
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and

Computer Science
Delft Institute of Applied Mathematics

Comparing Sequential and Cooperative Erasure
Repairing

(Dutch title: De Vergelijking tussen Verlies
Sequentieel en Coöperatief Herstellen)

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Erik ten Hagen

Delft, the Netherlands
September 2018

Copyright c© 2018 by Erik ten Hagen. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Comparing Sequential and Cooperative Erasure Repairing”

(Dutch title:“De Vergelijking tussen Verlies Sequentieel en
Coöperatief Herstellen”)

ERIK TEN HAGEN

Delft University of Technology

Supervisor

Dr.ir. J.H. Weber

Thesis committee

Dr. D.C. Gijswijt Drs. E.M. van Elderen

September, 2018 Delft

Preface

You are reading the thesis ’Comparing Sequential and Cooperative Erasure
Repairing’ which has been written as part of my bachelor in Applied Math-
ematics at Delft University of Technology. I have been working on this
project between April and August of 2018.

The reason I chose to work on this subject for my thesis is because I
liked the course ”Applied Algebra: Codes en Cryptosystems”. Here we had
a introduction in coding theory, which I enjoyed and therefore wanted to
work on it during my thesis.

I would like to thank J. Weber for his supervision of this project and to
thank him for his feedback. I also would like to thank the rest of the thesis
committee for reviewing my thesis.

Abstract

Information is spatially distributed over data servers and for many services
online it has to be available at all times, but those servers are not always
available. If we store the information in a smart way, we might be able to
still get our information even if we can not reach the servers.
There are two factors we have to keep in mind when we restore the servers
and information. Those are the repair bandwidth, this is the amount of
data you need to download to repair a failed server, and the repair degree,
this is the amount of other servers you have to access before you can repair
your server. We will look at two methods for restoring information with
focusing on the repair degree, which means to access the least amount of
other servers.
First we discuss how we can repair one and multiple failures or erasures
using the cooperative and sequential repairing method. Then we discuss the
parameters for a sequential locally repairable code and its locality or repair
degree. Next we will discuss the parameters for the Hamming code and the
extended Hamming code and their locality for which we have constructed
a function to calculate the generalized Hamming weight for κ ≤ 3. Now
we can compare the sequential locally repairable code with the Hamming
code for two erasures and we can compare the sequential locally repairable
code with the extended Hamming code for three erasures. The result is that
the sequential locally repairable code has a much lower locality than the
Hamming code and the extended Hamming code, but they have a higher
information rate.

Contents

1 Introduction 2

2 Linear Codes 3
2.1 Generator and Parity-check matrix 3
2.2 Weight, Distance, Information Rate and Redundancy 4

3 Analysis of the Generalized Hamming Weight 5

4 Erasure Repairing 8
4.1 One Erasure Repairing . 8
4.2 Cooperative Erasure Repairing 9
4.3 Sequential Erasure Repairing 10

5 Codes for Sequential Erasure Repairing 13
5.1 Construction of the Code . 13
5.2 The Upper Bound and the Lower Bound 15
5.3 The Difference between the Locality for Two and Three Era-

sures . 15

6 Codes for Cooperative Erasure Repairing 17
6.1 Hamming Codes . 17
6.2 Extended Hamming Codes . 17

7 Differences Between the SLRC and Hamming Codes for Two
and Three Erasures 20
7.1 Codes with the same Length 20
7.2 Codes with the same Information Rate 21
7.3 Codes with the same Dimension 21

8 The Influence of Limiting the Repair Set Size for One Era-
sures 23
8.1 [7, 3, 4]-Code with Limited Repair Set for One Erasure 23
8.2 The Advantage of Sequential Erasure Repairing 25
8.3 [7, 3, 4]-Code without Limiting the Repair Set 25

9 Conclusion and Future Work 27

1

1 Introduction

In a distributed storage system, the data of a single file is spatially dis-
tributed over multiple nodes or storage units. It could be possible that a
node or storage unit is temporary unavailable because too many people try
to access the node, because the node may crash or restart or because the
node is under maintenance.

In [1] where they studied the Facebook cluster, they found that they had
a median of 50 nodes that were unavailable per day. To repair or access the
data we have to use other nodes. Before we check other nodes we have to
keep in mind two important factors. First is the repair bandwidth; that is
the amount of data you need to download to repair a failed node and the
second is the repair degree, which is the amount of other nodes you have to
access before you can repair your node [2].

A simple idea for storing information against a failure is using backups,
duplicating every node. Now if one node fails we can repair it with its
duplicate. If multiple failures happen we can sometimes repair them and
sometimes not. If the failures happen in two distinct nodes we can repair
them just like with only one failure bit if the two failures happen, one in a
node and one in its backup we can not repair them. We see here that each
node can be repaired with one other node, but this is generally not the case.

In this thesis we have looked at codes that can repair multiple erasures
and the amount of nodes/symbols you need to repair them.
We will discuss the cooperative method of erasure repairing and the sequen-
tial method of erasure repairing and discuss codes that can repair two and
three erasures using these two methods.

In Chapter 2 we will give some information about linear codes. In Chap-
ter 3 we will construct a function which we will later use to calculate the size
of repair sets for the cooperative method. Chapter 4 will provide an intro-
duction in erasure repairing for both one and multiple erasures. Chapters
5 and 6 will elaborate on two codes, one code to repair erasures sequential
and the other code to repair erasures cooperative for both two and three
erasures. In Chapter 7 we will compare them with each other. Finally in
Chapter 8 we will look at a linear code where you can only repair erasures
with two symbols.

2

2 Linear Codes

When we are talking about codes, there are a few properties we are inter-
ested in. First of all the length of a code and the information it contains. For
linear codes we have length n and the information it has is called dimension
k and because we are working binary we have F k2 ⊂ Fn2 . This gives our code
structure.
The information or message we send looks like u = (u1, ..., uk) with ui ∈ F2

and the information is protected against erasures with n−k bits. To protect
our message we use a function f : F k2 → Fn2 , this gives us f(u) = v with v
is the code word corresponding to u. All the possible code words gives us
our code.

