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Summary

According to a report published by the Dutch Safety Investigation Board in early Septem-
ber 2019, the safety of remotely controlled bridges is not su�cient (Onderzoeksraad voor
de Veiligheid, 2019, pg.58). This report was published after the occurrence of two se-
vere accidents in Zaandam, on the Den Uylbrug and the Prins Bernhardbrug. On both
occasions, the victims were standing on the movable part of the bridge deck during the
opening of the bridge, and despite being visible for over a minute on the camera screens,
were not observed by the operators, making the accidents human factor-based. The Dutch
Safety Investigation Board concluded that part of the problem was safety mainly being
considered a technical problem, instead of an integral one. In this research, the goal was
to analyse how object detection could provide decision support for mitigating human fac-
tors for operating remotely controlled bridges. This was done by identifying the problems
through literature studies, interviews and observations, and by building a proof of con-
cept to mitigate these problems. Finally, this model was evaluated to gain experimental
insights into the possibilities of object detection as a decision support tool.

The main problems identi�ed are related to the operator's lack of situational aware-
ness(SA). SA being "the perception of the elements in the environment within a volume of
time and space, the comprehension of their meaning and the projection of their status in
near future" (Endsley, 1988). When analysing the problem using Endsley's three-staged
Situational Awareness Model, it showed that the di�culties were in the �rst level; the
perception of elements in the current situation.

The model that was developed to help perceive the bridge users, was a custom trained
Mask R-CNN ResNet 101 model, with images captured from CCTV systems from bridges
in Zaandam, and its hit-rate was compared to a pre-trained model. The experimental
insights show improvements of the custom model over the pre-trained model, and promis-
ing results for using object detection as a support tool to increase the safety of operating
remotely controlled bridges.
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1. Introduction

The Dutch Safety Board published a report early September 2019, stating that the safety
of remotely controlled bridges is not su�cient(Onderzoeksraad voor de Veiligheid, 2019,
pg.58). The minister of infrastructure and water management, Carla van Nieuwenhuizen
addressed this issue in a letter to parliament, putting it on the political agenda (van
Nieuwenhuizen Wijbenga, 2019). The research was conducted in response to an accident
that occurred on the Prins Bernhardbrug in Zaandam, in November 2018. During the
opening of the bridge, the presence of an elderly couple was missed by the bridge operator,
despite being visible on the camera system for over a minute. After trying to hang on
to the railing of the bridge, the couple couldn't hold it any longer, causing the man to
fall in the water from approximately 20 meters, being unconscious after hitting a metal
beam during his fall. Luckily, because of the decisive acting of bystanders, the couple
survived the accident. Unfortunately, in February 2015, a similar calamity happened in
Zaandam. This time the victim, a 57 years woman did not survive. This happened on the
Den Uylbrug, a similar type of asset as the Prins Bernhardbrug. Here the technical side
wasn't the problem either, but the decision making and the guidelines involved were at
fault. (Onderzoeksraad voor de Veiligheid, 2016, pg.43).These are just two examples, but
the OVV found at least thirteen more over the last 15 years. Many of these accidents were
not caused by poor camera quality or malfunctioning mechanics/communication. Often
human factors played a role in the happening of the event, also due to insu�cient human
- machine interaction(Onderzoeksraad voor de Veiligheid, 2019, pg.27).

In this research, the goal is to analyse whether the application of an object detection
model could contribute to the safety of a remotely controlled bridge. Object Detection
is a promising subsection within arti�cial intelligence, that has been developing rapidly
over the last couple of years. As of late, models are developed with a strong combination
of speed and accuracy that makes it an interesting technology to apply in the real world.

To analyse if this is a viable solution for the human factor-based problems as mentioned
before, �rst the current situation will be described, to get an understanding of the way the
remotely controlled bridges are controlled at the moment. Secondly, the interaction be-
tween humans and arti�cial intelligence applications/embedded systems will be covered.
Subsequently, arti�cial intelligence will be discussed, with a focus on object detection.

After this literature study, the goal is to build a model that is capable of processing
camera footage in real-time, reaching an accuracy that makes it likely to increase the
safety on the bridge. First, the design and criteria of the object detection system will be
discussed, based on user interviews and observations. Next up is the actual development
of the model. Then, the application will be tested on speed and e�ectiveness, which leads
to the discussion and conclusions. Finally, further recommendations will be stated to
bring this research further.
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2. Problem De�nition & Research

Questions

2.1. Problem De�nition

The bridges the Dutch Safety Board focused on, are the Den Uylbrug and the Prins Bern-
hardbrug. Both are remotely controlled bridges located in Zaandam, and so are twelve
others in the city, out of the total of twenty (Onderzoeksraad voor de Veiligheid, 2019,
pg.13). The Prins Bernhardbrug is one of the most used bridges due to its connection
with the A7, the longest national highway of The Netherlands(Rijkswaterstaat, 2019).
The bridge was initially built in 1941, and was replaced in 2006. A signi�cant feature of
the asset is the strict separation between the bicycle lane and the motorway. The latter
can also be found at the Den Uylbrug, which also crosses the river 'De Zaan'. For both
bridges, the separate lanes aren't operated independently, but the same command is used
to open both elements at the same time(Onderzoeksraad voor de Veiligheid, 2016, pg.20).

Because of the accidents that happened on these assets, the two bridges have frequently
been in the news in the recent years. As a result, these bridges have been considered case
studies in extensive discussions about safety of remotely controlled bridges, as at least
thirteen more accidents happened in the last 15 years(Onderzoeksraad voor de Veiligheid,
2019, pg. 60). According to the reports on the Den Uylbrug and the Prins Bernhardbrug,
the technical and legal requirements of the camera systems at the time of the accidents
weren't the attention points, but mostly the human factors and the interaction between
the users, bridge operator, and machine were(Onderzoeksraad voor de Veiligheid, 2019,
pg. 27). In �gure 1 screenshots are shown of the camera footage just before the casualties
occurred, and in both cases the victims were visible on at least one camera for over a
minute. Also noteworthy are the lighting conditions. Where dimly lit situations are pre-
sumably more di�cult to interpret correctly, the accident on the Den Uylbrug happened
at broad daylight.

Figure 1.: Screen captures Prins Bernhardbrug(1) and Van Uylbrug(2,3) (Onderzoeksraad voor
de Veiligheid, 2019, 2016)
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In both accidents, the victims were convinced to be in a safe position, caused by con-
fusing signing and lack of clear orientation points (Onderzoeksraad voor de Veiligheid,
2019). This can be seen as a human factor from the user side, but it shouldn't lead to an
accident, because the bridge operator is required to scan the camera footage at the time
of opening to be sure the situation is safe, before giving the de�nite command(�g 2).

Figure 2.: Flowchart Bridge Operator
(Onderzoeksraad voor de
Veiligheid, 2019)

Currently, measures are taken for the �rst men-
tioned human factors. This can be seen, for ex-
ample, through the applications that are done in
order to reduce confusion about the movable part
and the non-moveable parts, by painting the bridge
deck yellow. (NOS Nieuws, 2019). This marking
will help the users of the bridge to orient them-
selves, but it will probably also add contrast to the
images obtained by the cameras, making it easier
to detect persons. Another measurement the mu-
nicipality of Zaandam took, was placing additional
cameras. This doesn't fully comply with the conclu-
sions of the reports of the Dutch Safety Investiga-
tion Board. Additional cameras were recommended
to get a better overview of the entire asset, but but
it doesn't solve the risks regarding the human fac-
tors of the bridge operators. A deeper dive into the
problems related to operating remotely controlled
bridges can be found in section 5.1, where results of
the interviews and observations are described.

A way to tackle these human factor based problems, could be achieved by implement-
ing Object Detection. Object detection, an application of machine learning, is developing
rapidly in recent years. Both the algorithms and the hardware side are improving in terms
of speed, accuracy and accessibility. The main trade-o� in object detection is between
time en accuracy. The fewer calculations a model has to make, the faster it is, but it
also makes it less accurate. On the other hand, an extensive model has to make a lot
of computations, leading to a longer execution time(Huang et al., 2017). In the case of
human detection on movable bridges, the same trade-o� counts. This research should
point out whether the speed and accuracy of such a model are already good enough to
add value to the current situation.

However, within the �eld of Object Detections, multiple techniques coexist, and two
methods in particular. The �rst method is background subtraction, histogram of oriented
gradients feature extraction, and support vector machines combined. It is a relatively
light-weight model that works well on static cameras, and has a good balance between
speed and accuracy when it's properly con�gured. It's been the go-to technique for surveil-
lance cameras for the last two decades, but in the last years the �eld moves towards
the more computational-heavy technology of Convolutional Neural Networks(CNN). Al-
though the model runs slower than the earlier mentioned technique, the accuracy of the
new method has more potential. Because the Municipality of Zaanstad is already work-
ing with cameras manufactured by Bosch, the older technique is pretty accessible, as
the cameras have Bosch Intelligent Video Analysis installed. This software is mainly used
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by security companies to detect unwanted trespassers, but hasn't been used on bridges yet.

In this research, both techniques will be discussed in the theoretical background chapter.
However, because the Bosch system isn't available for testing purposes, it is di�cult to
compare both systems, apart from the theoretical di�erences. Therefore, this report will
primarily focus on CNN based models. In the analysis, a comparison will be made between
a pre-trained model, which is trained on the widely used COCO dataset, consisting of 1.5
million object instances in 80 di�erent categories, and a custom trained model, using only
images taken on remotely controlled bridges.

2.2. Research Questions

In this section, the questions are listed that should provide a holistic solution to the de-
scribed problem statement. The main research question that should be answered in the
thesis is the following:

How can Object Detection provide Decision Support for Mitigating Human Factors for
Operating Remotely Controlled Bridges?

To answer this main question correctly, the following sub-questions can be stated:

1. How are remotely controlled bridges operated, and what are the human factors
involved?

2. What are the most vital problems the proof-of-concept needs to solve?

3. How should the operator - object detection model interaction work?

4. To what extend is it possible to build a real-time proof-of-concept to perform object
detection?

The �rst two questions are aimed to get a clear understanding of the current status, and
to highlight the elements that keep the current situation from being the desired setting.
The last two questions are about investigating the new situation, and the way the system
should be implemented. To what extent is it possible to build a technically feasible sys-
tem in the �rst place? Will the asset actually become safer, or do the new (secondary)
risks outweigh the gains of the system? Together the sub-questions will form the basis to
answering the main research question.

The methodology envisioned to be able to answer these questions in good order, is
described in the next chapter.
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3. Theoretical Framework

Introduction
In this chapter, the theoretical background of the related research domains will be cov-
ered, in order to get a feeling for the context of this report. The topics are ordered in
the same way as the problem statement in the previous chapter, by �rst elaborating on
the current situation and procedures(Bridge Operations), then on the identi�ed problem
area(Human Factors), and �nally on the intended solution(Object Detection).

3.1. Bridge Operations

In this section, the current bridge operations will be discussed. First, the strategy and
principles on which the operation procedure is built will be discussed, then the environ-
ment in which the operators need to do their work, and �nally the operating steps the
operator needs to take when controlling the remotely controlled bridge.

3.1.1. Operation Principles

The Ports and Waterways Department of the Municipality of Zaanstad has the primary
mission to facilitate a fast and safe �ow of the maritime tra�c and an e�ective use of ports
and waterways. Two of the main tasks to achieve this, is monitoring the activity on the
water, and controlling the bridges and sluice of the Municipality of Zaanstad. Fourteen
of these bridges are controlled from the Central Post(CP) in Zaandam (Draisma & van
Heugten, 2014).

The operational model used to safeguard the risk management strategy is a logical
and structured method for the identi�cation, analysis, evaluation, handling and control
of risks. It is developed in accordance with ISO-31000, and is applied to every level of
the organization, from management functions, to the operators, and their primary work
processes. The model is depicted in �gure 3.
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Figure 3.: Operational Model Risk Management (Gemeente Zaanstad, 2017)

The primary work processes are based upon the operation principles as described in
the Noord-Holland's provincial decree on operating times and rules. These principles de-
�ne the priorities of the di�erent bridge users, and how they interact. Also, this decree
outlines the situations where operation should be interrupted, or completely ceased. The
most relevant principles for this research, are listed below.

Recreational Shipping
Within the standard operating hours, the operator is quali�ed to:

1. Open the bridge immediately when for both the recreational shipping and the road
tra�c the demand is low.

2. If the demand of the road tra�c is high, regardless of the demand of recreational
shipping, limit the bridge opening to once every half an hour.

3. When the demand of the recreational tra�c is high, and the demand of the road
tra�c is low, wait for a few recreational ships to gather. In practice, this means a
bridge opening every quarter of an hour.

Commercial Shipping
In case of a request by a commercial shipper, open the bridge as soon as possible, when
the tra�c situation allows it.

Connection
The connection of bridge openings isn't guaranteed. However, operators should try to
achieve this as much as possible through mutual consultation.

Road Tra�c
After a bridge opening, the operator should wait for the road tra�c to normalize, before
a new bridge opening can take place.
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Process Cessation
The operation process is ceased in the following conditions:

1. Wind-speed of 8 Bft or more.

2. Visibility less than 50 metres caused by very thick fog.

3. When requested by the emergency services.

4. During big events.

5. By order of the supervisor.

Process Interruption
The operation process is interrupted in the following conditions:

1. When there is a great safety risk

2. When there is a malfunction or damage, making it unable to operate the bridge or
to follow the guidelines.

3. In case of an incident on or around the bridge, making it impossible to operate the
bridge, or to do so without leading to unacceptable risks.

4. When requested by the emergency services.

The decision to continue operation is taken by the operator, if the circumstances permit.
When in doubt, the coordinator should be consulted.

3.1.2. Central Post

In order to design a good working human-machine interface, it should be clear in what kind
of setting and organization the application is implemented, and how the organics of the
workplace can be related to the problems perceived. Hereby, it should become apparent
what the di�erent implementation possibilities are, and how the current environment will
be a�ected by the introduction of the new system. This research is applied to the bridge
operation management of the municipality of Zaanstad. These operations are organized
at the central post in Zaandam, from where the operators do their work. First, the
house rules of the organization will be described, as these in�uence the behaviour of the
operators. Thereafter, the current setup will be speci�ed, to get a grasp of what the
operators are working with on a daily basis.

House Rules

The central post consists of o�ce spaces, meeting rooms, and the operation room. In this
section, the house rules of the latter will be outlined, as these are most relevant for this
research.

1. Concentration is required when operating the bridge. Side activities are forbid-
den(e.g. Answering the phone, conversations with supervisor or visitors).

2. During the entire process, the opening should be monitored on the screens.

3. No non-work related phone calls are allowed when working behind an operating
desk.

4. No non-work related computer activities are allowed when working behind an oper-
ating desk.
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5. Soft music is allowed

6. When working behind an operating desk, it is forbidden to read newspapers or
magazines, use an e-reader or i-pad, or to have other materials on the desk.

Reading these house rules it is apparent that the primary focus is to minimize distrac-
tions, and maximize concentration, in order to operate the bridges as safe as possible.
When an employee disobeys these rules, an o�cial warning will be given. In case of a
second occurrence, he is no longer allowed to work as an operator.

Resources

When the operator is working at his desk, he is responsible for a standard set of bridges.
The following bridges are combined in the following order:

• Operator 1: Bernhardbrug, railway bridge, Alexanderbrug and Coenbrug.

• Operator 2: Julianabrug, Zaanbrug, Clausbrug and Prinses Beatrixbrug.

• Operator 3: Den Uylbrug, Schiethavenbrug, Nauernaschebrug and Reint Laan jr.
brug

• Sluice Operator: Wilhelminasluice, Beatrixbrug and Wilhelminabrug.

The sluice operator works on a di�erent kind of desk than the bridge operators. As the
scope of this research are remotely controlled bridges, this setting will not be discussed.
For the bridge operators, the desks are all similar. However, only one desk setup has some
added features to be able to operate the railway bridge, but all other common elements
are depicted in �gure 4.

Figure 4.: Operation Desk (Gemeente Zaanstad, 2019)

# Description # Description
1 Main monitor 5 SCADA Operating System
2 Side monitor 6 VHF maritime radio-telephone
3 Emergency Stop 7 Intercom
4 Telephone 8 Computer
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As displayed in �gure 4, the operator has four screens to his disposal for monitoring
the situation on the bridge via the camera system. Every screen contains multiple camera
streams. The operator can choose which streams to display in the big frame on the main
monitors, and which in the small frames.

