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Summary
Vibrations deteriorate the performance of machines and instruments, especially when
high precision and efficiency are required. Multiple approaches for vibration mitigation
exist, mostly constituting separate bodies of research. This thesis establishes a connec-
tion between the active vibration control practice, advances in other control fields, and
metamaterials research. To this end, three research gaps are addressed.

First, in Chapter 2, the design requirements of active vibration control are expressed in
the frequency domain, using the loop-shaping approach commonly used inmotion control.
The use of the proposed approach is shown in the experimental evaluation of a vibration
isolation system based on piezoelectric stack actuators.

Second, the loop-shaping approach is related to the design for bandgap in active metas-
tructures. Chapter 3 adopts a modal analysis approach for finite metamaterial beams, re-
lating the underlying control problem to the active damping of a single-degree-of-freedom
system by assuming an infinite number of infinitesimally small transducer pairs distributed
along a beam. This allows the application of design methods developed in the preceding
chapter. The experiments demonstrate that controllers initially developed for damping
resonance peaks can effectively induce bandgaps, even in structures featuring a small
number of sparsely placed transducer pairs. Chapter 4 studies when the obtained models
and approximations are accurate, highlighting the correlation between the minimal num-
ber of transducers required for model accuracy and the dominant vibration mode within
the controller’s targeted frequency range.

Third, the frequency-domain approach is applied for the design of fractional order and
reset controllers for vibration mitigation to relax the limitations imposed using low-order
linear controllers. In Chapter 5, a design for a fractional-order resonant element tailored
for AVC, which preserves the characteristics of its integer-order counterpart but provides
greater design freedom, is presented and evaluated in a simplified vibration isolation sys-
tem. In Chapter 6, the same element is implemented within a unit cell of a granular meta-
material. For such a fractional-order metamaterial, both the dispersion characteristics of
the infinite structure and the transmissibility of a finite chain are presented.

The use of nonlinear elements, like reset systems, poses additional challenges in vibra-
tion control. Since an exact frequency-domain representation of such elements does not
exist, their behaviour is approximated using the describing functions. While this enables
the loop-shaping design, the describing function approximation does not represent the
system well in the presence of wide-band excitations and multiple resonance peaks in the
plant. Chapter 7 explores how such conditions influence the reset elements and how to
ensure that the use of reset is still beneficial. Additionally, assessing the stability of a reset
system solely based on controller dynamics and experimentally measured plant frequency
response is an open problem. To address this, the Negative Imaginary systems approach
for stability analysis, originally developed for AVC of flexible systems with uncertain dy-
namics, is extended to reset systems in Chapter 8.





Samenvatting
Trillingen verslechteren de prestaties van machines en instrumenten, met name wanneer
hoge precisie en efficiëntie vereist zijn. Er bestaan meerdere benaderingen voor het redu-
ceren van trillingen, die grotendeels afzonderlijke onderzoeksgebieden vormen. Dit proef-
schrift legt een verband tussen de praktijk van actieve trillingsonderdrukking, ontwikke-
lingen in andere controlegebieden en onderzoek naar metamaterialen. Hiertoe worden
drie onderzoekshiaten behandeld.

Ten eerste worden in Hoofdstuk 2 de ontwerpeisen voor actieve trillingsonderdruk-
king geformuleerd in het frequentiedomein, gebruikmakend van de zogeheten loop-shaping
methode, die gangbaar is in motion control. Het gebruik van de voorgestelde aanpak
wordt aangetoond in de experimentele evaluatie van een trillingsisolerend systeem geba-
seerd op piëzo-elektrische stapelactuatoren.

Ten tweede wordt de loop-shaping benadering gerelateerd aan het ontwerp van band-
gaps in actieve metastructuren. Hoofdstuk 3 hanteert een modale analyse voor eindige
metamateriaalbalken, waarbij het onderliggende regelprobleem wordt gerelateerd aan de
actieve demping van een systeem met één vrijheidsgraad. Dit gebeurt onder de aanname
van een oneindig aantal infinitesimaal kleine transducerparen, gelijkmatig verdeeld over
een balk. Deze benadering maakt het mogelijk om de in het voorgaande hoofdstuk ont-
wikkelde ontwerpmethoden toe te passen. De experimenten tonen aan dat regelaars die
oorspronkelijk zijn ontworpen om resonantiepieken te dempen, effectief bandgaps kun-
nen opwekken, zelfs in structuren met een beperkt aantal schaars geplaatste transducers.
Hoofdstuk 4 onderzoekt onder welke omstandigheden de verkregen modellen en bena-
deringen nauwkeurig zijn. Daarbij wordt aangetoond dat er een verband bestaat tussen
het minimale aantal transducers dat nodig is voor modelnauwkeurigheid en de dominante
trillingsmodus binnen het beoogde frequentiebereik van de regelaar.

Ten derdewordt de frequentiedomeinaanpak toegepast bij het ontwerp van fractionele-
orde- en resetregelaars voor trillingsreductie, met als doel de beperkingen van lineaire re-
gelaars van lage orde te omzeilen. In Hoofdstuk 5 wordt een ontwerp gepresenteerd voor
een resonantie-element van fractionele orde, specifiek afgestemd op actieve trillingsonder-
drukking. Dit element behoudt de eigenschappen van zijn tegenhanger van gehele orde,
maar biedt meer ontwerpvrijheid. De effectiviteit wordt geëvalueerd in een vereenvou-
digd trillingsisolerend systeem. In Hoofdstuk 6 wordt hetzelfde element geïmplementeerd
in een eenheidscel van een granulair metamateriaal. Voor dit fractionele-orde metamate-
riaal worden zowel de dispersiekenmerken van de oneindige structuur als de transmissie
van een eindige keten geanalyseerd.

Het gebruik van niet-lineaire elementen, zoals resetregelaars, brengt extra uitdagin-
gen met zich mee op het gebied van trillingsonderdrukking. Omdat er geen exacte re-
presentatie van dergelijke elementen in het frequentiedomein bestaat, wordt hun gedrag
benaderd met behulp van beschrijvende functies. Hoewel dit het mogelijk maakt om ont-
werp via loop-shaping toe te passen, geeft deze benadering geen nauwkeurige weergave
van het systeem bij breedbandsignalen en meerdere resonantiepieken in het plantmodel.
Hoofdstuk 7 onderzoekt hoe dergelijke omstandigheden de werking van reset-elementen
beïnvloeden en hoe men kan waarborgen dat hun toepassing toch voordelen oplevert. Bo-
vendien is het beoordelen van de stabiliteit van een resetsysteem op basis van enkel de
dynamiek van de regelaar en experimenteel gemeten frequentierespons van het systeem
nog een open vraagstuk. In Hoofdstuk 8wordt hiervoor de zogeheten Negative Imaginary-
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systeemtheorie, oorspronkelijk ontwikkeld voor de stabiliteitsanalyse van flexibele syste-
men met onzekerheden, uitgebreid naar resetsystemen.



1
Introduction

This chapter provides background on vibration control strategies, setting the stage for this
work, and explores the problems related to active methods that motivated this research.
Research gaps that will be addressed, as well as the aims of this work, are discussed to-
gether with the approach taken. Finally, the structure of the dissertation is outlined, show-
ing how different chapters interrelate.
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2 Introduction

1.1 Background
Vibrations deteriorate the performance of machines and instruments, especially when
high precision and efficiency are required [1]. Steady-state vibrations, caused, for exam-
ple, by continuous floor vibrations transmitted through an instrument, reduce the achiev-
able precision of positioning [2]. In consequence, they lead to blurry images created in
microscopes [3] or deteriorate the operation of gravitational wave detectors and particle
colliders [4]. Transient vibrations, caused, for example, by impact forces acting on a ma-
chine, often slow down system operations and lower productivity, as dwell intervals must
be introduced for the excessive motions to settle [5]. In precision motion systems, the res-
onance peaks associated with vibration modes limit the maximal achievable bandwidths
[6], which are closely related to systems performance.

If the vibration problems cannot be avoided, common practice is to incorporate passive
components to mitigate them. To isolate the system from external disturbance, it can be
placed on softmounts [4]. Additionally, applying viscoelastic materials [7] in a component
to boost damping levels or tuned mass dampers [8–10] to enhance energy dissipation at
specific frequencies can effectively attenuate vibrations from both floor vibrations and
forces acting directly on a structure and reduce the time needed for the vibrations to settle.

Unfortunately, passive solutions are not applicable in all situations. Moreover, pas-
sive damping in isolation systems can worsen disturbance transmission at higher frequen-
cies. Most viscoelastic materials are only effective in attenuating vibrations at specific
frequency ranges, and their efficacy is tied to the amount of added mass. The same applies
to tuned mass dampers, making them challenging to implement in compact designs.

When passive methods are unsatisfactory, active vibration control (AVC) can be a so-
lution [11]. A typical active system consists of a control unit that defines the influence of
actuators on the object to attain desired behaviour based on measured signals. Unlike pas-
sive systems, the performance of such a system is not solely dictated by component size
and placement but also by controller characteristics. This leads to greater design freedom
and makes it possible to adjust controller parameters to suit specific circumstances.

While various AVC strategies have been a topic of active research [12], practical appli-
cations are predominantly limited to vibration isolation systems implemented as a stan-
dalone device or a mount connecting a subsystem to other machine components. The
dynamics of such systems are characterized by a single dominant resonance peak, accom-
panied by some high-frequency modes, usually seen as parasitic dynamics. While these
high-frequency dynamics strongly influence system performance, they can be neglected
in the early design of the controller.

Beyond vibration isolation, integrating AVC solutions on a component level did not
find a wider practical adoption. This is the case despite the availability of suitable trans-
ducers, like piezoelectric patch elements. The research on the topic did not extend beyond
laboratory experiments and considered narrowly defined performance that does not align
with industrial expectations.

Despite years of developments in the research on control, the majority of feedback con-
trollers in the AVC systems are based on velocity feedback [13], possibly with additional
bandpass filters. While reliable, this strategy limits the achievable performance. When the
floor vibrations are the major concern in the system, their rejection can be significantly
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improved using disturbance feedforward strategies [14]. This approach, however, is not
effective in dealing with direct disturbances.

A fresh perspective on vibration control problems is offered by the research on meta-
materials [15–17], precisely engineered to have properties rarely observed in natural sub-
stances. However, these new ideas were not translated into practice in the AVC context.
One unique property developed in metamaterials is the ability to create bandgaps [15] –
ranges of frequency where transmission of vibrations is prohibited. While the application
of metamaterials in passive vibration isolation is a subject of ongoing research [17–19],
the practical application of active metamaterials remains underexplored. Thanks to the
special properties, metamaterial-inspired AVC systems could be an alternative to tradi-
tional vibration isolation techniques, offering the potential for compact integration into
components.

1.2 Research gaps
The view on the AVC field presented above indicates an opportunity to establish a connec-
tion between the active vibration control practice, advances in other control fields, and
rapid developments in metamaterials research, since the insights from those adjacent do-
mains are not fully exploited. Bridging these gaps would allow us to advance beyond
conventional active vibration control, integrate it within industrial components, and in-
troduce new control approaches to this discipline.

The gaps to be bridged are illustrated in Fig. 1.1. Dotted lines illustrate connections
that will not be explored here, as they have been sufficiently developed or are a topic of
ongoing research. The solid lines show the ones addressed in this thesis, with the focus
on feedback control techniques.

Firstly, to facilitate practical adoption, the design methods for AVC systems will be pre-
sented in line with the current industrial practice, where techniques based on frequency
response measurements are used. To this aim, the AVC problem will be related to the
results from motion control, a field more developed and widely adopted in practical appli-
cations. Traditionally, distinct design approaches are employed in these two fields. Motion
control commonly relies on frequency-domain data-based design and loop-shaping tech-
niques (e.g. [6, 43, 44]). In contrast, AVC design leans towards model-based methods such
as pole placement (e.g. [11]). We propose to present both motion control and AVC in the
same design framework so that insights from one can be used in the other.

Secondly, bridging the gap between AVC findings and research on active metamateri-
als will enable the use of insights from the control research for metamaterial design. Con-
versely, knowledge gained frommetamaterial research on systems with multiple transduc-
ers could inform the advancement of over-sensing and over-actuation in motion control
systems. Again, we propose using the frequency-domain approach, which aligns with
industrial practice.

Third, we propose to develop a systematic approach to designing non-conventional
AVC controllers. The constraints imposed by low-order linear controllers limit the design
freedom. A potential solution involves investigating fractional-order controllers, offering
greater design flexibility while retaining the advantages of linear control. Moreover, we
propose to also explore other possibilities since all linear controllers are subject to limita-
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Figure 1.1: Illustration of the scope of this work in the context of research on motion control, active
vibration control and metamaterials. Dashed lines indicate the relations not explored in this thesis.

tions stemming from the Waterbed effect and Bode’s magnitude and phase relationship.
An effective remedy lies in the adoption of reset systems, whose efficacy in alleviating
such constraints has been demonstrated in motion control research (e.g. [20–24]).

1.3 Objective of this thesis
In this thesis, we propose to use the frequency-domain loop-shaping techniques to design
feedback controllers in AVC systems and active metamaterials for bandgap generation. In
this way, we make the rational design of unconventional, fractional-order, and reset con-
trollers possible in AVC applications. As the dynamics of the studied nonlinear controller
cannot be fully captured in the frequency domain, we develop tools for the design and
stability analysis to complement the loop-shaping approach.

1.4 Outline
The objective is achieved by connecting pairs of studied fields one by one. The insights
obtained this way are then synthesized in the concluding chapter of this thesis.

The first research gap is addressed in Chapter 2, where we relate the design require-
ments of active vibration control to the loop-shaping used in motion control. This chapter
is written in a tutorial style and presents an approach used in the rest of the thesis. Sim-
ple mass-spring-damper systems are considered, and the desired loop shapes for AVC are
defined. We show the use of the proposed approach in the experimental evaluation of a
vibration isolation system based on piezoelectric stack actuators.

The second research gap is tackled in Chapters 3 and 4, where our focus is creating
bandgaps in continuous structures utilising piezoelectric patch sensors and actuators to
implement resonant dynamics within the feedback loop actively. In Chapter 3, we adopt
a modal analysis approach for finite metamaterial beams, relating the underlying con-
trol problem to the active damping of a single-degree-of-freedom system by assuming an
infinite number of infinitesimally small transducer pairs distributed along a beam. This
allows the application of design methods developed in the preceding chapter. Moreover,
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we demonstrate experimentally that controllers initially developed for damping resonance
peaks can effectively induce bandgaps, even in structures featuring a small number of
sparsely placed transducer pairs. Chapter 4 studies when the obtained models and ap-
proximations are accurate, highlighting the correlation between the minimal number of
transducers required for model accuracy and the dominant vibration mode within the con-
troller’s targeted frequency range.

The third research gap is addressed in Chapters 5, 6, 7, and 8, focusing on two cate-
gories of non-conventional systems. Leveraging insights from the loop-shaping design
method established in Chapter 2, we introduce a design for a fractional-order resonant
element tailored for AVC, which preserves the characteristics of its integer-order coun-
terpart but provides greater design freedom. Chapter 5 evaluates its use in a simplified
vibration isolation system. In Chapter 6, the same element is implemented within a unit
cell of a granular metamaterial. For such a fractional-order metamaterial, we study both
the dispersion characteristics of the infinite structure as well as the transmissibility of a
finite chain.

The use of nonlinear elements, like reset systems, poses additional challenges in vibra-
tion control. Since an exact frequency-domain representation of such elements does not
exist, their behavior is approximated using the describing functions. While this enables
the loop-shaping design, the describing function approximation does not represent the
system well in the presence of wide-band excitations and multiple resonance peaks in the
plant. Chapter 7 explores how such conditions influence the reset elements and how to
ensure that the use of reset is still beneficial.

Additionally, assessing the stability of a reset system solely based on controller dynam-
ics and experimentally measured plant frequency response is an open problem. To address
this, we extend the Negative Imaginary systems approach for stability analysis, originally
developed for AVC of flexible systems with uncertain dynamics, to reset systems in Chap-
ter 8.

The contributions of the thesis and the obtained insights are discussed in the conclud-
ing Chapter 9. The chapter also recommends new research directions, both as a direct
continuation of this work or promising adjacent projects.
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2
Loop-shaping for AVC

This chapter presents loop-shaping as a tool for designing active vibration control (AVC)
systems, laying the foundations for the rest of this dissertation. Given that loop-shaping is
extensively used in practical design for motion control, we start by linking the AVC to this
field. We then analyze the closed-loop transfer functions of a general AVC system using
a simple model. From these transfer functions, we derive the desired open-loop shape of
the control system and show how the popular AVC methods relate to them. We demon-
strate the application of the proposed loop-shaping approach through an experimental
evaluation of an ultra-stiff vibration control system.

Section 2.5 of this chapter is based on a conference paper:
M.J. Neele, M.B. Kaczmarek, J. Reiser, M. Winter and S.H. HosseinNia, Experimental Evaluation of Ultra Hard
Mount Vibration Control Systems, euspen’s Special Interest Conference: Precision Motion Systems & Control, 2024.
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2.1 Motion and vibration control overview
To provide a foundation for further analysis, we revisit motion control, as presented in the
context of wafer scanner systems in [1]. In motion control, but also in other control appli-
cations, two primary problems are identified. The first is the servo (or tracking) problem,
where the output of the controlled system must closely follow a known reference trajec-
tory. The second is the regulator (or disturbance rejection) problem, where the output of
the controlled system, when subjected to unknown disturbances, should remain as close
to zero as possible.

The two control problems are generally addressed by two different approaches, as il-
lustrated in Figure 2.1. If the dynamics of the system are well known, the tracking problem
can be solved by feedforward control [2], where the controller ideally matches the plant
inverse 𝐶𝐹𝐹 → 𝑃−1. As the feedforward control is responsible for the majority of con-
trol forces in motion systems and associated performance [3], it remains an active field of
research.

For disturbance rejection, it is crucial to minimize the sensitivity of the control sys-
tem to noise or disturbance forces, particularly within the frequency range of interest. In
the precision industry, this is typically achieved using PID feedback control. The role of
the feedback controller is also to compensate for errors originating from the mismatch
between the models used for the feedforward design and actual plant dynamics. Such
feedback controllers are designed in the frequency domain to maximize the controller
bandwidth, defined as the first unity crossing of the open-loop magnitude frequency re-
sponse while adhering to constraints on closed-loop frequency responses. This method is
embodied in manual loop-shaping [4, 5], which serves as an initial controller design tool,
is widely understood within the motion control community, and offers insights into po-
tential controller enhancements beyond the LTI control domain, possibly using nonlinear
elements (we discuss this further in Chapters 7 and 8).

Vibration control systems address the disturbance rejection problem. To illustrate this,
consider a mass-spring system on a shaking base, as shown in Figure 2.2a. In this system,
𝑥𝑚 represents the position of the mass 𝑚, which should remain unaffected by base vi-
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Figure 2.1: Block diagram of a motion system. 𝑃 represents the plant to be controlled, 𝐶𝐹𝐹 ,𝐶
correspond to the feedforward and feedback controllers. 𝑟 is the reference to be followed by the
output 𝑦 , while the force disturbance 𝐹𝑑 and measurement noise 𝑛 act on the system.
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Figure 2.2: Mechanical model (a) and block diagram (b) of an AVC system. 𝑃𝑡 and 𝑃𝑐 correspond
to the transmissibility and compliance of the plant. The position of the isolated mass 𝑥𝑚 should
remain steady in presence of the base motion 𝑥𝑏 and direct forces 𝐹𝑑 . 𝑢 represents the control forces
generated by the controllers. For absolute measurements, 𝑛𝑥 = 𝑛, and for relative measurements,
𝑛𝑥 = 𝑛−𝑥𝑏 indicates the relationship of the measured signal to the base displacement.

brations 𝑥𝑏 and direct disturbances 𝐹𝑑 . To achieve this, the control system generates an
actuator force 𝑢 based on available measurements. This simple model is useful for present-
ing control concepts. However, in practical control system design, actual system dynamics
and the presence of sensors and actuators must be considered, especially to guarantee the
stability of the system.

The available measurements often distinguish motion control systems from vibration
control systems. Generally, metrology systems for motion control are designed to mea-
sure the position of the controlled object relative to a reference relevant to the specific
application. For instance, in a wafer scanner, the position of the wafer stage is measured
relative to a metrology frame that supports the projection optics. In the remainder of this
chapter, we will use the term absolute to refer to such measurements, as illustrated in
Figure 2.2a by 𝑥𝑚 . In AVC, however, a broader variety of quantities are measured, such
as displacements, velocities, accelerations, or forces. These measurements are often not
taken with respect to the relevant reference frame but rather relative to the system’s base,
which can also be a significant source of disturbances. In Figure 2.2a, such a measurement
corresponds to the displacement 𝑥𝑚 −𝑥𝑏 .

For the remainder of this chapter, we will simplify the comparison of approaches with
different sensors by relating all signals to position measurements 𝑥𝑚 and 𝑥𝑏 . Necessary
elements for converting between different quantities are included within the controller dy-
namics. For example, a controller in a system where the acceleration signal is integrated
will be considered equivalent to one in a system where the position measurement is dif-
ferentiated. The differences between these systems can be represented by the parasitic
dynamics and characteristics of disturbance and noise sources.

The difference between motion control and AVC can also be explained using the High
Authority Control (HAC) and Low Authority Control (LAC) concepts [6]. In motion con-
trol, the feedback controller usually significantly changes the system’s dynamics. It can be
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said that it strongly influences the structure and belongs to the HAC approach. In contrast,
the objective of AVC systems is often only active damping, which aims to shift the poles
of the system slightly. Such a system is an example of LAC. However, the division of the
strategies used in the two applications is not sharp. LAC also finds application in motion
control, for example, as active damping of resonance peaks in piezoelectric nanoposition-
ing stages [7, 8], and HAC strategies may be efficient for disturbance rejection, which
makes them a possible choice for AVC applications.

2.2 Closed-loop description of an AVC system
The equation of motion for the system in the Figure 2.2a is

𝑚 ̈𝑥𝑚(𝑡) + 𝑐( ̇𝑥𝑚(𝑡) − ̇𝑥𝑏(𝑡)) +𝑘(𝑥𝑚(𝑡) − 𝑥𝑏(𝑡)) = 𝐹𝑑 (𝑡) −𝑢(𝑡). (2.1)

After the Laplace transformation of the equation and rearranging it, the position 𝑥𝑚 can
be shown

𝑥𝑚(𝑠) = 𝑃𝑐(𝑠) (𝐹𝑑 (𝑠) −𝑢(𝑠)) +𝑃𝑡 (𝑠)𝑥𝑏(𝑠), (2.2)

𝑃𝑐(𝑠) =
𝑥𝑚(𝑠)
𝐹𝑑 (𝑠)

= 1
𝑚𝑠2 +𝑐𝑠 +𝑘 , (2.3)

𝑃𝑡 (𝑠) =
𝑥𝑚(𝑠)
𝑥𝑏(𝑠)

= 𝑐𝑠 +𝑘
𝑚𝑠2 +𝑐𝑠 +𝑘 . (2.4)

The two transfer functions characterise the system in the absence of control and indicate
two problems AVC should tackle. The compliance 𝑃𝑐(𝑠) describes the influence of the ex-
ternal forces on the system and is the function seen by the controller. The transmissibility
𝑃𝑡 (𝑠) describes the influence of the base displacement. The two transfer functions also il-
lustrate the well-known trade-off for passive vibration isolation, as increasing the stiffness
𝑘 leads to smaller compliance and increased transmissibility at higher frequencies.

As in motion control, the two problems related to transmissibility and compliance can
be tackled separately, in the architecture presented in Fig. 2.2b. If the base displacement
is known, it is possible to minimise its influence on the system using feedforward control
𝐶𝐹𝐹 (𝑠). The feedforward approach is beneficial irrespective of whether absolute or relative
measurements are used for feedback and is well explored in the literature. The use of
feedforward also does not influence the behaviour of the system’s compliance. While
feedforward is an essential tool for high-performance vibration isolation, it is not the focus
of this work.

Feedback control can improve the system’s response to unknown disturbances. As
the closed-loop behaviour of the system with feedback will differ if absolute or relative
measurements are used, we consider the two cases separately. The difference between the
cases can be easily illustrated by considering a mechanical analogue of the control system.
The controllers using absolute measurements can be represented by mechanical compo-
nents attached between the body with position 𝑥𝑚 and the “sky”, with the “sky-hook”
damping as a well-known example. With relative measurements, the control system is
represented by components between the mass with 𝑥𝑚 and the base. Using such mechan-
ical analogues can provide an intuitive understanding of the behaviour of the system.
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2.2.1 Absolute measurements

Consider the AVC system in Fig. 2.2b with feedback based on absolute measurements only
(𝐶𝐹𝐹 (𝑠) = 0). The control signal in this case is 𝑢(𝑠) = 𝐶(𝑠) (𝑥𝑚(𝑠) +𝑛(𝑠)). Substituting into
(2.1) we have

𝑥𝑚(𝑠) = −𝑃𝑐(𝑠)𝐶(𝑠)𝑥𝑚(𝑠) −𝑃𝑐(𝑠)𝐶(𝑠)𝑛(𝑠) +𝑃𝑐(𝑠)𝐹𝑑 (𝑠) +𝑃𝑡 (𝑠)𝑥𝑏(𝑠), (2.5)
𝑥𝑚(𝑠)
𝑥𝑏(𝑠)

= 𝑃𝑡 (𝑠)
1+𝑃𝑐(𝑠)𝐶(𝑠)

= 𝑃𝑡 (𝑠)𝑆(𝑠), (2.6)

𝑥𝑚(𝑠)
𝐹𝑑 (𝑠)

= 𝑃𝑐(𝑠)
1+𝑃𝑐(𝑠)𝐶(𝑠)

= 𝑃𝑐(𝑠)𝑆(𝑠), (2.7)

𝑥𝑚(𝑠)
𝑛(𝑠) = −𝑃𝑐(𝑠)𝐶(𝑠)

1+𝑃𝑐(𝑠)𝐶(𝑠)
= 𝑆(𝑠) − 1. (2.8)

The closed-loop transmissibility and compliance are determined by the open-loop transfer
functions and the sensitivity 𝑆(𝑠). For this reason, the sensitivity is referred to as the
“vibration reduction ratio” in a part of vibration control literature [9–11].

First, let’s consider a HAC approach for AVC, explored already in [12]. Since the com-
pliance and the transmissibility have low-pass characteristics and the sensitivity of the
system has high-pass characteristics with the corner frequency determined by the band-
width, HAC system can provide large rejection of 𝑥𝑏 and 𝐹𝑑 . For best transmissibility
reduction, the resonance frequency of the plant 𝜔𝑝 = √𝑘/𝑚 should be as small as possible.
For improved compliance, increasing the stiffness of the plant is beneficial. Increasing the
bandwidth of the control system is beneficial for the rejection of both the direct 𝐹𝑑 and
indirect 𝑥𝑏 disturbances. The HAC approach, however, is not always applicable, even if
absolute measurements are available. Constructing a HAC controller based on measure-
ments related to velocities or accelerations is an open challenge. Moreover, low-frequency
noise or drift 𝑛 influence the 𝑥𝑚 directly, as (2.8) shows.

An LAC controller can be designed to lower the transfer functions locally, for example,
to attenuate a selected resonance peak only. To achieve this, as can be seen in (2.6) and (2.7),
sensitivity 𝑆(𝑠) should have a shape of a notch filter, with a magnitude equal to 1, except
for a targeted range of frequencies, where it should be small to reduce the magnitude of
the responses. This target frequency will often be the resonance frequency of the structure
or a frequency where disturbances are especially problematic. Obtaining such a shape of
𝑆 would also limit the problems caused by noise 𝑛, as shown in (2.8). The design of a
controller to obtain such sensitivity will be discussed later in this chapter.
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2.2.2 Relative measurements
An AVC system with relative measurements is represented by the same block diagram in
Fig. 2.2b, with a difference that the 𝑥𝑏 is subtracted from the input signal of the controller,
leading to 𝑢(𝑠) = 𝐶(𝑠) (𝑥𝑚(𝑠) −𝑥𝑏(𝑠) +𝑛(𝑠)) and

𝑥𝑚(𝑠) = −𝑃𝑐(𝑠)𝐶(𝑠)𝑥𝑚(𝑠) +𝑃𝑐(𝑠)𝐶(𝑠)𝑥𝑏(𝑠) +𝑃𝑐(𝑠)𝐹𝑑 (𝑠) +𝑃𝑡 (𝑠)𝑥𝑏(𝑠), (2.9)
𝑥𝑚(𝑠)
𝑥𝑏(𝑠)

= 𝑃𝑡 (𝑠) +𝑃𝑐(𝑠)𝐶(𝑠)
1+𝑃𝑐(𝑠)𝐶(𝑠)

= 𝑃𝑡 (𝑠)𝑆(𝑠) +𝑃𝑐(𝑠)𝐶(𝑠)𝑆(𝑠), (2.10)

𝑥𝑚(𝑠)
𝐹𝑑 (𝑠)

= 𝑃𝑐(𝑠)
1+𝑃𝑐(𝑠)𝐶(𝑠)

= 𝑃𝑐(𝑠)𝑆(𝑠), (2.11)

𝑥𝑚(𝑠)
𝑛(𝑠) = −𝑃𝑐(𝑠)𝐶(𝑠)

1+𝑃𝑐(𝑠)𝐶(𝑠)
= 𝑆(𝑠) −1. (2.12)

The influence of the feedback on compliance is the same as that of the system with ab-
solutemeasurements. The use of a high bandwidthHAC controller would lead to improved
rejection of disturbance force 𝐹𝑑 but could lead to the direct transmission of low-frequency
noise and drift to the relevant position 𝑥𝑚 .

In the case of transmissibility, however, using a HAC controller leads to tracking of
the base displacement 𝑥𝑏 by 𝑥𝑚 , which is evident from the complementary sensitivity
𝑃𝑐(𝑠)𝐶(𝑠)𝑆(𝑠) appearing in the closed-loop relationship. To simplify the analysis, we relate
the gain of the controller to the low-frequency gain of compliance𝐶(𝑠) = 𝑘𝐶∗(𝑠) and ignore
the damping of the plant, taking 𝑐 = 0. We have then

𝑥𝑚(𝑠)
𝑥𝑏(𝑠)

= 𝑃𝑡 (𝑠) (1+𝐶∗(𝑠))
1+𝑃𝑡 (𝑠)𝐶∗(𝑠) = 𝑃𝑡 (𝑠) (1+𝐶∗(𝑠))𝑆(𝑠), (2.13)

since 𝑃𝑡 (𝑠) = 𝑘𝑃𝑐(𝑠) in the absence of damping. The transfer function (1 + 𝐶∗(𝑠))𝑆(𝑠) is
characteristic of systems with relative measurements.

Similarly to the AVC with absolute measurements, the aforementioned problems with
the direct influence of noise 𝑛 and base displacement 𝑥𝑏 on 𝑥𝑚 are reduced when a LAC
strategy leading to notch-shaped sensitivity 𝑆(𝑠) is used. We discuss the design of such a
controller in the next section.

2.3 Loop-shaping for AVC - triangular loop shape
In both cases considered in the previous section, the sensitivity 𝑆(𝑠) has a role of vibra-
tion reduction ratio. This allows us to define the loop-shaping requirements for the AVC
systems, illustrated in Fig. 2.3, where the close-loop compliance 𝑇𝑐(𝑠) = 𝑥𝑚(𝑠)/𝐹𝑑 (𝑠) is
considered for simplicity. To reduce the response amplitude at a selected frequency range,
we require |𝑆(𝑠)| ≪ 1. At the same time, to avoid excitation of the structure by noise, the
|𝑆| ≈ 1 is required at all other frequencies. This means that the desired sensitivity for LAC
should have the shape of a notch filter.
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Figure 2.3: Illustration of the concept of loop-shaping. Based on the knowledge of the plant dy-
namics 𝑃𝑐 and the desired response 𝑇𝑐 (a), we can deduce the necessary shape of the sensitivity 𝑆
(b). The needed shape of the loop gain 𝑃𝑐𝐶 follows from the definition of 𝑆. Knowing the overall re-
quirements, the designer has the freedom to choose the controller shape (c), as long as the gain |𝑃𝑐𝐶|
at the target frequency is high and sufficient phase margins at the crossover frequencies 𝜔𝑐,1,𝜔𝑐,2
are assured. The choice of controller dynamics is discussed further in Section 2.4.

Based on the definition

𝑆(𝑠) = 1
1+𝑃𝑐(𝑠)𝐶(𝑠)

,

we can deduce that the loop-gain 𝑃𝑐(𝑠)𝐶(𝑠) to should have a triangular shape, with a pos-
itive slope below the targeted frequency and a negative above. The triangular loop shape
leads to two cross-over frequencies 𝜔𝑐,1,𝜔𝑐,2 that require designers’ attention to ensure
that the system is stable. To assure the stability, the phase at the cross-over frequencies
should remain between ±180∘. If the phase at any of the crossover frequencies approaches
the stability limits, a new resonance peak is created in the closed loop, with the damping
related to the phase margin. The desired loop-gain 𝑃𝑐(𝑠)𝐶(𝑠), together with the knowledge
of plant compliance 𝑃𝑐(𝑠), allows us to define the requirements for the controller. Com-
monly used controllers fitting in these requirements are discussed in the next section.

In practice, plants in AVC have a large number of high-frequency resonance modes.
Moreover, they are often characterised by parameter uncertainty or variations and may
have unmodelled dynamics. The characteristics of sensors and actuators used bring ad-
ditional complexity. Therefore, the stability analysis should be robust in the presence of
such effects. While this problem is simplified to some extent by using collocated sensors
and actuators [6], caution is required and the designer should always know how the actual
system fits the idealized approximations used in stability proofs. The robustness proper-
ties of AVC systems for flexible structures can be captured by negative-imaginary (NI)
systems theory. This theory is closely related to positive-real systems and passivity, can
be used to analyse MIMO systems and has been extended to encompass some classes of
nonlinear systems. The NI approach is presented in detail more in Chapter 8; we also refer
interested readers to [13, 14].