2.1 Generator and Parity-check matrix

Because we are working in a linear space each ui in u is linked with a vector
gi and depending on which ui are ones our code word v is the sum of gi.
When we put these vectors in a matrix we get G and v = uG. Now we have
G is a k×n matrix with gi as row vectors. G is called the generator matrix
of this code and in this paper the generator matrix are all in standard form,
meaning that they they look like

G = [Ik, X]

We are also interested in the parity-check matrix. This is a (n− k)× n
matrix and for every code word c in C we get H · c> = 0.
Because G is in standard form we can construct H as follows

H =
[
X>, In−k

]
Example 1. If we look at a [5, 4]−code. Then its generator matrix is a
4× 5 matrix with a I4

G =


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1


and the parity-check matrix is a 1× n matrix with I1.

H =
[
1 1 1 1 1

]
This code is known as the parity code in which every row vector has an even
amount of ones.

3

2.2 Weight, Distance, Information Rate and Re-
dundancy

A code word c for a [n, k, d] linear code C has ones in different positions.
The support of a code word is a set existing of all the ones in c.

χ(c) = {i ∈ [1, .., n]|ci = 1}

The weight or Hamming weight of the code word c is the amount of ones
it has. We denote this as wt(c). This is equal to |χ(c)|.
The distance between two code words v and w is the amount of positions in
which they differ. If we want to determine the distance of a code C, we have
to find the smallest distance between two code words in C. The distance of
a linear code is equal to the minimum weight of a nonzero code word in C.

Example 2. If we look at v = (0, 0, 1) and w = (1, 1, 1), then we see that
the weight of v is one and the weight of w is three. When we want to know
the distance between two code words we can count the amount of positions
they differ or we can calculate the weight of v−w. wt(v−w) = wt(110) = 2.

Instead of looking at the support of one vector we can look at the support
of D ⊆ C.

χ(D) = {i : ∃(x1, x2, ..., xn) ∈ D,xi = 1}

Definition 1. For a [n, k, d] linear code C and 1 ≤ κ ≤ k, the κth generalized
Hamming weight is

dκ(C) = |χ(D)|

with D a subcode of C with rank κ.

There is a small difference between the usual definition of generalized
Hamming codes [3] and ours. Normally the generalized Hamming weight is
the smallest |χ(D)| but we are interested in using the generalized Hamming
weight for κ independent vectors. We will have D is the span of κ indepen-
dent vectors.
For κ = 1 we get the weight of one vector and this the same as the weight
of a code word.

The information rate and redundancy of a code tells us something about
the information a code contains and the extra bits of a code. The informa-
tion rate is the ratio between the dimension of a code and its length. The
redundancy is the difference between the length of a code and its dimension.

Example 3. If we have the [5, 4]-code then the information rate of the code
is k

n = 4
5 = 0.8 and the redundancy of the code is n− k = 5− 4 = 1.

4

3 Analysis of the Generalized Hamming

Weight

In this Chapter we analyse the generalized Hamming weight for κ ≤ 3. We
will need this to measure the size of repair sets in Chapter 6. For one vector
we can calculate the amount of positions that are one using the weight of the
vector, but for multiple vectors we can not easily calculate all the positions.
Therefore we will construct a function that can calculate the generalized
Hamming weight for three or less vectors.

Definition 2. If a, b and c are vectors in Fn2 , then Z(a, b, c) = {i ∈
{1, .., n}|ai = 1 ∨ bi = 1 ∨ ci = 1}.

For the generalized Hamming weight we are only interested in |Z(a, b, c)|

Lemma 1. Let a,b and c be vectors in Fn2 , then

|Z(a, b, c)| = wt(a) + wt(b) + wt(c) + wt(a + b) + wt(a + c) + wt(b + c) + wt(a + b + c)

4
.

Proof. Let a, b and c be vectors in Fn2 and define A = χ(a) and B = χ(b)
and C = χ(c).
Notice that wt(a) = |A| and wt(b) = |B| and wt(c) = |C|.

Let u and v be vectors in Fn2 and U = χ(u) and V = χ(v) and define
S1(U, V) = U ∪ V \{U ∩ V }. Then we have wt(u + v) = |S1(U, V)| and

S1(U, V) = {i ∈ {1, .., n}|(ui = 1 ∧ vi = 0) ∨ (ui = 0 ∧ vi = 1)}

Define a second set

S2(A,B,C) = {(A ∪B ∪ C)\
{

(A ∩B)\C ∪ (A ∩ C)\B ∪ (B ∩ C)\A}}

This set is equivalent with

S2(A,B,C) =

{
i ∈ {1, .., n}

∣∣∣∣(ai = 1 ∧ bi = 1 ∧ ci = 1) ∨ (ai = 1 ∧ bi = 0 ∧ ci = 0)∨
(ai = 0 ∧ bi = 1 ∧ ci = 0) ∨ (ai = 0 ∧ bi = 0 ∧ ci = 1)

}

Notice that wt(a + b + c) = |S2(A,B,C)|

The sets counted in wt(a) are the ones that are only in A. Those are
the ones in A and not B and C and the ones in A and B but not in C and
the ones in A and C and not in B and the ones in A,B and C. Which we
can see in Figure 3.1a.
In Figure 3.1b we see the sets of ones we count in wt(a + b) and in Figure

5

(a) The sets counted in
wt(a)

(b) The sets counted in
wt(a + b)

(c) The sets counted in
wt(a + b + c)

(d) The sets counted in wt(a) +
wt(b) + wt(c)

(e) The sets counted in wt(a +
b) + wt(a + c) + wt(b + c)

Figure 3.1: The visual representation of the sets we count in the weight of
one or more vectors.

3.1c we see the sets of ones we count in wt(a + b + c).