For communication, the operator has an intercom, a telephone, and a VHF maritime
radio-telephone. The intercom is used to communicate directly with the users on the
bridge, for when people neglect the red lights or hinder the opening procedure in a di�er-
ent way. The VHF maritime radio-telephone is used to communicate with shippers. This
way, the shippers can make a request to open the bridge, and the operator can inform
them about the process. Lastly, the telephone is used to contact external parties, like
emergency services.

For operating the bridge, the SCADA(Supervisory Control And Data Acquisition) sys-
tem is used. A screenshot of the SCADA system is depicted in �gure 5. Here, all com-
mands needed to operate the bridge can be controlled. Also, with this system, the operator
can monitor the current con�guration of the asset, read the log-�les generated by the sys-
tem, and information about the weather conditions is displayed. Besides the SCADA
system, an external emergency stop is present, to cease ongoing processes in case of a
dangerous situation.

Figure 5.: SCADA system (Onderzoeksraad voor de Veiligheid, 2016)

3.1.3. Operational steps

After having gained insights into the workplace and the overarching principles, the next
step is to look into the actual opening procedure itself. The �owchart for operating the
bridge is depicted in �gure 6, where the blue elements are the existing steps, and the green
elements are the envisioned additional steps of the object detection model. In appendix
D, the work�ow is described in a more detailed way. For each step in the process, it is
reported what the operator should observe, what he should control, and what he has to
monitor.
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Figure 6.: Work�ow Bridge Operation (Draisma & van Heugten, 2014)
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3.2. Human Machine Interaction

In this section, the �eld of human machine interaction will be discussed. This is needed
to make sure the desired object detection support system integrates well in the current
situation as described in the previous section. However, before diving into this, human
factors and related human studies will be discussed, forming the foundation for the human
machine interface.

3.2.1. Human Factors

Before diving into the researches conducted in the �eld of human factors, a de�nition
should be presented to provide a better upstanding of its scope. In this report, the de�-
nition as used by the International Ergonomics Association will be used:

"Ergonomics (or human factors) is the scienti�c discipline concerned with the under-
standing of the interactions among humans and other elements of a system, and the pro-
fession that applies theory, principles, data and methods to design in order to optimise
human well being and overall system performance." (International Ergonomics Associa-
tion, 2000)

The main trigger that started the endeavours of studying human factors came from the
technological developments during World War II. Weapon and transport systems grew
in complexity, and great technological advances were made in factory automation and in
equipment for common use. Through the di�culties encountered while working with the
complex machinery, the need for human factors analyses became evident. These studies
were procedeed by research on human physiology, industrial engineering, and human per-
formance psychology (Proctor & Van Zandt, 2008).

When it comes to human factors studies speci�cally for bridge operators, let alone
operators of remotely controlled bridges, there is not much to be found. However, it is
possible to draw parallels between bridge operations, and other �elds where operations
are involved, such as the aviation sector. Here, the pilots and air tra�c operators are
also decision-makers in a complex tra�c-related �eld. In 1996, the bureau of air safety
investigation researched 75 fatal aeroplane accidents, and it turned out that in 70% of
the occasions, the pilot's human factors were involved. Most of these factors were related
to poor judgement and decision-making(�g. 7). The research also showed that the errors
of judgement can be made by both experienced and inexperienced pilots. According to
Endsley, the main reason for this poor judgement and decision makin in aviation is the
lack of situational awareness (Endsley & Robertson, 2000). Researches conducted by
Hartel, Smith, Prince and Merket, Bergondy, Cuevas-Mesa also identi�ed inadequate
situational awareness as one of the primary factors in accidents attributed to human error
(Hartel, Smith, & Prince, 1991; Merket, Bergondy, & Cuevas-Mesa, 1997).
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Figure 7.: Fatal accidents to �xed wing aircraft. Broad Accident Factors(l) & Pilot Factors(r)
(Bureau of Air Safety Investigation, 1996)

Situational Awareness

The overarching theory for implementing an automated object detection system as a de-
cision support tool, is related to enhance the operator's situational awareness(SA).To get
the importance of this phenomenon, it is needed to understand the key concept of the type
of accidents that are often regarded as casualties caused by human errors. The danger of
pointing at human error as the cause of an accident, is that it can be a misleading per-
spective. One could easily think that it implies that people are merely careless or poorly
trained, or that they are not reliable in the �rst place. However, in many of the accidents
deemed as human errors, the human operator is striving against signi�cant challenges, as
he is working with a data overload and the challenge of dealing with a highly demanding
complex system. They have to keep to a long list of procedures and checklists in order to
get the system under control, which sometimes fails. A standard reaction of the indus-
try, would be adding even more procedures and systems, which makes the system even
more complex and more challenging to operate. To summarize this, one could state that
the operator is held accountable for whatever failures and ine�ciencies embedded in the
system. In the end, the operators often are perfectly capable of performing their tasks
physically, and have no di�culty knowing that is the correct thing to do, but they continue
to be stressed by the tasks of understanding what is going on in the situation (Salvendy,
2012). It may feel contradictory to mention the �aws of the common industry's reaction
of adding new procedures and systems in a report where an object detection sub-system
is proposed. That is why the focus of this report is not solely on the technical side of the
model, but equally on the HMI side of the potential solution, as the awareness exists of
the possibility of doing more harm than good with an added element.

To conclude, this critical task of understanding what is going on in the situation is
regarded as situational awareness, a research domain originated in the aviation domain.
A widely used de�nition is "the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning and the projection of their
status in near future" (Endsley, 1988). How situational awareness is part of the decision-
making process for operators, is depicted by Endsley's situational awareness model(�gure
8). After the �gure, the individual steps will be explained.
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Figure 8.: Endsley's Situational Awareness Model (Endsley, 1995)

Level 1: Perception of Elements in Current Situation
The �rst step in the situational awareness model is to perceive the status, attributes, and
dynamics of relevant elements in the environment. In case of the bridge operator, there
are a lot of elements to consider. In the o�ce alone there is the information represented
by the SCADA system showing the current conditions of the bridge con�guration, a dis-
play with emergency services, colleagues working on other bridges, indicating incoming
ships, shipping requests from all controlled bridges over VHF maritime radio-telephone,
and now and then the system picks up requests meant for bridges outside of Zaanstad's
region. Besides these elements, there is of course the situation on the bridge that needs to
be operated. Di�erent kinds of tra�c react in di�erent ways, and have di�erent charac-
teristics to work with, like form, color, speed, and behaviour. This applies for both water
and land tra�c.

Level 2: Comprehension of Current Situation
Level two is the comprehension of the situation based on a synthesis of disjoined level 1
elements. In this step, the move is made from knowing about the presence of the elements
to analysing the signi�cance of the elements in light of the operator's goals. An operator
could spot a person in the �rst level that is responding to the warning lights, and act
accordingly by waiting for the barriers to lower, and the bridge to open. This person isn't
threatening the goals of the operator, as he can still open the bridge safely, and optimize
the tra�c �ow. However, a person that is standing on the movable bridge deck after the
operator has given the command to open the bridge, is of much more signi�cance, as this
does obstruct the operator's goals.

Level 3: Projection of Future Status
The third step is one that bene�ts from the operator's experience, and this is by spotting
an element, and the ability to predict how it will behave shortly after. If a vehicle is
approaching recklessly, it is no immediate threat at its current position, but a projection
of the future status could indicate that it will endanger the operation in a later stage.
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This projection of future status will provide extra decision time for the operator.

Change Blindness and Inattentional Blindness

Without the �rst step in Endsley's model, perception of elements in the current situation,
situational awareness can't be reached. The problem is that the perceptual system doesn't
always respond appropriately to changes within the visual environment, even if there is
a detailed picture of the scene. So, even if a person is visible on the camera footage, and
the operator is monitoring this screen, it is not certain that this person will be perceived.
The two phenomenons that are related to this are change blindness, and inattentional
blindness.

Change blindness is 'the surprising failure to detect a substantial visual change', and
inattentional blindness 'the failure to notice an unexpected, but fully-visible item when at-
tention is diverted to other aspects of a display'((Jensen, Yao, Street, & Simons, 2011)).
A famous example of the latter is the 'gorillas in our midst' experiment conducted by
Simons and Chabris((Simons & Chabris, 1999)), where the observers were shown a video-
tape with the task to count the number of passes between two teams of three basketball
players. Within this 75 seconds long video, a gorilla walked through the frame, being
clearly visible for 5 seconds, as shown in �gure 9. Around 50% of the observers did not
spot the gorilla because of inattentional blindness.

Figure 9.: Inattentional Blindness (Simons & Chabris, 1999)

So how does this translate to perceiving the situation on the bridge? When an operator
is monitoring the displays with an expected shape of a person or vehicle in mind, it is
possible to miss out on an instance of interest, because the appearance of this instance
deviates from the expected shape. Take the incident at the Bernhardbrug for example,
the victims were standing very close to each other, in dark clothes, covered by a dark
umbrella. When an operator is monitoring with a more distinct appearance in mind, the
chance of detecting these victims could have been decreased. It could also be that an
operator is looking out for maritime tra�c, because of a ship having technical di�culties
for example. In this case, the operator's attention is diverted to this situation, making
him inattentionaly blind for anomalous pedestrian behaviour.
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Where these scenarios are imaginable, the phenomenon of change blindness is probably
a bigger risk when operating based on cameras, as more complex processing is typically
required for successful performance in change blindness tasks than inattention blindness
ones (Eysenck & Keane, 2015). According to Jensen et al., �ve separate processes must be
engaged successfully by the operator, for change detection to occur (Jensen et al., 2011).

1. Attention must be paid to the change location.

2. The pre-change visual stimulus at the change location must be memorized.

3. The post-change visual stimulus at the change location must be memorized.

4. The pre- and post-change representations must be compared.

5. The discrepancy between the pre- and post-change representations must be recog-
nised at the conscious level.

Often, in the real world, people are aware of changes in the visual environment because
they detect motion signals accompanying the change (Jensen et al., 2011). This makes it
more di�cult to detect changes when the motion signals are missed.

When monitoring a bridge, the operator needs to keep his eyes on several camera dis-
plays. Because of this, the operator could miss the motion signals of a person entering the
bridge on one screen, when monitoring another. If this person stops moving, no additional
motion signal will be visible, possibly leading to change blindness. Subsequently, leading
to a possibly unsafe situation. Research by Durlach, showed that when multiple events
occur simultaneously, operators can fail to detect important changes even when they are
not fatigued, stressed or multitasking (Durlach, 2004). When looking at both accidents
discussed in this report, in both occasions the victims were waiting for the bridge to
open with minimal movement, while the operator had to monitor and control the com-
plex opening procedure. This combination could possibly have led to change blindness,
making the operator unaware of their presence. A change detection tool could mitigate
this risk (Durlach, 2004). Using an object detection system could possibly achieve this.

3.2.2. Human-Machine Interaction

Within the �eld of human-machine interaction, the need of identifying users' emotional
and social drives and perspectives is recognised. This means getting familiar with their
motivations, expectations, trust, and social norms, and relating these topics to work prac-
tices, communities and organisational social structures as well as organisational, political,
and economic drivers. Therefore, HMI researchers turn to qualitative research methods to
get insight into these elements, and to understand the qualities of a particular technology
and how people use it in their lives. These subjects are di�cult to put into numbers, and
because of that quantitative research will not cover the issues properly. (Adams, Lunt, &
Cairns, 2016)

Ethnographical �eld study techniques(observation and contextual interviews) are em-
ployed to provide qualitative data about potential and/or actual users of the product, with
the main principle to come up with a set of behavioural patterns, that help categorize
modes of the use of the potential product (Cooper, Reimann, & Cronin, 2007, pg.20).
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Personas

To help categorizing the modes of use, and use them in the building process, personals
can be used. Personas help thinking and communicating about how users behave, how
they think, what they wish to accomplish, and why. These are based on the behaviors
and motivations of real people as observed during the research phase, and they're used
to represent them during the design phase (Cooper et al., 2007, pg.75). When a certain
type of persona is needed to complete the entire set of future users, but a representative
person can't be found during the research, a provisional persona could be made. Provi-
sional personas are structured similarly to real personas but rely on available data and
designer best guesses about behaviors, motivations, and goals. Although they are based
on assumptions opposed to qualitative research, making use of provisional personas yields
better results than no user models at all(Cooper et al., 2007, pg.87).

The process of creating personas, can be divided into the following steps(Cooper et al.,
2007, pg.97/98):

1. Identify behavioral variables

2. Map interview subjects to behavioral variables.

3. Identify signi�cant behavior patterns.

4. Synthesize characteristics and relevant goals.

5. Check for redundancy and completeness.

6. Expand description of attributes and behaviors.

7. Designate persona types.

Represented Models

The insights in the user's behavior and motivations that are captured in the personas,
help understanding how to represent the working of the machine or application to the
user. By representing it in a way that is close to the way the user perceives the working
of a system, the user's understanding of the system will be increased. The three types of
models that are relevant when building the represented model are the following:

Implementation Model
The implementation model, also known as the system model, is the representation of how
a machine or a program actually works.(Cooper et al., 2007, pg.30). In the case of an
object detection model, this describes the complete process of gathering image data, the
way of processing these frames to get to the predictions, and the steps taken to present
these detections to the operator.

Represented Model
Generally, users don't need to know all details of how a complex model actually works,
so they come up with a cognitive shorthand for explaining it, which is extensive enough
to cover their interactions with it, without having to know the entire inner mechanics
(Cooper et al., 2007, pg.30). For this object detection application, for example, the op-
erator doesn't have to know how a convolutional neural network manages to detect and
classify objects. As long as the operator regards this system as a tool that checks camera
footage for objects and reports it to them when necessary, he will be able to interact with
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it.

Mental Model
The represented model is the way the designer chooses to represent a program's func-
tioning to the user(Cooper et al., 2007, pg.30). The closer this represented model comes
to the mental model of the user, the easier it will be for the user to understand and use
the program, as depicted in �gure 10. In the implementation model, the object detection
system will work with classes and scores, depicting the certainty of a prediction, and
when that score is higher than a stated threshold, at a certain moment during the bridge
operation process, the detection will be presented to the bridge operator. This threshold
may change for di�erent light/weather conditions. The worst represented model would
ask the user to change the values appropriately, a better model would work with di�erent
setting for the operator to choose from, based on the weather conditions, but the best
model would just fetch the weather information itself, and adapt to it. This would come
closest to the mental model of a system that accurately detects objects.

Figure 10.: Represented Model Positioning (Cooper et al., 2007, pg.30)

Human Centered Automation

To further enhance the operator's understanding of the system, the Human-Centered Au-
tomation principles as put together by (Wickens, Lee, Gordon-Becker, & Liu, 2014) should
be considered. Safeguarding these in the design, should achieve maximum harmony be-
tween human, system, and automation. Below, the six principles are listed, stating both
the importance of the principle, and the way of adapting to the object detection model.

1. Keeping the Human Informed
Humans should have the 'big picture' of the process. To be able to have this, the human
should be informed of what the automation is doing, and why. Therefore, the underlying
processes of an automated task should be well displayed.

For the automated detection system, the operator should be able to see on the basis of
what the system decides to notify. This way, the operator could prevent false positives
and false negatives of unnecessarily stopping processes, or putting people at risk, as the
outcome of the automated model is not always in line with the actual situation.

2. Keeping the Human Trained
When working with an automated system, work becomes more abstract as it depends upon
understanding and manipulating information generated by the system (Zubo�, 1988). In
case of the operator, it could be a choice to communicate the prediction scores/con�dence
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rates of the detected instances. The operator should then judge the presented information
by taking into account the limitations and possibilities of the system. For example, with
a con�dence rate of 0.4 in broad daylight, the probability of it being a false detection, is
way bigger than the same con�dence value on a rainy evening. With updated features
and other changes to the system, the operator should be aware of the changed conditions
and their implications. This is also where the Human Operator Support System(HOSS)
dilemma makes its entrance(Wieringa & Wawoe, 1998). A HOSS reduces the task com-
plexity with the goal to reduce the mental load experienced by the operator, in this case,
the stress of being the only set of eyes that needs to spot a user on the bridge in times of
opening. However, decreasing the task complexity may lead to an increase of the system
complexity by adding the HOSS. This sub-system is also part of what the operator needs
to understand. Especially during stressful moments, not fully understanding this HOSS
may end up causing a higher experienced workload for the operator, making it counter-
productive.

For a HOSS that is able to reduce the task complexity without adding to much on
the system complexity side, there is not much too worry about. However, adding a deep
learning computer model does increase the system complexity by a lot. For many people,
such a machine learning model is a black box, and even when familiar with the working
of such an algorithm, it is still di�cult to diagnose certain behaviour.

