a portfolio with the following weights: 50% Philips stock, 30% BP stock and
20% Italian index-linked bonds with 3-year maturity. Then each scenario of their SACs –
equity Eurozone large cap, equity Europe ex. Eurozone large cap and govt. bonds, ILB, Italy
maturity 1-10 years– are summed with these weights. This results in 1000 scenarios which
are representative for the mapping of the portfolio.

Finally, at each point in time the CVaR and standard deviation of the log returns of the
scenarios are determined. The measures should be calculated with the same time horizon as
the risk budgets. The final step is to check whether the mapping falls within the risk budget.

For this thesis this step is executed with one random selected portfolio, which are put to-
gether by randomly selecting SACs, in principle, securities should be selected, but since the
single securities are immediately mapped to the SACs, We immediately generate SACs. The
probability of selecting a SAC from a certain asset class is fixed, but within the asset class
the probability of selecting the SACs is equal. The results are discussed in section 8.4.

Asset class percentage

Equity 40%
Govt. Bonds 30%
Corp. Bonds 20%
Real estate 5%
Hedge funds 2%
Commodities 0%
Private equity 2%
Alternatives 0%
Cash 1%

Table 7.2: Strategic asset allocation.
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Part III

Results and Conclusion
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Chapter 8

Results

In this section the results of the different steps are discussed.

8.1 Validation and robustness of mapping

In this section the results of the test to check whether the distribution of portfolios containing
single securities from one sub-asset class (SAC) originates from the same distribution as the
benchmark of that SAC. The implementation of this step was discussed in section 6.2. As
was discussed, this test is only pursued for the asset class equity. The test is based on ex-post
data, since there is not ex-ante data available on single securities.

The null and alternative hypothesis of the Kolmogorov-Smirnov test that is executed are:

H0 : BMi(x) = PFi,j(x) for all x,(8.1)

H1 : BMi(x) 6= PFi,j(x) for all x,

where BMi(x) is the distribution function of the benchmark of SAC i and PFi,j(x) is the
distribution function of portfolio j of SAC i. When the null hypothesis is rejected, portfolio
j of SAC i and the benchmark of SAC i do not originate from the same distribution.

The Kolmogorov-Smirnov test is executed for different significance levels and for different
time horizons. We have chosen to show the results for three different periods, namely, 6
months, 3 years and 7 years, because more periods do not give necessarily more information.
In appendix B, for all SACs and different periods, the percentage of portfolios for which the
null hypothesis was rejected, is listed (100% = 126 portfolios).

6 months When we take a glance at the data of time horizon 6 months, we see that for
all except 3 SACs the null hypothesis is accepted at every significance level. When executing
this test for 6 month intervals in different years, we see similar results. The SAC LC Eastern
Europe has the highest percentage portfolios for which the null hypothesis is rejected, as at
the 0.1 significance level, 48% of the portfolios do not originate from the SAC benchmark
distribution. The cause of this result can be retrieved from table A.1. For this SAC only
three valid data series of single securities could be found, all three of them from the same
country (Russia). Therefore, the portfolio is not sufficiently diversified to originate from the
same distribution as the benchmark.
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At significance level 0.1, the distribution of 16% of the portfolios of the SAC SC Canada do
not originate from the same distribution as the SAC benchmark. From the detailed results
it can be observed that in all portfolios for which the null hypothesis is rejected, 80% or
100% of the portfolio is ‘invested’ in the same two single securities, which deviate relatively
strong from the benchmark. Because only weights which are a multiple of 0.2 are assigned to
the single securities, the rejected portfolios all contain a maximum of three single securities.
For the portfolios containing more single securities (four or five), the null hypothesis was not
rejected. We might say that the influence of two relatively strong deviating single securities
is canceled out when the portfolio is well diversified, i.e. contains more than three single
securities.
In SAC LC Eurozone, for one portfolio, the null hypothesis is rejected at level α = 0.1. This
is the portfolio, only containing one single security: KPN.

The higher level SACs, LC Emerging Markets, LC North America and LC Europe, all have
0% rejected portfolios. This is not a surprise, as these portfolios contain at least 10 single
securities, which is more than the lower level SACs, which contain a minimum of 5 single
securities. The influence of the single securities from Eastern Europe (contained in LC EM)
is canceled out, because of better diversification.

3 years The results of the time horizon of 3 years show more rejections. At the 0.1 sig-
nificance level, for on average for 18% of the portfolios, the null hypothesis is rejected. The
distributions of these portfolios do not originate from the same distribution as the benchmark.
At the 0.0025 level, for on average for 8% of the portfolios, the null hypothesis is rejected.
The fact that the general level of rejection is higher could be explained by the increase in the
sample size. The Kolmogorov-Smirnov test statistic is the largest absolute distance between
the ordered datasets. The 6 month datasets contain 132 data points, the 3 year datasets
contain 783 data points and the 7 year dataset contains 1827 data points. In 3 years, more
information is available than in 6 months, therefore it is more likely that a large difference
occurs, with a longer time horizon. On the other hand, the statistic is corrected for the sample

size, by multiplying the statistic with the term
√

2n
n2 . So, the fact that the data sample is

larger is corrected, however, not sufficiently.

It is rather difficult to find a pattern in the portfolios for which the null hypothesis is rejected,
these portfolios are both well-diversified and poorly-diversified portfolios. However, the SACs
for which the percentage of rejections lie above the average, are all small cap or emerging
market SACs, or both. Of the small caps and emerging markets few data were available, so
the few data series that were available needed to be selected, which possibly lead to biased
data. Also, within the small cap and emerging markets SACs the diversity of the various
securities is larger. Therefore, the SACs need to contain more different securities in order for
them to originate from the same distribution as the benchmark.

The higher level SACs performed much better, in all higher level SACs, none of the portfolios
were rejected.

7 years The 7 years time horizon gives even more different results. On average, per SAC,
for 56% of the portfolios, the null hypothesis is rejected at the 0.1 significance level. At the
0.0025-level, the average is 33%. A rather surprising result is that for SAC LC Eurozone, for
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Figure 8.1: Closing prices of Porsche Automobile Holding shares in USD.

all portfolios, the null hypothesis is rejected at the highest significance level. When looking at
a lower significance level, all portfolios that are accepted do not contain the single securities
Porsche Automobile Holding and Koninklijke BAM Groep. When taking a closer look at the
data series of these two securities, it can be seen that both series have a large drop in stock
price at some point in time more than 3 years ago. In figure 8.1, the development of the stock
price of the Porsche share is shown.

Also with a longer time horizon, the higher level SACs perform better. In the SAC North
America, the null hypothesis is still not rejected for any portfolio. In the SAC LC Emerging
Markets for some portfolios the hypothesis is rejected, but on a lower level than the average
SAC, also, there are no data available for the SAC LC Eastern Europe, therefore this SAC is
less diversified.
The SAC LC Europe is an interesting case. For 93 % of the portfolios, the null hypothsis is
rejected, however, in these portfolios, the securities Porsche and BAM are contained. The 7
% portfolios for which the null hypothesis is accepted are those portfolios in which the single
security Porsche was not contained. So the drop in the value of Porsche shares, shown in
figure 8.1, is too significant to be compensated by the other securities, however, the drop in
the value of the share BAM is absorbed.

When a different interval is chosen for the 3 year horizon, the average rejection level is 34%
at the 0.1 significance level, this is higher, but considering that in this interval major drops in
prices of shares Porsche and BAM occur, this is not a strange thing. For the 6 month horizon
2 alternative intervals were tested, but these test gave equivalent results as the first interval:
for almost all SACs for 0% of the portfolios the null hypothesis is rejected.

Conclusion The general results are that when looking at a shorter time horizon, 5 single
securities can be represented by the SAC benchmark. But when looking at a longer time
horizon, the percentage of portfolios containing 5 securities for which the null hypothesis is
rejected is much higher. When the number of securities in a portfolio is increased to 10, also
with a longer time horizon, the rejection level is lower, because the portfolio is more diversified.
A lower rejection level means that the benchmark represents the securities properly. Having
more securities in each SAC will therefore improve the quality of the mapping.
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For this specific example this results in the conclusion that although a SAC is distinct from
its parent benchmark (i.e. has a high ranking), when looking at a longer time horizon, one is
still forced to use the parent SAC. Since in that SAC more securities are contained, so that
the distributions of the portfolio and the benchmark originate from the same distribution.

For a portfolio with more than 10 single securities, one single security with a high risk can
still cause the null hypothesis to be rejected. This might imply that the mapping will not
be representative for the portfolio, on the other hand, a single security that has such a large
influence, is too risky for a portfolio, or the portfolio is not sufficiently diversified. Therefore
this test can also serve as a method to identify single securities in a SAC that are too risky,
or to detect a portfolio which is not sufficiently diversified.

8.2 Ranking the SACs

In section 6.3, the method to determine the ranking of the SACs is described. In appendix
C the results are listed: for every asset class two rankings are shown, one for the period
2002-2011 and one for the period 2009-2012. As mentioned before, the highest level SACs
are not admitted in the ranking, because these SACs are required in order to be able to map
every single security to a SAC. These SACs are in the appendix marked by ‘NR’.

The ranking of the SACs do not remain completely constant over time, but the top and
bottom parts of the list, mostly do. The ranking for the asset class corporate bonds, remains
exactly constant. We will address the separate asset classes shortly.