If we count the sets wt(a) and wt(b) and wt(c), we count some sets twice
or even thrice. Those are the ones in the position that are in a and b or in
a,b and c.
If we add the sets of ones in Figure 3.1c with the sets of ones in Figure 3.1d
and with the sets of ones in Figure 3.1e. We count each set four times. We
get

4·|Z(a, b, c)| = wt(a)+wt(b)+wt(c)+wt(a+b)+wt(a+c)+wt(b+c)+wt(a+b+c)

|Z(a, b, c)| = wt(a) + wt(b) + wt(c) + wt(a + b) + wt(a + c) + wt(b + c) + wt(a + b + c)

4
(1)

Example 4. Lets check (1) for two vectors. Let a = (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1)
and b = (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1), then a + b = (1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0).
We can easily check Z(a, b,0) = {1, 2, 3, 6, 7, 8, 10, 11} and |Z(a, b,0)| = 8.
Because c = 0 we only need to know the weight of a,b and a + b to check

6

(1). wt(a) = 6, wt(b) = 5 and wt(a + b) = 5.

|Z(a, b,0)| = 6 + 5 + 0 + 5 + 6 + 5 + 5

4
=

32

4
= 8

Example 5. For three vectors look at a = (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1) and
b = (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1) and c = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0), then a +
b = (1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0), a + c = (0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1), b + c =
(1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1) and a+b+c = (0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0). Now we
have Z(a, b, c) = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11} and |Z(a, b, c)| = 10. To check
the formula (1) we need the weight of all these vectors, those are wt(a) = 6,
wt(b) = 5, wt(c) = 5, wt(a + b) = 5, wt(a + c) = 5, wt(b + c) = 8,
wt(a + b + c) = 6.

|Z(a, b, c)| = 6 + 5 + 5 + 5 + 5 + 8 + 6

4
=

40

4
= 10

The result is the same as counting the set Z(a, b, c).

7

4 Erasure Repairing

If you send a code word c = (c1, ..., cn), the receiver will not always get
c but instead will get v = (v1, .., vn) with vi =? for the erasures on place
i ∈ {1, .., n} and vj = cj on the other places. The set of the erasures exist
of the indices where the erasures take place E ⊆ {1, ..., n}. The erasures
can be repaired by combining some other symbols of the code word. Which
symbols you can use depends on the code and the method of repairing. We
will look at repairing one erasure and two methods of repairing multiple
erasures. Those are cooperative [4] and sequential erasure repairing [5].

The amount of erasures we can solve depends on the distance of the
code. We can always solve t = d−1 erasures. Although we may have a code
word with more erasures that we can repair, this will not be the case for all
code words in the code.

4.1 One Erasure Repairing

If we have one erasure this means we have received a the word v = (v1, .., vn)
with on place i we have vi =?. Thus we have E = {i}. To repair one erasure
we have to look at the parity-check matrix for our code. For every vector
h in the row space of the parity-check matrix we know

∑n
j=1 cj · hj = 0. If

hj = 0 then cj can be anything. So the only cj that are important are the
ones for which hj = 1.
To solve one erasure we want to have a vector h in the row space of H such
that hi = 1. Because then we have v1·h1+...+vi·hi+...+vn·hn = 0 . Because
we do not know vi we get vi = h1 ·v1+...+hi−1 ·vi−1+hi+1 ·vi+1+...+hn ·vn.
Now here we have 1 < i < n. But the same principle works for i = 1 and
i = n.
The repair set for vi is R = {j ∈ {1, ..., n}\{i}|hj = 1}.

Definition 3. A [n, k, d] linear code has locality r for one erasure if for
every set E with |E| = 1 the repair set |R| ≤ r.

Example 6. If we look at the [7, 4, 3]-code. This code is called a Hamming
code and is generated by

G =


1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1

 (2)

8

and its parity-check matrix is

H =

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

 (3)

If we receive v = (0, 0, 1, 1, ?, 1, 0), then E = {5} and we need to find a
h in the row space of H such that h5 = 1. We can use h = (1, 1, 1, 0, 1, 0, 0).
We know that h1 · v1 + ...+ vn · hn = 0 and if we fill in the values of hj we
get v1 + v2 + v3 + v5 = 0 and thus we know v5 = v1 + v2 + v3. Now we
check the values in v and we get v5 = 0 + 0 + 1 = 1. So the code word was
v = (0, 0, 1, 1, 1, 1, 0). The repair set is R = {1, 2, 3} and for one erasure this
code has locality 3.

4.2 Cooperative Erasure Repairing

For repairing erasures cooperative for the code word c, we have to look at
the row space of the parity-check matrix H. The vectors we want to use
should have for each j ∈ E and l ∈ E\{j} the values cj = 1 and cl = 0. If
we name these vectors wj and the i-th bit of this vector wji then we can
use them to restore cj . If we define Rj = {i ∈ {1, ..., n}|i 6= j ∧ wji = 1},
then Rj is the repair set for erasure j and cj =

∑
i∈Rj

ci. The repair set for
the erasures is R = ∪j∈ERj .

Definition 4. A [n, k, d] linear code C has locality rc if for every set E the
repair set for cooperative erasure repairing has size rc or less.

Because we can calculate the weight of two and three vectors, we can
determine the size of the repair set. For two erasures we need a a and b
in the row space of H, which satisfy the requirements to solve the erasures,
then rc = |Z(a, b, 0)| − 2. For three erasures we need a, b and c in the
row space of H, that satisfy the requirements. Then the repair set size is
rc = |Z(a, b, c)| − 3.

Example 7. We look at the [7, 4, 3] binary Hamming code with generator
matrix (2) and parity-check matrix (3).
If we receive the word v = (0, 1, ?, ?, 0, ?, 1). Then we can solve the erasures
cooperative. First notice E = {3, 4, 6}. Now we have to find three vectors
such that one vector has c3 = 1, c4 = 0, c6 = 0 and one vector has c3 =
0, c4 = 1, c6 = 0 and one vector that has c3 = 0, c4 = 0, c6 = 1.
We can find these vectors in the row space of (3). The row space consist of
the following vectors.