However, training on the understanding of the automated system is not the only mean-
ing of the 'keeping the human trained' principle. It also goes for taking over the automated
tasks in case the system fails. Take for example an automated pilot. When the system
fails, the actual pilot should still be able to �y and land the plane safely. In moments like
these, it is important to have an operator that is experienced and trained in dealing with
the manual procedure. This is somewhat of a catch 22. A failing autonomous system
could end up in a critical situation where an experienced operator is needed to get out of
the situation. However, outside of experiencing these kind of situations, it can be di�cult
to train on them.

3. Keeping the Operator in the Loop
This principle is focussed on keeping the operator's situational awareness high, so the
operator is able to jump back into the control loop when the system fails. In this case,
it could mean that if the detection system could perform all steps in the perceptual, cog-
nitive and action stages, the operator's situational awareness would degrade, making it
di�cult to manually override the system in case of opening the bridge when dealing with
a false negative.

4. Selecting appropriate stages and levels when automation is imperfect.
When designing a human-machine interface, the level of automation and the stages where
it is active should be considered. In terms of the bridge opening procedure, it is possible to
distinguish four basic steps. Detecting instances(step 1), judging the instances based on
con�dence, type, situation (step 2), recommend appropriate action(step 3), and perform
the actual action(step 4). When the automation is imperfect in the early stages(step 1
and 2), the operator can work around it in the later stages, and not much harm is done.
However, when the imperfection takes place in the last stages, for example opening a
bridge because of a missed instance, the e�ects can be much more serious.
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5. Making the automation �exible and adaptive.
Autonomation studies showed that the amount of automation needed to vary from person
to person and to the same person over time (Wickens et al., 2014). This is particularly
the case in situations that are not fully predictable. A parallel could be drawn with cruise
control in a car. Some drivers prefer to use it, others don't, and for some people their
preference could change for the type of tra�c situation. In the case of the object detec-
tion system, for example, it could be a choice to make the con�dence threshold of the
system �exible, so the operator can decide to accept more false positives, because he ex-
periences challenging conditions, where the need for an automated support system is high.

Another option is to make the object detection system use adaptive automation, a
form of automation that can adjust its method of operation based on changing situa-
tional demands(Scerbo, 1996). The level of automation can be steered by certain user,
task, and environment based conditions. There are numerous ways of making the object
detection algorithm adaptive. The system could for example determine the operator's
age, and subsequently adjust the estimated reaction times of the operator, as age a�ects
reaction time and movement time (Light, Reilly, Behrman, & Spirduso, 1996). Taking it
one step further, it is also possible to monitor heart rate and body temperature to moni-
tor workload imposed on the operator and fatigue. Doing this, the system can adjust the
level of automation for reducing the workload, or increase the intensity of noti�cations
and lower the con�dence threshold to make up for the reduced attention of the operator
caused by fatigue.

These options may have their bene�ts, but there are also some reasons for not imple-
menting elements with such adaptive character. Again, the system complexity increases,
and dealing with rapidly changing system con�gurations may negatively a�ect the oper-
ator's understanding and comfort when working with the system (Wickens et al., 2014).

6. Maintaining a positive management philosophy
Besides the technical challenges of automation, there is also a social part that is impor-
tant to keep in mind. Operators could see the new technology as a system that eventually
replaces them, and the idea of cooperating on bringing a system further that possibly
makes their jobs redundant in the future can count on resistance. According to a survey
conducted by HR agency ADP in 2018, 23 percent of the 1300 Dutch respondents feared
losing their job to automation in the near future (ADP, 2018), this phenomenon, also
known as 'Automation Anxiety', has been around for ages. An early example was the
strike of New York's lamplighters on the night of April 24, 1907, because their work lost
value due to the uprise of electric streetlights (Frey, 2019). A positive management phi-
losophy should make clear that the automated sub-system is designed for support instead
of replacement. Highlighting that the human remains the master, and the automation
the servant increases the chance of acceptance (Billings, 1996).

On a more conceptual level, there is an element that plays a big role in both accepting a
new human colleague and accepting a machine as support, and that element is trust. Trust
is a major determinant of reliance on and acceptance of automation, standing between
people's beliefs towards automation and their intention to use it (Ghazizadeh, Peng, Lee,
& Boyle, 2012). The elements where human-automation trust and interpersonal trust are
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based upon, however, di�er. Interpersonal trust can be based on the ability, integrity, or
benevolence of a trustee (Mayer, Davis, & Schoorman, 1995), whereas human-automation
trust is based upon performance, process, or purpose (J. D. Lee & See, 2004). On the
performance side, if the operator understands that in challenging conditions, an extra
set of eyes could make the asset safer, and lower the experienced workload, the trust
increases. On the process side, the operator will remain the decision-making permissions,
and also the monitoring of the bridge isn't replaced by the system. So, the expertise and
experience of the operator will remain its importance. Lastly, on the purpose side of the
system, its sole purpose is to support the operator to make the work less stressful, and
making the bridge safer. Keeping these elements in mind when introducing and managing
the system, the chances of acceptance will increase.

Cry Wolf Syndrome / Alarm Fatigue

For the implementation of an object detection system, an e�ect that is interesting to
research is the e�ect of false detections on the operator's behaviour. This is closely
related to the so-called Cry-Wolf syndrome, named after Aesop's fable "The Boy Who
Cried Wolf", also known as alarm fatigue.
Alarm fatigue is referring to the sensory overload when clinicians are exposed to an

excessive number of alarms, which can result in desensitization to alarms and missed
alarms(Sendelbach & Funk, 2013). A sector where this problem has been dominant in
the last decades is Health Care (ECRI Institute, 2020). The research demonstrated that
72% to 99% of clinical alarms are false, which led to alarm fatigue.
From which point false alarms will seriously a�ect the reliance of an operator on the

system is not certain. Researchers vary from stating there is no e�ect at all (Wickens et
al., 2009) to stating it can jeopardize safety (Ruskin & Hueske-Kraus, 2015). According to
Mileti and Sorensen the e�ectiveness of people's responses to warnings is not diminished
by the so-called 'cry wolf' syndrome, as long as they've been informed of the reasons for
the previous "misses". False alarms, if explained, may actually enhance the awareness of
a hazard and its ability to process risk information. (Mileti & Sorensen, 1990).

Response Time

When designing the HMI for the Object Detection Model, it is important to be able to go
from the perceptual stage, via the cognitive stage to the action stage as quick as possible.
For this system, this means going from perceiving the detected instance by the model, to
performing the bridge commands as soon as possible. Below, the implications for each
phase are described.
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Figure 11.: Flowchart Bridge Operator (Proctor & Van Zandt, 2008)

Perceptual stage
This is the stage where the information provided by the object detection system, should
be displayed to the operator as clear as possible. Di�erent options of displaying a detected
instance are depicted in image 12. The top two variants are able to notify the operator
that on that particular screen an instance was detected. The area of focus doesn't go into
more detail than that, so the remaining e�ort for the operator to see what the system
actually detected, can be substantial. In case of a false positive, it will not become clear
what the detected object was, which decreases the operator's understanding of the sys-
tem. This happened during the pilot in March with the Bosch system. The screen only
turned red when an instance was detected so the operator had to search for the instance of
interest. The system had approximately one false alarms every time the bridge opened ac-
cording to one interviewee, and combined with the unclear way of presenting information,
the operator lost the sense of reliance and compliance with the system, and switched it o�.

For the bottom two alternatives, the focus area is a lot smaller, and point directly
at the detected instance. If there is a false positive, the operator sees it straight away,
and potentially sees the familiarities with the category that should have been detected,
understanding why the system reacted the way it did.

In case of an actual correctly detected instance, the main di�erence between the display
forms is the time it takes to spot the instance of interest. Reducing this time to a minimum
could be crucial in a dangerous situation. The respondents of the survey preferred the
option in the bottom left corner, but to ensure the right option is used, empirical research
should be done by measuring the time it takes for an operator to point out the detected
instance.
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Figure 12.: Detection Options

Cognitive stage
In this stage, the operator needs to make a decision based on the perceived information in
the previous stage. As response time is still critical, the time needed to make a decision
should be minimized as well. This is where Hick's Law, also known as the Hick-Hyman law,
is implemented. Hick's Law states that the time required to make a decision is a function
of the number of available options (Lidwell, Holden, & Butler, 2010). It demonstrates
that a person's reaction time increases as the number of choices increases (Erlandson,
2007). This applies to simple decision-making tasks in which there is a unique response
to each stimulus. For example, there are bridges where the bridge decks for motorized
and non-motorized transport are separated, and controlled separately. If there are also
two emergency buttons, one for each section, the reaction time will be longer than when
one emergency button is used, as the number of options is bigger.

Action Stage
Where Hick's Law dealt with the reaction time of the operators, Fitts' law does the same
with movement time. According to Fitt's Law, the smaller and more distant a target is,
the longer it will take to move to a resting position over the target. Also, it states that the
faster the required movement and the smaller the target, the greater the error, because
of the speed-accuracy trade-o� (Lidwell et al., 2010). For emergency buttons, to ensure
rapid movements, it is therefore wise to place them near the operator and/or making
them large. A downside of this could be that the chances of accidentally activating them
are higher, so a balance needs to be found.

Sensory Psychophysics

Part of working with human machine interface is the understanding of how humans are
able to perceive and act on information arriving through the senses. Ernst Weber and
Gustav Fechner founded the study of psychophysics and are regarded as the fathers of
modern experimental psychology(Proctor & Van Zandt, 2008). They showed how con-
trolled experimentation could reveal the characteristics of human performance. Weber
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researched the ability of humans to spot the di�erence in magnitude between two stimuli.
These stimuli could be weight, sound, light, and other elements that can be perceived by
human senses. The discovered relation became Weber's Law, which can be formulated as
follows:

∆I

I
= K (3.1)

Where I is the intensity of one stimulus, ∆I is the extra intensity needed for another
stimulus of the same kind to be minimal noticeably di�erent from the �rst, and K is
a constant(Weber, 1978). Constant K is called the Weber Fraction. The Weber Frac-
tion remains relatively constant for each particular sense, but di�erent types of sensory
judgements have their own Weber Fraction, as depicted in �g 3.1 (Goldstein, 2009).

Electric Shock 0.01
Lifted Weight 0.02
Sound Intesity 0.04
Light Intensity 0.08
Taste (Salty) 0.08

Table 3.1.: Weber Fractions for a Number of Di�erent Sensory Dimensions (Teghtsoonian, 1971)

In this research, Weber's Law could help to set the intensity of di�erent noti�cations,
where a clear distinction between alerts could distinguish di�erent levels of severity.

3.3. Object Detection

Object Detection through Deep Learning has been applied in various �elds, as deep learn-
ing helps to improve the detection and classi�cation performance of computer vision re-
lated challenges, solving issues in areas where approaches based on hand-crafted features
provided only limited solutions(Karg & Scharfenberger, 2020). In the medical domain,
for instance, convolutional neural networks have been applied with promising results. A
research performed by Bejnordi et al. showed that deep learning algorithms managed
to outperform the diagnostic performance of a panel of 11 pathologists, mimicking their
routine pathology work�ow in a simulation exercise(Bejnordi et al., 2017). In the steel
industry, the same technology was used to diagnose steel surface defects, with scores sur-
passing the traditional machine learning approaches. The Convolutional Neural Network
(CNN)-based algorithm managed to achieve a detection performance of 99.44%(S. Y. Lee,
Tama, Moon, & Lee, 2019).

As there is no literature available on the use of object detection on remotely controlled
bridges, it is needed to look into other domains where parallels with the intended use-
case can be made. Maybe the closest related topic is autonomous driving, where the
detection of vulnerable road users is also a crucial component. With the rising interest
in autonomous driving, several kinds of research have been done on the application of
convolutional neural networks in the domain of infrastructure and transport. Successful
studies have been committed to detecting tra�c signs(Peemen, Mesman, & Corporaal,
2011), lanes(Kim & Lee, 2014), and reading license plates(H. Li, Wang, You, & Shen,
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2018). These objects are limited to a number of forms and shapes, especially if the model
is built for a speci�c country, so it only has to cope with the given standards of that region.
However, tra�c users vary to a large extend. There are cars in many di�erent forms, and
the appearance of pedestrians is di�erent among ages, ethnic backgrounds, cultures, etc.
According to researches done in the last years, convolutional neural networks also out-
perform the current hand-tailored feature detectors and machine learning models when it
comes to these complex elements (Bautista, Dy, Mañalac, Orbe, & Cordel, 2016), (Tomè
et al., 2016), (Ribeiro, Nascimento, Bernardino, & Carneiro, 2017).

Apart from the less case-speci�c attributes that helped the rapid development of deep
learning models, being the changes in network architecture, the improved ability to han-
dle a big amount of data, and the availability of faster processing with GPU's e.g, there
are also more distinct components that led to the enhancements of deep learning in de-
tecting vulnerable road users. The most important one is the availability of many public
datasets focused on this category, as one of the prerequisites for composing an accurate
convolutional neural network is having a lot of data to perform training on(Karg & Schar-
fenberger, 2020).

One of these big public datasets is the Caltech dataset, which was at the time of publi-
cation in 2009, twice as big as the existing pedestrian datasets of that time. The Caltech
dataset consists of 250,000 frames, subtracted from approximately 10 hours of 640x480
30Hz video taken from a vehicle driving through regular tra�c in an urban environment.
In these frames, 2300 unique pedestrians were annotated, consisting of 350,000 bounding
boxes(Dollár, Wojek, Schiele, & Perona, 2009). This dataset helps both training pedes-
trian oriented computer vision models, and evaluating the e�ectiveness of the generated
model. However, these datasets are all build for eye-height, so it is to be seen if training
on these datasets is also su�cient for the cameras at bridges, which are normally about
6 meters high. This will be addressed in the analysis phase.

Karg et al. also state the functional requirements for a pedestrian detection model, that
can be translated into the application of a similar model on remotely controlled bridges.
The following needs are distinguished(Karg & Scharfenberger, 2020):

1. Pedestrian detection should work at any lighting condition, for pedestrians both far
and near the camera.

2. Pedestrian detection should be able to handle di�erent sizes, poses, appearances,
and views.

3. Pedestrian detection should work in challenging weather conditions.

4. Detection should work in complex environment and tra�c situations.

5. Pedestrians can be detected even when they are covered by carried objects, vehicles
or other persons.

6. Pedestrian Detection is able to detect individual pedestrians in a crowd and extract
the most relevant and critical pedestrian that a vehicle may need to brake for.

For the case in this report, the last requirement is less relevant. Any detected person or
vehicle is considered a reason to activate the noti�cation system. There should not be a
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di�erence whether it is a group that crosses a bridge whilst it is opening, or just one person.

In this report, the goal is to work with the existing infrastructure, so the camera sys-
tems as they are being used at the moment. This is because they are technically in order,
and this would minimize the costs of scaling the solution. However, the use of CNN's isn't
just limited to color images, but can also be used on multispectral data. This way, ther-
mal image information can also be used to boost the performance of the object detection
model. Combining these two spectrums has shown possibilities in obtaining higher con�-
dence rates (Ding, Wang, Laganière, Huang, & Fu, 2020; C. Li, Song, Tong, & Tang, 2019;
Chen, Xie, & Shin, 2018). Analysing the gains of using multispectral images compared
to using only the color spectrum in the speci�c use case of remotely controlled bridges,
can be handled in further research, as stated in the discussion.

This report deals mainly with CNN's, which is a Deep Learning approach, but there
is also a machine learning approach that has been popular over the last decades. This
is by using a Histogram of Oriented Gradients(HOG) descriptor and a Support Vector
Machine. According to research, CNN shows promising improvement over these more
traditional methods (Liu et al., 2020; Lemley, Abdul-Wahid, Banik, & Andonie, 2016;
Antipov, Berrani, Ruchaud, & Dugelay, 2015). This is also visible in �gure 13, where
the benchmarks on the popular VOC2012 dataset show a signi�cant increase since the
arrival of Deep Learning. Accuracy aside, CNN tends to need a fair amount of processing
power, as stated earlier in this section, making it a fairly slow process, depending on the
complexity of the model. This research should show whether it is possible to �nd a good
balance between accuracy and speed for the use of Object Detection on the use case of
remotely controlled bridges, as this has not been done before.

Figure 13.: Signi�cant improvement since arrival of Deep Learning (Liu et al., 2020)

3.3.1. Background Subtraction, Histogram of Oriented Gradients

and Support Vector Machine

Before researching the deep learning oriented approach, the more traditional, machine
learning approach of Background Subtraction, Histogram of Oriented Gradients and Sup-
port Vector Machines will be explained.

