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Abstract

This thesis explores Radio Resource Management (RRM) techniques for Joint Communication and
Sensing (JCAS) in beyond-5G/6G networks. JCAS integrates communication and sensing functionali-
ties into a unified network, promising enhanced spectral efficiency, reduced system costs, and improved
performance in various applications such as autonomous vehicles and smart cities. However, efficiently
managing the dual requirements of communication and sensing in a shared network is a significant
challenge, especially in dense, multi-cell environments.

The work presents a novel approach to JCAS by developing advanced resource management algo-
rithms aimed at optimizing communication throughput and sensing accuracy, with a focus on target
detection as the primary sensing task. The proposed algorithms encompass topology selection, dynamic
node contribution management, and joint scheduling of sensing and communication tasks. Through
extensive simulations, we analyze the trade-offs between communication and sensing performance, con-
sidering metrics such as the average and 10th percentile user throughput and probability of detection.
The results demonstrate the effectiveness of the proposed strategies in managing interference and im-
proving system performance in a cooperative multi-cell JCAS network.

This study contributes to the growing body of research on JCAS by addressing key limitations in
existing works, such as the lack of cooperative sensing and the need for real-time dynamic resource
allocation algorithms. The findings provide practical insights for network operators and lay the ground-
work for future research into more complex JCAS applications and further optimization of resource
management techniques.
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Chapter 1

Introduction

This chapter provides essential background knowledge on Joint Communication and Sensing (JCAS)
networks, with a particular focus on introducing sensing concepts for readers more familiar with the
communications domain. It also outlines the objectives of this thesis, presents an overview of the thesis
structure, and introduces the notation used throughout the document.

1.1 JCAS

Joint Communication and Sensing (JCAS) is an emerging feature envisioned for future beyond-5G/6G
networks, representing a paradigm shift in wireless systems design. The driving force behind JCAS
lies in the growing need for enhanced network capabilities, including high data rates, low latency, and
improved spectral efficiency, coupled with the increasing demand for precise sensing and localization
in diverse applications such as autonomous vehicles, industrial automation, and smart cities. As the
wireless spectrum becomes increasingly congested, integrating communication and sensing functionali-
ties into a single system allows for more efficient use of available resources. This integrated approach is
addressed in the literature also as Perceptive Mobile Network (PMN) [1], Integrated Sensing and Com-
munication (ISAC) [2], Joint Radar and Communication (JRC) [3], Radar Communications (RadCom)
[4], Dual-Function(al) Radar Communications (DFRC) [5] and JCAS [6]. In this work, we adopt the
latter term.

JCAS represents an advanced integration of communication and radar systems, which can be im-
plemented at different levels. This integration ranges from simple coexistence, where systems operate
independently and may interfere with each other, to complete convergence, where systems share hard-
ware, waveforms, and resources such as frequency bands and power [7]. There are three primary
approaches to integrating communication and radar systems: communication-centric, radar-centric,
and joint-designed systems. The communication-centric approach introduces sensing capabilities into
an existing communication network. Conversely, the sensing-centric approach adds communication
capabilities to an existing radar system. Joint-designed systems are developed from the ground up
to balance the trade-offs between communication and sensing, resulting in a system that inherently
supports both functions.

The benefits of JCAS extend beyond resource efficiency. First, integration gains arise from the shared
use of hardware and spectrum, reducing system costs, spectral needs and energy consumption. Second,
coordination gains result from the improved coexistence of communication and sensing functions, as in-
terference between them can be minimized or even leveraged to enhance performance, by using sensing
signals to improve channel estimation or mobility management in communication flows or by oppor-
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tunistically using communication-oriented signals to enhance sensing performance [8]. Several key use
cases motivate the introduction of JCAS in 6G networks. These include enhanced automotive radar
systems for autonomous driving, where integrated communication and sensing can improve safety and
navigation; smart cities, where sensor networks and communication infrastructure can be seamlessly
combined to monitor and manage urban environments; and industrial Internet of Things (IoT), where
precise sensing and robust communication are critical for automation and control. These applications
underscore the potential of JCAS to revolutionize the next generation of mobile networks, providing
both economic and technological benefits.

1.2 Sensing and radar systems

Sensing encompasses a variety of tasks, including detection, localization, surveillance, and tracking,
which are typically performed by radar systems. Each of these tasks has specific requirements:

• Detection involves identifying the presence of objects or events within a specified area, requiring
high sensitivity and accuracy to minimize false alarms and missed detections.

• Localization determines the precise position of detected objects, which demands accurate dis-
tance and angle measurements to ensure reliability.

• Surveillance involves monitoring an area for prolonged periods to gather comprehensive data on
activities and changes, requiring sustained performance and the ability to process large volumes
of data efficiently.

• Tracking follows the movement of objects over time, necessitating consistent updates and robust
algorithms to handle dynamic environments and maintain continuous observation.

Radar (Radio Detection and Ranging) systems perform various sensing tasks by emitting electromag-
netic waves and analyzing the reflections, or "echoes", from objects in the environment. These echoes
provide information about the presence, location, and movement of objects, which the radar system
processes to accomplish its sensing objectives.

Depending on how the transmitters and receivers are spatially arranged, radar systems can be config-
ured as monostatic, bistatic, or multistatic sensing systems. These configurations, illustrated in Figure
1.1, offer distinct advantages for different sensing applications and are defined as follows:

1. Monostatic Sensing: In this configuration, the transmitter and receiver are co-located, typically
within the same device. The radar system transmits a signal and uses the same unit to receive the
reflected echoes from objects. Monostatic radar systems are widely favored for their simplicity and
compactness, making them ideal for applications such as automotive sensing, weather monitoring,
and air traffic control.

2. Bistatic Sensing: This setup involves separate locations for the transmitter and receiver. The
spatial separation allows radar systems to cover areas that might be inaccessible to monostatic
configurations and reduces interference from the transmitter at the receiver. Bistatic radar sys-
tems are advantageous in scenarios requiring stealth or long-range detection. However, they
necessitate more complex implementations due to the need for precise synchronization between
the transmitter and receiver.

3. Multistatic Sensing: In multistatic configurations, multiple transmitters and receivers are posi-
tioned at different locations. This arrangement enhances spatial coverage and detection reliability
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by collecting signals from various perspectives, thereby improving the accuracy of tasks such as
localization and tracking. Multistatic radar systems are particularly beneficial in complex envi-
ronments where redundancy and multi-angle observations are critical.

Figure 1.1: Three main configurations of a sensing radar system: (i) monostatic, (ii) bistatic and (iii) multistatic.

1.3 Scope and objective

The focus of our thesis is on radio resource management in communication-centric JCAS networks,
specifically within a beyond-5G/6G mobile network, and we limit our analysis to target detection,
leaving other sensing tasks as future work. The objective of this thesis is to develop a novel JCAS
network model and propose resource management algorithms, aimed at improving both communication
and sensing performance. These algorithms are evaluated across a range of scenarios, with the goal of
understanding their impact on system performance and optimizing the trade-off between sensing and
communication.

Our work concentrates on cooperative JCAS networks, where a cluster of Base Stations (BSs)—and
in certain cases, UEs—jointly contribute to the sensing task. The proposed topology management
scheme dynamically selects the optimal set of transmitters and receivers to perform detection, allowing
for flexibility in using monostatic, bistatic, or multistatic configurations, depending on the context.
By focusing on detection as the primary sensing task, we aim to enhance accuracy while maintaining
efficient communication performance, leaving other sensing tasks for future exploration.

1.4 Thesis overview

This thesis is organized into seven chapters. In this introductory chapter, we provide background
information on JCAS and outline the central objectives of the study. Chapter 2 presents a compre-
hensive review of related work and highlights the contributions of this research. Chapters 3 and 4
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detail the key modeling aspects adopted in this work. Chapter 5 introduces the resource management
solutions developed and evaluated in this thesis. Chapter 6 describes the simulated scenarios along
with their respective results, followed by a discussion of the observed trends, supported by intuitive
and qualitative explanations. Finally, Chapter 7 concludes with a summary of the findings and offers
recommendations for future research.

1.5 Notation

The notations used in this work are as follows. Matrices are denoted by bold capital letters, such as H.
The element at the ith row and jth column of a matrix H is written as H[i, j], while Hj denotes the jth

column vector. The transpose, conjugate transpose, inverse, and Moore-Penrose pseudo-inverse of H
are represented as HT , H∗, H−1, and H+, respectively. The notation abs(H) denotes the element-wise
absolute value of the matrix H, while H2 represents the element-wise square of H. Specifically, for
each entry H[i, j] in H, the corresponding entry in abs(H) is |H[i, j]|, and in H2 it is (H[i, j])2. H(t)

denotes the value of H at time t.

Vectors are represented by bold lowercase letters, such as h. The conjugate transpose of vector h

is written as h∗, and abs(h) represents the element-wise absolute value of h. The element of vector h

at index i is denoted as h[i], while ∥h∥2 represents the L2-norm of vector h. For a complex scalar x,
|x| denotes the modulus of x.
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Chapter 2

Related works and contributions of this
thesis

Most of the works studying radio resource management in JCAS systems focus on resource allocation
at link/system level in single-cell scenarios. Significant research has been conducted on beamforming
techniques [9][10][11][12], waveform optimization [13][14], power allocation [15], time/frequency mul-
tiplexing [15][16] and security [17]. Here we analyze in more detail only the works that are relevant
to our study. For instance, [15] implements power allocation and spectrum partitioning algorithm to
optimize the aggregated sensing and communication performance and energy efficiency of JCAS sys-
tems by using fractional and parametric programming techniques for convex problems. [16] optimizes
time and frequency allocation through the innovative use of Delay Doppler Resource Block (DDRB)
allocation in Orthogonal Time Frequency Space (OTFS)-based JCAS systems, optimizing the sum
rate of multiple users while satisfying stringent power and Cramer-Rao Bound (CRB) constraints for
enhanced communication and sensing performance.

Some work has also been done in the area of multi-cell JCAS networks. For instance, the authors
in [18] develop a robust framework for optimizing resource allocation and user-cell association in a
multi-cell JCAS network. Specifically, the resources managed within their model include the alloca-
tion of different sub-bands to minimize inter-cell interference, association of users to optimize network
coverage and utilization, and control of transmission power to balance signal quality against energy
consumption. [19] explores a power allocation method to improve localization accuracy while managing
interference between base stations. It also proposes an algorithm to minimize the range estimation
errors, considering the constraints on signal quality and power usage. [20] proposes a unified resource al-
location framework to fairly and effectively distribute power and bandwidth, among a range of different
sensing tasks. The authors focus on managing these resources to balance the Quality of Service (QoS)
demands for diverse sensing applications applications (detection, tracking and surveillance), ensuring
that both sensing and communication performance is maximized under the constraints of available
system resources.