2.4 Overview of common AVC controllers
In this section, we present an overview of commonly used AVC approaches. As mentioned
before, we simplify the comparison of controllers with different sensors by relating all sig-
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nals to position measurements. For each control approach, while the loop shapes obtained
with different measurements used are the same, the controller dynamics that have to be im-
plemented differ. We focus only on controllers for which the negative imaginary systems
theory can be used for assessing the stability (that is, the phase of the loop-shape with the
plant (2.1) does not extend beyond ±180) and we limit the considerations to single-input
and single-output (SISO) control strategies.

Traditionally, combinations of different measured signals and controllers leading to
the same loop gain dynamics are presented in the literature as different control strategies.
Moreover, a common, well-established naming convention for AVC controllers does not
exist. Therefore, we do our best to refer to possible alternative names for each of the
presented cases. Figure 2.4 compares the behaviour of the considered AVC controllers on
plant (2.1) with absolute and relative measurements. The characteristics of each of the
considered controllers are discussed in the following sections.

Several modified versions of each presented controller can be found in the literature.
Some modifications are limited to placing the basic controllers presented here in parallel
[15, 16]. In other, nonlinear terms are added to the controllers to deal with plant non-
linearity [17–20] or to increase the efficiency of damping for LTI plants [21, 22]. In this
thesis, we discuss the fractional-order alternatives for vibration controllers in Chapter 5
and augmenting AVC systems with reset elements in Chapter 7.

In the literature, a large effort is taken to derive optimal tuning conditions for specific
controllers with simplified systems. However, such tuning parameters are only an indi-
cation for an initial design, as they are not optimal in the presence of parasitic dynamics,
time delays or significant levels of damping in the plant. For this reason, we do not focus
on such derivations.

2.4.1 Velocity Feedback
Velocity feedback (VFB) [23] is the simplest active vibration control strategy and aims to
emulate the viscous damping in the systems. The controller, in this case, is

𝐶𝑉𝐹𝐵(𝑠) = 𝑘𝑉𝐹𝐵𝑠, (2.14)

with 𝑘𝑉𝐹𝐵 denoting the gain of the controller. The loop-gain 𝐶𝑉𝐹𝐵(𝑠)𝑃𝑐(𝑠) has a +1 slope
at frequencies 𝜔 < 𝜔𝑝 and −1 slope at 𝜔 > 𝜔𝑝 , which leads to perfect notch-shaped sensitiv-
ity. When relative measurements are used, the system’s high frequency transmissibility
increases, which is evident from (2.12). This does not happen for compliance or when
absolute measurements are used (”sky-hook damping”).

The velocity feedback is often combined with band pass filters (VBP)

𝐶𝑉𝐵𝑃 (𝑠) = 𝑘𝑉𝐵𝑃 𝑠
𝑠

𝑠 +𝜔𝐻
1

𝑠/𝜔𝐿 +1
(2.15)

which increases the slope of the loop-gain to +2 at 𝜔 < 𝜔𝐻 and −2 at 𝜔 > 𝜔𝐿. This reduces
the phase margins at the cross-over frequencies, depending on the relation of 𝜔𝐻 and 𝜔𝐿
to the crossover frequencies, may lead to the increase of sensitivity magnitude above 1 and
the creation of parasitic resonance peaks, as can be seen in Fig. 2.4c. Using the low-pass
filter also allows for limiting the increase of the transmissibility at high frequencies when
relative measurements are used, as in Fig. 2.4f.
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The velocity feedback is often implemented by integrating acceleration signals, mea-
suring velocities directly with geophones or by differentiating position measurements.
Similar characteristics can be obtained with force measurements (related to the relative
acceleration between the base and the mass) when integral force feedback (IFF) [6] is im-
plemented.

2.4.2 Negative Position Feedback
To increase the magnitude of the loop gain at a narrow range of frequencies, a lightly
damped resonance peak is introduced to the controller in the Negative position feedback
(NPF) [11, 24] strategy. The advantage of such a design is clearly visible by comparing the
loop gains in Fig. 2.4a. At the target frequency, both the VF and NPF lead to the same
magnitude, while the curve for the NPF controller has significantly lower magnitudes at
lower and higher-frequency regions. To achieve this, the controller has the form

𝐶𝑁𝑃𝐹 (𝑠) =
𝑘𝑁𝑃𝐹 𝑠2

𝑠2 +2𝜁𝑁𝑃𝐹𝜔𝑁𝑃𝐹 𝑠 +𝜔2𝑁𝑃𝐹
, (2.16)

where 𝑘𝑁𝑃𝐹 ,𝜔𝑁𝑃𝐹 , 𝜁𝑁𝑃𝐹 denote the controller gain, resonance frequency and damping
coefficient, respectively. The dynamics of the controller are closely related to the dynamics
of a tuned mass damper (TMD) [25]. The same dynamics characterize systems damped
with the Negative derivative feedback (NDF) [26, 27] controllers, where velocities of the
structure are filtered by a band-pass filter with a resonance peak.

The controllers are tuned such that 𝜔𝑁𝑃𝐹 ≈ 𝜔𝑝 , with the optimal shift between the
corner frequencies dependent on the selected gain of the controller. The controllers’ gain
𝑘𝑁𝑃𝐹 can be seen as equivalent to the mass ratio 𝜇 in the TMD [28]. Let’s assume 𝜔𝑁𝑃𝐹 =
𝜔𝑝 for simplicity. The loop-gain 𝐶𝑁𝑃𝐹 (𝑠)𝑃𝑐(𝑠) has a +2 slope at frequencies 𝜔 < 𝜔𝑁𝑃𝐹 and
−2 slope at 𝜔 > 𝜔𝑁𝑃𝐹 . For small 𝜁𝑁𝑃𝐹 , the phase margins at the crossover frequencies are
small, leading to the creation of large resonance peaks in a closed loop and ”peak splitting”,
typical also for lightly damped TMDs and visible in Fig. 2.4c-f. Increasing the damping
coefficient 𝜁𝑁𝑃𝐹 leads to increased phase margins and reduction of the resonance peaks,
with the price of lesser attenuation at the target frequency.

2.4.3 Positive position feedback
TheVF and NPF controllers implemented in systems with position measurements are char-
acterised by large gains at high frequencies and do not ”roll off” as frequencies increase.
Consequently, they are often not robust and lead to low performance in systems with
multiple resonance peaks. To address these problems, a positive position feedback (PPF)
controller was introduced [29]. The controller has the transfer function

𝐶𝑃𝑃𝐹 = −𝑘𝑃𝑃𝐹𝜔2𝑃𝑃𝐹
𝑠2 +2𝜁𝑃𝑃𝐹𝜔𝑃𝑃𝐹 𝑠 +𝜔2𝑃𝑃𝐹

(2.17)

where 𝑘𝑃𝑃𝐹 ,𝜔𝑃𝑃𝐹 , 𝜁𝑃𝑃𝐹 denote the controllers gain, corner resonance frequency and damp-
ing coefficient, respectively. Note that the negative sign placed before the controller’s gain
is introduced to represent the positive feedback in the standard control loop. While the
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controller is characterized by low-pass dynamics, the negative sign ”shifts the phase” by
180∘, as can be seen in Fig. 2.4a, making it similar to that of NPF.

The loop gain obtained with the PPF controller is not triangular, as it has a low-pass
shape with steep roll-off at high frequency (Fig. 2.4b). While this helps to make the con-
troller more robust to high-frequency dynamics, the high gain of the controller at low
frequencies negatively influences system performance. In terms of mechanical analogues,
the low-frequency gain acts as ”negative stiffness”, softening the structure. This leads to
the amplification of low-frequency transmissibility above 1 when absolute measurements
are used (Fig. 2.4e and an increase in compliance with both the absolute and relative mea-
surements (Fig. 2.4d).

Similar to the NPF and mechanical TMD, the best results are achieved with the corner
frequency 𝜔𝑃𝑃𝐹 shifted with respect to the resonance of the structure [30]. The damping
ratio 𝜁𝑃𝑃𝐹 influences the phase margins at the crossover frequencies, and the low values
lead to ”peak splitting”. For the stability of the system, the low-frequency magnitude of
the loop gain should be smaller than one |𝐶𝑃𝑃𝐹 (0)𝑃𝑐(0)| < 1. The stability condition is clear
once one considers the Nyquist plot of the system. The condition can also be supported
by mechanical analogy. The system becomes unstable when the stiffness of the plant is
cancelled by the ”negative stiffness” of the controller. Note, that this stability condition is
only valid for ideal plants. In practice, the stability can be checked more reliably by using
the Nyquist plot.

2.4.4 Integral resonance control
As an alternative to PPF, a first-order low-pass filter can be used for active damping. In
a SISO case, such a strategy is equivalent to the integral resonant control (IRC). In the
literature [31, 32], the IRC has been introduced in a more complex architecture involving
feedthrough terms and possibly more complex dynamics, which is especially relevant for
MIMO systems. However, in the simplest case, the dynamics are reduced to

𝐶𝐼 𝑅𝐶 = −𝑘𝐼 𝑅𝐶
𝑠/𝜔𝐼 𝑅𝐶 +1 (2.18)

with the 𝑘𝐼 𝑅𝐶 ,𝜔𝐼 𝑅𝐶 denoting the controllers gain and corner frequency.
Like the PPF, the IRC can provide robust performance for systems with position mea-

surements and multiple resonance peaks. The use of IRC also leads to the ”softening” of
the system and an increase in low-frequency compliance due to the ”negative stiffness”
(Fig. 2.4d). Consequently, a condition on the low-frequency magnitude of the loopgain
|𝐶𝐼 𝑅𝐶 (0)𝑃𝑐(0)| < 1 should be obeyed for systems stability. The low-frequency amplification
can also be seen in the transmissibility when absolute measurements are used (Fig. 2.4e).
While the controller’s gain can not be increased with a resonance peak, one may attempt
to dampen multiple resonances of the plant with a single controller, as the phase of the
controller is equal to 90∘ at a wide range of frequencies, which can be seen in Fig. 2.4a.
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Figure 2.4: Overview of the controllers and resulting closed-loop characteristics
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2.5 Application in the evaluation of ultra-hard vibration
isolation mount

In this section, to show the loop-shaping approach in AVC, we evaluate a hard mount sys-
tem’s performance with different control strategies. The role of the mount in precision
equipment is not only supporting and levelling a machine but also coping with distur-
bances. When the floor vibrations are the primary concern, the mount can be designed as
a soft vibration isolation system [33]. The low stiffness and the corresponding low reso-
nance frequency of the system (typically below 5Hz) are advantageous in this context, as
above the resonance, the transmissibility of vibration is attenuated. This, however, comes
at the cost of problems with levelling, sagging and increased force disturbance sensitivity
[34]. Hard mounts have been proposed to address these issues [35]. Using a higher stiff-
ness mount leads to much-decreased sensitivity to direct disturbances [12] and a higher
resonance frequency of the system, reaching 35 Hz [34]. In consequence, the system is
more susceptible to indirect vibrations.

Here, we focus on applications where the direct disturbances acting on the system are
large and position stability is especially important. To assure it, an ultra hard mount based
on piezoelectric stack actuators is proposed. The high stiffness of the piezoelectric stack
prevents the excitation of the structure by direct disturbances. Thanks to the capability
of exerting high forces, an active solution can be created to deal with both direct and
indirect disturbances effectively. Additionally, piezoelectric stacks are proven technology
in the high-tech industry, have low energy consumption in static operation, and produce
no magnetic fields that can interfere with sensitive equipment [36].

We evaluate the achievable performance with AVC strategies based on three sensors:
accelerometers, capacitive position probes, strain gauges and different controller dynam-
ics. Because of the high resonance frequency, the system’s passive structure is ineffective
in isolating the floor vibrations. To address this, we investigate using a rudimentary feed-
forward based on stiffness compensation. While more advanced strategies are available
in the literature (see [34, 37–39]), we want to find out how big performance improvement
is possible with simple means.

2.5.1 System description
A single-axis experimental setup, presented in Fig.2.5, is used to represent the ultra hard
mount system. A platform with adjustable mass represents the payload to be supported.
The main stack actuator (model P-843.20) has a stiffness of 27 × 106 N/m, and constitutes
the ultra hard mount and connects the payload to the shaking base. This shaking base is
actuated by another stack actuator (model P-235.1S), with a higher stiffness of 860 × 106
N/m. Motion of all elements of the setup is constrained to a single degree of freedom
using flexures. The abstraction of the setup is also presented in Fig. 2.5. Accelerations
̈𝑥1, ̈𝑥2 are measured using PCB Synotech 393B05 accelerometers. Absolute displacement

of 𝑚1 is measured with a PIseca D-510.021 and the the absolute displacement of 𝑚2 with
a D-050 capacitive sensor. Finally, relative measurements are taken with the integrated
strain gauge sensors of the stack actuators. In the configuration used in this paper, the
resonance frequency of the system is 𝜔𝑝 = 103 Hz. This can be adjusted to a higher or
lower frequency by adjusting the mass 𝑚2.
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Figure 2.5: Overview of the experimental setup and an approximate mass-spring-damper model of
the system.

To study the response of a system to floor vibrations, a vibration profile based on the
VC-C curve from [40] is applied to the shaking base. Direct disturbances are applied to the
main stack actuator, also used for active vibration control, with the force profile starting
at 10 N at low frequencies and descending with −1 slope from 5 Hz onwards.

The goal of vibration control is to minimize the motion of the mass ̈𝑥2. To calculate
the total error, the Power Spectrum Density (PSD) of the signals is integrated to obtain the
Cumulative Power Spectrum (CPS):

CPS(𝑓 ) = ∫
𝑓

0
PSD(𝑣) d𝑣 (2.19)

The CPS visualizes the contribution to the total error at each frequency. The final value of
the CPS is equal to the square of the root-mean-square (RMS) of the signal [41].

2.5.2 Controller tuning
The controllers were tuned based on rules from literature and experimental observations.
Because acceleration ̈𝑥2 was used as an input signal, the velocity feedback controller (VFB)
was implemented as an imperfect integrator, which corresponds to (2.15) with the corner
frequency of the high-pass filter 𝜔𝐻 = 10 rad/s and without the low-pass term (𝜔𝐿 →∞).
In the case of velocity band-pass controller (VBP), the corner frequencies were set at 𝜔𝐻 =
𝜔𝑝/2 and 𝜔𝐿 = 3𝜔𝑝 as it was found this gave a good trade-off between damping and low
noise amplification. The tuning of the negative acceleration controller (NAF) as in (2.16)
was based on [42]. Tuning of both positive position feedback (PPF) controllers (2.17) was
based on the tuning in [20]. The damping coefficient for relative position feedback was
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Figure 2.6: The open-loop gain and transmissibility plots of the different implemented strategies.

halved as experiments showed this improved performance. For each controller, the gain
was found by performing a sweep on the experimental setup, and the value leading to
minimal RMS amplitude of vibrations was selected.

The open-loop gains obtained with the different controllers and sensors are presented
in 2.6a. Due to the parameter sweep procedure used for the selection of the controllers’
gains, the magnitudes of loop gains show significant differences. Especially, the low gain
leading to optimal results for the PPF based on relative measurements obtained with a
strain gauge indicates significant noise introduced by the sensor to the system, when com-
paredwith other control architectures. The low loop gain, corresponds to a narrow ”notch”
in the sensitivity, as demonstrated in Fig. 2.6b. At lower frequencies, the sensitivities ob-
tained with the PPF controllers have magnitudes greater than 1, indicating the ”softening”
of the plant.

The feedforward controller is used to decrease the transmissibility of vibrations from
the base of the mount. By calculating the system’s reaction to the measured indirect dis-
turbance, their effect can be diminished with an opposing control force. The most basic
approach is stiffness compensation feedforward. With this method only the stiffness is
accounted for and combined with a low-pass filter to avoid feeding noise into the system:

𝐾𝑓 𝑓 = −𝑘 𝜔𝑙𝑝
𝑠 +𝜔𝑙𝑝

. (2.20)
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Figure 2.7: Transmissibility from 𝑥1 to 𝑥2 of the system with no AVC and with different strategies
implemented, showing the damping performance of the different methods.

Note that the position of the base (𝑥1) is used for feedforward signal generation. For best
results, feedback for active damping and feedforward are used simultaneously.

2.5.3 Closed-loop results
The closed-loop transmissibility with each strategy was measured by exciting the system
and measuring the response from 𝑥1 to 𝑥2, with results plotted in Fig. 2.7. The response
in the absence of control is characterized by a sharp resonance peak at 103 Hz. All the
tested strategies achieve a significant reduction of the resonance peak, with the best re-
sults achieved using the acceleration-based methods (VFB, VBF, NAF). When PPF with
absolute position measurement is used, base vibration transmission at low frequencies is
amplified. A significant transmissibility reduction is obtained with the feedforward strat-
egy. Due to the simplistic nature of the method used, it is mainly effective in a narrow
range of frequencies. This, however, is sufficient to improve the performance of the system
significantly, as will be demonstrated.

Fig. 2.8a shows the CPS of the response of the system to combined direct and indirect
disturbances. Without control, large contributions are caused by the resonance peak at
103 Hz and high-frequency modes of the system around 1100 Hz. With active damping,
the contribution of the resonance is significantly decreased. However, visible from the
increase before the resonance frequency compared to the open-loop, the influence of the
noise on the system is amplified. Furthermore, the high-frequency parasitic modes at
around 1100 Hz are excited by the controllers, leading to a slight increase in vibrations.
This shows the trade-off existing with these controllers: an increase in gain leads to both
increased damping, amplified influence of noise and excitation of high-frequency modes.
This behaviour limits the achievable reduction of vibrations.

The performance of the PPF using absolute position measurements approaches the
performance of velocity feedback. This is achieved despite the amplification of the base-
vibration transmissibility and smaller resonance peak reduction, thanks to smaller excita-
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(a) CPS of ̈𝑥2 showing the system response to di-
rect and indirect disturbance excitation without
AVC and with different feedback strategies imple-
mented.

(b) CPS of 𝑥2 showing the system response to in-
direct disturbance excitation without AVC, with
only feedback, and feedback combined with stiff-
ness compensation feedforward.

Figure 2.8: Cumulative Power Spectra obtained from the experimental results.

tion of the high-frequency dynamics. The PPF with relative position measurements is not
able to achieve similar performance, probably due to the higher noise levels introduced
by the strain sensor used, which requires further investigation. It can be seen that rel-
ative PPF has high open-loop gain at low frequencies without a significant peak at the
resonance frequency. As a result, it is not possible to dampen the resonance without also
strongly amplifying low-frequency disturbances. The results are summarized in Table 2.1,
which shows the results numerically in terms of the RMS of ̈𝑥2.

The position of the isolated mass 𝑥2 is used as a performance indicator when evaluat-
ing feedforward since position feedforward was implemented. To show the influence of
feedforward on the reduction of indirect disturbances, only these were used to excite the

Table 2.1: Numerical results of experimental evaluation of different AVC feedback strategies show-
ing the RMS of the acceleration of the isolated mass ̈𝑥2 of each strategy and the percentage with
respect to no AVC.

Method RMS of ̈𝑥2 (𝑚/𝑠2) % of No AVC
No AVC 2.5007e-03 100%
VFB 1.1426e-03 45.69%
VBP 1.0572e-03 42.27%
NAF 1.0489e-03 41.94%
abs. PPF 1.1877e-03 47.49%
rel. PPF 1.7018e-03 68.05%
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Table 2.2: Numerical results of experimental evaluation of indirect disturbance rejection with feed-
back and feedforward showing the RMS of the position of the isolated mass 𝑥2 and the percentage
with respect to no AVC.

Method RMS of 𝑥2 (𝑚) % of No AVC
No AVC 5.3778e-05 100%
FB only 1.5021e-05 27.93%
FB + FF 3.0984e-06 5.76%

system. In Fig. 2.8b the obtained CPS are plotted. While the feedback control, to a large
extent, removes the amplification of vibration due to the resonance, it does not influence
the low-frequency vibration transmission. When feedforward is used, the low-frequency
contributions are reduced, which results in an almost 95% decrease in the final vibration
magnitude. This shows that even straightforward stiffness compensation feedforward can
greatly improve system performance. These results can be found numerically in Table 2.2.

2.6 Conclusion
This chapter presented loop shaping as a tool for designing AVC systems. The problems
in AVC were first related to the ones in a more established field of motion control and
studied in two cases: with absolute and relative measurements. Based on the closed-loop
transfer functions and the knowledge of plant dynamics, we deduced the desired shapes
of controllers. Subsequently, the commonly used AVC strategies from the literature were
presented in the loop shaping framework. Finally, the use of the approach was presented
in an experimental evaluation of an ultra-hard mount system. The concepts presented in
this chapter will be used in the remainder of this thesis, demonstrating that loop shaping
is an effective strategy for the analysis and design of practical AVC controllers.
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3
Active metamaterials for

vibration control
The previous chapter presented a frequency-domain loop-shaping approach for the design
of SISO AVC systems. Here, this approach is related to the design of active metamaterial
structures with piezoelectric sensors and actuators for bandgap generation. Themain chal-
lenge is the high number of control inputs and outputs characterizing active metamaterial
structures. Counter-intuitively, the problem is simplified by assuming that the structure
consists of infinitely many transducer pairs. The control of the metamaterial is then re-
lated in the modal domain to the simpler problems studied in the previous chapter. With
these insights, the bandgap design is simplified, which we show experimentally in a setup
with a few sparsely placed piezoelectric transducers.

This chapter was published as:
M.B. Kaczmarek, S.H. HosseinNia, Creating bandgaps in active piezoelectric slender beams through positive
position feedback control, Smart Materials and Structures, 33 125039, 2024.
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Creating bandgaps in active piezoelectric
slender beams through positive position

feedback control

Abstract Bandgaps - frequency ranges with reduced vibration transmissibil-
ity in elastic structures, are an opportunity for vibration control originating
from the research on elastic metamaterials. In this paper, we study the design
for bandgap in slender beams with collocated piezoelectric patch transduc-
ers. While creating bandgaps using shunted transducers is a well-established
research field, using structures with piezoelectric sensors, actuators, and feed-
back controllers for the same application has not been thoroughly explored.
This paper aims to study the use of the tools originating from the active vibra-
tion control (AVC) field for bandgap generation in finite beams with collocated
piezoelectric sensors and actuators. Lightly damped second-order low-pass fil-
ters are used as controllers in the same configuration as positive position feed-
back (PPF), widely used for active damping. To facilitate the understanding of
systems behaviour, we propose a simplifiedmodel based on the Euler-Bernoulli
beam theory. A modal analysis approach and an assumption of an infinite
number of transducers of infinitesimal length distributed along the structure
are used to predict the frequency range of the locally resonant bandgap in
closed form. The experimental part of the work demonstrates the feasibility
of the proposed approach for creating bandgaps in practice. Thanks to the
insights from AVC, the control system can be designed purely based on exper-
imental frequency response data without the need for a parametric model of
the system. We also show that the uniform distribution of actuators is not nec-
essary for creating bandgap, which can be achieved in a structure with a rela-
tively small number of sparsely placed actuators and compare the obtained
results with analytical predictions for ideal metastructure. Low-frequency
bandgaps placed between 10 and 320 Hz are obtained in experiments.

3.1 Introduction
A bandgap, in the context of flexible structures, refers to a specific range of frequencies
where the magnitude of the structures transmissibility is lower than 1. The idea origi-
nates from the research on elastic metamaterials but is promising for applications beyond
this narrow field, for example, in vibration isolation of structures excited by narrow-band
disturbances. Here, we focus on creating bandgaps in finite slender beams. For such struc-
tures, using piezoelectric patch transducers to obtain a bandgap is an appealing solution.
Compact, highly integrated designs with such transducers can easily be created using
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existing, well-established technologies, and piezoelectric patch transducers can be easily
retrofitted on existing components. Moreover, such a structure can have high stiffness,
which is beneficial in many applications [1].
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Figure 3.1: Different configurations for vibration control in slender structures with piezoelectric
transducers. In (a), all the transducers have the same role and the shunt is designed as an electrical
impedance. In (b), transducers are divided into sensors and actuators, and the feedback controller
can be seen as generalized stiffness. In configuration (c), only actuators are used in the system and
the displacements at their locations, necessary to implement the feedback loop, are recovered using
dedicated circuits.

Themethods for vibration control in piezoelectric smart structures can be divided into
three categories, depending on the transducers’ role, as illustrated in Fig. 3.1. While our
focus is on feedback systems presented in 3.1b, we also provide a description of the two
remaining, with some representative examples from literature. Active and passive elec-
tronic elements and discrete controllers can be used in all the configurations. All the
configurations can be used to implement tuneable or adaptive systems. Moreover, in all
cases, careless design and ignoring parasitic dynamics or time delays present in the system
may result in instability.

In the approach presented in Fig. 3.1a, piezoelectric transducers are shunted using
electric or electronic circuits [2]. The majority of the results on bandgap creation in sys-
tems with piezoelectric transducers can be assigned to this category. Since the related
literature is vast, we do not aim to provide an extensive review. Instead, we refer to a few
selected papers with representative examples. All the transducers used in such a structure
have the same role and are influenced in the same manner by the presence of the shunt
(this is clearly seen when compared with feedback systems in Fig. 3.1b, see e.g. the section
on modeling in [3]). Single or connected transducers (like in Fig.3.1a) can be used. The
structure dynamics are altered due to the coupling with the shunt dynamics, which are
often seen as a relationship between currents and voltages acting on the transducers. Ac-
tive shunts can be implemented as ”voltage-controlled current-sources” [4, 5], which offer
greater design freedom and stronger influence on the structure’s properties, for example,
when ”negative capacitance” shunts are used [6–9].

In the structure presented in Fig. 3.1b, transducers are divided into two groups: sen-
sors and actuators, which operate under different conditions. Here, we only provide a
brief description of the category and elaborate on the examples from the literature that fit
it later in this section. The chargemeasured on the sensor is related to generalized displace-
ment at its location. The external voltage applied to the actuator results in a generalized
force applied to the structure [10]. The relationship between the signals of actuators and
sensors can be seen as generalized stiffness. In the electronic circuits used to implement
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such a structure, subsystems for sensor signal conditioning, implementation of controller
dynamics, and amplification of actuator signals can be identified. Both collocated and
non-collocated sensors and actuators can be used.

In the approach presented in Fig. 3.1c, the transducers are used in the self-sensing
mode. The self-sensing refers to a single component acting as a sensor and actuator in a
control system. While the term self-sensing is sometimes used to describe shunt circuits,
like the one presented in Fig. 3.1a [11], there are other ways to implement this concept in
vibration control with piezoelectric transducers. An overview of available methods can
be found in [12]. While all the transducers in the system have the same role, the voltages
applied to transducers are calculated based on the generalized displacements recovered by
dedicated electronic circuits. For this reason, the same design approaches as for feedback
systems presented in Fig. 3.1b can be used. To the best of our knowledge, this approach
has not been used yet for the creation of bandgap in slender structures.

While the use of piezoelectric structures with shunts for bandgap creation is well-
researched, the two other options have been neglected. The few results utilising feedback
are based on simple control methods, where the voltage of the sensor is proportional to
the sensor voltage (related to generalised displacements) [13], its derivative w.r.t. time
(related to generalised velocities), its second derivative w.r.t. time (related to generalised
accelerations) [14, 15] or a linear combination of those terms [16] are used. In this way, the
unit cells’ effective stiffness, damping or inertia are altered. Numerical analyses presented
in these papers demonstrate widened bandgap regions, dependent on the controller gains
when active feedback is used. While all aforementioned papers use collocated sensors and
actuators, non-collocation is used to obtain non-reciprocal properties in [17].

In the scope of the classification presented in Fig. 3.1, the results utilising enhanced
shunting circuits should also be categorised as feedback systems. The enhanced circuits
presented in [3, 18, 19] consist of two collocated piezoelectric patch transducers. While
the properties of one (the actuator) are influenced by the resonators present in the cir-
cuits, the other remains uninfluenced and acts as a sensor. In [19], the feedback loop
consisting of a charge amplifier for sensor signal conditioning, a microprocessor for im-
plementation of a digital controller and an actuator amplifier is studied. Feedback loops
implemented in structures with collocated sensors and actuators using only analogue elec-
tronic elements have been used in [3, 18]. In all three papers, the influence of the feedback
system on the structure was modelled by introducing frequency-dependent elastic moduli
of the actuators, defined by the feedback loop dynamics. Dispersion properties of infinite
metamaterial were analyzed using Bloch’s boundary condition, and the behaviour of finite
metastructures was shown experimentally.

Generating bandgaps in structures with sensors and actuators by actively implement-
ing resonant dynamics in the feedback loop is a neglected research direction with great
potential. The use of such smart structures for resonance peak damping, which is a closely
related topic to bandgap creation, is well researched, and this knowledge can be translated
to the bandgap problem (see examples in [10, 20]). While the feedback configuration is an
alternative to commonly used shunt circuits, we do not claim it is better in any sense. We
expect each configuration to have benefits and drawbacks depending on the application.

In this paper, we study bandgap generation in finite beams with collocated piezoelec-
tric patch sensors and actuators, with the controller implemented digitally. To the best
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of our knowledge, the only paper studying such a configuration is [19]. What differenti-
ates this work from [19] are the modeling and control approaches used. Lightly damped
second-order low-pass filters are used as controllers, in the same configuration as in the
positive position feedback (PPF) [10, 21] widely used for active damping. From the control
theory perspective, bandgap generation in a finite structure is a rather simple problem, and
the stability of the system can be easily assured using the Negative Imaginary (NI) systems
theory if the underlying assumptions are satisfied [22]. For this reason, these aspects are
not presented in the paper. The major advantage of the proposed control approach is that
the practical design of the controller can be based on the experimental frequency domain
data, without a need for a parametric model of the system. The paper’s contributions
focus on modelling the system, predicting the bandgap region in a finite structure and
implementing the proposed approach practically.

To facilitate the understanding of systems behaviour, we propose a simplified model
based on the Euler-Bernoulli beam theory, where the influence of each of the actuators
is represented by a pair of moments related to the signal of the corresponding sensor.
Bandgap analysis and predictions in [19] are based on the assumption of travelling waves
in an infinite medium. However, this approach ignores the characteristics of finite struc-
tures and does not take advantage of the modal representation typically used for the analy-
sis of such structures [23]. A method to predict a locally resonant bandgap in piezoelectric
beams in shunt configuration under the assumption of an infinite number of transducers
applied was developed in [24]. The approach was extended to piezoelectric metamaterial
plates in shunt configuration in [25]. As a contribution of this work, we adopt the method
developed in [24] to the piezoelectricmetamaterial beams in sensor-actuator configuration
and estimate the influence of a feedback loop on such a structure in a closed form under
the same assumptions. The estimation is valid for arbitrary feedback loop dynamics that
can be designed for active damping, bandgap generation or other objectives.

In the experimental part of the paper, we demonstrate that bandgap (seen as a signif-
icant reduction of vibration transmissibility magnitude below 1 at a selected frequency
range) can be created in practice with the sensor and actuator configuration and feedback
control. To the best of our knowledge, we are first to report such an achievement, as
in [19], only resonance peak attenuation was presented experimentally using the studied
configuration. We also show that the uniform distribution of actuators is not necessary
for creating bandgap, which can be achieved in a structure with a relatively small number
of sparsely placed actuators. We also acknowledge the importance of parasitic effects, not
captured in the theoretical models and show their influence on the obtained bandgap by
conducting numerical analysis in parallel to experiments.

The structure of the paper is as follows. Section 3.2 presents the model of the studied
structures and the considered control system architecture. In Section 3.3, we study the
bandgap in metastructure using the assumption that an infinite number of transducers
are placed on the structure. In Section 3.4, we focus on smart structures with sparsely
placed transducers and creating bandgaps in practice. Section 3.5 concludes the paper.
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3.2 System description
The purpose of the model derived here is to provide insights into the behaviour of the
system. The controllers used in the physical setup and presented in Section 4 are tuned
based on experimentally measured frequency response functions of the structure instead
of analytical models. For this reason, a possibly simple model, not including the minute
details of the system, is derived.

The system under consideration is schematically presented in Fig. 3.2. It consists of
a beam with a rectangular cross-section embedded with 𝑆 collocated piezoelectric sensor
and actuator pairs. The objective of the control system is to limit the influence of base
excitation and external disturbance forces on the vibrations of the structure at the point
of interest at a targeted frequency range. The model of the structure, including the me-
chanical and electrical domains, which has been adopted from [24] by implementing the
relationship between the sensor signal, controller and voltage applied to the actuator, is
presented in subsection 3.2.1. Section 3.2.2 presents the control-related aspects of the sys-
tem.

3.2.1 Model of the system
We assume the beam has a constant cross-section consisting of two continuous and sym-
metrically located piezoelectric layers sandwiching a central substrate. The piezoelectric
layers are poled in the thickness direction. The electrodes are segmented, forming trans-
ducer pairs on opposite sides of the beam, such that transducers in one layer have the role
of sensors and, in the other, act as actuators. The electrode layers and bonding layers are
treated as having negligible thickness. The slender composite beam, subject to specified
boundary conditions, is modelled based on the Euler-Bernoulli beam theory, presuming
geometrically small oscillations and linear-elastic material behaviour. For simplicity, it
is assumed that the beam is undamped; however, the modal damping can be easily intro-
duced later in the analysis.

In the model, the bending centre is assumed to be located at the geometric centre of
the beams cross-section. However, due to the use of the sensor and actuator configuration
of the piezoelectric transducers, the response of the bottom piezoelectric patch would be
strongly distinguished from the upper one, which leads to a mismatch of the geometric
centre and the bending centre locations and limited accuracy of the model. Nevertheless,
the model sufficiently captures the system behaviour.