Equity When looking at developed markets, no clear pattern can be discovered. The top of
the list remains the same for the different periods, but the SACs LC Europe and SC Europe
move –together– from the bottom to the top of the list. In period 2002-2011 they differ from
the parent benchmark, but in period 2009-2012 they do not deviate that much anymore, so
the parent SAC is more important. On average every SAC moves (due to these sub-asset
classes) 2.5 places in the ranking. The emerging markets ranking does not change at all.

Government Bonds As mentioned in section 6.3, the rankings of the nominal and index-
linked bonds are separated. In the ranking listed in table C.2 it can be seen that for Europe,
the SACs which are differentiated by maturity, are generally higher ranked, than the re-
gion SACs. To illustrate: Eurozone maturities > 10 years, 1-3 years, 7-10 years and < 5
years all have for period 2002-2011 higher ranking than all separate Eurozone countries.
This effect also holds for 2009-2012, but not as clear as for the period 2002-2011. Consid-
ering the current sovereign debt crisis, this is not a surprising result. Since the maturity-
related and geographical-related SACs overlap completely, either the maturity-related or the
geographical-related SACs should be represented in the final mapping structure. Because
in both rankings, the maturity effect dominates, the separate European countries are not
represented in the final mapping structure.

For index-linked bonds, some SACs also overlap, for example, for the UK, data on the following
SACs are available: maturities 1 − 10 years, > 10 years, > 5 years and 7 − 10 years. Since
maturities 1 − 10 years and > 10 years have a higher ranking than the others (for both
periods), and these SACs do not overlap, the SACs with maturities > 5 and 7 − 10 are not
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Figure 8.2: Structure of asset class equity, where the orange shaded SACs have the lowest priority
and the dark blue SACs have the highest priority, the unshaded SACs do not have a ranking.

admitted in the final structure. Sometimes, there is overlap between two or more SACs, but
these SACs both have high rankings, for example World index-linked bonds with maturities
> 5 years and 1-10 years. In principle, the choice should be made between the maturity sets
1-10 years & > 10 years and < 5 years & > 5 years, since both of these sets contain the
whole spectrum of available bonds. However, for maturities > 10 years and > 5 years no data
were available, therefore the choice to admit both maturities 1-10 years and > 5 is made.
The reason for this choice is that when for example only > 5 years is chosen, the bonds with
maturity 3 years are mapped to the general index-linked bond SAC and information will be
lost. When a bond fits in both SACs a choice between these SACs could be made with the
help of the ranking. The final structure for government bonds for the period 2002-2011 is
represented by figure 8.2.

Corporate Bonds The corporate bonds structure does not change when different periods
are considered. Apart from the SAC HY PanEurope, also the benchmark HY Eurozone was
available, however, these SACs did not differ significantly and no HY SAC for the UK was
available. Therefore the HY PanEurope SAC was chosen, so that more securities are covered.

Real Estate The indirect listed real estate mapping differs when taking different periods
into account, between the two periods the ranking indirect listed differs 4.8 positions in the
ranking per SAC. This amount is mainly due to the change in position of the SACs UK,
Germany and Thailand. The change of the position of Thailand is not relevant, since we are
looking at the tree from a European, and more specifically Dutch, point-of-view and Dutch
investors will not invest a lot in Thailand. When these three SACs are not taken into account,
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the average position change between the rankings is only 2.5. The origin of these changes lies
in the standard deviations. For Mexico and Argentina, no recent data are available, so these
SACs are excluded from the 2009-2012 ranking.

For the direct real estate a mapping for 2009-2012 is not created, since the data have a
quarterly or yearly frequency instead of a monthly frequency. For the 2009-2012 mapping the
direct real estate SACs would be ranked, based on only 3 data points. However, the fact that
the data are only available on such a low frequency may already be an indication that this
asset class might not be very appropriate to map. On the other hand, private wealth clients
will not invest on a large scale in direct real estate, so the influence of the ranking of this part
of the asset class is negligible.

For the indirect unlisted asset class, the data were not available, so no rankings were put
together.

Alternatives It is difficult to say something about the changes in the alternative asset
classes, since there are very few sub-asset classes. Because of this, there is no need to discard
any SACs. The asset class private equity forms an exception: since the different SACs overlap,
a choice between type of private equity (venture capital or buy out) or regional differentiation
should be made. Based on the 2002-2011 ranking, region is chosen, but the period 2009-2012
gives different information. However, since the UK has the highest ranking in the 2009-2012
period and the regions have higher rankings in the 2002-2011 ranking, the SACs venture
capital and buy out are not admitted in the final mapping.

8.3 Test the mapping

In order to know how detailed the mapping should be, the risk portfolios based on real ex-post
are compared to the risk of its mapping on different levels. In section 7.2 the implementation
of the test is discussed. In this section the results of the implementation are discussed. The
results are listed in appendix D. In tables D.1 through D.8 the standard deviations and
CVaR risk budgets and the standard deviations and CVaRs of the single security portfolio
and mappings at different levels are listed, these numbers are calculated with ex-post data of
the single securities and benchmarks.

In tables D.1 through D.4, the standard deviation results for four different time horizons (1
month, 6 months, 3 years and 7 years of data) are listed. In tables D.5 through D.8 the CVaR
results for the four different time horizons are listed. All values in the tables are multiplied
by 1000 to get a clear overview.

Of each table in the second column the standard deviation or CVaR values, calculated as was
described in section 7.2, of the actual portfolio are listed. In the third and fourth column,
the lower and upper bounds of the risk budgets are listed, the calculation of the risk budget
is explained in section 7.1. In the next five columns the standard deviations or CVaRs of
the different level mappings (100%-0%) are listed. Finally, in the last column, the standard
deviation or CVaR of the SAA is listed, which is in this case the standard deviation or CVaR
of the benchmark of asset class equity only. The values which are green, fall into the risk
budget. The results in table D.1 through D.8 are calculated at significance level α = 0.05.
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The first portfolio, MC PF is the portfolio for which the weights are representative for the
market capitalization of the shares. In figures D.1 through D.4 the risk budgets and the
standard deviations or CVaRs of the mappings and SAA are graphically represented.

In table D.9 at each significance level and for each time horizon, the percentage of the 25
calculated portfolios which fall into the risk budget is listed. First the results at the 0.05
significance level of the standard deviation will be discussed, then the 0.05 level results of the
CVaR are discussed and, finally, the comparison with the other significance levels is discussed.

Standard deviation When quickly comparing the results for the standard deviation at
different horizons, one observes that at shorter time horizons, fewer values fall outside the
risk budget. This can be related to the results of the Kolmogorov-Smirnov test in section
8.1. These results implicate that for longer time horizons more than 5 single securities should
be contained in each SAC in order for the benchmark to be representative for the single
securities. With portfolios that contain on average around 40 securities, this will not the the
case. In more detailed mappings (i.e. 100%, 75%, 50% mapping) more SACs are admitted,
therefore the SACs represent much less than 5 single securities. According to the results of
section 8.1 these mappings should therefore perform worse than the less detailed mappings
when a longer horizon is considered. However, this is not confirmed by the results.

When looking at the one month table (table D.1) for
1M 6M 3Y 7Y

100% 4 9 8 25
75% 1 2 2 0
50% 1 4 4 0
25% 9 7 6 0
0% 2 3 1 0

SAA 8 0 4 0

Table 8.1: Number of portfolios for
which σ of the mapping deviates the
least from the actual σ of the portfo-
lio.

all but one portfolio (PF 15) the mappings fall into the
risk budget. Only for portfolio 15 the 0% mapping and
the SAA do not fall into the risk budget. This can also
be observed in the lower graph in figure D.1. In this
graph it can also be seen that the 100% mapping does
not necessarily perform better than the SAA. However,
this result is only based on 23 data points, which is a
rather small amount to draw conclusions from.

The 6 month results in table D.2 also do not give much
information. For most portfolios either all mappings fall
within the risk budget or all mappings fall outside the
risk budget. However, portfolio 18 and 23 exhibit the expected results. The more detailed
mappings fall into the risk budget and the less detailed mappings and the SAA outside the
risk budget. In the upper graph of figure D.1 it can be seen that the standard deviations of
the more detailed mappings are, in general, higher than the standard deviation of the SAA,
while the standard deviation of the 50% mapping is mostly lower than the standard deviation
of the SAA.

For every portfolio the standard deviation of one of the mappings or the SAA lies closest to
the actual standard deviation of the portfolio. In table 8.1 the number of times that each
mapping lies closest to the actual standard deviation is listed for each time horizon. In this
table we can see that for 9 out of 25 portfolios, the 100% mapping fits best to the actual value
of the portfolio when looking at a time horizon of 6 months, the SAA not once. This is the
first indication that the 100% mapping performs better than the SAA.
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The 3 year results in table D.3 show, again, varying results. The more detailed mappings
conform more frequently to the risk budgets, and the 75% mapping performs best: for 11 of
the 25 portfolios, the standard deviation of the 75% mapping falls into the risk budget. For 8
of the 25 portfolios, the 100% mapping comes closest to the actual standard deviation of the
portfolio.

The 7 year results give a clearer pattern, as the standard deviation of the 100% mapping
always is the closest mapping to the true value of the standard deviation. In table D.4 it can
be clearly seen that the 100% mapping performs best. The 75% mapping performs second
best for 21 of the 25 portfolios. In the top graph of figure D.2, this result is confirmed. It can
also be seen that the standard deviations of the more detailed mappings differ more from each
other. This is not an unexpected outcome, since different factors (i.e. benchmarks) influence
the standard deviation in the 100% mapping than in the 0% mapping.