A common limitation of these works is the lack of cooperation between BSs, which could potentially en-
hance the network’s overall sensing and communication performance by leveraging shared information
about the environment and user activity and minimizing inter-cell interference. Cooperative JCAS net-
works, in which clusters of transmitting and receiving BSs work in cooperation to enhance the sensing
performance, have been already introduced in the literature as future challenges, but not much work
has been done yet. For instance, [21] suggests the idea to use the signals coming from neighbouring cells
as contributions for bistatic sensing instead of treating them as interference. [22] provides a framework
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for multi-BS cooperative sensing in JCAS networks, analyzing the enabling technologies, performance
metrics and JCAS signal design and optimization. While these studies focus on promoting the cooper-
ative JCAS network paradigm, only a handful of works tackle the radio resource management challenge.

Only limited attention has been dedicated to radio resource management at a network level in a
multi-cell JCAS layout. For instance, [23] develops a cooperative JCAS scheme to mitigate the inter-
cell interference, which significantly enhances network-wide sensing and communication performance.
The study utilizes stochastic geometry to model and optimize network parameters effectively, such as
BSs density and cluster size of serving BSs to a specific user/target, demonstrating the potential of
this approach to improve both the average data rate and localization accuracy across the network.
However, this work is constrained by its reliance on a theoretical framework that incorporates several
simplifications, which limit its applicability to real-world scenarios. For instance, it is assumed that the
positions of the BSs and other network elements are modeled using a homogeneous Poisson Point Pro-
cess in a two-dimensional space. In reality, the placement of BSs is typically influenced by geographical,
infrastructural, and demand-based factors, all of which can significantly affect network performance
and optimal configurations. [24], which is an extension of [23], also utilizes stochastic geometry for
developing mathematical models that derive tractable expressions for Area Spectral Efficiency (ASE)
to evaluate and optimize the performance of JCAS networks. ASE measures the spectrum efficiency
over a given area for both communication and sensing tasks. By focusing on ASE, the authors aim
to quantify the efficiency of spatial resource utilization and the overall performance of the network.
These expressions account for factors such as inter-cell interference and the spatial distribution of base
stations, users, and targets. The authors then optimize the ASE by adjusting the cooperative base
station cluster sizes and the number of users and targets. For communication, ASE is maximized by
optimizing spatial resources to enhance multiplexing and diversity gains, while for sensing, ASE is
optimized by mitigating sensing interference through cooperative strategies like interference nulling.
The combined ASE reflects the overall efficiency of the network in utilizing the spectrum for both tasks.

[25] builds upon [24] by introducing a constraint for limited backhaul capacity, which restricts the
size of BS clusters. Beyond this size, BSs can no longer be considered synchronized, and such sizes are
excluded from the analysis since coherent sensing cannot be performed. Additionally, [26] extends the
analysis of [25] to scenarios with limited backhaul capacity, assuming non-coherent sensing processing.
This work also integrates transmit power management into the algorithm, wherein the available power
is allocated between spatially multiplexed sensing and communication signals. Authors in [27] develop
a robust precoding framework for Multiple-Input Single-Output (MISO) multi-cell JCAS network. It
introduces methods to optimize sensing performance using CRB and enhance communication SINR
using and Coordinated Multi-Point (CoMP). The approach tackles channel state estimation errors and
non-convex optimization challenges using advanced mathematical techniques.

The works analysed in this literature review are summarised in Table 2.1 by outlining the consid-
ered scenario, the addressed resource management challenges, the applied solution approach and the
pursued performance objective each reference addresses, thus enabling us to identify possible research
gaps.

The literature review reveals that most of the analyzed works employ analytical methods to optimize
network parameters, such as the number of users or targets and the size of BS clusters, typically
under simplified conditions. However, a common limitation among these studies is the absence of
algorithms for real-time dynamic resource allocation in JCAS networks. Such algorithms are necessary
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Table 2.1: Overview of related research.

Ref Objective Scenario
Resource
Schedul-
ing

Topology
Manage-
ment/Clustering

Power Allo-
cation

Management Tech-
nique Performance Objective

[9]

Design optimized hybrid
and analog beamforming
algorithm in FD JCAS
systems

Single cell,
multi user,
single target

Space No Yes
Closed form and
numerical ap-
proaches

Maximize power in sens-
ing direction while limit-
ing communication inter-
ference

[10]

Design a vision aided
beamforming algorithm to
compensate for user loca-
tion uncertainty

Single cell,
multi users Space No Yes Deep reinforcement Maximize SINR for users

[11]
Optimize predictive
beamforming in high-
mobility scenarios

Single cell,
single user

Time,
space No No Exhaustive search

Maximize user’s through-
put while meeting sensing
performance constraint

[12]
Design optimized hybrid
beamforming algorithm
for FD JCAS systems

Single cell,
multi users,
multi targets

Space No Yes

Generalized
Rayleigh Quo-
tient (GRQ) and
Genetic Algorithms
(GA)

Maximize communication
sum-rate while meeting
sensing constraints

[13]
Utilize cyclic prefixed sin-
gle carrier (CP-SC) wave-
forms in JCAS systems

-

Spectrum
and
waveform
utiliza-
tion

No No

Fast Cyclic Cor-
relation Radar
(FCCR) and Max-
imum Likelihood
Estimation

Estimation accuracy and
computational efficiency

[14]

JCAS waveform op-
timization in OFDM
communication-centric
systems

-

Spectrum
and
waveform
utiliza-
tion

No No Numerical iteration
algorithm

Maximize communication
SINR while constraining
either mutual informa-
tion (MI) or Cramer-Rao
bound (CRB) of sensing

[15]

Develop a joint spectrum
partitioning (SP) and
power allocation (PA)
optimization framework

Single cell Frequency No Yes Solve convex opti-
mization problem

Maximize sensing and
communication perfor-
mance under system
constraints

[16]
Optimize resource alloca-
tion in OTFS-based ISAC
systems

Single cell
multi user

Time,
frequency No Yes Solve convex opti-

mization problem

Maximize data rates and
minimize CRB under
power budget constraints

[17]

Design resource allocation
framework for variable-
length snapshots and in-
jection of artificial noise
(AF)

Single cell,
multi users,
multi targets

Space,
covari-
ance
matrix of
AF

No No

Block coordi-
nate descent and
semidefinite relax-
ation methods

Maximize the system’s
sum secrecy rate while
ensuring minimal in-
formation leakage and
minimum average rate for
each user

[18]

Design a resource alloca-
tion framework to opti-
mize sub-band, user and
power allocation

Multi cell,
multi users,
multi targets

Frequency,
user asso-
ciation

No Yes

Greedy Genetic
Algorithm (GGA)
Hungarian Al-
gorithm and
Successive Convex
Approximation
(SCA)

Maximize SINRs while
meeting power constraints

[19]

Design a power alloca-
tion method that mini-
mizes the maximum range
estimate error across BSs

Multi cell,
single user,
single target

- No Yes Convex relaxation,
iterative algorithm

Minimization of the max-
imum std of range esti-
mates across all BSs meet-
ing SINR and power con-
straints

[20]

Define and quantify the
QoS for sensing in various
applications and design
resource allocation frame-
work

Single cell,
multi user,
multi target

Frequency No Yes Alternative opti-
mization methods

Maximize sensing QoS
and communication SINR

[22]
Develop a cooperative
sensing framework involv-
ing multiple BSs

Multi cell,
multi user,
multi target

Frequency Cooperative
BSs cluster size Yes Cooperative sens-

ing algorithms

Maximize sensing ac-
curacy and range and
communication through-
put and reliability

[23]–
[26]

Analyze and optimize
the S&C performance
in JCAS networks using
multi-point coordi-
nated joint transmission
(CoMP)

Multi cell,
multi user,
multi target

Cooperative
BSs clus-
ter size

No No
Stochastic geom-
etry, exhaustive
search

Minimize CRLB and max-
imize ASE while meet-
ing backhaul capacity con-
straints

[27]
Develop robust precoding
for a cooperative MISO
JCAS system

Multi cell,
multi users,
multi targets

Space No Yes

Semidefinite re-
laxation (SDR)
and alternating
optimization (AO)
techniques

Minimize the estimation
error variance of target
parameters and maximize
the communication SINR
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to handle the scheduling of communication and sensing signals while considering time- and frequency-
varying channels in real-world scenarios. Furthermore, to the best of our knowledge, no previous work
has addressed the problem of sensing topology selection, which involves assigning transmitters and
receivers to jointly perform sensing tasks in realistic scenarios, rather than simply optimizing cluster
size in generalized settings. In response to this research gap, the contributions of this thesis are as
follows:

• Develop an advanced model for a communication-centric JCAS network, that considers realistic
propagation channels and interference between communication and sensing tasks, in contrast to
many existing works that assume these factors to be constant or absent or assume static channel
conditions [18][20][26][28].

• Design a topology selection algorithm for cooperative sensing tasks. In other words, determine
the optimal configuration of transmitters and receivers for each target, balancing the need to
maximize detection performance while efficiently utilizing the available node resources. In our
work, we do not only consider BSs as sensing receivers, but we also extended the model to allow
UEs to perform this role.

• Extend a commonly used time and space multiplexing communication user scheduling algorithm
to jointly schedule sensing tasks alongside communication flows, ensuring efficient resource allo-
cation for both functions.

• Analyze the communication and sensing trade-off based on probability of detection, communica-
tion throughput performance and the sensing topology size, through extensive simulations of a
range of relevant scenarios.

• Derive insightful conclusions and, based on these findings, provide practical recommendations for
network operators on how to optimally manage radio resources in JCAS networks.
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Chapter 3

Modeling

In this chapter we introduce the key modeling design choices adopted in this work. Most of the
communications-oriented aspects are modeled as in [29] with some modifications to extend them to a
JCAS scenario.

