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a b s t r a c t

Imaging-type monitoring techniques are used in monitoring dynamic processes in many domains,
including medicine, engineering, and geophysics. This paper aims to propose an efficient workflow
for application of such data for the conditioning of simulation models. Such applications are very
common in e.g. the geosciences, where large-scale simulation models and measured data are used
to monitor the state of e.g. energy and water systems, predict their future behavior and optimize
actions to achieve desired behavior of the system. In order to reduce the high computational cost
and complexity of data assimilation workflows for high-dimensional parameter estimation, a residual-
in-residual dense block extension of the U-Net convolutional network architecture is proposed, to
predict time-evolving features in high-dimensional grids. The network is trained using high-fidelity
model simulations. We present two examples of application of the trained network as a surrogate
within an iterative ensemble-based workflow to estimate the static parameters of geological reservoirs
based on binary-type image data, which represent fluid facies as obtained from time-lapse seismic
surveys. The differences between binary images are parameterized in terms of distances between the
fluid-facies boundaries, or fronts. We discuss the impact of the choice of network architecture, loss
function, and number of training samples on the accuracy of results and on overall computational cost.
From comparisons with conventional workflows based entirely on high-fidelity simulation models, we
conclude that the proposed surrogate-supported hybrid workflow is able to deliver results with an
accuracy equal to or better than the conventional workflow, and at significantly lower cost. Cost
reductions are shown to increase with the number of samples of the uncertain parameter fields.
The hybrid workflow is generic and should be applicable in addressing inverse problems in many
geophysical applications as well as other engineering domains.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Imaging-type monitoring techniques are relevant for moni-
oring of dynamic processes in many application domains, and
nclude for example X-ray, computed tomography (CT) and mag-
etic resonance imaging (MRI) techniques for medical imag-
ng [1], satellite remote sensing for earth observation [2,3], and
eismic and electromagnetic imaging of the subsurface [4]. Ap-
lications in the earth observation domain include the prediction
f spreading of air pollution [5,6] and e.g. typhoon tracks [7].
eophysical applications include the monitoring of CO2 storage
n aquifers [8] and the displacement of fluids in hydrocarbon
eservoirs [9]. Imaging techniques deliver pixel-wise information
n 2D or 3D and may be used to identify static features or

∗ Corresponding author.
E-mail address: c.xiao@tudelft.nl (C. Xiao).
ttps://doi.org/10.1016/j.knosys.2021.106956
950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
anomalies or changes over time. We are especially interested in
the application of such data for the conditioning of simulation
models. Such applications are very common in the geosciences,
where large-scale simulation models and measured data are used
to monitor the state of e.g. energy and water systems, predict
their future behavior and optimize actions to achieve desired
behavior of the system.

A challenge with the use of imaging techniques for these pur-
poses is that they tend to deliver very large number of data points
that may have complex relationships to underlying
(poorly-known) model parameters. Therefore compromises are
often needed towards the data assimilation methods that are used
to integrate the data into models, or towards the description of
the data and the associated measurement noise. We intend to use
state-of-the-art data assimilation (in fact, parameter estimation)
methods that are able to deliver a full uncertainty characteri-
zation, especially Iterative Ensemble Smoothers (IES) [10]. Such
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ethods characterize uncertainty in the model by a large ensem-
le of model realizations, where each model realization is defined
y a different set of randomly sampled values for uncertain model
arameters.
Two challenges are commonly recognized in the application

f such data assimilation methods to imaging data: (1) the use
f large data sets can lead to artificial collapse of the ensemble;
2) given the computational expense of simulating each model,
he large number of uncertain grid-based parameters, and the
omplexity in data-parameter relationships, many iterations of
he IES with a large ensemble may be required, resulting in huge
ver-all computational costs.
Several approaches have been attempted to deliver reduced

epresentations of large data sets, including coarse representa-
ions [11], wavelet decomposition [12], and nonlinear reduction
ethods based on machine learning techniques [13]. In many
ases, including the earth observation and geophysical examples
entioned earlier, the purpose of the monitoring is the identifi-
ation of changes over time, which can often be characterized by
he displacement of a contour value in the image. Leeuwenburgh
nd Arts and Zhang and Leeuwenburgh [14,15] proposed a pa-
ameterization of monitoring data for such situations in terms of
istances between corresponding contours (or iso-surfaces in 3D)
n the simulated and measured images respectively, and showed
hat the resulting reduction in the number of data can help avoid
nsemble collapse. (See Trani et al. [16,17] and [18] for related
pproaches.) In its most basic form, the contours separate the
omain into regions belonging to one of two possible classes,
ffectively resulting in a binary image.
Here we address the second challenge, namely the high com-

utational demand imposed by iterative parameter estimation
orkflows involving imaging data. In introducing the methodol-
gy we will focus on an application of time-lapse seismic mon-
toring for reservoir model parameter estimation, also referred
o as seismic history matching in the field of reservoir engineer-
ng [19]. Seismic data are obtained as waves that are registered
n grid-based distributions of sensor locations, after being first
mitted into the ground at source locations on the surface and
ubsequently reflected at so-called impedance contrasts in the
ubsurface, typically reflecting spatial changes in rock properties
r fluid content. When a seismic survey is repeated at a later
ime, the differences between the imaging data sets can often
e interpreted as changes in the distribution of different types
f fluids. Examples include the displacement of water by CO2 [8]
nd the displacement of oil by water or gas [9]. Given that direct
ccess to the reservoirs, which are often found at depths of a few
ilometers, is possible only at locations where wells have been
rilled into the reservoir, this time-lapse seismic data can be the
ain source of information about changes in the system.
In order to reduce the computation cost of seismic history

atching reservoir models, surrogate (proxy) modeling methods
uch as upscaled models [20] and reduced-order models [21]
ave been pursued. Disadvantages of these approaches are the
oss of information at high spatial resolutions and non-linearity
espectively. Another approach is the use of machine learning
urrogates, where especially Artificial Neural Networks (ANN)
ave recently started receiving renewed interest. This growing
nterest is related to the appearance of modern architectures
hat support deep networks with enhanced capability of relat-
ng large numbers of inputs and outputs. Several recent studies
ave explored the use of Deep Neural Network (DNN) surrogates
or prediction of single-phase [22,23], two-phase [24–26], and
ulti-phase [27] subsurface flow dynamics. As far as we are
ware, however, such approaches have not been successful yet in
he context of grid-based parameter estimation based on large-
olume imaging data. We will therefore propose a new surro-
ate modeling methodology based on machine learning or more
2

specifically deep learning approaches that aims to deliver high-
quality parameter characterization at a significantly decreased
computational cost. This is motivated by rapid recent advance-
ments in the application of deep neural networks to simula-
tion of dynamic systems, and image processing [28], and wide
availability of high-performance processing units (GPU’s) and
deep-learning frameworks (e.g. Tensorflow [29], PyTorch [30]).

The successful applications of deep neural networks to many
application domains have been reported. In the community of
subsurface flow simulations, Jin et al. proposed a new deep-
convolutional auto-encoder structure with a successful applica-
tion in reservoir simulation problem [31]. Tripathy et al. proposed
a fully-connected deep neural network to approximate the flow
dynamic of a single phase subsurface water flow in porous me-
dia [22]. Zhong et al. proposed a generative surrogate models for
the dynamic plume prediction of CO2 capture and storage prob-
lem [26]. This type of surrogate model was built on a generative
adversarial network (GAN). In addition to the subsurface flow
discipline, the hybridization workflow of neural network has also
been presented in image reconstruction and classification prob-
lem. For example, Dawid and Gautam reported hybrid solutions
by training different types of neural networks with heuristic val-
idation mechanism in the problem of image reconstruction [32].
Dawid et al. presented an effective way to approach image clas-
sification problems based on splitting the images into smaller
parts and classifying them into vectors that can be identified
as features using a convolutional neural network (CNN) [33].
Ruttgers et al. improved the prediction of a typhoon track using a
generative adversarial network and satellite imaginary [7]. Time
series of satellite images of typhoons are used to train the neural
network, which then can be employed to predict the movements
of typhoon with past satellite images as inputs.

Motivated by the successful applications of hybridization
workflow using neural network methods in a variety of re-
search domains, the aim of this work is to propose a hybrid
deep learning-based workflow to characterize reservoir hetero-
geneities. Specifically, a cheap-to-run surrogate model is con-
structed to efficiently predict imaging-type seismic data. Repre-
sentation of fluid-fronts position using binarized images is simply
equivalent to an image segmentation problem in the field of
computer vision and image processing [34–36]. Deep learning as
a promising approach has shown potentials to effectively address
this kind of problem. This paper explores the potential of deep
neural network to predict the spatially discontinuous fluid fronts
based on the concept of image segmentation. It has been exten-
sively acknowledged that a deeper network may approximate the
predictions with higher complexity, but at the cost of difficulty in
training [37,38]. Inspired by the successful applications of image
super-resolution problems [39,40], the state-of-the-art residual-
in-residual dense block (RRDB) acts as an effective means to train
a deeper neural network. On the basis of conventional U-Net [41]
which has shown prominent advantage and applicability for ob-
ject segmentation task, we adopt an improved U-Net architecture
via multiple RRDB structures.