For the structure excited by some base displacement 𝑤𝑏(𝑡) and external transverse
force with density 𝑓 (𝑥, 𝑡) with relative vibration 𝑤(𝑥, 𝑡), the governing equations in phys-
ical coordinates are

𝐸𝐼 𝜕
4𝑤
𝜕𝑥4 +𝑚𝜕2𝑤

𝜕𝑡2 −𝑘𝐴𝜗
𝑆
∑
𝑗=1

𝑣2,𝑗(𝑡)
d2

d𝑥2 [𝐻 (𝑥 −𝑥𝐿𝑗 )−𝐻 (𝑥 −𝑥𝑅𝑗 )] = −𝑚(𝑥)𝑤̈𝑏(𝑡) + 𝑓 (𝑥, 𝑡)

(3.1)
𝑞1,𝑗(𝑡) = 𝑘𝑆𝜗Δ𝑤′𝑗 (3.2)
̈𝑦(𝑡) = 𝑤̈(𝑥𝑇 , 𝑡), (3.3)
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Figure 3.2: Schematic representation of the considered system. To simplify the modelling of the
structure, the influence of the signal conditioning and actuator amplifiers are included in the model
of the beam and represented by static gains. This approach is in line with the common practice in
experimental system identification.

where 𝑤(𝑥, 𝑡) is the transverse displacement of the beam at position 𝑥 and time 𝑡 , and
𝐻(𝑥) is the Heaviside function. ̈𝑦(𝑡) denotes the acceleration at the point of interest 𝑥𝑇 .
The segmented electrodes are numbered 𝑗 = 1…𝑆, with each electrode starting at 𝑥 = 𝑥𝐿𝑗
and ending at 𝑥 = 𝑥𝑅𝑗 with the total length Δ𝑥𝑗 = 𝑥𝑅𝑗 − 𝑥𝐿𝑗 . The voltage 𝑣2,𝑗(𝑡) applied to
the 𝑗th actuator is generated by an external amplifier with amplification factor 𝑘𝐴. The
charge 𝑞1,𝑗(𝑡) measured at the 𝑗th sensor is proportional to the difference of slopes at the
extremities of the transducer Δ𝑤′𝑗 = 𝑤′(𝑥𝑅𝑗 ) −𝑤′(𝑥𝐿𝑗 )[10], with a factor dependent of the
signal conditioning circuit 𝑘𝑆 . Furthermore, 𝐸𝐼 is the short circuit flexural rigidity, 𝑚 is
the mass per length, and 𝜗 is the electromechanical coupling term in physical coordinates,
given by

𝐸𝐼 = 2𝑏
3 (𝑐𝑠

ℎ3𝑠
8 + ̄𝑐𝐸11 [(ℎ𝑝 +

ℎ𝑠
2 )

3
− ℎ3𝑠

8 ]) (3.4)

𝑚 = 𝑏(𝜌𝑠ℎ𝑠 +2𝜌𝑝ℎ𝑝) (3.5)

𝜗 = ̄𝑒31𝑏 (ℎ𝑠 +ℎ𝑝) (3.6)

where 𝑐𝑠 , 𝜌𝑠 , and ℎ𝑠 are the central substrate layer’s elastic modulus, mass density, and
thickness, respectively, while 𝑏 is the width of the beam. The piezoelectric layers have
mass density 𝜌𝑝 , thickness ℎ𝑝 , width 𝑏, elastic modulus at constant electric filed ̄𝑐𝐸11, effec-
tive piezoelectric stress constant ̄𝑒31, and permittivity component at constant strain ̄𝜀𝑆33,
where the overbars indicate effective material properties for 1D thin layers reduced from
3D constitutive equations as

̄𝑐𝐸11 =
1
𝑠𝐸11

̄𝑒31 =
𝑑31
𝑠𝐸11

where 𝑠𝐸11 is the elastic compliance at constant electric field, 𝑑31 is the piezoelectric strain
constant.
Using an assumed-modes type expansion with 𝑁 modes, the transverse displacement of
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the beam is expanded as

𝑤(𝑥, 𝑡) =
𝑁
∑
𝑟=1

𝜙𝑟 (𝑥)𝜂𝑟 (𝑡) (3.7)

where 𝜂𝑟 (𝑡) are the modal weighting and 𝜙𝑟 (𝑡) are the mode shapes of the beam for a given
set of boundary conditions (at short circuit) normalized such that

∫
𝐿

0
𝑚𝜙𝑟 (𝑥)𝜙𝑠(𝑥) = 𝛿𝑟 ,𝑠 , 𝑟 , 𝑠 = 1,2,… (3.8)

∫
𝐿

0
𝐸𝐼𝜙𝑟 (𝑥)

d4𝜙𝑠
d𝑥4 𝑑𝑥 = 𝜔2𝑟 𝛿𝑟𝑠 , 𝑟 , 𝑠 = 1,2,… (3.9)

where 𝐿 is the length of the beam, 𝜔𝑟 is the 𝑟th natural frequency, and 𝛿𝑟𝑠 is the Kronecker
delta. Note that (3.9) can be written in symmetric form

∫
𝐿

0
𝐸𝐼 d

2𝜙𝑟
d𝑥2

d2𝜙𝑠
d𝑥2 𝑑𝑥 = 𝜔2𝑟 𝛿𝑟𝑠 , 𝑟 , 𝑠 = 1,2

Substituting (3.7) into (3.1)-(3.3), multiplying by some mode shape 𝜙𝑘(𝑥), and integrating
across the beam, the governing equations can be obtained in modal coordinates as

̈𝜂𝑟 (𝑡) +𝜔2𝑟 𝜂𝑟 (𝑡) −𝑘𝐴𝜗
𝑆
∑
𝑗=1

𝑣2,𝑗(𝑡)Δ𝜙′𝑟 ,𝑗 = 𝑞𝑤,𝑟 (𝑡) +𝑞𝑓 ,𝑟 (𝑡) (3.10)

𝑞1,𝑗(𝑡) = 𝑘𝑆𝜗
𝑁
∑
𝑟=1

Δ𝜙′𝑟 ,𝑗𝜂𝑟 (𝑡) (3.11)

̈𝑦(𝑡) = 𝑤̈𝑏(𝑡) +
𝑁
∑
𝑟=1

𝜙𝑟 (𝑥𝑇 ) ̈𝜂𝑟 (𝑡) (3.12)

where the free indices 𝑟 and 𝑗 are assumed to go from 1…𝑁 and 1…𝑆, respectively,

Δ𝜙′𝑟 ,𝑗 = (d𝜙𝑟
d𝑥 )

𝑥𝑅𝑗

𝑥𝐿𝑗
= d𝜙𝑟

d𝑥 (𝑥𝑅𝑗 )−
d𝜙𝑟
d𝑥 (𝑥𝐿𝑗 )

is the difference in slope of the 𝑟 th mode between the ends of the 𝑗 th electrode and the
modal forcing is given by

𝑞𝑤,𝑟 (𝑡) = −𝑤̈𝑏(𝑡)∫
𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥, (3.13)

𝑞𝑓 ,𝑟 (𝑡) = ∫
𝐿

0
𝑓 (𝑥, 𝑡)𝜙𝑟 (𝑥)𝑑𝑥. (3.14)
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Taking the Laplace transform of the governing equations we obtain

(𝑠2 +𝜔2𝑟 )𝐻𝑟 (𝑠) −𝑘𝐴𝜗
𝑆
∑
𝑗=1

𝑉2,𝑗(𝑠)Δ𝜙′𝑟 ,𝑗 = 𝑄𝑤,𝑟 (𝑠) +𝑄𝑓 ,𝑟 (𝑠) (3.15)

𝑄1,𝑗(𝑠) = 𝑘𝑆𝜗
𝑁
∑
𝑟=1

Δ𝜙′𝑟 ,𝑗𝐻𝑟 (𝑠) (3.16)

̈𝑦(𝑠) = 𝑤̈𝑏(𝑠) +
𝑁
∑
𝑟=1

𝜙𝑟 (𝑥𝑇 )𝑠2𝐻𝑟 (𝑠), (3.17)

where, with some abuse of the notation, 𝐻𝑟 (𝑠),𝑉2,𝑗(𝑠),𝑄1,𝑗(𝑠),𝑌 (𝑠),𝑄𝑤,𝑟 (𝑠),𝑄𝑓 ,𝑟 (𝑠) denote
Laplace transforms of the time signals 𝜂𝑟 (𝑡),𝑣2,𝑗(𝑡),𝑞1,𝑗(𝑡),𝑦(𝑡),𝑞𝑤,𝑟 (𝑡),𝑞𝑓 ,𝑟 (𝑡).
To study the transmissibility of the system, it is beneficial to express the base excitation
in terms of acceleration. This leads to the modal forcing in the Laplace domain

𝑄𝑤,𝑟 (𝑠) = −𝑤̈𝑏(𝑠)∫
𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥. (3.18)

Focusing on the measurable signals we have then

𝑄1,𝑗(𝑠) = 𝑘𝑆𝑘𝐴𝜗2
𝑆
∑
𝑘=1

𝑁
∑
𝑟=1

Δ𝜙′𝑟 ,𝑗Δ𝜙′𝑟 ,𝑘
𝑠2 +𝜔2𝑟

𝑉2,𝑘(𝑠) −𝑘𝑆𝜗
𝑁
∑
𝑟=1

Δ𝜙′𝑟 ,𝑗
𝑠2 +𝜔2𝑟 ∫

𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 𝑤̈𝑏(𝑠) (3.19)

̈𝑦(𝑠) = 𝑘𝐴𝜗
𝑆
∑
𝑘=1

𝑁
∑
𝑟=1

𝑠2𝜙𝑟 (𝑥𝑇 )Δ𝜙′𝑟 ,𝑘
𝑠2 +𝜔2𝑟

𝑉2,𝑘(𝑠) + 𝑤̈𝑏(𝑡) −
𝑁
∑
𝑟=1

𝑠2𝜙𝑟 (𝑥𝑇 )
𝑠2 +𝜔2𝑟 ∫

𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 𝑤̈𝑏(𝑠).

(3.20)

Taking into account that
𝑁
∑
𝑟=1

𝜙𝑟 (𝑥𝑇 )∫
𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 = 1 (3.21)

we have

̈𝑦(𝑠)
𝑤̈𝑏(𝑠)

= 1−
𝑁
∑
𝑟=1

𝑠2𝜙𝑟 (𝑥𝑇 )
𝑠2 +𝜔2𝑟 ∫

𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 =

𝑁
∑
𝑟=1

𝜙𝑟 (𝑥𝑇 )∫
𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥

𝜔2𝑟
𝑠2 +𝜔2𝑟

. (3.22)

3.2.2 Control structure
The controller dynamics describe the relationship between the measured sensor outputs
and actuation inputs. While various control architectures are available in the literature,
we consider only a multi-SISO (single-input, single-output) structure, where the voltage
applied to 𝑗th actuator 𝑣2,𝑗(𝑡) depends only on the charge measured at the corresponding
𝑗th sensor 𝑞1,𝑗(𝑡)

𝑉2,𝑗(𝑠) = 𝐶𝑗(𝑠)𝑄1,𝑗(𝑠). (3.23)
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A positive feedback interconnection is used. When the piezoelectric sensor and actuator
are collocated, the transfer function between the corresponding signals

𝐺𝑄𝑗 /𝑉𝑗 (𝑠) =
𝑄1,𝑗(𝑠)
𝑉2,𝑗(𝑠)

= 𝑘𝑆𝑘𝐴𝜗2
𝑁
∑
𝑟=1

Δ𝜙′𝑟 ,𝑗Δ𝜙′𝑟 ,𝑗
𝑠2 +𝜔2𝑟

(3.24)

has the characteristic pattern of alternating poles and zeros, which can be used to guaran-
tee the stability of the SISO control system. In a MIMO (multiple-input, multiple-output)
case, the stability properties of flexible structures with collocated sensors and actuators
are captured by the negative-imaginary (NI) systems theory [22]. Transfer functions of
finite flexible structures with collocated (generalized) force inputs and (generalized) po-
sition outputs, like the one of the system considered in this paper, are strictly negative
imaginary [22].

A positive-position feedback (PPF)[10, 21] controllers in the SISO form are used, de-
scribed by

𝐶(𝑠) = 𝑘𝑐
𝑠2/𝜔2𝑐 +2𝑠𝜁𝑐/𝜔𝑐 +1

, (3.25)

where 𝜔𝑐 , 𝜁𝑐 , 𝑘𝑐 > 0. The transfer function of PPF is characterized by a resonance peak, and
thanks to the roll-off at high frequencies, the controller can be implemented in practice, as
this minimizes the risk of destabilizing the system in the presence of parasitic dynamics
and time delays.

To simplify the design of the control system, controllers for all transducer pairs have
the same strictly NI dynamics 𝐶(𝑠) with individually selected gains. We select the gain
for each controller 𝐶𝑗 to be equal to the inverse of the steady-state value of the transfer
function between 𝑄1,𝑗 and 𝑉2,𝑗

𝐶𝑗(𝑠) = 𝑔𝑗𝐶(𝑠), 𝑔𝑗 = 𝐺−1𝑄𝑗 ,𝑉𝑗 (0). (3.26)

With this control structure, the stability of the closed-loop system can be concluded using
the NI theory when 𝐶(0) ≤ 1.

Any experimental system inevitably includes parasitic dynamics and time delays. It is,
therefore, essential to ensure that the dynamics of the structure can be accurately captured
by an NI model in the relevant frequency range. Additionally, evaluating the stability
margins of the collocated pairs 𝐺𝑄𝑗 ,𝑉𝑗 (𝑠)𝐶𝑗(𝑠) is a quick way to notice possible challenges
for the systems stability.

3.3 Bandgap in active metastructures
In this section, we consider bandgap formation using the feedback approach in ametastruc-
ture, which is a finite structure consisting of repeated identical unit cells. In subsection
3.3.1, we provide an approximate analysis method under the assumption of the infinite
number of transducers applied. In subsection 3.3.2, show the influence of the PPF con-
troller on the bandgap generation. In subsection 3.3.3, we validate the developed method
and show its applicability for structures with a finite number of transducers in a numerical
analysis.
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3.3.1 Ideal case with 𝑆 →∞ and Δ𝑥𝑗 →0
In this section, using the approach introduced in [24], we approximate the dynamics of
the system as 𝑆 → ∞ and Δ𝑥𝑗 → 0. A closed-loop description of the considered control
system can be obtained by substituting (3.26),(3.16) into (3.15)

(𝑠2 +𝜔2𝑟 )𝐻𝑟 (𝑠) −𝑘𝑆𝑘𝐴𝜗2
𝑆
∑
𝑗=1

𝑁
∑
𝑘=1

Δ𝜙′𝑘,𝑗Δ𝜙′𝑟 ,𝑗𝐶𝑗(𝑠)𝐻𝑘(𝑠) = 𝑄𝑤,𝑟 (𝑠) +𝑄𝑓 ,𝑟 (𝑠) (3.27)

The system of equations described by (3.27) cannot be readily solved for a simple analyt-
ical expression for the modal weightings 𝐻𝑟 (𝑠) due to the coupling from the presence of
transducers.

For each transducer pair, the gain of the controller is related to the steady-state value
of the transfer function between the charge and voltage in the pair, as described in (3.26).
Using (3.2) in the physical coordinates, for infinitesimally long transducers we have

limΔ𝑥𝑗→0𝑞1,𝑗 = 𝑘𝑆𝜗Δ𝑤′𝑗 = 𝑘𝑆𝜗
Δ𝑤′𝑗
Δ𝑥𝑗

Δ𝑥𝑗 = 𝑘𝑆𝜗
𝑑2𝑤
𝑑𝑥2 (𝑥𝑗)Δ𝑥𝑗 . (3.28)

The influence of the voltage 𝑣2,𝑗 applied to the 𝑗th actuator can be represented by a pair of
moments𝑀𝑗 = −𝑘𝐴𝜗𝑣2,𝑗 acting at the actuator’s extremities [10]. The relationship between
the voltage 𝑣2,𝑗 applied to the 𝑗th transducer and the local curvature of the beam is then

𝑑2𝑤
𝑑𝑥2 (𝑥𝑗) =

−1
𝐸𝐼 𝑀 = 𝑘𝐴

𝜗
𝐸𝐼 𝑣2,𝑗 . (3.29)

Combining the two formulas we get

limΔ𝑥𝑗→0𝑞1.𝑗 = 𝑘𝑆𝑘𝐴
𝜗2
𝐸𝐼 Δ𝑥𝑗𝑣2,𝑗 , (3.30)

limΔ𝑥𝑗→0𝐺𝑄/𝑉 ,𝑗(0) = 𝑘𝑆𝑘𝐴
𝜗2
𝐸𝐼 Δ𝑥𝑗 . (3.31)

By combining (3.27) with (3.26) and (3.31) we have

𝐻𝑟 (𝑠)(𝑠2 +𝜔2𝑟 )−𝑘𝑆𝑘𝐴𝜗2
𝑆
∑
𝑗

𝑁
∑
𝑘
Δ𝜙′𝑘,𝑗Δ𝜙′𝑟 ,𝑗

𝐸𝐼
𝑘𝑆𝑘𝐴𝜗2

1
Δ𝑥𝑗

𝐶(𝑠)𝐻𝑟 (𝑠) = 𝑄𝑤,𝑟 (𝑠) +𝑄𝑓 ,𝑟 (𝑠)

(3.32)

𝐻𝑟 (𝑠)(𝑠2 +𝜔2𝑟 )−𝐶(𝑠)
𝑁
∑
𝑘

𝑆
∑
𝑗
𝐸𝐼

Δ𝜙′𝑘,𝑗
Δ𝑥𝑗

Δ𝜙′𝑟 ,𝑗
Δ𝑥𝑗

Δ𝑥𝑗𝐻𝑟 (𝑠) = 𝑄𝑤,𝑟 (𝑠) +𝑄𝑓 ,𝑟 (𝑠) (3.33)

In the limit as Δ𝑥𝑗 →0, 𝑆 →∞

lim𝑆→∞ limΔ𝑥𝑗→0

𝑆
∑
𝑗
𝐸𝐼

Δ𝜙′𝑘,𝑗
Δ𝑥𝑗

Δ𝜙′𝑟 ,𝑗
Δ𝑥𝑗

Δ𝑥𝑗 = ∫
𝐿

0
𝐸𝐼 𝑑

2𝜙𝑘
𝑑𝑥2

𝑑2𝜙𝑟
𝑑𝑥2 𝑑𝑥 = 𝜔2𝑟 𝛿𝑘𝑟 . (3.34)
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Although this simplification is only exact in the limiting case, it can serve as a good ap-
proximation for a finite number of electrodes, as has been shown in [24] for piezoelectric
structures with shunts. Equation (3.33) then becomes

𝐻𝑟 (𝑠)(𝑠2 +𝜔2𝑟 )−𝐶(𝑠)𝜔2𝑟𝐻𝑟 (𝑠) = 𝑄𝑤,𝑟 (𝑠) +𝑄𝑓 ,𝑟 (𝑠). (3.35)

The transfer function

𝐻𝑟 (𝑠)
𝑄𝑤,𝑟 (𝑠)

= 𝐻𝑟 (𝑠)
𝑄𝑓 ,𝑟 (𝑠)

= 1
𝑠2 +𝜔2𝑟 (1−𝐶(𝑠))

(3.36)

can be used to predict the bandgap location for certain excitations, for example, see [24],
where the vibrations of the beam are excited by one of the piezoelectric patch transducers.
It can be interpreted as generalized compliance, where the presence of the piezoelectric
transducers and control systems leads to a frequency-dependent dynamic modal stiffness
1+𝐶(𝑠).

When the goal of the bandgap is to prevent the excitation of a system by base vibra-
tions, the relationship between ̈𝑦 and 𝑤̈𝑏 has to be considered. Taking into account (3.17),
(3.18) and (3.21) we get

𝑇(𝑠) = ̈𝑦(𝑠)
𝑤̈𝑏(𝑠)

= 1−
𝑁
∑
𝑟

𝑠2
𝑠2 +𝜔2𝑟 (1−𝐶(𝑠))

𝜙𝑟 (𝑥𝐿)∫
𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥

=
𝑁
∑
𝑟
𝜙𝑟 (𝑥𝐿)∫

𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 (

𝜔2𝑟 (1−𝐶(𝑠))
𝑠2 +𝜔2𝑟 (1−𝐶(𝑠))

) .
(3.37)

The results presented in (3.36) and (3.37) represent the influence of controller dynamics
on bandgap generation and are valid for arbitrary controllers designed as described in
(3.26). Note, that the generalized compliance (3.36) can be rewritten as

𝐻𝑟 (𝑠)
𝑄𝑓 ,𝑟 (𝑠)

= 1
𝑠2 +𝜔2𝑟

1
1− 1

𝑠2+𝜔2𝑟
𝜔2𝑟𝐶(𝑠)

, (3.38)

which is equivalent to a feedback interconnection of the dynamics of the structure in
the absence of the controller and the term related to the controller −𝜔2𝑟𝐶(𝑠). Using this,
suitable controllers for generating bandgap in considered systems can be found by using
the loop-shaping approach demonstrated in [26]. The same relationships could be used to
find optimal controllers for such an application.

3.3.2 Bandgap generation with PPF
This section shows the feasibility of creating a bandgap with a PPF controller using rela-
tions (3.36) and (3.37). For (3.25) we obtain

𝐻𝑟 (𝑠)
𝑄𝑓 ,𝑟 (𝑠)

= 𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1
(𝑠2 +𝜔2𝑟 )(𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1)−𝑘𝑐𝜔2𝑟

, (3.39)
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which is characterized by an anti-resonance at frequency 𝜔𝑐 and leads to bandgap bound-
aries

𝜔𝑐 √1−𝑘𝑐 < 𝜔 < 𝜔𝑐 . (3.40)

As in the classical active-damping case, the use of PPF leads to softening of the structure
which can be seen by taking the steady-state value of (3.39) 𝜔−2𝑟 (1−𝑘𝑐)−1. When the PPF
controller (3.25) is used directly in (3.37) we obtain

𝑇(𝑠) =
𝑁
∑
𝑟
𝜙𝑟 (𝑥𝐿)∫

𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 (

𝜔2𝑟 (𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1−𝑘𝑐)
(𝑠2 +𝜔2𝑟 )(𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1)−𝑘𝑐𝜔2𝑟

), (3.41)

which, in the absence of damping, is characterized by an anti-resonance at 𝜔𝑐 √1−𝑘. The
poles of the transfer functions remain within the limits described in (3.40), so the bandgap
will appear at the same range of frequencies. The relationship (3.40) suggests that with
the gain 𝑘𝑐 = 1 it is possible to create a marginally stable structure with a bandgap region
spanning from the static regime to arbitrarily high frequency 𝜔𝑐 . However, due to time
delays and parasitic dynamics present in any physical control system, the useable values
of 𝑘𝑐 and 𝜔𝑐 are limited for stability reasons.

The antiresonance in the transmissibility of a metastructure with a PPF controller not
overlapping with the corner frequency of the controller 𝜔𝑐 may be inconvenient in many
applications. For this reason, we propose a modified description for the controller

𝐶(𝑠) = 𝑘𝑐
𝑠2/𝜔2𝑐 +2𝑠𝜁𝑐/𝜔𝑐 +1+𝑘𝑐

, (3.42)

which results in
𝐻𝑟 (𝑠)
𝑄𝑓 ,𝑟 (𝑠)

= 𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1+𝑘𝑐
(𝑠2 +𝜔2𝑟 )(𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1)+𝑘𝑐𝑠2

, (3.43)

𝑇(𝑠) =
𝑁
∑
𝑟
𝜙𝑟 (𝑥𝐿)∫

𝐿

0
𝑚𝜙𝑟 (𝑥)𝑑𝑥 (

𝜔2𝑟 (𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1)
((𝑠2 +𝜔2𝑟 )(𝑠2/𝜔2𝑐 +2𝜁𝑐𝑠/𝜔𝑐 +1)+𝑘𝑐𝑠2)

) . (3.44)

In this case, the bandgap boundaries are

𝜔𝑐 < 𝜔 < 𝜔𝑐 √1+𝑘𝑐 , (3.45)

and an antiresonance at frequency 𝜔𝑐 appears in the transmissibility transfer function.
The control system with (3.42) should be stable for any 𝑘𝑐 > 0 in the absence of parasitic
dynamics and time delays.

3.3.3 Finite number of transducers and validation of the bandgap
size

In this subsection, we show that the infinite-transducer approximation and the resulting
bandgap region predictions are accurate, for a sufficient number of uniformly distributed
transducer pairs. All the controllers corresponding to the transducer pairs are tuned with
the same parameters, as described in Subsection 3.2.2. Consider a uniform cantilever beam
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of length 𝐿 with 𝑆 evenly spaced transducer pairs, such that 𝑥𝐿𝑗 = (𝑗 −1)𝐿/𝑆,𝑥𝑅𝑗 = 𝑗𝐿/𝑆. The
numerical studies presented here focus on the beam excited by the base motion. The
systems response and the resonance frequencies can be obtained using the description in
the modal domain (3.15),(3.16),(3.17) and common dynamical system techniques. Sets of
plots showing the resonant frequencies and the transmissibility from base excitation to
the tip acceleration for the cantilever beam are shown in Fig. 3.3 and Fig. 3.4.

Figure 3.3 shows the influence of the gain 𝑘𝑐 on the width of the bandgap. The sub-
sequent plots were generated using controllers with different values of 𝑘𝑐 and the same
remaining parameters. The bandgap region is indicated in the transmissibility plot by a re-
duction of magnitude over a range of frequencies. The solid lines in the plots highlight the
resonant frequencies𝜔𝑆 ,𝜔𝑆+1, which according to [23] indicate the effective bandgap span.
As 𝑆 increases, the bandgap region converges to the theoretical prediction in (3.40). For
increasing values of 𝑘𝑐 the width of the badgap region increases in line with the prediction.
What is interesting, for a structure with 4 transducer pairs, a wider region of transmissi-
bility reduction can be seen, despite the presence of some resonance peaks within it.

Figure 3.4 shows the influence of the corner frequency 𝜔𝑐 on the behaviour of the sys-
tem. The subsequent plots were generated using controllers with different values of𝜔𝑐 and
the same remaining parameters. The number of transducer pairs required for the limits of
the bandgap region to converge to the theoretical prediction increases with the increasing
𝜔𝑐 . This may be related to the spatial resolution of the transducer array necessary for the
shapes of the higher-frequency modeshapes.

In the studied cases of the active piezoelectric metastructure with a PPF controller, if
the gain 𝑘𝑐 is sufficiently high, the highest effective bandgap width achieved is the same
as the theoretically predicted value (3.40). This is a different behaviour than in the case
of metastructures with shunted piezoelectric transducers in [27] and metastructures with
mechanical resonators in [23]. This may depend on the dynamics of the control element
used and may require further investigation. Moreover, in some cases (for example Fig.
3.3b with 𝑆 = 4) the transmissibility of the structure is lowered in a range of frequencies
despite the presence of resonance peaks in the same range.



Bandgap in active metastructures

3

47

(a) 𝑘𝑐 = 0.1

(b) 𝑘𝑐 = 0.5

(c) 𝑘𝑐 = 0.9

Figure 3.3: Transmissiblity and resonances of a finite length piezoelectric metastructure versus the
number of unit cells 𝑆. Subfigures present the results for PPF controllers tuned target frequency 𝜔𝑐 =
50𝜔1 with different controller gains 𝑘𝑐 .Small circles indicate resonant frequencies of the full system,
and the heatmap shows transmissibility on a log scale. Dashed lines show the expected bandgap
edge frequencies for sufficiently large numbers of transducers. Solid lines track two resonances of
the full system, 𝜔𝑆 and 𝜔𝑆+1.
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(a) 𝜔𝑡 = 5𝜔1

(b) 𝜔𝑡 = 50𝜔1

(c) 𝜔𝑡 = 300𝜔1

Figure 3.4: Transmissiblity and resonances of a finite length piezoelectric metastructure versus the
number of unit cells 𝑆. Subfigures present the results for PPF controllers tuned with different target
frequencies 𝜔𝑐 and the same controller gain 𝑘𝑐 = 0.5. Small circles indicate resonant frequencies
of the full system, and the heatmap shows transmissibility on a log scale. Dashed lines show the
expected bandgap edge frequencies for sufficiently large numbers of transducers. Solid lines track
two resonances of the full system, 𝜔𝑆 and 𝜔𝑆+1.
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3.4 Experimental structurewith sparsely placed transducer
pairs

This section demonstrates that the proposed feedback method can be used in practice for
bandgap creation in structures with sensor and actuator configuration. The results pre-
sented here should not be seen as a validation of the approximation presented in Section
3.3. Instead, we intend to compare the bandgap crated in realistic conditions and the
bandgap edge frequencies expected in an ideal metastructure. Covering the entire struc-
ture with multiple small transducer pairs, which is required for the theoretical predictions
to hold, may be impractical in many cases. The use of a high number of transducer pairs
leads to a need for a high number of amplifiers for actuators and sensor signal condition-
ing. This drives the cost of a setup up and would discourage the use of bandgap in many
practical applications.

The idea that periodicity is a requirement for wave attenuation and bandgap forma-
tion was demystified in [28], with an example of a finite beam with shunted piezoelectric
transducers. Here, we show a similar result in a system in the feedback configuration.
What is more, we show that, in some cases, such an arrangement may produce much
wider bandgaps than the commonly used periodic arrangements. For transparency, we
conduct the analysis in parallel on an experimental setup and its numerical model pro-
posed in Section 3.2. Despite the discrepancies, the model is sufficient to provide insights
into system behaviour. The studied experimental setup is presented in Subsection 3.4.1.
The open-loop characteristics are presented in Subsection 3.4.2. The obtained bandgaps
are shown in Subsection 3.4.3.

(a) Experimental setup

accelerometer 

shaker

attachment

piezoelectric transducer pairs 

410mm

10mm

accelerometer 

97mm

166mm

293mm

(b) Drawing of the experimental setup with dimensions

Figure 3.5: Illustration of the experimental setup. The main substrate of the structure is a slender
aluminum alloy beam with thickness ℎ𝑠 = 2 mm and dimensions presented in 3.5b. 𝜌𝑠 = 2700 kg/m3
and 𝑐𝑠 = 69 GPa assumed for simulations. Collocated piezoelectric patch transducers PI P-876.A15
DuraAct are used as both sensors and actuators.
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Figure 3.6: Open-loop magnitudes of the frequency response of the considered system, obtained
from simulations (red) and experiments (blue). Only signals of two piezoelectric transducer pairs
are presented for visibility.

3.4.1 Experimental setup
The studied structure is presented in Fig. 3.5, with the dimension of the setup in Fig. 3.5b.
Themain substrate of the structure is a slender aluminum alloy beam, with 𝜌𝑠 = 2700 kg/m3
and 𝑐𝑠 = 69 GPa assumed for simulations. The base of the beam is clamped to vibration
exciter Brüel & Kjær type 4809 powred with amplifier Brüel & Kjær type 2706. The vi-
brations of the tip and the base of the structure are measured by a pair of accelerometers
Brüel & Kjær 4508 B. Their signals are used to calculate the transmissibility of the system
and determine the performance. Collocated piezoelectric patch transducers PI P-876.A15
DuraAct are used as both sensors and actuators. Four pairs of piezoelectric patch transduc-
ers are used to create bandgap in the structure. In-house-made charge amplifiers, based
on TL074 operational amplifiers and designed as described in [29] with 𝐶𝑓 = 200nF and
𝑅𝑓 = 2MΩ are used to condition the signals of the sensors. The transfer function between
the charge of the sensor and the amplifier voltage output is

𝑉0
𝑄 = −𝑅𝑓 𝑠

(𝑅𝑓𝐶𝑓 𝑠 + 1)(𝑅𝑖(𝐶𝑝 +𝐶𝑐)𝑠 + 1)
. (3.46)
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The two poles of the transfer function are 𝜔1 = 1/𝑅𝑓𝐶𝑓 and 𝜔2 = 1/𝑅𝑖(𝐶𝑐 + 𝐶𝑝) and the
gain of the flat frequency band is 1/𝐶𝑓 . Four Dual-Channel 300V Amplifiers BD300 drive
each of the actuators. The controllers are implemented digitally in the NI cRIO-9039 FPGA
with the sampling frequency 10kHz and the same system is used to monitor and record the
performance signals. Module NI9215 is used to measure the sensor signals from charge
amplifiers, module NI9234 is used for acceleration measurements and module NI9264 is
used to generate excitation signals for the shaker and piezoelectric actuators.

The numerical model of the systems is created in the modal-domain based on (3.15),
(3.16), (3.17) and common dynamical system techniques. The influence of the charge am-
plifiers for sensors and the high-voltage amplifiers for the actuators are modelled as static
gains.

3.4.2 Open-loop results
The open-loop responses of the system (in the absence of control) have been measured by
sending a frequency sweep signal to each of the input channels of the system separately.
The open-loop frequency responses between the base and tip accelerations and signals of
two pairs of sensors and actuators are compared with the model results in Fig. 3.6. Only
3 out of 5 input-output pairs are presented for clarity. The general characteristics of the
system are well captured in the model. The differences in gain in the cross-coupling terms
between the transmissibility and piezoelectric channels do not have a large influence on
the accuracy of performance predictions, as will be demonstrated later. The diminish-
ing magnitude of the experimental transmissibility, more clearly visible in Fig. 3.8, is
caused by the influence of the mass of the accelerometer placed at the tip of the beam. Fre-
quency responses between the voltage and charge of the collocated sensors and actuators
are presented in Fig. 3.7. Here, the differences between the experimental setup and the
model are clearly visible. While the model predicts that the low-frequency gains of the fre-
quency responses should be the same, they differ in the experimental results. This could
be caused by the manufacturing tolerances of the transducers, variations in the glueing of
the transducers, soldering connections and alignment of the transducers. The influence of
the charge amplifiers, not captured in the model, can be clearly seen in the experimental
phase plot, where at low frequencies the phase exceeds the 0∘ asymptote. The influence of
the time delay can be seen in the phase lag appearing at high frequencies. Despite these
parasitic effects, in the studied frequency range between 5Hz and 1000Hz, the dynamics
of the systems can be considered NI.