Background Subtraction

Background subtraction is a concept used to detect moving objects in videos taken from a
static camera. Several algorithms have been developed to achieve this, and it is applied to

33



various �elds, such as surveillance, analyses of sport videos, etc. Because this technique
is applied to static cameras, it is possible to detect moving objects by comparing each
new frame with a representation of the scene background. The main advantage of using
background subtraction is that the outcome is an accurate segmentation of the foreground
regions of the scene background (Elgammal, 2014).

Figure 14.: Background Subtraction (Shaikh et al., 2014)

The heart of the technique is background modeling and background adoption to both
sudden and gradual changes in the background. With a completely static background,
this process isn't too challenging, but when working with natural scenes, backgrounds are
generally dynamic. Changes in illumination, swaying vegetation, rippling water, �uttering
�ags, and such behaviours can be expected. This is the main hurdle for this technique
(Jiang & Wang, 2012).

Several researchers have tried to mitigate these problems, and came up with signi�cant
improvements by using Gaussian mixture model amongst others, to make the background
adaptive to these dynamic elements (Stau�er & Grimson, 2000; L. Wang, Tan, Ning, &
Hu, 2003).
Typical outdoor challenges for video analytics are:

• Low-light situations

• Fast illumination changes

• Snow / hail reducing visibility

• Shaking / vibrating camera

• Moving background like grass / trees in the wind or water / waves

• Low contrast of object to background

• Object moving toward the camera instead of crossing the �eld of view

• Object rolling / crawling towards the fence

• Fast objects near the camera

• Deep object shadows

• Groups of objects

Histogram of Oriented Gradients

Histogram of Oriented Gradients(HOG) descriptors have been shown to be distinctive
and robust under small a�ne transformations and illumination changes. The descriptors
are constructed by dividing the image into a dense grid of uniformly spaced cells and
then computing the orientation histograms of the image gradient values on each cell.
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Local normalization of the gradient strengths takes care of the illumination and contrast
di�erences. The vector of the components of the normalized cell histograms for all the
block regions forms the HOG descriptor(Collumeau, Leconge, Emile, & Laurent, 2011).

Support Vector Machines

Support Vector Machines(SVM) are learning systems that use a hypothesis space of lin-
ear functions in a high dimensional feature space, trained with a learning algorithm from
optimisation theory that implements a learning bias derived from statistical learning
theory(Andrew, 2001). For the classi�cation of the detected objects, support vector ma-
chines are a popular choice. Three of the main strengths of SVMs compared to other anal-
ysis methods are the fact that SVMs tend to work well in datasets that have a very large
number of variables and a relatively small sample size. Secondly, SVMs can learn both
simple and highly complex models, and �nally the strong built-in protection against an
element that is deleterious to modern high-dimensional modeling; over�tting(Statnikov,
Aliferis, Hardin, & Guyon, 2013, pg.9). Over�tting means that a model learns the train-
ing set too well, but underperforms on unseen data. This can be observed when the loss
of the training set is way lower than the loss of a new dataset/the testing set. The other
side of the spectrum is under�tting. Here, the losses in the training set are high, and so
are the losses when running the model on an unseen dataset. A good �t model is a model
that suitably learns the training dataset and generalizes well to the new dataset(Brownlee,
2018a, pg.246). A visual example is shown in �gure 57, in appendix B.

Figure 15.: Soft Margin & Hard Margin SVM (MLMath.io, 2019)

In �gure 15, the working of an SVM is depicted. In this case, a dataset is classi�ed
into two classes, which is closest to the basic form of a SVM, as it originally is a binary
classi�cation methodology. The goal of the SVM is to pick a boundary line(or hyperplane)
to make the margin between the classes as big as possible. The data points closest to the
boundary line, circled in the �gure, are the support vectors. The di�erence between the
hard margin(left) and the soft margin(right) is the inclusion of outliers/anomalies. The
hard margin forces a hyperplane to separate the classes(with a high order polynomial),
often leading to over-�tted models. The use of soft margins allows the SVM to wrongly
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classify samples that are outliers, keeping a good �t for classifying unseen data samples.

As mentioned earlier, SVMs are capable of dealing with highly complex datasets. This
is done through so-called multiclass SVMs, which can be regarded as multiple binary
classi�cations combined. The two methodologies to do so are 'One vs. One' and 'One vs.
Rest', as displayed in �gure 16. 'One vs. One' SVM is generally the fastest method of
training, and tends to have higher accuracy, according to Hsu & Lin(Hsu & Lin, 2002) and
Allwein(Allwein, Schapire, & Singer, 2001), although Rifkin & Klautau(Rifkin & Klautau,
2004) disagree with the statement on the accuracy, after proper con�guration.

Figure 16.: Multiclass SVM (Dürr, 2014)

Elements Combined

Combining the three elements above, a solid object detection model can be constructed.
The Background Subtraction is used to �nd the area of interest, subsequently the HOG-
descriptor is used to subtract the features, and �nally the Support Vector Machine is
used to classify the output of the HOG-descriptor into useful categories. This typical
architecture, although without the background-subtraction, is described by (Suleiman &
Sze, 2016) and depicted in �gure 17. The descriptor is able to process high de�nition
video footage in real-time with a frame-rate of 60fps.

Figure 17.: Object Detection Algorithm using HOG features and SVM (Suleiman & Sze, 2016)
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3.3.2. Convolutional Neural Networkss

In this section, CNNs will be explained, based on the basic architecture as depicted below.
The functionalities of the separate parts will be discussed from left to right, from the input
layer, to the output layer.

Figure 18.: Sample Convolutional Neural Network Architecture (Stanford University, 2018)

Input Layer

The input of a Convolutional Neural Network(CNN), are images. When working with
video footage, the goal is to extract frames from the video, and process them individually.
Each frame is analyzed from scratch, so the CNN doesn't work with the relations between
the individual frames. It is possible to build a model that does keep this relationship in
mind. For example, tracking models can be built with a CNN architecture, linking the
di�erent frames within a camera stream, or combining them with other cameras observing
the same region (Chu et al., 2017; Xu, Li, & Deng, 2016).

Figure 19.: Decomposed RGB (The Learning Machine, 2020)

When dealing with a monochrome input image, the input of the CNN is a matrix with
the M(Height of Image) * N(Width of Image), as the matrix contains all pixel values of
the image, which are values in the range of 0 to 256. When dealing with a color image, the
image can be decomposed into three channels, the red, green, and blue channels(RGB).
In this case, the input is a three-dimensional matrix with the number of channels as an
extra dimension. In image 20 it is shown how a three-dimensional RGB image can be
deconstructed into three two-dimensional images. As yellow is a combination of red and
green, it is clear to see how the values in this region are high in the red and green channel,
and low in the blue layer, as a high pixel value is depicted light, and a low pixel value
dark.
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Figure 20.: RGB(1),R(2),G(3),B(4)

Troughout the feature learning phase, the channels are separated, and are combined
just before the classi�cation process into a 1d array.

Feature Learning

Convolutional Layer/Feature Engineering

The convolutional layer is the most important component of the CNN, and is also known
as the feature detector of a CNN. Here, �lters are convolved with a given input matrix to
generate an output feature map. This input matrix can be the raw data of an imported
image, as described in the previous section, but as many CNN architectures contain mul-
tiple convolutional layers, it can also be the result of a previous convolution. The goal
of these convolutional layers is to subtract patterns or features from the image. In the
early convolutional layers, this is often used to subtract global features, as edges, and in
later convolutional layers, this is going more into detail, like textures and facial features.
An example of such an early convolutional layer is depicted in �gure 21, where the upper
part of the image shows the �lters used to detect the edges.

Figure 21.: Filters of AlexNet's First Layer (Krizhevsky et al., 2012)

A �lter, also known as a kernel, is a rectangular grid of discrete numbers (Khan, Rah-
mani, Shah, & Bennamoun, 2018). Within the convolutional layer, these are the pa-
rameters that are learned. When dealing with 32 �lters for example, each of dimension
5x5, the total of learnable parameters is 32*5*5=832 (Michelucci, 2019). There also exist
CNNs where an additional bias is added in the convolutional layers, which would add one
learnable parameter per �lter. These �lters, are applied across the width and height of
the input matrix in a sliding windows manner with a prede�ned stride(s), and are applied
for every depth of the input image. While doing this, the dot product for each position
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is stored in a new matrix, as shown in �gure 22.

The result of this convolution process is called the feature map, also referred to as
the activation map. Both names are logically named after the process. The feature
map stores the features as detected by the related �lter, and the activation map stores
the pixels where the �lter was 'activated', which means that the �lter lets information
pass through it from the input volume into the output volume. As seen in �gure 22,
the computed feature maps are smaller sized than the input matrix. However, there are
applications where this is not desirable, as they require more dense predictions at the
pixel level. Moreover, keeping the spatial size constant allows to design deeper networks
by avoiding a quick collapse of the output feature dimensions (Patterson & Gibson, 2017).

Figure 22.: Convolution Process Visualized (Khan et al., 2018)

The solution for keeping the spatial size the same, is adding zero padding to the input
matrix. This is done by adding rows of pixels on the top and bottom, and columns of
pixels on the right and left of the input image before doing the convolution (Venkatesan,
Li, Venkatesan, & Li, 2018). The number of added rows and columns can be calculated
by using the feature map dimension equation, as stated in �g 3.2.

h′ = bh− f + s+ p

s
c, w′ = bw − f + s+ p

s
c (3.2)

where:

h′ = height feature map
w′ = width feature map
h = height input matrix
w = width input matrix
f = �lter size
s = stride
p = padding
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Max/Mean Pooling

A popular manner to reduce the dimensions of the outputs of the convolutional layers, is
making use of max pooling. It may feel counter-intuitive to reduce the dimensions after
explaining that zero-padding is added to maintain the spatial dimensions, but this way of
reducing dimensions will condense the relevant information (Michelucci, 2019). By gradu-
ally aggregating information, yielding coarser and coarser maps, the global representation
of an instance can be learned, while keeping all of the advantages of convolutional layers
at the intermediate layers of processing (Zhang, Lipton, Li, & Smola, 2020).

Another bene�t of using pooling layers is that it makes the network more tolerant to
slight translations. For example, when working with edges, if an edge is moved up one
pixel, and the resulting feature map would not be subjected to the pooling layer, the
output of this slightly translated image would be vastly di�erent. As these pixel shifts
are unavoidable in real life, because of camera vibrations, for example, mitigating the
sensitivity of the convolutional layers by the pooling layer is beni�tial (Zhang et al., 2020).

The two most common ways of pooling are Max and Mean Pooling, where the �rst
mentioned is the most popular choice. However, it is dependent on the data and features
at hand whether max pooling is the most accurate option (Boureau, Ponce, & Lecun,
2010).

Figure 23.: Max Pooling & Mean Pooling Visualized (A. Wang, 2019)

Classi�cation

After the pooling layer, a fully connected neural network(�g 24) is used to subsequently
classify the extracted features. The output of the last pooling layer before the classi�cation
is a 3D feature map, and the input required for a fully connected neural network is a 1D
feature vector. So, before the output of the feature learning phase can be processed in
the classi�cation phase, the 3D volume is �attened, into an 1D vector.
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Figure 24.: Fully connected multilayer feed-forward neural network topology (Patterson & Gibson,
2017)

The fully connected neural network has an input layer, one or more hidden layers, and
an output layer. Each layer has one or more arti�cial neurons. The architecture of a neu-
ron is displayed in �gure 25. The net input of the activation function is the dot product
of the weights and the input features. The depends on the type of activation function
what the output of this function will be. The di�erent activation functions are described
in more detail in the next section.

The input features in this dot product can be the input value of the �attened layer,
when the neuron is part of the �rst hidden layer. It can also be the output of an activation
function in the layer before, if the neuron is not in the �rst hidden layer. The other part
of the dot product is the weights on the connections. These are coe�cients that scale
the input signal to a given neuron. This can either amplify or minimize the input features.

Figure 25.: Arti�cial neuron for a multilayer perceptron (Patterson & Gibson, 2017)

Often, biases are added to the input on an activation function. These are scalar values
that ensure that at least a few nodes per layer are activated regardless of the strength of
the input signal. Biases enable the network to learn by giving action in the event of low
signal. This way it allows the network to try new interpretations or behaviors (Patterson
& Gibson, 2017).
Combining these elements, the activation value of a node can be noted as follows:

ai = g(Wi · Ai + b) (3.3)
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where:

ai = Activation value
Wi = Vector of all weights leading into neuron i
Ai = Vector of activation values for the inputs to neuron i
b = Bias value
g = Activation function

Before going into detail about the activation functions, the purpose of the output layer
should be discussed. The neural network maps an input space to an output space, so
the output layer gives an output based on the input from the input layer. Therefore,
the output layer provides the predictions or answers of our model, depending on the goal
of the model, based on the provided input data. In case of a classi�cation problem, the
output of the model is a vector with predictions, with every node in the output layer
representing a separate category. In case of a regression, the outcome would have been
a real-valued output. To get to these predictions, the output layer uses either a softmax
or sigmoid activation function for returning the �nal values. The di�erence between both
will be discussed in the next section.

Activation Functions

The activation functions make it possible to deal with more complex problems, as it
enables to model not to work as a linear model. If these nonlinear blocks wouldn't be
incorporated in the architecture, it wouldn't matter how many layers the model would
have, as any linear combination of linear functions collapses down to be a linear function.
As the name suggests, the activation function controls the way a perceptron is activated.
The way of doing this depends on the type of activation function that is used. It can set a
threshold deciding from which value the neuron �res or not (0 or 1), or it uses a function
deciding to what extend the neuron is �ring.

Sigmoid σ(z) = 1
1+e−z

Figure 26.: Sigmoid Function (Sharma, 2019)

Historically, the Sigmoid and Tanh functions were the activation functions of choice
for most neural networks. However, there has been a shift to another activation func-
tion. This was done because of di�culties during the training of the neural networks.
The problem with both the Sigmoid and Tanh function is called the vanishing gradients
problem.

Because training is done by backpropagation, making use of local gradients, there is a
problem when a neuron saturates close to either zero or one, as the gradient in this region
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is very close to zero. This becomes increasingly problematic when dealing with multiple
layers. To understand this phenomenon, it helps to look at SGD(Stochastic Gradient De-
scent). In short, SGD looks at the partial derivative of a weight parameter with respect to
the total error, and multiplies this local gradient with a learning rate, and subtracts this
from the initial weight. Doing this in an iterative manner, with all trainable parameters
in the network, the total loss will be minimized to a minimum.

ωi ← ωi − η∂Etotal
∂ωi

(3.4)

where:

ωi = weight
η = learning rate
Etotal = Error

These local gradients are calculated by making use of the chain rule. The more layers
a neural network has, the more attributes the equation will get. Using multiple Sigmoid
activation functions will add multiple values between 0 and 0.25 to the equation, as those
are the lower and upper limits of the sigmoid's derivative, with high risks of values very
close to zero. Multiplying all these small values may lead to a near negligible local gradi-
ent, and looking at the equation in �gure 3.4, will hardly update the weight. Especially
when taking into account that the learning rate is often a value somewhere between 1
and 0.00001 (Patterson & Gibson, 2017). Not being able to adjust the weight with large
enough steps to adjust the total error, equals not being able to fully train the network.

To resolve this problem, ReLU(Recti�ed Linier Unit) was introduced in the object detec-
tion �eld. It was �rst introduced in the �eld of biology by Hahnioser, in 2000 (Hahnioser,
Sarpeshkar, Mahowald, Douglas, & Seung, 2000), but was popularized in the �eld of ob-
ject detection by Nair in 2010(Nair & Hinton, 2010), and is now the most popular type of
activation functions, because of the much steeper pro�le. Faster and better learn-ability
was achieved, demanding less computational power.

R(z) = max(0, z)

However, the basic variant of ReLU function isn't �awless either. When the activation
value of the ReLU neuron becomes 0, then the gradients of the neuron will also be 0
during backpropagation, making the neuron unusable. This is referred to as the Dying
ReLu Problem. This can be mitigated by assigning the right values for the initial weights
and learning rates (Campesato, 2020), or by using variants that have been developed based
on the ReLU activation function, like Leaky ReLU or ELU, which solve the problem of
the activation value becoming 0, by dealing with the negative values in a di�erent way
27.