3.1 Network modeling

In this work we use a multi-cell network layout as can be seen in Figure 3.1. The network is composed
by a total of nineteen cells, served by nine three-sectorized base stations deployed according to an
hexagonal layout. The Inter-Site Distance (ISD) is 500 meters which results in a cell range of about
333 meters, modeling a dense urban deployment network [30]. The height of each BS is fixed at 25
meters [30]. The cells use Orthogonal Frequency Division Multiplexing (OFDM) signals on a dedicated
20 MHz carrier in the 7.1875 GHz band configured with numerology 1 (30 kHz sub-carrier spacing).
This results in a Transmission Time Interval (TTI) of 0.5 ms, where a TTI denotes the duration of
transmission on the radio link. Since twelve sub-carriers make up a Physical Resource Block (PRB),
each cell has nprb = 51 PRBs [31]. The set of all PRBs is denoted as F . The total transmit power per
cell is Pmax = 120 W, while the total transmit power per PRB is Pmax

nprb
.

In this work, we refer to the green inner cells as "evaluation" cells, meaning that these are the cells
of interest when evaluating the performance of communication and sensing tasks. On the other hand,
we refer to the red outer cells as "background" cells, for which we do not simulate concrete communi-
cation or sensing tasks, but they are assumed to always radiate at a fixed power to generate inter-cell
interference for the evaluation cells. Throughout the document, we will index the evaluation cells from
zero to six, while the background cells will be indexed from seven to eighteen.

Finally, the UEs and the sensing targets are distributed uniformly in the area served by the eval-
uation cells and they are considered to be outdoor. In this work, we detenote UEs and sensing targets
generally as "entities".
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Figure 3.1: Layout of the multi-cell network adopted in this work.

3.2 Antenna modeling

Each cell is served by a 64T64R antenna array, consisting of eight rows and four columns of cross-
polarized antenna elements, as shown in Figure 3.2i. This configuration results in nc = 64 trans-
mit/receive antennas. There are no sub-arrays, so the precoder for beamforming is optimized for all
64 antenna elements. The antenna gain of each antenna element is modeled as specified in the Ta-
ble 7.3-1 of the Third Generation Partnership Project (3GPP) technical report TR38.901 [30], with a
maximum directional gain of 8 dBi per element. The spacing between adjacent antenna elements is λ/2.

Each UE is assumed to have two pairs of cross-polarized antenna elements placed in opposite cor-
ners of the terminal, as shown in Figure 3.2ii. This configuration results in nUE = 4 antennas. The
antenna gain of all UE antenna elements is assumed to be 0 dBi. Considering the UE antenna height
hUE = 1.5 m, the BS antenna height, and the ISD, the mechanical downward tilt for the cells is derived
to be 5 degrees. The tilt is calculated by determining the angle, in degrees, that directs the antenna
towards the cell edge and then rounding it down to the nearest integer, as it is common practice to
aim the tilt slightly before the cell edge. Note that an appropriately configured downward tilt ensures
coverage for cell edge users in the absence of shadowing and multipath fading and reduces interference
for users in outer cells.
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(i) BS antenna array. (ii) UE antenna array.

Figure 3.2: (i) Antenna array deployed at a site with half-wavelength horizontal and vertical spacing between
adjacent antenna elements (ii) Antenna placement at a user terminal.

As mentioned in the previous section, the evaluation cells are modeled differently than the background
cells. This difference is modeled in the antenna radiation patterns. The horizontal and vertical cut of
the antenna radiation pattern of a single antenna element of an evaluation cell is shown in Figure 3.3
while the one for the background cells is shown in Figure 3.4 as depicted in [32].

(i) Horizontal antenna gain [dB]. (ii) Vertical antenna gain [dB].

Figure 3.3: Horizontal and vertical antenna gains for an evaluation cell.

The sensing targets, which are objects in the environment, do not have any antennas. However, for
simulation purposes, we model them as omni-directional antenna elements, as explained in Section 3.3.
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(i) Horizontal antenna gain [dB]. (ii) Vertical antenna gain [dB].

Figure 3.4: Horizontal and vertical antenna gains for a backfround cell.

3.3 Target modeling

We model the sensing targets as spherical objects to facilitate the simulation, since this allows us
to (i) assume that the target radiates isotropically, therefore independent from the geometry of the
system and (ii) simplify the expression of the Radar Cross Section (RCS), which is an indicator of how
detectable an object is by the radar. Physically it represents the equivalent area of the sensing target
that reflects signal power towards the sensing receiver and it is dependent on the shape, size, material
of the object and the frequency of the illuminating signal [33]. Mathematically, the RCS is described
as:

γ = lim
R→∞

4πR2 |Es|2

|Ei|2
(3.3.1)

where R is the distance from the target to the sensing receiver, ES is the scattered field strength at
the sensing receiver and Ei is the incident field strength at the target.

However, according to [33], the RCS of a simple object, such as a sphere, can be approximated to
an easier form. Furthermore, if the ratio 2πr/λ > 10, where r is the radius of the sphere and λ is
the wavelength of the signal, it means that the RCS of the object resides in the optical region, in
other words it approaches a constant value which is independent of the frequency f. We can then
approximate (3.3.1) by:

γ = πr2 (3.3.2)

Since our system operates at a frequency f = 7.1875 GHz, which means a wavelength of λ = 4.17

cm, for the RCS to reside in the optical region the spherical target needs to have a circumference
C = 41.7 cm, corresponding with a radius of r = 6.64 cm. Assuming this value for r, the resulting
RCS is RCS = π6.642 ≈ 139 cm2 = 0.0139 m2. Therefore, any value of RCS greater than or equal to
0.0139 m2 assumed in this work ensures operation within the optical region. In this study, we consider
RCS values within the range 1 m2 ≤ RCS ≤ 100 m2, which spans typical values from small objects to
large airplanes.
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3.4 Channel modeling

Figure 3.5: Radio propagation channel model.

The channel model adopted in this work is shown in Figure 3.5. Given a cell c which can act both as
sensing transmitter and receiver equipped with nc antennas, the UE equipped with nUE antennas and
sensing target s modelled as a single antenna object, a channel exists at TTI t and PRB f, represented
by the channel response matrix H(t, f) between each of the following four links:

1. link between a cell c and a target s:

Hc,s(t, f) ∈ Cnc ∀ s ∈ O, c ∈ C, f ∈ F

2. link between a cell c1 and another cell c2:

Hc1,c2(t, f) ∈ Cnc1×nc2 ∀ c1, c2 ∈ C, f ∈ F

3. link between a cell c and a UE u:

Hc,u(t, f) ∈ Cnc×nu ∀ c ∈ C, u ∈ U , f ∈ F

4. link between a target s and a UE u:

Hs,u(t, f) ∈ Cnu ∀ s ∈ O, u ∈ U , f ∈ F

where O denotes the set of target objects, C denotes the set of cells, F denotes the set of PRBs and U
denotes the set of UEs. We assume that each channel link is symmetric, e.g. H1,s = Hs,1.

In our model, we chose to do wideband precoding and combining which means that the precoding
and combining are done over a wideband-equivalent channel. This wideband channel is represented as
H̄(t) and can be calculated by:

H̄(t) =

∑
f∈F H(t, f)

|F|
∗
∑

f∈F |H(t, f)|
|
∑

f∈F H(t, f)| (3.4.1)

where H(t, f) can be any of the four channel links described above.

In Equation 3.4.1, the average of the absolute channel gains over all PRBs is multiplied with the
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normalized sum of the channel over the number of PRBs.

Each channel comprises of an average channel gain Gav ∈ R and a time/frequency-varying multi-
path fading channel Hsmall−scale(t, f) ∈ C. This is described for a general link between x and y
entities/nodes by:

Hxy(t, f) =
√

Gav
xy ∗Hsmall−scale

xy (t, f) (3.4.2)

Section 3.5 provides a detailed description of the average channel gain, while Section 3.6 focuses on
the multi-path fading channel.

3.5 Average channel gain

We model the average channel gain for the four given links considering various factors such as Path
Loss (PL), shadowing (S) and Antenna Gain (AG). A Minimum Coupling Loss (MCL) of 70 dB is
assumed to avoid unrealistically small losses over short distances [34]. The general average channel
gain for the four links described earlier can be written as follows:

Gav
xy(dB) = −max(PLx,y + Sx,y −AGx,y,MCL) (3.5.1)

Each of these losses is described in detail below.

Path Loss

In this work we adopt the PL model defined in 3GPP’s technical report TR38.901 [30] for the scenario
Urban Macro (UMa) Non Line of Sight (NLoS) as:

PLUMa−NLOS = max(PLUMa−LOS , PL′
UMa−NLOS) (3.5.2)

where PLUMa−LOS is the PL for the Line of Sight (LoS) scenario, which is defined at length in [30],
and PL′

UMa−NLOS is defined as:

PL′
UMa−NLOS = 13.54 + 39.08log10(d3D) + 20log10(fc)− 0.6(hUE − 1.5) |

1.5m ≤ hUE ≤ 22.5m,hbs = 25m
(3.5.3)

where d3D is the distance between the cell and the user in the 3-dimensional space, hUE is the height
of the UE, hbs is the height of the BS and fc is the center frequency of operation.

Shadowing

The shadow fading, or slow fading, is represented by a zero-mean Gaussian random variable Z with
standard deviation σ and correlation ρ. σ is chosen to be 6 dB in outdoor users/targets scenario [30]
and ρ is chosen to be 0.5 [35].

Figure 3.6 describes the shadowing relations between a cell c, UE 0 and target s. For each entity
we first sample a shadowing value from the normal distribution Zs, Zc, Z0 N(0, σ2). Then we deter-
mine the shadowing value for each link, for instance the link Zc,0, as:

Zc,0 = Zc
√
ρ+ Z0

√
1− ρ (3.5.4)
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Figure 3.6: Visual representation of the shadowing model between cell c, UE 1 and target s.

3.6 Time-and-frequency-varying channel modeling

To implement the small-scale fading of the channels defined in Section 3.4 we use QuaDRiGa [36]. We
model the local character of the user and target mobility by creating a circular track of radius 0.5m
where the user/target moves at a speed of 0.8m/s. The channel model for all links is based on the
UMa NLoS scenario, as shown in Equation 3.5.2.