3.4.3 Closed-loop results
In finite structures, the modal behaviour significantly influences the created bandgap. To
showcase this, we consider bandgaps targeting different frequency ranges. Influencing
the structure’s behaviour is relatively easy close to resonance peaks since the high gain
of the response of the structure leads to increased loop gain |𝐺𝑄𝑗 /𝑉𝑗 (𝑠)𝐶𝑗(𝑠)|. This case
is well-researched in the active damping literature, where the objective of the controller
is to reduce the magnitude of the resonance peaks of the structure. A bandgap targeting
frequencies between resonance peaks may benefit structures excited by narrow-band dis-
turbances. In such a case, the system’s behaviour primarily depends on the controller’s
gain since the structure’s response does not help with increasing the loop gain. While
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Figure 3.7: Frequency responses between the voltage and charge of the collocated sensors and
actuators of the considered system. Each line corresponds to a different transducer pair.

some related results in the active vibration control literature are available [30], this topic
is significantly less studied than the active damping case. Exploring this, is a contribution
of this work.

Figure 3.8 demonstrates themodelled and experimentallymeasured closed-loop bandgaps
created using feedback control. The gains of the controllers were determined individually
for each of the feedback loops according to (3.26), based on the corresponding modelled or
measured transfer functions. The modified PPF controllers (3.42) were used to assure that
the antiresonances in the transmissibility align with the target frequency 𝜔𝑐 . Bandgaps
in different frequency ranges were created by assigning corresponding 𝜔𝑐 to all the con-
trollers. The remaining tuning parameters were fixed at values 𝑘𝑐 = 0.5 and 𝜁𝑐 = 0.05. These
values were selected since they lead to stable closed-loop dynamics for a wide range of tar-
get bandgap frequencies, and possibly better results could be achieved by tuning them in-
dividually for each transducer pair and targeted frequency range. This however, is beyond
the scope of this paper and should be the subject of future work. The transmissibilities
with bandgaps at different frequencies have been plotted in different colours. Vertical
lines in the same colours present the expected bandgap region boundaries, based on the
infinite number of transducers assumption (3.45).

In all the considered cases, it was possible to create a bandgap region in the vicinity of
the target frequency. The width of the bandgap strongly depends on the targetted range
of frequencies. While bandgaps are narrower than boundaries expected in the ideal condi-
tions in the lower frequency region, significantly wider bandgaps are obtained at higher
frequencies. This effect may be related to the non-periodic arrangement of transducers on
the structure and the large spacing between the transducers. Especially at higher frequen-
cies, the obtained bandgap is related to the locations and the number of transducers. This
effect is worth exploring to optimise the structure’s design for bandgap generation.

Although the system’s overall behaviour is well captured in the model, significant
depth differences can be seen between the bandgaps obtained in the model and measured
in the experiment. This highlights the importance of developing design methods based
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Figure 3.8: Transmissibility of the smart structures with sparsely placed transducers pairs, obtained
from simulations and experiments. Different colour lines present the results with controllers tuned
for different target frequencies and the same gain 𝑘𝑐 = 0.5. Vertical dashed lines indicate the ex-
pected bandgap edge frequencies for a fully-covered metastructure with a sufficiently high number
of transducer pairs.
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on the experimentally obtained, non-parametric models of the system, like frequency re-
sponses.

The differences in the lower frequency region (see bandgaps near 10Hz and 20Hz) can
be attributed to the influence of the charge amplifier dynamics. The phase lead, clearly
visible in Fig. 3.7b cancels the influence of the damping of the controller 𝜁𝑐 at specific fre-
quencies, leading to stronger attenuation. Using this effect for the benefit of the designer
is also worth further studies. At higher frequencies (bandgaps near 80Hz, 160Hz, 320Hz)
the measured bandgaps are shallower than expected based on the model. We speculate
that this is caused by the presence of noise in the system. If a deep bandgap is successfully
implemented, the magnitude of the system response in the bandgap range is significantly
reduced. This leads to a low signal-to-noise ratio. Moreover, in any closed-loop control
system noise, originating for example from the electronics used in the system, is fed back
to the actuators creating additional disturbance force.

The experimental results could be improved by reducing the noise levels in the system
and using better-suited identification techniques. We expect that the noise can be elimi-
nated to a large extent by improving the electronic implementation of the control system.
Such improvements should include both low-noise power electronics for driving the ac-
tuators and more advanced circuits for sensor signal conditioning. To better identify the
transmissibility of the system, attention should be paid to the selection of the excitation
signal. The use of periodic signals gives access to a detailed nonparametric noise analy-
sis and the identification could be further improved with local parametric methods (for
example, see [31]).

3.5 Conclusions
Bandgaps - regions of reduced vibration transmissibility in elastic structures, are an oppor-
tunity for vibration control originating from the research on elastic metamaterials. In the
case of slender structures, the use of piezoelectric patch transducers appears to be a well-
suited solution. While the use of resonant shunts to create bandgaps is a well-researched
topic, few results on obtaining bandgaps using feedback systems with piezoelectric sen-
sors and actuators have been published so far.

We investigated this approach for creating bandgaps in finite beams. A simplified
model of the system was developed and used for simulations. Using the assumption of an
infinite number of transducers applied on the beam, we developed a method to estimate
the influence of a feedback loop on a structure with piezoelectric sensors and actuators in
closed form, which is valid for arbitrary feedback loop dynamics. The approximation’s va-
lidity and the influence of a finite number of transducers on the bandgap generation were
studied numerically. Additionally, we considered beams with a low number of sparsely
placed transducer pairs and demonstrated that in such structures, bandgaps can be created
using the proposed feedback approach, in some cases wider than in ideal metastructures.

The proposed approach for the design of feedback controllers for bandgap generation
was validated experimentally, where clear bandgap regions at the target frequencies rang-
ing between 10 and 320 Hz were measured. Possible improvements to these results can be
achieved by modifying the electronic implementation of feedback systems to reduce noise
levels and by applying more advanced identification techniques.
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The presented approach can be extended to multiple PPF controllers in parallel to si-
multaneously create several bandgap regions. By correctly selecting the resonance fre-
quencies and gains, merging the bandgap regions for attenuation in a wider frequency
range should also be possible. The same stability condition, based on the negative imagi-
nary systems theory, could be used.
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4
Relationship of Bandgap
Formation with Unit Cell

Number and Modal Behaviour

In the previous chapter, we developed a simplified model for active metastructures based
on the assumption that the structure consists of infinitely many transducer pairs. This
enabled relating the bandgap generation problem to loop-shaping techniques studied in
Chapter 2. Here, the conditions necessary for the model to accurately describe the be-
haviour of the systems are studied in more detail. Specifically, we show that the neces-
sary number of transducer pairs is related to the dominant mode in the targeted frequency
range.

This chapter is based on a conference paper:
M.B. Kaczmarek, V. Gupta, S.H. HosseinNia, Active Piezoelectric Metastructures: Relationship of Bandgap For-
mation with Unit Cell Number and Modal Behaviour, ASME International Mechanical Engineering Congress &
Exposition (IMECE), 2024
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Active Piezoelectric Metastructures:
Relationship of Bandgap Formation with
Unit Cell Number and Modal Behaviour

Abstract Elastic piezoelectric metastructures with actively implemented res-
onators offer an opportunity for novel vibration attenuation solutions, thanks
to the possibility of creating bandgaps at low frequencies, their tuneability and
compactness. We focus on metastructures with sensors and actuators, where
the resonators are implemented using feedback control techniques, an alterna-
tive to commonly used shunt circuits. For bandgap creation in finite structures,
unit-cell-based dispersion analysis is unsuitable since it lacks information on
modal behaviour. As an alternative, a modal analysis approach can be used to
calculate the frequency range of a locally resonant bandgap in closed form us-
ing the assumption of an infinite number of transducers of infinitesimal length
distributed along the structure. The predictions obtained using this approach
are accurate if a sufficiently high number of transducers is used, and the num-
ber required increases with the increasing target frequency. Despite the recent
developments in the field, it remains to be seen what the sufficient number is
in a specific situation. In this paper, we show that for low-frequency bandgaps
in cantilevers, the minimal number of transducers is equal to the number of
the dominant vibration mode at the targeted range of frequencies. Increasing
the number of transducers above this value increases the vibration attenua-
tion in the bandgap region but does not result in its widening. The result is
demonstrated using numerical analysis.

4.1 Introduction
In the context of elastic metamaterials, a bandgap denotes a specific frequency range
wherein the structure effectively mitigates the propagation of vibrations. Creating the
bandgaps within structures gives engineers a powerful tool for customizing dynamic re-
sponses, opening up new possibilities for vibration isolation solutions. However, this pa-
per is not about metamaterials, as we focus on creating bandgaps in finite metastructures.
In such a case, most existing modelling approaches for metamaterials focused on band
structure dispersion analysis for waves propagating in an infinite media comprising a per-
fectly periodic lattice arrangement are unsuitable. By neglecting the effects of boundary
conditions, these models are only valid for high-frequency applications and are not useful
for analysing systems operating at low frequencies.

This problem has been addressed in [1, 2] for finite metastructures with mechanical
resonators and in [3, 4] for electromechanical metastructures with piezoelectric transduc-
ers and resonators implemented by shunt circuits. The authors developed a theory for
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finite metastructures under transverse vibrations and exact analytical results for bandgap
estimation using modal analysis. Applying the assumption of an infinite number of res-
onators (or transducers) placed on the structure, the bandgap edge frequencies can be
calculated in the closed form. In [5] (Chapter 3) this approach has been applied to piezo-
electric metastructures with transducers divided into sensors and actuators, where the
bandgaps are generated using feedback control and analogue results have been obtained.

The results presented in the aforementioned papers clearly show that the approxima-
tions obtained using the assumption of an infinite number of resonators are accurate if
a structure is divided into a sufficient number of unit cells. However, it remains unclear
what exactly the sufficient number is in a specific situation.

As the modal behaviour determines the dynamics of a finite structure, it is logical to
expect the required number of transducers to be related to the vibration modes. In a flexi-
ble structure, the vibrations at a specific frequency will be predominantly determined by a
single mode. This link can be used to determine optimal locations for tuned mass dampers
targeting specific resonance peaks [6]. Similarly, the optimal placement for piezoelectric
patch transducers for active damping applications is also determined using the knowledge
of the modeshapes of the structure [7].

In this paper, we study this problem for piezoelectric metastructures in sensor/actu-
ator configuration. Such configuration offers an attractive alternative to shunt circuits
[8] commonly used for bandgap generation [3, 4, 9]. The control elements can be seen
as generalized stiffness, which makes it easy to relate to passive mechanical solutions.
Frequency domain tuning techniques based on experimental data can be used to design
the controller. This removes the burden of meticulous modelling of minute details of the
structure to capture the dynamics vital to designing the feedback loop. Moreover, adap-
tive systems, self-sensing and other advanced control architectures can be adopted from
the active control results.

For a cantilever excited by base vibration, we show that the minimal number of trans-
ducers required for generating low-frequency bandgaps with width well approximated
by the edge frequencies obtained for the ideal case is equal to the number of the mode
dominant at the bandgap frequency. The analysis is based on the model derived in [10]
(Chapter 3). In section 4.2, we present the analysis supporting our findings. The discussion
in section 4.3 presents the findings in a wider context. The paper is concluded in section
4.4.

4.2 Minimal number of transducers
It is clear from the literature [1–5] that the bandgap edge frequency predictions obtained
using the infinite number of transducer assumption like (3.40) are accurate if a sufficiently
high number of transducers is used. However, it remains to be seen what the sufficient
number is in a specific situation.

Vibration modes determine the dynamics of finite elastic structures. To see their in-
fluence on the bandgap formation, we consider bandgaps obtained with controller (3.25)
with

𝜔𝑐 = 𝜔𝑐,𝑛 = (𝜔𝑛−1 +𝜔𝑛)/2, (4.1)
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Figure 4.1: Transmissibility of a metastructure fully covered in piezoelectric material, divided into
𝑆 = 2 sensor/actuator pairs. Different colour lines present the results with controllers tuned for dif-
ferent target frequencies 𝜔𝑐,𝑛 and the same gain 𝑘𝑐 = 0.25. Vertical dashed lines indicate the expected
bandgap edge frequencies obtained using the assumption of an infinite number of transducers.
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(a) Lower edge frequency 𝜔𝐿
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(b) Higher edge frequency 𝜔𝐻

Figure 4.2: Bandgap edge frequencies as a function of the number of transducer pairs on the beam
𝑆 for bandgaps targeting frequency regions dominated by subsequent vibration modes 𝑛.

where 𝜔𝑛 > 𝜔𝑛−1 denote the system’s resonance frequencies in ascending order. In such
a configuration, the mode corresponding to 𝜔𝑛 dominates the structure dynamics at the
bandgap range of frequencies.

Figure 4.1 shows the transmissibility of cantilever piezoelectric bimorph beam divided
into 𝑆 = 2 transducer pairs. Four caseswith controllers tuned to different target frequencies
𝜔𝑐,𝑛 are presented. The bandgap placed below the 1st resonance peak is bounded only by
the resonance peaks below the targeted region. The bandgap placed between the 1st and
2nd modes is clearly visible, with the resonance peaks defining its borders close to the
expected values from (3.40). The bandgaps placed at higher frequencies are significantly
narrower than expected and the characteristic pattern of resonance and anti-resonances
is not developed.

To better illustrate the relationship between the modal behaviour of the structure and
bandgap generation, we track the bandgap edge frequencies in metastructures divided to
different number transducer pairs. If the number of transducer pairs 𝑆 is sufficiently high,
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Figure 4.3: The ratio of the lower bandgap edge frequency 𝜔𝐿 for a metastructure with 𝑆 transducer
pairs and the predicted edge frequency at ideal conditions for bandgaps targeting frequency regions
dominated by subsequent vibration modes 𝑛. The dashed line highlights the direct relationship
between the convergence of 𝜔𝐿 to the ideal value and the number of transducers 𝑆 equal to the
number of the targeted mode.
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Figure 4.4: The discrepancy between the lower bandgap edge frequency 𝜔𝐿 and the edge frequency
expected at ideal conditions for structures with the number of transducers 𝑆 equal to the number
of the dominant vibration modes in the targeted range of frequencies. The differences increase as
higher frequency modes are targeted and higher controller gains, leading to wider bandgaps, are
used.
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the bandgap lower and higher edge frequencies are indicated by

𝜔𝐿 = 𝜔𝑆 , 𝜔𝐻 = 𝜔𝑆+1,
respectively, where 𝜔𝑆 ,𝜔𝑆+1 denote consecutive resonance frequencies of the closed-loop
system (with implemented resonator dynamics). Figure 4.2 tracks the edge frequencies
for the bandgaps targeting the first 10 resonance modes in structures with an increasing
number of transducer pairs. The edge frequencies asymptotically approach ideal values,
with the rate of approach dependent on the targeted mode. Note that for the bandgap
placed below the 1st resonance peak 𝑛 = 1, only the lower edge frequency is visible, as the
higher one overlaps with the resonance of the structure 𝜔𝐻 = 𝜔1 and is beyond the visible
area of the plot. The edge frequencies 𝜔𝐿,𝜔𝐻 behave in the same way as 𝑆 is increasing.
For this reason, in the remainder of the paper we consider only the 𝜔𝐿.

The direct relationship between the targeted mode, number of transducers and the
width of the created bandgap is clearly visible in Fig. 4.3, where the ratio of the actual 𝜔𝐿
and the edge frequency obtained using the infinite number of transducers assumption is
plotted against the number of transducers 𝑆 and the targeted mode. It can be seen that
bandgaps with edge frequencies close to the ideal values are obtained for all the targeted
modes 𝜔𝑛 when the number of transducers is equal to the number of the targeted mode
𝑆 = 𝑛.
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Figure 4.5: Transmissibility of a metastructure divided into different number 𝑆 of sensor/actuator
pairs, with all the controllers tuned to the same target frequency 𝜔𝑐,𝑛 and gain 𝑘𝑐 = 0.25. Vertical
dashed lines indicate the expected bandgap edge frequencies obtained using the assumption of an
infinite number of transducers.

The discrepancies between the ideal and actual edge frequencies for 𝑆 = 𝑛 increase
with the mode number and the controller gain are shown in Fig. 4.4. The error increases
as higher-frequencymodes are targeted and as higher controller gains are applied. Overall,
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the errors in all the considered cases remain small, which indicates that for low-frequency
bandgaps, the number of transducers equal to the number of the vibration mode dominant
at the targeted frequency range is sufficient to create a bandgap with a width close to the
ideal width obtained with the infinite number of transducers

The influence of increasing the number of sensor/actuator pairs 𝑆 beyond the number
of the targeted mode 𝑛 is illustrated in Fig. 4.5, where the 3rd mode is targetted in struc-
tures in with different 𝑆. When 𝑆 = 𝑛, the resonance peak corresponding to the higher
edge frequency 𝜔𝐻 is slightly shifted with respect to the expected values, in agreement
with the relationship show in Fig. 4.4. Increasing 𝑆 brings the edge frequencies closer to
the expected values, results in steeper drop of transmissibility magnitude in the bandgap
region and deeper bandgap overall. It however does not lead to a wider bandgap.

4.3 Discussion
While the obtained results confirm the hypothesis of this paper, several questions related
to generating bandgaps in finite metastructures, the required number of transducers and
modal behaviour remain open. The presented results are based on an simplified analytical
model of the structure. While the model has been validated experimentally in [5] (Ch. 3),
the findings should be confirmed using more sophisticated numerical tools and dedicated
experiments.

In this paper, we considered cantilever beams, fully covered with piezoelectric trans-
ducers in sensor/actuator configuration and with specific dynamics of the feedback con-
trollers. While intuitively, the paper’s findings should also apply to piezoelectric beams
with shunts and beams with mechanical resonators, it remains to be confirmed. The study
should also be repeated for beamswith different boundary conditions, plates andmore gen-
eral thin structures. Structures fully covered with transducers or mechanical resonators
are impractical in many situations. Moreover, in [5] (Ch. 3), we show that structures with
sparsely placed transducers covering only a part of the structure can produce bandgaps
significantly wider than expected at ideal conditions. A clear design strategy to obtain
such a result would benefit the practical creation of bandgaps in structures.

4.4 Conclusion
The objective of this work was to find out what the sufficient number of unit cells in a
finite metastructure is to obtain bandgaps with widths close to the predictions made with
the infinite number of transducer assumption. To this end, we focused on bandgap genera-
tion in cantilever metastructures with collocated piezoelectric sensors and actuators, and
positive position feedback (PPF) controllers. Using numerical studies, we showed that
for low-frequency bandgaps in cantilevers, the minimal required number of transducers
equals the number of the dominant vibration mode at the targeted range of frequencies.
Increasing the number of transducers above this value increases the vibration attenuation
in the bandgap region but does not result in its widening.
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5
Fractional-order control in AVC

Chapter 2 presented the loop-shaping approach for designing an AVC system. The loop
gain analysis highlighted the importance of the phase margin at the cross-over frequen-
cies. Moreover, the experimental evaluation of the vibration isolation system presented
at the end of the chapter highlighted the importance of sufficient roll-off away from the
targeted frequency, which is necessary to limit the transmission of disturbances to the sys-
tem, which requires a steep slope of the loop shape. In LTI control, an element’s magnitude
slope and phase are determined by the Bode’s relationship. This chapter seeks the opti-
mal tradeoff between these conflicting requirements by introducing the fractional-order
negative position feedback control. We show that using the proposed elements leads to
improved performance compared to LTI counterparts.

This chapter was published as:
M.B. Kaczmarek and H. HosseinNia, ”Fractional-Order Negative Position Feedback for Vibration Attenuation”,
Fractal and Fractional, vol. 7, p. 222 3 2023.

https://doi.org/10.3390/fractalfract7030222
https://doi.org/10.3390/fractalfract7030222
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Fractional-Order Negative Position
Feedback for Vibration Attenuation

Abstract In this paper, a fractional-order extension of a negative position
feedback (NPF) controller for active damping is proposed. The design of the
controller is motivated by the frequency-domain loop shaping analysis and
the controller dynamics are defined to maintain the high-pass characteristics
of an integer-order NPF. The proposed controller provides greater attenuation
of a resonance peak of a flexible plant than the integer order equivalent with
the same high-frequency gain. The stability and influence of tuning parame-
ters on the behaviour of the proposed controller are analysed. The efficiency
and feasibility of the fractional-order controller are demonstrated with an im-
plementation on an experimental setup.

5.1 Introduction
Vibration issues are becoming increasingly important when lightweight structures are
used in machinery. The reduced mass of moving components reduces the power required
to achieve high levels of acceleration, which benefits performance. Unfortunately, without
reducing overall dimensions, this can only be accomplished by using thin structures and
low-density materials. This may introduce lightly damped low-frequency resonances into
the dynamics of a structure, making it more susceptible to disturbances and causing slowly
decaying vibrations. The desire to solve this problem leads to increased interest in active
vibration control techniques.

The fixed-structure controllers are important from the industry point of view since
they are easier to implement than the optimization-based alternatives. The control struc-
tures are designed to be inherently robust and easy to tune, using general knowledge of
the dynamics of a plant. This approach is often used for collocated resonant mechanical
systems, that have the interlacing pattern of poles and zeros along the frequency axis. As
a result, in absence of time delays or parasitic dynamics, the phase of a frequency response
of a systemwith generalized force as input and generalized displacement as output always
remains between 0∘ and −180∘ [1].

Velocity feedback (VF) is a popular strategy to increase damping in structures [2].
While the principle of VF is simple and intuitive, high gain of the controller at high fre-
quencies may lead to amplification of noise and destabilize the system in presence of time
delays and parasitic dynamics. Moreover, due to sensor dynamics, low-frequency compo-
nents of velocity signals measured with commonly used sensors such as accelerometers
or geophones are unreliable. In consequence, low and high-pass filters are often incorpo-
rated into the controller. Their presence influences the performance of VF and has to be
included in the design process.
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Dynamics of VF combined with a second-order band-pass filter tuned for a single fre-
quency are equivalent to passive vibration absorbers [3]. Similar dynamics are used in
resonant controllers. In these methods, a controller is a second-order element with reso-
nance frequency tuned to the frequency of the mode to be damped [4–6]. The resonance
peak of the controller is used to increase the gain in the vicinity of the target mode. An
example is a negative position-feedback (NPF) controller, which has high-pass character-
istics. The same goal is obtained in negative derivative feedback (NDF) by using a velocity
signal and a controller with band-pass characteristics [7, 8]. For single mode systems, this
design will prevent influence on both high and low-frequency dynamics.

Another type of a resonant controller is positive position feedback (PPF) [9], which
takes a generalized displacement as an input and has low-pass characteristics. In conse-
quence, the system is robustly stable, even in the presence of time delays, but at a price of
lowering the dynamical stiffness of the system at low frequencies [5].

For all resonant controllers, damping is an important tuning parameter. In absence
of damping, the use of resonant controllers leads to peak splitting, where the resonance
peak of the mode is replaced by a zero accompanied by new resonance peaks at lower
and higher frequencies. This phenomenon is typical for coupled resonators and has been
described for tuned mass dampers already in [10]. In standard tuning procedures for reso-
nant controllers, the peaks are removed by shifting the corner frequency of the controller
with respect to the mode and increasing the damping of the controller.

In this paper, we study the behaviour of the resonant vibration control systemusing the
frequency-domain loop shaping approach and show that the creation of new resonance
peaks in the peak splitting may be prevented by using fractional-order filters. As the
main contribution, we introduce a new fractional-order NPF controller. We analyse the
dynamics of the control element in the active vibration control context and show that it
provides stronger resonance peak attenuation than the integer-order counterparts with
the same gain. The efficacy of the proposed attenuator is demonstrated experimentally.

The use of fractional order (FO) calculus has proven to be beneficial in engineering ap-
plications. Besides being used for modelling of various electrical, thermal and biomimetic
systems, as well as chaos and fractals [11–14, 14, 15], they found application in modelling
of viscoelastic materials [16, 17]. FO calculus also has the potential of improving the per-
formance of controllers [18, 19]. In the majority of available literature on FO control the
focus is on high-authority control [1], with FO PID as an example [20, 21].

Several examples of FO low-authority controllers can also be found in the literature. In
[22] a FO Integral Resonant Controller (IRC) has been developed. A commensurate order
FO PPF controller has been proposed in [23], where the additional degree of freedom has
been used to increase the roll-off of the filter at high frequencies in order to reduce the
spillover. In [24] an FO PPF with 3 additional tuning parameters has been proposed for
vibration control of structures with parameter perturbations, however, depending on the
parameters selection the controller may lose the low-pass characteristics typical for PPF.
A fractional-order integral controller for collocated smart structures was proposed in [25]
to improve the robustness of the closed-loop system to changes in the plant. In [26] a
concept of fractional-order difference feedback for active damping have has introduced.

Most of the FO controllers mentioned above are FO generalizations of a second order
filter, previously studied in [27]. While the same applies to the control element proposed
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in this paper, the contribution lies in clearly motivating the use of FO elements in active
vibration control. We focus on the filters with (pseudo)poles close to the stability margins
and their use for active damping, studied in [28, 29] and extended to non-commensurate
order systems in [30]. The topic is also related to the study of fractional-order mass-
spring-damper systems [31–33] and electronic resonators [34, 35]. The use of alternative
fractional-order generalizations, like power-law filters [36, 37],can also be justified by the
analysis conducted in this work and is an interesting direction for future research.

The design of the FO controller proposed in this paper is motivated by a frequency-
domain analysis. The loop-shaping objective for active vibration control in collocated
systems can be described as a reduction of the amplitude of the sensitivity function [5, 38].
In [38, 39] the relationship between the open-loop frequency response function and closed-
loop sensitivity functions is represented using the Sensitivity charts, similar to the Nichols
charts. In [40]manual loop shaping is used for tuning a vibration controller in an industrial
setting.

The remainder of this paper is organized as follows. Background information is pro-
vided in Section 2. In Section 3, we introduce the FO NPF controller and consider the
influence of tuning parameters. In Section 4 we demonstrate the performance of the pro-
posed controller with experiments. The conclusion of the paper is given in Section 5.

5.2 Background
In this section we present preliminary information for the paper. After introducing the
type of plants considered in this work, we provide some basic information about fractional-
order control systems. Finally, we present the objectives for active vibration control in the
loop-shaping fashion.

5.2.1 System description
Figure 5.1 presents the collocated vibration control system as a single-input single-output
feedback loop. The plant 𝐺 can be a lightly damped lumped mass system or a flexible
structure with a collocated sensor-actuator pair. The plant dynamics can be represented
as a sum of the contributions of 𝑁 eigenmodes of the system

𝐺(𝑠) =
𝑁
∑
𝑖+1

𝜙2𝑘,𝑖
𝑠2/𝜔2𝑖 +2𝜁𝑖𝑠/𝜔𝑖 +1

, (5.1)
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Figure 5.1: Control structure [4].
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where 𝜔𝑖 , 𝜁𝑖 and 𝜙𝑘,𝑖 are the eigenfrequency, damping ratio and the 𝑘th element of the
eigenvector of the 𝑖th mode. In the case of flexible continuous systems, a quasi-static
correction for the influence of high-frequency modes can be added to the model [1].

The controller is implemented in a negative feedback configuration and is represented
by a transfer function 𝐻(𝑠), as Fig. 5.1 shows. The objective of the control system is to
reduce the height of a resonance peak corresponding to a single target mode at frequency
𝜔𝑛 , without influencing other modes of the system.

The control system should also be robustly stable in presence of uncertainty of modal
parameters. An important property of the collocated system is that the poles and zeros of
𝐺(𝑠) have an interlacing pattern [1]. In consequence, phase of 𝐺(𝑠) is always between 0∘
and −180∘. This property may be used to guarantee the robust stability of active control
systems [1, 5]. Unfortunately, it does not hold for systems with time delays, what may lead
to instability if neither controller nor the plant have high-frequency roll-off characteristics
or if the plant is not sufficiently damped.

5.2.2 Fractional-order control
Fractional order calculus has been developed to generalize conventional differentiation
and integration to non-integer orders [41]. While there exists a vast number of definitions
of FO operators, we use the Caputo derivative [42, 43] defined as

𝐶𝒟𝛼𝑓 (𝑡) ≜ 1
Γ(𝑚−𝛼) ∫

𝑡

0
𝑓 (𝑚)(𝜏)

(𝑡 − 𝜏)𝛼−𝑚+1 𝑑𝜏 , (5.2)

where 𝛼 ∈ ℝ+ is the order of differentiation and 𝑚 is a positive integer 𝑚−1 < 𝛼 < 𝑚.
The Laplace transform of (5.2) is given by

ℒ [𝐶𝒟𝛼𝑓 (𝑡)] = 𝑠𝛼𝐹(𝑠) −
𝑚−1
∑
𝑘=0

𝑠𝛼−𝑘−1𝑓 (𝑘)(0). (5.3)

Note, that for zero initial condition the Laplace transform of many FO operators is 𝑠𝛼 ,
what greatly simplifies the design of FO controllers in the frequency domain.

A continuous-time FO system is given by a transfer function of the form

𝐻(𝑠) = 𝑏𝑚𝑠𝛽𝑚 +𝑏𝑚−1𝑠𝛽𝑚−1 +⋯+𝑏0𝑠𝛽0
𝑎𝑛𝑠𝛼𝑛 +𝑏𝑛−1𝑠𝛼𝑛−1 +⋯+𝑎0𝑠𝛼0

, (5.4)

with 𝑎,𝑏 ∈ ℝ. In a commensurate-order [44] system all the orders of derivation are integer
multiples of the base order 𝛼 , i.e. 𝛽𝑘 = 𝑘𝛼 with 𝑘 ∈ ℤ+, so the transfer function (5.4) is given
by

𝐻(𝑠) = ∑𝑚
𝑘=0 𝑏𝑘(𝑠𝛼 )𝑘

∑𝑛
𝑘=0 𝑎𝑘(𝑠𝛼 )𝑘

, (5.5)

and can be presented as a pseudo-rational function 𝐻(𝜆) of the variable 𝜆 = 𝑠𝛼

𝐻(𝜆) = ∑𝑚
𝑘=0 𝑏𝑘𝜆𝑘

∑𝑛
𝑘=0 𝑎𝑘𝜆𝑘

. (5.6)
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The shape of a transfer function can be described by defining its slope in certain fre-
quency regions. A transfer function has a slope of 𝑞 in certain frequency range if its
magnitude in this range is proportional to the 𝑞-th power of frequency 𝜔𝑞 . For example,
a high-pass filter 𝐹(𝑠) = 𝑠

𝑠+𝜔𝑓
has a slope of +1 at low frequencies 𝜔 << 𝜔𝑓 and slope 0 at

high frequency region 𝜔 >> 𝜔𝑓 .
Stability of a fractional-order system can be assessed by studying its transfer function

[41]. In general, the denominator of (5.4) is not a polynomial and has an infinite number of
roots. Among them, a finite number of roots belonging to the principle sheet of Riemann
surface will determine the systems stability. The fractional order system is bounded-input
bounded-output (BIBO) stable if all of the roots of the denominator that are in the principle
Reimann sheet and are not the roots of the numerator have negative real parts [45]. For a
commensurate-order system represented by (5.6), the stability condition is

|arg(𝜆𝑖)| > 𝛼 𝜋2 , (5.7)

where 𝜆𝑖 are the roots of the characteristic polynomial in 𝜆 [41]. The stability of a closed-
loop system containing a linear FO controller and a linear plant can be concluded using
the frequency-domain Nyquist criteria [46].

A common way to implement FO controller is to approximate them in appropriate
range of frequencies using finite-dimensional integer-order transfer functions. An overview
of approximation techniques can be found in [47]. In continuous time, expansion-based
and frequency-domain identification methods can be used to find the approximation. In
the later category, the approximation can be found analytically, like in the method of
Oustaloup [48], or identified directly from the desired frequency response using commer-
cial software. While direct discrete-time approximation of FO-systems exist, it is also
possible to discretise a continuous-time approximation, which yields satisfactory results
if the sampling ratio is sufficiently high.

5.2.3 Loop-shaping for active vibration control
The objectives of the control system can be formulated in the frequency domain, by defin-
ing desired shapes of closed and open-loop transfer functions. For the system presented
in Fig. 5.1, the closed-loop dynamics from the disturbance 𝑑 and noise 𝑛 inputs, to the
performance output 𝑥 and measurement 𝑦 are given by

𝑆 = 𝑦
𝑛 = 1

1+𝐺𝐻 , (5.8a)

𝑇𝑛 =
𝑥
𝑛 = −𝐺𝐻

1+𝐺𝐻 = 𝑆 −1, (5.8b)

𝑇 = 𝑥
𝑑 = 𝐺

1+𝐺𝐻 = 𝐺𝑆. (5.8c)

In this case, the sensitivity function 𝑆 acts as the vibration reduction ratio. It can also be
related to the degree of robustness of the system [5]. In order to minimize excitation of the
system dynamics by the measurement noise 𝑛, the transfer function 𝑇𝑛 should be possibly
small at all frequencies. This means, that 𝑆 ≈ 1 is required. The objective of attenuating a
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Figure 5.2: Illustration of the concept of loop-shaping. Using the knowledge of uncontrolled 𝐺
and desired dynamics 𝑇 , the necessary shapes of sensitivity 𝑆, loop gain 𝐺𝐻 and controllers can be
deduced. 𝐻1 denotes VF and 𝐻2 NPF and lead to different slopes of 𝐺𝐻 .

single vibration mode without influencing other dynamics of the system can be expressed
by comparing the desired closed and open-loop behaviour. At the frequency of the target
mode |𝑇 | << |𝐺| is required, while |𝑇 | ≈ |𝐺| should be maintained at all other frequencies.
This leads to |𝑆| << 1 and |𝑆| ≈ 1, respectively. To satisfy the conflicting requirements, the
sensitivity function 𝑆 should have a shape of a notch filter. In the vicinity of the resonance
peak, the magnitude of 𝑆 should be small to attenuate the resonance peak and at the other
frequencies |𝑆| should be equal to 1. The idea of loop-shaping is illustrated in Fig. 5.2.
The loop shaping for active damping can be presented as follow:

1. Gain requirement: The ideal loop shape of the open-loop gain 𝐺𝐻 is triangular,
which can be deduced from the equation (5.8). This means that 𝐺𝐻 should have a
positive slope for 𝜔 < 𝜔𝑛 , and a negative slope for 𝜔 > 𝜔𝑛 .