When dealing with classi�cation, as it is done in this report, there is one last activation
function that needs to be addressed, and this is the Softmax activation function. As
discussed in the previous section, when dealing with classi�cation, either a softmax or
a sigmoid function is used in the output layer. When dealing with binary classi�cation,
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Figure 27.: ReLU Variations (Clevert et al., 2016)

often sigmoid is used to get the �nal probability, but softmax is also usable. However,
in case of a multiclass classi�cation problem, the softmax activation function is used to
interpret the outputs as probabilities, by making them nonnegative and sum up to 1
(Zhang et al., 2020). This fact that with softmax the outputs are interrelated, makes it
the activation function of choice.

softmax(x)i = exp(xi)∑
j exp(xj))

Loss Functions

As explained before, a well-trained CNN has weights that amplify the signal, and damp-
ens the noise. The bigger the weight, the stronger the correlation of the signal to the
outcome. During the training of an CNN, the weights and biases are re-adjusted. This
process allocates the signi�cance of the elements within the network, helping the model
learn which features are tied to which outcomes, and changing the trainable parameters
to reduce the loss in the output layer (Patterson & Gibson, 2017).

To be able to minimize the loss in the output layer, we need to understand how to
calculate the loss of the network. Several loss functions can be used to reach this goal,
but the shared goal of these functions is to quantify the di�erence between the desired
output, and the predicted output by the model. For multiclass classi�cation, this is often
the multiclass cross-entropy function, also referred to as logarithmic loss. Cross-entropy
will calculate a score that summarizes the average di�erence between the actual and
predicted probability distributions for all classes in the problem (Brownlee, 2018b).

H(Q,P ) = −
n∑

i=1

P (xi) logQ(x1) (3.5)

where:

P = Model Prediction
Q = Ground Truth
n = Number of classes
H = Cross-entropy

Training/Test set

For training and testing the network, an annotated dataset is needed. Hereby, the model
can train itself by comparing its predictions, with the ground truth as annotated in the
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training set. In order to achieve a model with good accuracy and generalization, it is
important to have a big dataset to train on (Hestness et al., 2017; Sun et al., 2020).
Although the training time will increase signi�cantly, running the model will only take
marginally longer.

Figure 28.: Number of training samples, identi�cation rate and diagnoses time. (Sun et al., 2020)

Constructing a big dataset is time consuming, and not always feasible when the available
data is scarce. A way to deal with this is to make use of data augmentation. Data
augmention is one of the most popular approaches to reduce the risk of over�tting by
arti�cially creating training samples to increase the size of the dataset (Yoo et al., 2016).
Traditional data augmentation techniques for image classi�cation tasks are for example,
�ipping, distorting,adding a small amount of noise to, or cropping a patch from an original
image (Inoue, 2018).
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4. Methodology

4.1. Theoretical Framework

The goal of the theoretical framework is to get a good understanding of the di�erent �elds
of interest in this project, to help formulating the requirements of the proof-of-concept.
To do so, literature study should be conducted on the related topics. The following three
subsections can be distinguished.

4.1.1. Bridge Operations

The bridge operations part of the theoretical framework should cover the context the
support systems needs to work in. By going over the principles, the physical workplace,
and the individual steps of the bridge opening procedure, the challenges and opportunities
of the current situation are described. These will be complemented by user interviews
and observations in a later stage of the research.

4.1.2. Human Machine Interaction

This is the more social side of the research, the research on Human Machine Interac-
tion(HMI). Being a decision support tool instead of a fully automated application brings
up challenges on how the interaction between the computer model and bridge operator
should work. For example, if the proof-of-concept gives too many false positives or false
negatives, the bridge operator could stop paying attention to the system's outcome. The
functionality, position in the operational �ow chart, and way of communicating the object
detection signals will all have a certain e�ect on the operator. It also works the other
way around. The capabilities of the operator of working with a proof-of-concept will
contribute to the application's e�ectiveness. This subject matter has been around for
decades. Although human-machine interaction studies speci�cally on bridge operations
are limited, comparisons with other work �elds will be drawn.

4.1.3. Object Detection

Object Detection will also mostly consist of material obtained from the literature. The
�rst phase will be about arti�cial intelligence in general, and then the research will dive
deeper into this area, going from machine learning to deep learning, to end up focusing
on object detection. These steps are taken to set the context of this new technology
right, instead of diving into it without an understanding of where it's coming from. In
the Object Detection section the rise of the technology will be explained, the bene�ts and
downsides, and most importantly; the way it works. Often Machine Learning is depicted
as a black box, but analysing the processes in a neural network, and working with simple
examples should provide enough clarity and insight to demystify the concept. Currently,
Convolutional Neural Networks are considered to be the ideal solution for tackling object
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detection problems, so this will be the method that will be analysed. A typical sample of
a CNN is depicted in �gure 31. In the research the di�erent layers of the convolutional
neural networks will be explained, and so will the way a network trains itself through
back-propagation.

4.2. Underlying Research Methodologies

4.2.1. Action Design Research

For this research the methodology of choice is the Action Design Research methodol-
ogy(ADR). This methodology is invented for generating prescriptive design knowledge
through building and evaluating ensemble IT artifacts in an organizational setting, where
traditional design science does not fully recognise the role of organizational context in
shaping the design as well as shaping the deployed artifact(Sein, Henfridsson, Purao,
Rossi, & Lindgren, 2011). In the methodology, four stages and seven principles can be
distinguished, as seen in �gure 29. The individual elements of the ADR process are
explained in more details in appendice A, section A.1.

Figure 29.: ADR Method: Stages and Principles (Sein et al., 2011)

4.2.2. Goal-Directed Design Research

The second underlying research methodology is goal-Directed design research. Goal-
Directed Design combines techniques of stakeholder interviews, market research, detailed
user models, scenario-based design, and a core set of interaction principles and patterns.
It provides solutions that meet the needs and goals of users, while also addressing busi-
ness/organizational and technical imperatives (Cooper et al., 2007). The global steps are
depicted in �gure 30. By combining the goal of addressing the problems of users, while
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keeping organizational and technical facets in mind, shows similarities with ADR. In the
next section will be explained why the combination of the two seemed a sane option to
make. In appendix A, section A.2, the individual steps of Goal-Directed Design Research
are explained in detail.

Figure 30.: Steps Goal-Directed Design Research (Cooper et al., 2007)

4.3. Methodologies Combined

As described in the previous section, the research methodology for this research is a combi-
nation of ADR and Goal-Directed Research. The ADR lacked a stepwise design approach,
but the principles and generalization facets make it a solid foundation for developing a
solution that works well in organizational context. To complement the methodology with
a stepwise design-approach, goal-Directed design research is used. Together, the general
research work�ow in �g 32 was developed. In �gure 53, the phases are divided into more
detail. In essence, the ADR forms the methodology on macro level, and goal-directed
design research elements are added to form the methodology on micro level.

4.4. Deliverables

The Proof-Of-Concept is the main deliverable of the project. This should show whether
the stated application could be a feasible solution for now, or in the near future. The goal
is to make a proof-of-concept that can analyse camera footage of a remotely controlled
bridge with su�cient accuracy and speed. What 'su�cient' means in this context, is to
be decided in the analysis. The proof-of-concept will be applied to the actual footage of
the CCTV system present on the bridges. Apart from this proof-of-concept, the literature
study and user interviews should lead to a conceptual framework.
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Figure 31.: Human detection test on still image using Mask R-CNN (Todd, 2016)

The proof-of-concept will be built in Python, using open-source pre-trained models and
libraries. Probably this will be a combination of OpenCV(Open Source Computer Vision
Library)(Bradski, 2000) and the Tensor�ow detection model zoo(Tensor�ow, 2019). In
Figure 31, an early test is depicted using this combination on a still image, showing
promising results. For this proof-of-concept, both a pre-trained model and a custom
trained model will be used, to research the di�erences between a generalized model, and
a model speci�cally built for this application.
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Figure 32.: Research Flow Diagram

50



5. Analysis & Design

5.1. Stakeholder Interviews & Observation

Gathering information from the reports on the accidents put together by the Dutch Safety
Board is one thing, but validation is required to determine whether the identi�ed prob-
lems are actually the most signi�cant ones, and if the list of issues is complete.

To examine the behaviour, work�ow, and views of the operators, �rst, a day of ob-
servation was conducted, to get a general look and feel of the working environment. By
monitoring the procedures and talking to the operators, an initial list of issues was con-
structed, that later on was completed by problems proposed in the literature. These
observations formed an important foundation for the survey.

However, this survey was not the �rst survey investigating the working conditions and
challenges for bridge operators. In 2017, a national survey was conducted by VHP human
performance to gain insight into the experiences of bridge and sluice operators, and to see
where improvements could be achieved. The Survey was conducted between the 1st of
November, and the 31st of December, and counted 175 respondents (van Veelen, 2018).
Because of the limited number of respondents in the municipality, this survey is consid-
ered a valuable source for qualitative research. An important note is that this survey
isn't only aimed at operators of remotely controlled bridges, but also for operators with
direct sight. Only 22% operated solely on cameras. 13% operated only on direct sight,
and 65% on the combination of both. The key �ndings that are relevant for this research,
are described in the appendix, chapter C.

In the survey for the Municipality of Zaanstad, the current situation was investigated,
and a possible future situation where an object detection system was applied. For the
latter, the survey started o� in a broader sense, where the general attitude toward new
technologies and Object Detection in speci�c were questioned. Subsequently, the ques-
tions went more into detail on how the operators envisioned working with such a system.
The following observations could be drawn when analysing the survey results.

Current Situation
Bridge operators are generally proud of their job and motivated to go to work. Here, the
work environment is comfortable, the collaboration with the colleagues pleasant, and it
is clear how to use the systems that are at their disposal.

However, for this research, the most interesting part is where the improvements could
be made, and what to look out for when proposing a new system. The operators empha-
sized the importance of their experience and skills, and requested more attention for their
suggestions, and their views on changes in the workplace. Related to these experiences
and skills, the operators like to see more investments and appreciation when it comes
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to craftsmanship, both in the operators themselves, and the tenders. The last place for
development mentioned concerning the operator's position in the organization, is the feel-
ing that operators are blamed too quickly for incidents, when a technical problem can't
be found. One of the respondents even mentioned that there is a certain fear to report
incidents, because of the chance of back�ring to the operator. Discussing these situations
and sharing best practices within the organization, could help to work on this problem.

When it comes to the operation procedure, there are some noteworthy remarks also.
Mist, darkness, and blinding sunlight or arti�cial light can lead to unsafe situations. Ac-
cording to the operators of the municipality of Zaanstad, this is strengthened by rainy
conditions, where raindrops stick to the camera lens, blurring the operator's view. Dust
and insects on the lens are also considered annoying. This, combined with the overall
image quality, are the most technical challenges found in the surveys.

The next step is to look at the human factors, an area that, according to the Dutch
Safety Board, isn't covered su�ciently when operating remotely controlled bridges (Onderzoeksraad
voor de Veiligheid, 2016). One of the statements made is that maritime tra�c plays a
guiding role in operating the bridge, and the operators feel pressured by the shippers.
The national survey points out operators do have to deal with angry, aggressive shippers.
However, according to the survey conducted in Zaanstad, this is less obvious. While
talking to the employers in Zaanstad however, they did mention the awareness of most
shippers being entrepreneurs, and that disruption of their planning, could a�ect the ship-
per's result, but also said that the relationship with most shippers is good, which partially
comes from the fact that most shippers are frequent visitors, as they work in the area,
so the operators and shippers are somewhat familiar with each other. Altogether, it is
di�cult to tell if the maritime tra�c is actually the dominant actor in the bridge operation.

Other human factors concern dealing with the complex task of monitoring a busy sit-
uation. When looking at the national survey, the respondents somewhat agree with the
statement of having su�cient visibility to operate safely, and are only a little on the
disagreeing side of neutral when it comes to the statement that it is hard to monitor
the situation accurately, when it is busy. Note, that in this survey, only 22% of the
respondents operated bridges solely on camera screens. When looking at the survey at
the municipality of Zaanstad, it is noticeable that operators experience di�culties mon-
itoring the many camera streams. This is both the number of screens to focus on, and
understanding the camera plans related to them. Also, operators deal with concentration
problems. This can be caused by the many stimuli, but as respondents commented in the
national survey, the change of day and night shifts make it more di�cult to focus.

Future Situation
For implementing a detection system as described in this report, it is vital to know what
the concerns and expectations are of the targetted future users, the operators. According
to the national survey, the majority of operators is positive about the application of new
technologies, and this was con�rmed by the results of the survey of Zaanstad. According
to the operators of Zaanstad, a good functioning detection system will increase the safety
of operating remotely controlled bridges, where the current situation is already considered
safe.
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Because of the ADR-principle of user feedback from an early stage, and the request
from the operator's of using their experience and being consulted when making changes
at the workplace, the survey asked their opinions about the way the detection system
should �t in the current situation. This was done both in a conceptual way, by asking
what the operators though of the permissions and noti�cations, and a more detailed level,
in the way of presenting the detections. These elements will be discussed more in detail
in the next sections.

5.1.1. Identi�ed Problems

After the last three steps, a table with prioritized sub-problems can be made. This table
should be validated with the users and stakeholders to make sure there is a common un-
derstanding of the problems and the related priorities.

Problem Source Priority
No Uniformity SCADA Systems Literature Mid
Raindrops on Camera Lens Interview High
Dirt on Camera Lens Observation Mid
Blinding Headlights Interview High
Poor Image Quality Observation High
Angry Shippers Literature Low
Tra�c Users Breaking Rules Interview Mid
Concentration Problems Literature High
Camera Overkill Literature High
Confusing Bridge Designs Interview Mid
Confusing Camera Angles Literature Mid

No Uniformity SCADA Systems

A bridge operator needs to operate at least three bridges during his shift, and needs to
be able to operate all �fteen of them. Although all Bridges share more or less the same
procedures, the way of controlling them di�ers. For some Bridges, Bernhardbrug for ex-
ample, the operator needs to control each barrier individually. This was implemented
after the accident, to improve the operator's focus. For most other bridges, the procedure
of stopping the road tra�c, is brought together into one push of a button. One could
argue that having this automated, could provide the operator with more time to judge the
situation and is less error-prone. However, having both approaches present distributed
over several bridges, prevents the operator from working with a standardized work�ow
that can be used for each asset. According to the observed operators, they were not
bothered by it, and had no preferred option. Literature cites that consistency in terms
of visual appearance should not have to be an obstacle in operating the system, but the
action language syntax is (Satzinger & Olfman, 1998).

Dirt & Moisture

Dirt and moisture on the camera lenses make it di�cult to get a clear picture of the situ-
ation. As seen in �gure 33, the formation of raindrops on the lens could distort the image
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severely. Also dirt, insects, and spiderwebs could block the view. There is a cleaning
service that removes these elements periodically, and when it is not possible to wait for
that, the operator could send out a request. The cameras can be cleaned by lowering
them using the hinge that enables the top part to come down.

For dust, this approach is adequate, but with raindrops, it is not, as the problem is
recurring whenever it rains and it is windy. According to the operators, there one has
been a trial with water repellent coating. In practice, this coating only degraded the
image quality, by attracting dust after a short period of usage.

Figure 33.: External Factors A�ecting Image Quality

Blinding Headlights

The combination of camera placement and the slope of the bridge, can lead to the problem
of headlights shining straight into the cameras, blinding the operator, as seen in �gure
33. Especially combined with the earlier mentioned raindrops, the image quality degrades
quickly. Some bridges have the main cameras positioned at the long sides of the bridge,
instead of the short side. This reduces the problem signi�cantly. However, not all opera-
tors �nd this a pleasant angle when it comes to an overview of the entire situation, as it
is harder to capture the entire bridge in one frame. A good alternative would be setting
the cameras higher, but this is di�cult because of regulations.

Poor image quality

Besides the image quality a�ected by external elements, as described in the last couple of
problems, the standard image quality of cameras on particular bridges can be challenging
on itself. These di�erences in resolution and low light quality, make some bridges harder
to monitor than others. According to the operators, this doesn't always have to do with
the cameras themselves. In some occasions, the connection between the asset and the
central post is not up to the desired level, degrading the camera's image quality.

Angry Shippers

As highlighted in the interview section, the Dutch Safety Board and the national survey
indicated the stressing event of dealing with angry, aggressive shippers, as commercial
shippers have �nancial interests in a smooth throughput. Luckily, in Zaanstad, this is less
of a problem, as most shippers are regular visitors, with a good relation with the bridge
operators.

54



Tra�c users breaking the rules

Frequently, road tra�c negates red lights and lowering barriers. In �gure 34, the total
of incidents in week 4 of January 2019 are displayed. In this week, the Alexanderbrug
opened 151 times, the Bernhardbrug 130 times, and the Zaanbrug 121 times. On average,
this is about one red light negation by pedestrian/cyclist per two openings, and about
one in ten openings when it comes to lowering/closed barrier negation by the same user
group. The interviews showed that, although this happens frequently, the operators are
not unanimously concerned by this. Possibly the stimulus perceived by the operator when
detecting someone between closed barriers is decreased by the frequent negation, making
it a signi�cant problem, but that can not be proved by the current research. The types
of users breaking the rules di�er from people who deliberately ignoring the warning signs
to make it to the other side of the water in time, to users, mostly tourists, who are not
familiar with movable bridges, and therefore misunderstanding the situation.