9

h1 = (1, 1, 1, 0, 1, 0, 0)

h2 = (1, 1, 0, 1, 0, 1, 0)

h3 = (1, 0, 1, 1, 0, 0, 1)

h1 + h2 = (0, 0, 1, 1, 1, 1, 0)

h1 + h3 = (0, 1, 0, 1, 1, 0, 1)

h2 + h3 = (0, 1, 1, 0, 0, 1, 1)

h1 + h2 + h3 = (1, 0, 0, 0, 1, 1, 1)

The three vectors we will use are h1, h1 + h3 and h1 + h2 + h3. These
vectors gives us the following equations.

c3 =c1 + c2 + c5

c4 =c2 + c5 + c7

c6 =c1 + c5 + c7

The repair set is R = {c1, c2, c5, c7}. If we check what those values are in
our received word we can conclude our erased symbols are

c3 = 0 + 1 + 0 = 1

c4 = 1 + 0 + 1 = 0

c6 = 0 + 0 + 1 = 1

So the code word was (0, 1, 1, 0, 0, 1, 1).
In this situation those three vectors where the only possible vectors to repair
these erasures. To repair the erasures we have used a total of four symbols,
therefore the repair set is R = {c1, c2, c5, c7}. For small codes it is easy
to check the size of the repair set, but for larger codes this could be time
consuming. We could have used (1) to calculate the amount of symbols in
the repair set.

4.3 Sequential Erasure Repairing

To solve erasures sequential for a word c we have to look at the row space
of the parity-check matrix. The vectors should satisfy the following criteria.
First vector should have for j1 ∈ E the value cj1 = 1 and for all l1 ∈ E\{j1}

10

the value cl1 = 0, then you can use this vector to solve the first erasure.
For the second vector we need j2 ∈ E\{j1} with cj2 = 1 and for all l2 ∈
E\{j1, j2} the value cl2 = 0, then you can solve the second erasure. Now
for the i-th vector you have ji ∈ E\{j1, ..., ji−1} with cji = 1 and for all
li ∈ E\{j1, ..., ji} with cli = 0, then you can use that vector to solve the i-th
erasure. If we have found the vector w for the ji erasure and let wb be the
b-th bit of w and lets define Rji = {b ∈ {1, ..., n}|b 6= ji ∧ wb = 1}, then we
can calculate that cji =

∑
b∈Rji

cb.

Definition 5. A [n, k, d] linear code C has locality rs for sequential erasure
repairing if for every erasure j ∈ E the repair set Rj has size rs or less.

Notice that for sequential erasure repairing the locality rs only depends
on the repair set of one erasure and for cooperative erasure repairing the
locality rc depends on the repair set of all erasures.

Example 8. Lets look at the code generated by (2) and the parity-check
matrix (3). If we receive the word v = (0, 1, ?, ?, 0, ?, 1), then we can repair
this with a few different repair sets.
The first vector we can choose is one of the three vectors in Example 7. Lets
use h1. now we can solve the third symbol. c3 = c1 + c2 + c5 = 0 + 1 + 0 = 1
For the second erasure we can use h1 + h3 just like with cooperative, but
we can also use h3, this gives us c4 = c1 + c3 + c7 = 0 + 1 + 1 = 0.
For the last erasure we can use the rows h2, h1 +h2, h1 +h3, h1 +h2 +h3.
If we use h2 it gives us c6 = c1 + c2 + c4 = 0 + 1 + 0 = 1 and we find that
the code word was (0, 1, 1, 0, 0, 1, 1).
Notice that for each of the three vectors we have used by cooperative, we
can use two vectors to solve the second erasure and four vectors to solve the
fourth erasure. So there are 3 ·2 ·4 = 24 ways to repair these three erasures.
Also because all the vectors in the row space of (3) has a weight of 4, the
repair sets all have size 3.

As mentioned in Section 4, we can always solve t = d − 1 erasure. For
the code we just mentioned we can solve t = d − 1 = 3 − 1 = 2 erasures.
But we just saw in Example 7 and in Example 8 that it could solve 3 era-
sures. This only happens because we used the right code words, it is not
always possible to repair three erasures. For example if we have received
v = (0, 0, ?, 0, ?, 0, ?). When we look at the generator matrix (2) we see on
the third row the vector (0, 0, 1, 0, 1, 0, 1). This is a possible code word for
v, but the vector (0, 0, 0, 0, 0, 0, 0) is also in our code. So we can not always
repair three erasures.

For sequential erasure repairing we can use three different kind of vectors
for repairing two erasures. The first vector has on the position of the first

11

erasure cE1 = 0 and on the position of the second erasures cE2 = 1. The
second kind of vector has cE1 = 1 and cE2 = 0 and the third kind of vector
has cE1 = 1 and cE2 = 1. For each of these sort of vectors there are two
vectors with these properties.
This gives us three possible combination to solve the erasures. First one is
we use the first kind of vectors with the second kind. Then you have a vector
with cE1 = 0 and cE2 = 1 and also a vector with cE1 = 1 with cE2 = 0. Here
we can solve the erasures both at the same time, just like cooperative.
We can also use the first kind of vectors with the third kind of vectors, this
gives us a vector with cE1 = 0 and cE2 = 1 and also a vector with cE1 = 1
and cE2 = 1. Now we have to solve the second erasure first and then the
first erasure.
Last option we can use is the second kind of vectors with the third kind of
vectors, this gives us a vector with cE1 = 1 and cE2 = 0 and also a vector
with cE1 = 1 and cE2 = 1. Now we have to solve the first erasure first and
then the second erasure.

These are the three possible combinations to repair two erasures. We like
to give each of the vectors its own letter to count all the possible repair sets.
For the first kind of vector we can check in Section 7 there are two vectors
with this property, call them a1 and a2. For the second kind of vector
there are also two vectors, call them b1 and b2 and for the third vector
there are also two vectors with this property, call them c1 and c2. Then
the possible combinations are (a1, b1), (a1, b2), (a1, c1), (a1, c2), (a2, b1),
(a2, b2), (a2, c1), (a2, c2), (b1, c1), (b1, c2), (b2, c1) and (b2, c2). So we got
12 different repair sets for 2 erasures.