The remainder of the paper is structured as follows: The
definition of seismic history matching problem is provided in
Section 2. Section 3 describes a hybrid deep-learning work-
flow for reservoir heterogeneity characterization. In Section 4, a
systematic accuracy assessment of the proposed deep-learning
segmentation model for predicting binarized fluid-fronts is pre-
sented. This section also discusses and evaluates an application
of proposed hybrid workflow to characterize a synthetic 2D non-
Gaussian facies model and a benchmark 3D reservoir model [42].
Finally, Section 5 highlights our contribution and points out some
potential works.
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. Problem description

We address the problem of computationally efficient estima-
ion of a large number of spatially varying and uncertain grid-
lock parameters in simulation models. The relationship between
irectly or indirectly observable dynamic (i.e., time-varying) vari-
bles and static model parameters can generally be described by
nonlinear operator hn: RNd→RNm as follows

yn = hn(m, tn), n = 1, . . . ,Nt . (1)

where yn is the vector of observable data, which we will treat
as images, m denotes the vector of spatially varying parameters,
Nm is the total number of gridblocks, tn is the time at the nth
timestep where the measurements are taken, Nd is the number of
measurements taken at each timestep. In the process of Bayesian
inference, ensemble-based data assimilation methods [43] enable
us to assess the parameter uncertainty by sampling multiple
solutions from the posterior distribution. Each of these samples
is an acceptable posterior realization, which honors available
measurements. These posterior realizations can be generated via
minimizing the perturbed objective functions J i(m)

J i(m) =
1
2
(m − mi

b)
TCm

−1(m − mi
b)

+
1
2

Nt∑
n=1

[dn,i
obs − hn(m, tn)]TRn

−1
[dn,i

obs − hn(m, tn)]. (2)

where the uncertain parameters and measurements are assumed
to satisfy Gaussian distributions. Specifically, mi

b ∼ N(mb, Cm)
and dn,i

obs ∼ N(dn
obs,Rn) for i = 1, . . ., Ne where Ne represents the

total number of solutions that are computed.
In many cases it may not be feasible to perform this min-

imization exactly because it requires access to the derivatives
of the operator hn with respect to the model parameters m,
which may not be available, and because it requires numer-
ous computationally costly simulations of the numerical model.
This limitation has stimulated research into efficient approximate
methods, for example for parameter estimation (also referred to
as history matching) in subsurface reservoir engineering appli-
cations. Surrogate modeling is currently identified as one of the
most promising means to improve the efficiency of parameter
estimation procedures. In the following we will discuss a hy-
brid workflow for ensemble-based model parameter estimation
through integration of deep-learning surrogates.

3. Hybrid deep-learning workflow

This section describes a hybrid deep-learning workflow for
model parameter estimation, including a variant of the itera-
tive ensemble smoother (ES-MDA), and an image-oriented dis-
tance parameterization which is used to extract informative fea-
tures from the simulated and measured images. Subsequently,
we describe a time-conditioning residual-in-residual dense U-
Net (cRRDB-U-Net) to capture both spatial and temporal features
of the model. In addition, a two-stage training strategy through
alternatively minimizing the regression loss and segmentation
loss is used to improve the prediction of spatially discontinuous
binarized images.

3.1. Ensemble smoother with multiple data assimilation

We use the Ensemble Smoother with Multiple Data Assimila-
tion (ES-MDA) for solving the parameter estimation problem [10].
ES-MDA is an ensemble-based iterative minimization method
for solving parameter estimation problems in a Bayesian setting.
Given N randomly sampled a prior model parameter realization
e

3

vectors m0
i , a data vector dobs (in our case an image), with asso-

ciated error covariance matrix Rn. The ES-MDA update (analysis)
step at iteration steps k=1, . . ., Na for each realization i can be
written follows:

mk
i = mk−1

i + Kk
[dobs + eki − h(mk−1

i )], i = 1, . . . ,Ne. (3)

At each analysis step, the measurement error covariance Rn is
inflated to ϵkRn, where ϵk are user-chosen inflation coefficients
satisfying the constraint that

∑Na
k=1

1
ϵk

= 1. Here we use ϵk =

a. eki are random observation errors sampled from the Gaus-
ian distribution N(0, ϵkR). Here we omit the time index for
simplification. That is, the measurement operator h(m) is a

oncatenation of hn(m, tn) at all Nt timesteps, that is, h(m) =
h1(m, t1), · · · ,hNt (m, tNt )] (see Eq. (1)). The Kalman gain Kk is
defined as

Kk
= Ck−1

md (Ck−1
dd + ϵkR)−1. (4)

where Cmd denotes the cross-covariance of parameters and pre-
icted measurements and Cdd is the covariance of predicted mea-
urements, which are computed from the ensemble simulation
esults mk

i , g(m
k
i ), i = 1, . . .Ne.

In summary, the ES-MDA procedure is as follows:

1. Set the iteration number Na and initialize the inflation
coefficients ϵk for k=1, . . ., Na.

2. For k = 1, . . . ,Na:

• Run an ensemble of forward models with parameters
mk

i from initial time resulting in g(mk
i )

• Sample the observation errors using eki ∼ N(0, ϵkR)
for each ensemble member

• Update each ensemble member using Eqs. (3) and (4)

As indicated in Eq. (4), the implementation of ES-MDA typi-
cally requires the inversion of an Nobs × Nobs matrix C = Ck−1

dd +

ϵkR (where Nobs = Nd × Nt represents the total number of mea-
surements), which is computed using truncated singular value
decomposition (TSVD) [10]. The overall computational cost is
proportional to the cost of simulating the model Ne × Na times.
For large Nm and Nobs and highly nonlinear functions g(m), both
Ne and Na may need to be large in order to obtain results of
sufficient accuracy, leading to a prohibitive computational costs.
We will consider the possibility of reducing the simulation cost
by replacing simulations of the high-fidelity model by simulation
of a surrogate.

3.2. Image-oriented distance parameterization

We will consider the situation in which the relevant infor-
mation contained by the data can be captured by contour (or
iso-surfaces), which segments the image into binary categories
(for similar applications in e.g. computer vision, see e.g. [34–36]).
In order to characterize and minimize the differences between bi-
nary images originating from different sources (from high-fidelity
model simulations and surrogate model simulations, and from
surrogate model simulations and measured data respectively)
we must adopt a similarity measure (or metric). An example
is the Euclidean distance, which is the L2 norm of point-wised
discrepancy of two images. In our work, we employ a feature-
oriented distance parameterization to characterize the similarity
that was designed for application to seismic history matching
of subsurface reservoirs [14,15]. In that application the contours
represent the position of the saturation front between a displac-
ing and a displaced fluid, which is more reliable and informative
than the information contained in the amplitude of individual
grid cell values. The dimension of the resulting data space (e.g. the
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Fig. 1. Illustrative diagram of the PLHDC , LHDC and LHDA schemes given the two images IA and IB corresponding to the continuous saturation distribution. The first
three rows show the original continuous saturation images, the corresponding binarized contour and area maps, and the derived distance maps respectively. The
last row shows a spatial representation of the similarity metric using the PLHDC , LHDC and LHDA schemes. Only the colored pixels enter the difference vector.
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number of points on fronts) is typically much lower than that of
the original data space which is equal (or proportional) to the
number of grid cells. In the following the essential elements of
the parameterization are described in more detail.

In Fig. 1, scalar values 0 and 1 are used to define binarized im-
ages obtained by pre-processing underlying images IA and IB (as
has been shown in the first row of Fig. 1). Contours defining the
boundaries between the two categories contained in the images
are shown as well. The similarity between the two images is char-
acterized by a map computing from the local Hausdorff distance
(LHD) [44]. In the literature, three parameterization approaches
developed in [15] are as follows

PLHDC(Ac,Bc) = Ac ◦ DB,

LHDC(Ac,Bc) = Ac ◦ DB + Bc ◦ DA,

HDA(Aa,Ba) = Aa ◦ DB + Ba ◦ DA. (5)

where DA and DB represent distance maps for shapes A and B
espectively, which are computed here using a fast marching
ethod (FMM) [15]. the subscripts c and a denote that the shapes

n the images are represented by contours (boundaries or fronts)
r areas (for example, a flooded area) respectively. In essence,
hese metrics quantify the similarity of two images with two
irected distance maps in complementary directions, i.e. Ac ◦ DB
distance from B to A) and Bc ◦ DA (distance from A to B). PLHDC is
he partial LHDC measuring the distance only from the simulated
ronts to the ‘‘observed’’ fronts. Because nonzero distance values
xist only on the ‘‘observed’’ fronts, the number of data is reduced
rom the number of grid points on the whole image to the
umber of grid points on the ‘‘observed’’ fronts. Furthermore,
he binary character of the image representation is transformed
 n

4

into continuous data (distances) that can be handled by the data
assimilation methodology. These three distance parameterization
approaches each have their own advantages and disadvantages.
PLHDC leads to the strongest reductions in the number of data,
but not does capture the information in both images as well
as LHDC [15]. LHDA provides the most complete description of
similarity and differences but does not reduce the number of data.
The ‘‘colored’’ regions in Fig. 1 identify the spatial locations of
image pixels that enter the difference calculation. Pixels that are
colored white are not used. Thus, the data dimension is largely
reduced, especially for PLHDC and LHDC schemes. Therefore, in
the remainder of this paper LHDC will be used. In the ES-MDA
procedure, the measurement innovation (the vector containing
the differences between predicted and measured data) [dobs+eki −
g(mk−1

i )] defined in Eq. (3), can now be replaced by the image
dissimilarity, i.e., LHDC , which is a vector of values that jointly
easure the differences between the simulated and measured

mages.
In the next section we will describe an efficient deep-learning

egmentation model for predicting binarized images as accurately
s possible.