Figure 34.: Total number of Incidents in week 4 Jan 2019

Concentration Problems

A report published by vhp human performance on an incident that occurred on the
Bosrandbrug, stated the di�culty and signi�cance of remaining concentrated when oper-
ating a remotely controlled bridge (human performance, 2017). Although the municipality
of Zaanstad has nothing to do with this bridge, the operations are the same, and so are
the dangers. The interviewed operators of Zaanstad were divided when it comes to con-
centration problems, and the respondents of the national survey noted that changing day
and night shifts cause concentration problems. So, it is di�cult to say how frequent con-
centration di�culties occur, but when they do, they can pose an immediate threat to the
safety on the bridge.

Camera Overkill

This is probably the remark that most operators mentioned during the observation. From
a technical perspective, more cameras mean more information, which could lead to better
judgement. From a human factor perspective, it works a bit di�erently. Every screen
added to the operator's setup could be an added distraction, when not carefully chosen.
Besides only being able to watch one screen at a time, it could also lead to confusion
when it comes to linking the separate images, and getting a clear picture of the overall
situation. This makes the mental model di�cult to compile. In practice, each operator
has his own preferred camera standpoints, instead of distributing their attention to all
screens equally.
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Confusing Bridge Designs

This is closely linked with the problem perceived with the camera overkill. Because of
varying bridge designs, going from traditional structures to more organically shaped ones,
it requires time to understand how the di�erent cameras line up, also because sometimes
additional cameras are needed to get everything in the frame, and what the situation on
the bridge is like. For example, the free-formed structure of the Bernhardbrug blocks the
view of particular cameras, making it necessary to place extra equipment. Also, because
of the design of the bridge, it is challenging to spot approaching pedestrians, because
they're coming from underneath the bridge, and enter the bridge right in front of the
barriers.

Confusing Camera Angles

The problem with confusing camera angles, is that the tra�c �ow isn't logically depicted
when displayed to the operator. The tra�c can exit an camera angle on one side of the
frame, to go in the opposite direction in another frame. This makes it di�cult to form an
accurate mental model of the situation at the bridge.

Figure 35.: Problem Analysis Tree

5.1.2. Scope

Certain problems will be addressed in this research, and others will be mentioned in the
discussion and further research recommendations, as solving these issues, will cause the
object detection solution to yield better results. This is mainly the case for the challenges
that can be linked to the image quality of the incoming camera footage. The rubbish
in, rubbish out principle, a concept that is well known in computer science, also plays
its part in computer vision. If the images that form the input for the computer model
are too distorted by the moisture, dirt and other factors, the model's output will be less
accurate. This is why it is important to research the possibilities to optimize image quality.

The problems that this research tries to solve or mitigate, are the challenges related
to the lack of situational awareness, caused by human limitations. As seen in �gure 35.
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The camera overkill problem, focussing on the number of simultaneous camera streams
the operator has to monitor, and the concentration problems, are mainly focussed at the
�rst step of the Endsley's situational model, the perception of elements in the situation .
The multiple screens can cause the operator to watch one, when his attention on another
screen is required. Also, by constantly switching between screens, the chances of missing
motion signals will increase, hereby increasing the chance of change blindness, possibly
leading to missing a fully-visible person on the bridge deck. Concentration problems also
lead to di�culties in perceiving elements, as the operator's ability to focus his attention
on the situation on the bridge will decrease.

The two other problems highlighted in the problem tree, are the issues with the confus-
ing camera placement and bridge design. This has to do with the second step of Endsley's
situational awareness model, the cognitive stage. The operator may perceive elements on
the camera streams, but because of illogical presentation of camera footages, have di�-
culties to get a mental picture of how these elements are translated to the placement on
the bridge. Local knowledge of the asset's design and experience in mentally connecting
these images, may help to decide wether a perceived element is in a safe place or not. If
the region of interest for the detection system is well-positioned during the installation of
the application, the coverage of the desired area is guaranteed. Still, for understanding
user �ows, and optimizing the operator's performance before the object detection kicks
in, it would still be convenient for the operator to have a more intuitive design to his
disposal.

5.1.3. Personas

For making design choices and evaluating the human-machine interface, personas are used.
The more detailed reason for this is explained in sub-section 3.2.2 The two personas are
based on interviews, and assumed pro�les.

Persona 1: Emilie van der Laan
Emilie is 26 years old, and she has been working at the central post for almost a year
now. In her free time she likes playing video games with her friends, and she follows the
latest technology trends closely. Her father told her stories about when he was a bridge
operator, and although things have changed, and she's not physically sitting next to a
bridge anymore, she gets the excitement to work on this logistically challenging task.
Her goal is to do her job as well as possible. Maximizing the safety, and minimizing
delays, is a challenge, but she is up for it! She listens to her experienced co-workers to
get to know the tricks of the trade, but she is also curious to see whether these proven
work�ows, could be improved.

Persona 2: Jop de Groot
Jop is 59 years old, and he's been working at the central post for as long as he can
remember. He started working there in his early twenties, and has always enjoyed working
on his responsible job of controlling the situation on and around the bridge. He starts
early, drinks a cup of co�ee with his co-workers, and chitchats about last night's football
scores. He is an experienced and very capable operator, and is rightfully proud of that.
He showcases his knowledge by advising the inexperienced operators, like Emilie, in what
the best way of working with the system is. His main goal at work is to operate the assets
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in a safe manner, by using all his experience and skills, as he is convinced that is the best
way to do it. He is a couple of years from retirement, and although he likes to work at
the central post, he is already looking forward to it.

5.1.4. Tech & Organizational Work�ows

The next step is to see how the object detection should be integrated into the current
work�ow. The actions performed by the system, are noted in the work�ow steps, listed in
appendix D. Here, the di�erences between the steps are highlighted in red, to keep track
of the changes during the operational procedures. In these diagrams, both the system
and operator work�ows are depicted.

Figure 36.: Step 1: Decide to Operate (Intergo, 2019)

5.2. Modeling

Before building the model, the system requirements should be stated, needed to solve the
aimed problems. These are separated in technical and functional needs, subsequently,
the constructed framework is discussed, and how the two personas interact with this
framework. Lastly, the construction of the model is explained, starting with the assembly
of the dataset, followed by selecting the model and training it.
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5.2.1. Technical Needs

Object Detection

As the goal is to construct an object detection support system, the main functional need
is object detection. The system should be able to detect the elements it is designed to.
In this case, the goal is to detect bridge users present on the bridge between the closed
barriers. This results in a system that should be able to detect pedestrians, cyclists, and
motorized vehicles. In later stages, it could be possible to implement other types of ele-
ments, like ships, to decrease the chances of collisions, but in this stage, this is not the
primary safety concern.

For the tests later in this chapter, the coordinates of the restricted area are hard-coded
into the model. As the cameras are static, these coordinates will remain the same when
the bridge is closed. Eventually, the goal is to also detect objects on the bridge during
the opening procedure. An option would be to change these coordinates over time by
linking these values to a gyroscope, or the time after initiation. However, a more �exible
way would be by using the recently applied yellow paint. The model can be adjusted in a
way that it automatically uses the coordinates of the yellow painted region, which is the
movable deck, as it is capable of subtracting this area based on RGB values.

Detection Speed

The required speed of an object detection system, is fully dependant upon the task at
hand. For his occasion, the system is of no help when it takes �ve minutes to run the
model on an image, as the bridge would have been opened by then, making the prediction
useless. In essence, for the system to be of added value, it should analyze a frame, and
then provide the operator with enough time, to perceive the detection, observe the area of
interest, and then react to it based on the situation. It is dependant on when the object
detection is initiated, how much time this will give the model to give a right prediction.
When looking at the work�ow in appendix D, there is around 40 seconds between lowering
the entry barriers, and the actual bridge opening. As users frequently neglect the closing
barriers to reach the other end, the systems should take this into account, by starting the
detection 5 seconds later. To ensure enough time to react, the aim is to detect within 10
seconds.

Detection Accuracy

It is di�cult to give a de�nite answer on the question: "When is the model accurate
enough?" In an ideal world, the goal is to achieve an accuracy of 100 percent in each
frame, but in practice, this is not feasible. It is also dangerous to go with the assumption
that even if the model has a hit rate of only 1 or 2 percent, there is added value, as it
is a support system that works parallel with the monitoring operator without a�ecting
his work�ow. This approach assumes that there is absolutely no decreased awareness of
the operator, knowing there is a backup system in place, let alone taking the distractions
caused by false detections into account.

Based on the situation at hand, the system should detect a user within 10 seconds, in
every lighting and weather condition. The goal of this system is to increase the safety
instead of trying to get a perfect accuracy per frame. As the system will be working on
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multiple frames per seconds, on multiple cameras, it should be su�cient if at least one
frame during this period is correctly analyzed. However, to ensure this, a high hit-rate
per frame should indicate the models e�ectiveness.

In this research, the hit rate per input clip will be measured, randomly taking one or two
minute clips of CCTV footage of the bridge. In these test, the e�ect of di�erent weather
conditions will be considered, and will focus mainly on situations with just a couple of
persons on the bridge, as in real-life, the operator will probably have less trouble with
detecting groups of people on the bridge.

Data transmission

When it comes to data transmission, not much should change. The research aims to work
mostly with the current infrastructure. The detection system works with the standard
video signal already transmitted to the central post. Currently, this is displayed on
the operator's system and it is saved on a media server. On the latter it is stored for
approximately a week to be able to re-watch it in case of incidents, and will be deleted
when not needed. The detection system can be used as a cloud service, but a local multi-
GPU computer will work as well. In this report, the system is composed with the latter
in mind, as it is easier to upscale the model in a later stage than downscaling it, and as
the current system is mainly running locally, it would be a smaller change to the current
infrastructure.

5.2.2. Functional Needs

Noti�cation Types

After a detection has been done, it should be communicated to the operator in the form
of a noti�cation, in order for the operator to act on it. Before going into the actual graph-
ical interpretation of the communicated information, �rst, a decision should be made on
a higher design level. Should there be di�erent noti�cation types? To what aspects are
they linked? Too many di�erent noti�cation stages could make it di�cult to distinguish
severity.

For this reason, two noti�cation types have been chosen. One for detection when the
barriers are lowered, but the 'open bridge' command, hasn't been given yet, and another
one for when the 'open bridge' command has been activated. Because the urgency of the
latter is bigger than the former, the noti�cation for this occasion should be more promi-
nent. Therefore, the choice is made to only give a visual noti�cation for the times where
the 'open bridge' command hasn't been given, and an audio-visual + visual command for
when the bridge deck is moving.

For visualizing the detections, the 'when' is decided upon, but two questions remain:
Where should they be presented, and how? The two main options for where, are directly
on the camera streams or on the SCADA interface. To be able to perceive the detection
as fast and accurately as possible, the annotation on the camera stream is the most im-
portant option of the two. However, because the SCADA system shows command logs,
and the operator can be focussed on this system, a warning symbol should be shown that
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informs the operator of a detected instance.

To answer the 'how' questions, the options are shown in �gure 12, whereas explained in
the perceptual stage subchapter, a speedy way of communicating the detected instance,
could mean the di�erence between a risk �ring, or not. Both options 3 and 4 help the
operator to focus on the instance, and then it comes down to personal preference. Ac-
cording to the survey, 60% of the respondents preferred the third option. The remaining
40% preferred the second option, where a red border is drawn around the entire screen,
only indicating which camera captured the detection. The main reason such an option
isn't preferred from an HMI point of view is, as mentioned in an earlier section, the added
confusion in case of a false positive, decreasing the operator's understanding of the sys-
tem, and with that, the trust in it.

For the audio-visual noti�cation, the main objective is to make it easily distinguishable
from the ongoing audio-visual information in the work environment, by adjusting the fre-
quency and audio level for example.

Initiation Moment

An important design choice that has to be made, is when to start analyzing the input
images. An early detection, could increase the safety of the asset. This means starting the
object detection model as soon as the operator decides to act upon a shipper's request.
This way, the operator could closely follow the detections when clearing the bridge, contin-
uing the procedure without sudden cancellations or delays of commands. At �rst glance,
this would increase both the safety and the straight �ow in case of a misplaced object/user.

However, this choice could lead to the problem of operators completely trusting the
system to detect users, which could decrease their awareness. This shouldn't have to be
a problem in case of an object detection system that is a hundred percent accurate, but
unfortunately, it doesn't work that way in reality. The model will come up with false
positives(FP) and false negatives(FN). False Positive being an occasion where the system
wrongfully noti�es that a user is detected. On this occasion, that wouldn't be that big of
a problem, because the operator would look at it, ignore it, and no harm is done. A False
Negative on the contrary, would mean the system fails to detect a user, which in this case
is much more dangerous. Because of the reduced concentration of the operator, chances
are that he would also miss the person in the prohibited area, possibly leading to a severe
accident.

Given this insight, it may be wise to wait for a couple of seconds after the barriers
are all closed, before initializing the detection model. This way, the operator must still
concentrate on the procedure, but has the Object Detection model as a safeguard. This
way probability of error at the operator side isn't negatively a�ected by the detection
system, and so the overall probability of error is smaller.

False Detections Tolerance

Where in the previous section, False Negatives were an important element to consider,
in this one it is about False Positives; the occasions where the system wrongfully detects
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an element of interest on the bridge. The problem here has to do with the con�dence
threshold of the system, so the certainty of a detection being a right call. By setting
the con�dence threshold on the low side, say 30 percent, a lot of dimly lit users or un-
commonly dressed people will be detected, that otherwise maybe wouldn't be detected,
because the images in the training set of the model, aren't too similar to the detected
subjects. However, because of the low threshold, forms and shapes that show similarities
with the intended category may also be reported. Dealing too often with such a false
alarm, the trustworthiness of the system may decrease, making the operator pay less at-
tention to noti�cation. This e�ect is called the cry-wolf syndrome or alarm-fatigue, as
explained in the theoretical framework. Di�erent kinds of research show di�erent e�ects,
but most do agree that a good understanding of the system, reduce the potential negative
e�ect of these false alarms.

This phenomenon, was veri�ed in practice when the Bosch system was piloted for a
week at the CP. According to one of the interviewed operators, a false positive occurred
once every bridge opening. Also, the system only gave the noti�cation that something
was detected, without communicating where the system thought the element of interest
was . The operator subsequently needed to recheck all cameras in detail to �nd out that
there were no users in the prohibited area. There was only one moment where there was
a user on the bridge when it wasn't allowed to. For the operator, not having experienced
the potential of having a system functioning as a safeguard for missed bridge users, the
system went from being a support tool, to being a distracting extra task. The system was
subsequently turned o�.

Thus, setting the con�dence level too low could lead to troubles working with the sys-
tem. The other side of the spectrum is setting the con�dence threshold on the higher
side, say 95 percent. This has the bene�t of reducing the false positives, as the system
only noti�es the operator when there is little doubt the detected object is of interest.
Unfortunately, such a setting has the downside of missing a lot of instances, because ev-
ery dimly lit subject or uncommonly dressed person, will not be above this threshold in
terms of detection con�dence, leading to them being �ltered out. These False Negatives,
or simply missed objects of interest, also a�ect the reliability and usefulness of the system.

There are several ways of dealing with such a problem. An apparent one is to use
di�erent con�dence thresholds for di�erent weather/lighting conditions. When it is broad
daylight, the image quality is good, and the people well lit. In this occasion, the threshold
could be on the high side, as the instances where the system is in doubt, are either not the
objects of interest, or they will probably be detected with high con�dence in one of the
surrounding video frames. When it is misty, the image quality is poorer, and therefore
the threshold should be lowered. Synchronizing the detection model with a local weather
station could put these adjustments into work.

Besides this option, there is also the fact that multiple cameras are covering the same
area. Comparing the values of the di�erent viewpoints, and setting thresholds for mul-
tiple cameras combined, could also help in reducing false positives. When doing this,
time could also be used as an element to work with the system and con�dence rates in a
more integral setting. If an instance has a certain con�dence below the threshold, but is
detected for a certain amount of time, this could also be regarded as a way of making a
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more accurate prediction.

Lastly, which is a more complex solution, but feasible with static cameras as present
on bridges, is the element of distance. With multiple cameras it is possible to make a 3D
stereo reproduction of the situation on the bridge. Here, elements as size and speed can
be estimated, to accordingly check whether these match the characteristics of the objects
of interest. Combining this with condition-based con�dence thresholds could boost the
accuracy to a level where the balance of the number of detections and the number of false
positives become less relevant.