Ideally, we would model the channels of each entity individually. However, this would require im-
plementing a complex slot-level structure, as generating a complete set of traces for each entity would
cause the computational complexity of the simulation to increase dramatically. To mitigate this, we
instead create a randomized set of generic traces at arbitrary entity positions. For each specific link, we
then randomly select one of these generic traces and adapt it to the particular cell-entity orientations
involved. To achieve this adaptation, we first remove the phases from the channel traces generated for
the arbitrary positions, making them phaseless, using the following equation:

Hsmall−scale
trace,phaseless[i, j] = ej2πdij/λ ∗Hsmall−scale

trace,original[i, j] ∀i = {0, 1, .., ntx − 1}, j ∈ {0, ..., nrx − 1} (3.6.1)

where dij is the distance between ith antenna element of the BS and the jth antenna element of the
entity. To avoid confusion, we remind the reader that, although the sensing target lacks any physical
antenna, we model it as a single-antenna object for the purposes of the simulation.

Next, for each link, we randomly select one of these processed generic traces, along with a random
starting point. Finally, a distance-based phase (distance for the actual entity location) is added back
to the trace using:

Hsmall−scale
trace,phases[m,n](t, f) = e−j2πdmn/λ ∗Hsmall−scale

trace,phaseless[m,n] ∀m = {0, 1, .., ntx − 1}, n ∈ {0, ..., nrx − 1}
(3.6.2)

where dmn is the distance between mth antenna element of the BS and the nth antenna element of the
entity.
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Chapter 4

SINR, throughput and probability of
detection

The SINR is a key performance metric in wireless communication systems that quantifies the quality
of a received signal in the presence of both interference and background noise. Specifically, SINR is
the ratio of the power of a desired signal to the combined power of interference from other transmitters
and the ambient noise present in the system.

In this section we derive the SINR calculations for both the communication and the sensing tasks
and we show how to compute the user’s throughput and the target’s probability of detection given the
experienced SINR.

4.1 Communication SINR and throughput

We calculate the SINRu(t, f) for the user u, associated to cell cu , at TTI t and PRB f as:

SINRu(t, f) =
1

(
∑

rx=0..(nrx−1) |vu[rx](t, f)|2)N0 + Iu,intra(t, f) + Iu,inter(t, f)
(4.1.1)

where, vu(t, f) is the combiner of user u derived as:

vu(t, f) = ((
√

Puwu(t))Hu(t))
+ (4.1.2)

which differs from the combiner derived in Equation 5.4.1 because the transmit power Pu towards
user u is incorporated in the precoder wu(t). N0 denotes the effective noise power and Iu,intra(t, f),
Iu,inter(t, f) denote the intra-cell and inter-cell interference, respectively. These are described in detail
in the next paragraphs.

Noise modeling

The effective noise power N0 is calculated as:

N0 = KTB × 10NF/10 (4.1.3)

where K is the Boltzmann constant, i.e., 1.38 × 10−23 Joules-per-Kelvin, T is the thermal noise
temperature taken as 290 Kelvin, NF is the receiver noise figure of 8 dB for the UEs and 2 dB for the
BSs, and B is the bandwidth over which we calculate the SINRs, which in our case is the bandwidth
of a PRB, which is 360 kHz.
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Interference modeling

1. Intra-cell interference: this refers to the interference experienced by a user u generated by its own
cell cu at TTI t and PRB f to serve another entity e:

Iu,intra(t, f) =
∑

e∈ES
cu (t)\{u}

P e
T,PRB(t)|vu(t, f)Hcu,u(t, f)wcu,e(t)|2 (4.1.4)

where, ES
cu(t) is the set of scheduled entities at TTI t in cell cu, P e

T,PRB is the power transmitted
to the entity e per PRB, which is equal to the total power allocated to the entity e equally divided
among PRBs.

2. Inter-cell interference: this refers to the interference experienced by a user u generated by neigh-
bouring cells using the same resource block of TTI t and PRB f to serve another entity e. In
our work, we make a distinction between the evaluation cells (the seven inner cells) and the
background cells (the outer twelve cells):

Iu,inter(t, f) = Iu,inter,evaluation(t, f) + Iu,inter,background(t, f) (4.1.5)

where

Iu,inter,evaluation(t, f) =
∑

c∈{0..6}\{cu}

∑
e∈ES

c (t)

P e
T,PRB(t)|vu(t)Hc,u(t, f)wc,e(t)|2 (4.1.6)

and

Iu,inter,background(t, f) =
∑

c∈{7..18}

δpPT,PRB(t)|vu(t)Hc,u(t, f)nuniform|2 (4.1.7)

where δp is a tunable parameter to control the amount of interference generated by the outer cells
and nuniform is a uniformly normalised vector of dimension [ntx, 1], which is essential to reshape
Hc,u(t, f) from its original dimension [nrx, ntx] to [nrx, 1] since the background cells are modeled
as a single antenna sub-array as explained in Section 3.2.

Previously, we computed SINR values on a per PRB basis. However, our focus is on evaluating
SINR across the entire carrier bandwidth because transport blocks are transmitted over the full carrier
and we need to evaluate the SINR at the transport block level so we can map it to a throughput
value. We can achieve this by using the Mutual Information Effective SINR Mapping (MIESM)
method [37]. This method allows us to determine the effective SINR SINRu

eff for a specific user u
across all PRBs. The process involves two main steps: converting SINRu(t, f) values into mutual
information MIu(t, f) and then averaging MIu(t, f) to obtain MIueff (t). Subsequently, MIueff (t)

is mapped back to determine SINRu
eff (t) using Modulation and Coding Scheme (MCS)-dependent

curves, shown in Figure 4.1, specifically choosing the curve corresponding to 256 Quadrature Amplitude
Modulation (QAM) modulation for this thesis. Since we use a Shannon-based data rate calculation,
and not adopt a MCS (modulation and coding scheme) dependent rate control algorithm, we assume
the MCS to be 256 QAM, which provides the best data rate and spectral efficiency.
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Figure 4.1: MI vs SINR curves for different modulation order [37].

4.1.1 Throughput calculation

Finally, we can compute the data rate experienced by user u at TTI t using the truncated Shannon
rate formula, as shown below:

Ru = min {Rmax, CF ∗Blog2(1 + SINReff
u )} (4.1.8)

Here, Rmax represents the maximum achievable rate of 114.752 Mbps, as shown in Section 5.1.3.2 of
[38]. The Correction Factor (CF) is modeled to consider resources consumed by control signaling and
inaccuracies in channel estimations. A value of 0.75 for CF is chosen based on typical ranges of such
correction factors documented in [39].

4.2 Sensing SINR and probability of detection

First we show how to compute the SINR in the sense of a simple scenario, and then we generalise it in
the sense of a more complex one.

4.2.1 Simple scenario: single-transmitter single-receiver sensing topology

The considered scenario is illustrated in Figure 4.2. It consists of one communication task and one
sensing task. The communication task involves downlink communication between cell a and UE 1.
The sensing task focuses on detecting target s, where cell a acts as the sensing transmitter and UE 0
as the sensing receiver. Here, H represents the channel response matrix as derived in Equation 3.4.2,
w is the precoding vector derived in Equation 5.3.3, and P denotes the transmit power for each task.
In this section, we derive the expression for the received SINR of the reflected sensing signal at UE 0.

The equation for s(t, f), denoting the received power of sensing signals at each antenna element in
the receiving node, is derived starting from the classical radar equation, which calculates the power
received by a single-antenna radar receiver at time t and frequency f [40]:
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Figure 4.2: Simple scenario for target detection with a single-transmitter single-receiver sensing topology.

S(t, f) =
PGtGrλ

2γ

(4π)3R2
TR

2
RL

(4.2.1)

where P is the transmitted power, Gt and Gr are the transmitting and receiving antenna gains, λ is
the wavelength, γ is the RCS of the target, RT and RR are the distances between the transmitter,
target, and receiver, respectively, and L represents system losses such as hardware imperfections [40].

While Equation 4.2.1 assumes free-space path loss, our model considers 3GPP UMa NLoS path-loss,
requiring an adaptation of the equation. Additionally, we rewrite the gains and losses in terms of the
precoding and channel models adopted in this work. First, we expand the path-loss components of
Equation 4.2.1, leading to Equation 4.2.2:

S(t, f) =
PGtGrγ

(4πRT )2

λ2

(4πRR)2

λ2
λ2

4πL
(4.2.2)

Here, (4πRT )2

λ2 and (4πRR)2

λ2 represent the path-loss for the links between the transmitter, target and
receiver, respectively, and λ2

4π is the effective aperture of an isotropic receiving antenna, as it is assumed
in the free-space path-loss derivation [41]. However, the gains and losses in this equation are already
accounted for in our path-loss model, allowing us to simplify and express it as:

s(t, f) = Pa,s|Ha,swa,s|2
γ

λ2/4π
(abs(Hs,0))

2 (4.2.3)
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In Equation 4.2.3, the classical radar equation is adapted to align with the wireless channel and pre-
coding models used in this work. The received power depends on the channel response matrices Ha,s

and Hs,0, which account for both path loss and antenna gains, as well as the precoding vector wa,s,
yielding a beamforming gain. The antenna gains and system losses, initially represented in the radar
equation, are now appropriately captured in Equation 4.2.3.

Now we want to combine the received signal powers s(t, f) at each of the receive antennas to ob-
tain the total received power S(t, f) at UE 0, TTI t and PRB f. According to the coherent combining
formula commonly used in the sensing literature [42], we can implicitly combine the received signal
powers by summing their amplitude, as shown in Equation 4.2.4:

S(t, f) =

 ∑
rx=0..(nrx−1)

√
s[rx](t, f)

2

(4.2.4)

where s[rx](t, f) is the received signal power at the receive antenna rx of UE 0 at TTI t and PRB f.