.3. Conditional residual-in-residual dense block U-Net

This section introduces the procedures of using a deep neural
etwork to perform predictions of spatially discontinuous shape
eatures. The overall neural network architecture and its subsec-
ions are illustrated in Fig. 2–Fig. 5. The section discussing the
reparation of the training dataset introduces a pre-processing
tep to convert continuous maps into binarized images. In the

etwork training section, we define the training losses for both
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Fig. 2. Illustrative diagram of the cRRDB-U-Net architecture. The proposed cRRDB-U-Net is composed of encoding unit, transition unit and decoding unit. The
multi-scale features extracted from the encoding unit are concatenated to the corresponding decoding unit for predicting the final output.
Fig. 3. Schematic illustration of the encoding unit for the cRRDB-U-Net architecture. This unit consists of four convolutional blocks. The encoding unit accepts the
logarithmic permeability image as an input. The generated multi-scale features Fk(m) ∈ RNw,k×Nh,k×Nd,k (k = 1, 2, 3, 4), are sequentially fed to the decoding unit. The
ellow rectangles represent the ‘‘down-sampling’’ operation. To halve the size of the feature maps, we use convolutional layers with stride of 2, which has been
hown in Table 1.
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mage regression and image segmentation. A two-stage training
trategy consisting of alternating minimization of the regression
oss and the segmentation loss suggested in the literature is
pplied to better approximate the discontinuous shapes in the
mages.

.3.1. Neural network architecture
In this work we consider the cross-domain image segmen-

ation problem of predicting spatially discontinuous binarized
mages representing changes in dynamic systems. Some recent
tudies has investigated the potential of using DNN surrogates
o replace high-fidelity model simulations. For example, Jin et al.
2019) proposed a DNN surrogate model with autoregressive
tructure for approximating time-varying reservoir dynamics
31]. Tang et al. (2019) developed a deep convolutional recurrent
 i

5

eural network architecture, specifically a combination of auto-
ncoder and a convolutional long-short-term memory recurrent
etwork (convLSTM) [45].
Our proposed hybrid workflow shares some similarities with

he one proposed by Tang et al. (2019) where also a deep-
earning based history matching problem was pursued. Tang et al.
2019) developed a surrogate for temporal prediction of spatially
ontinuous pressure and saturation snapshots for channelized oil
eservoir models. The spatial pressure and saturation predictions
ere the basis for predictions of well data such as fluid rate
nd bottom-hole pressure, which were used in a history match-
ng workflow aimed at characterizing the channelized reservoir
ystem. In this paper we will demonstrate how a similar work-
low could be used for parameter estimation based on (binary)
maging-type data.
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Fig. 4. Schematic illustration of the transition unit for the cRRDB-U-Net network. The time feature as an additional channel is feed to this unit as well to mimic the
flow dynamic.
Fig. 5. Schematic illustration of the decoding unit in the cRRDB-U-Net architecture. This unit consists of four transposed convolutional blocks corresponding to
the encoding unit. Decoding unit accepts the extracted multi-scale features Fk(m) (k = 1, 2, 3, 4) to produce the target maps. The green rectangles represent the
‘up-sampling’’ operation. The size of the feature maps can be doubled by using transposed convolutional layers, which has been shown in Table 1.
Fig. 6. Schematic illustration of transition unit for the cR-U-Net network. Five residual convolutional resConv blocks are used to propagate the feature maps from
he encoding unit. In addition, the time feature as an additional channel is fed to this unit as well to capture the time-varying process.
To conduct the image segmentation problem effectively, we
onstruct a deep convolutional neural network architecture,
amely conditional residual-in-residual dense U-Net (cRRDB-U-
et) based on the integration of a standard U-Net architecture
nd a stack of residual-in-residual dense blocks [40]. The U-Net
as originally proposed for bio-medical image segmentation [41].
he more recently developed residual-in-residual dense block
6

(RRDB) was originally used for super-resolution image recov-
ery and is adopted here to assist in the accurate image-based
reconstruction of high-resolution parameter grids. The cRRDB-U-
Net architecture contains an encoding path and a decoding path,
which capture the hierarchical spatial encoding and decoding of
the input and the output. The U-Net architecture is especially
efficient in data utilization due to the design of the concatenating
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Fig. 7. The illustration of geological realization and well placement for the 2D non-Gaussian facies model. (a) the true model. The high-permeable and low-permeable
channels represent two facies, which are indicated by binarized value 0 and 1, respectively; (b) the relative permeability curves of this water–oil two-phase flooding
system. The triangles and circles denote the injectors and producers, respectively.
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channel ‘‘highway’’. The concatenating channels pass the multi-
scale spatial information obtained from the encoding unit to
the corresponding decoding unit. The multi-scale encoding can
aid the cross-domain predictions of interests, for example, in
this paper, from geological parameters to spatially evolving fluid
fronts. Between the encoding and the decoding path, a stack
of advanced residual-in-residual dense blocks is employed to
connect the encoding and decoding units [40].

In our proposed DNN model, it is necessary to include the time
index to be able to predict the series of output images at differ-
ent time instances. Specifically, the time value, as an additional
channel, is concatenated to the low-dimensional feature repre-
sentation produced by the encoding part of the network [25].
This is distinctive to other two approaches in the literature where
either an autoregressive structure [24] or a recurrent neural net-
work [45] are used to capture the time-dependent dynamics.
Although an autoregressive structure excels at temporal regres-
sion tasks, it will definitely cause error accumulation and will
also become computationally demanding for modeling of long
time-series. The recurrent neural network might become compu-
tationally demanding for representing long time series of image
outputs, but the time-dependent error accumulation problem will
most likely not occur. [24].

Many advanced segmentation models have been reported in
the literature [46]. Comparing to the static image segmentation
models [47], our studied problem should be very analogy to
the spatial–temporal video segmentation problem [48]. It thus
deserves to discuss some segmentation methods in the related
work. For example, Miao et al. proposes a memory-aggregation
network to efficiently address the challenging time serial video
segmentation [49]. This type of network model introduced a
simple yet effective memory aggregation mechanism to record
the informative knowledge from the previous interaction rounds,
improving the robustness in discovering challenging objects of in-
terest greatly. Yang et al. explored the functionality of embedding
learning to cope with the video object segmentation task [50]. In
this model, the background and foreground are equally treated
with a novel collaborative video object segmentation approach.
The use of feature embedding from both foreground and back-
ground can perform the segmentation process from both pixel
and instance levels, which will make the proposed methodology
quite robust to various object scales. Thus there may also be
improvements possible by adopting these more effective network
architectures designed especially for addressing our time-serial
segmentation tasks.
7

An illustrative diagram of the cRRDB-U-Net architecture is
displayed in Fig. 2. We illustrate individual parts of the archi-
tecture in more detail in Figs. 3 to 7. The figures are based on
an example application to the prediction of two-phase fluid flow
in geological reservoirs. In Fig. 3(a), the encoding unit takes the
static geological parameter grid as input. The extracted feature
maps Fk(m) (k = 1, 2, 3, 4, displayed as a set of pink rectangles in
ig. 2) from four consecutive convolutional blocks in the encoding
nit will subsequently be delivered to the corresponding decod-
ng unit. From F1(m) to F4(m), the extracted features become
ore compressed. Each convolutional block consists of three
perations (BN-ReLU-Conv2D/3D), including a batch normaliza-

tion layer (BN), a rectified linear activation unit (ReLU) and a
convolutional layer (Conv2D/3D), see Fig. 3(b).

The features F4(m) produced by the encoding unit are fed
o a transition unit, see Fig. 4(c). The time, as a conditional
eature channel, is concatenated to the low-dimensional features
4(m) for representing the time-varying process. This transition
nit is composed of two adjacent RRDB and convolutional blocks
N-ReLU-Conv2D/3D. The purpose of the transition unit is to

produce features F5(m), which are the most compressed maps
and contain both spatial and temporal information. Subsequently,
these features F5(m) are fed to the decoding unit.

Generally speaking, deeper networks can approximate maps
ith higher complexity, but at a higher training cost [37,38].

nspired by the successful applications of image super-resolution
roblems [39,40], the state of the art residual-in-residual dense
lock (RRDB) is used to ease the training process of a deeper
eural network. The RRDB structure contains a well-designed
ombination of dense blocks and residual blocks. In order to
ake full advantage of the multi-scale features from the previ-
us layers [51], a dense block intentionally connects the non-
djacent layers. For example, a dense block with five layers is
hown in Fig. 4(a). The structure of the residual convolutional
resConv) block bypasses the nonlinear layers through introduc-
ng an identity mapping. This special architecture of the resConv
lock usually helps cope with the vanishing/exploding gradient
roblem when training deep networks [46]. We display the RRDB
rchitecture in Fig. 4(b). It contains a stack of special structures
here the dense blocks are embedded between two adjacent
esidual blocks. More details about RRDB can be referred to [40].

As shown in Fig. 5, the decoding unit takes the feature maps
5(m) produced by the transition unit as its inputs. The features
5(m) are gradually up-sampled via four consecutive transposed
onvolutional blocks. The transposed convolutional blocks are ap-
lied here for the purpose of increasing the size of feature maps.
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able 1
he network design of cRRDB-U-Net and cR-U-Net architectures used in this paper. This table shows the network structure for the 2D model, which can be easily
xtended to 3D model by using 3D convolutional operations. Here Nx and Ny denote the width and height of original images.