At least 30 data points are needed to be able to set the risk budget with the help of the F-test
and sampling distribution method. Therefore, when monthly data are available, only a 3, 5
and 7 year time horizon are relevant. The results of the 3 year time horizon are not at all
clear and the results of the 5 and 7 year results are not as clear as the results for the daily
data, but they are pointing out that the 100% mapping performs, again, best. Because the 3
year monthly data do not give a result and the 5 year monthly results do, a requirement of
at least 6 months daily data or 60 data points with a lower frequency are needed to be able
to give quality statements about the mapping.

We can conclude that the mappings only show evident results for a larger time horizon and
the mapping that performs best is the 100% mapping. This mapping contains all SACs
that were proposed in section 6.1 and is presented in figure 6.1. From section 8.1 it was
concluded that for a larger time horizon, more single securities should be contained in an
SAC to give a proper representation of the SAC benchmark. These results conflict. However,
the fact that the mapping performs well might indicate that the results of the Kolmogorov-
Smirnov test do not influence the mapping, or that the Kologorov-Smirnov test did not give
accurate results for longer time horizons. However, we can only test portfolios which have a
maximum of 78 securities. Probably, when the portfolios would contain more single securities,
the 100% mappings would perform even better, since then the benchmark is an appropriate
representation of the single securities.

Another result worth mentioning is that the five portfolios with the highest standard devi-
ations (i.e. portfolios 3, 4, 15, 20 and 22) all have at least 2.5% of the portfolio invested in
Porsche.

CVaR First of all, it should be noted that for the CVaR graphs, the absolute values of the
CVaRs were taken, so that the right-hand side of the graph indicates a high risk. The tables
contain the original values, multiplied by 1000.

The CVaR risk budgets are much smaller than the standard deviation risk budgets, so much
less mappings fall into the risk budget. Therefore we mainly take a look at the distance
of the CVaR of the mapping to the CVaR of the actual portfolio. In table 8.2 the number
of portfolios for which the CVaR of the mapping lies closest to the actual CVaR for all
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mappings and time horizons, is shown. From that table, it can be seen that for the one
month time horizon the 25% mapping performs best. However, for longer time horizons,
the 100% mapping performs best. In the graphs in figures D.3 and D.4 it can be seen that
the results of the CVaR are equivalent to the results of the standard deviation: with short
time horizons, no clear logic can be spotted, but as the time horizon increases, the higher
differentiated mappings perform better. Again, the portfolios containing a significant amount
of Porsche shares have the highest risk.

The narrow risk budget of the CVaR could be caused by
1M 6M 3Y 7Y

100% 3 10 8 20
75% 3 4 1 3
50% 2 1 6 0
25% 13 7 6 0
0% 3 1 3 0

SAA 1 2 1 2

Table 8.2: Number of portfolios for
which the CVaR of the mapping de-
viates the least from the actual CVaR
of the portfolio.

the significance level. In table D.9 the percentage port-
folios that fall into the risk budget is listed for all signif-
icance levels and all time horizons. It can be seen that,
indeed, when the significance level is lower, more map-
pings fall into the risk budget. However, for the CVaR
the change is minimal.
The reason that CVaR risk budgets are narrow is that the
CVaR distribution it is calculated with historical simula-
tion and is therefore only based on the 5% lowest values
of the datasets. Because the number of different real-
izations is rather small, the CVaRs that are generated
contain the same values. As a result, the standard devi-
ation of the sampling distribution of the CVaR is rather small.

Conclusion For both risk measures with short time horizon, not much can be said about
the quality of the mapping. When the horizon increases, the 100% mapping, stated in figure
6.1, clearly outperforms the other mappings and the SAA. This step was modeled such that
the computation time was not influenced by the number of SACs. Now computation time
only plays a role in generating the scenarios. Since the generation of scenarios is executed
each month, quarter or year, depending on the preferences of the customer, the computation
time does not influence the problem any more.
This result holds for the asset class equity and could hold for the other asset classes, but this
must be verified in order to be certain.

For the 7 year time horizon, the 100% mapping performs best, however, the mapping does
not fall into the risk budget often. This gap occurs because in each SAC, a maximum of 5
securities are contained. We have seen in section 8.1 that for a longer time horizon more than
5 securities need to be contained in each SAC to create a proper mapping. The 100% mapping
does perform best, but might perform better when the portfolio contains more securities. A
dynamic mapping which adjusts for the number of securities in each SAC might be a solution.

8.4 Mapping vs. SAA

In this final section the results of the comparison of the mapping of a portfolio and the
strategic asset allocation are shown. This step is only executed for one portfolio, since this
step only shows the end product of the process and has little implications for the rest of the
process. The data that are used in this step are ex-ante scenarios generated by the Monte
Carlo scenario generator.
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In figure 8.3 the two result graphs of a portfolio that is put together randomly. The graph
on the left-hand side shows the standard deviation risk budget. The light blue area shows
the risk budget of the strategic asset allocation belonging to the significance level 0.0025,
the dark blue area shows the risk budget for the 0.1-level. The green arrow represents the
standard deviation of the mapping of the portfolio. The different bars represent the different
periods for which the risk budget holds. The graph on the right-hand side gives the same
information, but this time, the Subject is the CVaR.

Figure 8.3: Results of the comparison of strategic asset allocation and the mapping of a randomly
selected portfolio.
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Chapter 9

Conclusion and recommendations

The first and an important conclusion at the end of the first part of this thesis was that both
standard deviation and CVaR should be used for a more complete overview of the risk. The
standard deviation gives information on the ‘body’ of the distribution, whereas the CVaR
gives information on the tail. This gives a more complete overview on the risk of a security
or portfolio.

To calculate the risk budget of the standard deviation and CVaR, two methods were proposed.
For the standard deviation the F-test was used. This test worked properly and when analyzing
the final results, as it gives a risk budget which can easily be adjusted by using different
significance levels. The risk budget of the CVaR was calculated with the sampling distribution
method.

A general problem of the use of CVaR is that the distribution of only the tail is considered.
When looking at the 5% CVaR, only 1/20th of the datapoints is used and therefore the number
of data points is limited. As a result, from a limited number of data points, conclusions should
be drawn. The empirical bootstrap is used to generate more data points, but these points are
reproductions of the original data. As a result, when calculating the CVaR of these generated
data series the CVaRs may resemble each other and the confidence interval will be rather
narrow.

The use of a parametric bootstrap, which employs the distribution of the tail would be a
solution to this problem. This distribution could be found with the help of extreme value
theory, which was introduced in section 2.3. Another solution is to account for a larger
standard error in the sampling distribution of the CVaR. This means that the standard
deviation of the CVaR distribution, which is given by σ/

√
n, is increased with a factor ε, so

that the CVaR has a N(µ, σ√
n

+ε) distribution. This standard deviation will increase the risk

budget of the CVaR. At the 0.05 significance level, the risk budget of the CVaR was given by[
CVaR− 1.96 σ√

n
,CVaR + 1.96 σ√

n

]
. The adapted interval would on each side be extended by

1.96 · ε, to

(9.1)

[
CVaR− 1.96

(
σ√
n

+ ε

)
,CVaR + 1.96

(
σ√
n

+ ε

)]
.

When interpreting the results, one should look at different time horizons. The case of the
stock price of a Porsche stock (represented in figure 8.1), is a very helpful example. When
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Figure 9.1: Example of a dynamic mapping for SAC North America, Canada and USA.

looking at the last three years, the stock price was fairly constant, so when looking at this
period, the stock’s performance is not unusual. When looking at the data of more than three
years ago, the drop in value is significant, which causes the standard deviation and CVaR
to be very high. Risk in the different periods do not give representative information, but
together, they give more complete information.

The mapping was created from a Dutch private banker point-of-view, but for different clients,
different mappings could be relevant. Also, an important result was that 10 single securities
are needed for the mapping to be representative. When not enough securities are contained
in each SAC, the deviation of a mapping may be caused by the specific risk of a few single
securities. This required number can be higher for SACs like emerging market and small
cap SACs or lower for more stable SACs. When the required number of securities in a
SAC is determined for each SAC individually, the quality of the mapping can be improved by
switching to a higher level SAC when less than the required number of securities are contained
in a SAC. This required number of securities can be different when a different time horizon
is considered. This dynamic mapping might give better results than a fixed mapping.

An example of the behaviour of a dynamic mapping is show in figure 9.1 for the SACs North
America, Canada and USA. Let us assume for the example that five securities per SAC are
sufficient for a proper mapping. Each blue square represents a single security. The securities
on the left are from the USA, on the right from Canada. The red, blue and green boxes
around the securities each represent a portfolio. The securities in each box are the securities
that are contained in the portfolio. The blue portfolio contains 10 securities, 5 of each sub-
asset class. Therefore, the portfolio is mapped to both the SACs Canada and USA. The red
portfolio contains in total 6 securities, which is enough for one SAC, but since the SAC Canada
would contain 4 securities and USA only 2, the securities are mapped to North America, the
parent SAC. The green portfolio contains 3 single securities, all from Canada. The securities
are mapped to Canada since no securities from the USA are contained in the portfolio and
therefore a minimum of 5 never will be reached. Because there are too little securities in the
portfolio, a signal should be given that the portfolio is not sufficiently diversified.
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Figure 9.2: Schematic representation of monitoring process.