12

5 Codes for Sequential Erasure Repair-

ing

In this section we will discuss a certain family of sequential locally repairable
codes, which is (n, k, r, t)−SLRC. This is a linear code of length n, dimen-
sion k, locality r and can solve always up to t erasures. This is introduced
in [5] and we will call it SLRC or SLR-code. A key component of this family
of SLRC is that they all have a code rate of at least r

r+t .
First we will discuss this code for two erasures and for three erasures,then
we explain why the lower bound is interesting and then compare the size of
the repair sets for these two codes.

5.1 Construction of the Code

For two and three erasures we have that the length

n = rm
t∑

s=0

1

r|suppm(s)| (4)

with the dimension k = rm. The length and dimension depends on r,t and
m. Here we have t as the amount of erasures the code can repair. m is any
positive integer such that t ≤ 2m − 1. For both t = 2 and t = 3 we have
2 ≤ m. the suppm(s) is the set of ones in the binary representation of s
with length m. So the only difference between two and three erasures is the
value of t in

t∑
s=0

1

r|suppm(s)|

For two erasures this is

2∑
s=0

1

r|suppm(s)|

=1 +
1

r|suppm(1)| +
1

r|suppm(2)|

=1 +
1

r
+

1

r

=1 +
2

r
=
r + 2

r

(5)

13

For three erasures we get

3∑
s=0

1

r|suppm(s)|

=1 +
1

r|suppm(1)| +
1

r|suppm(2)| +
1

r|suppm(3)|

=1 +
1

r
+

1

r
+

1

r2

=
r2 + 2 · r + 1

r2

=

(
r + 1

r

)2

(6)

In Table 5.1 we see a list of parameters for the codes that exist for two and
three erasures. Because the code is constructed depending on r we know for
each code how big the repair set is.

SLRC for two erasures SLRC for three erasures

Size of r value for m n k n k

2 2 8 4 9 4

3 16 8 18 8

4 32 16 36 16

3 2 15 9 16 9

3 45 27 48 27

4 135 81 144 81

4 2 24 16 25 16

3 78 52 100 64

5 2 35 25 36 25

6 2 48 36 49 36

7 2 63 49 64 49

8 2 80 64 81 64

9 2 99 81 100 81

10 2 120 100 121 100

Table 5.1: A list of parameters of existing SLR-code for two and three
erasures with 2 ≤ r ≤ 10

14

5.2 The Upper Bound and the Lower Bound

For cooperative erasure repairing we have the upper bound

k

n
≤ r

r + t
(7)

according to Rawat, Mazumdar, and Vishwanath in [6].
But for the family of our sequential erasure repairing code in Section 5.1 we
have the lower bound

k

n
≥ r

r + t
(8)

The reason to why the SLR-code has a higher information rate then what
you would expect for the cooperative repairable code is that the SLR-code
is constructed in a different way than the normal cooperative codes.

Our information rate is

k

n
=

rm

rm
∑t

s=0
1

r|suppm(s)|

=
1∑t

s=0
1

r|suppm(s)|

(9)

If we combine (9) with what we have learned for t = 2 in (5) we get k
n = r

r+2 .
So for t = 2 we get the lower bound. Instead of looking at the lower
bound r

r+t we are interested in 1
r+t
r

because then we can compare r+t
r with∑t

s=0
1

r|suppm(s)| .

If t increases by one then r+t
r increases with 1

r , however if t increases for∑t
s=0

1
r|suppm(s)| , the sum only increases with 1

r|suppm(t)| and because |suppm(t)| ≥
1 we know that its always same or less then 1

r . So r+t
r ≥

∑t
s=0

1
r|suppm(s)| for

t ≥ 2 and thus we get

r

r + t
≤ 1∑t

s=0
1

r|suppm(s)|

and this proves (8).

5.3 The Difference between the Locality for Two
and Three Erasures

When we rewrite the information rate for two respectively three erasures,
k
n = r

r+2 and k
n =

(
r
r+1

)2
such that it only depends on k

n , we can see that

the locality r changes for codes with a high redundancy against codes with
a low redundancy. For two erasures we get

r =
2 · kn
1− k

n

(10)

15

for three erasures we get

r =

k
n +

√
k
n

1− k
n

(11)

The difference between the size of the repair sets for the variable k
n is

k
n +

√
k
n

1− k
n

−
2 · kn
1− k

n

=

√
k
n −

k
n

1− k
n

we know that 0 <
√

k
n < 1 and therefore we know

√
k
n −

k
n < 1− k

n and thus

0 <

√
k
n −

k
n

1− k
n

< 1 (12)

Because the difference between the SLR-code for two erasures and the SLR-
code for three erasures is smaller than one, we know that for codes with
the same information rate that the repair set size is at most one larger. In
Figure 5.1 we can see how the size of the repair set changes for codes with
a low and high information rate.

Figure 5.1: The upper bound for two and three erasures and the difference
between them in one figure.

16

6 Codes for Cooperative Erasure Repair-

ing

For cooperative erasure repairing we discuss the Hamming code because this
code has a distance of 3 and therefore can repair up to two erasures. We will
also look at the extended Hamming code because this code has a distance
of 4 and therefore can repair three erasures.

6.1 Hamming Codes

The binary Hamming code is a code with length n = 2m − 1 and dimension
2m − 1−m for m ≥ 2.
The columns of the parity check matrix exist of 2m − 1 non-zero distinct
vectors in Fm2 . Because of this all the row vectors have a weight of 2m−1.
Because of [7] we know that the locality of the code is rc = 3 · 2m−2 − 2 for
repairing two erasures. Our method for calculating rc gives us

rc =Z(a, b,0)− 2

=
wt(a) + wt(b) + wt(0) + wt(a + b) + wt(b + 0) + wt(a + 0) + wt(a + b + 0)

4
− 2

=
2m−1 + 2m−1 + 0 + 2m−1 + 2m−1 + 2m−1 + 2m−1

4
− 2

=
6 · 2m−1

4
− 2

=3 · 2m−2 − 2

(13)

and because of his method we have come up with (1) that can calculate
the weight of two and three vectors, which we will use to calculate rc for
extended Hamming codes.