Encoding unit

Input (Nx , Ny , 1)
Conv2D/3D-BN-ReLU , 16 convolutional filters of size (3,3), stride 2 (Nx/2, Ny/2, 16)
Conv2D/3D-BN-ReLU , 32 convolutional filters of size (3,3), stride 1 (Nx/2, Ny/2, 32)
Conv2D/3D-BN-ReLU , 64 convolutional filters of size (3,3), stride 2 (Nx/4, Ny/4, 64)
Conv2D/3D-BN-ReLU , 128 convolutional filters of size (3,3), stride 1 (Nx/4, Ny/4, 128)

Transition unit: cRRDB-U-Net

Input (outputs of encoder unit + an additional time feature) (Nx/4, Ny/4, 129)
BN-ReLU-Conv2D/3D, 129 convolutional filters (Nx/4, Ny/4, 128)
RRDB, 128 convolutional filters (Nx/4, Ny/4, 128)
RRDB, 128 convolutional filters (Nx/4, Ny/4, 128)
BN-ReLU-Conv2D/3D, 128 convolutional filters (Nx/4, Ny/4, 128)

Transition unit: cR-U-Net

Input (outputs of encoder unit + an additional time feature) (Nx/4, Ny/4, 129)
resConv, 128 convolutional filters (Nx/4, Ny/4, 128)
resConv, 128 convolutional filters (Nx/4, Ny/4, 128)
resConv, 128 convolutional filters (Nx/4, Ny/4, 128)
resConv, 128 convolutional filters (Nx/4, Ny/4, 128)
resConv, 128 convolutional filters (Nx/4, Ny/4, 128)

Decoding unit

Input (Nx/4, Ny/4, 128)
TConv2D/3D-BN-ReLU , 128 convolutional filters of size (3,3), stride 1 (Nx/4, Ny/4, 128)
TConv2D/3D-BN-ReLU , 64 convolutional filters of size (3,3), stride 2 (Nx/2, Ny/2, 64)
TConv2D/3D-BN-ReLU , 32 convolutional filters of size (3,3), stride 1 (Nx/2, Ny/2, 32)
TConv2D/3D-BN-ReLU , 16 convolutional filters of size (3,3), stride 2 (Nx , Ny , 16)
Conv2D/3D, 1 convolutional filter of size (3,3), stride 1 (Nx , Ny , 1)
y

Each transposed convolutional block consists of three operations
(BN-ReLU-TConv2D/3D), including a batch normalization layer
(BN), a rectified linear activation unit (ReLU) and a transposed
convolutional layer (TConv2D/3D), see Fig. 5(b).

The up-sampled features are then combined with the pre-
viously extracted feature maps Fk(m) (k = 1, 2, 3, 4) from the
encoding unit. Finally, the decoding unit generates the final out-
puts, e.g., a time series of binary fluid facies maps. To summarize,
after the encoding unit, the inputs are compressed into 128 fea-
ture maps with the size of 15 × 15 (2D model) and 10 × 30 × 1
(3D model), and then concatenated with an additional time fea-
ture. These 129 features maps are fed to the transition unit for
producing 128 constant size of feature maps, finally, these 128
feature maps are provided to the decoding unit for producing the
output, e.g., binarized fluid-front images in this paper.

To verify the effectiveness of RRDB structure, a comparative
study of the standard U-Net with and without this block is con-
ducted. Specifically, we integrate a stack of residual convolutional
resConv blocks [31] with the standard U-Net architecture, which
can be referred to as cR-U-Net hereinafter. In addition to the
transition unit, the overall neural network architecture of the
cR-U-Net is very similar to the cRRDB-U-Net. In the cR-U-Net
architecture, the feature maps produced from the encoding unit
are concatenated with the time value and then are fed to five
residual-blocks, see Fig. 6. The architectures of both cRRDB-U-Net
and cR-U-Net are summarized in Table 1.

We should note that the choice of a neural network architec-
ture is flexible and still relatively subjective. It is true that one
can design a new DNN model by adapting parts of components of
some existing DNN models, and satisfactory results can possibly
be produced by different DNN models. In most cases we cannot
provide standard guidelines to determine the optimal neural
network architecture for a specific problem. In this paper, we
have configured our cRRDB-U-Net architecture based on similar
networks and applications found in the literature [31].

3.3.2. Dataset pre-processing and preparation
In order to train the cRRDB-U-Net surrogate model, we gen-

erate a set of training samples consisting of parameter grid as
inputs and time series of binary fluid facies grid as outputs. The
deep-learning based surrogate model represents the time-varying
process

ˆ
i,n ˆ n i n
y = h (m , t , θ), n = 1, . . . ,Nt; i = 1, . . . ,Ns. (6)

8

where ŷi,n ∈ RNx×Ny is the network prediction (image) at time tn
given the input mi

∈ RNx×Ny , θ denotes a vector containing all
trainable parameters of the cRRDB-U-Net surrogate model, and
i denotes the index of the training sample. Ns represents the total
number of training samples.

Training data yi,n is generated by simulating a high-fidelity
forward simulation model (HFM) and selecting snapshots of its
output at times tn. We will assume that the simulations produce
maps of continuous state variables, which can be used for image
regression tasks. We employ a post-processing step to convert the
continuous maps yi,n to binary maps yi,n to address the image
segmentation problem addressed in the paper. The binary output
is obtained by applying a pre-defined threshold value Scon and
the grid blocks (pixels) are assigned a value 0 or 1. We define
a pixel-wise indicators F as follows.

Fi,n = 0, yi,n >= Scon or Fi,n = 1, yi,n < Scon
F̂i,n = 0, ŷi,n >= Scon or F̂i,n = 1, ŷi,n < Scon. (7)

Fig. 1 shows an example of continuous simulated HFM out-
put (saturation maps) and the corresponding binarized images
(binary contour maps) by applying Eq. (7).

The output yi,n depends solely on the input image mi and time
index tn. We rearrange the data structure predicted from one
high-fidelity model simulation, i.e., saturation map (mi; yi,1, · · ·,
i,Nt ), as Nt consecutive training samples

{(mi
; yi,1, · · · , yi,Nt )}Ns

i=1 ⇒ {(mi, tn; yi,n)}Ns,Nt
i=1,n=1. (8)

and the corresponding binarized maps

{(mi
; Fi,1, · · · , Fi,Nt )}Ns

i=1 ⇒ {(mi, tn; Fi,n)}Ns,Nt
i=1,n=1. (9)

in this way, the temporal relationship between the inputs and
time-varying outputs is clearly captured in the time-conditional
network structure. The total number of training samples fed to
this cRRDB-U-Net becomes Ns × Nt .

3.3.3. Training procedures
The choice of loss function for training neural networks is gen-

erally case-dependent. The choice of an appropriate loss function
for the task at hand may strongly improve the performance of the
network. The binary cross entropy (BCE) loss function is generally
used for image segmentation tasks, while the mean square error
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Fig. 8. The illustration of the spatial logarithmic permeability for the 1st and 11th horizontal layer. The triangles and circles denote the injectors and producers,
respectively.
(MSE) loss function is more commonly used for image regression
tasks. These two loss functions can be defined as follows

LMSE(θ) =
1

NsNt

Ns∑
i=1

Nt∑
n=1

∥ŷi,n − yi,n∥2
2. (10)

nd

BCE(θ) =
1

NsNtNm

Ns∑
i=1

Nt∑
n=1

Nm∑
j=1

Fi,n,j log F̂i,n,j

+ (1 − Fi,n,j) log(1 − F̂i,n,j). (11)

Algorithm 1 summarizes a conventional one-stage (OS) strategy
for training the proposed cRRDB-U-Net model for image segmen-
tation based on the BCE lose function. A variant of stochastic
gradient descent optimizers, e.g., Adam, is used to train cRRDB-
U-Net surrogate model. Adam computes adaptive learning rates
for different parameters using estimates of the first and second
order moments of the gradients. The learning rate controlling
the magnitude of updates of model parameters at each iteration
is 5 × 10−3. In addition, a learning rate scheduler which drops
ten times on plateau training is applied to guarantee a good
convergence performance. This network is built and trained using
the deep learning package PyTorch [30].

Although DNNs have shown promising and impressive per-
formance in approximating the models with high-dimensionality
and non-linearity, it is still very challenging to accurately pre-
dict the position of spatially discontinuous outputs, such as the
shapes captured in binary images, as considered in this paper.
It has been indicated in the literature that, in such cases, a
two-stage (TS) training strategy through alternatively minimizing
regression and segmentation loss functions is likely to improve
the performance [39]. Taking into account that the aim of our
9

Algorithm 1: Procedure of optimizing neural network param-
eters θ of cRRDB-U-Net using conventional one-stage (OS)
training strategy.

1 Set an initial network trainable parameters θ0 ;
while epoch < nepoch do

while minibatch < Ns × Nt do
2 Calculate the gradient ▽ LBCE (θ) using

auto-differentiation (AD) tool;
3 Update the parameters θ using Adam(θ) → θ ;
4 Evaluate the loss function LBCE (i.e., Eq. (11));
5 Check convergence;

end
end

6 Return the optimal parameters θ

proposed cRRDB-U-Net surrogate model is to accurately predict
binary image data, we construct a combined loss function where
a small weight is used to regularize the MSE loss rather than
the BCE loss as suggested in [39] where an accurate prediction
of spatially continuous grid-based fluid saturations was the final
target. In our network training process, we adopt a similar TS
strategy. A hybridization of the MSE and BCE loss functions with a
predefined weighting coefficient ω, i.e., can be defined as follows

L(θ) = LBCE(θ) + ωLMSE(θ) (12)

The procedure of iteratively updating the neural network pa-
rameters using the TS training strategy is summarized in Al-
gorithm 2. In each iteration, a subset of the training samples
is randomly chosen from the full dataset, and then the tun-
able network parameters θ of cRRDB-U-Net model are adaptively
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djusted twice in a consecutive manner. In the first stage, the
radient of regression loss LMSE(θ) is used to compute a prelim-
nary update of the parameters. Then, in the second stage, the
radient of combined loss L(θ) (i.e., Eq. (12)) is used to further

adapt the network parameters. These two training stages will be
consecutively implemented for each data minibatch to update
the parameters until the training process reaches convergence.
In numerical experiments presented later, a comparative study
of the trained cRRDB-U-Net using the TS (i.e., Algorithm 2) and
OS (i.e., Algorithm 1) training strategies will be conducted.