2. Phase requirement: The ideal triangular loop gain results in a region where the
gain is above 1. This is required to provide high gain and reduce sensitivity at 𝜔𝑛 .
However, it results in two crossover frequencies that can be defined as follows:

𝜔𝑐𝑖 =∶ {𝜔| 𝜔 ∈ ℝ and |𝐺(𝜔)𝐻(𝜔)| = 1}, 𝑖 = 1,2 (5.9)

To follow the ideal closed loop gain, the sensitivity at crossover frequency should
be |𝑆| ≤ 1. To this respect, the open-loop phase at crossover frequency 𝜙(𝜔𝑐𝑖 ) =∠𝐺(𝜔𝑐𝑖 )𝐻(𝜔𝑐𝑖 ) ≥ −120∘.

With such a loop shape the control system will have a strong influence on the frequency
regionswhere themagnitude of𝐺𝐻 is high andwill not change the dynamics of the system
elsewhere. It should be noted that PPF cannot satisfy the above requirements. PPF was
created with a focus on assuring stability for flexible systems with uncertain dynamics.
In consequence, the use of PPF leads to undesired amplification of the response of the
plant at low frequencies. NPF controllers presented in the last plot of Fig. 5.2 can only
satisfy the gain requirement while VF control can satisfy both requirements. However, VF
decreases the slope of the triangular open loop from ±2 to ±1 compared to NPF. To solve
this problem this next section proposes a new element using fractional order calculus.
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5.3 Fractional-order negative position feedback control
In this section we present the main contribution of the paper and introduce the FO-NPF
controller. First, the definition of the dynamics of the element is motivated with the
frequency-domain analysis. Subsequently, we consider stability and tuning of control
systems containing the proposed controller.

5.3.1 Main Concept
To motivate the use of fractional-order resonant control, we will first more closely study
the frequency-domain properties of the integer-order negative position feedback (NPF)
controller [5]

𝐻2 =
𝑘𝑓 (𝑠/𝜔𝑓 )2

(𝑠/𝜔𝑓 )2 +2𝜁𝑓 (𝑠/𝜔𝑓 ) + 1
, (5.10)

where 𝜔𝑓 and 𝜁𝑓 denote the corner frequency and damping ratio of the filter, with a single
degree of freedom plant

𝐺𝑇 = 1/𝑘
(𝑠/𝜔𝑛)2 +2𝜁 𝑠/𝜔𝑛 +1

. (5.11)

The integer controller satisfies the first requirement with a triangular loop gain 𝐺𝑇𝐻2
of ±2 slopes, which is beneficial since it limits both the low and high-frequency spillover.
The shape of the controller can be seen in Fig. 5.2. Unfortunately, the steep slopes also
have an adverse effect on the vibration attenuation performance of the system. Since the
considered systems are linear, the Bode’s magnitude-phase relationship holds [46], and
the phase of the system with ±2 slopes is equal to ±180∘, which is a violation of the second
requirement. At regions where the loop gain 𝐺𝑇𝐻2 has the phase of ±180∘ the response
of the system is amplified, which can be seen from the sensitivity transfer 𝑆 in equation
(5.8b). This limits the vibration attenuation performance of the system and leads to the
creation of new peaks in the frequency response if the magnitude of the loop gain at these
frequencies is close to 1. This behaviour can also be seen in other resonant controllers or
tuned mass dampers [10].

The phase of the loop gain in the vicinity of the resonance peak is influenced by the
damping ratio 𝜁𝑓 of the controller. Increasing 𝜁𝑓 increases the phase margin of the system,
which leads to smaller secondary resonance peaks in closed loop. It also leads to a lower
gain of the open loop 𝐺𝑇𝐻2 at the frequency of the target mode and its smaller attenua-
tion. With an integer-order controller (5.10) the secondary resonance peaks are always
attenuated by the cost of reducing the attenuation of the target mode.

In order to relax this trade-off, we propose a fractional-order resonant controller

𝐻𝛼 = 𝑘𝑓 (𝑠/𝜔𝑓 )2𝛼
(𝑠/𝜔𝑓 )2𝛼 +2𝜁𝑓 (𝑠/𝜔𝑓 )𝛼 +1

, (5.12)

where 𝑘𝑓 denotes gain, 𝜔𝑓 the corner frequency and 𝜁𝑓 the damping ratio. The element
(5.12) is a fractional-order generalization of a second-order high-pass filter [27]. The slope
of 𝐺𝑇𝐻𝛼 at lower frequencies is determined by the fractional order 𝛼 ∈ (0,1) of the con-
troller and is equal to +2𝛼 . Decreasing the steepness of the magnitude response at low
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frequencies prevents the phase in this region from approaching +180∘. At the same time,
the high resonance peak of the controller can be maintained to increase the magnitude at
the target frequency. At high frequencies, the slope is determined by the plant dynamics
and in the considered case is equal to −2. While the second requirement for loop-shaping
is satisfied only for the lower zero-crossing frequency, it is sufficient to obtain a more
desirable sensitivity 𝑆 than in the integer-order case.

Tuning of the fractional-order attenuator (5.12) requires finding four parameters: frac-
tional order 𝛼 , the gain of the controller 𝑘𝑓 , the corner frequency of the controller 𝜔𝑓 and
its damping ratio 𝜁𝑓 . Below, we present the stability conditions for the fractional-order
attenuator and analyse the influence of the tuning parameters on the shape of open and
closed-loop transfer functions.

5.3.2 Stability of the fractional-order attenuator
The stability of second-order fractional systems has been studied in [28, 29]. Here, we
present only the specific results relevant to this paper. The fractional-order attenuator
(5.12) is a commensurate-order system, so it can be represented by a pseudo-rational func-
tion 𝐻𝛼 (𝜆), with 𝜆 = 𝑠𝛼 ,

𝐻𝛼 (𝜆) =
𝑘𝑓 /𝜔2𝛼

𝑓 𝜆2
1/𝜔2𝛼

𝑓 𝜆2 +2𝜁𝑓 /𝜔𝛼
𝑓 𝜆 +1 . (5.13)

The roots of (5.13) are given by

𝜆1,2 = −𝜁𝑓𝜔𝛼
𝑓 ± 𝑗𝜔𝛼

𝑓 √1−𝜁
2𝑓 . (5.14)

The stability condition (5.7) states, that the roots of a stable fractional-order transfer func-
tion must lie outside of a closed angular sector. For 𝛼 = 1 this condition is equivalent to
the roots remaining in the left half complex plain and can only be satisfied with positive
damping coefficients. For 𝛼 ∈ (0,1), the stability region is larger, and the condition can
also be satisfied by a fractional-order attenuator with 𝜁𝑓 < 0. This leads to greater design
freedom and allows for maintaining a high resonance peak for transfer functions with or-
ders smaller than 2. In consequence, stronger attenuation of the resonance in the plant
can be achieved with a FO controller, which will be further elaborated on in the following
sections.

5.3.3 Influence of the tuning parameters on the attenuator
The definition of the FO attenuator in (5.12) has been chosen such that the influence of
the tuning parameters is similar to the integer-order case. This is contrary to the example
presented in [24], where the conversion of a filter to a FO version significantly alters its
character.

The influence of the gain of the attenuator 𝑘𝑓 and its corner frequency 𝜔𝑓 are the same
as in the integer-order case. Their change leads to modification of the magnitude and shift
of the controller along the frequency axis respectively. The fractional order 𝛼 defines the
slope of the controller in the low-frequency region. Additionally, it also influences the
behaviour of the damping parameter 𝜁𝑓 .
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The response of the attenuator (5.12) at frequencies close to 𝜔𝑓 is characterized by a
resonance peak, similar to the integer-order case. The resonance peak can be measured by
a quality factor 𝑄, determined by the maximum value of the peak, relative to the crossing
point of the low and high-frequency asymptotes in the frequency response plot [49]. By
evaluating (5.12) with the assumption that the fractional-order attenuator has the peak of
response at 𝜔 = 𝜔𝑓 we obtain

𝑄 = ((2𝜁𝑓 sin(
𝜋
2 𝛼)+ sin(𝜋𝛼))2 + (2𝜁𝑓 cos(

𝜋
2 𝛼)+ cos(𝜋𝛼)+1)2)

− 1
2 , (5.15)

which reduces to 𝑄 = 1
2𝜁𝑓

for 𝛼 = 1.
The equivalent damping for an attenuator with fractional order 𝛼 , that leads to the

same 𝑄-factor as for the integer order attenuator with 𝜁𝑓 ,𝛼=1 is given by

𝜁𝑓 ,𝛼 = 𝜁𝑓 ,𝛼=1 − cos(𝜋2 𝛼) , (5.16)

which is obtained by comparing the quality factor in (5.15) with its integer-order equiva-
lent and finding 𝜁𝑓 such that both are equal.

Figure 5.3 illustrates the influence of changing the fractional order of the attenuator. In
Fig. 5.3a, 𝜁𝑓 is kept constant. In consequence, the height of the resonance peak decreases
with decreasing order 𝛼 . In Fig. 5.3b, the values of 𝜁𝑓 are selected according to (5.16) such
that roots of (5.13) lie on the border of the stability region, i.e. satisfy |arg(𝜆𝑖)| = 𝛼 𝜋

2 . Similar
to a marginally stable integer-order mass-spring system without damping, the marginally
stable FO resonator has an infinite resonance peak. When 𝜁𝑓 is adjusted such that a high
resonance peak is maintained for all 𝛼 , the phase in the vicinity of 𝜔𝑓 may exceed the
low and high-frequency asymptotes. This may destabilize a closed-loop system, so the
stability should be checked in the design process.

Note, that all the above considerations, even in the integer case, are valid only for
lightly damped systems. For attenuators with significant damping, the point with the
maximal magnitude of the frequency response is shifted from the corner frequency 𝜔𝑓 .

5.3.4 Influence of 𝛼 on open and closed-loop response
Following the convention used for the integer-order attenuators [10], we consider first
the behaviour of marginally-stable systems. The influence of increasing damping in the
system is presented in the second step.

The phase of the loop gain 𝐺𝑇𝐻𝛼 with the fractional-order controllers does not ap-
proach ±180∘ and as a consequence, smaller new peaks are created, which was already
highlighted as a motivation to use FO controllers. This is especially visible in Fig. 5.4a,
where the sensitivity function 𝑆 is presented. When the resonance frequencies of the
attenuator and the mode to be dampened are the same 𝜔𝑓 = 𝜔𝑛 , two uneven peaks are
created in the closed-loop system (see Fig. 5.4b). Similar behaviour can be seen in tuned
mass damper [10] and equal peaks can be obtained by adjusting the 𝜔𝑓 .

For low values of attenuator damping, the decrease of the factional order 𝛼 leads to
improved resonance peak attenuation, similar to the marginally stable case presented in
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Figure 5.3: Frequency responses of a fractional-order attenuator with 𝜁𝑓 = 0 (a) and marginally
stable fractional-order attenuators (b) for different values of 𝛼 . All other parameters are constant.
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Figure 5.4: Sensitivity function 𝑆 (a) and closed-loop frequency response 𝑇 (b) for a lightly damped
plant and marginally stable fractional-order attenuators with different 𝛼 . All other parameters are
constant, 𝜔𝑓 = 𝜔𝑛 .
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Figure 5.5: Closed-loop frequency response 𝑇 for a lightly damped plant and fractional-order atten-
uators with (a) 𝜁𝑓 ,𝛼=1 = 0.2 , (b) 𝜁𝑓 ,𝛼=1 = 0.4 and different 𝛼 . Values of 𝜔𝑓 are adjusted for maximal
attenuation.

Fig. 5.4. This is demonstrated in Fig. 5.5, where the closed-loop dynamics of the system
with the fractional-order attenuators with different damping are compared. For all values
of 𝛼 , equivalent damping has been calculated using (5.16), so the responses can be com-
pared. The gain of all controllers is kept constant and the values of 𝜔𝑓 are selected such
that the value of the closed-loop H∞ norm is minimized.

When damping is increased, the effectiveness of the attenuator no longer increases
monotonically with the decrease of 𝛼 , but an optimal value for which a nearly flat response
in the vicinity of the resonance frequency of the plant is obtained can be found. In this
case the best attenuation of a resonance peak is obtained for certain values of 𝑘𝑓 ,𝜔𝑓 and
𝜁𝑓 ,𝛼=1, which is illustrated in Fig. 5.5b for 𝜁𝑓 ,𝛼=1 = 0.7.

In general, the optimal attenuation is achieved when 𝜔𝑓 ≠ 𝜔𝑛 . The shift of the corner
frequencies depends on 𝛼 and damping parameters 𝜁𝑛 , 𝜁𝑓 . If all other parameters are kept
constant, the optimal 𝜔𝑓 increases with decreasing 𝛼 , which is illustrated in Fig. 5.6.

5.3.5 Heuristic tuning guidelines
To summarize the considerations on the FO NPF controller introduced in this paper, we
provide heuristic tuning guidelines, thatmay be helpful in obtaining an initial design of the
controller. A common method of determining tuning parameters for resonant controllers
is the fixed-point theory [10]. In this method, the gain of the controller (or the mass
ratio in the case of a tuned-mass damper) is fixed as the main design parameter. In the
integer-order casewith an undamped single-mode plant, the presence of fixed points in the
frequency response independent of the damping of the controller can be used to determine
the remaining tuning parameters. However, even in the integer case, the parameters have
to be adjusted to account for the presence of damping and other modes in the system.
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lines indicate the corner frequencies 𝜔𝑓 of attenuators with corresponding 𝛼 .
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Figure 5.7: Optimal quality factor and tuning parameters for a single-mode plant with FO NPF
controller.

For systems with non-integer-order controllers, such fixed-points cannot be found.
Moreover, the presence of FO derivatives significantly complicates analytical derivations.
The tuning guidelines presented here are based on an optimisation study, in which the 𝐻∞
norm of a closed-loop response of a plant (5.11) with FO NPF (5.12) with different gains
𝑘𝑓 and orders 𝛼 was minimised, while the closed-loop stability was used as a constraint.
The results of the study are presented in Fig. 5.7. For fixed 𝑘𝑓 the height of the resonance
peak is decreasing monotonically as the 𝛼 is lowered. The changes in optimal values of
the corner frequency and damping ratio are also monotonic, which greatly simplifies the
tuning procedure.

In a design process, integer-order NPF with parameters selected as described in Ap-
pendix 5.A can be used as an initial design. The maximal gain of the controller 𝑘𝑓 that
satisfies the requirements in terms of high-frequency spillover should be selected. Subse-
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quently, the order 𝛼 can be lowered as long as the requirements in terms of low-frequency
spillover are met, which leads to a stronger attenuation of the resonance peak. The cor-
ner frequency and damping ratio should be adjusted to obtain a flat magnitude of the
frequency response in the vicinity of the targeted resonance frequency of the plant.

5.4 Experimental validation
In this section, we demonstrate that fractional-order attenuators can be implemented in
practice and that they provide stronger attenuation than comparable integer-order filters.
To focus on controller validation, a simple plant is selected. A precision flexure-based
positioning stage presented in Fig. 5.8 is used as an experimental setup. This is a planar
positioning system, in which two translations and one rotation of the platform (MC) can
be controlled. It is achieved by controlling translations of three intermediate elements
(M1-M3). Each of the intermediate elements is constrained to allow single translation by
parallel flexures, actuated by a dedicated voice-coil actuator (A1-A3) and its position is
measured with an optical encoder.

For the purpose of this experiment, only actuator 1A is used to control the position of
intermediate elementM1. The same actuator is used to provide both the disturbance signal
and the control force. This results in a SISO system, whose dynamics can are approximated
by a transfer function

𝐺(𝑠) = 7597
𝑠2 +5.914𝑠 +7138 . (5.17)

This is equivalent to a mass-spring damper system with 𝜔𝑛 = 84.49 rad/s = 13.45 Hz, 𝜁𝑓 =
3.5 × 10−2 and 𝑘 = 0.9395. The attenuators are implemented as digital controllers with a
sampling time of 0.1ms. This leads to a time delay of approximately 0.2ms in the identified
plant. The approximated and measured frequency responses of the plant are compared in
Fig. 5.9b. In the measured dynamics, two closely placed resonance peaks can be seen,
that have been approximated by a single mode in the model. Despite this discrepancy, the
controllers designed using the approximated model yield good results when implemented
in the actual setup.

To show the benefits of the proposed FO controller, the performance of two FO con-
trollers with different values of 𝛼 and an integer-order NPF controller were compared
experimentally. To guarantee fair comparison for each selected value of 𝛼 the gain of
all controllers was set to 𝑘𝑓 = 0.1 and the remaining controller parameters were chosen
with the same optimization method. The objective of the optimization problem was set
to minimize the 𝐻∞ norm of the closed-loop frequency response of the system with ap-

Table 5.1: Tuning parameters of implemented fractional-order controllers

𝐻1 𝐻2 𝐻3
𝑘𝑓 0.1 0.1 0.1
𝛼 1 0.7 0.5
𝜁𝑓 0.2116 −0.2974 −0.6016
𝜔𝑛/𝜔𝑓 0.9565 1.0690 1.1954
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Figure 5.8: Planar precision positioning stage with voice coil actuators denoted as A1, A2 and
A3 controlling the three masses (indicated as M1, M2 and M3) and constrained by leaf flexures.
The central mass (indicated by Mc) is connected to these 3 masses through leaf flexures and linear
encoders (indicated by Enc) placed under masses M1, M2 and M3 provide position feedback.

proximated plant (5.17), with the constraint that the closed-loop system must be stable.
The obtained parameters are presented in Table 5.1 and frequency responses of the con-
trollers are shown in Fig. 5.9a. The controllers with orders 𝛼 < 1 are characterized by
higher resonance peaks, which contributes to the stronger attenuation of the resonance
in the closed loop. The width of the resonance peaks of the optimally tuned FO controllers
increases with decreasing 𝛼 , which may indicate higher robustness of the control system
to parameter variation and should be studied in the future.

To enable the implementation, the FO controllers were approximated with integer-
order systems. Continuous-time state-space systems of order 8 appeared to be sufficient
to achieve a satisfactory approximation of the FO controller in frequencies between 1 and
5000 Hz. The approximations were obtained with the identification-based approach using
the desired frequency responses of the FO controllers and Matlab function ssest. All the
controllers were discretized using the bilinear (Tustin) method with a sampling time of
0.1ms and implemented on a real-time FPGA target.

The predicted and measured closed-loop dynamics of the system are shown in Fig.
5.9b. As expected, stronger attenuation of the resonance peak can be achieved with the
fractional order controllers. Themaximal magnitudes of the measured frequency response
for systems with 𝛼 = {1,0.7,0.5} are 13.81dB, 12.11dB and 10.36dB respectively. The differ-
ences between the predicted and measured responses are a result of using a simplified
model for the plant dynamics.
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Figure 5.9: Implemented controllers (a) and compassion of frequency responses (b) obtained from
experiments. Dashed (–) and solid (-) lines in (b) present the predicted and measured responses,
respectively.

5.5 Conclusion
In this paper, we introduced a new FO NPF controller for collocated control systems. The
design of the controller was motivated by the frequency-domain loop shaping analysis
and the controller dynamics have been defined to maintain the high-pass characteristics
of an integer-order NPF.The stability and tuning of the proposed controller were analysed,
andwe demonstrated that the extension of the NPF provides greater design freedom. Espe-
cially, lowering the steepness of the magnitude of the frequency response of the controller
at low frequencies leads to stronger attenuation of the resonance peak of the plant in the
closed loop. The ideal FO controllers were approximated by finite-dimensional integer-
order systems, discretised and implemented for damping in an experimental setup. De-
spite the discrepancy between the assumed dynamics of the plant used for tuning and ac-
tual dynamics, the FO controllers provided stronger attenuation than the optimal integer-
order one, while having the same high-frequency gain.
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5.A Appendix: Optimal tuning of integer-order NPF
In this appendix, we briefly present derivations of tuning formulas for controllers with
𝛼 = 1. An alternative derivation, including also robustness considerations is presented in
[5]. The procedure used for the derivation is based on the fixed-point method, introduced
by Den Hartog for tuning of tuned mass dampers [10].

In the derivations, we consider a single mode plant (5.11) and the controller (5.10). We
assume that the damping in the mechanical system has negligible influence on the tuning
parameters and can be ignored in the derivations. To make the formulas more general,
relative parameters are introduced. We have then:

𝐺𝑇 (𝜔) =
1/𝑘

(𝑗𝜔/Ω)2 +1 = 1/𝑘
−𝑔2 +1 (5.18)

𝐻2(𝜔) =
𝑘𝑓 (𝑗𝜔/𝜔𝑓 )2𝛼

(𝑗𝜔/𝜔𝑓 )2𝛼 +2𝜁𝑓 (𝑗𝜔/𝜔𝑓 )𝛼 +1

= 𝑘𝑓 (𝑗𝑔/𝑓 )2𝛼
(𝑗𝑔/𝑓 )2𝛼 +2𝜁𝑓 (𝑗𝑔/𝑓 )𝛼 +1

(5.19)

with the relative frequency 𝑔 = 𝜔/𝜔𝑛 and corner frequency shift 𝑓 = 𝜔𝑓 /𝜔𝑛 . The open-loop
gain 𝐾 = 𝑘𝑓 /𝑘 is also used in further derivations.

The closed-loop response of a single-mode system is presented in Fig. 5.10. Points
independent of the damping ratio 𝜁𝑓 , visible in 5.10c, are used to derive the tuning formu-
las. First, we find the frequencies 𝑔∗𝛼=1 of the fixed points. Next, we select 𝑓 ∗𝛼=1 such that
the magnitudes of the fixed points are the same. Finally, 𝜁 ∗𝑓 ,𝛼=1 is chosen to obtain a flat
response.
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Figure 5.10: Influence of the tuning parameters on the closed-loop frequency response of a single
mode system with FracNPF with 𝛼 = 1.



5

84 Fractional-order control in AVC

The closed-loop frequency response of the system with 𝛼 = is given by

𝑇𝛼=1 =
𝐺

1+𝐺𝐻2

= 1/𝑘(1+2𝜁𝑓 𝑔𝑗/𝑓 −𝑔2/𝑓 2)
𝑔4/𝑓 2 − (𝑓 2 +𝐾 +1)𝑔2/𝑓 2 +2𝜁𝑓 (−𝑔3/𝑓 +𝑔/𝑓 )𝑗 + 1

,
(5.20)

and the magnitude of the response is

|𝑇𝛼=1|2 =
1/𝑘2(𝑓 4 +4𝑓 2𝑔2𝜁 2𝑓 −2𝑓 2𝑔2 +𝑔4)

(𝐾𝑔2 −𝑓 2 +𝑔2 −𝑔4 +𝑓 2𝑔2)2 +4𝜁 2𝑓 𝑓 2(−𝑔3 +𝑔)2
. (5.21)

To find the frequency at which the magnitude of the response is independent of 𝜁𝑓 ,
the numerator and denominator of |𝑇𝛼=1|2 are expressed as polynomials in 𝜁 i.e.

|𝑇𝛼=1|2 = (𝑛1𝜁 2𝑓 +𝑛2)/(𝑑1𝜁 2𝑓 +𝑑2),𝑛1, 𝑛2, 𝑑1, 𝑑2 ∈ ℝ.

The magnitude of the response is independent of 𝜁𝑓 at frequencies 𝑔 where the ratios of
corresponding terms of the polynomials are equal i.e. 𝑛1/𝑑1 = 𝑛2/𝑑2. This is the case for

𝑔∗𝛼=1 =
1
2(𝐾 +2𝑓 2 +2± ((2𝑓 2 −4𝑓 +𝐾 +2)(2𝑓 2 +4𝑓 +𝐾 +2))1/2)1/2. (5.22)

The magnitude at the fixed points is independent of 𝜁𝑓 . To find this magnitude, we can
select the most convenient 𝜁𝑓 . By taking 𝜁𝑓 = ∞ we obtain

|𝑇 ∗𝛼=1|2 = ( 1/𝑘
1−𝑔∗𝛼=12

)
2
. (5.23)

By substituting 𝑔∗𝛼=1 and requiring the magnitudes of the closed-loop response at both
fixed points to be equal, we obtain

𝑓 ∗𝛼=1 = √2/2 √2−𝐾. (5.24)

The optimal value of damping should provide a flat magnitude of the closed-loop response
near the frequency of the target mode. This goal can be achieved by requiring that the
magnitude of the response at the fixed points 𝑔∗𝛼=1 and at the target frequency 𝑔 = 1 are
identical. This is the case for damping ratio

𝜁 ∗𝑓 ,𝛼=1 =
√2
4 √

𝐾(8−𝐾)
2−𝐾 . (5.25)

The quality factor of the system with 𝛼 = 1 can be estimated using the magnitude of the
response at the fixed points as

𝑄∗𝛼=1 ≈ 𝑘|𝑇 ∗𝛼=1| = √2/𝐾. (5.26)
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6
Metamaterials with

fractional-order resonators
The previous chapter considered using a fractional generalization of a second-order high-
pass filter for active vibration control. An advantage of such an element is the possibility to
create a high resonance peak with phase in the low-frequency region significantly smaller
from +180∘. In the loop-shaping context, this can be used to achieve high loop gain at the
targeted frequency with high phase margins at the cross-over frequencies, which directly
leads to sensitivity in the shape of a deep notch with minimised secondary resonance
peaks. Here, we use this element to create a bandgap in a metamaterial. The analysis
shows that it is possible to create a deep bandgap without a secondary resonance peak,
which, as we have seen in Chapter 3, is not possible in conventional metamaterials. In
contrast to Chapter 5, which focuses on frequency domain analysis, we study the system’s
behaviour using the pseudo-pole analysis. This possibility to easily analyse the dynamics
of systems with complicated dynamics is the main advantage of fractional-order system
theory.

This chapter was published as:
M.B. Kaczmarek and H. HosseinNia, ”Elastic metamaterials with fractional-order resonators”, Fractional Calculus
and Applied Analysis,pp. 1- 18, 10 2023.

https://doi.org/10.3390/fractalfract7030222
https://doi.org/10.3390/fractalfract7030222
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Elastic metamaterials with fractional-order
resonators

Abstract Elastic metamaterials incorporating locally resonating unit cells
can create bandgap regions with lower vibration transmissibility at longer
wavelengths than the lattice size and offer a promising solution for vibration
isolation and attenuation. However, when resonators are applied to a finite
host structure, not only the bandgap but also additional resonance peaks in its
close vicinity are created. Increasing the damping of the resonator, which is
a conventional approach for removing the undesired resonance peaks, results
in shallowing of the bandgap region. To alleviate this problem, we introduce
an elastic metamaterial with resonators of fractional order. We study a one-
dimensional structure with lumped elements, which allows us to isolate the
underlying phenomena from irrelevant system complexities. Through analysis
of a single unit cell, we present the working principle of the metamaterial
and the benefits it provides. We then derive the dispersion characteristics of
an infinite structure. For a finite metastructure, we demonstrate that the use
of fractional-order elements reduces undesired resonances accompanying the
bandgap, without sacrificing its depth.

6.1 Introduction
Metamaterials are structureswith properties beyond those of their constituents, often com-
posed of repeating patterns called unit cells. The term initially emerged from the study
of structures capable of manipulating waves, that could be used to create perfect lenses,
cloaking devices or superabsorbers. In this paper, we focus on mechanical metamaterials
for the manipulation of elastic waves. An overview of historical developments as well as
methods and trends in the field can be found in [1, 2]. A feature ofmetamaterials that offers
a promising solution for vibration attenuation and isolation is the creation of bandgaps,
i.e., ranges of frequencies in which vibrations cannot propagate through a structure. In
elastic metamaterials, thanks to the use of locally resonating unit cells in their structure
[3], the bandgaps can be created at much longer wavelengths than the lattice size, which
is a clear benefit when compared with phononic crystals whose operating principle is de-
scribed by Bragg scattering [4]. Within the unit cells, not only mechanical resonators
but also passive and active electronic elements can be used, which increases the design
freedom and scope of possible implementations.

When a finite resonant metastructure is considered, rather than an infinite metamate-
rial, it is important to examine the modal behavior, especially in the case of low-frequency
vibrations [5]. Application of resonators to a finite host structure results not only in the
creation of a bandgap but also introduces additional resonance peaks in the response. Dis-
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persion characteristics of a lattice with resonators are related to the modal behaviour of a
host structure [6, 7]. The introduction of the resonators leads to the splitting of resonance
peaks corresponding to each mode of the host structure, similar to the effect that can be
observed in single-mode systems with tunedmass dampers [8]. These additional peaks are
located near the bandgap region, thereby compromising the achieved vibration isolation
performance. The modes with resonances above the frequency of the bandgap contribute
to the additional peaks below the bandgap region and vice versa.

In the majority of elastic metamaterials presented in the literature, second-order res-
onators are used. This approach simplifies the analysis and design but also results in
a tradeoff between the depth of the bandgap region and the creation of unwanted reso-
nance peaks. While pole placement or optimization-based designs have been proposed
to address this issue [9, 10], these methods may not provide the necessary insight for the
rational design of metamaterials.

In this paper, we investigate the application of fractional-order (FO) resonators inmeta-
materials and demonstrate that with this approach the tradeoff between the depth of the
bandgap and creating unwanted resonance peaks can be relaxed. To facilitate the use of
the tools from control theory, unit-cell level dynamics of the metamaterial are presented
as feedback interconnection of an element representing the base structure and the res-
onator. The working principle of the studied metamaterial is demonstrated in an analysis
of a single unit cell in isolation. Subsequently, we derive the dispersion characteristics for
an infinite metamaterial structure. To confirm the benefits of the use of FO elements, we
investigate vibration transmission through a finite metastructure.

The potential of FO calculus has been demonstrated in various engineering fields. In
addition to its use in modelling of electrical, thermal, biomimetic systems, chaos and frac-
tals [11–15], FO calculus has also been employed in the modelling of viscoelastic materials
[16, 17]. Moreover, FO calculus has been found to enhance the performance of controllers,
such as FO PID [18–21], and in the field of active vibration control, FO versions of Inte-
gral Resonant Controller (IRC) [22, 23], Positive Position Feedback (PPF) [24, 25], Nega-
tive Position Feedback (NPF) [26] and difference feedback for active damping [27] have
demonstrated better performance than their integer-order counterparts. In the field of
metamaterials, FO operators have been used for the modelling of viscoelastic damping
phenomena [28–31]. In this work, FO resonators of commensurate order [32–34] as well
as power-law generalizations of second-order elements [35–38] are studied in the context
of elastic metamaterials. The theoretical framework provided by FO calculus allows for an
extension of the design freedom of a system while preserving the advantages of linearity,
making it possible to analytically determine the properties of the system.

The paper is structured as follows. In Section 6.2, we present background information
on FO systems and FO resonators specifically. We also discuss the possible physical im-
plementation of the studied elements. The main contribution of this work is presented in
Section 6.3. First, we revisit a feedback model of an integer order metamaterial. Subse-
quently, we demonstrate the working principle of the metamaterial with an analysis of
a single unit cell in isolation, as well as the derivation of the dispersion relationships of
an infinite structure. The analysis of the dynamics of a metastructure with a finite num-
ber of unit cells is also conducted. In the concluding Section of the paper, we discuss the
obtained results and possible directions for further research.
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6.2 Background
6.2.1 Fractional-order systems
Fractional-order calculus has been developed to generalize conventional differentiation
and integration to non-integer orders [35]. While there exists a vast number of definitions
of FO operators, we use the Caputo derivative [39, 40] defined as

𝐶𝒟𝛼𝑓 (𝑡) ≜ 1
Γ(𝑚−𝛼) ∫

𝑡

0
𝑓 (𝑚)(𝜏)

(𝑡 − 𝜏)𝛼−𝑚+1 𝑑𝜏 , (6.1)

where 𝛼 ∈ ℝ+ is the order of differentiation and 𝑚 is a positive integer such that 𝑚−1 <
𝛼 < 𝑚.

The Laplace transform of (6.1) is given by

ℒ [𝐶𝒟𝛼𝑓 (𝑡)] = 𝑠𝛼𝐹(𝑠) −
𝑚−1
∑
𝑘=0

𝑠𝛼−𝑘−1𝑓 (𝑘)(0). (6.2)

Note, that for zero initial condition the Laplace transform of many FO operators is 𝑠𝛼 ,
what greatly simplifies the design of FO controllers in the frequency domain.

A continuous-time FO system is given by a transfer function of the form

𝐻(𝑠) = 𝑏𝑚𝑠𝛽𝑚 +𝑏𝑚−1𝑠𝛽𝑚−1 +⋯+𝑏0𝑠𝛽0
𝑎𝑛𝑠𝛼𝑛 +𝑏𝑛−1𝑠𝛼𝑛−1 +⋯+𝑎0𝑠𝛼0

, (6.3)

with 𝑎𝑖 , 𝑏𝑖 ∈ ℝ. Changing the orders 𝛼𝑖 , 𝛽𝑖 ∈ ℝ+ in (6.3) may lead to dramatic changes in the
dynamics of a system, for example from low-pass to high-pass filter [25]. For meaningful
analysis, the character of an element should be preserved. To assure this, two variants of
FO transfer functions presented bellow will be used.

In a commensurate-order [41] system all the orders of derivation are integer multiples
of the base order 𝛼 , i.e. 𝛽𝑘 = 𝑘𝛼 with 𝑘 ∈ ℤ+, so the transfer function (6.3) is given by

𝐻(𝑠) = ∑𝑚
𝑘=0 𝑏𝑘(𝑠𝛼 )𝑘

∑𝑛
𝑘=0 𝑎𝑘(𝑠𝛼 )𝑘

, (6.4)

and can be presented as a pseudo-rational function 𝐻(𝜆) of the variable 𝜆 = 𝑠𝛼

𝐻(𝜆) = ∑𝑚
𝑘=0 𝑏𝑘𝜆𝑘

∑𝑛
𝑘=0 𝑎𝑘𝜆𝑘

. (6.5)

A power-law [35–38] fractional-order system is described by a transfer function of the
form

𝐻(𝑠) = (∑
𝑚
𝑘=0 𝑏𝑘𝑠𝑘

∑𝑛
𝑘=0 𝑎𝑘𝑠𝑘

)
𝛼
. (6.6)

The stability of a FO system can be assessed by studying its transfer function [35]. In
general, the denominator of (6.3) is not a polynomial and has an infinite number of roots.
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Among them, a finite number of roots belonging to the principle sheet of Riemann sur-
face will determine the systems stability. The fractional order system is bounded-input
bounded-output stable if all of the roots of the denominator that are in the principle
Reimann sheet and are not the roots of the numerator have negative real parts [42].