In Table 6.1 we see a list of parameters for the Hamming codes and the
amount of symbols it takes to repair two erasures.

6.2 Extended Hamming Codes

As mentioned in [8] when you extend a code C with a k×n generator matrix
G you get C∗ with a k× (n+ 1) generator matrix G∗. The generator matrix
looks like G∗ = [G, b] with b is created such that each row of G∗ has an even

17

weight. If H is the parity-check matrix for C then H∗ is the parity-check
matrix for C∗.

H∗ =

[
H 0

j 1

]
with j a 1× n row of ones. If the distance d of C is odd, then the distance
of C∗ will be d+ 1.

Because the Hamming code is a [2m − 1, 2m − 1 − m, 3] code we get
[2m, 2m − 1 − m, 4] which is the extended Hamming code. For ci with
i ∈ {1, .., n} the amount of symbols for repairing an erasure does not change,
because for the vector h in the row space of H we used to repair ci we can
now use the vector h′ = [h, 0] ∈ H∗. We see that wt(h) = wt(h′) and
therefore rc does not change.

For cn+1 we see a vector h∗ in H∗ with only ones, so cn+1 can be re-
paired with n symbols. If we take a h in the row space of H∗ with cn+1 = 0,
then wt(h∗ + h) = wt(h∗) − wt(h) = n − wt(h) = 2m − 2m−1 = 2m−1.
The vector h∗ + h has weight 2m−1 and cn+1 = 1, therefore cn+1 can be
repaired with 2m−1 − 1 other symbols. Because this works for every h with
cn+1 = 0 we can always find a vector of weight 2m−1 to solve cn+1. So for the
extended Hamming code one erasure can be repaired with 2m−1−1 symbols.

Because the dimension of this code is 4 we know that there are three
vectors a, b, c in the row space of H∗ such that it can solve three erasures.
We can use (1) to calculate rc = |Z(a, b, c)|−3. Because a, b, c have weight
2m−1 and every combination also have weight 2m−1 we get rc is

rc =|Z(a, b, c)| − 3

=
7 · 2m−1

4
− 3

=
7 · 2m−1

22
− 3

=7 · 2m−3 − 3

(14)

In Table 6.1 we see a list of parameters of the extended Hamming codes and
the amount of symbols it takes to restore three erasures.

18

Hamming Code Extended Hamming Code

value for m n k rc n k rc

3 7 4 4 8 4 4

4 15 11 10 16 11 11

5 31 26 24 32 26 25

6 63 57 46 64 57 53

7 127 120 94 128 120 109

Table 6.1: A list of parameters for the Hamming codes and the extended
Hamming code including its length, dimension and the locality.

19

7 Differences Between the SLRC and Ham-

ming Codes for Two and Three Era-

sures

7.1 Codes with the same Length

If we compare Table 5.1 with Table 6.1 for codes that can repair two erasures
with the same length, then we find two Hamming codes and two SLRC with
the same length and for three erasures we also find two Hamming codes and
SLRC with the same length. As you can see in Table 7.1. If we look at the
locality of the codes for two erasures we see a big difference. If the repair
sets for SLRC are disjunct then you still need less symbols to repair all the
erasures than the Hamming code.
2 · rs < rc with rs as the locality of SLRC and rc as the locality of Hamming
codes. This is the same for three erasures. 3 · rs < rc.

We also have to look at the redundancy, this is the difference between
the length of a code and the information it holds. So for the [63, 57] Ham-
ming code we see that the redundancy is 6 and for the [63, 49] SLRC we see
that the redundancy is 14, which is more than twice as much as that of the
Hamming code. So the trade off between these two code is one code has can
store more information but to repair erasures you need more bits to repair
them against a code that can store less information but if there are erasures,
you can restore those with less bits than the other.

Hamming code locality rc redundancy n− k SLRC locality rs redundancy n− k

Two erasures

[15,11] 10 4 [15,9] 3 6

[63,57] 46 6 [63,49] 7 14

Three erasures

[16,11] 11 5 [16,9] 3 7

[64,57] 53 7 [64,49] 7 15

Table 7.1: the locality and redundancy of the SLRC and Hamming codes
for both two and three erasures.

20

7.2 Codes with the same Information Rate

For codes with almost the same information rate we find two codes we can
compare. First for two erasures we get a Hamming code [31, 26]. This code
has a information rate of k

n ≈ 0.839 and a repair set of rc = 24. We can also

find a SLR-code [120, 100]. This code has a information rate of k
n ≈ 0.833

and a repair set of rs = 10 as shown is Table 7.2.
We have also found two codes for three erasures to compare. Now we have
the extended Hamming code [32, 26] with an information rate of k

n ≈ 0.183
and a repair set of rc = 25. For the SLR-code we have [100, 81] with an
information rate k

n = 0.81 and a repair set of rs = 9 as shown in Table 7.2.
For both two and three erasures we see that the Hamming code can get a
high information rate with a small code. Also for two erasures the repair
set for SLRC is always smaller than the Hamming code because 2 · rs < rc,
but for three erasures we see for the first time that 3 · rs � rc. So if we have
three erasures in the [100, 81] SLRC and all the repair sets for the individual
erasures are disjunct we have a bigger repair set than the Hamming code.
Otherwise the combined repair sets for SLRC is most likely to be still smaller
than the Hamming code.

Erasures Hamming or SLRC Information rate code parameters locality

2 Hamming 0.839 [31, 26] rc = 24

2 SLRC 0.833 [120, 100] rs = 10

3 Extended Hamming 0.813 [32, 26] rc = 25

3 SLRC 0.81 [100, 81] rs = 9

Table 7.2: A list of parameters for codes with almost the same information
rate.