Advantages of TS training strategy can be expected from two
contributions: (1) Through ingesting the spatial continuities of
state variables in the first training stage, the intrinsic physical
principles are partially considered, which can help facilitate the
network training by incorporating physical constrains. (2) Incor-
porating continuous state variable data acts as an effective means
to augment the training sample size, which in turn enables partial
mitigation of the overfitting problem and helps generalizing the
CRRDB-U-Net surrogate model to generic models.

Algorithm 2: Procedure of iteratively optimizing the neu-
ral network parameters θ using the two-stage (TS) training
strategy. The MSE loss weighting coefficient ω is set to 0.01.

1 Set an initial trainable network parameters θ0 ;
while epoch < nepoch do

while minibatch < Ns × Nt do
2 Stage (1) : Calculate the gradient of ▽ LMSE (θ)

using AD tool;
3 Update the parameters θ using Adam(θ) → θ ;
4 Stage (2) : Calculate the gradient ▽ J(θ) (θ) using

AD tool;
5 Update the parameters θ using Adam(θ) → θ ;
6 Check convergence;

end
end

7 Return the optimal parameters θ

Once the neural network is trained using either the one-stage
r two-stage training strategy, online prediction is straightfor-
ard. Given an arbitrary input m, iterative implementation of
q. (6) is then used to predict outputs for all Nt time instances.
pecifically, each saturation output ŷn or binarized output Ŝn

at the nth time instance is sequentially predicted by providing
the geological parameters m and the time index tn as inputs.
This procedure is computationally efficient as it does not involve
any high-fidelity model simulations. After training the cRRDB-U-
Net surrogate model successfully, we can apply the cRRDB-U-Net
surrogate model within other workflows. Here we will consider
its use for estimation of the uncertain parameters m given binary
image data using the ES-MDA workflow discussed in Section 3.1.

4. Experiments and results

In this section, the proposed deep-learning hybrid framework
will be applied to two example cases representing subsurface
flow model parameter estimation problems in which 2D and 3D
seismic images are available as measured data respectively. Both
cases consider spatially heterogeneous reservoirs with immiscible
two-phase (oil and water) flow dynamics.

4.1. Description of the example cases

The 2D reservoir model of Case 1 was created by [52] and
consists of a single rock layer representing a fluvial depositional
setting containing high-permeable channels (river deposits) and a
10
Table 2
Experiment settings using OPM for these two numerical models.
Basic settings Case 1 Case 2

Dimension, Nx × Ny × Nz 60 × 60 × 1 40 × 120 × 20
Number of injectors and producers 6, 3 9, 9
Water/oil density 1014 kg/m3 , 859 kg/m3

Water/oil viscosity 0.4 mP·s, 2 mP·s
Initial oil/water saturation So = 0.80, Sw = 0.20
Bottom-hole pressure for producers 25 MPa 15 MPa
Bottom-hole pressure for injectors 40 MPa 30 MPa
Historical production time 1800 days 5400 days
Pre-defined threshold value Scon 0.35

low-permeable background (clay or fine sand deposits). The high-
permeable and low-permeable channels represent two faices,
which are indicated by binarized value 0 and 1, respectively. The
value of log-permeability for these two facies has a large contrast.
The permeability of clay facies and sand facies is 20 mD and 2000
mD, respectively. Given the facies indicators m, we compute the
permeability value for each grid using a transformation function
(20elog100m). Fig. 7 illustrates the distribution of facies indicators
in the high-fidelity model realization used to generate synthetic
measurements, as well as the locations of 3 vertical liquid pro-
ducer well and 6 vertical water injection wells labeled as P1 to
3, and I1 to I6 that are drilled into the reservoir. Note that the
ermeability values follow a non-Gaussian distribution contain-
ng two modes with nearly constant values, which is generally
onsidered very challenging for parameter estimation methods.
The second example case (Case 2) is a frequently used 3D

enchmark model used in the SAIGUP project [42] with a realistic
tructure based on existing North Sea oil fields. The 3D SAIGUP
enchmark model contains nine producers and nine injectors,
hich are labeled from P1 to P9, and I1 to I9, see Fig. 8(a). The
riangles and circles denote the injectors and producers, respec-
ively. Fig. 8(b)–(c) separately show the log-permeability fields of
he 1st layer and 11th layer for the 3D SAIGUP model realization
hat will be used a synthetic truth, which are the Gaussian-
istributed realizations with high spatial variability in both the
orizontal and vertical directions.
In our numerical experiments, the open-source simulator Flow

rom the Open Porous Media (OPM) project for reservoir mod-
ling and simulation [53], is used to run the high-fidelity (HF)
odel simulations and generate the training samples. The result
f the simulations are pressure and saturation grids at the times
f seismic repeat surveys and time series of bottom-hole pressure
BHP) and flow rates of both oil and water in all wells. In this
tudy we will use the saturation grids (2D and 3D images for
he two examples cases respectively) simulated with the syn-
hetic truth models as measurements. Some details about reser-
oir geometry, rock properties, fluid properties, and well-control
ettings for the two example cases are shown in Table 2.

.2. Training data generation

The prior uncertainty in the gridblock values of permeabil-
ty is captured by an ensemble of random realizations of the
ermeability field. For the 2D non-Gaussian facies model, we
se the 2000 facies realizations made available by [52]. For the
D SAIGUP benchmark model we generate Gaussian-distributed
ealizations of log-permeability using the Stanford geo-statistical
odeling software (SGeMS) [54]. An optimization-based principle
omponent analysis (O-PCA) proposed in [52] and conventional
CA are applied to re-parameterize the parameter fields for these
wo models, respectively. 70 and 304 PCA coefficients are pre-
erved to represent the original parameter fields in the two cases
espectively and then used to generate the training and validation
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Fig. 9. Predictions of the time-varying saturation maps and binarized contour maps corresponding to four non-Gaussian realizations for the 2D synthetic non-Gaussian
acies model. The contour maps are obtained through applying a front threshold value of 0.35. Subfigures (a)–(d) represent four different model realizations and
heir predictions at day 360 and day 1800, respectively.
Fig. 10. Predictions of the time-varying saturation maps and binary contour maps corresponding to four Gaussian realizations of logarithmic permeability for the
D SAIGUP benchmark model. The contour maps are obtained through applying a front threshold value of 0.35. Subfigures (a)–(d) represent four different model
ealizations and their predictions at day 2700 and day 5400.
amples. We should note that O-PCA is particularly useful to
reserve the non-Gaussian properties. It reformulated the PCA as
11
a bound-constrained optimization problem and introduced a reg-
ularization term to generate binary or bi-modal parameter fields.
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Fig. 11. Comparisons of time-varying fluid facies maps predicted from HFM, cRRDB-U-Net and their absolute errors at day 360 and day 1800 for the 2D synthetic
non-Gaussian facies model. The cRRDB-U-Net models are trained using Ns = 300 and 1500 samples.
More information can be referred to [52]. We randomly generate
an ensemble of the Gaussian-distributed PCA coefficients and
then get the facies models using O-PCA. Although we suggest
that the facies indicators should be binary 0,1, the generated
realizations by O-PCA contain multiple colors (around the channel
edges) and not all grid cells are classified as either 0 or 1, e.g., see
Figs. 7–8.

Figs. 9 and 10 show the log-permeability (left) and simulation
results at 2 times for four realizations of the Case 1 and Case 2
models respectively. The simulations results are the saturation
images from which binarized images are derived based on a
saturation threshold value of Scon=0.35. The model realizations
hown in Fig. 9(a) and Fig. 10(a) are chosen to be the reference
synthetic truth) models for these two cases. It can be seen that,
n both cases, the evolution of the fluid facies varies strongly
mong the different geological model realizations, resulting in
igh variability in the training dataset. We should note that while
e use the LHDC as innovations in the history matching step,
e will be showing the binarized fluid facies maps in subsequent

igures, because they can be more easily interpreted.
The simulation period in the cases are 1800 days and 5400

ays respectively, and the training sample data are collected at
t=10 intervals of 180 days for Case 1, and Nt=10 intervals of 540
ays for Case 2. After reorganizing the dataset, 3000, 5000, 8000,
0000 and 15000 training images are created corresponding to
00, 500, 800, 1000, and 1500 simulation runs respectively for
he 2D non-Gaussian facies model.
12
4.3. Performance metrics

To evaluate the quality of cRRDB-U-Net surrogate model with
respect to the number of training samples, Ntest independent
model simulations based on the HF and surrogate models are
performed. We define an evaluation metric γ n

s to represent the
pixel-wise mismatch between two binarized images at timestep
n evaluated over Ntest validation samples is defined as

γ n
s =

1
NtestNm

Ntest∑
i=1

Nm∑
j=1

∥F̂ i,n
j − F i,n

j ∥, n = 1, . . . ,Nt . (13)

and can be interpreted as the fraction of incorrectly labeled grid
cells (pixels) in the grid (image). F̂i,nj and Fi,nj denote the binarized
fluid facies maps predicted from the high-fidelity model (HFM)
and cRRDB-U-Net surrogate model respectively for validation
sample i, gridblock j and timestep n. If the two images are equal,
γ n
s will attain it minimum value of 0, if no two values in the

images are identical, γ n
s =0. Note that differences between the

binary images can be related to errors in the location of the fluid
front that separates the two fluid phases in the reservoir. The
overall field-average values over all Nt time instances, denoted
as γs, is given by

γs =
1
N

Nt∑
γ n
s . (14)
t n=1
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Fig. 12. Comparisons of time-varying fluid facies maps predicted from HFM, cRRDB-U-Net and their absolute errors at day 2700 and day 5400 for the 3D SAIGUP
odel. The cRRDB-U-Net models are trained using Ns = 100 and 1000 samples.
The binary facies indicators or log-permeability values are
the only uncertain parameters and they are calibrated using
the proposed ES-MDA framework using cRRDB-U-Net surrogate
model. With the aim of analyzing the history matching results,
we introduce two error metrics measured on data misfits eobs and
arameter misfits em as follows,

eobs =

√∑Nd
i=1

∑Nt
j=1(d

i,j
obs − di,j

upt )2

NdNt
,

em =

√∑Nm
i=1(m

i
true − mi

upt )2

Nm
.