Also in SACs containing more than 10 single securities, one security (in this case Porsche)
which has a very deviant data series, can influence the distribution of the portfolio so that it
does not originate from the same distribution as the benchmark. This property can be used
to detect specific risk within a portfolio. When the influence of such a security is this large,
the portfolio is not sufficiently diversified. However, this can only be identified with ex-post
data and therefore after an extreme event has occurred. Because it is not possible to model
the single securities, the behaviour of the single securities cannot be predicted. The damage
of a large loss because of a drop in the price of one single securities can therefore only be
prevented by good diversification and not by a better mapping.

For the asset class equity, the 100% mapping gives with ex-post data the most representative
information. Therefore this mapping structure, presented by figure 6.1, is chosen to map
the single securities to SACs for the ex-ante analysis of the portfolio. The time horizon over
which the risk is determined should at least contain 6 months of daily data or, when the
data frequency is lower, 60 data points for the mapping to give clear results. The mapping is
based on ex-post (historical) data from 10 years and is conform the 3 years of ex-post data.
The ex-ante scenarios range over 32 years, which is a long time. Although the mapping is
fairly robust over a period of 10 years, during such a long period, the optimal mapping might
change. Therefore one must be cautious when drawing conclusions on ex-ante results for more
than 10 years.

A possible monitoring process for a dynamic mapping is shown in figure 9.2. First, the
mapping is created and tested by the implementator. Then the risk budget is determined.
The next step is to monitor and signal the risk. When a large deviation is detected, the
process can be adapted in three ways, the mapping can be adjusted, for example such that
more single securities fall in each SAC. Also the risk budget can be extended, by adjusting
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the significance level. A third possibility is to take a more detailed look at the portfolio and
observe whether individual securities cause a deviation in the portfolio.
The outer circle in this process is pursued by the implementator only he can adjust the
mapping. An important task for the implementator is to evaluate the mapping regularly. The
inner circle, which moves from the detection of the significant deviation to the adjustment of
the risk budget can be pursued by the portfolio manager, he can also improve the portfolio.

In the whole thesis, portfolios containing only stocks were considered. However, one can also
invest in different asset classes and in funds. When investing in a fund, one already invests in
a variety of single securities. Therefore, a portfolio containing one fund, which often tracks
a benchmark, should originate from the same distribution as the benchmark. Its mapping
should be accurate without having a minimum number of securities in the SAC.

In the introduction, the goal for this thesis was formulated as follows:

To find or construct a methodology to identify the mismatch between portfolio
risk and the SAA risk, identify the causes of this mismatch and investigate the
possibilities to create a computerized monitoring system to prevent future SAA
mismatch.

A possible methodology was described in this thesis, some of the steps in this method were
only executed for the asset class equity. We have not been able to take a closer look at the
other asset classes, since proper data were not available. Before the methodology can be
applied in the real world, for true portfolios, the different steps should also be executed for
the other asset classes. Once the data are available, this should not be too much work, since
the models were all created while keeping in mind that other data could be plugged in.
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Appendix A

Single securities equity

Sector Security Country
name symbol

L
C

C
an

ad
a Communications Thomson Reuters Corp Canada TRI

Financial Royal Bank of Canada Canada RY
Precious metals Barrick Gold Corp Canada ABX
Pipelines Trans Canada Corp Canada TRP
Consumer, cyclical Gildan Activewear Inc Canada GIL

L
C

J
a
p

an

Technology Canon Japan 7751
Automotive Toyota Japan 7203
Chemicals Fujifilm Holdings Corp Japan 4901
Rubber products Bridgestone Japan 5108
Electric Machinery Sony Japan 6758

L
C

U
S

A

Pharmaceuticals Johnson & Johnson USA NYSE:JNJ
Financial Bank of America USA BAC
IT Intel Corp USA INTC
Consumer, non-cyclical Pepsico Inc USA NYSE:PEP
Automotive Ford USA NYSE:F

L
C

E
u

ro
zo

n
e Telecommunication Koninklijke KPN NV Netherlands KPN

Industrial BAM Netherlands BAMNB
Consumer, cyclical Porsche Germany PAH3
Building & Construction Bouygues SA France EN
Consumer, non-cyclical L’Oreal France EPA:OR

L
C

E
u

ro
p

e
ex

E
u

ro
zo

n
e Oil BP UK LON:BP

Consumer Sainsbury UK LON:SBRY
Financial Credit Suisse Switzerland NYSE:CS
Pharmaceuticals Glaxosmithkline UK LON:GSK
Consumer, non-cyclical Nestlé Switzerland NESR
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L
C

P
a
ci

fi
c

ex
J
ap

a
n Oil Woodside Australia WPL

Petroleum Ltd
Consumer, non-cyclical Woolworths Ltd Australia ASX:WOW
Consumer, cyclical Pumpkin Patch New Zealand NZE:PPL
Industrial Cheung Kong Infra- Hong Kong 1038

structure Holdings Ltd
Financial BOC Hong Kong Hong Kong 2388

Holdings Ltd

L
C

E
M

L
a
ti

n
A

m
er

ic
a

Energy Petroleo Brasileiro SA Brazil PBR
Basic Materials Sociedad Quimica Chili SQM

y Minera
Financial Credicorp Ltd Chili BAP
Financial Bancolombia SA Colombia CIB
Communications America Movil Mexico AMX

SAB de CV

L
C

A
si

a
E

M

Communications HTC corp Taiwan 2498
Consumer, non-cyclical Charoen Pokphand Thailand CPOKY

Foods PCL
Pharmaceuticals Cadila Healthcare Ltd India 532321
Technology Neusoft Corporation China SHA:600718
Consumer, non-cyclical Jollibee Foods Corp Phillipines JBFCF

L
C

E
as

t
E

u
ro

p
e Financial Sberbank Rossii OAO Russia SBER

Oil & Gas Gazprom OAO Russia GAZP
Financial Severo-Zapadnoye Russia SZPR

Parokhodstvo OAO

S
C

U
S

A

Oil & Gas Newpark Resources Inc USA NR
water Middlesex Water Co USA MSEX
technology iGate USA IGTE
Consumer, non-cyclical BJ’s restaurants USA BJRI
financial First Merchants Corp USA FRME

S
C

C
an

ad
a

Consumer, non-cyclical Canada Bread Co Ltd Canada CBY
Commercial Services MacDonald Dettwiler Canada MDA

& Associates Ltd
Gold mining Gabriel Resources Ltd Canada GBU
Industrial Intertape Polymer Canada ITP

Group
Financial Equitable Group Inc Canada ETC

S
C

E
u

ro
p

e
ex

E
u

ro
zo

n
e

Consumer, cyclical Laura Ashley plc UK LON:ALY
Industrial Keller Group UK LON:KLR
Consumer, non-cyclical Nobel Biocare Switzerland NBHGF

Holding AG
Internet gambling Betsson AB Sweden BETS-B
Industrial Dfds A/S Denmark DFDS
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S
C

E
u

ro
zo

n
e Industrial Somfy SA France EPA:SO

Consumer, non-cyclical Duvel Moortgat SA Belgium DUV
Consumer, Cyclical Juventus FC Italy JUVE
Industrial Pfeiffer Vacuum Germany PFV

Technology AG
Software Exact Holding NV Netherlands EXACT

S
C

E
m

er
gi

n
g

m
ar

ke
ts

Hand/Machine Tools Fag Bearings India Ltd India FAGBEA
Pharmaceuticals Gansu Duyiwei Bio China SHE:002219

Pharmaceutical Co
Financial Gafisa SA Brazil GFA
Industrial VSMPO-AVISMA Russia VSMO

Corporation OAO
Consumer, non-cyclical Vina Concha y Toro S.A. Chile VCO

S
C

P
ac

ifi
c

ex
J
ap

a
n

Mining Kingsgate Australia ASX:KCN
Consolidated Ltd

Consumer, cyclical Michael Hill New Zealand NZE:MHI
International Ltd

Consumer, cyclical Wing On Company Hong Kong 0289
International Ltd

Media Fairfax Media Ltd Australia FXJ
Industrial Harbin Power Equip- Hong Kong 1133

ment Company Ltd

Table A.1: All selected stocks with sector, countries and GoogleFinance symbol.
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Appendix B

Test the mapping

Period SAC name
α = α = α = α = α = α =
0.1 0.05 0.025 0.01 0.005 0.0025

6
m

on
th

LC Japan 0% 0% 0% 0% 0% 0%
LC Pacific ex Japan 0% 0% 0% 0% 0% 0%
LC USA 0% 0% 0% 0% 0% 0%
LC Canada 0% 0% 0% 0% 0% 0%
LC Eurozone 1% 0% 0% 0% 0% 0%
LC Europe ex Eurozone 0% 0% 0% 0% 0% 0%
SC Pacific ex Japan 0% 0% 0% 0% 0% 0%
SC USA 0% 0% 0% 0% 0% 0%
SC Canada 16% 10% 7% 3% 1% 0%
SC Europe 0% 0% 0% 0% 0% 0%
SC Eurozone 0% 0% 0% 0% 0% 0%
LC Eastern Europe 48% 48% 48% 43% 38% 33%
LC Latin America 0% 0% 0% 0% 0% 0%
LC Asia 0% 0% 0% 0% 0% 0%
SC Emerging markets 0% 0% 0% 0% 0% 0%

LC North America 0% 0% 0% 0% 0% 0%
lC Emerging markets 0% 0% 0% 0% 0% 0%
LC Europe 0% 0% 0% 0% 0% 0%