Requirements Summarized

• Detect bicycles, motorized vehicles and pedestrians

• Should detect users in di�erent lighting and weather conditions

• Detect users between the barriers within 15 seconds after closing the entry barrier,
starting after 5 seconds.

• Have a high hit-rate

• Reduce false detections to 1/10 openings or less.

• Make the false detections easy to interpret.

• Avoid operator's reliance

5.2.3. Framework Construction & HMI Validation Scenarios

For constructing the model, the functional requirements as described in the previous
section should be met, while making use of the HMI learnings from literature, and the
constructed personas based on interviews and observations. In this section, the working
of the conceptual framework will be described, and the way the proposed personas, Jop
and Emilie, interact with the system. The con�dence rates mentioned in the model's logic
gates, are indicative, and may vary based on weather conditions and testing.

Main Application

For the main application, the goal is to produce as few false positives and false negatives
as possible, while keeping the operator's work�ow as similar as possible. According to the
surveys, operators are proud of their work and want to have their experience and skills
valued. This should be re�ected in the working of the model.

The state diagram of the framework is depicted in �gure 37, where the upper box
outlines the data processing that happens in the background, and the lower box describes
the way the detections are communicated to the operator. After the diagram, some of
the functions will be highlighted in more detail.

63



Figure 37.: State Diagram Framework

The �rst step is to run the object detection model on the available static cameras.
For each frame, the framework will check for detected instances, and passes it through a
�rst condition check. If a frame meets the conditions, it will go to the next stage, and
otherwise, it will be rejected.

In the next stage, the controller, the labels and scores will go through another gate. If
the score is above a certain value, 0.8 in this case, it will go directly to the alert system,
where it is compared to other conditions, as described in the next step. If not, it will be
put together with the frames of other cameras that passed the �rst condition check, with
the same timestamp. Upon these average conditions, the system will decide whether to
push the detection to the alert system, or compare these results with the frames of the
last three seconds. This is the last stage where detections can make it to the alert system,
otherwise, they will be rejected.

The last step, is the alert system. Here, it is dependant on the stage of the bridge
opening process, whether a detection will be displayed, and how it will happen. When
the barriers haven't been lowered, or it is within 5 seconds after giving the command,
the detection will not be displayed. If an instance is detected after these 5 seconds, the
system will show an alert icon on the SCADA system, and a boundary box on the related
camera screen. If the barriers have been closed for longer than 10 seconds, and an instance
has been detected, a double con�rmation will be asked for opening the bridge, asking the
operator to monitor one more time. If the 'open bridge' command has been given, and
the detection system is convinced that an instance has been missed, an audio-visual no-
ti�cation will be given.

Thus, how is persona Jop, who is the most conservative and tech-averse of the two
personas, taken into account in this design? As Jop is convinced using his eyes, expe-
rience, and skills is the most reliable system, he wants to stick to normal as much as
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possible. The proposed system tries to reduce the false positives as much as possible, by
going through several logic gates. While doing so, it tries to reduce the false negatives as
much as possible, by not directly rejecting frames with a lower score. It �rst combines
them with other frames from that moment or around that period, before it �nally decides
whether to reject or show them.

Then, when an instance is detected, it will show on both the SCADA display, and the
camera stream, by drawing a boundary box, adding to the understanding of the system.
It will not start of with audio-visual noti�cations, but it allows Jop to see the detection,
and act upon it. Subsequently, it asks for a double con�rmation. The survey and obser-
vations, showed that the bridge operators did not want the support system to have any
operational permissions. By asking a double con�rmation, the system will not stop the
procedure itself, but keeps the decision-making for the human operator, showing that his
experience and skills are valued.

Lastly, when Jop does his job perfectly, and the false positives of the support system
are brought to a minimum, Jop will barely notice the existence of the system at all. This
way, he can perform his work the way he is used to, while an additional safety system is
running in the background.

Model Trainer

As described in the theoretical framework, one of the main downsides of using a convo-
lutional neural network, is the need for a big dataset to train on. Putting an inclusive
labelled training set together, takes time and dedication, but will improve the model's
performance.

This is where the persona Emilie comes in. Being a tech enthousiast and eager to learn,
she can ask for permission to contribute to the ongoing development of the model. The
object detection support system she will be working with, will have a lower con�dence
threshold than the normal setting. This way, the model will produce more false detec-
tions, as it will communicate detections at a lower con�dence level. Emilie is not hindered
by these false detections, as the understands the reasoning behind it, and by telling the
system whether a doubtful detection is a true positive or a false positive, the system can
add this annotation to its training set that is running in the background. Periodically, the
current object detection model will be replaced by the model that is retrained by Emilie's
help, improving the overall working model.

By implementing this approach, Emilie will have an increased job satisfaction by feeling
more valuable in a way that in closely related to her interests, and the entire organization
will bene�t from it.
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Figure 38.: Model Trainer

Permissions

For bringing this all together, the proposed concept for permissions within the organi-
zation are depicted in table 5.1. The way the operator and operator(trainer) work, has
already been described in this section. The team supervisor, will get access to a dashboard
where he can monitor the interruptions the object detection system had to make. Hereby,
he can monitor the operator's performance, by seeing how often the support system had
to intervene. The supervisor should take false positives into account, and anomalous
behaviour of bridge users, but big di�erences in operator's scores, could indicate perfor-
mance issues. This could then be used to coach or retrain the concerning operators.

The functional manager may have some additional insights in the model performance.
As not all camera systems on the bridges are similar, he could see how the di�erent cam-
eras and angles a�ect the model performance. Also, tracking could be included in a later
stage, and this way he could monitor the usage of the bridge.

The technical manager should be able to adjust the model when needed, and keeps an
eye on the version control. When it becomes apparent that the sensitivity of the model
needs to be adjusted, he should be able to modify the con�dence thresholds.

Table 5.1.: System Permissions

Function Detections
Model
Trainer

Detection
Statistics

Model
Performance

Trainer
Preferences

Version
Control

Platform

Bridge Operator x Operating System
Bridge Operator(Model Trainer) x x Operating System
Team Supervisor x x x Operating System & Dashboard
Functional Manager x x Dashboard
Technical Manager x x x x Dashboard

5.2.4. Training the model: In Practice

In chapter 3.3, a theoretical explanation has been given on training a CNN. In this section
the steps to train an actual working model are discussed in short. This process is decom-
posed into two steps. Importing and parsing the dataset(1), and selecting and training

66



the model(2).

Importing and parsing the dataset
Before the actual importing and parsing of the dataset, it is vital to have a clear goal
for the model to achieve, and this results in the kinds of data that are needed to gather
for training and test purposes. In this research, the goal is to make the model detect
vulnerable users of the bridge, based on the existing infrastructure present at the assets.
This suggests that the input images should be of comparable characteristics of the cam-
era footage that it is planned to work on. This means the inclusion of di�erent kinds of
image qualities, as they vary from one bridge to another, di�erent weather conditions,
bridge users in several shapes and forms, and so on. Also, the viewing angle should be
comparable to the video stream in the desired end product.

It is possible to mimic these characteristics by setting up a camera system in an en-
vironment that is about the same as the bridge setting, but it is easiest to just use the
actual camera footage from the bridges themselves. As one of the bene�ts of working
with a CNN model is the transferability to other environments, it is not needed to have
images in the training set of every bridge the system is designed for. As long as the char-
acteristics that are to be expected on the bridges that aren't analysed, are represented in
the training set. Luckily, the footages of the bridges are stored on a network drive, and
retained for about a week. This is meant for safety purposes, to be able to analyse the
footage when needed.

For training purposes, the availability of this footage is of great importance, as is makes
it possible to make a big training set, a prerequisite of building an accurate CNN-based
model. However, because the footage is only retained for about a week, and the access
to the database was granted in May, the database didn't contain footage of challenging
conditions as to be expected during winter and autumn. Also, it made it more di�cult to
�nd camera footage of dim lighting conditions with a lot of activity of pedestrians, as in
May the sun is down between 21:30 and 6:00, and in December between 16:30 and 08:30
(KNMI, 2020). In the Netherlands, rush hour is approximately between 06:30 - 09:30 and
15:30 - 19:00 (ANWB, 2020), which makes it easier to gather capture training and test
footage in December.

Having gathered the video footage needed to train the model, the next step is to subtract
the individual frames, and annotate them. The goal here is to add the labels(classes) to
the image, so the model can either train on them by calculating the loss by comparing
the labels with the model's predictions, or evaluate the training results by looking at the
loss of the validation/test set.
Annotating these labels can be a tedious job, as the developer of the model has to draw

polygons(for masks) or rectangles(for bounding boxes) around the intended instances, in
this model persons, to feed into the network. These geometries should then be labeled
with the right class.

67



Figure 39.: VGG Image Annotator (VIA)

As stated before, CNN bene�ts from having a big training set, but as the process of
annotating is time-consuming, the training set used for the model has little over 100 im-
ages, where most of the images contain multiple persons. For an end product, this is too
small of a dataset, but for this proof of concept it seems su�cient. As a comparison, the
COCO dataset contains over 200.000 labeled images, divided over 80 categories.

The next step is to format the annotations into a format that is processable by the
model. The exact way of formatting defers with di�erent frameworks, but the �le for-
mat and the key ingredients are mostly the same. The annotations are often saved in a
JSON(JavaScript Object Notation) formatted �le, and has for every annotated image the
�le path and size, the pixel coordinates of the mask/bounding box and the corresponding
labels.

Selecting the model
Di�erent types of CNN-based models can be used for the task at hand, and the goal is to
select the model that is best suitable for the job. The main trade-o� that has to be made
is between speed and accuracy. The more accurate a model is, the slower it tends to be,
because these models are computationally expensive. So, the combination of the available
computational resources and the acceptable detection duration should lead to a model of
choice. Then, there is a di�erence between object detection and object segmentation. For
object detection the goal is to detect objects in an image, and draw a bounding box around
it, and with segmentation the goal is to draw a pixel-wise mask for the desired objects.
The di�erence can be seen in �gure 12, where option 3 is detection, and 4 is segmentation.
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Figure 40.: Speed/Accuracy Trade-o� (Huang et al., 2017)

The model picked for this research, is a Mask RCNN model, with a Resnet-101 back-
bone. In �gure 40 is displayed, how the Resnet-101 feature extractor, manages to com-
bine accuracy with processing speed. In this �gure, Faster RCNN is displayed, but Mask
RCNN is chosen, because it is the evolved version of this architecture, adding object seg-
mentation functionality, and improving the accuracy and speed of the model. Where the
Mask RCNN predominantly takes care of the training, the input for the feature extrac-
tion phase, and the interpretation and display of the object detection results, the heart
of the object detection model is the Resnet-101 model, as it performs the convolutions
and classi�cation. So how does the Resnet-101 compare to the basic CNN architecture as
described in the theoretical framework?

Figure 41.: Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer
�plain� networks. (He et al., 2016)

As explained, adding more layers to the model, the complexity increases, and higher
accuracy can be reached. A logical assumption would be to take the basic CNN archi-
tecture, and add numerous convolutional layers to improve the model. Unfortunately,
in practice adding 'plain' layers to the model, decreases the model's performance from a
certain point, as accuracy gets saturated, and then degrades rapidly(�g 41). Although it
is possible to signi�cantly deepen a network without a�ecting the performance by adding
identity mapping layers to a shallow network. Unfortunately, experiments show that tra-
ditional solvers are unable to �nd solutions that are comparably good or better than this.
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In 2015, this degradation problem was tackled by (He et al., 2016), by introducing deep
residual learning for image recognition. Using residual learning blocks with shortcuts,
also known as skip connections, in the convolutional layers, activations from previous
layers could be used, resulting in identity mapping. Also, by skipping layers, the problem
of vanishing gradients can be mitigated, and the training time shortened. This way,
Resnet-101 achieved a depth of 101 layers, where VGG only has 19.

Figure 42.: Resnet-34, 34-layer plain and VGG-19 visualized (He et al., 2016)

70



Model Speci�cations

Custom Model Pre-trained Model

Model Model
Mask R-CNN Mask R-CNN
Resnet-101 Resnet-101

Dataset Dataset
Custom Dataset COCO Dataset

Dataset Features Dataset Features
150 images 330.000 images
1 object category 80 object categories
Object Segmentation Object Segmentation
CCTV Quality Di�erent Image Sources
Bird-eye Perspective Varying Perspectives

Data Augmentation Data Augmentation
Rotation 20 degrees L/R None
Flip L/R

Speed(GTX1060 6GB) Speed(GTX1060 6GB)
4 fps 4 fps

5.3. Evaluation

For the evaluation of the model, three bridges in Zaandam are considered. The three
bridges have di�erences in camera quality and bridge users, so working with these will
provide a representative overview of the application of object detection on remotely con-
trolled bridges.

Camera Quality Environmental Characteristic nOpenings 4th week of Jan 2019
Alexanderbrug + Near Public Transport Station 151
Bernhardbrug ++ Near School 130

Zaanbrug -
Public Transport and
Connecting Municipalities

121
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Figure 43.: 1.Zaanbrug 2.Alexanderbrug 3.Bernhardbrug

5.3.1. Model Performance

Having trained the Mask R-CNN from scratch, it's interesting to see how the model com-
pares to the model that was pre-trained on the COCO dataset. This is done by looking
at the hit rate, also known as the true positive rate or sensitivity of the model. This is
calculated HitRate = TP/(TP + FN). Because of a limited test set, it is di�cult to
measure the performance of the system concretely. The results presented in this section
will provide experimental insights, which will indicate the model performance, and the
overall e�ectiveness of the model. The tests were done only with the object detection
model on one camera stream, not going through the logic gates of the controller and alert
system as depicted in the state diagram of �gure 37

Test case 1: Alexanderbrug

In this test, two ways of counting the false negatives(misses), are applied. In the �rst
way of counting, every detectable person will be counted, regardless of the portion of
the person's body that is in the frame. The second way of counting is by ignoring the
instances where the person is for more than approximately 50% covered. In �gure 44,
screenshots are depicted with the types of detections that were left out in the last way of
counting.
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Figure 44.: False Negative through overlap

The Reason to do both is that it is valuable to have insights to what extent the model
is capable of detection only based on certain body parts. This could show the model's
usability in case a person is only (partially) visible on one camera, because of a poor
camera plan, or malfunctioning cameras. On most occasions, a person will be visible on
multiple cameras, so when the person is behind a tra�c light, another camera can still
detect this user. Also, when a person is missed because it is behind another person, this
would not be an issue in the application this research is after, as long as the person in
front is detected.

This test was done in broad daylight, and with a con�dence rate of 0.8. The conditions
and angle can be seen in �gure 45.

Figure 45.: Alexanderbrug Screenshot

Custom Model
Con�dence Threshold: 0.8 True Positives False Positives False Negatives Hit Rate
False negative through overlap counted 293 0 49 0.86
False negative through overlap not counted 293 0 27 0.92

Pre-Trained Model
Con�dence Threshold: 0.8 True Positives False Positives False Negative Hit Rate
False negative through overlap counted 238 0 104 0.7
False negative through overlap not counted 238 0 82 0.74
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Figure 46.: Results Visualized

The model has most di�culties with persons walking in the shadow, �lmed from be-
hind. Indicating a high possibility that the missed detections would have been detected
on another camera. Apart from this, no person was left undetected longer dan 2 seconds.

The performance of the custom model was better than the performance of the pre-
trained model by a fair margin.

Test case 2: Bernhardbrug

In this test case, also two di�erent scores were measured. For about 1.5 minutes, a scooter
stood on the bridge, hardly moving at all. For this research, that was quite interesting, as
both accidents in Zaandam happened with persons standing still, and for the operators,
these are the most di�cult to spot.
For this test, evening conditions were chosen, as they similar to the angle and conditions

of the accident, with an con�dence rate of 0.5. The conditions and angles can be seen in
�gure 47.

Figure 47.: Bernhardbrug Screenshot

Custom Model
Con�dence Threshold: 0.5 True Positives False Positives False Negatives Hit Rate
Non-moving scooter not taken into account 312 0 35 0.9
Non-moving scooter taken into account 836 0 46 0.95
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Pre-Trained Model
Con�dence Threshold: 0.5 True Positives False Positives False Negative Hit Rate
Non-moving scooter not taken into account 199 0 148 0.57
Non-moving scooter taken into account 538 0 344 0.61

Figure 48.: Results Visualized

Here, the custom trained model made the biggest di�erence, achieving a hit rate of 0.95
with the scooter counted, where the COCO model achieved only a 0.61 percent hit rate
in this occasion.