(15)

here, di,j
obs and di,j

upt represent the measurements and simulated
ata using the updated model, respectively.mi

true andmi
upt denote

he binary facies indicators or logarithmic permeability values
rom the ‘true’ model and updated model, respectively.

.4. Training and validation of the surrogate

The parameter settings for training the cRRDB-U-Net surrogate
re summarized in Table 3. These parameters were used to train
he surrogate models for all listed training set and batch sizes.
aking the 2D synthetic model as an example, during the training
rocess, 100 training samples are randomly selected from the en-
ire, e.g., 20000, training dataset to optimize the neural network
13
parameters in each iteration. In the following we will discuss
the quality of predictions (i.e. the fluid facies maps or images)
generated with the trained surrogate.

Figs. 11 and 12 show the fluid facies maps predicted by the HF
and cRRDB-U-Net surrogate models for the reference realizations
of Case 1 and Case 2 respectively. It can be seen in Fig. 11 for
Case 1 that the trained surrogate model is capable of predicting
accurate fluid distributions. For instance, the presence of single
or multiple fluid fronts at different times is correctly captured as
seen in Fig. 11. Small errors are noticeable, however, which are
associated with small errors in predicted front locations. These
errors are seen to decrease with increasing number of training
samples Ns. The impact of the number of training samples is
particularly clear at early times where multiple isolated fluid
fronts are developing. Fig. 12 displays analogous results at day
2700 and day 5400 for Case 2. in this case the possibility of
vertical flow results in somewhat larger regions of error for small
training set size.

We further assess the quality of proposed surrogate model
based on the γ n

s and γs metrics which quantify the quality of
image reconstruction, particularly taking into account the struc-
tural similarity of edges inside the images. In order to verify the
robustness of the surrogate model, the values of γ n

s corresponding
to Ntest = 200 independent validation samples are plotted in
Fig. 13. Increasing the number of training samples progressively
improves the values of γ n metric. Values are relatively high at
s
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n

Table 3
Training parameters settings for training cRRDB-U-Net surrogate model.
Training size (Ns) 300,500,800,1000,1500 100,300,500,800,1000
Re-organized training size (Ns × Nt ) 2000,6000,10000,16000,20000 1000,3000,5000,8000,10000
Testing size (Ntest ) 200
Initial learning rate 0.005
Optimizer Adam
Batch size 100 10
Number of epochs 100
Fig. 13. The plots of γ n
s values of cRDDB-U-Net with respect to the number of training samples Ns = 300, 500, 800, 1000, and 1500 samples for the (a) 2D

on-Gaussian facies model; (b) 3D Gaussian SAIGUP model.
Fig. 14. Boxplots of data misfits and parameter errors using cRRDB-U-Net surrogate model and high-fidelity models for the 2D non-Gaussian facies model. The
cRRDB-U-Net surrogate model is trained by 1500 training samples. HFM(3) and HFM(15) are the abbreviations of ES-MDA-HFM with 3 and 15 iterations, respectively.
early times because the fluid fronts have not yet expanded very
strongly such that most of the domain will still contain only the
initial fluid phase (oil in this case) in all test cases. The values
are gradually decreasing with time as the injected fluid phase
is replacing the initially present phase, leading to expanding
14
fluid fronts, and correspondingly higher chances of differences
between the true and predicted front locations. The surrogate
is obtaining relatively lower γ n

s for Case 2 than for Case 1. The
overall field-average error γs is 4.24% for 1000 training samples,
suggesting a relatively high degree of accuracy.
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Fig. 15. The over-all effective number of data during the iteration process.

4.5. History matching results — Case 1

In the previous section we verified the applicability of our
proposed surrogate model for predicting dynamic fronts. We now
apply the surrogate model within a history matching (i.e. data
assimilation) workflow, where the image-oriented distance pa-
rameterization is used to characterize differences between ob-
served and simulated images, and the ES-MDA method is used
to minimize these differences by updating the underlying model
parameters. In the examples these parameters are the properties
of the grid-cells (specifically, the permeability) of the HF model.
While the total number of active grid cells are 3600 for Case
1 and 78720 for Case 2, the PCA parameterization has reduced
15
this to 70 and 304 coefficients respectively (See Section 4.1).
The observations correspond to the LHDC metric derived from
applying a threshold value of Scon = 0.35 to the saturation maps
at day 360 or at day 1800 resulting from simulation of the HF
reference (synthetic truth) model, and the corresponding maps
from a surrogate model simulation. The standard deviation of
the uncorrelated measurement errors is assumed to be 30 m,
which is close to the length of one grid block. Results from
the hybrid workflow will be compared to results obtained by
using an ensemble of HF model realizations instead of the trained
surrogate. We choose Na = 15 iterations and an ensemble size of
Ne = 500 as standard values for the ES-MDA workflow and we
compare results obtained with the hybrid workflow for a range
of training set sizes.

4.5.1. Fixed computational budget
We first compare results from the hybrid workflow against

results from the HF model workflow for (a) a fixed number of HF
model simulations (1500), and (b) a fixed number of iterations
(15). Fig. 14 compares the data misfits for the prior and posterior
ensemble of realizations obtained with the DNN trained with
Ns = 1500, and the posterior HF mode realizations resulting from
Na = 15 iteration (HFM(15)) and Na = 3 iterations (HFM(3)).
Note that HFM(3) requires 3×500 = 1500 HF model simulations,
which is the equal to the 1500 simulations used to train the
DNN, while HFM(15) requires 15 × 500 = 7500 HF model
simulations. Results are presented for images obtained at 360
days and 1800 days separately. The DNN-based data misfits are
larger than those obtained with 15 ES-MDA iterations with the HF
model, but smaller than those obtained with 3 iterations. These
results indicate that a significant reduction of computational cost
should be feasible for a given desired quality of the result. In
Fig. 16. Ensemble mean and standard deviation (STD) of binary facies indicators for the prior models and posterior models at day 360 and day 1800.
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Fig. 17. Boxplots of parameter misfits em using cRRDB-U-Net surrogate model as a function of the number of training sample Ns . The two rows are corresponding
to day 360 and day 1800, respectively.
this study, the total number of HFM simulations is taken as
an indicator of the computational cost, since the GPU time for
running the DNN surrogate model is negligible compared to the
CPU time for running the HF model. The runtime for training the
DNN with data from Ns = 1000 samples is about 25 min, which is
equivalent to running 300 HF model simulations. In other word,
the computational cost of the off-line training stage is equivalent
to about 1300 HF model runs, while the cost of HFM(15) is equal
to 7500 HFM simulations. The use of cRRDB-U-Net as a surrogate
model reduces the computational time by a factor 5.8 for the 2D
synthetic model of Case 1. Note that the computational saving of
our proposed deep-learning method will increase linearly with
the ensemble size.

Fig. 15 displays the average effective number of data as a
function of iterations. Pre-processing the imaging-type data us-
ing distance-based parameterization can drastically decrease the
number of data, for example from original 3600 to 580 at day
1800. A small effective number of data indicates a high degree of
similarity of two images. The effective number of data gradually
decreases as the iterations, revealing that the predicted water
fronts from the posterior models become closer to the observed
water fronts and the model uncertainty is hence reduced.

The ensemble mean and standard deviations of the updated
ensemble of permeability before and after history matching at
360 days and 1800 days are displayed in Fig. 16. These statistics
are calculated as the per-grid-block averages and standard devi-
ations over the 500 realizations in the ensemble mNa

1 , . . . ,mNa
Ne
,

where Ne = 500 and Na = 15. Values are compared to the
corresponding statistics calculated for the prior ensemble (itera-
tion 0 instead of Na). The channel structures can be reconstructed
almost perfectly from both the 360 and 1800-day images. While
the large standard deviations in the prior standard deviation
16
suggest that in the initial ensemble the locations of channel
boundary positions are strongly varying, a comparison of the
posterior standard deviation maps and the true parameter map
indicates that the channel boundaries are consistently aligned
with the truth. Larger variability is mostly found in this bands
a few grid blocks wide along the true channel boundaries. The
field-average posterior ensemble standard deviation has approxi-
mately decreased from 0.45 to 0.16, which indicates a significant
reduction of model uncertainty. We also should note that since
the original realizations conditioned to permeability values at
the well locations, the majority of realizations, e.g., the prior
ensemble mean, already seem to have channels at approximately
the right locations.