3
y
ea

r

LC Japan 0% 0% 0% 0% 0% 0%
LC Pacific ex Japan 1% 1% 1% 1% 0% 0%
LC USA 5% 4% 3% 2% 2% 2%
LC Canada 13% 12% 12% 10% 7% 7%
LC Eurozone 13% 9% 7% 6% 4% 2%
LC Europe ex Eurozone 6% 2% 1% 0% 0% 0%
SC Pacific ex Japan 24% 15% 6% 1% 0% 0%
SC USA 30% 25% 20% 17% 16% 9%
SC Canada 42% 39% 37% 35% 33% 29%
SC Europe 2% 2% 2% 2% 2% 2%
SC Eurozone 1% 1% 1% 1% 1% 1%

111



LC Eastern Europe 62% 57% 57% 52% 52% 48%
LC Latin America 14% 10% 9% 6% 6% 2%
LC Asia 24% 18% 16% 13% 11% 6%
SC Emerging markets 66% 61% 57% 52% 45% 33%

LC North America 0% 0% 0% 0% 0% 0%
LC Emerging Markets 0% 0% 0% 0% 0% 0%
LC Europe 0% 0% 0% 0% 0% 0%

7
y
ea

r

LC Japan 30% 17% 15% 2% 0% 0%
LC Pacific ex Japan 88% 86% 86% 83% 79% 75%
LC USA 23% 21% 20% 18% 18% 17%
LC Canada 65% 58% 45% 36% 31% 19%
LC Eurozone 100% 100% 100% 93% 89% 84%
LC Europe ex Eurozone 52% 47% 44% 40% 37% 34%
SC Pacific ex Japan 67% 63% 54% 50% 47% 39%
SC USA 67% 64% 61% 54% 51% 39%
SC Canada 61% 45% 36% 28% 28% 25%
SC Europe 60% 52% 46% 37% 33% 24%
SC Eurozone 14% 13% 10% 8% 6% 4%
LC Eastern Europe Not enough data
LC Latin America 70% 60% 55% 48% 48% 39%
LC Asia 80% 77% 75% 71% 71% 71%
SC Emerging markets 77% 71% 70% 68% 64% 57%

LC North America 0% 0% 0% 0% 0% 0%
LC Emerging Markets 40% 31% 22% 17% 12% 5%
LC Europe 93% 93% 93% 93% 93% 92%

Table B.1: percentage of portfolios for which the benchmark and the portfolio do not originate from
the same distribution.
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Appendix C

Ranking the SACs

Equity ranking ranking
2002-2011 2009-2012

Developed markets NR NR
DM Large cap NR NR
DM Small cap NR NR
SC Pacific ex Japan 1 1
SC Pacific 2 2
SC Canada 3 3
LC Eurozone 4 8
LC Europe ex Eurozone 5 9
LC Japan 6 6
SC North America 7 4
LC North America 8 10
LC USA 9 11
LC Pacific ex Japan 10 12
LC Canada 11 13
SC USA 12 16
SC Europe 13 7
LC Europe 14 5
SC Eurozone 15 15
LC Pacific 16 14

Emerging markets NR NR
EM Large cap NR NR
EM Small cap NR NR
LC Eastern Europe 1 1
LC Latin America 2 2
LC Asia 3 3

Table C.1: Ranking of asset class Equity.
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Government bonds ranking ranking
2002-2011 2009-2012

Nominal NR NR
Eurozone IG NR NR
USA NR NR
UK NR NR
USA maturity 1-3 1 1
USA maturity 3-5 2 2
UK maturity 1-5 3 3
UK maturity >15 4 5
UK maturity >10 5 6
Eurozone maturity >10 6 7
Eurozone maturity 1-3 7 10
Eurozone maturity 7-10 8 22
USA maturity 5-10 9 4
Eurozone maturity <5 10 9
Italy 11 8
Eurozone maturity 3-5 12 23
Spain 13 12
USA maturity >20 14 13
USA maturity 10-20 15 11
Portugal 16 17
Ireland 17 18
Greece 18 19
UK maturity 5-15 19 24
UK maturity 5-10 20 21
France 21 25
Denmark 22 15
Eurozone maturity 5-7 23 26
France maturity <5 24 14
Belgium 25 27
Netherlands 26 16
Finland 27 20
UK maturity 10-15 28 29
Austria 29 28
Belgium maturity <5 30 30
Austria maturity <5 31 31
Finland <5 32 32

Index-linked NR NR
Eurozone 1 6
Italy 2 4
UK maturity 1-10 3 3
France maturity 1-10 4 11
France maturity >5 5 19
UK 6 5
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UK maturity >10 7 2
USA maturity 1-10 8 10
USA 9 1
World maturity >5 10 14
World maturity 1-10 11 15
Italy maturity 1-10 12 12
Germany maturity >10 13 13
Germany 14 7
UK maturity >5 15 16
France 16 17
USA maturity 7-10 17 18
Germany maturity >5 18 9
UK maturity 7-10 19 8
France maturity 7-10 20 20

Table C.2: Ranking of asset class Government Bonds.

Corporate bonds ranking ranking
2002-2011 2009-2012

Euro Government-related NR NR
Euro Securitized NR NR
Euro Corporate NR NR
UK corporate IG NR NR
UK Government-related NR NR
UK Securitized NR NR
USA NR NR
USA Corporate NR NR
USA Government-related NR NR
USA Securitized NR NR
Euro HY PanEurope 1 1
USA HY 2 2
UK AAA 3 3
Euro AAA 4 5
Euro BAA 5 4
UK A 6 6
Euro A 7 7
UK Bbb 8 8
Euro Corporate excl. financials 9 9
UK AA 10 10
Euro AA 11 11

Table C.3: Ranking of asset class Corporate Bonds.
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Real estate ranking ranking
2002-2011 2009-2012

Indirect Listed NR NR
North America NR NR
Europe NR NR
Far east NR NR
Japan 1 1
United Kingdom 2 30
Canada 3 2
Austria 4 6
Germany 5 24
China 6 8
Brazil 7 4
Turkey 8 5
Switzerland 9 10
Belgium 10 9
Singapore 11 12
Hong Kong 12 7
Sweden 13 11
Indonesia 14 22
Philippines 15 17
Spain 16 15
Greece 17 19
Russia 18 14
Poland 19 16
Italy 20 18
Norway 21 23
Finland 22 21
Malaysia 23 26
Thailand 24 3
New Zealand 25 28
Australia 26 25
India 27 20
United States 28 29
Netherlands 29 13
France 30 27
Mexico 31
Argentina 32
Portugal 33 31

Indirect unlisted NR NR
Europe NR NR
Core NR NR
Value Added NR NR
Opportunistic NR NR
North America NR NR
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Core NR NR
Value Added NR NR
Opportunistic NR NR
Asia & Pacific NR NR
Core NR NR
Value Added NR NR
Opportunistic NR NR

Direct NR NR
Europe NR NR
North America NR NR
Japan NR NR
UK 1 NR
Europe Residential 2 NR
Japan Residential 3 NR
Europe Retail 4 NR
Switzerland 5 NR
Europe Industrial 6 NR
Netherlands 7 NR
Japan Office 8 NR
North America Retail 9 NR
North America hotel 10 NR
Japan Retail 11 NR
UK Retail 12 10
Switzerland Industrial 13 NR
UK Residential 14 NR
Netherlands Other 15 NR
UK Industrial 16 NR
Switzerland Retail 17 NR
Switzerland Other 18 NR
Netherlands Industrial 19 NR
North America Office 20 NR
North America Residential 21 NR
North America Industrial 22 NR
UK Office 23 NR
Netherlands Residential 24 NR
Netherlands Retail 25 NR
Switzerland Office 26 NR
Switzerland Residential 27 NR
Netherlands Office 28 NR

Table C.4: Ranking of asset class Real estate.

117



Alternatives ranking ranking
2002-2011 2009-2012

Hedge funds NR NR
Macro 1 3
Equity Hedge 2 1
Relative Value 3 2
FoF 4 4
Event driven 5 5

Private equity NR NR
USA 1 5
UK 2 1
Europe 3 4
VC 3
BO 2

Commodities NR NR
Gold 1 3
Energy 2 2
Agriculture 3 1
Industrial Metals 4 4
Livestock 5 5
Precious Metals 6 6

Infrastructures NR NR
incl utilities 1 1
ex utilities 2 2

Table C.5: Ranking of asset class Alternatives.
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Appendix D