Next, to compute the SINR we need to compute the interference experienced by the sensing receiver.
From Figure 4.2, we can identify two sources of interference. We define Icommunication as the interfer-
ence generated by the communication task and Isensing as the interference generated by the sensing
task. The interference generated by the communication task at the receiver is computed as:

Icommunication(t, f) =
∑

rx=0..(nrx−1)

(Pa,1 |Ha,0[rx]wa,1|2) (4.2.5)

while interference generated by the sensing task is computed as:

Isensing(t, f) =
∑

rx=0..(nrx−1)

Pa,s|Ha,0[rx]wa,s|2 (4.2.6)

Therefore, the total interference experienced by the receiver antenna elements would be I(t, f) =

Icommunication(t, f) + Isensing(t, f). However, in radar applications, a two-dimensional Rang-Doppler
diagram is utilized to identify objects by analyzing the frequency shift in the returned radar signal,
which results from the motion between the radar system and the object. This frequency shift facilitates
the differentiation between stationary and moving targets. To mitigate interference from static sources
and low-velocity objects, specific signal processing filters are employed. These filters efficiently suppress
signals from objects that do not match the velocity and direction of the target of interest, thereby
focusing on relevant moving targets [42]. It is important to note that the energy from filtered out
signals cannot be eliminated completely, therefore, we introduce two tunable parameters in our model,
βc and βs, which quantify the impact of communication and sensing interference on the SINR. Since in
our model the sensing targets are moving at walking speed, the value of both parameters needs to be
close to one. In our simulation we assume βc = 1 and βs = 1, thus considering a worst-case scenario.
We can now derive the formula of the interference experienced by a sensing receiver at TTI t and PRB
f as:

I(t, f) = βcIcommunication(t, f) + βsIsensing(t, f) (4.2.7)

Finally, to compute the Pd, we are interested in computing the SINR over the wide-band channel. Due
to the possible frequency-selective fading and different multi-path environment at different PRBs, we
have to combine the SINR values at TTI t over all PRBs incoherently, as derived in Equation 4.2.8
[42]:

SINR(t) =

∑
f=0..(nprb−1) S(t, f)∑

f=0..(nprb−1)(N0 + I(t, f))
(4.2.8)
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In this simple scenario we derived the SINR calculations for a single-transmitter single-receiver sensing
system performing a sensing task at a given TTI t. In the next subsection we present the derivation of
SINR calculations when a multi-transmitter multi-receiver sensing system is used to perform a sensing
task.

4.2.2 Complex scenario: multi-transmitter multi-receiver sensing topology

In this subsection, we extend the derivation of the SINR to a more complex scenario involving multiple
cells and UEs within the considered network. Here, we explore the potential for sensing tasks to be
executed through cooperative efforts, involving clusters of transmitting and receiving cells and UEs,
denoted as sensing topologies. These topologies operate collaboratively, as depicted in Figure 4.3. In
this figure, the sensing topology responsible for detecting the target s comprises two cells: cell a, which
serves as both the sensing transmitter and receiver, and cell c, which serves as an additional sensing
transmitter. Additionally, two UEs, UE 0 and UE 1, serve as sensing receivers. Simultaneously, cell
b, cell c, UE 0, and UE 1 participate in communication tasks, introducing communication interference
into the detection of target s. Moreover, cell a and cell b, which are involved in detecting target r,
contribute to sensing interference.

Figure 4.3: Complex scenario for target detection with a multi-transmitter multi-receiver sensing topology.

Since the sensing task is now performed by multiple sensing transmitters and receivers, we can an-
alyze each link between a transmitter node xtx and a receiver node xrx individually, as derived in
Section 4.2.1. For each link (xtx, xrx), we can apply Equation 4.2.3 in combination with Equation
4.2.4 to compute the received power Sxtx,xrx

(t, f) at xrx from the sensing signal transmitted by xtx.
In scenarios with multiple transmitters, each receiver will accumulate signal power from each one of
the transmitters. To calculate the total received power at the topology level, which contributes to the
overall SINR, we need to combine these individual power contributions.
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As discussed in Section 4.2.1, there are two methods for combining received signal powers in the
sensing literature: coherent combining, introduced in Equation 4.2.4, and incoherent combining, in-
troduced in Equation 4.2.8. In this work, we assume that the cells in the network are interconnected
via a backhaul link with sufficient capacity to ensure perfect synchronization between them. This
enables coherent combining of the received signal powers across different cell-based receivers, as the
synchronization ensures that the signals are in phase, allowing their amplitudes to be directly summed.
This process is described in Equation 4.2.9:

Scoherent(t, f) =

( ∑
xtx∈T X

∑
c∈RX

√
Sxtx,c(t, f)

)2

(4.2.9)

where T X and RX are the sets of transmitters and receivers in the sensing topology, respectively. The
variable c denotes a cell-based receiver selected in the sensing topology, and Sxtx,c(t, f) represents the
received sensing power over the link (xtx, c).

Conversely, the UE serving as sensing receivers cannot be considered synchronized with the other re-
ceiving nodes. As a result, their power contributions must be combined incoherently with Scoherent(t, f)

computed in Equation 4.2.9. This results in S(t, f), the total combined received signal power at TTI
t and PRB f across the receivers in the sensing topology, as expressed in Equation 4.2.10:

S(t, f) = Scoherent(t, f) +
∑

xtx∈T X

∑
u∈RX

Sxtx,u(t, f) (4.2.10)

where u denotes a UE-based receiver within the sensing topology, and Sxtx,u(t, f) represents the re-
ceived sensing power over the link (xtx, u).

Now, we need to compute the total combined experienced interference across all the receiving nodes
in the sensing topology. The communication and sensing interference experienced by a receiving node
xrx in the sensing topology, are computed extending Equations 4.2.5 and 4.2.6 to combine the inter-
ference contributions generated by multiple transmitters. Finally, the total combined communication
interference Icommunication(t, f) of the sensing topology at TTI t and PRB f is computed as the sum
of all interferences experienced at each receiving node xrx as:

Icommunication(t, f) =
∑

xrx∈RX

∑
c∈C

∑
u∈US

c

∑
rx=0..(nrx−1)

Pc,u|Hc,xrx
[rx]wc,u|2) (4.2.11)

where C is the set of cells in the network, US
c is the set of users scheduled at cell c and TTI t, and RX

is the set of receiving nodes in the sensing topology. The sensing interference Isensing(t, f) is derived
very similarly to the communication interference Icommunication(t, f) as:

Isensing(t, f) =
∑

xrx∈RX

∑
c∈C

∑
s∈SS

c \{s0}

∑
rx=0..(nrx−1)

Pc,s|Hc,xrx
[rx]wc,s|2) (4.2.12)

where C is the set of cells in the network, SS
c is the set of sensing tasks scheduled at cell c and TTI t,

and RX is the set of receiving nodes in the sensing topology and s0 is the considered sensing task.

Now that we have defined Icommunication(t, f) and Isensing(t, f), the total interference I(t, f) expe-
rienced by a sensing topology at TTI t and PRB f is computed according to Equation 4.2.7.
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To compute the noise at a receiving node Nxrx
(t, f) at TTI t and PRB f, we follow the expres-

sion derived in Equation 4.1.3 and, to compute the total noise power N(t, f) experienced by a sensing
topology, we sum the noise contributions of each individual receiver node in the sensing topology as:

Ntot(t, f) =
∑

xrx∈RX
Nxrx

(t, f) (4.2.13)

Analogously to Section 4.2.1, to compute the total combined SINR SINR(t) for a sensing topol-
ogy over the wideband channel, all the total received powers S(t, f) are incoherently combined across
all PRBs as [42]:

SINR(t) =

∑
f∈0..(nprb−1) S(t, f)∑

f∈0..(nprb−1) (N(t, f) + I(t, f))
(4.2.14)

4.2.3 Probability of detection calculation

Once the received SINR is computed, the Pd can be determined using the curves in Figure 4.4, based
on the chosen Probability of False Alarm (Pfa) [43]. The Pfa represents the probability that the sys-
tem will incorrectly signal the presence of a target when none exists. In radar systems, reducing the
Pfa necessitates a higher measured SINR to achieve the same level of detection confidence compared
to operating with a higher Pfa. As noted in [43], "A typical radar system operates with a detection
probability of 0.9 and a probability of false alarm of 10−6."

According to [43], the curves in Figure 4.4 map a range of SINR values to a range of Pd for a given
Pfa based on a single SINR measurement. However, our network operates over 51 PRBs, resulting
in 51 separate measurements. While the received power values are combined incoherently, detection
theory provides methods to enhance the resulting Pd, as combining multiple measurements increases
confidence, even if the SINR itself does not improve. Unfortunately, due to the time constraints of this
thesis research, we were unable to implement these methods in our model. Therefore, we propose this
as future work. As a result, our current results represent a worst-case and hence conservative scenario,
as Pd values obtained with these techniques would likely be more optimistic.
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Figure 4.4: Pd as a function of SNR with false alarm probability as a parameter assuming a single pulse
sinusoidal signal in Gaussian noise [43].
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Chapter 5

Resource management solutions

In this chapter we present the Radio Resource Management (RRM) solutions adopted in this work for
both sensing tasks and communication flows.

5.1 Sensing topology management

The sensing topology management comprises of two parts: (i) sensing topology selection and (ii)
dynamic node contribution management.

5.1.1 Sensing topology selection

The sensing topology selection algorithm is executed at the start of each simulation snapshot for every
sensing task, aiming to identify the set of BSs and/or UEs that will collaboratively perform the given
sensing task and assign specific roles to each of the selected nodes, designating them as transmitters,
receivers, or both.

The sensing topology selection process is divided into two stages: (i) the identification of suitable
nodes for a particular sensing task, and (ii) the actual selection of nodes to be included in the topol-
ogy, along with the assignment of their respective roles.

Selection of nodes

We denote the set of candidate nodes as X ⊂ Usensing ∪ C, where Usensing denotes the set of UEs
in the network available to participate in a sensing task and C denotes the set of all cells. The gain
Gav

x,s for each link between the target s and every available node x in the network is computed according
to Equation 3.5.1. The average gain is used here instead of the TTI-specific time/frequency-varying
gain derived in Equation 3.4.2 because performing the topology selection algorithm at the TTI level
would introduce unmanageable overhead, as it would require informing all nodes of any changes in
topology.

Once the average gains have been computed for each link, the nodes are ranked according to their
respective gains. The node experiencing the highest gain is selected to be part of the sensing topology.
In addition to this node, all other nodes that fulfill the requirement in Equation 5.1.1 are selected:

Gav
xi,s ≥ Gav

x0,s −Gth ∀ xi ∈ X \ {x0} (5.1.1)

where Gav
x0,s is the highest average gain and Gth is a configurable parameter in the simulation. The

only constraint imposed on the sensing topology is that it must include at least one transmitting and
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one receiving node. Since UEs can only serve as sensing receivers, it is necessary to ensure that at
least one cell is selected for each topology. Consequently, if no average gain between a cell c and the
target s satisfies the aforementioned condition, the cell with the highest gain among the set of cells C
is selected to be part of the sensing topology.