4.5.2. Effects of training sample size
We repeat the entire workflow for a series of increasing train-

ing set sizes Ns = 300, 500, 800, 1000, 1500. Fig. 17 shows the
posterior parameter misfits as a function of the number of train-
ing samples. It clearly can be seen that the accuracy of the hybrid
workflow results gradually improves as the number of training
samples increases, especially for data gathered at day 360. Results
do not improve much for Ns > 800. For data gathered at 1800
days, the best results are obtained, somewhat surprisingly, for
Ns = 500. Since the different training scenarios rely on different
random parameter realizations, the results of each training stage
could be impacted by the samples included in the training set. ES-
MDA is a statistical method and results could also vary slightly
if the ensemble statistics are affected by these results as well.
One could, in principle, repeat each experiment with training
sets containing different random samples, to quantify the impact
of the random sample selection on the results, but we have
not done that here. The overall trends in the results, however,
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Fig. 18. Posterior ensemble mean and standard deviation (STD) of parameter estimates obtained for 300,500,800,1000 and 1500 training samples. (a) Posterior
ensemble mean; (b) posterior ensemble STD.
Fig. 19. The γ n
s values of cRDDB-U-Net and cR-U-Net architecture with respect to the number of simulation models for training network, i.e., Ns = 300, 500, 800,

1000, and 1500, respectively. The results correspond to (a) cRRDB-U-Net surrogate model using OS training strategy; (b) cR-U-Net model.
clearly indicate that the accuracy of the surrogate model and
its corresponding history matching results will improve as the
number of training samples increases.

Fig. 18 shows the posterior ensemble mean and standard
deviation (STD) for the different N scenarios. It is evident that
S

17
the main structure of binary channels can be successfully recon-
structed in all cases, also for the smaller values of Ns, and that the
posterior ensemble mean gradually becomes much closer to the
true model as the number of training samples increases. Based
on Fig. 17 Fig. 18 it can be concluded that results with similar
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Fig. 20. Boxplots of parameter misfits em for the TS and OS training strategy. The two rows are corresponding to Ns = 1500 and Ns = 300 training samples,
respectively.
quality as the HF model workflow requiring 7500 simulations can
be obtained using the hybrid surrogate-supported workflow with
500–800 simulations. Overall, we can collect more informative
measurements at day 1800, and therefore obtain relatively better
results than that of day 360.

We summarize the posterior parameter misfits em and com-
putational cost indicated by the number of HFM simulations. It
can be obviously seen that the proposed cRRDB-U-Net surrogate
model maintains a satisfactory accuracy even using a small num-
ber of training samples. For example, the cRRDB-U-Net model
using Ns = 500 training samples is still capable of generating
satisfactory posterior models which are very similar to the true
model. In terms of computational efficiency, it clearly reveals that
our proposed history matching framework only needs a relatively
small number of high-fidelity model simulations, e.g., 500, in
contrast to 7500 HFM simulations required by the conventional
ES-MDA method.

4.5.3. Comparative study of one-stage and two-stage training strate-
gies

The results presented so far were obtained using the two-
stage training strategy detailed in Section 3.3.3. We repeated the
training procedure for Ns = 300, 500, 800, 1000, 1500 in order to
compare two-stage strategy with the one-stage strategy, which
only considers the BCE loss function which is commonly used
for image segmentation tasks. Results from the one-stage training
procedure are illustrated in Fig. 19(a). When comparing with the
results shown in Fig. 13(a), it is clear that the two-stage strat-
egy achieves lower validation errors than the one-stage strategy.
Fig. 20 shows a comparison of the posterior parameter misfits for
these two training strategies for Ns = 300 and Ns = 1500. When
we train the surrogate models with N =300 training samples, the
s

18
one-stage strategy achieves γ values of 9.85% and 18.82% at day
360 and day 1800, which are larger than the 7.12% and 15.12%
errors from two-stage strategy. However, the differences between
these two training strategies decrease as the number of training
samples increases. For example, when we train the surrogate
model using 1500 samples, the one-stage strategy achieves γs
values of 3.01% and 5.18% at day 360 and day 1800, respectively,
which are only slightly larger than the values of 2.25% and 4.89%
from the two-stage strategy. Overall, two-stage training is found
to improve the predictions, particularly when small numbers of
training samples are available.

We remind the reader that the first training aims to mini-
mize the MSE loss expressed in terms of continuous saturation
values. It has been indicated in the literature that a two-stage
(TS) training strategy through alternately minimizing regression
and segmentation loss functions is likely to improve the perfor-
mance. For example, the two-stage procedure was also used by
Mo et al. (2018) who also use a weight 0.01 and was the basis
for our choice. A larger weight ω generally will lead to a better
approximation of the spatially continuous saturation. However,
the aim of our proposed surrogate modeling and data assimilation
workflow is to accurately predict binary-type image data. Some
limited experimentation with alternative values of omega (not
included) suggested that larger values will lead to less accurate
reproduction of the features in the binary images. Based on visual
inspection of the results for different values of ω, a value of 0.01
appeared to be a good choice, but the issue of finding the optimal
value is subject to further investigation.

4.5.4. Comparison with conventional residual U-Net
To verify the effectiveness of the RRDB structure of the deep

CNN, a comparative study of cR-U-Net and cRRDB-U-Net was
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s

Fig. 21. Boxplots of parameter misfits em using cR-U-Net and cRRDB-U-Net surrogate models. The two rows are corresponding to Ns = 1500 and Ns = 300 training
amples, respectively.
Fig. 22. Boxplots of data misfits and parameter misfits using cRRDB-U-Net surrogate model and high-fidelity model for the 3D benchmark SAIGUP model. The
cRRDB-U-Net models are trained with Ns = 100, 300, 500, 8000 and 1000 samples, respectively.
performed. Fig. 19(b) shows the parameter error metric γs for the
cR-U-Net surrogate model. Comparing to the results in Fig. 13(a),
the improvements from the RRDB structure are clearly indicated
lower field-average relative error γs values, especially for the
larger training set sizes. When we train the deep-learning surro-
gate models using 300 samples, the cR-U-Net and cRRDB-U-Net
obtain comparable results with γs values around 18%. Although
RRDB enables us to train deeper neural networks for better ap-
proximations of spatially discontinuous fluid-fronts, more param-
eters are introduced by the RRDB structure that need to be trained
as well. Training the cRRDB-U-Net surrogate model with a small
number of samples might cause overfitting problems, and hence
19
may not achieve desirable improvements in comparison to cR-U-
Net. As the number of training samples increases, however, the
improvements in quality of the cRRDB-U-Net surrogate model are
much larger than that of cR-U-Net. For example, when we train
these two surrogate models using 1500 samples, cR-U-Net and
cRRDB-U-Net obtain γs values of 12.5% and 4.89% at day 1800,
respectively. Overall, the RRDB structure significantly improves
the surrogate model’s ability to predict the positions of fluid
fronts, especially for large training set sizes. Fig. 21 shows a
comparison of the posterior parameter misfits for the cRRDB-U-
Net and cR-U-Net surrogate models. It clearly can be seen that
the RRDB structure outperforms standard U-Net in terms of the
posterior parameters errors.
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Fig. 23. Boxplots of posterior ensemble parameter errors em as a function of ensemble size Ns and ES-MDA iterations. (a) The ES-MDA iteration number is 10 and
the ensemble size ranges from 100 to 500; (b) The number of HFM simulations is about 1000 or 1200.
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4.6. History matching results — Case 2

In this section we present a more realistic application of the
proposed surrogate model that involves a more complex 3D
reservoir model with uncertain permeability in all 78720 active
grid cells. The dimension of the uncertainty space is reduced by
capturing the spatial relationships between individual grid block
values in a total of 304 coefficients for corresponding 3D patterns
obtained by Principle Orthogonal Analysis of a large number
of plausible log-permeability realizations. The PCA coefficients
are the only uncertain parameters, and are updated using the
proposed hybrid workflow. We assume that saturation images
are available at either 2700 days or 5400 days, after inversion
of time-lapse seismic data. We furthermore assume that the data
has sufficiently high resolution to enable estimation of saturation
in all 22 layers of the reservoir. We use an ensemble size of
Ne = 500 and a fixed number of Ns = 10 iterations for the
ES-MDA algorithm.

Fig. 22 shows the parameter misfits em before and after history
matching for training set sizes Ns= 100, 300, 500, 800 and 1000.
Fairly consistent improvements in the accuracy of the results can
be observed with increasing training set size. In this case study,
the surrogate models trained with 100 and 300 samples obtain
similar history matching results. Similar results are also observed
for the surrogate models trained with 500 and 800 samples. A
possible explanation is that a random sampling strategy might
generate some ineffective training data, which have no significant
contribution to the improvement of the history matching results.
One could imagine that procedures in which additional training
samples are generated guided by intermediate history matching
results could be more effective, but we have not investigated this
idea further.

Our proposed ES-MDA-DNN is able to generate history match-
ing results comparable to ES-MDA-HFM. However, to achieve the
same accuracy, ES-MDA-DNN and ES-MDA-HFM require respec-
tively 1000 and 5000 high-fidelity model simulations. The use
of cRRDB-U-Net as a surrogate model reduces the computational
time by a factor of 5 for the problem defined in this case. We
should emphasize that the computational saving will become
more substantial when a larger ensemble sizes are used. The
ES-MDA-DNN hybrid workflow requires a relatively small num-
ber of high-fidelity model runs at the offline training stage and
the computational cost does not grow with the ensemble size.
Compared to the HFM(10) results, the hybrid DNN workflow is
generally performing a little bit worse but at a lower cost. The use
of 500 initial realizations might be much larger than that would
be used in applications to complex fields, where an ensemble
size of 200 is often considered as the realistic maximum. Fig. 23
20
shows the posterior ensemble parameter errors em as a function
of ensemble size and number of ES-MDA iterations. It can be
clearly seen in Fig. 23(a) that our proposed ES-MDA-DNN obtains
a better solution that is at present practically feasible at lower
computational cost (e.g., 1000 simulations). By contrast, ES-MDA-
HFM would lead to a total number of 2000 HFM simulations over
10 iterations. Furthermore, the obtained results with an HF model
ensemble size of 100 suggest ensemble collapse to some degree.
As illustrated in Fig. 23(b), for a fixed computational budget
(1000 simulations in this example), the hybrid surrogate-assisted
workflow delivers more accurate results than ES-MDA-HFM.