Test the mapping

1 month standard deviation

σ lower upper σ σ σ σ σ σ
PF bound bound 100% 75% 50% 25% 0% SAA

MC PF 6.9 4.5 10.7 8.3 7.7 7.4 6.7 6.6 6.7
PF 1 5.6 3.6 8.5 7.3 7.2 6.9 7.5 6.8 6.7
PF 2 7.7 5 11.8 7.5 7.3 7 7.8 6.7 6.7
PF 3 8.9 5.8 13.7 7.4 7.4 7 7.6 6.8 6.7
PF 4 8.6 5.6 13.2 7.9 7.6 7.3 7.9 7 6.7
PF 5 6 3.9 9.2 7 6.9 6.9 7.7 6.8 6.7
PF 6 5.9 3.9 9.1 7.6 7.3 7.1 7.7 6.8 6.7
PF 7 6.3 4.1 9.6 7.7 7.5 7 7.6 6.6 6.7
PF 8 8.9 5.8 13.7 7.3 7.2 7.3 7.8 6.9 6.7
PF 9 7.8 5.1 12 7.3 7.2 6.7 7.5 7 6.7
PF 10 7.7 5 11.8 7.4 7 6.9 7.5 6.9 6.7
PF 11 6.7 4.4 10.3 7.6 7.5 6.9 7.7 7.2 6.7
PF 12 6.5 4.2 9.9 7.5 7.2 6.6 7.1 6.7 6.7
PF 13 5.3 3.4 8.1 7.3 7.1 7 7.8 6.8 6.7
PF 14 6.1 4 9.4 7.2 7.1 6.8 7.3 6.8 6.7
PF 15 10.5 6.8 16.1 7.6 7.6 7.3 7.8 6.7 6.7
PF 16 6.8 4.4 10.5 7.8 7.7 7.4 8 6.9 6.7
PF 17 8.1 5.2 12.4 7.2 7 6.9 7.1 7.1 6.7
PF 18 9.8 6.4 15 8 7.9 7.6 8 6.7 6.7
PF 19 6.4 4.2 9.8 7.2 7 6.8 7.4 6.8 6.7
PF 20 8 5.2 12.3 7.6 7.3 7 7.9 6.8 6.7
PF 21 6.6 4.3 10.2 7.6 7.4 6.9 7.3 6.7 6.7
PF 22 9 5.9 13.8 7 6.7 6.6 7.2 6.7 6.7
PF 23 9.6 6.2 14.7 7.9 7.8 7.1 7.8 7 6.7
PF 24 7.2 4.7 11 7.2 7.2 6.9 7.5 6.9 6.7
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Table D.1: Standard deviation of the actual portfolio, lower and upper bound of the risk budgets
and the standard deviations of the different mappings at significance level α = 0.05. All values are
multiplied by 1000. The standard deviations of the mappings are marked green when they fall within
the risk budget.

6 months Standard deviation

σ lower upper σ σ σ σ σ σ
PF SS’s bound bound 100% 75% 50% 25% 0% SAA

MC PF 9.5 8 11.2 10.6 9.9 9.6 9.1 8.9 8.9
PF 1 8.4 7.1 10 9.4 9.3 8.4 9.5 8.9 8.9
PF 2 9.3 7.8 11.1 9.7 9.5 8.6 10 8.9 8.9
PF 3 11.4 9.6 13.5 9.3 9.2 8.3 9.5 8.9 8.9
PF 4 13.6 11.5 16.2 10.1 9.8 9.2 9.8 8.9 8.9
PF 5 8.1 6.8 9.6 9 8.9 8.5 9.7 8.9 8.9
PF 6 8.7 7.3 10.3 9.2 8.9 8.1 9.8 8.9 8.9
PF 7 8.2 6.9 9.7 9.4 9.3 8.6 9.6 8.9 8.9
PF 8 12.8 10.8 15.2 9.7 9.5 8.4 9.7 8.9 8.9
PF 9 11.4 9.6 13.5 9.3 9.1 8.2 9.3 8.9 8.9
PF 10 12.5 10.5 14.8 10.1 9.7 8.8 9.4 8.9 8.9
PF 11 10.4 8.8 12.4 10.2 10.1 8.6 9.4 8.9 8.9
PF 12 8.8 7.5 10.5 9.4 9.2 8.7 9.2 8.9 8.9
PF 13 9.5 8 11.3 9.4 9.1 8.5 9.7 8.9 8.9
PF 14 9.2 7.8 10.9 9 8.9 7.8 9.2 8.9 8.9
PF 15 10.4 8.8 12.4 8.9 8.9 8.3 9.7 8.9 8.9
PF 16 9.4 7.9 11.2 10.5 10.4 8.7 9.7 8.9 8.9
PF 17 10.2 8.5 12.1 9.1 8.9 8.2 8.9 8.9 8.9
PF 18 12.3 10.4 14.7 10.6 10.4 9.5 9.7 8.9 8.9
PF 19 9 7.5 10.6 9.5 9.3 8.3 9.4 8.9 8.9
PF 20 9.5 8 11.3 10 9.6 8.6 9.9 8.9 8.9
PF 21 9.2 7.7 10.9 9 8.7 8.2 9.5 8.9 8.9
PF 22 12.4 10.4 14.7 9.2 8.9 8.2 9.3 9 8.9
PF 23 11.2 9.4 13.3 10.7 10.6 8.8 9.5 8.9 8.9
PF 24 10.2 8.6 12.1 8.9 8.9 7.9 9.4 8.9 8.9

Table D.2: Standard deviation of the actual portfolio, lower and upper bound of the risk budgets
and the standard deviations of the different mappings at significance level α = 0.05. All values are
multiplied by 1000. The standard deviations of the mappings are marked green when they fall within
the risk budget.

120



3 year standard deviation

σ lower upper σ σ σ σ σ σ
PF SS’s bound bound 100% 75% 50% 25% 0% SAA

MC PF 11.9 11 12.7 12.2 11.7 11.4 11.1 11 10.9
PF 1 10.5 9.8 11.3 11.3 11.2 10 11.4 10.8 10.9
PF 2 11.6 10.8 12.4 11.6 11.4 10.4 11.9 10.9 10.9
PF 3 14.2 13.2 15.2 11.3 11.2 9.9 11.4 10.8 10.9
PF 4 17.8 16.6 19.1 12.2 11.9 11.2 11.6 10.8 10.9
PF 5 9.7 9.1 10.4 10.9 10.9 10.3 11.7 10.9 10.9
PF 6 9.9 9.3 10.7 10.7 10.5 9.6 11.7 10.8 10.9
PF 7 10.4 9.7 11.2 11.4 11.2 10.3 11.5 10.9 10.9
PF 8 15.9 14.9 17.1 11.6 11.5 9.9 11.5 10.8 10.9
PF 9 14.8 13.8 15.9 11.1 11 9.8 11.1 10.8 10.9
PF 10 16 14.9 17.2 12.2 12 10.7 11.3 10.9 10.9
PF 11 13 12.1 13.9 12.4 12.4 10.4 11.2 10.7 10.9
PF 12 10.2 9.5 10.9 11.6 11.4 10.6 11.1 10.8 10.9
PF 13 12.6 11.8 13.5 11.2 11.1 10.1 11.6 10.8 10.9
PF 14 11.8 11 12.6 10.7 10.6 9.3 11.1 10.8 10.9
PF 15 11.9 11.1 12.7 10.6 10.5 9.8 11.6 10.9 10.9
PF 16 11.8 11 12.6 12.5 12.4 10.3 11.5 10.7 10.9
PF 17 11.9 11.1 12.8 11 10.9 9.7 10.7 10.7 10.9
PF 18 14.9 13.9 16 12.7 12.6 11.4 11.6 10.9 10.9
PF 19 10.9 10.2 11.7 11.4 11.3 10 11.3 10.9 10.9
PF 20 10.9 10.1 11.7 11.8 11.6 10.4 11.9 10.8 10.9
PF 21 11.1 10.3 11.9 10.7 10.5 9.7 11.4 10.8 10.9
PF 22 16 14.9 17.2 11.3 11 9.9 11.2 11 10.9
PF 23 12.8 11.9 13.7 12.9 12.8 10.6 11.4 10.7 10.9
PF 24 11 10.3 11.8 10.7 10.6 9.4 11.3 10.8 10.9

Table D.3: Standard deviation of the actual portfolio, lower and upper bound of the risk budgets
and the standard deviations of the different mappings at significance level α = 0.05. All values are
multiplied by 1000. The standard deviations of the mappings are marked green when they fall within
the risk budget.
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7 year standard deviation

σ lower upper σ σ σ σ σ σ
PF SS’s bound bound 100% 75% 50% 25% 0% SAA

MC PF 14.7 14 15.3 13.9 11.9 11.6 11.3 11.2 11.6
PF 1 13.7 13.1 14.4 13.6 12 10.5 11.5 11.1 11.6
PF 2 16 15.3 16.7 13.6 12 10.7 11.8 11.2 11.6
PF 3 26.3 25.1 27.6 13.7 12.1 10.5 11.5 11.2 11.6
PF 4 21.4 20.4 22.4 14.1 12.3 11.7 11.7 11.2 11.6
PF 5 12.4 11.9 13 12.7 11.2 10.7 11.7 11.2 11.6
PF 6 17.4 16.6 18.2 12.8 11.4 10.4 11.7 11.1 11.6
PF 7 13.1 12.5 13.7 13.5 12 10.7 11.6 11.2 11.6
PF 8 19.3 18.4 20.2 14.1 12.4 10.6 11.6 11.1 11.6
PF 9 18.7 17.8 19.6 13.4 11.8 10.5 11.4 11.2 11.6
PF 10 19.5 18.6 20.4 14.6 12.8 11.1 11.5 11.2 11.6
PF 11 16.4 15.7 17.2 15.5 13.5 11.1 11.5 11.2 11.6
PF 12 12.3 11.8 12.9 13.7 12.1 11.1 11.4 11.2 11.6
PF 13 15.6 14.9 16.3 13.3 11.7 10.6 11.6 11.1 11.6
PF 14 15.5 14.8 16.2 13.2 11.8 10.2 11.3 11.1 11.6
PF 15 26.4 25.2 27.6 12.7 11.4 10.4 11.6 11.2 11.6
PF 16 14 13.4 14.7 15.4 13.5 10.8 11.7 11.2 11.6
PF 17 15.3 14.6 16 13.6 12 10.5 11.2 11.2 11.6
PF 18 16.9 16.1 17.7 15.3 13.5 11.8 11.8 11.2 11.6
PF 19 13.1 12.5 13.7 13.7 12 10.4 11.4 11.2 11.6
PF 20 20.5 19.5 21.4 13.9 12.4 11 12.1 11.3 11.6
PF 21 13 12.4 13.6 12.7 11.3 10.4 11.5 11.1 11.6
PF 22 21 20 22 13.4 11.8 10.3 11.3 11.2 11.6
PF 23 16.8 16.1 17.6 16.1 14.1 11.2 11.7 11.2 11.6
PF 24 14.9 14.2 15.6 13.1 11.7 10.3 11.5 11.2 11.6