7.3 Codes with the same Dimension

We have also looked at codes with the same or almost the same dimension.
For two erasures we found the Hamming codes [7, 4] and [31, 26] and for
the SLRC [8, 4] and [45, 27] and for three erasures we found the extended
Hamming codes [8, 4] and [32, 26] and for SLRC [9, 4] and [48, 27]. In Table
7.3 we see that the redundancy of Hamming codes and extended Hamming
codes are smaller than their locality and for the SLRC we see that the lo-
cality of the code is smaller than their redundancy. We saw this already in
Table 7.1 for codes with the same length. The only difference is with the
[8, 4] extended Hamming code and the [9, 4] SLR-code we see that 3 ·rs � rc.
So if the repair sets for the SLRC were all disjunct, they need more symbols

21

to repair all erasures in total than the cooperative methods.

Hamming or SLRC code parameters redundancy locality

two erasures

Hamming [7, 4] 3 rc = 4

SLRC [8, 4] 4 rs = 2

Hamming [31, 26] 5 rc = 24

SLRC [45, 27] 18 rs = 3

three erasures

Extended Hamming [8, 4] 4 rc = 4

SLRC [9, 4] 5 rs = 2

Extended Hamming [32, 26] 8 rc = 25

SLRC [48, 27] 21 rs = 3

Table 7.3: A list of parameters for codes with almost the same dimension
for two erasures.

22

8 The Influence of Limiting the Repair

Set Size for One Erasures

In this section we will look first at the [7, 3, 4] code where every erasure can
only be repaired with two symbols. Second we will look at the same [7, 3, 4]
code but now each erasure can be repaired with two or more symbols. Then
we look at the locality of this code if we want to repair multiple erasures.

8.1 [7, 3, 4]-Code with Limited Repair Set for One
Erasure

Until now we have looked at the parity-check matrix to solve erasures, but
we will take a difference approach to restore the erasures. The [7, 3, 4] code
is generated with

G =

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

 (15)

To repair the erasures for this code we will look at Figure 8.1. This
figure is constructed such as the sum of the column vectors shown on each
line (including the circle) is equal to zero. Just like with the parity-check
matrix when one column vector is erased we can construct it with the other
columns on one line. Each of these columns represent a position in the
code words. For example the vector (1, 1, 0)> correspond with c6, the sixth
position of the code.
If we have lost a bit in our code word we check which vector corresponds
with that position, then we will look at the lines containing that vector and
then we can know which other vectors and thus which position can repair
our erasure. This figure was constructed and used in [9].

Example 9. If we receive c = (0, 0, 1, 1, ?, 0, 1) then we have lost the fifth
bit. First we check (15) to see what the fifth column is. This is (1, 0, 1)>.
Now we want to look at Figure 8.1 and check the lines which contains
(1, 0, 1)>. There are three lines that contain (1, 0, 1)>, those lines are

L1 =


0

1

0

 ,

1

1

1

 ,

1

0

1


 (16)

23

Figure 8.1: [7,3,4]-code repair triangle

L2 =


1

0

0

 ,

1

0

1

 ,

0

0

1


 (17)

L3 =


1

1

0

 ,

0

1

1

 ,

1

0

1


 (18)

We can convert these vectors to the position in the generator matrix.
This gives us

L1 = {c2, c7, c5} (19)

L2 = {c1, c5, c3} (20)

L1 = {c6, c4, c5} (21)

Because the sum of the vectors in (16), (17) and (18) are zero we know from
(19) that c5 = c2 + c7 and from (20) that c5 = c1 + c3 and from (21) that
c5 = c4 + c6. So c5 has three different repair sets of size 2. Now if we take
one of these repair sets, lets take c5 = c2 + c7 then c5 = 0 + 1 = 1.

Because every vector in Figure 8.1 is connected with three lines. Every
position, just like c5, has three repair sets. Because of this you can always
solve three erasures, both cooperative and sequential. However, there is
a difference between the size of the repair sets; for sequential it is always
rs = 2, but cooperative has rc = 3 or rc = 4 depending on E. So the lo-
cality for sequential erasure repairing is two and the locality for cooperative
erasure repairing is four.

24

8.2 The Advantage of Sequential Erasure Repair-
ing

For the [7, 3, 4]-code we can always solve three erasures, both cooperative
and sequential. This is because every position has three repair sets of length
2. Only four erasures will not always be solved.

Example 10. If the erasures are on the position {1, 5, 6, 7}, then every line
in figure 8.1 that might be used to solve the erasures has two erasures on it
instead of one.
These are the lines corresponding to

L1 = {c1, c7, c4} (22)

L2 = {c1, c5, c3} (23)

L3 = {c1, c2, c6} (24)

It is possible to have four erasures, which you could solve sequential and
not cooperative. This happens for the erasures {1, 2, 5, 6}. We can solve
c1 = c4 + c7 and c2 = c3 + c4 and c6 = c3 + c7, but we can not solve c5
cooperative because the only way to solve c5 with repair set of size 2 is with:
c5 = c1 + c3, but c1 was erased.
c5 = c2 + c7, but c2 was erased.
c5 = c4 + c6, but c6 was erased.
But if we want to solve this sequential, we could get our code back, because
now we restore first c1 and c2 and c6 and then we can solve c5.

If you have four erasures and the remaining symbols are all on one line
in figure 8.1, then you can not solve the erasures cooperative nor sequential.