Fig. 24(a) shows the fluid-front positions before and after
history matching at day 2700 and day 5400. The fluid-fronts for
the prior models are significantly different from the observed
front positions. There are nine completely discrete front contours
around the nine injectors at day 2700. After the history matching,
the fluid-fronts almost match the observed ones. Although the
front positions are relatively more complex at day 5400 than at
day 2700, a very good result still can be obtained. When the
cRRDB-U-Net surrogate models are trained with a small sample
size, e.g., Ns = 300 or Ns = 500, several fluid-front positions
near injectors I1, I2 and I6 (the lower left part of the reservoir
model) are not well matched, and the permeability around these
positions cannot be significantly improved. In contrast, the fluid-
front positions near the injector I9, I4 and I7 (the upper right
part of the reservoir) are matched very well, which leads to good
calibrations of the reservoir models around this area. Fig. 24(b)
shows the average effective number of data as a function of
iterations. Comparing to the above 2D synthetic model, the use of
distance-based parameterization obtains a much larger reduction
of effective data, e.g., from original 157,440 to 17,095 after history
matching, which quantifies the reduction of model uncertainty.
This result also demonstrates a high scalability of our proposed
hybrid workflow to practical applications.

Fig. 25 shows the posterior ensemble mean and standard de-
viation corresponding to different training sample sizes Ns=100,
00, 500, 800 and 1000, respectively. It clearly can be seen that
he posterior ensemble means are very close to the true model.
he geological parameters, e.g. highly permeable zones, are suc-
essfully reconstructed using even a small number of training
amples, e.g. Ns = 300. The true model is gradually reproduced
s the number of training samples increases. The significant re-
uction in the standard deviation of the spread of parameter
stimates, e.g., from approximately 2.5 in the prior to 0.5 in
he posterior ensemble, further indicates a high accuracy of the
istory matching result. In order to further verify the reliabil-
ty of the posterior models from our proposed surrogate-based
istory matching approach, we compare predictions of the well
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Fig. 24. Characteristics of the ensemble of innovations used by LHDC for 3D model. (a) Simulated water-fronts after 2700 days and 5400 days in one posterior
odel realization before and after history matching using the cRRDB-U-Net surrogate model. The observed and simulated fronts are denoted in blue and red lines,

espectively. This figure displays the water-fronts of the 11th vertical layer. (b) The over-all effective number of data during the iteration process.
t
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ater injection rate (WWIR) and well water-cut (WWCT) for nine
njectors and nine producers, see Fig. 26. These quantities were
ot used in the history matching procedure and can therefore
e viewed as independent validation data. In order to generate
he predictions, the permeability estimates obtained with the
urrogate-assisted hybrid workflow are used as input for simu-
ations with the HF model simulator. Although the predictions of
he initial models are significantly different from the true model,
fter history matching to the binary image data, the mean and
pread in rate predictions from the updated models are much
ore consistent with the rates generated with the HF truth
odel.
 T

21
4.7. Computational cost

In this section, we will briefly discuss the aspects of compu-
tation cost of the proposed workflow for parameter estimation
using cRRDB-U-Net surrogate modeling. We denote the cost of a
high-fidelity model simulation and a surrogate model simulation
as CHFM and CS respectively, the number of training data Ns,
he ensemble size Ne and the number of iterations Na, the total
omputational cost of the overall workflow based on HF model
imulations only is

= N · N · C . (16)
HFM a e HFM
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Fig. 25. Comparison of the updated ensemble posterior realizations using cRDDB-U-Net surrogate model with respect to the number of training samples Ns = 100,
300, 500, 800 and 1000, respectively. (a) The 1st horizontal layer; (b) The 11th horizontal layer.
For the surrogate-assisted hybrid workflow, the total cost is

TS = Ns · CHFM + Ctrain + Na · Ne · CS . (17)

The runtimes of a single HF model simulation for the 2D model
of Case 1 and the 3D model of Case 2 are about 5.0 s and
22
250.0 s respectively on a machine with i5-4690 Intel CPUs (4
cores, 3.5 GHz) and 24 GB memory. In comparison, the runtime
of the cRRDB-U-Net surrogate model is about 0.1 s for both cases,
so it is a factor of 102

−−103 smaller than the runtime for the HF
model. The cRRDB-U-Net surrogate model is trained on a NVIDIA
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Fig. 26. Predictions of water injection rate and watercut for the nine injectors and nine producers. The gray lines — initial models, blue lines — reference model,
red lines — updated models from the cRRDB-U-Net surrogate trained with Ns = 1000 samples.
eForce GTX 745 GPU and separately takes about 25 min and
1.4 h using 1000 training samples for the 2-D and 3-D case
espectively, which are equivalent to run approximately 300 and
50 HFM simulations, respectively. For the comparison, we set
S ≈ 10−3CHFM and Ctrain ≈ 10−1

· Ns · CHFM and determine cost
reduction TS/THFM expressed in terms of HF model simulations as
a function of the parameters Ns, Ne and Na,

TS
THFM

=
Ns + 10−1Ns + 10−3NaNe

NaNe
≈

Ns
NaNe

. (18)

For typical values Ns = 1000, Ne = 200 and Na = 10, the cost
ratio is about 0.5. For an ensemble size of 500 this is about 0.2,
and if the training size can be reduced to 500 as well, the ratio
becomes 0.1. We note that in the surrogate-assisted workflow
the number of iterations could be increased significantly without
incurring higher computational cost since the cost of simulating
the proxy is almost negligible relative to simulating the HF model.
We may expect that a higher number of iterations can contribute
to improved performance of the ES-MDA algorithm to a certain
extend.

5. Summary and conclusions

In this study, a hybrid model parameter estimation workflow
is presented for use with image data. We assume that the relevant
information in the images, or in differences between images, can
be represented by the result of an image segmentation process
that classifies features in the images into binary categories. We
propose a modification of the well-known Residual U-Net (R-
U-Net), referred to conditional residual-in-residual dense block
U-Net (cRRDB-U-Net), comprised of encoding, transition and de-
coding units. In order to capture the time-varying process, we
concatenate the time values to the highly compressed features
produced by the encoding unit. This deep neural network is
trained with data from a set of high-fidelity model simulations
where random realizations of parameter grids are provided as
input. The simulated continuous high-fidelity model output is
processed into binary images and input to a binary cross entropy
loss function. We augment the loss function with a mean square
error contribution based on the continuous simulation output, re-
sulting in a 2-stage minimization procedure. The trained network
is subsequently used as a surrogate model to replace the high-
fidelity model simulations in a workflow to estimate the values
of uncertain gridblock parameters. An image-oriented distance
parameterization is used to quantify the differences between
the binary images predicted by the network surrogate and the
observed binary images. The differences are minimized using an
iterative Ensemble Smoother algorithm.
23
The workflow is demonstrated on 2D and 3D examples repre-
senting typical problems encountered when modeling subsurface
flow dynamics, especially two-phase fluid displacement problems
such as CO2 storage in aquifers of water injection in oil reservoirs.
We note that while the 2D example is smaller, the parameter
field in this example, permeability in a geological reservoir, has
itself a binary character, representing the high-permeability as-
sociated with coarse-sand channel deposits in a low-permeability
background of clay deposits.

From the results of the experiments we conclude that in both
examples the workflow is able to reconstruct the true permeabil-
ity field with an increasing accuracy when the number of training
samples is increased. The quality of the estimated parameter
fields is verified independently by providing them as input to
high-fidelity model simulations to predict phase rates at well
locations, showing a significant improvement in the match to the
time series simulated with the true permeability field. The use
of cRRDB-U-Net as a surrogate model reduces the overall com-
putational time by a factor 5 for the problems investigate in this
study. Cost reductions up to 90% relative to full-model workflows
can be expected in realistic applications where large numbers
of parameter realizations are estimated. The computational cost
associated with simulating the surrogate model only increases
slowly with the model size.

In this paper we have kept the surrogate model fixed after
initial training, which requires an a prior choice for the dimension
of the training set. The incorporation of additional data in the
data assimilation workflow has the potential to inform further
improvements to the surrogate model and thereby generate more
accurate solutions. Computational savings could potentially be
obtained by initial training based on a small training set, and
adaptive enrichment of the training set and refinement of the
surrogate model during the data assimilation workflow.

The integration of an image pre-processing procedure and
deep-learning surrogate modeling techniques could motivate
many interesting applications in a variety of engineering disci-
plines, especially for imaging-type monitoring problems where
large-scale physical models are highly complex and computa-
tionally intensive. The proposed deep-learning hybrid workflow
offers an alternative avenue to make reliable predictions from a
reduced set of physics-based models. We note that similar prob-
lems are encountered in for example medical imaging, satellite
imagery (remote sensing) and other geoscience domains. Overall,
an extension of our proposed hybrid workflow to these ar-
eas should be straightforward with only several domain-specific
adaptations.
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