Table D.4: Standard deviation of the actual portfolio, lower and upper bound of the risk budgets
and the standard deviations of the different mappings at significance level α = 0.05. All values are
multiplied by 1000. The standard deviations of the mappings are marked green when they fall within
the risk budget.
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1 month CVaR

CVaR lower upper CVaR CVaR CVaR CVaR CVaR CVaR

PF bound bound 100% 75% 50% 25% 0% SAA

MC PF -14.6 -15 -14.3 -8.8 -8.6 -8.1 -9.1 -8.8 -8.9
PF 1 -9.1 -9.3 -9 -9.2 -9.2 -9.3 -10.1 -8.9 -8.9
PF 2 -15.1 -15.3 -14.9 -9.4 -9.5 -9.5 -10.4 -8.9 -8.9
PF 3 -10.9 -10.9 -10.8 -9.4 -9.5 -9.2 -10.1 -8.9 -8.9
PF 4 -11.4 -11.6 -11.2 -10.8 -11 -10.1 -10.6 -8.9 -8.9
PF 5 -10.6 -10.7 -10.5 -9.6 -9.6 -9.8 -10.8 -8.9 -8.9
PF 6 -7.2 -7.2 -7.1 -8.7 -8.8 -8.5 -9.9 -8.9 -8.9
PF 7 -11.4 -11.5 -11.2 -10.8 -10.8 -10.1 -10.7 -8.9 -8.9
PF 8 -12.5 -12.5 -12.4 -7.8 -7.9 -8.9 -9.9 -8.9 -8.9
PF 9 -10.4 -10.6 -10.2 -9.3 -9.3 -8.8 -9.6 -8.9 -8.9
PF 10 -9 -9.2 -8.9 -8.3 -8.5 -9.3 -9.7 -8.9 -8.9
PF 11 -7.5 -7.6 -7.4 -8.8 -8.8 -8.9 -9.4 -8.9 -8.9
PF 12 -5 -5 -5 -10.7 -10.8 -9.4 -9.8 -8.8 -8.9
PF 13 -9.4 -9.5 -9.3 -9.3 -9.4 -9.6 -10.5 -8.9 -8.9
PF 14 -8.4 -8.5 -8.2 -8.4 -8.5 -8.5 -9.7 -8.9 -8.9
PF 15 -9.9 -9.9 -9.9 -10.3 -10.3 -9.9 -11.2 -8.9 -8.9
PF 16 -13.7 -14 -13.4 -8.6 -8.2 -9.3 -10.1 -8.9 -8.9
PF 17 -13.8 -13.8 -13.7 -8 -8 -8.2 -8.9 -8.9 -8.9
PF 18 -20.6 -20.7 -20.5 -10.4 -10.4 -11 -11.3 -8.9 -8.9
PF 19 -10.9 -11 -10.7 -8.5 -8.6 -9.1 -9.8 -8.9 -8.9
PF 20 -8.7 -8.9 -8.5 -9.1 -9.1 -9.4 -10.4 -8.8 -8.9
PF 21 -9.2 -9.3 -9.1 -9.6 -9.7 -8.8 -9.9 -8.9 -8.9
PF 22 -11.1 -11.3 -10.9 -8.4 -8.6 -9.1 -9.8 -9 -8.9
PF 23 -15.9 -16 -15.9 -9.1 -9.1 -9.8 -10.5 -8.8 -8.9
PF 24 -11.4 -11.5 -11.3 -9 -9 -9 -10.2 -8.9 -8.9

Table D.5: CVaR of the actual portfolio, lower and upper bound of the risk budgets and the CVaR
of the different mappings at significance level α = 0.05. All values are multiplied by 1000. The CVaRs
of the mappings are marked green when they fall within the risk budget.
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6 months CVaR

CVaR lower upper CVaR CVaR CVaR CVaR CVaR CVaR

PF bound bound 100% 75% 50% 25% 0% SAA

MC PF -20.2 -20.3 -20.1 -21.7 -19.9 -19.4 -18 -17.7 -17.7
PF 1 -17 -17.1 -17 -18.9 -18.5 -16.6 -18.7 -17.8 -17.7
PF 2 -20.7 -20.8 -20.6 -19.4 -18.9 -17 -19.6 -17.9 -17.7
PF 3 -21.3 -21.4 -21.1 -18.5 -18.3 -16.3 -18.7 -17.7 -17.7
PF 4 -26.1 -26.3 -25.9 -20 -19.4 -18.5 -19.4 -17.8 -17.7
PF 5 -17.7 -17.8 -17.7 -17.9 -17.7 -17 -19.3 -17.9 -17.7
PF 6 -17.1 -17.2 -17.1 -18.2 -17.6 -16.1 -19.1 -17.7 -17.7
PF 7 -18.4 -18.5 -18.3 -18.4 -18.1 -16.9 -18.9 -17.9 -17.7
PF 8 -24.8 -25.1 -24.6 -19.7 -19.4 -16.5 -19.1 -17.7 -17.7
PF 9 -21.1 -21.3 -20.9 -18.4 -18 -16.2 -18.3 -17.7 -17.7
PF 10 -24.9 -25 -24.8 -20.4 -19.4 -17.7 -18.7 -18 -17.7
PF 11 -19.5 -19.6 -19.3 -20.4 -20.2 -17.1 -18.7 -17.7 -17.7
PF 12 -19.3 -19.5 -19 -18.3 -17.9 -17.4 -18.3 -17.8 -17.7
PF 13 -18.8 -18.9 -18.7 -18.7 -18.2 -16.7 -19.1 -17.8 -17.7
PF 14 -18.4 -18.5 -18.3 -18 -17.6 -15.5 -18.2 -17.8 -17.7
PF 15 -19.9 -20 -19.7 -17.2 -17.2 -16.1 -19 -17.9 -17.7
PF 16 -19 -19.1 -18.9 -21.4 -21.1 -17.1 -19.2 -17.7 -17.7
PF 17 -20.4 -20.5 -20.3 -18.4 -17.9 -16.5 -17.7 -17.6 -17.7
PF 18 -25.9 -26 -25.8 -20.9 -20.7 -18.8 -19.2 -17.9 -17.7
PF 19 -18.4 -18.5 -18.3 -19.1 -18.5 -16.6 -18.6 -17.9 -17.7
PF 20 -18 -18.1 -17.9 -20 -19.3 -17.2 -19.8 -17.7 -17.7
PF 21 -18.2 -18.3 -18.1 -17.7 -17.1 -16.2 -18.7 -17.7 -17.7
PF 22 -23.2 -23.3 -23 -18.5 -17.8 -16.3 -18.4 -18.1 -17.7
PF 23 -22.8 -23 -22.7 -21.2 -20.9 -17.5 -18.8 -17.6 -17.7
PF 24 -21.6 -21.7 -21.5 -17.6 -17.5 -15.6 -18.5 -17.8 -17.7

Table D.6: CVaR of the actual portfolio, lower and upper bound of the risk budgets and the CVaR
of the different mappings at significance level α = 0.05. All values are multiplied by 1000. The CVaRs
of the mappings are marked green when they fall within the risk budget.
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3 year CVaR

CVaR lower upper CVaR CVaR CVaR CVaR CVaR CVaR

PF bound bound 100% 75% 50% 25% 0% SAA

MC PF -27.1 -27.2 -27.1 -28.8 -27.6 -27 -26.7 -26.5 -26.2
PF 1 -24.9 -24.9 -24.8 -27 -26.7 -23.9 -26.9 -25.9 -26.2
PF 2 -26.6 -26.6 -26.5 -27.6 -27.3 -24.7 -28.2 -26.2 -26.2
PF 3 -34.3 -34.5 -34.1 -26.9 -26.7 -23.4 -27 -25.8 -26.2
PF 4 -42.6 -42.9 -42.3 -28.9 -28.4 -26.6 -27.5 -25.8 -26.2
PF 5 -22.6 -22.7 -22.5 -26.2 -26 -24.5 -27.5 -26.1 -26.2
PF 6 -23.4 -23.5 -23.3 -25.3 -24.9 -22.7 -27.8 -26 -26.2
PF 7 -24.3 -24.4 -24.3 -26.9 -26.6 -24.6 -27.1 -26.3 -26.2
PF 8 -38.4 -38.6 -38.2 -27.7 -27.4 -23.4 -27.3 -25.8 -26.2
PF 9 -35.7 -35.9 -35.5 -26.2 -26 -23.4 -26.5 -25.7 -26.2
PF 10 -38.7 -38.9 -38.5 -29.5 -28.8 -25.6 -26.9 -26 -26.2
PF 11 -31.5 -31.6 -31.3 -29.8 -29.6 -24.9 -26.6 -25.5 -26.2
PF 12 -24.3 -24.4 -24.3 -27.4 -27 -25.5 -26.4 -26 -26.2
PF 13 -30.3 -30.5 -30.2 -26.8 -26.4 -24 -27.3 -25.9 -26.2
PF 14 -27.9 -28 -27.7 -25.4 -25.2 -21.9 -26.3 -25.9 -26.2
PF 15 -28.6 -28.7 -28.5 -24.9 -24.8 -22.9 -27.3 -26.2 -26.2
PF 16 -27.1 -27.2 -27 -30 -29.7 -24.4 -27.2 -25.7 -26.2
PF 17 -27.8 -27.9 -27.7 -26.3 -25.9 -23 -25.7 -25.7 -26.2
PF 18 -34.3 -34.4 -34.1 -30.3 -30.1 -26.9 -27.3 -26.1 -26.2
PF 19 -25.2 -25.2 -25.1 -27.3 -26.9 -23.9 -26.8 -26.1 -26.2
PF 20 -25.9 -26 -25.9 -28.3 -27.8 -24.7 -28 -25.7 -26.2
PF 21 -25.8 -25.9 -25.7 -25.2 -24.7 -23.1 -27.1 -26 -26.2
PF 22 -38.2 -38.5 -37.9 -27 -26.5 -23.8 -26.7 -26.4 -26.2
PF 23 -29.5 -29.6 -29.5 -30.9 -30.7 -25.1 -26.9 -25.6 -26.2
PF 24 -25.5 -25.5 -25.4 -25.2 -25.1 -22.2 -26.6 -25.9 -26.2