Assignment of roles

The role assignment algorithm conducts an exhaustive search through all possible topologies, con-
sidering all combinations of transmitters, receivers, or both, based on the selected nodes. Ideally, this
algorithm would select the topology that achieves the highest combined SINR for the received sensing
signals, leading to a higher Pd. However, this is not feasible because two factors are unknown: (i) the
TTI-specific time-frequency varying channels, and (ii) the precise interference and resource multiplex-
ing effects introduced by communication flows or other sensing tasks. Therefore, we approximate the
SINR using SNR calculations to select the best topology.

For each candidate topology, we estimate the resulting SNR by following the steps outlined below:

1. Step 1: Estimate the received signal powers from all the transmitting nodes xtx to each of the
receiving nodes xrx selected in the topology:

Sxrx
=

( ∑
xtx∈Xtx

∑
rx∈RX

√
PmaxHxtx,swxtx,s

γ

λ2/4π
Hs,xrx

)2

(5.1.2)

where Pmax is the maximum available power at the transmitter, wxtx,s is the Maximum Ratio
Transmission (MRT) precoder derived according to Equation 5.3.1, and the received powers are
coherently combined according to Equation 4.2.4.

2. Step 2: Estimate the overall SNR of the sensing topology, Stopology, by first summing the received
powers Sxrx

at each receiver node as follows:

Stopology =

( ∑
c∈Xrx

√
Sxrx

)2

+
∑

u∈Xrx

Sxrx
(5.1.3)

where c denotes a receiving cell and u denotes a receiving UE selected in the sensing topology.

3. Step 3: Compute the estimated SNR as:

SNRtopology =
Stopology∑
xrx∈X N0

(5.1.4)

Finally, given the set of selected nodes, the algorithm will choose the sensing topology that includes
these nodes, along with their respective role assignments, based on the configuration that experiences
the highest SNR estimate.
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5.1.2 Dynamic node contribution management

Once the topology achieving the highest estimated SNR is selected for a sensing task s, it will be used
to compute the total SINR throughout the whole simulation snapshot. However, since the totopology
was selected according to the highest estimated SNR and not SINR, it will lead to suboptimal results
when nodes, especially far away from the target s, receive higher interfereing power than the sensing
signal reflection power, thus worsening the combined SINR of the topology. Therefore, every node
serving as a sensing receiver in the topology has the choice to not contribute to the detection task at
the assumed TTI t if:

Snrx
(t, f) < βcIcommunication,nrx

+ βsIcommunication,nrx
+N0 (5.1.5)

Figure 5.1 shows a comparison in Pd performance where in (i) the dynamic node contribution manage-
ment is disabled and in (ii) is enabled, in a scenario with one target, where the number of UEs available
for sensing is varying and the analysis is performed over multiple sizes of topology. It is clearly visible
that without the dynamic node contribution management enabled, the I+N becomes bigger than the
S with growing topologies, while when it is enabled increasing the topology size has a positive impact.

Throughout the remainder of this thesis, we refer to the topology size selected by the sensing topology
selection algorithm as the selected topology, while the modified topology at the TTI level, managed by
the dynamic node contribution management algorithm, is referred to as the effective topology.

(i) PD comparison for 0, 1 and 5 UEs deployed for each
evaluation cell one sensing task available.

(ii) PD comparison for 0, 1 and 5 UEs deployed for each
evaluation cell 1 sensing tasks available improved algorithm.

Figure 5.1: Performance of PD under varying topologies and UE configurations.

5.2 Cell-user association

Cell-user association is an RRM task whose goal it is to determine which cell a specific UE should
be connected to. In this work we adopt the term user for the UE and we use these terms interchangeably.

In a 5G cellular network, all cells broadcast beams, namely Synchronization Signal Blocks (SSB)s,
in a periodic manner. A given user u listens to these SSBs from all the cells and attempts a handshake
with the cell from which it receives the strongest SSB. If it does not receive a sufficiently strong SSB
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from any cell then the user is considered out of coverage. Thus, a given user u, is associated to a given
cell cu with:

cu = argmax
c∈C

(PSSB
cu ·Gc,ϵ,u) (5.2.1)

and,
PSSB
cu ·Gc,ϵ,u ≥ SSSB

th (5.2.2)

where C is a set of all cells, PSSB
cu is the transmitted power of SSB ϵ in cell c, Gc,ϵ,u is the total

propagation gain on that SSB to user u, and SSSB
th is the threshold signal power needed for a user to

connect to a cell. In this work we adopt SSSB
th = −110 dBm [44].

5.3 Beamforming

Beamforming is an RRM task in which a wireless signal is aimed at a specific receiving device. This is
achieved by applying a precoding vector to the signals fed to multiple transmit antennas. The precoding
vector adjusts the amplitude and phase of each signal to optimize the overall signal strength and radio
link quality (SINR) at the receiver. In this study, we utilize MRT precoding and Zero Forcing (ZF)
precoding, which are defined below. We also assume that perfect Channel State Information (CSI) is
known.

5.3.1 Maximum ratio transmission

MRT is a precoding technique that aims to maximize the gain of the radio link between a cell c and a
user u. For a given user-antenna pair (u, rx), the precoder wu is given by:

wu,rx =
h∗
u,rx

∥hu,rx∥2
(5.3.1)

where, hu,rx represents the wideband radio link channel response for a user-antenna pair (u, rx) from
its associated cell c at time t.

MRT is particularly effective in Single-User Multiple-Input Multiple-Output (SU-MIMO) since it aims
to optimise the user-specific beamforming gain, and consequently the received signal strength, without
any regard for possible interference to other users.

5.3.2 Zero forcing

ZF is a precoding technique applied in Multi-User Multiple-Input Multiple-Output (MU-MIMO) de-
signed to eliminate interference at the receiving users by ensuring that the transmitted signal is orthog-
onal to potential intra-cell interfering signals. The precoding matrix in ZF is calculated to nullify the
intra-cell interference caused by transmitting antennas at the receiving end, while still achieving the
highest attainable beamforming gains. The ZF precoder at cell c for all its scheduled users, denoted
as Wc is calculated as [45]:

Wc = (HT
c )

+ (5.3.2)

where HT
c denotes the wideband channel matrix comprising of channel vectors from the cell c to all the

scheduled user-antenna pairs and (HT
c )

+ is the Moore-Penrose pseudo-inverse of HT
c . Each column

vector hu,rx of Wc, which represents the precoding vector for the user-antenna pair (u, rx) is then
normalized by its L-2 norm to ensure that the transmit power Ptx, which is the summed transmit
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power over the users, does not exceed the maximum available transmit power Pmax available at cell c
as:

ĥu,rx =
hu,rx

∥hu,rx∥2
(5.3.3)

where ĥu,rx is the normalized precoding vector user u.

5.4 Combiner

A combiner is a critical component in the receiver system of a multi-antenna communication setup.
Its main function is to merge the signals received from different antennas, thereby enhancing their
combined strength and exploiting the diversity offered by multiple antennas to improve the overall
quality of the received signal. Maximum Ratio Combining (MRC) is the most common combiner
technique, which maximizes the SINR by adjusting the weighting and the cophasing of the received
signals based on their channel gains. It assigns greater weight to signals with higher channel gains and
lesser weight to those with lower channel gains. This technique is particularly effective in mitigating
fading and enhancing signal quality. In a SU-MIMO system, the MRC combiner, vu(t) for user u at
time t, is calculated as:

vu(t) = (wu(t)Hu(t))
+ (5.4.1)

where, wu(t) represents the precoder for user u and Hu(t) represents the wideband channel between
the cell to the user u at time t.

5.5 Scheduling

In this section, we present the resource scheduling algorithm implemented for both sensing tasks and
communication flows. We adopt slightly different definitions of scheduling for these tasks. Specifically,
the communication scheduling algorithm is executed for each cell to schedule users at each TTI, while
the sensing scheduling algorithm is executed only once at the beginning of the simulation. The primary
role of the sensing scheduling algorithm is to time-schedule sensing tasks, as described below. However,
instead of scheduling sensing tasks for a single cell, it schedules them for the entire sensing topology
selected for the task. As a result, sensing scheduling is performed at the topology level, as opposed to
the cell level.

5.5.1 Sensing tasks scheduling

Each sensing task must be performed with a specific periodicity, determined by the sensing period
Tsensing = n TTIs.

The scheduling of sensing tasks is performed at the start of each simulation snapshot. The goal of
this algorithm is to distribute the sensing tasks as evenly as possible across TTIs within the assumed
sensing period. This schedule is then consistently repeated for all subsequent periods throughout the
snapshot. We define the number of sensing targets as ns. If ns ≤ Tsensing, the scheduling process is
straightforward, as it is easy to allocate the targets across TTIs such that at most one sensing task
is scheduled per TTI. However, when ns > Tsensing, multiple sensing tasks must be scheduled within
the same TTI. In such cases, the sensing scheduling algorithm prioritizes co-scheduling of the sensing
signals aimed at distinct targets within the same TTI that are positioned farthest from one another.
This approach minimizes the likelihood of overlapping topologies, reducing the need for cells to spa-
tially multiplex the sensing signals for such targets, thereby decreasing the probability of interference
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between sensing tasks. Figure 5.2 provides an example of sensing scheduling, where (i) and (ii) illus-
trate an instance of a sensing schedule when ns ≤ Tsensing, and ns > Tsensing, respectively. As we can
notice from Figure 5.2(ii), in this example the two pars of targets that are furthest away with respect
to each other are (s1, s6) and (s4, s7).

(i) Schedule for ns sensing tasks where ns ≤ Tsensing.

(ii) Scheduling of ns sensing tasks where ns > Tsensing.

Figure 5.2: Schedule for ns sensing tasks when Tsensing = 5 TTIs and (i) ns ≤ Tsensing and (ii) ns > Tsensing.

5.5.2 Communication users scheduling

Conversely, communication user scheduling occurs at each TTI t. A commonly used scheduler in mobile
networks is the Proportional Fairness (Proportional Fair (PF)) scheduler, which balances maximizing
cell throughput with ensuring fairness among users [46]. The PF scheduler allocates resources to
users based on the ratio between their estimated instantaneous data rate and their historical average
experienced data rate. For a given user u, the PF index at TTI t is defined as:

PFu(t) =
R̃u(t)

Rav
u (t− 1)

(5.5.1)

where R̃u(t) is the estimated data rate for user u at TTI t, and Rav
u (t−1) is the user’s average through-

put up to time t− 1. The scheduler prioritizes users with the highest PF index for resource allocation
in the upcoming TTI.