For a commensurate-order system represented by (6.5), the stability condition is

|arg(𝜆𝑖)| > 𝛼 𝜋2 , (6.7)

where 𝜆𝑖 are the roots of the characteristic polynomial in 𝜆 [35]. In the case of power-law
filters (6.6), the stability is concluded when the poles of the denominator ∑𝑛

𝑘=0 𝑎𝑘𝑠𝑘 lie in
the left half complex plain [37].

6.2.2 Fractional-order resonators
In this Section, we review the available results relevant to fractional-order generalizations
of second-order high-pass filters close to the limits of the stability, which will be used
in the remainder of this paper. FO generalization of elementary transfer functions has
been a topic of extensive study. Stability conditions, resonance conditions and character-
istic frequencies of such filters were analysed in [32–34]. These results were generalized
to systems of non-commensurate order in [43, 44]. The trajectories of marginally stable
FO systems were studied in [45]. Closely related results were obtained for mechanical
oscillators with components characterized by FO operators [46–49].

A commensurate order generalization of a second-order high pass filter is given by

𝑅𝛼 (𝑠) =
𝐾𝑅( 𝑠

𝜔𝑟
)2𝛼

( 𝑠
𝜔𝑟
)2𝛼 +2𝜁𝛼 ( 𝑠

𝜔𝑟
)𝛼 +1 , (6.8)

where 𝛼 ∈ (0,1) denotes the order of the pseudo-poles of the system. The FO resonator
(6.8) can be represented by a pseudo-rational transfer function

𝑅𝛼 (𝜆) =
𝐾𝑅/𝜔2𝛼𝑟 𝜆2

1/𝜔2𝛼𝑟 𝜆2 +2𝜁𝛼 /𝜔𝛼𝑟 𝜆 +1 , (6.9)

with 𝜆 = 𝑠𝛼 , which is characterised by conjugate pair of pseudo-poles at

𝑝𝛼 = −𝜁𝛼𝜔𝛼𝑟 ± j𝜔𝛼𝑟 √1−𝜁 2𝛼 . (6.10)

The stability condition (6.7) states, that the roots of a stable fractional-order transfer
function must lie outside of a closed angular sector. For 𝛼 = 1 this condition is equivalent
to the roots remaining in the left half complex plain and can only be satisfied with positive
damping coefficients. For 𝛼 ∈ (0,1), the stability region is larger and the transfer function
(6.8) is stable for 𝜁𝛼 > −cos(𝜋2 𝛼) [33]. This leads to greater design freedom and allows for
maintaining a high resonance peak for transfer functions with 𝛼 < 1.

Finding the frequency at which the magnitude response of (6.8) has a maximum in
general, involves solving a nonlinear equation [32, 33]. However, for a marginally stable
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(6.8) the resonance frequency always matches 𝜔𝑛 [33]. This allows us to derive simple ap-
proximations useful in the ”lightly-damped” case. The resonance peak can be measured by
a quality factor 𝑄, determined by the maximum value of the peak, relative to the crossing
point of the low and high-frequency asymptotes in the frequency response plot [50]. By
evaluating the magnitude of (6.8) with the assumption that the fractional-order attenuator
has the peak of response at 𝜔 = 𝜔𝑟 we obtain

𝑄𝛼 =
|𝑅𝛼 (𝜔𝑟 )|
|𝑅𝛼 (∞)| = ((2𝜁𝛼 sin(𝜋2 𝛼)+sin(𝜋𝛼))

2
+(2𝜁𝛼 cos(𝜋2 𝛼)+cos(𝜋𝛼)+1)

2
)
− 1
2 , (6.11)

which reduces to 𝑄 = 1
2𝜁𝛼

for 𝛼 = 1.
The equivalent damping for an attenuator with fractional order 𝛼 , that leads to the

same 𝑄-factor as for the integer order attenuator with 𝜁𝑟 is given by

𝜁𝛼 = 𝜁𝑟 − cos(𝜋2 𝛼) , (6.12)

which is obtained by comparing the quality factor in (6.11) with its integer-order equiva-
lent and finding 𝜁𝛼 such that both are equal.

The power-law fractional-order generalization of a second-order high-pass filter is

𝑅̃𝛼 (𝑠) =
𝐾𝑅( 𝑠

𝜔𝑟
)2𝛼

(( 𝑠
𝜔𝑟
)2 +2 ̃𝜁𝛼 ( 𝑠

𝜔𝑟
) + 1)

𝛼 , (6.13)

which is stable for ̃𝜁𝛼 > 0 [37]. Using the same approach as for (6.8), the quality factor and
the equivalent damping ratio are defined as

𝑄̃𝛼 = 1
(2 ̃𝜁𝛼 )𝛼

, ̃𝜁𝛼 = (2𝜁𝑟 )1/𝛼
2 . (6.14)

The frequency responses of integer and fractional-order resonators are compared in
Figure 6.1. The influence of the gain 𝐾𝑅 and natural frequency 𝜔𝑟 of the resonator are the
same as in the integer-order case. Their change leads to modification of the magnitude and
shift of the frequency response along the frequency axis respectively. At low frequencies,
the magnitude of the frequency response is proportional to 𝜔2𝛼 , which is linked to the
phase of 𝛼𝜋/2. This effect, as explained in [26], leads to a lower amplitude of introduced
resonance peaks when the element is used for vibration control. In the high-frequency re-
gion, all the elements have a constant magnitude of the frequency response and the phase
of 0. For the commensurate-order FO element (6.8), decreasing 𝛼 leads to the widening of
the resonance peak. At the same time, the phase close to the resonance frequency exceeds
the low and high-frequency asymptotes. The phase of the power-law element (6.13) does
not intersect the asymptotes, but the resonance peak narrows down as 𝛼 is decreased.
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Figure 6.1: Frequency responses of commensurate-order (solid lines) and power-law (dashed lines)
fractional-order resonators with different values of 𝛼 . The values of the damping ratio are adjusted
to maintain the same quality factor for all compared elements.

6.2.3 Physical implementation of fractional-order resonators
In active structures with sensors and actuators, the fractional-order resonators can be
implemented as controllers with appropriate transfer functions. A common way to im-
plement FO systems is to approximate them in an appropriate range of frequencies using
finite-dimensional integer-order transfer functions. An overview of approximation tech-
niques can be found in [51]. In continuous time, expansion-based and frequency-domain
identification methods can be used to find the approximation. In the latter category, the
approximation can be found analytically, like in the method of Oustaloup [52], or iden-
tified directly from the desired frequency response using commercial software. While
direct discrete-time approximations of FO systems exist, it is also possible to discretise a
continuous-time approximation, which yields satisfactory results if the sampling ratio is
sufficiently high.

Alternatively, the fractional-order resonators can be implemented by shunting the
transducers present in the structure with electronic components with FO dynamics. In
[53, 54] the direct implementation of electronic resonators was studied. To the best of
the author’s knowledge, passive mechanical resonators with FO dynamics have not been
developed yet. Similarly, emulation of an FO resonator dynamics be a higher number of
integer-order resonators remains an open question.

6.3 Fractional-order metamaterials
In this section, we present the main contribution of the paper and study the application of
fractional-order resonators in an elastic metamaterial. First, the dynamics of the system
in the integer case are revisited. Second, the working principle is presented in an analysis
of the dynamics of a single cell in isolation. Subsequently, we conduct the dispersion



6

96 Metamaterials with fractional-order resonators

analysis for an infinite structure. The section concludes with an investigation of vibration
transmission through a finite structure.

6.3.1 System model
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Figure 6.2: A chain of masses with resonators. Grey loops indicate the resonators, whose dynamics
are extended using fractional-order calculus.

Consider the granular metamaterial [55] presented in Figure 6.2. This choice of simple
lumped parameter models allows us to focus on the underlying phenomena free from the
distraction of irrelevant system complexities. Each unit cell of the metamaterial consists
of a host-structure element with mass 𝑚𝑝 connected to neighbour unit cells by stiffness
𝑘𝑝 and viscous damper 𝑐𝑝 . To the host element of each unit cell a resonator characterised
by mass 𝑚𝑟 , stiffness 𝑘𝑟 and damping 𝑐𝑟 is attached. The dynamics of 𝑛th unit cell are
described by

𝑚𝑝 ̈𝑢𝑛 = 𝑘𝑝(𝑢𝑛−1 +𝑢𝑛+1 −2𝑢𝑛) +𝑘𝑟 (𝑈𝑛 −𝑢𝑛)
+𝑐𝑝( ̇𝑢𝑛−1 + ̇𝑢𝑛+1 −2 ̇𝑢𝑛) + 𝑐𝑟 ( ̇𝑈𝑛 − ̇𝑢𝑛), (6.15a)

𝑚𝑟 ̈𝑈𝑛 = 𝑘𝑟 (𝑢𝑛 −𝑈𝑛) + 𝑐𝑟 ( ̇𝑢𝑛 − ̇𝑈𝑛), (6.15b)

where 𝑢𝑛 and 𝑈𝑛 denote the displacement of the host element and the resonator of 𝑛th
unit cell. To clearly present the band-gap region, 𝜔𝑟 << 𝜔𝑝 is selected. The damping ratio
𝜁𝑝 is small since it is determined by the host structure and 𝜁𝑟 ≈ 0 is desired to create deep
band gaps. By taking the Laplace transform of (6.15) and defining 𝜔2𝑝 = 2𝑘/𝑚, 𝜔2𝑟 = 𝑘𝑟 /𝑚𝑟 ,
𝐾𝑅 = 𝑘𝑟 /𝑘𝑝 , 𝜁𝑝 = 2𝑐𝑝/2 √2𝑘𝑝𝑚𝑝 , 𝜁𝑟 = 𝑐𝑟 /2 √𝑘𝑟𝑚𝑟 we obtain

⎛
⎜⎜
⎝
( 𝑠
𝜔𝑝

)
2
+2𝜁𝑝 (

𝑠
𝜔𝑝

)+1+ 1
2
𝐾𝑟 ( 𝑠

𝜔𝑟
)
2
(2𝜁𝑟 ( 𝑠

𝜔𝑟
)+1)

( 𝑠
𝜔𝑟
)
2
+2𝜁𝑟 ( 𝑠

𝜔𝑟
)+1

⎞
⎟⎟
⎠
𝑢𝑛(𝑠) =

1
2 (𝑢𝑛−1(𝑠) +𝑢𝑛−1(𝑠)) , (6.16)

with 𝑢𝑖(𝑠) denoting Laplace transform of the signal 𝑢𝑖 .
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The dynamics between neighbour unit cells can be represented as

𝑢𝑛 = 𝑇𝑢𝑛−1 +𝑇𝑢𝑛+1, (6.17a)

𝑇(𝑠) = 𝑢𝑛(𝑠)
𝑢𝑛−1(𝑠)

= 𝑢𝑛(𝑠)
𝑢𝑛+1(𝑠)

= 𝑃(𝑠)
1+𝑃(𝑠)𝑅(𝑠) = 𝑃(𝑠)𝑆(𝑠), (6.17b)

𝑃(𝑠) =
1
2

( 𝑠
𝜔𝑝
)
2
+2𝜁𝑝 ( 𝑠

𝜔𝑝
)+1

, (6.17c)

𝑅(𝑠) =
𝐾𝑅( 𝑠

𝜔𝑟
)2 (2𝜁𝑟 ( 𝑠

𝜔𝑟
)+1)

( 𝑠
𝜔𝑟
)
2
+2𝜁𝑟 ( 𝑠

𝜔𝑟
)+1

, (6.17d)

which can be related to the ”vibration reduction ratio” concept [56].
In the remainder of the paper, we study the effects that replacing the resonator (6.17d)

with FO counterparts (6.8) and (6.13). The transfer function (6.17d) describes the relation
between the displacement of the main body of the unit cell 𝑢𝑛 and the force applied on
it due to the presence of the resonator. For lightly damped resonators, the zero at 𝑠 =
−𝜔𝑟 /(2𝜁𝑟 ) can be neglected, so the proposed FO generalization is justified.

6.3.2 Single unit-cell analysis
To demonstrate the root cause of the tradeoff between attenuation of vibrations in the
bandgap and amplification at unwanted resonance peaks, as well as the proposed solution,
consider the 𝑛th unit cell in isolation, driven by displacement 𝑛𝑛−1 and with 𝑢𝑛+1 = 0. If a
fractional-order resonator (6.8) is used, the transmissibility (6.17b) is given by

𝑇 =
1
2 ((

𝑠
𝜔𝑟
)
2𝛼

+2𝜁𝛼 ( 𝑠
𝜔𝑟
)
𝛼
+1)

(( 𝑠
𝜔𝑟
)
2𝛼

+2𝜁𝛼 ( 𝑠
𝜔𝑟
)
𝛼
+1)(( 𝑠

𝜔𝑝
)
2
+2𝜁𝑝 ( 𝑠

𝜔𝑝
)+1)+ 1

2𝐾𝑅 ( 𝑠
𝜔𝑟
)
2𝛼 , (6.18)

with 𝛼 = 1 representing the integer-order case. The response of the unit cell is charac-
terized by a pair of pseudo-zeros at the location of the resonator poles 𝑝𝛼 (6.10), which
are related to the creation of a band gap in the metamaterial. The denominator of (6.18)
contains terms with different fractional order, which complicates the analysis. In order
to enable pseudo-pole analysis, 𝑃(𝑠) and 𝑅(𝑠) will be approximated at different frequency
ranges.

Recall that 𝜔𝑟 < 𝜔𝑝 are selected. At frequencies 𝜔 >> 𝜔𝑟 the response of the resonator
with any value of 𝛼 can be approximated by the gain 𝐾𝑅 . The transmissibility (6.18) is then
approximated as

𝑇𝜔>𝜔𝑟 ≈
1
2

( 𝑠
𝜔𝑝
)
2
+2𝜁𝑝 ( 𝑠

𝜔𝑝
)+1+ 1

2𝐾𝑅
, (6.19)
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(a) integer-order, 𝛼 = 1, 𝜁𝑝 = 0, 𝜁𝑟 ≠ 0
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(b) commensurate-order, 𝜁𝑝 = 0, 𝜁𝑟 ,𝛼=1 = 0

Figure 6.3: Locations of approximated (pseudo)poles of a single unit cell for a) 𝜔 >> 𝜔𝑟 and b)𝜔 ≈ 𝜔𝑟
or 𝜔 < 𝜔𝑟 . The absolut values of poles are scaled to enable comparison.

with poles at

𝑝𝜔>𝜔𝑟 = −𝜁𝑝𝜔𝑝 ± 𝑗𝜔𝑝 √1+𝐾𝑅/2− 𝜁 2𝑝 .
The location of the poles is illustrated in Figure 6.3a. Since 𝜁𝑝 ≈ 0 we have ∠𝑝𝜔>𝜔𝑟 ≈ 𝜋/2
and a resonance peak with high-quality factor is created. To reduce the height of this
resonance peak, the value of 𝜁𝑝 has to be increased.

In the vicinity of𝜔𝑟 and at lower frequencies, the response of 𝑃(𝑠) can be approximated
by the gain 1

2 . The transmissibility (6.18) is then approximated as

𝑇𝜔<≈𝜔𝑟 ≈
1
2 ((

𝑠
𝜔𝑟
)
2𝛼

+2𝜁𝛼 ( 𝑠
𝜔𝑟
)
𝛼
+1)

(( 𝑠
𝜔𝑟
)
2𝛼

+2𝜁𝛼 ( 𝑠
𝜔𝑟
)
𝛼
+1)+ 1

2𝐾𝑅 ( 𝑠
𝜔𝑟
)
2𝛼 , (6.20)

which is characterized by a pair of pseudo-zeros at 𝑝𝛼 (6.10) and a pair of poles at

𝑝𝜔<≈𝜔𝑟 =
1

1+𝐾𝑅/2
(−𝜁𝛼𝜔𝛼𝑟 ± j𝜔𝛼𝑟 √1+𝐾𝑅/2− 𝜁 2𝛼 ) .

From (6.12), for 𝛼 = 1 we have 𝜁𝛼 ≈ 0, so ∠𝑝𝛼|𝛼=1 ≈ ∠𝑝𝜔<≈𝜔𝑟 |𝛼=1 ≈ 𝜋/2, which means that
the low-frequency resonance with high-quality factor is created. The presence of the res-
onance peak in the response is undesired since the function of a resonant metamaterial
is to reduce vibration transmission. The height of the resonance peak can be reduced by
increasing 𝜁𝑟 , by the cost of also reducing the depth of the zero, since the damping of both
poles and zeros of the structure increases simultaneously. This illustrates a fundamental
tradeoff in elastic metamaterials.

With a fractional-order resonator with 𝛼 < 1, a damped low-frequency resonance peak
can be created without affecting the damping ratio of the zero pair, therefore relaxing
the aforementioned tradeoff. The pole locations, in this case, are presented in Figure 6.3b.
For 𝛼 < 1, the high-quality factor of the resonator is obtained with |𝜁𝛼 | > 0 and the pair
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Figure 6.4: Infuence of 𝛼 on the transmissibility of a single unit cell for resonators with
commensurate-order (solid lines) and power-law (dashed lines) definitions. The damping of all the
resonators is adjusted to maintain the same quality factor.

of the pseudo-zeros is placed close to the stability margins ∠𝑝𝛼 ≈ 𝛼𝜋/2. Simultaneously,
∠𝑝𝜔<≈𝜔𝑟 |𝛼<1 > ∠𝑝𝛼 as the poles of the transmissibility are moved deeper into the stable
region. A similar effect is expected for power-law resonators (6.13), however, the pseudo
pole analysis in not possible due to the definition of resonator’s dynamics.

The influence of commensurate-order and power-law FO resonators with different or-
ders 𝛼 on the transmissibility of a single unit cell is presented in Figure 6.4. For all the
elements, a zero in transmissibility is created at 𝜔𝑟 and the same attenuation of vibration
transmission at this frequency is obtained, as it is related to the location of (pseudo)zeros
in the complex plain. The bandwidth at which the influence of the zeros is visible increases
with decreasing 𝛼 for commensurate-order resonators. For the power-law FO resonators
decreasing 𝛼 has the opposite effect, which can be related to the width of resonance peaks
of (6.8) and (6.13). The benefit of the use of FO resonators is visible in the height of the
resonance peak below 𝜔𝑟 . As 𝛼 is decreased, the height of the resonance peak is decreased
for both types of FO resonators, but the attenuation is significantly stronger in the power-
law case. In the high-frequency region, if 𝜔𝑟 is sufficiently smaller than 𝜔𝑝 the second
resonance peak remains unaffected with all the resonators.

6.3.3 Dispersion analysis of a fractional-order resonant metamate-
rial

In this subsection, we analyse the vibration transmission in an infinite elastic metamate-
rial with fractional order resonators using the dispersion method. Following the Bloch-
Floquet theory, the spatial component of the harmonic wave solution for the 𝑛th unit cell
can be expressed as 𝑢𝑛(𝜔) = 𝑢̃ (𝜇(𝜔))𝑒𝑗𝜇𝑛 , where 𝑢̃ defines the amplitude of the wave mo-
tion and the exponential term describes the magnitude and phase changes as the wave
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(a) integer-order,
𝛼 = 1, 𝜁𝑝 = 0, 𝜁𝑟 ≠ 0

(b) commensurate-order,
𝜁𝑝 = 0, 𝜁𝑟 ,𝛼=1 = 0

(c) power-law,
𝜁𝑝 = 0, 𝜁𝑟 ,𝛼=1 = 0

Figure 6.5: Dispersion diagrams for metamaterials with (a) integer-order and (b) commensurate-
order or (c) power-law fractional-order resonators.

propagates thru the unit cells [1], with 𝜇 denoting the propagation constant. Wave prop-
agation without magnitude change corresponds to real 𝜇, while the imaginary part of 𝜇
indicates attenuation of the wave as it progresses thru the lattice. By implementing this
in (6.17), considering nontrivial solutions (𝑢̃ ≠ 0) and taking 𝑠 = j𝜔 we obtain

cos(𝜇) = 1
2𝑇 (𝜔) . (6.21)

The attenuation factors can be found by solving (6.21) in terms of the propagation constant
at given frequencies. The band gaps can be identified as ranges of frequencies in which
the propagation constant takes pure imaginary values. A physical interpretation of this
problem is related to wave propagation in a medium due to sustained sinusoidal excitation
with dissipation limited to spatial attenuation [57].

To create the baseline for the analysis, Figure 6.5a presents the dispersion diagram of
an integer-order metamaterial (i.e. with (6.8), 𝛼 = 1) with 𝜁𝑝 = 0 and different values of
𝜁𝑟 . As the value of 𝜁𝑟 increases, the maximal value of achieved attenuation factor ℑ(𝜇)
decreases, due to the lowering of the quality factor of the resonator. Simultaneously, the
range of frequencies with non-zero attenuation increases, which can be used for widening
the band-gap region [58, 59]. Moreover, the range of frequencies in which 𝜇 takes pure
imaginary values disappears. This is caused by the phase of the frequency response of
the resonator diverging significantly from the low and high-frequency asymptotes in the
vicinity of the resonance peak.

Figure 6.5b presents a dispersion diagram for metamaterial with commensurate - order
resonators and 𝜁𝑝 = 0,𝜁𝛼 = −cos(𝛼𝜋/2). Since the quality factor of the resonator does not
change with changing 𝛼 , high values of attenuation ratio ℑ(𝜇) are preserved. However,
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values for 𝛼 < 1 are slightly lower than in the integer case due to the phase at the reso-
nance lower than 90∘ [3]. Simultaneously, the width of the frequency range with ℑ(𝜇) ≠ 0
increases. Similar to the integer-order case with 𝜁𝑟 ≠ 0, the region of frequencies with pure
imaginary 𝜇 disappears.

In Figure 6.5c a dispersion diagram of metamaterial with power-law fractional-order
resonators and 𝜁𝑝 = ̃𝜁𝛼 = 0 is presented. Similar to the commensurate-order case, the high
attenuation ratio ℑ(𝜇) is preserved, with only a slight decrease in maximal magnitude,
when 𝛼 decreases. The range of frequencies with ℑ(𝜇) ≠ 0 extends towards lower values
thanks to the lower phase of the frequency response of the resonator for 𝛼 < 1, and shrinks
in the high-frequency side due to the narrowing of the resonance peak. The phase of
the resonator does not extend beyond the high-frequency asymptote, which prevents the
expansion of the band gap towards high frequencies. Simultaneously, the same leads to
the reappearance of the range of frequencies with ℜ(𝜇) = 0.

6.3.4 Fractional-order resonant metastructure
The effectiveness of the proposed fractional-order resonators for attenuation of undesired
resonance peaks in the vicinity of the bandgap region can be fully seen when a finite
metastructure is considered. In a finite chain of 𝑁 cells, the transmission of the vibrations
from the base with displacement 𝑢0 to the end of the chain can be calculated using (6.17)
and assuming 𝑢𝑁+1 = 𝑢𝑁 to represent the free boundary condition at the end of the chain.
The dynamics of the complete resonant metastructure are then represented by

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

1 −𝑇 0 ⋯ ⋯ 0
−𝑇 1 −𝑇 0 ⋮
0 ⋱ ⋱ ⋱
⋮ −𝑇 1 −𝑇 ⋮

⋱ ⋱ ⋱ 0
⋮ 0 −𝑇 1 −𝑇
0 ⋯ ⋯ 0 −𝑇 1−𝑇

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

𝑢1
⋮
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⋮
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⎤⎥⎥⎥⎥⎥⎥⎥
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=
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⎣

𝑇𝑢0
⋮

⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

, (6.22)

and transmissability of the complete metastructure is defined as 𝑇𝑇𝑂𝑇 (𝜔) = 𝑢𝑁 (𝜔)/𝑢0(𝜔).
Figures 6.6 and 6.7 compare responses of finite metastructures with 𝑁 = 10 cells with

integer and fractional-order resonators, for different values of damping in the base chain.
The lightly-damped case, presented in Figure 6.6, is showcased to clearly present the be-
haviour of the system, however, if implemented, may lead to instability of a structure
since the commensurate-order resonator is not negative imaginary and e.g. time delays
if a digital implementation of the resonator is used. When such a system is implemented,
the stability of not only unit cells in isolation, but complete metastructure should be val-
idated. The structure in Figure 6.7 has a significant dampening and would yield a stable
system even in presence of the aforementioned effects.

In Figures 6.6a and 6.7a the effect of increasing the damping in the integer-order res-
onators is presented. As 𝜁𝑟 increases, the resonance peaks created by the introduction
of the resonators are damped, but with the price of increasing the vibration transmission
within the band-gap region.

The use of commensurate-order resonators, presented in Figures 6.6b and 6.7b, reduces
the undesired resonance peaks below and above the bandgap frequencies, without signifi-
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cant shallowing of the depth of the bandgap. Moreover, the bandgap expands as the order
𝛼 is decreased. These effects are related to the dispersion diagram present in Figure 6.5b
and the widening of the regions with |ℑ(𝜇)| > 0.

In the power-law FO case, presented in Figures 6.6c and 6.7c, the additional resonance
peaks are attenuated only at lower frequencies, the bandgap region narrows down as 𝛼 is
decreased and the bandgap is not diminished significantly. All effects again correspond to
the dispersion diagram in Figure 6.5c. In many applications, however, the disadvantages
of the power-law element, when compared with the commensurate-order FO resonator,
will be however outweighed by its stability properties, thanks to the phase of the element
remaining between the low and high-frequency asymptotes. Moreover, when a bandgap
is placed below the lowest resonance frequency of a finite host structure no additional
resonance peaks above the bandgap frequencies are created [6, 7].

10 20 30 40
-100

-50

0

50

100

|T
to

t|

base

r
 = 0

r
 = 0.01

r
 = 0.05

r
 = 0.1

(a) integer-order,
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Figure 6.6: Transmissablity of a finite metastructure of 10 cells with (a) integer-order and (b)
commensurate-order or (c) power-law fractional-order resonators. The base chain of the metas-
tructure is nearly undamped.
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(a) integer-order,
𝛼 = 1, 𝜁𝑝 = 0.01, 𝜁𝑟 ≠ 0
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(b) commensurate-order,
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Figure 6.7: Transmissablity of a finite metastructure of 10 cells with (a) integer-order and (b)
commensurate-order or (c) power-law fractional-order resonators. The base chain of the metas-
tructure has significant damping.

6.4 Conclusion
Elastic metamaterials with embedded resonators provide a promising approach to vibra-
tion isolation and attenuation. However, when resonators are applied to a finite host
structure, not only the bandgap but also additional resonance peaks in its close vicinity
are created. Increasing the damping of the resonator, which is a conventional approach
for removing the undesired resonance peaks, results in shallowing of the bandgap region.
We introduced an elastic metamaterial with fractional-order resonators and demonstrated
that they can reduce the undesired resonances without significant changes to the maximal
attenuation in the bandgap region. Both commensurate-order and power-law definitions
of the fractional-order dynamics of the resonators were considered. The working princi-
ple of the proposed system was demonstrated on a single-unit cell and explained with the
analysis of (pseudo)pole locations of the element. The properties of infinite metamaterial
with FO resonators were studied using the dispersion method. Finally, we demonstrated
that the fractional-order elements provide the desired effect by showcasing the transmis-
sibility of a finite chain of unit cells. Analysis in this paper was limited to a granular
metamaterial. While it can be expected that similar effects should be observed in other
cases e.g. beams with translational resonators or piezoelectric patch actuators, detailed
study is still required. The physical implementation of the studied elements also remains
an open problem. While the FO resonators can be implemented as electronic or control
elements, passive mechanical components with such dynamics still have to be developed.
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7
Reset control for active

vibration isolation in the
presence of wide-band

disturbances
In loop-shaping for the AVC system, presented in Chapter 2, there is a trade-off between
the steep roll-off away from the target frequency and the sufficient phase margin at the
cross-over frequencies. Such a trade-off can be relaxed by augmenting an LTI feedback
loop with a nonlinear reset element, as demonstrated by multiple motion control exam-
ples. In the work presented in this chapter, we attempted to achieve the same in an active
vibration isolation system. However, multiple resonance peaks in the closed-loop and
wide-band excitations posed additional challenges for creating a well-performing reset
control system. To ensure that the resetting is beneficial, we proposed to filter the reset
triggering signals such that the reset is triggered only by a signal component in a desired
frequency band. The idea enabling this work was to use the Best Linear Approximation ap-
proach to identify the dynamics of a nonlinear controller and closed-loop system instead
of the plant. In this way, we gained insights into the behavior of reset systems in realistic
conditions, which is not achievable with the commonly used describing function-based
techniques.

This chapter is based on a conference paper:
R.A.C. van den Berg, M.B. Kaczmarek, A. Natu, S.H. HosseinNia, Reset control for active vibration isolation in
the presence of wide-band disturbances, Joint 10th IFAC Symposium on Mechatronic Systems and 14th Symposium
on Robotics, 2025
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Reset Control in the Presence of Wide-band
Disturbances

Abstract This paper explores the use of reset control in systems subjected to
wide-band disturbances. Such excitation may result in too rare or excessive
resetting, leading to deteriorated performance. Moreover, the commonly used
Describing Function (DF) approximation for the frequency-domain design of
reset systems does not represent the reset element’s behavior under such con-
ditions sufficiently, as it is defined for sinusoidal excitation. To address this,
we present a design approach based on the analysis of power spectral densities
(PSD) of the signals in the system and the use of Best Linear Approximations
(BLA) of reset elements. In the first step, the dominant components in the PSD
of the reset triggering signal are related to the frequency-domain properties of
the reset element. To benefit from the resetting, it should lead to an increase in
phase margins near the cross-over frequency. This is the case when the com-
ponents at the cross-over frequency dominate the reset triggering signal. To
ensure this, the use of a band-pass shaping filter is proposed. In the second
step, the BLA of the rest element is used to represent its response to signal with
a specific PSD in the frequency domain. This information is used to tune both
the reset element and the shaping filter to achieve the desired performance and
minimize the loss of gain at low frequencies. Closed-loop simulations show the
feasibility of the method in achieving the desired behavior of the reset element,
leading to improved resonance peak damping in the studied example.

7.1 Introduction
Reset control systems are emerging as an augmentation for linear control, making it pos-
sible to overcome the inherent limitations related to the waterbed effect and the Bode’s
gain-phase relationship [1], which has been shown in multiple studies, especially in the
field of precision motion control [2–6]. Depending on the design of the controller, im-
proved transient response [7], steady-state tracking of reference signals or disturbance
rejection [8, 9] can be achieved.

The research on reset control was initiated by Clegg, who proposed an integrator with
output resetting whenever its input crosses zero. The benefits of the reset action can be
clearly presented using the Describing Function (DF) approximation, as the reduction of
the phase lag of the integrator by 52∘. The use of reset systems was later extended, lead-
ing to more sophisticated elements like the “First-Order Reset Element” [10, 11], “Second-
Order Reset Element” [12], or resetting the state to the fraction of the current value, known
as partial resetting [13]. An element especially suited for practical adoption is “Constant-
in-Gain, Lead-in-Phase” (CgLp) [14], which, based on DF analysis, can provide phase lead
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while maintaining constant gain at a selected range of frequencies. This property can be
used to increase the phase margins of control systems, leading to performance improve-
ments.

Reset control systems can be designed using loop-shaping in the procedure analogous
to the design of commonly employed PID controllers [15], making them suitable for wide
adoption in the industry. The most popular frequency domain design methods for reset
systems are based on the sinusoidal input describing functions [15–20]. However, since
the reset systems are non-linear and the superposition principle does not apply, these
methods are not able to capture the behaviour of the system in the presence of wide fre-
quency band disturbances. Such disturbances may originate from systems surrounding
(e.g. floor vibrations), be a result of noisy signals used for control, or parasitic dynamics
in the system. Wide-band excitation may lead to too rare or excessive resetting. In both
cases, the behavior of the reset control system is different than expected based on DF, and
its benefits are not observed. This poses a challenge in the design of reset systems for
many real-life applications, making the existing reset systems unsuitable in many cases.

This chapter presents an approach to the design of reset control systems for applica-
tions with wide-band excitations. First, the PSD or a reset triggering signal is analyzed,
and the dominant frequencies are related to the reset action. The behavior of the reset
element in the presence of a signal with specific PSD is represented in the frequency do-
main using the Best Linear Approximation (BLA). To ensure that the response of the reset
element, as well as the response of a closed-loop reset system, follow the predictions from
the DF, a method to tune the shaping filters is proposed. The validity of the approach is
illustrated with simulations.

The structure of the chapter is as follows. In Section 7.2 the preliminaries of reset con-
trol and the BLA are given. Section 7.3 presents the design of a linear and reset controller
for active vibration isolation in an example introducing the problem. Analysis of the reset
triggering signal’s PSD is provided in Section 7.4. The open-loop behaviour of a FORE sub-
jected to wideband noise is studied in Section 7.5. The result of closed-loop simulations
are presented in Section 7.6. Lastly, the conclusions of this chapter are given in Section
7.7.

7.2 Preliminaries
In this section, we present the studied class of reset systems as well as their commonly
used frequency-domain approximations. Moreover, we introduce the Best Linear Approx-
imations of non-linear systems, which will be used as a new design tool for rest control
systems.

7.2.1 Reset systems
The state-space representation of the reset element is

𝑅 ∶
⎧
⎨
⎩

̇𝑥𝑟 (𝑡) = 𝐴𝑟𝑥𝑟 (𝑡) +𝐵𝑟𝑢𝑟 (𝑡), 𝜌(𝑡) ≠ 0,
𝑥𝑟 (𝑡+) = 𝐴𝜌𝑥𝑟 (𝑡), 𝜌(𝑡) = 0
𝑦𝑟 (𝑡) = 𝐶𝑟𝑥𝑟 (𝑡) +𝐷𝑟𝑢𝑟 (𝑡)

, (7.1)
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where 𝑥𝑟 ∈ ℝ𝑛𝑟 is the state of 𝑅, 𝑥𝑟 (𝑡+) = 𝑥+𝑟 = lim𝜖→0+ 𝑥(𝑡 +𝜖) is the after reset state value,
𝑢𝑟 ∈ ℝ𝑚 is the input of 𝑅, 𝑦𝑟 ∈ ℝ𝑚 is the output of 𝑅 and 𝐴𝑟 , 𝐵𝑟 , 𝐴𝜌 , 𝐶𝑟 , 𝐷𝑟 are constant
matrices of appropriate dimensions.