Table D.7: CVaR of the actual portfolio, lower and upper bound of the risk budgets and the CVaR
of the different mappings at significance level α = 0.05. All values are multiplied by 1000. The CVaRs
of the mappings are marked green when they fall within the risk budget.
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7 year CVaR

CVaR lower upper CVaR CVaR CVaR CVaR CVaR CVaR

PF bound bound 100% 75% 50% 25% 0% SAA

MC PF -34.6 -34.7 -34.5 -34.6 -29.4 -28.6 -28 -27.7 -29.6
PF 1 -34.1 -34.2 -34 -34.2 -29.7 -25.8 -28.6 -27.6 -29.6
PF 2 -37 -37.2 -36.8 -34.2 -29.7 -26.3 -29.5 -27.7 -29.6
PF 3 -53.4 -54 -52.9 -34.3 -30.1 -25.6 -28.6 -27.6 -29.6
PF 4 -53 -53.3 -52.8 -36.2 -31.1 -29.1 -29.4 -27.7 -29.6
PF 5 -29.6 -29.8 -29.4 -32.2 -28 -26.4 -29.2 -27.7 -29.6
PF 6 -35.6 -36 -35.2 -31.7 -27.9 -25.3 -29 -27.6 -29.6
PF 7 -31.6 -31.7 -31.5 -33.9 -29.4 -26.3 -28.8 -27.6 -29.6
PF 8 -46.8 -47 -46.6 -35.2 -30.9 -25.8 -28.9 -27.6 -29.6
PF 9 -45.9 -46 -45.8 -33.6 -29.4 -25.7 -28.3 -27.6 -29.6
PF 10 -47.8 -48 -47.6 -37 -31.9 -27.3 -28.5 -27.7 -29.6
PF 11 -40 -40.2 -39.9 -39 -34 -27.2 -28.6 -27.8 -29.6
PF 12 -30.7 -30.8 -30.5 -34.7 -29.9 -27.4 -28.2 -27.6 -29.6
PF 13 -38.5 -38.6 -38.4 -33.6 -29.1 -26.1 -29 -27.6 -29.6
PF 14 -38.4 -38.5 -38.3 -32.8 -29 -24.8 -28.2 -27.6 -29.6
PF 15 -51.6 -52.2 -51 -31.4 -27.8 -25.4 -29.1 -27.6 -29.6
PF 16 -33.9 -34.1 -33.8 -38.6 -33.7 -26.5 -29 -27.6 -29.6
PF 17 -37.1 -37.2 -37 -34 -29.7 -25.7 -27.7 -27.7 -29.6
PF 18 -40.2 -40.4 -40.1 -38.9 -33.7 -29.3 -29.2 -27.6 -29.6
PF 19 -31.4 -31.5 -31.3 -34.5 -30 -25.7 -28.4 -27.6 -29.6
PF 20 -42.9 -43.3 -42.5 -35.2 -30.5 -26.8 -30 -27.7 -29.6
PF 21 -31.5 -31.6 -31.4 -31.5 -27.5 -25.3 -28.6 -27.6 -29.6
PF 22 -50.2 -50.5 -50 -33.9 -29.4 -25.5 -28.1 -27.7 -29.6
PF 23 -40.6 -40.7 -40.4 -40.7 -35.3 -27.6 -29 -27.6 -29.6
PF 24 -35.9 -36.1 -35.7 -32.4 -28.7 -25 -28.5 -27.6 -29.6

Table D.8: CVaR of the actual portfolio, lower and upper bound of the risk budgets and the CVaR
of the different mappings at significance level α = 0.05. All values are multiplied by 1000. The CVaRs
of the mappings are marked green when they fall within the risk budget.
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1M 3M 6M 1Y 3Y 7Y 1M 3M 6M 1Y 3Y 7Y

σ

100%

α
=

0
.5

48 36 32 20 8 4

α
=

0
.2

5

84 52 40 32 20 12
75% 60 40 44 24 12 0 84 64 56 32 20 4
50% 48 40 20 20 4 0 84 52 40 32 16 0
25% 52 24 32 8 8 0 80 48 44 32 24 0
0% 60 48 32 20 16 0 72 60 48 32 20 0

SAA 52 48 28 24 16 0 72 60 52 32 20 0

C
V
a
R

100%

α
=

0
.5

8 0 4 0 0 8

α
=

0
.2

5

8 0 4 4 0 12
75% 0 0 4 0 0 0 4 0 4 4 0 0
50% 0 4 0 0 0 0 0 4 0 0 0 0
25% 0 0 0 0 0 0 0 0 0 0 0 0
0% 0 0 0 0 0 0 4 0 0 0 0 0

SAA 0 4 4 0 0 4 0 4 4 0 0 4

σ

100%

α
=

0
.1

100 76 68 32 28 16

α
=

0
.0

5

100 88 76 36 32 24
75% 100 72 68 36 36 8 100 88 76 40 44 8
50% 96 64 48 40 28 0 100 72 52 40 28 0
25% 96 76 60 32 28 0 100 88 68 48 32 0
0% 92 64 60 52 28 0 96 72 68 56 32 0

SAA 88 64 60 52 24 0 96 68 68 56 32 0

C
V
a
R

100%

α
=

0
.1

8 0 8 4 0 16

α
=

0
.0

5

8 0 8 4 0 16
75% 12 0 4 4 0 0 12 0 4 4 0 0
50% 8 8 0 4 0 0 8 8 0 4 0 0
25% 0 0 0 0 0 0 0 0 0 0 0 0
0% 4 0 0 0 0 0 8 0 0 0 0 0

SAA 0 8 4 0 0 4 4 8 4 0 0 4

σ

100%

α
=

0
.0

2
5

100 100 88 80 56 24

α
=

0
.0

1

100 100 88 60 56 32
75% 100 100 88 76 56 8 100 96 84 64 52 8
50% 100 92 72 72 32 0 100 84 60 64 32 0
25% 100 100 84 72 56 0 100 100 80 60 48 0
0% 100 96 80 68 56 0 100 92 68 64 52 0

SAA 100 96 80 72 56 0 100 88 68 64 56 4

C
V
a
R

100%

α
=

0
.0

2
5

8 0 8 8 0 16

α
=

0
.0

1

8 0 8 8 0 16
75% 12 0 4 4 0 4 12 0 4 4 0 0
50% 8 8 0 4 4 0 8 8 0 4 4 0
25% 0 0 0 0 4 0 0 0 0 0 0 0
0% 12 0 0 8 0 0 12 0 0 4 0 0

SAA 12 8 4 4 0 4 12 8 4 0 0 4

σ

100%

α
=

0
.0

0
5

100 100 88 64 56 32

α
=

0
.0

0
2
5

100 100 88 80 56 32
75% 100 100 84 68 56 8 100 100 88 76 56 8
50% 100 88 68 72 32 0 100 92 72 72 32 0
25% 100 100 84 64 52 4 100 100 84 72 56 4
0% 100 92 76 68 52 0 100 96 80 68 56 0

SAA 100 92 72 68 56 4 100 96 80 72 56 8

C
V
a
R

100%

α
=

0
.0

0
5

8 0 8 8 0 16

α
=

0
.0

0
2
5

8 0 8 8 0 16
75% 12 0 4 8 0 0 12 0 4 4 0 4
50% 8 8 0 4 4 0 8 8 0 4 4 0
25% 0 0 0 0 4 0 0 0 0 0 4 0
0% 12 0 0 4 0 0 12 0 0 8 0 0

SAA 12 8 4 4 0 4 12 8 4 4 0 4

Table D.9: Percentage of the 25 portfolios which fall into the risk budget of the single security
portfolio for each significance level and time horizon.
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Figure D.1: Graphs standard deviation risk budgets with time horizons 1 and 6 months.
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Figure D.2: Graphs standard deviation risk budgets with time horizons 3 and 7 years.
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Figure D.3: Graphs CVaR risk budgets with time horizons 1 and 6 months.
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Figure D.4: Graphs of CVaR risk budgets with time horizons 3 and 7 years.
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