8.3 [7, 3, 4]-Code without Limiting the Repair Set

When we limited r in Section 8.1 we unknowingly used the parity-check
matrix. The parity-check matrix of the [7, 3, 4]-code is

H =


0 1 1 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

 (25)

25

and the lines in Figure 8.1 are exactly the rows in (25) with wt(h) = 3.
The row space of (25) consists of 15 vectors. There are seven vectors with
weight 3, seven vectors with weight 4 and one vector with weight 7. The
extra row vectors do not influence the repair set for sequential, but they can
decrease the size of the repair set for repairing 3 erasures cooperative. The
row vectors of weight 4 are the following seven

h1 = (1, 1, 1, 0, 0, 0, 1)

h2 = (1, 1, 0, 1, 1, 0, 0)

h3 = (1, 0, 1, 1, 0, 1, 0)

h4 = (0, 1, 1, 0, 1, 1, 0)

h5 = (0, 0, 1, 1, 1, 0, 1)

h6 = (0, 1, 0, 1, 0, 1, 1)

h7 = (1, 0, 0, 0, 1, 1, 1)

Example 11. If we have received a code word with E = {2, 3, 7} then
if we wanted to repair this cooperative with Figure 8.1 it would give us
R = {1, 4, 5, 6}. But if we use the row space of (25) we can solve it with
R = {1, 5, 6}. we can solve c2 with c1 and c6 (one of the lines), solve c3 with
c1 and c5 (also one of the lines) and we can solve c7 with c1, c5 and c6 (using
h7).

Although we can restrict the locality of a code for one erasure, this is
counterproductive if we want to repair multiple erasures cooperatively. For
sequential erasure repairing the locality does not change.

26

9 Conclusion and Future Work

In this thesis, we have looked at the locality of repairing erasures coopera-
tive and sequential. First we have explained how we can repair one erasure
and then how we can repair multiple erasures using the sequential erasure
repairing method and how to repair multiple erasures using the coopera-
tive erasure repairing method. Then we have discussed a sequential locally
repairable code, what length it has and its dimension for a code that can
repair two erasures and for a code that can repair three erasures.

We have also discussed the Hamming code and that it can repair two
erasures cooperative and we have looked at the extended Hamming code,
which can repair three erasures cooperative. For the Hamming code and the
extended Hamming code we have made a function to calculate the general-
ized Hamming weight for κ ≤ 3. This was useful to calculate the locality
for both codes.
Next we have compared the SLR-code for two erasures with the Hamming
code and if they have the same length, then the Hamming code can store
more information but the repair set for the SLR-code needs has a lower lo-
cality. We saw the same thing happen with the SLR-code for three erasures
and the extended Hamming code.
Then we looked at the information rate of the codes and for two erasures
we found two codes (one Hamming and one SLRC) with almost the same
information rate. The same is true for three erasures. To get the same
information rate we needed a large SLRC with a relatively small Hamming
code and extended Hamming code.
When comparing the dimension of the codes we saw that the trade off be-
tween the SLRC and the Hamming code and the extended Hamming code is
that the SLRC has a low locality with a high redundancy and the Hamming
code and the extended Hamming code have a low redundancy and a high
locality.
At the end we saw an example of were we restricted the locality for one era-
sure resulting in a higher locality for repairing multiple erasures cooperative.

For future work it could be interesting to look at the locality for short-
ened extended Hamming codes, so codes with distance 4 but shorter than
your regular Hamming codes. Because we had a big list of SLRC codes but
only a small list of Hamming codes and extended Hamming codes to com-
pare them with. It would also be interesting to look into erasure repairing
for product codes since we know you can repair erasures sequential but what
about cooperative.

27

Bibliography

[1] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur
and K. Ramchandran, ”A Solution to the Network Chal-
lenges of Data Recovery in Erasure-coded Distributed Stor-
age Systems: A Study on the Facebook Warehouse Cluster”.
URL:https://www.usenix.org/system/files/conference/hotstorage13/hotstorage13-
rashmi.pdf

[2] S.B. Balaji and P. V. Kumar, ”Erasure Codes for Dis-
tributed Storage: Tight Boundsand Matching Constructions,”
URL:https://arxiv.org/abs/1806.04474

[3] I. Núñez, E. Ortiz and A. Urdapilleta, ”Generalized Hamming
Weights for Linear Codes”, URL: http://www.uprh.edu/ simu/Re-
ports2001/NOU.pdf

[4] K. A. S. Abdel-Ghaffar, J. H. Weber, ”Bounds for Cooperative Local-
ity Using Generalized Hamming Weights”, IEEE Int. Sym. Inf. Theory
(ISIT) June 2017.

[5] W. Song, K. Cai, C. Yuen, K Cai and G. Han, ”On Sequential Locally
Repairable Codes,” IEEE Trans. Inf. Theory, vol. 64, no. 5, may 2018.

[6] A. S. Rawat, A. Mazumdar and S. Vishwanath, ”Cooperative Local
Repair in Distributed Storage,” EURASIP J. Adv. Signal Process dec.
2015.

[7] J. Bom. “Cooperative Locality of Shortened Hamming Codes”. TU
Delft, Applied Mathematics B.Sc. Thesis June 2017.

[8] D. R. Hankerson, D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T.
Phelps, C. A. Rodger, and J. R.Wall, Coding Theory and Crypthography:
The Essentials, Second Edition, Revised and Expanded

[9] A. Wang and Z. Zhang, ”Repair Locality with Multiple Erasure
Tolerance,” IEEE Trans. Inf. Theory vol. 60 no. 11, June 2013

28

	Introduction
	Linear Codes
	Generator and Parity-check matrix
	Weight, Distance, Information Rate and Redundancy

	Analysis of the Generalized Hamming Weight
	Erasure Repairing
	One Erasure Repairing
	Cooperative Erasure Repairing
	Sequential Erasure Repairing

	Codes for Sequential Erasure Repairing
	Construction of the Code
	The Upper Bound and the Lower Bound
	The Difference between the Locality for Two and Three Erasures

	Codes for Cooperative Erasure Repairing
	Hamming Codes
	Extended Hamming Codes

	Differences Between the SLRC and Hamming Codes for Two and Three Erasures
	Codes with the same Length
	Codes with the same Information Rate
	Codes with the same Dimension

	The Influence of Limiting the Repair Set Size for One Erasures
	[7,3,4]-Code with Limited Repair Set for One Erasure
	The Advantage of Sequential Erasure Repairing
	[7,3,4]-Code without Limiting the Repair Set

	Conclusion and Future Work