The base linear system (BLS) 𝑅𝑏𝑙𝑠 is an LTI system with a state-space realization

(𝐴𝑟 ,𝐵𝑟 ,𝐶𝑟 ,𝐷𝑟 ) (7.2)

and describes the dynamics of 𝑅 in the absence of reset. The reset is triggered by a signal
𝜌(𝑡). The linear reset law 𝑥+𝑟 = 𝐴𝜌𝑥𝑟 (𝑡) describes the change of state that occurs at reset
instants 𝑡𝑘 , 𝑘 = 1,2,… , that is when the reset condition 𝜌 = 0 is satisfied.

Among many methods for the stability analysis of reset systems [21–23], three are
especially well suited for practical frequency-domain design, namely, the 𝐻𝛽 condition
[13], passivity-based approach [24], and the Negative Imaginary Systems theory [25].

A specific type of reset element which is of concern in the paper is First Order Reset
Element (FORE), represented by (7.1) with

𝐴𝑟 = −𝜔𝑟 , 𝐵𝑟 = 𝜔𝑟 , 𝐶𝑟 = 1, 𝐷𝑟 = 0, 𝐴𝜌 = 𝛾 ,
where 𝜔𝑟 denotes the corner frequency of the element and 𝛾 ∈ [−1,1]. In the transfer func-

tion manipulations, the elements can be represented by
�
�
�>

𝛾
1

𝑠/𝜔𝑟+1
, where the arrow indicates

the resetting action.

7.2.2 Describing function representation
TheHigher-Order Sinusoidal InputDescribing Function (HOSIDF) [16] is a quasi-linearisation
of a non-linear element that considers its steady-state response to a sinusoidal excitation.
The non-linear element is considered as a virtual harmonic generator, and HOSIDF of 𝑛th
order is defined

𝐻𝑛(𝑗𝜔) =
𝑎𝑛(𝜔)𝑒𝑗𝜙𝑛(𝑎0,𝜔)

𝑎0
, (7.3)

where 𝑎𝑛 and 𝜙𝑛 denote the 𝑛th component of the Fourier series expansion of the steady-
state output of the element for a sinusoidal input.

The first-order HOSIDF (DF) of an open-loop reset element has been derived in [26],
and the higher-order components were presented in [27]. In [20], the HOSIDF for a closed-
loop system with a reset controller was introduced, and the calculation necessary for the
HOSIDF analysis of reset systems were implemented in the form of a user-friendly Matlab
toolbox.

7.2.3 CgLp
Constant-in-Gain, Lead-in-Phase (CgLp) [14] consists of a reset lag element in series with
a linear lead filter. In the FORE-based version

𝑅 =
�
�
��>

𝛾
1

𝑠/𝜔𝑟 +1
, 𝐷(𝑠) = 𝑠/𝜔𝑟 ,𝛼 +1

𝑠/𝜔𝑓 +1
, (7.4)
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Figure 7.1: The concept of using a combination of a reset lag and a linear lead element to form a
CgLp element [14].

where the corner frequency of the lead filters 𝜔𝑟 ,𝛼 = 𝛼𝜔𝑟 ,𝛼 ∈ ℝ is adjusted to account for
a shift in corner frequency of the lag filter due to resetting action.

The phase lead in frequency range (𝜔𝑟 ,𝜔𝑓 ) is obtained using the reduced phase lag of
the reset lag element (when the first harmonic of HOSIDF is considered) combined with a
corresponding lead element. Ideally, the gain of the reset lag element should be cancelled
out by the gain of the corresponding linear lead element, which creates a constant gain
behaviour. This concept is illustrated in Fig.7.1.

7.2.4 Best linear approximation of a non-linear system
The Best Linear Approximation (BLA) is based on the idea that a non-linear system can be
represented by a combination of an LTI model and non-linear disturbance, both of which
depend on the power spectrum of the input signal [28]. The methodology to obtain the
(BLA) is well established and used mainly for system identification. The key results have
been derived for the special Wiener systems, represented by the Volterra series. The reset
systems that are the focus of this paper have not been studied in this framework. However,
in [20], it has been proven that the considered reset systems are convergent for inputs
in the form of Bohl functions, which include the multisine signals often used for BLA
estimation. While the class of convergent systems can not be straightforwardly related
to the classes of Volterra and special Wiener systems [29], systems in these classes have
similar properties. Most importantly, for a given input signal, the convergent systems
have a unique globally asymptotically stable solution, and if the input is periodic, then
the corresponding steady-state solution is also periodic with the same period [30]. This
justifies the attempt to use the BLA of reset systems in a reset controller design procedure.

The BLA can be obtained nonparametrically by performing classical frequency re-
sponse function (FRF) measurements [28]

𝐺𝐵𝐿𝐴(𝑗𝜔𝑘) =
𝑆𝑦𝑢(𝑗𝜔𝑘)
𝑆𝑢𝑢(𝑗𝜔𝑘)

, (7.5)

where 𝑆𝑦𝑢(𝑗𝜔𝑘) is the cross-power spectrum between the output 𝑦 and the input 𝑢 of
the system, and 𝑆𝑢𝑢(𝑗𝜔𝑘) is the auto-power spectrum of the input. The BLA can also be
measured in closed-loop systems [31], including noise and disturbance signals. The appro-
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priate selection of excitation signals and signal processing techniques for BLA estimation
are key to obtaining reliable results. While the framework also allows for the quantifica-
tion and characterization of non-linear distortions, this is beyond the scope of this work.

7.3 Problem description
In this section, the problem under the study is presented. First, we introduce the plant
and objectives of the control systems. Subsequently, we present the conventional LTI con-
trol solution and its limitations as well as a reset-based alternative. Finally, we show the
challenges related to implementing reset control in systems with wideband disturbances.

7.3.1 Plant
Consider a vibration isolation system presented in Fig. 7.2, consisting of a mass to be
isolated with position 𝑥2 on a shaking base with 𝑥1. In this work, we focus on reducing
the influence of the base vibration ̈𝑥1 (with a PSD specified in [32]) on the acceleration ̈𝑥2
of the isolated mass using a feedback controller.

The dynamics of the plant are captured by the transmissibility

𝑃𝑡 (𝑠) =
̈𝑥2(𝑠)
̈𝑥1(𝑠)

= 1
𝑠2
𝜔2𝑝

+2𝜁 𝑠
𝜔𝑝

+1
, (7.6)

and compliance

𝑃𝑐(𝑠) =
̈𝑥2(𝑠)

𝐹𝑑 (𝑠)
= 𝑠2/𝑘

𝑠2
𝜔2𝑝

+2𝜁 𝑠
𝜔𝑝

+1
, (7.7)

with 𝜔𝑝 = 104Hz denoting the resonance frequency, stiffness 𝑘 = 2.39 ⋅107 N⋅m/s, damping
ratio of the plant 𝜁𝑝 = 0.0022. In the design of the feedback system a delay 𝜏 = 0.7ms should
be also included.

Since the system consists of a non-linear element, the sequence of elements in the
loop matters, and linear elements placed before and after the reset element must be distin-
guished. To reflect this, we consider a feedback controller consisting of linear elements
𝐶1(𝑠) and 𝐶2(𝑠), and the reset element 𝑅. Different fixed-structure components that con-
stitute the controller (for example, integrator, low-pass filter, or lead filter) may be placed
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Figure 7.2: Closed-loop diagram of a reset control system for AVC
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(a) (b)

Figure 7.3: (a) Open-loop with the different controllers. An optimal shape is a triangular shape
centered at the resonance frequency. Second crossover frequency 𝜔𝑐,2 is indicated with the vertical
line, for both the LTI and BLS controller. (b) Transmissibility from 𝑥1 to 𝑥2 of the system with no
AVC and with different strategies implemented, showing the improvement in disturbance rejection
performance. The Best Linear Approximation (BLA) highlights the deteriorated performance under
wideband noise conditions.

either in 𝐶1(𝑠) or 𝐶2(𝑠), leading to different behavior of the reset system. The behavior
of the system can also be influenced by placing a linear shaping filter 𝐶𝑆𝐹 (𝑠) on the reset
triggering signal 𝜌 [17]. The influence of the measurement noise 𝑛 and direct disturbance
forces 𝐹𝑑 are considered negligible in the analysis of the system.

7.3.2 LTI Controller design

To dampen the resonance peak of the plant, the Linear Time-Invariant (LTI) controller em-
ploys Direct Velocity Feedback (DVF), as it is common in practice [33]. Since acceleration
is measured as an output of the plant, the DVF has a transfer function

𝐶𝑣(𝑠) =
𝐾𝑣

𝑠 +𝜔𝑣
, (7.8)

and its parameters are presented in Tab. 7.1. Such a controller results in a triangular loop
gain 𝐶𝑣(𝑠)𝑃𝑐(𝑠) presented in Fig. 7.3a with crossover frequencies 𝜔𝑐,1 and 𝜔𝑐,2, at which
|𝐶𝑣(𝜔𝑐,2)𝑃𝑐(𝜔𝑐,2)| = 1. These crossover frequencies and corresponding phase margins are
key to the stability and performance of the system. The maximal gain of the controller 𝐾𝑣
resulting in 30° phasemargin at the second crossover frequency is selected. The achievable
gain is limited by the phase loss due to the time-delay in the system.
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Table 7.1: Parameters of the controllers, where the BLS also functions as the linear part of the reset
controller.

𝐾𝑣 𝜔𝑣 [Hz] 𝜔𝑐,2 [Hz] PM [°]
LTI 7.2 ⋅ 104 5 248 30
BLS 1 ⋅ 105 5 313 12

7.3.3 Reset Controller design
Increasing the gain of the controller while maintaining the desired phase margins would
lead to a stronger reduction of the system’s transmissibility, without sacrificing stability.
To make this possible, a CgLp element is introduced to the control structure. In this ex-
ample, the liner controller with increased gain has a phase margin at the 𝜔𝑐,2 of only 12°,
indicated with Base Linear System (BLS) in Fig. 7.3a. The CgLp element provides an ad-
ditional 18° of phase lead (analyzed with DF), resulting in the same combined value as in
the LTI system.

The desired amount of phase provided by the CgLp element can be achievedwith differ-
ent combinations of parameter values. In this first example, the element was constructed
with 𝜔𝑟 = 150 Hz, 𝜔𝑓 = 10 kHz, 𝛼 = 1.62 and 𝛾 = 0. Referring to the control structure in
Fig. 7.2, non-linear element 𝑅 is equal to the FORE part of CgLp and

𝐶1(𝑠) = 1, 𝐶𝑆𝐹 (𝑠) = 1, 𝐶2(𝑠) = 𝐶𝑣(𝑠)𝐷(𝑠),
where 𝐶2 consists of the lead part of the CgLp (7.4) and the DVF (7.8). The parameters of
the controller are presented in Tab. 7.1 under BLS.

The sequence of elements in the control loop does not influence the DF of the system
but results in different behaviour, which is indicated by higher-order HOSIDF [18, 20]. The
selection of the specific architecture and parameter values will be the subject of analysis
in the remainder of the paper.

7.3.4 Problem identification
The closed-loop transmissibility between ̈𝑥1 and ̈𝑥2 of the system is presented in Fig. 7.3b.
The DF approximation of the reset system suggests a stronger disturbance rejection than
in the LTI case without creating an excessive resonance peak close to 𝜔𝑐,2. However, when
a time simulation of the rest system is performed, the resulting BLA shows a significant
resonance peak. This suggests that the reset system is not effective. The DF-based analysis
of a reset element assumes single sinusoidal excitation and cannot capture the behavior of
a reset system excited by a signal with an arbitrary power spectrum. This is due to the fact
that the superposition principle does not apply. In the remainder of the paper, we show a
design strategy to achieve the desired performance.

7.4 PSD of the reset triggering signal in closed-loop
The sequence of reset instances for a system excited by a multi-harmonic signal is not
merely the sum of the reset instances caused by each harmonic independently. Figure 7.4
presents the Power Spectral Density (PSD) of the reset triggering signal 𝜌 in the closed-
loop simulation, alongwith the PSD of flor excitation signal used. In the case studied in the
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Figure 7.4: PSD of floor disturbance profile 𝑎1 [32] and PSD of the reset triggering signal 𝜌 in closed-
loop simulation for different widths 𝑄 of the BPF. The dotted line denotes the closed-loop resonance
frequency, 𝜔𝑡 = 343Hz.

previous section (𝑄 = 0), the reset triggering signal contains a wide range of frequencies.
It is dominated by low-frequency components with a smaller peak around the second
crossover frequency. Such a spectrum indicates a complicated reset sequence, as multiple
components with similar amplitudes and different frequencies constitute the signal.

To benefit from the properties of the CgLp element, it must provide a phase lead at a
desired frequency, in this case around 𝜔𝑐,2. To ensure this, we propose to shape the reset
triggering signal such that a single frequency is dominant. The PSD of the reset triggering
signal 𝑆𝜌(𝜔) is influenced by four factors in the control system design. If the reset element
is represented by its DF 𝑅𝐷𝐹 (𝑗𝜔), the 𝑆𝜌(𝜔) can be written in a quasi-linearised form:

𝑆𝜌(𝜔) = |𝐻𝜌𝑑 (𝑗𝜔)𝑃𝑡 (𝑗𝜔)|2𝑆𝑥1(𝜔), (7.9)

𝐻𝜌𝑑 (𝑗𝜔) =
𝐶𝑆𝐹 (𝑗𝜔)𝐶1(𝑗𝜔)

1+𝐶1(𝑗𝜔)𝑃𝑐(𝑗𝜔)𝐶2(𝑗𝜔)𝑅𝐷𝐹 (𝑗𝜔)
. (7.10)

First, the excitation spectrum 𝑆𝑥1(𝜔) is often known but generally cannot be easily
influenced. For this reason, we do not study it further. The second factor is the sequence
of the linear elements in the controller, as 𝐶1(𝑗𝜔) appears both in the numerator and de-
nominator, while 𝐶2(𝑗𝜔) can be only seen in the denominator. Exploring this relationship
may be interesting in the context of the continuous reset architecture [18]. However, for
simplicity, 𝐶1 = 1 will be used in the reminder of this work. Third, the 𝑆𝜌(𝜔) also depends
on the dynamics of the reset element, denoted with 𝑅𝐷𝐹 (𝑗𝜔). However, since the reset
element is nonlinear, this relationship is hard to capture and using it requires extensive
simulations or experiments. Fourth, the shaping filter dynamics 𝐶𝑆𝐹 (𝑠) determine 𝑆𝜌(𝑓 ).
As this factor seems the easiest to control, it will be our focus in the reminder of this paper.

To make a single frequency dominant in 𝑆𝜌(𝑓 ) we apply the band-pass shaping filter

𝐶𝑆𝐹 (𝑠) =
𝜔𝑐
𝑄 𝑠

𝑠2 + 𝜔𝑐
𝑄 𝑠 +𝜔2𝑐

, (7.11)
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with |𝐶𝑆𝐹 (𝑗𝜔𝑐 | = 1 at the center frequency 𝜔𝑐 . The width of the filter is determined by the
value of 𝑄, with a larger value resulting in a more narrow filter.

In Fig. 7.4, the effect of shaping 𝜌 with different BPF widths on 𝑆𝜌 in closed-loop is
shown. As the band-pass filter becomes more narrow, the target frequency 𝜔𝑡 becomes
more dominant in the reset triggering signal since the magnitude of the low-frequency
content becomes smaller. This should enable benefiting from reset at the desired frequency
range.

7.5 Open-loop behaviour of a FORE in the presence of
wideband disturbances

Before showing the actual BLA of a reset systemwith wideband input signals, we present a
time-domain illustration of a reset element’s behaviour in Fig. 7.5. In the figure, we study
different cases of the response of a reset element with a single sinusoidal input signal
𝑢𝑟 with frequency 𝜔𝑢𝑟 . In each case, the resets are forced by a signal 𝜌 with a different
frequency 𝜔𝜌 .

The standard case, e.g. considered in DF analysis, is presented in Fig. 7.5b. The reset
is triggered by 𝜌, which has the same frequency as the input signal 𝑢𝑟 .

Excessive resetting is illustrated in Fig. 7.5a, where the resetting frequency is much
higher than the frequency of the input signal. In such a case, the magnitudes of the FORE’s
response decrease, as there is not enough time for the response to rise to the values ob-
tained by the BLS of the element. The extent of the magnitude decreases is related to the
corner frequency of the element, 𝜔𝑟 , in a similar way as it defines the speed of the step
response for linear systems.

When the resetting frequency is much lower than the input frequency, the reset action
has a minor influence on system behaviour, as illustrated in Fig. 7.5c. In such a case, the
response of the reset element should closely match the one of its BLS, and no advantage
of the reset element will be exhibited in frequency domain.

The behavior of a reset element with an input signal with a specific PSD is captured
in the frequency domain by the BLA. In Fig. 7.6, the BLA of FORE in open-loop with and
without band-pass filters is presented. The parameters of FORE are 𝜔𝑟 = 380 Hz, 𝛼 = 1.11
and 𝛾 = 0.4. The input signal 𝑢𝑟 of FORE is obtained from a closed-loop simulation without
a shaping filter. In an open-loop simulation, the reset triggering signals pass through filters
with various widths 𝑄. In each case, the BLA is calculated between the input and the
output of the FORE. The BLA are compared to the DF of FORE with the same parameters
and without the shaping filer.

At low frequencies, the BLA for all filter widths exhibit a smaller magnitude when
compared to the DF.This behavior is related to excessive resetting, similar to the presented
case in Fig. 7.5a. The resets are triggered with a high frequency, related to the dominant
components of 𝜌 presented in Fig. 7.4. When narrower band-pass filters are used, the
components of 𝜌 near the closed-loop resonance frequency 𝜔𝑡 become more dominant,
and stronger gain loss at low frequencies can be seen in the BLA.

The BLA of the reset system matches the DF only within the frequency range close to
the frequency of the reset triggering signal. Fig. 7.6b highlights the BLA of FORE near
the closed-loop resonance frequency 𝜔𝑡 . Selecting a band-pass filter with 𝑄 = 0.5 results
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(a) 𝜔𝜌 >> 𝜔𝑢𝑟 (b) 𝜔𝜌 = 𝜔𝑢𝑟 (c) 𝜔𝜌 << 𝜔𝑢𝑟

Figure 7.5: Simplified time-domain illustration of the behaviour of a reset system, when input
frequency 𝜔𝑢𝑟 and the reset frequency 𝜔𝜌 are not necessarily the same. The input (black) is a single
sine wave. a) Resetting too fast. Depending on 𝜔𝑟 of FORE being closer to 𝜔𝜌 , the gain of the output
is closer to its input. b) Standard situation for a Clegg Integrator. Resets take place with the input
frequency. c) Clegg Integrator with slow resetting.

(a) Full view (b) Zoom-in at region of interest

Figure 7.6: BLA between 𝑦𝑟 in open-loop for different BPF widths and 𝑢𝑟 in closed-loop without
BPF, compared to DF of FORE. The closed-loop resonance frequency is indicated with the dotted
line, which is the desired frequency for matching.
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Figure 7.7: BLA of FORE in open-loop for different values of 𝛾 . The corresponding value of 𝜔𝑟 is
maximised, to reduce gain loss.

in the closest match between the BLA and the DF of the element, at the target frequency.
The rigorous explanation why this is the case should be a subject of future study.

At high frequencies, above the resonance frequency 𝜔𝑡 , the response of the reset ele-
ment is dominated by the higher harmonics of the reset frequency, which are represented
by spikes in the BLA, which are not shown in the figure for clarity. This is related to the
higher-order harmonics of the reset systems, and several strategies are available to reduce
this effect [8, 17, 18].

To minimize the low-frequency gain loss, the maximal possible value of 𝜔𝑟 should be
selected, as suggested by Fig. 7.5a. Fig. 7.7 compares the BLA of FORE with different
combinations of 𝜔𝑟 and 𝛾 , leading to the same phase lead in DF at 𝜔𝑡 . Selecting 𝛾 closer
to 0 leads to stronger resets, and the same phase lead can be achieved with a narrower
CgLp. Although the differences are small, it can be seen that with 𝛾 = 0.4, the gain loss in
the low-frequency region is minimized. Explaining why this combination of values leads
to the best results should be a subject of further study.

The results presented above indicate the tradeoff between the phase provided by CgLp
and the gain loss at lower frequencies. For given 𝛾 , CgLp designed for larger phase lead
at target frequency should be wider, requiring smaller 𝜔𝑟 . Lower 𝜔𝑟 leads to larger gain
loss, leading to deterioration of systems performance.

The CgLp for closed-loop simulations is designed with only 5° phase lead, limiting gain
loss and still providing damping of the BLS resonance peak. The corresponding corner
frequency is 𝜔𝑟 = 380 Hz. The maximal possible 𝜔𝑓 , limited by the Nyquist frequency, is
selected, such that it has minimal influence on the phase lead at 𝜔𝑡 . For the shaping filter,
a band-pass filter with 𝑄 = 0.5 is selected as it results in a close match between the BLA
and DF at the frequency of interest, as indicated in Fig. 7.6b.

7.6 Closed-loop transmissibility analysis
In Fig. 7.8, the transmissibility relationships from closed-loop simulations with different
controllers are compared with DF-based prediction. In the absence of a shaping filter
(𝑄 = 0), the BLA of the transmissibility matches closely the DF at low frequency. However,



Discussion and Conclusions

7

121

Figure 7.8: Closed-loop transmissibility for different controller designs. DF-based vs. BLA for no
BPF and BPF with 𝑄 = 0.5

the resonance peak close to 𝜔𝑡 is greater than expected, which corresponds to lesser phase
provided by the element (Fig. 7.6b).

Shaping the reset triggering signal with the tuned band-pass filter (𝑄 = 0.5) results
in stronger resonance peak reduction and a close match with the DF prediction around
the resonance peak. This is at the cost of an increase in transmissibility at low frequency
compared to the DF, due to the magnitude loss of FORE in that range of frequencies.

Both themagnitude loss and damping can bewell explained using the BLA of the FORE
from the open-loop simulation. At the same time, accurate prediction of the closed-loop
results, based on the open-loop BLA of a reset element, remains challenging. Modifying
the reset element influences the PSD of the reset triggering signal, as indicated in eq. (7.10).
Improved damping due to better design of the reset element will reduce the magnitude
of the response at the targetted frequency range, possibly increasing the influence of the
components at other frequencies on the reset sequence. Moreover, due to the nonlinearity,
the dynamics of a reset element are not fully captured by a BLA. Nevertheless, in the
presented case, using the estimations based on open-loop BLA provided valuable insight
for designing an improved system.

7.7 Discussion and Conclusions
The aim of this paper was to enable the rational design of reset control systems in the
presence of wide-band excitation. To this end, we proposed a design approach based on
the analysis of power spectral densities of the signals in the system and the use of Best
Linear Approximations of reset elements. In the presented case, the analysis of the PSD of
the reset triggering signal revealed that low-frequency components dominated it, causing
different behaviour than expected based on the DF analysis. To benefit from the reset
element, the components at the cross-over frequency should dominate the reset triggering
signal. To ensure this, a band-pass shaping filter was implemented.

Forcing the resetting at a specific frequency has an influence on other frequency ranges,
which can be represented by a BLA of a reset element. At lower frequencies, the gain of the
element decreases, which can be, to some extent, mitigated by adjusting the parameters of
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the shaping filter and the reset element. At higher frequencies, the harmonics of the reset-
ting frequency dominate the elements response. Closed-loop simulations showed that the
damping performance at the resonance frequency was consistent with the expectations
based on DF analysis. This demonstrates that by shaping the reset triggering signal, the
benefits of the reset control can be realized, even in the presence of wide-band excitation.

Significant work is still required to make the design approach proposed here well-
founded and reliable. While we show the potential of using the BLA to represent reset
systems in the frequency domain, muchmore insight can still be gained. Moreover, the use
of different control structure architectures, for example, including reset and LTI elements
in parallel, should also be explored.
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8
Negative Imaginary Reset

Control Systems
Chapter 7 investigated the use of reset controllers in AVC to relax the limitations of LTI
systems. One of the challenges in the reset control is proving the stability of a control
system based on the measured frequency response of the plant. In this chapter, to address
this challenge, the Negative Imaginary (NI) systems theory is extended to a class of reset
systems. The NI properties of LTI systems, analogous to positive real systems, can be
concluded based on the frequency response. This knowledge is sufficient to conclude the
stability of a reset control system using the theorems presented in this chapter.

This chapter was published as:
M.B. Kaczmarek and H. HosseinNia, ”Negative Imaginary Reset Control Systems”, IEEE Transactions on Auto-
matic Control,10.1109/TAC.2024.3487798,2025.
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Negative Imaginary Reset Control Systems

Abstract In this note, we present an extension of the nonlinear negative imag-
inary (NI) systems theory to reset systems. We define the reset negative imag-
inary (RNI) and reset strictly negative imaginary (RSNI) systems and provide
a state-space characterization of these systems in terms of linear matrix in-
equalities. Subsequently, we establish the conditions for the internal stability
of a positive feedback interconnection of a (strictly) negative imaginary linear
time-invariant plant and a reset (strictly) negative imaginary controller. The
applicability of the proposed method is demonstrated in a numerical example
of a reset version of a positive position feedback (PPF) controller for a plant
with resonance.

8.1 Introduction
Negative-Imaginary (NI) systems theory, introduced in [1, 2], offers a framework for stabil-
ity analysis of energy-dissipating systems that do not fit within the classical dissipativity
framework. A prominent application of this theory is found in flexible mechanical struc-
tures with collocated force actuators and position sensors. In these systems, energy is
associated with the output and its derivative, and they exhibit passivity from the input to
the derivative of the output.

For linear time-invariant (LTI) systems, the NI systems theory is well developed. The
necessary and sufficient conditions for a system to exhibit the NI and strictly NI (SNI)
properties are formulated in terms of both frequency responses and linear matrix inequal-
ities (LMI) for state-space matrices [1–4]. The class of Output Negative Imaginary (ONI)
systems, that unifies the existing subclasses of the NI systems class was introduced in [5].
The relationship between the NI properties of LTI systems and the dissipativity theory has
been studied in [6–8]. The stability conditions for a positive feedback interconnection of
a NI and strictly NI system involve only the open-loop steady-state gain of the system [1],
hence robust stability can be guaranteed for systems with uncertain dynamics and lightly-
damped resonances. Thanks to this property, the LTI NI framework found wide adoption
in the field of active vibration control of flexible structures [9].

TheNI systems theory was extended to Lipschitz continuous nonlinear systems in [10–
13], using the dissipativity theory. Two stronger notions of the NI property for nonlinear
systems were introduced, namely the weakly strictly nonlinear negative imaginary (WS-
NNI) property [11] and the nonlinear output strictly negative-imaginary (OSNI) property
[12, 13]. The conditions for the closed-loop stability of a positive feedback interconnection
of two nonlinear NI systems were derived. The notion of linear time-varying NI systems
was introduced in [14].

The existing nonlinear NI systems theory does not accommodate hybrid systems with
state jumps. Among such systems, reset systems [15–17] are being rapidly developed
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and show potential for wide adoption in the industry for control of LTI plants, which
can be explained using two arguments. Firstly, reset control systems have been shown
to overcome the inherent limitations of LTI systems, as evidenced by numerous studies,
particularly in the field of precision motion control [18–22]. Secondly, the design of reset
control systems can be conducted in the frequency domain using the describing function
approximation [23–26], following a procedure analogous to the design of commonly em-
ployed LTI controllers. This represents a significant advantage compared to other types
of nonlinear controllers.

However, the stability analysis of reset control systems often requires parametric mod-
els of both the controller and the plant [15, 27], which in practice may be hard to obtain.
Although specific frequency-domain methods exist, their applicability is limited to low-
order systems [28–30] or systems with less common reset conditions [31]. Establishing
the stability of reset control systems can be achieved through the passivity theory [32],
yet the NI systems theory would be better suited to many applications, for example, in the
field of active vibration control.

In this note, we extend the nonlinear NI systems theory to reset systems. In this way,
we address the challenges related to assessing the stability of reset control systems for LTI
plants. We achieve this with the following three contributions.

• We introduce definitions of reset NI (RNI) and reset strictly NI (RSNI) systems. This
is necessary, as the reset systems do not fit existing definitions of NI properties.

• We provide the necessary and sufficient conditions for a reset system to be RNI
(RSNI), analogue to the NI Lemma for LTI systems [3]. In consequence, it can be
easily checked if a system possesses the RNI (RSNI) properties.

• We show that a positive feedback interconnection of an SNI (NI) LTI plant with an
RNI (RSNI) reset controller is internally stable under some conditions.

The applicability of the stability result is illustrated with an example of a reset positive po-
sition feedback (PPF) [33] controller for a plant with resonance, commonly used to model
mechanical systems.

The structure of the note is as follows: Section 8.2 provides preliminary information
on LTI and nonlinear NI systems and reset control. The main contribution of the note is
presented in Section 8.3. Section 8.4 illustrates the stability results with an example. The
note is concluded in Section 8.5.
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8.2 Preliminaries
In this section, we present the studied control system, including the considered class of
reset systems. Moreover, we recall the concepts of linear and nonlinear negative imaginary
systems.

Notation
𝐴∗ Complex conjugate transpose of the complex ma-

trix 𝐴.
𝐴𝑇 Transpose of the matrix 𝐴.
𝐴 > 0 The matrix 𝐴 is positive definite.
𝐴 ≥ 0 The matrix 𝐴 is positive semidefinite.
ℜ{𝑠} Real part of the complex number 𝑠.
𝜆𝑚𝑎𝑥 (𝐴) Maximum eigenvalue of the matrix 𝐴.

8.2.1 System description
We focus on the control architecture presented in Fig. 8.1. A positive feedback intercon-
nection is used to follow the conventions of the NI systems theory. The closed-loop system
consists of a liner time-invariant (LTI) plant and a reset controller. The plant is described
by

𝐺 ∶ { ̇𝑥(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡), (8.1)

where 𝑥 ∈ ℝ𝑛 , 𝑢 ∈ ℝ𝑚 ,𝑦 ∈ ℝ𝑚 , and 𝐴, 𝐵, 𝐶 , 𝐷 are constant matrices of appropriate di-
mensions. The plant (8.1) has the 𝑚 ×𝑚 real-rational proper transfer function 𝐺(𝑠) ∶=
𝐶(𝑠𝐼 −𝐴)−1𝐵+𝐷, which is said to be strictly proper if 𝐺(∞) = 𝐷 = 0.

The state-space representation of the reset element is

𝑅 ∶
⎧
⎨
⎩

̇𝑥𝑟 (𝑡) = 𝐴𝑟𝑥𝑟 (𝑡) +𝐵𝑟𝑢𝑟 (𝑡), 𝜌(𝑡) ≠ 0,
𝑥𝑟 (𝑡+) = 𝐴𝜌𝑥𝑟 (𝑡), 𝜌(𝑡) = 0
𝑦𝑟 (𝑡) = 𝐶𝑟𝑥𝑟 (𝑡) +𝐷𝑟𝑢𝑟 (𝑡)

, (8.2)
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Figure 8.1: A positive feedback interconnection.
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where 𝑥𝑟 ∈ ℝ𝑛𝑟 is the state of 𝑅, 𝑥𝑟 (𝑡+) = 𝑥+𝑟 = lim𝜖→0+ 𝑥(𝑡 +𝜖) is the after reset state value,
𝑢𝑟 ∈ ℝ𝑚 is the input of 𝑅, 𝑦𝑟 ∈ ℝ𝑚 is the output of 𝑅 and 𝐴𝑟 , 𝐵𝑟 , 𝐴𝜌 , 𝐶𝑟 , 𝐷𝑟 are constant
matrices of appropriate dimensions.

The base linear system (BLS) 𝑅𝑏𝑙𝑠 is an LTI systemwith a state-space realization (𝐴𝑟 ,𝐵𝑟 ,𝐶𝑟 ,𝐷𝑟 )
and describes dynamics of 𝑅 in the absence of reset.

The reset is triggered by a signal 𝜌(𝑡). The linear reset law 𝑥+𝑟 = 𝐴𝜌𝑥𝑟 (𝑡) describes the
change of state that occurs at reset instants 𝑡𝑘 , 𝑘 = 1,2,… , that is when the reset condition
𝜌 = 0 is satisfied.

The closed-loop system, in the absence of external inputs 𝑑, 𝑟 and assuming that𝐷𝐷𝑟 = 0,
is given by

⎧
⎨
⎩

̇𝑥𝐶𝐿(𝑡) = 𝐴𝐶𝐿𝑥𝐶𝐿(𝑡), 𝑥𝐶𝐿(𝑡) ∉ℳ(𝑡)
𝑥𝐶𝐿(𝑡+) = 𝐴𝑅𝑥𝐶𝐿(𝑡), 𝑥𝐶𝐿(𝑡) ∈ℳ(𝑡)
𝑦𝐶𝐿(𝑡) = 𝐶𝐶𝐿𝑥𝐶𝐿(𝑡)

(8.3)

where 𝑥𝐶𝐿 = [𝑥, 𝑥𝑟]𝑇 ,the reset surfaceℳ(𝑡) defines states triggering reset and is defined

ℳ(𝑡) = {𝜉 ∈ ℝ𝑛+𝑛𝑟 ∶ 𝜌(𝑡) = 0, (𝐼 −𝐴𝑅)𝜉 ≠ 0}, (8.4)

and

𝐴𝐶𝐿 = [𝐴+𝐵𝐷𝑟𝐶 𝐵𝐶𝑟
𝐵𝑟𝐶 𝐴𝑟 +𝐵𝑟𝐷𝐶𝑟] , 𝐴𝑅 = [𝐼 0

0 𝐴𝜌
] , 𝐶𝐶𝐿 = [𝐶 𝐷𝐶𝑟] .