To implement multi-user scheduling, we combine the PF ranking of users with a decision criterion
to determine which users can be scheduled simultaneously. In this work, we adopt a modified ver-
sion of the Semi-Orthogonal User Selection (SUS) algorithm [47], as presented in [48]. This method
ensures that users with approximately orthogonal channel vectors are co-scheduled, thereby reducing
interference between them. We have slightly modified this algorithm to co-schedule users alongside the
already co-scheduled signals for the sensing tasks, which occur at recurring TTIs.

Steps of the Semi-Orthogonal User Selection Algorithm:

1. Step 1 (Initialization):
We define ES

c (t) as the set of scheduled entities in the cell c at TTI t. If there are sensing tasks
scheduled in cell c at the considered TTI t, we include them in ES

c (t).

2. Step 2 (Co-scheduling additional users):
Assume k entities are already scheduled. To co-schedule an additional user u, we select the user
with the highest PF index as:

u = argmax
u∈Uc

PFu(t)

where Uc is the set of users associated with cell c. Subsequently, we select the candidate user’s
channel vector hu(t), which represents the channel between the cell c and user u’s receiving
antenna which experiences the highest gain. We compute the correlation between the candidate
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user’s channel vector hu(t) and the already scheduled users’ channel vectors. For each candidate
user u, calculate the orthogonality condition:

γu =
|hu(t)

Hhek(t)|
∥hu(t)∥2∥hek(t)∥2

If γu ≤ γth, where γth = 0.5 [47], the user u is considered sufficiently orthogonal to the already
scheduled users and is added to the scheduling set:

ES
c = ES

c (t) ∪ {u}

3. Step 3 (Update and Repeat):
The process continues until no more users can be co-scheduled based on the orthogonality cri-
terion. The final set ES

c (t) contains the scheduled users for cell c at time t, ensuring minimal
interference between them.

This approach results in a set of scheduled entities that are co-scheduled in such a way that their
transmissions experience minimal interference, as their channel vectors are approximately orthogonal.
The list of scheduled entities is then passed to the beamforming stage for precoder design.
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Chapter 6

Scenarios and results

In this chapter, we present the results of our performance evaluation of a communication-centric JCAS
network. The focus of the analysis is on assessing the trade-offs between communication and sensing
performance. Specifically, we evaluate four Key Performance Indicators (KPIs): the average and 10th

percentile probability of detection for sensing tasks, and the average and 10th percentile throughput
for communication flows. Our findings highlight how varying system parameters influence these KPIs,
providing insights into optimal configurations for balanced performance.

To conduct this evaluation, we examine the KPIs across a range of scenarios by varying key sys-
tem parameters. The configurable parameters used in these scenarios are listed in Table 6.1, where
the underlined values indicate the default settings, unless otherwise specified.

Table 6.1: Scenario parameters varied in the simulations.

Parameter Symbol Values Units
Number of UEs per cell nUE 0, 1, 5 -

Number of targets ns 1, 5, 10 -
Sensing topology selection parameter Gth 0, 3, 6, 9, 12, 15 dB

Radar cross-section RCS 10, 50, 100 m2

Icommunication weighting factor βc 0, 0.5, 1 -
Isensing weighting factor βs 0, 0.5, 1 -

Background cells activity factor δp 0, 0.5, 1 -

The fixed parameters applied consistently throughout all simulations are provided in Table 6.2.

In the following subsections, we describe the scenarios considered in this study and present the corre-
sponding simulation results.

6.1 Sensing-only scenario

In this section, we evaluate the sensing performance of the JCAS system in the absence of active
communication flows. Under these conditions, all UEs are fully dedicated to sensing tasks, while the
background cells remain silenced, meaning δp = 0. The scenario under consideration involves five active
sensing tasks, with a variable number of UEs per cell. Given the sensing periodicity of Tsensing = 5 TTIs,
scheduling these five tasks does not necessitate spatial multiplexing of sensing signals. Our objective
is to assess how variations in the number of UEs affect the probability of detection and to examine
the influence of the sensing topology selection parameter Gth on both the topology size and sensing
performance.
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Table 6.2: Fixed parameters assumed in all scenarios.

Name Symbol Value Unit
Inter-site distance ISD 500 m

Numerology - 1 -
Sub-carrier spacing SCS 30 kHz
Carrier bandwidth B 20 MHz
Number of PRBs nPRB 51 -

Frequency f 7.1875 GHz
TTI duration - 0.5 ms

BS antenna array - 64T64R -
UE antenna array - 1T4R -
UE/target speed - 0.8 m/s

PF smoothing parameter α 0.1 -
Co-scheduling parameter γ 0.5 -
Probability of false alarm Pfa 10−6 -
UE antenna element gain AUE 0 dB
BS antenna element gain ABS 8 dB

Noise figure of a UE NFUE 8 dB
Noise figure of a BS NFBS 2 dB

Shadowing standard deviation σ 6 dB
Shadowing correlation ρ 0.5 -

BS height hBS 22.5 m
UE height hUE 1.5 m

Correction factor throughput - 0.75 -
Sensing period Tsensing 5 TTI

The results for this scenario are shown in Figure 6.1. In Figure 6.1(i), the solid lines illustrate the
average selected topology size, while the dashed lines depict the average effective topology size for
different numbers of UEs per cell. Figure 6.1(ii) shows the average probability of detection (solid lines)
and the 10th percentile probability of detection (dashed lines) as the number of UEs per cell varies.

From the solid curves in Figure 6.1(i), we observe that the average topology size increases with both
Gth and the number of available UEs. This is expected, as a larger Gth allows the sensing topology
selection algorithm to include more nodes in the topology, and with more UEs, it becomes more likely
that several users will have a sufficiently good channel link to the target, making them eligible for inclu-
sion in the sensing topology. Additionally, the average effective topology size is only marginally smaller
than the average selected topology size, indicating that the dynamic node contribution management
algorithm removes very few node contributions. This behavior is expected in a sensing-only scenario
since, without interference, even nodes with weaker channels towards the target can still positively
contribute to the detection task. It is also worth noting that, contrary to what might be expected, the
curves are not zero when Gth = 0 dB. This indicates that the average topology size, both selected and
effective, is not strictly one. In scenarios with one or five UEs, if the strongest channel gain between
the target and any candidate node belongs to a UE, the sensing topology selection algorithm selects
a topology of size two, where the second node is the cell with the highest gain among all candidate
cells. Naturally, for the case where there is only one UE per cell, this situation cannot occur, and the
average topology size remains exactly one.
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From Figure 6.1(ii), we observe that the probability of detection increases with the sensing topol-
ogy selection parameter Gth > 15., as the sensing topology expands with higher Gth. Additionally,
we notice that both the curves of average and 10th percentile probability of detection almost exactly
match for the cases with zero or one UE per cell, while the case with five UEs per cell achieves sig-
nificantly better performance. This is observed because a higher number of UEs per cell allows the
sensing topology selection algorithm to select larger topologies and, the larger the number of UEs, the
more likely it is for at least one UE to be close to the target, therefore probably experiencing a good
channel towards the target.

Finally, the plots in Figure 6.1 indicate that for scenarios with zero and one UE per cell, the probability
of detection converges around Gth = 12. In these cases, this corresponds to an average topology size
of 1.5 and 2, respectively. However, in the case with five UEs per cell, the curves suggest that the
probability of detection may continue to improve for Gth > 15.

Since the main objective of this thesis is to analyze the trade-off between communication and sensing
in JCAS networks, and other sensing-only scenarios exhibit similar trends to those presented in this
section, we choose to focus on the more insightful JCAS scenarios in the next section.

Figure 6.1: Analysis of the impact of Gth on the probability of detection and sensing topology size in a sensing-
only scenario with five active sensing tasks and different numbers of UEs per cell.
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6.2 JCAS scenarios

This section analyzes the sensing performance of the JCAS system when both sensing tasks and
communication flows are simultaneously active. In these scenarios, all UEs are available for selection
in the sensing topology. If a UE u is selected to participate in the sensing topology for a sensing task s,
it will not be scheduled for downlink data transfer during the TTIs when s is scheduled. However, the
UE can still be scheduled for downlink data transfer in other TTIs. In these scenarios, all configurable
parameters are set to their default values unless otherwise specified.

6.2.1 Performance impact of Gth given five sensing tasks and different number of
UEs

In this scenario, we assess the influence of the sensing topology selection parameter Gth on the average
and 10th percentile probability of detection, the average and 10th percentile user throughput, as well as
the average selected and effective topology sizes. The evaluation is conducted with five active sensing
tasks, comparing performance across different numbers of UEs per cell. The results are presented in
Figure 6.2, where all three plots display outcomes as a function of Gth. Figure 6.2(i) shows the average
selected topology size (solid lines) and the average effective topology size (dashed lines). Figure 6.2(ii)
illustrates the average probability of detection (solid lines) and the 10th percentile probability of de-
tection (dashed lines). Finally, Figure 6.2(iii) presents the average (solid lines) and 10th percentile
(dashed lines) user throughput.

Figure 6.2(i) shows the impact of Gth on the sensing topology size, allowing for a comparison with the
sensing-only scenario presented in Figure 6.1(i). From the solid curves, we observe that the average
size of the sensing topologies selected by the sensing topology selection algorithm remains the same, as
expected, since the selected topology is not influenced by interference. However, the effective average
topology size tends to be smaller. This reduction reflects the fact that in the JCAS scenario, due to
communication interference and the need to share the available resources with the UEs, fewer nodes in
the sensing topology positively contribute to detection tasks. Consequently, the performance of sensing
tasks is degraded compared to the sensing-only scenario. Notably, this effect is more pronounced in
the case of five UEs per cell, where the larger number of UEs leads to greater communication interfer-
ence and fewer resources allocated to sensing tasks. In contrast, the curve representing the case of no
UEs is unaffected. Interestingly, having a greater number of UEs available for selection in the sensing
topology does not necessarily translate into substantial improvements in sensing detection performance.

Figure 6.2(ii) shows an improvement in the average probability of detection as Gth increases, which
corresponds to a larger average topology size. Interestingly, the curve representing one UE per cell
exhibits a slightly higher average probability of detection compared to the curve for five UEs per cell.
This outcome highlights a trade-off: while a larger sensing topology size increases the probability of
detection, the additional interference introduced by more UEs participating in communication flows
negatively impacts the sensing tasks. Overall, both the average and 10th percentile probabilities of
detection are notably lower than those observed in the sensing-only scenario. This reduction is at-
tributed to the interference from communication flows and the resource sharing between sensing tasks
and communication flows.

Figure 6.2(iii) presents the average and 10th percentile user throughput for scenarios with one and
five UEs per cell. As expected, the results indicate that when fewer UEs are present in the network,
both the average and 10th percentile user throughput are higher. This improvement is attributed to
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the fact that fewer UEs lead to more efficient resource allocation, as fewer resources are shared and less
interference is generated. It is important to note that in this scenario, the average throughput remains
unaffected by Gth, and consequently by the sensing topology size, while the 10th percentile throughput
is only marginally influenced. This outcome is supported by the fact that only one sensing task is
scheduled per TTI, and the average sensing topology size is very small, as shown in Figure 6.2(i). As
a result, very few communication flows are impacted by the sensing tasks, leaving the average user
throughput largely unaffected. The 10th percentile user throughput is impacted for UEs that are part
of the sensing topology at a given TTI t. However, due to the use of a PF scheduler, these UEs are
more likely to be scheduled in subsequent TTIs, compensating for the temporarily lost throughput
performance. We can anticipate that the impact of sensing tasks on user throughput will increase as
the number of active sensing tasks grows.

6.2.2 Performance impact of Gth given one UE per cell and different number of
sensing tasks

In this scenario, we examine the impact of the sensing topology selection parameter Gth on both the
average and 10th percentile probability of detection, as well as on the average and 10th percentile user
throughput. The evaluation is conducted considering one active UE per cell, comparing performance
across different numbers of sensing tasks. The results are presented in Figure 6.3.

Figure 6.3(i) shows the probability of detection as a function of the sensing topology selection parame-
ter Gth. The one-target and five-target scenarios exhibit overlapping curves because, in the five-target
scenario, each target is scheduled in a separate TTI, effectively preventing inter-task interference and
resource sharing. In contrast, the ten-target scenario follows a similar trend but consistently shows
lower performance due to increased inter-task interference and competition for resources among mul-
tiple sensing tasks, as the tasks are spatially multiplexed. These observations emphasize the impact of
inter-task interference: while increasing Gth generally improves the probability of detection by expand-
ing the sensing topology, the presence of multiple concurrent sensing tasks can cancel this gain through
inter-task interference and resource sharing. The graph also shows that the 10th percentile probability
of detection for the scenario with ten sensing tasks drops to zero for low values of Gth. This occurs in
cases where it is not possible to schedule sensing tasks within the same TTI that are sufficiently orthog-
onal, leading to a high level of inter-task interference, which significantly degrades sensing performance.

Figure 6.3(ii) shows that the average throughput is minimally affected by the number of active sensing
tasks, with the curves for one, five, and ten targets remaining constant and closely aligned. This
is expected, as mentioned in the previous scenario, because a small number of sensing tasks with a
small average topology size do not significantly impact user throughput. However, the 10th percentile
communication throughput is more affected by the number of targets, as more sensing tasks involve a
greater number of UEs in sensing activities, thereby reducing their availability for communication and
impact their communication performance.

6.2.3 Impact of target distance on probability of detection

In this section, we present the results of a study analyzing the correlation between the distance from
the target to the cell experiencing the highest gain and the average probability of detection. The sce-
nario involves one target and different numbers of UEs per cell, evaluated for sensing topology selection
parameters of Gth = 3 dB and Gth = 15 dB. The results are shown in Figure 6.4(i) and Figure 6.4(ii),
respectively.
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Figure 6.2: Analysis of the impact of Gth on the probability of detection, communication throughput and sensing
topology size in a JCAS scenario with five active sensing tasks and different numbers of UEs per cell.

From the figure, we observe a strong inverse relationship between the probability of detection and the
distance from the target to the cell with the highest gain, which is in line with an exponential path-loss
model. Additionally, it is noteworthy that for larger distances, the scenario with Gth = 15 dB tends to
outperform the scenario with Gth = 3 dB. This confirms that a larger topology size, as determined by
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Figure 6.3: Analysis of the impact of Gth on the probability of detection and communication throughput in a
JCAS scenario with one UE per cell and different number of active sensing tasks.

a higher Gth, achieves higher sensing performance by effectively enhancing the detection probability
at greater distances.

Lastly, we observe that for lower values of Gth, the three curves exhibit very similar levels of sensing
performance, suggesting that the contribution of the cell experiencing the highest gain in the sensing
topology accounts for most of the sensing performance. As Gth increases, this contribution diminishes,
and the cases with one and five UEs per cell begin to show improved sensing performance with respect
to the case with no UEs per cell. The plots also highlights the trade-off between the number of UEs
per cell and sensing performance, which was similarly observed in Figure 6.2(ii), where the curve for
one UE per cell outperforms the one for five UEs per cell.

6.2.4 Impact of RCS on probability of detection

In this section, we examine how different RCS values affect the probability of detection in a scenario
with five active sensing tasks and one UE per cell, considering different Gth values. As intuitively
expected, Figure 6.5(i) shows that the probability of detection increases with RCS, due to the fact
that a bigger sensing object generally reflects more energy in the receiver direction. The improvement
is more pronounced when comparing 10 m2 and 50 m2 than 50 m2 and 100 m2. This trend occurs
because RCS impacts the SINR linearly, as described in Equation 4.2.3, while the probability of de-
tection grows logarithmically with SINR, as shown in Figure 4.4.

Throughput performance is included in Figure 6.5(ii) for completeness, although it is intuitively clear
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Figure 6.4: Analysis of the impact of the distance between the target and the cell with strongest channel on
the probability of detection in a JCAS scenario with one active sensing tasks and different numbers of UEs per
cell for Gth = 3 dB and Gth = 15 dB.

that the RCS primarily affects sensing performance and does not directly impact user throughput.
In practice, the sensing performance gains under higher RCS values could be (partially) traded off to
improve throughput performance by reducing the sensing topology size, which would in turn reduce
interference and potentially allow more transmission opportunities for UEs. However, for the current
scenarios, this gain would be minimal.

6.2.5 Impact of δp on the probability of detection

In this section, we examine the effect of different values of the background cells’ activity factor δp on
the probability of detection in a scenario with five active sensing tasks and one UE per cell, across
various values of Gth. The results, shown in Figure 6.6, clearly demonstrate the expected impact of
interference from the background cells on detection performance. This influence is evident in both the
average and 10th percentile probabilities of detection, highlighting how increased interference degrades
sensing performance.

6.2.6 Impact of βc and βs on the probability of detection

In this section, we analyze the effect of different values of the weighing factor for the communication
interference βc and the weighting factor for the sensing interference βs on the probability of detection in
a scenario with ten active sensing tasks and one UE per cell, while considering different values of Gth.
Specifically, we investigate the average probability of detection for all possible combinations of βc and
βs. The scenario includes ten active sensing tasks, as opposed to five sensing tasks assumed in previous
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Figure 6.5: Analysis of the impact of the RCS on the probability of detection and communication throughput
in a JCAS scenario with five active sensing tasks and different numbers of UEs and Gth.

Figure 6.6: Analysis of the impact of the δp on the probability of detection in function of Gth in a JCAS scenario
with five active sensing tasks and one UE per cell.

scenarios, because βs regulates the interference contribution from one sensing task to another. In cases
where there are at most five active sensing tasks, no such interference occurs, because the associated
sensing signals are transmitted in distinct TTIs, making it uninformative to study the impact of βs.
The results of this analysis are presented in Figure 6.7. As shown in the figure, the average probability
of detection is only marginally affected by different values of βc and βs.
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Figure 6.7: Analysis of the impact of the βc and βs on the probability of detection in a JCAS scenario with ten
active sensing tasks and one UE per cell.
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Chapter 7

Conclusions and future work

In this thesis, we developed a model for communication-centric JCAS networks and proposed novel
RRM algorithms to optimize the trade-off between communication and sensing performance. Specifi-
cally, we introduced a sensing topology management algorithm aimed at maximizing target detection
probability which, in the analysed scenarios, only minimally impacts the user throughput. By adjust-
ing key model parameters, we evaluated the performance of these algorithms in terms of probability
of detection and user throughput across diverse scenarios.

7.1 Summary of the findings

This section presents the key insights from evaluating the proposed JCAS network, focusing on the
trade-off between communication and sensing. Based on the considered scenarios, the main findings
are:

1. Trade-off between the number of UEs and sensing performance: Increasing the number
of UEs in JCAS networks, where UEs are engaged in active communication flows and can also
participate in sensing topologies, improves detection probability by enlarging the sensing topolo-
gies, but it also increases communication interference that impacts sensing tasks. Our results
show that, in the scenarios analyzed in this thesis, there is a number of UEs to guarantee optimal
sensing performance. In fact, scenarios with one UE per cell outperform those with five UEs,
suggesting that fewer UEs per cell achieve better detection performance while minimizing inter-
ference. These findings can be applied to real-world scenarios where operators may have control
over which UEs are active in communication flows and which UEs can contribute to sensing,
based on their subscription type. In fact, operators could adjust scheduling parameters based
on subscription priorities, favoring users with higher-priority subscriptions and allocating fewer
resources to users with basic plans, if the number of co-scheduled UEs exceeds the optimal level,
in order to maintain good sensing performance.

2. Impact of Gth on the sensing and communication performance: Increasing the sensing
topology parameter Gth positively impacts the probability of detection, as it results in employing
larger sensing topologies. In the specific scenarios studied in this thesis, the impact of Gth on
communication performance is marginal. However, in scenarios with more active sensing tasks,
the impact on communication performance would likely be more significant.
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7.2 Future work

Several potential directions for future work have emerged from this research. Key areas that could be
explored include:

1. Extending the model to consider different types of sensing tasks (e.g., localization, surveillance,
and tracking) and their impact on communication, as well as considering moving targets instead
of static, locally moving targets.

2. Developing adaptive algorithms that dynamically adjust system parameters in real-time to balance
the trade-off between communication and sensing, such as periodically selecting updated sensing
topologies by considering the average historical level of experienced interference.

3. The current RRM algorithms assume perfect CSI. Investigating the impact of imperfect CSI
and developing efficient CSI acquisition methods to support radio resource management tasks are
promising directions for future research.

4. Exploring the integration of ML/AI techniques to enhance the performance and computational
feasibility of RRM algorithms. For instance, incorporating an AI model that can predict inter-
ference levels at upcoming TTIs and optimally allocate resources based on these predictions.
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