The ordered set of reset time instants is

𝒯 (𝑥0) ≜ {𝑡𝑖 ∈ ℝ ∶ 𝑡𝑖 < 𝑡𝑖+1; 𝑥𝐶𝐿 ∈ℳ(𝑡𝑖), 𝑖 ∈ ℕ}. (8.5)

Note that, different from most available results, the subsystems may have multiple
inputs and outputs and are not assumed to be strictly proper.

The stability of the unforced system can be concluded using the Lyapunov-like condi-
tion.

Theorem 1 ([27]). Let 𝑉 (𝑥) ∶ ℝ𝑛+𝑛𝑟 →ℝ be a continuously-differentiable, positive-definite
unbounded function such that

̇𝑉 (𝑥) ≜ [𝜕𝑉𝜕𝑥 ]𝐴𝐶𝐿𝑥𝐶𝐿 < 0,𝑥𝐶𝐿 ≠ 0, (8.6)

Δ𝑉 ≜ 𝑉 (𝐴𝑅𝑥𝐶𝐿) −𝑉 (𝑥𝐶𝐿) ≤ 0,𝑥𝐶𝐿 ∈ℳ. (8.7)

Then,

1. there is a left-continuous function 𝑥𝐶𝐿(𝑡) satisfying (8.3) for all 𝑡 ≥ 0,
2. the equilibrium point 𝑥𝐶𝐿 = 0 is globally uniformly asymptotically stable.

In practice, the existence and uniqueness of the solution of reset systems are assured
by time-regularization [34, 35]. Time-regularization is a modification of reset system, such
that reset instants happen only if a minimum time between resets Δ𝑚 > 0 has lapsed. Any
discrete-time implementation inherently features time regularization withΔ𝑚 equal to the
sampling time [36]. Therefore, in the remainder of this note, it is assumed that solutions
of 𝑅 are well defined [15].
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8.2.2 Negative Imaginary Systems
Below, to make this note self-contained, we summarize key results from the literature on
the negative imaginary systems theory.

8.2.2.1 LTI systems
Definition 2 ([1, 3]). A square transfer matrix 𝐺(𝑠) is negative imaginary (NI) if

1. 𝐺(𝑠) has no pole at the origin and in ℜ{𝑠} > 0;

2. 𝑗(𝐺(𝑗𝜔)−𝐺∗(𝑗𝜔)) ≥ 0 for all 𝜔 ∈ (0,∞) such that 𝑗𝜔 is not a pole of 𝐺(𝑠);

3. If 𝑗𝜔0,𝜔0 ∈ (0,∞) is a pole of 𝐺(𝑠), it is at most a simple pole and the residue matrix
𝐾0 = lim𝑠→𝑗𝜔0(𝑠 − 𝑗𝜔0)𝑗𝐺(𝑠) is positive semi-definite Hermitian.

Definition 3 ([1]). A square real-rational proper transfer function matrix 𝐺(𝑠) is strictly
negative imaginary (SNI) if

1. 𝐺(𝑠) has no poles in ℜ{𝑠} ≥ 0;

2. 𝑗(𝐺(𝑗𝜔)−𝐺∗(𝑗𝜔)) > 0 for all 𝜔 ∈ (0,∞).

In the single-input single-output (SISO) case, a transfer function is NI if and only if it
has no poles in the open right half plane or the origin and its phase is in [−180∘, 0∘] at all
frequencies.

Lemma 4 ([4]). Let (𝐴,𝐵,𝐶,𝐷) be a minimal state-space realization of transfer function
matrix 𝐺(𝑠). Then, 𝐺(𝑠) is negative imaginary if and only if det(𝐴) ≠ 0,𝐷 = 𝐷𝑇 and there
exist matrices 𝑃 = 𝑃𝑇 > 0,𝑊 ∈ ℝ𝑚×𝑚 and 𝐿 ∈ ℝ𝑚×𝑛 such that the following LMI is satisfied:

[𝑃𝐴+𝐴𝑇 𝑃 𝑃𝐵 −𝐴𝑇𝐶𝑇
𝐵𝑇 𝑃 −𝐶𝐴 −(𝐶𝐵+𝐵𝑇𝐶𝑇 )] = [ −𝐿

𝑇𝐿 −𝐿𝑇𝑊
−𝑊 𝑇𝐿 −𝑊 𝑇𝑊] ≤ 0. (8.8)

Remark 5 ([3]). The linear matrix inequality (8.8) can be simplified to 𝐴𝑃 +𝑃𝐴𝑇 ≤ 0 and
𝐵+𝐴𝑃𝐶𝑇 = 0.

Lemma 6 ([3]). Let (𝐴,𝐵,𝐶,𝐷) be a minimal state-space realization of transfer function
matrix 𝐺(𝑠). Then 𝐺(𝑠) is strictly negative imaginary if and only if:

1. det(𝐴) ≠ 0,𝐷 = 𝐷𝑇 ;

2. there exists a matrix 𝑃 = 𝑃𝑇 > 0,𝑃 ∈ ℝ𝑛×𝑛 , such that 𝐴𝑃 +𝑃𝐴𝑇 ≤ 0 and 𝐵+𝐴𝑃𝐶𝑇 = 0.

3. the transfer function matrix𝑀(𝑠) ∼ 𝐿𝑃−1𝐴−1(𝑠𝐼 −𝐴)−1𝐵 has full column rank at 𝑠 = 𝑗𝜔
for any 𝜔 ∈ (0,∞), where 𝐿𝑇𝐿 = −𝐴𝑃 −𝑃𝐴𝑇 .
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8.2.2.2 Nonlinear systems
Consider now the MIMO nonlinear system of the form

{ ̇𝑥 = 𝑓 (𝑥,𝑢),
𝑦 = ℎ(𝑥), (8.9)

where 𝑓 ∶ ℝ𝑛 ×ℝ𝑚 →ℝ𝑛 is a Lipschitz continuous function and ℎ ∶ ℝ𝑛 →ℝ𝑚 is continu-
ously differentiable function such that ℎ(0) = 0. Note that the reset system (8.2) does not
fit in this definition.

Definition 7 ([11]). The system (8.9) is nonlinear negative imaginary (NNI) if there exists a
positive definite continuously differentiable storage function 𝑉 ∶ ℝ𝑛 →ℝ such that

̇𝑉 (𝑥(𝑡)) ≤ ̇𝑦(𝑡)𝑇𝑢(𝑡),∀𝑡 ≥ 0. (8.10)

The dissipative inequality of the Definition 7 can also be given in the integral equiva-
lent form

𝑉 (𝑥(𝑡)) ≤ 𝑉 (𝑥(𝑡0) +∫
𝑡

0
̇𝑦𝑇 (𝜏)𝑢(𝜏)d𝜏 ,∀𝑡 ≥ 0. (8.11)

Note, that the supply rate used in the definition of an NNI system involves a derivative of
the output of the system. This is a major difference when compared with the definition of
passive systems. There exist also stronger notions of the NNI properties that are used in
the stability analysis of feedback systems.

Definition 8 ([11]). The system (8.9) is marginally strictly nonlinear negative imaginary
(MS-NNI) if the dissipativity inequality (8.11) is satisfied, and in addition, if 𝑢,𝑥 are such
that

̇𝑉 (𝑥) = ̇𝑦𝑇 (𝑡)𝑢(𝑡) ∀𝑡 > 0, (8.12)

then lim𝑡→∞ 𝑢(𝑡) = 0.
Definition 9 ([11]). The system (8.9) is said to be weakly strictly nonlinear negative imagi-
nary (WS-NNI) if it is MS-NNI and globally asymptotically stable when 𝑢 ≡ 0.

For an LTI system (8.1) the NNI property reduces to the NI property and the WS-NNI
property reduces to the SNI property. This equivalence has been shown for systems with
the feedthrough term 𝐷 = 0 in [10, 11]. The relationship between dissipativity and the
NI property is also explored in [6, 7]. Note that the notions MS-NNI and WS-NNI are
restrictive due to the constraint on the input signal 𝑢(𝑡) included in their definitions.
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8.3 Nonlinear Negative Imaginary Reset Systems
In this section, we present the contribution of this note. The reset system (8.2) does not
fit in the definition (8.9). Therefore, we propose a new suitable definition of the NI prop-
erty, enforcing that the storage function does not increase due to the reset actions. Subse-
quently, we provide two lemmas to characterize NI reset systems. Finally, we provide the
internal stability theorem for closed-loop reset systems based on the introduced property.

Definition 10. The system (8.2) is reset negative imaginary (RNI) if there exists a positive
definite continuously differentiable storage function 𝑉 ∶ ℝ𝑛𝑟 →ℝ such that

̇𝑉 (𝑥𝑟 (𝑡)) ≤ ̇𝑦𝑟 (𝑡)𝑢𝑟 (𝑡), 𝑡𝑘 < 𝑡 ≤ 𝑡𝑘+1, (8.13)
Δ𝑉 (𝑥𝑟 ) = 𝑉 (𝑥𝑟 (𝑡+𝑘 )) −𝑉 (𝑥𝑟 (𝑡𝑘)) ≤ 0, 𝑡𝑘 ∈ 𝒯 . (8.14)

Definition 11. The system (8.2) is reset strictly negative imaginary (RSNI) if it is RNI, and
in addition, if 𝑢𝑟 , 𝑥𝑟 are such that

̇𝑉 (𝑥𝑟 ) = ̇𝑦𝑇𝑟 (𝑡)𝑢𝑟 (𝑡) ∀𝑡 > 0, (8.15)

then lim𝑡→∞ 𝑢𝑟 (𝑡) = 0.
A reset system 𝑅 is characterized by base linear dynamics 𝑅𝑏𝑙𝑠 and the reset law. More-

over, NNI properties are reduced to NI properties for LTI systems. Therefore, to conclude
that a reset system 𝑅 is RNI (RSNI) it is sufficient to show that 𝑅𝑏𝑙𝑠 is NI (SNI), which can
be done using Lemmas 4 and 6, and assure that the storage function does not increase after
reset. This is formally expressed in the following two lemmas.

Lemma 12. Consider a reset system 𝑅 defined by (8.2) with the base linear system 𝑅𝑏𝑙𝑠 being
a minimal realization of a transfer function. Then, 𝑅 is RNI if and only if there exists matrix
𝑃 = 𝑃𝑇 > 0 such that the conditions of Lemma 4 are satisfied by 𝑅𝑏𝑙𝑠 and 𝐴𝑇𝜌 𝑃𝐴𝜌 −𝑃 ≤ 0.
Proof. The conditions related to the properties of the base linear system 𝑅𝑏𝑙𝑠 follow from
the equivalence of the NI and the NNI properties for LTI systems and the Lemma 4 and its
proof in [3]. Consider now the change of the quadratic storage function 𝑉 (𝑥𝑟 ) = 1

2𝑥
𝑇𝑟 𝑃𝑥𝑟

due to a reset

Δ𝑉 (𝑥𝑟 ) =
1
2𝑥

𝑇𝑟 (𝐴𝑇𝜌 𝑃𝐴𝜌 −𝑃)𝑥𝑟 ,

which is non-positive for arbitrary 𝑥𝑟 if and only if 𝐴𝑇𝜌 𝑃𝐴𝜌 −𝑃 ≤ 0, which is a condition of
the lemma. □

Lemma 13. Consider a reset system 𝑅 defined by (8.2) with the base linear system 𝑅𝑏𝑙𝑠 being
a minimal realization of a transfer function. Then, 𝑅 is RSNI if and only if there exists matrix
𝑃 = 𝑃𝑇 > 0 such that the conditions of Lemma 6 are satisfied by 𝑅𝑏𝑙𝑠 and 𝐴𝑇𝜌 𝑃𝐴𝜌 −𝑃 ≤ 0.
Proof. The conditions related to the properties of the base linear system 𝑅𝑏𝑙𝑠 follow from
the equivalence of the SNI and the WS-NNI properties for LTI systems and the Lemma 6
and its proof in [3]. The rest of the proof follows as in the previous lemma. □
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The feedback system presented in Fig. 8.1 consists of an LTI plant (8.1) and a reset
controller (8.2). We have two possible cases: the interconnection of SNI plant and RNI
controller or NI plant and RSNI controller. Additionally, it is possible to obtain results
independent on the reset condition or to assume specific reset conditions. Stability results
for some of the possible combinations are presented in separate theorems.

To be able to prove the stability, we introduce restrictions either on the structure of
the reset controller or on the reset condition. This is necessary due to the structure of the
Lyapunov functions used in the available literature for NI systems [37]. Nevertheless, the
results we obtain are sufficiently general to design practical controllers. In Theorem 14,
the structure of the reset controller is restricted to allow for the use of any reset condition.
For example, the reset can be triggered by a signal from an additional shaping filter [30].

Theorem 14. Consider an LTI SNI 𝐺(𝑠) with the minimal realization (8.1) and an RNI sys-
tems 𝑅 defined by (8.2) with a base linear system 𝑅𝑏𝑙𝑠(𝑠), such that 𝐺(∞)𝑅𝑏𝑙𝑠(∞) = 0 and
𝐺(∞) ≥ 0. Assume that the output of the reset system does not depend directly on the reset
state 𝑦𝑟 (𝑡+𝑘 ) = 𝑦𝑟 (𝑡𝑘) (which means 𝐶𝑟𝐴𝜌 = 𝐶𝑟 ) and that 𝜆𝑚𝑎𝑥 (𝐺(0)𝑅𝑏𝑙𝑠(0)) < 1. Then, the
positive feedback interconnection of 𝐺(𝑠) and 𝑅 is internally stable for any reset condition.

Proof. Let 𝑉𝑔(𝑥) = 𝑥𝑇 𝑃𝑔𝑥 and 𝑉𝑟 (𝑥𝑟 ) = 𝑥𝑇𝑟 𝑃𝑟𝑥𝑟 , where 𝑃𝑔 = 𝑃𝑇𝑔 > 0, 𝑃𝑟 = 𝑃𝑇𝑟 > 0 are matrices
of appropriate dimensions, and consider the Lyapunov candidate function for the feedback
system

𝑉 (𝑥,𝑥𝑟 ) = 𝑥𝑇𝐶𝐿 [
𝑃𝑔 −𝐶𝑇𝐷𝑟𝐶 −𝐶𝑇𝐶𝑟

−𝐶𝑇𝑟 𝐶 𝑃𝑟 −𝐶𝑇𝑟 𝐷𝐶𝑟]𝑥𝐶𝐿.

FromLemma 4 in [37]we have that𝑉 (𝑥,𝑥𝑟 ) is positive definite if and only if 𝜆𝑚𝑎𝑥 (𝐺(0)𝑅𝑏𝑙𝑠(0)) <
1. In the proof ofTheorem 1 in [37] we find that if the conditions on the subsystems stated
here are satisfied, we have ̇𝑉 (𝑥,𝑥𝑟 ) ≤ 0. This implies that the base linear system of the
closed loop (8.3) is at least Lyapunov stable. Moreover, the authors of [37] show that the
𝐴𝐶𝐿 matrix does not have eigenvalues on the imaginary axis, which implies the asymptotic
stability of the base linear system of (8.3).

To show the stability of the complete reset system, we consider the change of 𝑉 (𝑥,𝑥𝑟 )
due to the reset

Δ𝑉 (𝑥,𝑥𝑟 ) = 𝑉 (𝑥,𝑥+𝑟 ) −𝑉 (𝑥,𝑥𝑟 )

= 𝑥𝑇𝐶𝐿 [
0 −(𝐶𝑇𝐶𝑟𝐴𝜌 −𝐶𝑇𝐶𝑟 )

−(𝐴𝑇𝜌 𝐶𝑇𝑟 𝐶 −𝐶𝑇𝑟 𝐶) 𝐴𝑇𝜌 (𝑃𝑟 −𝐶𝑇𝑟 𝐷𝐶𝑟 )𝐴𝜌 − (𝑃𝑟 −𝐶𝑇𝑟 𝐷𝐶𝑟 )]𝑥𝐶𝐿
= −𝑥𝑇𝑟 (𝐴𝑇𝜌 𝐶𝑇𝑟 𝐶 −𝐶𝑇𝑟 𝐶)𝑥 −𝑥𝑇 (𝐶𝑇𝐶𝑟𝐴𝜌 −𝐶𝑇𝐶𝑟 )𝑥𝑟

+𝑥𝑇𝑟 𝐴𝑇𝜌 (𝑃𝑟 −𝐶𝑇𝑟 𝐷𝐶𝑟 )𝐴𝜌𝑥𝑟 −𝑥𝑇𝑟 (𝑃𝑟 −𝐶𝑇𝑟 𝐷𝐶𝑟 )𝑥𝑟

(8.16)

Using 𝐶𝑟𝐴𝜌 = 𝐶𝑟 we obtain

Δ𝑉 (𝑥,𝑥𝑟 ) = 𝑥𝑇𝑟 (𝐴𝑇𝜌 𝑃𝑟𝐴𝜌 −𝑃𝑟 )𝑥𝑟 , (8.17)

which, as can be seen in the Lemma 12, is smaller or equal to 0 for any 𝑥𝑟 . □
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Remark 15. The stability of a feedback connection of an LTI NI 𝐺(𝑠) and an RSNI 𝑅, as-
suming that the output of the reset system does not depend directly on the reset state, can be
proven in analogue to the Theorem 14.

Remark 16. The requirement that the output of the reset system does not depend directly
on the reset state 𝑦𝑟 (𝑡+𝑘 ) = 𝑦𝑟 (𝑡𝑘), which is equivalent to 𝐶𝑟𝐴𝜌 = 𝐶𝑟 , is satisfied by any reset
control system connected in series with an LTI low-pass filter. The complete series intercon-
nection should then satisfy the conditions of the Lemma 12 in the case of the Theorem 14, or
Lemma 13 if an LTI NI plant is considered.

In Theorem 17, the classical zero-crossing reset condition is assumed to remove the
restrictions on the structure of the controller.

Theorem 17. Consider an LTI SNI 𝐺(𝑠) with the minimal realization (8.1) and an RNI sys-
tems 𝑅 defined by (8.2) with a base linear system 𝑅𝑏𝑙𝑠(𝑠), such that 𝐺(∞)𝑅𝑏𝑙𝑠(∞) = 0 and
𝐺(∞) ≥ 0. Assume the reset condition 𝜌(𝑡) = 𝑢𝑟 (𝑡) is set and that 𝜆𝑚𝑎𝑥 (𝐺(0)𝑅𝑏𝑙𝑠(0)) < 1.
Then, the positive feedback interconnection of 𝐺(𝑠) and 𝑅 is internally stable.

Proof. The first part of the proof, related to the base linear systems, is the same as in the
proof ofTheorem 14. Consider Δ𝑉 (𝑥,𝑥𝑟 ) given by (8.16). Using the knowledge of the reset
condition at the reset instant we have 𝑢𝑟 (𝑡𝑘) = 𝑦(𝑡𝑘) = 0, that is

𝑦(𝑡𝑘) = 𝐶𝑥(𝑡𝑘) +𝐷(𝐶𝑟𝑥𝑟 (𝑡𝑘) +𝐷𝑟𝑦(𝑡𝑘)). (8.18)

Using the assumption 𝐺(∞)𝑅𝑏𝑙𝑠(∞) = 𝐷𝐷𝑟 = 0 we have 𝐶𝑥(𝑡𝑘) = −𝐷𝐶𝑟𝑥𝑟 (𝑡𝑘). Substituting
to (8.16) we obtain

Δ𝑉 (𝑥,𝑥𝑟 ) = −𝑥𝑇𝑟 ((𝐼 −𝐴𝑇𝜌 )𝐶𝑇𝑟 𝐷𝐶𝑟 (𝐼 −𝐴𝜌))𝑥𝑟 −𝑥𝑇𝑟 (𝐴𝑇𝜌 𝑃𝐴𝜌 −𝑃𝑟)𝑥𝑟 (8.19)

which is smaller of equal to 0 for any 𝑥𝑟 if 𝑅 is RNI (see Lemma 12). □

8.4 Illustrative examples
In this section, we demonstrate the applicability of the stability results by presenting an
example of a reset controller for damping an LTI plant with a resonance that achieves a
finite-time convergence.

The plant represented by a transfer function

𝐺(𝑠) = 1/𝑘
𝑠2/𝜔20 +2𝜁 𝑠/𝜔0 +1

(8.20)

can be seen as an approximation of a flexible mechanical structure with stiffness 𝑘, natural
frequency 𝜔0 and damping ratio 𝜁 . As a controller, a second-order reset element given by
the (8.2) with

𝐴𝑟 = [ 0 1
− 7
3𝜔

20 −2𝜁𝜔0
] , 𝐵𝑟 = [ 0

𝜔20
] , 𝐴𝜌 = [1 0

0 0] , 𝐶𝑟 = [ 43𝑘 0] , 𝐷𝑟 = 0. (8.21)
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Figure 8.2: Fequency and time-domains simulation results for a reset control system.

andwith reset triggered by the derivative of the input signal 𝜌 = ̇𝑢𝑟 . The controller is a reset
version of the positive position feedback (PPF) [33], commonly used in active vibration
control, as the transfer function of the base linear system is

𝑅𝑏𝑙𝑠(𝑠) =
4𝑘

3𝑠2/𝜔20 +6𝜁 𝑠/𝜔0 +7
.

In the remainder of the paper, values 𝑘 = 103, 𝜔0 = 102rad/s and 𝜁 = 10−6 are used for
demonstration.

Figure 8.2a presents the frequency responses of the plant, the base-linear system of the
controller and its describing function description [23]. Since the considered subsystems
are SISO, we can conclude that the plant (8.20) is SNI. The same can be concluded for the
base linear system of the controller. To show that the complete reset element is RNI, we
use the linear matrix inequalities that follow from Lamma 12, which are satisfied by

𝑃 = [0.0003 0
0 7.5000] .

For the reset controller we have 𝐶𝑟𝐴𝜌 = 𝐶𝑟 , |𝐺(∞)𝑅𝑏𝑙𝑠(∞)| = 0 and |𝐺(0)𝑅𝑏𝑙𝑠(0)| = 4/7, so
the stability can be concluded using the Theorem 14.

Figure 8.2b shows the state in response to initial condition 𝑥𝐶𝐿(0) = [−1 0 0 0]𝑇
for the closed-loop interconnection for both the reset control system (solid lines) and its
base linear dynamics (dashed lines). In the reset case, the state 𝑥1, which corresponds to
the position of the plant, converges 0 in finite time. This behaviour can be understood by
observing that at the reset instant, the only non-zero state is the state to be reset. It can
be said, all the energy of the system is associated with that state and is dissipated by the
reset action. Similar effect can be seen in [38].
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8.5 Conclusions
In this paper, the NI systems theory has been extended to a class of reset control systems.
We introduced definitions for reset negative imaginary (RNI) and reset strictly negative
imaginary (RSNI) systems. Moreover, we established necessary and sufficient conditions
for a system to exhibit RNI and RSNI behaviours in the form of linear matrix inequalities.
We considered positive feedback interconnections of an LTI plant and a reset controller
and proven internal stability in the absence of external inputs in three different cases.
Due to the structure of the Lyapunov functions used currently for NI systems, it was
necessary to introduce restrictions either on the structure of the reset controller or on
the reset condition. Relaxing these conditions is a remaining challenge. What is more, the
definition of the RSNI system is based on the MS-NNI and, in consequence, also restrictive
due to the conditions on the input signal. To increase the applicability of this result, finding
an alterative definition for the RSNI would be necessary.

To exemplify the applicability of the derived stability results, we provide an illustration
involving a flexible plant controlled by a second-order reset element. The obtained results
can be used to show the stability of reset controllers providing finite-time convergence.
The developed theory is important from a practical point of view since it allows us to
conclude the stability of feedback systems consisting of a known nonlinear reset controller
and an LTI plant without the need for a parametric model of the plant, as the NI properties
may be concluded base on measured frequency response functions.
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9
Conclusion

This final chapter discusses the outcomes presented in this thesis, including the limitations
and the possible improvements. The insights obtained during the work are also summa-
rized and synthesized, leading to recommendations for new research directions.
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9.1 Summary of the thesis

In the presented work, we explored the possibilities created by using frequency-domain
loop-shaping techniques to design feedback controllers in AVC systems and active meta-
materials for bandgap generation. In Chapter 2, the desired controller characteristics were
derived based on the knowledge of plant dynamics and the desired closed-loop transfer
functions. The approach was demonstrated in an experimental evaluation of an ultra-hard
mount system.

The loop-shaping approach for AVC systems was further related to the design for
bandgap in active metastructures in Chapter 3. We have shown that using sensors, actua-
tors, and feedback control is a feasible strategy for bandgap generation in metamaterials.
Thanks to the frequency-domain design approach, it is possible to obtain low-frequency
bandgaps in practice without the meticulous, analytical modeling of all the details of the
experimental setup.

To relate the bandgap generation in finite structures to the loop shaping, we used the
approach based on modal expansion. We also assumed an infinite number of infinitesi-
mally small transducer pairs placed on the structure. Chapter 4 showed that the number
of transducers required for this approximation to be accurate is often low and is closely
related to the dominant vibration mode in the targeted frequency range.

The fractional-order control was shown to be an effective way to explore new design
opportunities in AVC and metamaterials. In Chapters 5 and 6, it was employed as a step
towards the ideal controller dynamics dictated by the loop-shaping analysis. In the meta-
material case, the greater design freedom offered by FO systems led to results unachiev-
able with standard second-order resonators or controllers, like the deep bandgaps, with-
out introducing additional resonance peaks. The FO systems approach enabled analytical
analysis of the system’s behavior, which is not possible when high integer order systems
represent similar dynamics.

The performance of AVC systems can be improved with reset control beyond the limi-
tations bounding the LTI controllers, as demonstrated in Chapter 7. The challenges posed
by wide-band disturbances and multiple lightly damped resonance peaks in the system
dynamics were overcome by analyzing and filtering the reset triggering signal. We used
the best linear approximations (BLA) of the nonlinear controller since the describing func-
tions used in the loop-shaping for reset systems cannot completely represent the system’s
behavior.

To complete the frequency-domain design framework for reset systems in AVC, we
extended the Negative Imaginary Systems theory to a class of reset systems in Chapter
8. The proposed theory allows the determination of the stability of the closed-loop reset
control system based only on the knowledge of controller dynamics and the frequency
response of the plant, which can be measured in experiments. We hope that the availabil-
ity of such tools may facilitate the practical use of reset systems and enable the shift in
research from the study of stability to performance improvements.
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9.2 Discussion
In the following subsections, we relate the results presented above to the research gaps
identified in the introduction of this thesis. We discuss the discoveries, limitations of
the approach taken, and possible avenues of future research related to each of the issues
considered in this work.

9.2.1 Presenting AVC in line with the current control practice
The frequency-domain loop-shaping, often used for controller design in motion-control
applications, is also suitable for AVC controller design. The efficiency of this approach
was shown for both the single-mode vibration isolation system and continuous structures
with multiple resonance peaks and multiple input-output pairs. The approach can also be
used to motivate the use of nonlinear controllers for AVC.

The presented approach is only effective for the initial system design. Such a design
can be further improved using optimization techniques, especially in the case of LTI sys-
tems, when the response of a system can be easily calculated. Nevertheless, the frequency
domain perspective can still provide the rationale behind specific designs and intuition
as to why a certain result performs well (or not). Loop-shaping has the potential to be a
universal approach for the rational design of dynamical systems, at least for motions with
small amplitudes. The key points of the approach are that the system is presented as an in-
terconnection of subsystems operating in feedback and that the specific requirements are
defined at different frequency ranges. As such, it could also be used to design mechanical
or electronic systems.

An example of a mechanical design motivated by loop-shaping could be a fractional-
order resonator. Based on chapters 5 and 6, FO resonators are a promising solution for
vibration attenuation and isolation. Could such a resonator be constructed as a component
that may be added to an existing structure as an alternative to a conventional tuned mass
damper? A possible solution would be to combine several smaller resonators, in an ana-
logue to approximating FO transfer functions by high integer order systems. Alternatively,
could such a device be constructed by leveraging the properties of viscoelastic materials,
often modeled with FO dynamics? Would the practical use of such FO resonators lead to
the benefits expected based on the theoretical derivations?

In the case of electronic systems, the frequency domain approach could be used for
the practical design of shunt circuits for vibration control with piezoelectric transducers.
Such a shunt system can be seen as a voltage-controlled current source, with the dynamics
implemented in a digital controller. Abstracting away from electronics and focusing on the
inputs and outputs of the system could make the analysis and design more accessible. The
next step in this research direction would be to explore the link between switched shunts
for AVC and reset control. There is a possibility of demonstrating the equivalence between
systems with switched shunts, variable stiffness members and constant-in-gain, lead-in-
phase reset controllers. Could the DF analysis, techniques for shaping nonlinearity, and
insights from Chapter 7 be effectively used for the switched shunt circuit design? This
approach could revitalize this neglected yet highly promising research field.
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9.2.2 Connecting metamaterials and conventional AVC
When we started working on this topic, the idea of using sensors, actuators and feedback
to change the dynamics of the systems, in this case by creating the bandgap, appeared
evident to us. This, however, did not seem apparent in the field. Using feedback and control
insights in metamaterials for vibration is effective and promising, yet it is underexplored.
Presenting bandgap generation in active structures coherently with the rest of the control
research is a contribution of this work.

The issue that often arises in discussions on metamaterials and bandgap is their def-
initions. In this work, our focus was not on creating metamaterials (fitting the scope of
physics or material science), but on creating structures with a bandgap in their frequency
response. When the bandgap is defined as attenuation of vibration transmissibility at a
specific limited frequency range, using a lattice of repeated identical unit cells is not opti-
mal for obtaining it.

Better results can be obtained with an optimization of the entire finite structure. The
existing results from metamaterial research (including the ones presented in this thesis)
could provide the rationale behind the design and decent initial design for the algorithms.
Using non-collocated sensors and actuators may yield better results when considering a
finite structure and a specific range of frequencies. Moreover, the techniques from active
vibration isolation, like disturbance feedforward, should be related to bandgap generation
and extended to continuous structures.

To improve the experimental results on bandgap generation presented in Chapter 3,
attention should be paid to the electronics used to implement the feedback loops and tech-
niques used for bandgap measurements. The noise greatly influences the bandgap genera-
tion in active systems, as in the approaches used so far, a controller with a high resonance
peak is required. This may lead to amplification of disturbances appearing in the system
and poor robustness, e.g. in the presence of time delays. To address this problem, it would
be interesting to see if creating bandgaps with controllers without resonance peaks is pos-
sible.

While we have shown the potential of metamaterials with FO resonators, reset meta-
materials are a topic we did not explore in this work. In the context of creating bandgaps
with controllers with resonance peaks, reset elements do not appear well-suited, as the re-
set is a strong energy dissipation mechanism, and creating high resonance peaks in reset
systems is often impossible. However, as reset allows for breaking the Bodes magnitude
and phase relationship, new reset-based designs for bandgap generation may be possible.

9.2.3 Designing non-conventional AVC controllers with a system-
atic approach

Loop shaping allows the design of non-conventional, possibly non-linear controllers for
AVC not purely by trial and error but in a rational manner. Optimization (which can be
seen as automated trial and error) is still a key part of the design process and contributes
greatly to the final performance improvements. However, its role is to fine-tune the initial
design provided and well-understood by the designer. This understanding is crucial when
debugging a control system in experimental implementation.

Reset control systems are an augmentation for linear control (not their replacement),
making it possible to improve the performance not only of motion control systems but also
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vibration isolation systems. The two problems in the design of reset systems are related to
performance prediction and stability analysis. For each of these problems, we introduced
new tools to the field.

The design tools for reset control systems provide only approximate results and offer
limited possibilities for predicting the system’s performance. The use of best linear approx-
imations (BLA) proposed in this thesis provides yet another approximation that, together
with the currently used tools, gives a more complete view of the system behavior. The use
of BLA in the case of reset systems should be justified with theory, as the tool has been
developed for a different class of systems. Moreover, the work presented in Chapter 7 is
only the first attempt at using this approach, and a complete analysis of different types of
reset architectures is still required.

In the case of the negative imaginary (NI) systems approach for stability analysis, it was
clear that it would apply to reset systems. Therefore, we could directly work on formally
extending the method to this class. The drawback of the method (similar to the dissipative
approach) is that it forces restrictions on the structure of the control system to prove the
stability formally. However, if the dissipative or NI approaches are applicable, they allow
us to conclude stability in an elegant, simple and practical way (using a frequency-domain
model of the plant), which is a big advantage compared to other methods suitable for reset
systems. This should be considered when new reset control architectures are developed.

In reset control, we face a situation similar to the classical chicken and egg problems.
On the one hand, the theory is not advanced, as it does not have practical applications.
On the other hand, the use of existing tools in practice is often not justified by the theory.
To advance the field, we had to accept the discomfort caused by this situation and proceed
with work despite it. The same can be said of any other field of research in engineering.

9.2.4 Final remarks
The rapid advances in metamaterials research and the field of control, especially their pos-
sible implications for designing better mechatronic systems and improving active vibra-
tion control, inspired the research presented in this thesis. Although the problems studied
within these disciplines share clear similarities, the insights gained from each have not
been combined or fully exploited. With this thesis, we furthered the understanding of the
connections between active vibration control, motion control and the metamaterials for
bandgap generation. This allowed us to develop a new framework for the design of active
metamaterials and advance the techniques for the design of reset controllers.

By introducing a common design approach, we facilitate the practical use of AVC, in-
cluding the nonlinear control methods and active metamaterial-based techniques. Those
approaches can be used to diminish the influence of the high-frequency resonances and
disturbances, which currently limit the mechatronics systems’ performance. Drawing
inspiration from metamaterial research in machine component design could lead to the
creation of compact, tuneable structures that effectively dampen vibrations while main-
taining high stiffness. While often not directly visible, precision mechatronics systems
profoundly influence our daily lives. Enhancing their performance can lead, for example,
to more powerful and affordable computing devices (due to advancements in the semicon-
ductor field) and more efficient transportation methods (thanks to improved manufactur-
ing of propulsion and transmission systems).
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