Test case 3: Zaanbrug

This test was done in the evening, and a con�dence rate of 0.5 was used. The conditions
and angles can be seen in �gure 49.

Figure 49.: Zaanbrug Screenshot

Custom & Pre-Trained Model
Con�dence Threshold: 0.5 True Positives False Positives False Negatives Hit Rate
Custom Model 40 2 9 0.82
Pre-Trained Model 28 0 21 0.57
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Figure 50.: Results Visualized

In this occasion, the model had most problems, possibly caused by the image quality
that was worse than the other bridges. Also, this is the only test where the model produced
false detections. This was twice on the same spot, being part of the railing of the bridge.
The coco-model, although scoring a lower hit rate, did not show any false positives. For
this test, the number of bridge users was the smallest.

Incident evaluation

The stimulus for this research was the occurrence of the tragic accidents, on the Den
Uylbrug, and the Bernhardbrug. Those are the types of occasions where the support
system should show its value, by increasing the safety. It is impossible to say whether the
accidents could have been prevented by the system, as running test cases in a controlled
environment is di�erent from running the system in the real world.

However, by running the model on the image subtracted from the report of the Dutch
Safety Board, it is possible to get a sense of the technical feasibility of detecting the
elderly couple on the Bernhardbrug in this case. Both wearing dark clothes, and carrying
an umbrella, the model managed to detect the couple in this particular image, as shown
in �gure 51.
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Figure 51.: Victims Bernhardbrug Accident Detected (input image retrieved from
(Onderzoeksraad voor de Veiligheid, 2019))

For the accident on the Den Uylbrug, there is no representative screenshot available
from that occasion to run the model on. However, the conditions of the masked image(�g
52 do show that the lighting and camera angle is comparable to the footage from the
�rst test case of this report, giving the impression that the model could have detected
the victim in a controlled test environment. Further development and implementation
could in the end show whether the theoretically capable model could contribute in the
real world.

Figure 52.: Masked Image Den Uylbrug (Onderzoeksraad voor de Veiligheid, 2016)
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6. Discussion

In this discussion the methodology and the results will be discussed, elaborating on their
limitations and considerations. After going over these two elements, these �ndings will
be translated into key points for further research.

6.1. Methodology

The methodology that was used in this research, was mainly based on action design re-
search, with concrete steps subtracted from goal-directed research. The main reason for
choosing these research methodologies was because they were invented for generating pre-
scriptive design knowledge through building and evaluating ensemble IT artifacts in an
organizational setting, where traditional design science does not fully recognise the role
of organizational context. The reason why involving the organizational context was so
important in this report, was that the Dutch Safety Board identi�ed the lack thereof as
one of the key �ndings in the accident investigations. They stated, that the safety of the
asset was mainly seen as a technical problem, instead of approaching safety in a holistic
way, where the interaction between human, machine and environment should be consid-
ered.

Fundamental to this methodology was involving operators from an early stage by con-
�rming assumptions through questioning, or by observing their current challenges and
worries. Apart from being valuable in terms of getting the speci�cations and setting
right, it is also a good way of easing the operators into this new technology, by providing
a sense of ownership, and through tackling worries in an early stage. It is perfectly imag-
inable that operators fear that a (semi-)automated system such as object detection will
eventually make their jobs redundant, as this fear has been present since the introduction
of computers. By developing the system in collaboration with the operators, they will
likely understand the motivations behind the system, and how it is used to complement
and support the operator, instead of aiming at replacing them. The understanding of
both the reason for existence, and the working of the system, is very important for suc-
cessful integration, as shown in the theoretical framework. The national survey that was
discussed in this research shows that many operators miss this kind of involvement in
their jobs. It gets the message across that their skills and experiences are indeed valued,
which could subsequently lead to better job satisfaction.

To conclude, in this research, a gradual development with close collaboration was cho-
sen. However, during this period, a pilot study was conducted where operators had to
try out working with the object detection system already installed on the camera system.
This system was mainly developed for security purposes, and there wasn't a clear imple-
mentation plan on how it would work with the current system. As a result, the operators
that were observed at the central post were not familiar with the system. According to
them, the detection system warned for a false positive almost every bridge opening with-
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out showing the area of interest, leaving the operator guessing what it could have been.

In itself, this is not an ideal pilot study. However, what will happen if the feedback of
the operators is written down, and the models get adjusted accordingly? Will it function
worse compared to a situation where the operators are involved from the �rst drawing?
What is the di�erence in expenses and time between using this approach for developing
and implementing such an application compared to working together intensively from an
early stage? Would, after using the system for a certain amount of time, the under-
standing of the operators and acceptance towards such a system be compatible with a
situation where these were built from the ground up? It is di�cult to answer all these
questions, and therefore to justify one approach over another. Moreover, it is di�cult to
validate how this pilot a�ects the outcomes and potential acceptance of the system that
could be build based on the �nding in this report. Negatively, operators can approach a
new system less open-minded because of the disappointing experiences of working with
a similar system. Regardless of a completely di�erent system architecture, the goal and
mental model is overlapping.

On a positive note, after using the system in their work, the feedback can be more
valuable than it could have been when working with a proof-of-concept in a controlled en-
vironment, or working with hypothetical situations. As the time window for this research
was too short for actually producing a production-ready system, it was not possible to
generate these real-life experiences. Also, when a CNN-based object detection model is
introduced, and it outperforms the pilot project application, the operators could notice
this increased e�ectiveness, feeling more comfortable working with the system.

Moving away from the pilot project, and the way it was implemented, brings up a
di�erent challenge experienced with the used methodology. When working together with
committed practitioners, building on their skills and experiences, when should the re-
search theory overrule personal comfort and preferences? In an ideal world, the preferred
way of the practitioners complies with the best practices from research. But what if this
is not the case? What is the e�ect of asking for input and making the operators feeling
heard, but yet subsequently impel the project to a di�erent direction?

Take for example the moment of object detection, and the way of presenting the re-
sults. The survey could indicate that operators feel most comfortable by running the
object detection system from the very beginning of the process. This way, the system
starts detecting and communicating these detections, even before the barriers are low-
ered. However, research may indicate that this builds such a reliance on the system,
that the operator isn't trying to perceive human-shaped �gures anymore. But he might
solely look for bounding boxes generated by the detection system instead. Chances are
that the operator will miss a crucial detected instance as he may be less concentrated,
since the importance of utmost concentration is reduced through the implementation of
a semi-automated system. Moreover he might miss the instance caused by inattentional
blindness, as he's expecting a boundary box instead of a person.

In this scenario, it may be safer not to go for the operator's preferred way. If the same
e�ect counts for the way a detection is displayed( the operator may want a red border
across the entire display, instead of a marking of the speci�c detected instance), and for
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many other decisions where his input was asked, it is not sure if it was wise to involve
him in the �rst place. Not only does the operator have to work with a system that is dif-
ferent from what he would have liked, but it can also negatively a�ect his job satisfaction
and overall trust in the organization since his views and experiences were not implemented.

For this research, the survey results and information gathered from the literature study
are compliant. However, not all respondents will feel heard. In this stage, that hasn't
been a problem, but it might in a later stadium.

6.2. Results

When looking at the results presented in this research, several things need to be taken
into account with respect to the research questions and the generalization of the results.

When it comes to generalizing the results in this report, it should be kept in mind that
this research is based on the remotely controlled bridges of Zaandam, and the context
related to these assets. This means that the literature on bridge operations, the most
signi�cant user interviews and observations, and the data used for testing the object de-
tection model, were all context-oriented. Although there will probably be quite some
overlap between the operations in Zaanstad and the way it is done in other organizations,
the extent to which these processes are similar is not clear. Also, as the camera systems
used in other organizations could be di�erent from those in Zaanstad, making it unsure
how to translate the indicated potential for object detection on remotely controlled bridges
from the setting in this report, to other organizations. However, in this report di�erent
image qualities have been used successfully in the test cases, increasing the generalisation
chances.

Besides the operational and camera aspects, this also counts for the organizational set-
ting. From an organizational point of view for example, many organisations use temporary
workers to operate the bridges. It is not apparent whether this leads to di�erent choices
in the design process. It could be possible that this temporary worker has less experience
working with the operating system than someone with years of experience with the same
system. Besides, the temporary operator can be less familiar with the bridge design, and
the way the monitors display the situation on it. This could have a negative in�uence on
the response time in case of an unexpected occasion.

Notifying an experienced operator in case of an urgent occasion makes him perceive,
decide and respond on that signal in a very quick and e�ective way, as his situational
awareness is high. In case of working with a temporary worker as described before, the
response mechanism could be slower and less e�ective. It may be worth reconsidering the
support system's permissions as it could be safer to let the support system interrupt the
process, instead of waiting for the operator to respond. In case of an occasional wrong
call. Again, this scenario is based on assumptions, but displays how generalizing the result
without further research could be dangerous.

Considering the results as obtained in this research, possibly one of the most important
things to keep in mind when going through them, is that they are the outcome of exper-
iments in a controlled environment. These results are experimental insights, indicating
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the possibilities of using an object detection support system. The hit rates achieved while
running the model on the chosen video clips can provide no guarantees for the actual accu-
racy of the model in a real-life scenario, when implemented. Also, the model is trained on
a very limited training set, of approximately 100 images. For a production-ready model,
this should be way bigger. Theoretically, this would also improve the generalization abil-
ities of the model, although those are not examined in this research.

The goal of this report was to cover both the human-machine interaction side, and the
object detection �eld. The latter is evaluated by making use of experimental insights,
yet it is di�cult to evaluate the decisions based on human-machine interaction, besides
using the validation scenarios. Testing a working system with actual operators is needed
to show if the interaction between the system and the operator works as intended.

From a safety point of view, in the hypothetical situation of implementing the object
detection support system in Zaandam, it is di�cult to evaluate its e�ectiveness on the
asset's safety. Because of the attention both bridges have gotten after the accidents, op-
erators could be more concentrated than before. Furthermore, the extra measures that
were taken by painting the bridge decks yellow, and by installing emergency buttons
at some bridges for bystanders to notify on urgent occasions, make it di�cult to com-
pare the e�ectiveness of one single measure, in this case being the object detection system.

What also should be kept in mind when reading this report, is the fact that this analysis
took the current situation and infrastructure into account. Possibly, adding night vision
cameras or radar technologies could improve the safety at the bridge further. This should
be considered in further research.

Finally, another element that could be further researched, is the implementation of a
background trainer for the CNN. The CNN architecture should improve with a bigger
and more complex dataset, and these images could be gathered throughout the usage of
the system. Training the model on the newly captures images, can improve the system's
performance signi�cantly.

6.3. Future Recommendations

Taken the limitations and the problems that were left outside of the scope, these future
recommendations should be considered, in no particular order of signi�cance.

• Investigate 3D object tracking model, using the existing static cameras.

• Investigate di�erent technologies like radar, night vision, and geo-tracking.

• Investigate measures to reduce image degradation caused by external factors.

• Investigate the human behaviour of road and maritime tra�c with respect to re-
motely controlled bridges.
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7. Conclusion

This research is done in reaction to the reports published by the Dutch Safety Board on
the accidents that happened in 2015 en 2018 in Zaandam. These reports indicated that
in both accidents, the victims were visible on the camera systems, yet through errors
caused by human factors, were not detected. Based on these researches, the Dutch Safety
Board concluded that the safety of the remotely controlled bridges was not su�cient, as
the safety policy was mainly focussed on the technical aspects, instead of approaching it
as an integral challenge where the interaction between human, machine, and environment
should be considered. In this research, the possibility of mitigating these human factor
base by using object detection through deep learning was investigated, with the main
research question being:

How can Object Detection provide Decision Support for Mitigating Human Factors for
Operating Remotely Controlled Bridges?

When looking at the current situation, the operators follow a strict operational work-
�ow as depicted in �gure 6, with more detailed information on what the operator should
observe, control and monitor per stage in appendix D. Also, the operators manual de-
scribes which forms of tra�c should be prioritized, and in which conditions safe operation
can't be guaranteed, and how to act upon that. From observations and interviews, it
becomes clear that the operators are well aware of these procedures and guidelines, in
both common and anomalous situations, indicating the human factors are not connected
to a lack of knowledge.

However, in practice it can be challenging to judge situations correctly, and with that
choosing the appropriate reaction. Reduced image quality caused by external factors like
rain and dirt, concentration problems and the complexity to watch multiple monitors
simultaneously, all decrease the operator's situational awareness by limiting his capacity
of perceiving bridge users. A phenomenon strongly related to this, is change blindness,
as the operator could easily miss out on the motion signals in case someone enters the
screen unnoticed, but stops moving to await the bridge opening.

These perceptual di�culties are the most important problems the proof-of-concept
needs to mitigate, as the operators are capable of making the right decisions as long
as the understanding of the situation at the bridge is correct. In practice this means that
the model should accurately detect bridge users that cause a threat to the safe operation
of the asset, while leaving enough time for the operators to react on these detections, and
avert the risk.

The risk of adding the object detection application is that it could further increase the
complexity of the system, resulting in it being another distraction instead of a support
tool. A well designed Human-machine interface should avoid this, by maximizing the op-
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erator's understanding of the system. This translates into clearly annotating the detected
elements, which speeds up the operator's comprehension, but also helps to understand
the system's confusion, in case of false detection. 5.2.2.

For the model itself, a Mask R-CNN Resnet-101 was trained on a custom dataset con-
taining images of CCTV footage from bridges in Zaanstad. Experimental insights showed
that the custom trained model outperforms the pre-trained model, as depicted in sub-
section 5.3.1. In all experiments, no user was undetected in any 5 seconds period. This,
together with a high hit-rate per image, shows the promising possibilities of using ob-
ject detection for mitigating human factors, as the increased perception of elements will
enhance the operator's situational awareness, and therefore increase the safety of bridge
operation. Although the interviewed operators indicated that a situation with object
detection instinctively feels safer, further research is needed to get a more quantitative
insight into the safety improvements.
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Appendices
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A. Methodology

Figure 53.: Actions per Research Phase
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A.1. Action Design Research

Stage 1: Problem Formulation

Stage Description
A problem perceived in practice or anticipated by the researchers is the trigger for the
problem formulation stage, and is the general starting point for the research endeavour.
The input for this stage can come from practitioners, end-users, researchers, existing
technologies, and/or review of prior research. This stage contains of an initial empirical
investigation of the problem, determining the inital scope, deciding the roles and scope
for the practitioner participation, and the initial research question are formulated(Sein et
al., 2011).

Principle 1: Practice-Inspired Research
This principle focuses on ADR's aim to view �eld problems as knowledge-creation op-
portunities, opposed to theoretical challenges. ADR seeks these opportunities at the
intersection of technological and organizational domains, with possible emphasis on one
of the two domains. The researcher should obtain enough knowledge about each domain,
to be able to come up with a holistic solution(Sein et al., 2011).
In the research that will be conducted in this report, this principle is represented by the
combination of the technical infrastructure of the camera and operating system, with the
organizational challenge of working with bridge operators who have to be able to work
focussed in stressful conditions for long periods of time. The solution for the perceived
problem should take both domains into account to work well.

Principle 2: Theory-Ingrained Artifact
This principle emphasis that ensembled artifacts created and evaluated using the ADR
methodology, are informed by theory(Sein et al., 2011). In this process, theory is regarded
as systems of statements that allow generalization and abstraction(Gregor, 2006). Three
uses of prior theories are acknowledged in this principle:(i) To structure the problem,
(ii) to identify solutions, (iii) and to guide design. The theoretical framework in the
prior chapter serves to get a clear overview of the di�erent subdomains, to decompose
the perceived problem, and to model an ensembled artefact to solve the core obstacles.
This knowledge is subsequently complemented and validated by stakeholder interviews
and observations.

Stage 2: Building, Intervention, and Evaluation

Stage Description
The second stage builds on the problem framing and theoretical premises from �rst stage,
by using it as a platform for generating the initial design of the IT artifact. Through or-
ganizational use and subsequent design cycles, the artifact will be modi�ed and updated.
The process is iterative, and it is carried out in the target environment. Here, the building
of the artifact takes place, the intervention in the organizaton, and the evaluation of the
ensemble. The outcome of this BIE stage should be the realized design of the artifact(Sein
et al., 2011).

For the research on safety of remotely controlled bridges, this translates into the phase
of building prototypes and mock-ups of the object detection system, and testing them on
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both the technical level by analyzing the accuracy in di�erent circumstances, and the way
of interacting with the artifact by the organization. Starting o� with an unpolished version
in an early stage, the feedback of a subset of the organization will gradually mould the
system into a well integrated solution for mitigating human factors in he bridge operation
process.

Figure 54.: The Generic Schema for IT-Dominant BIE (Sein et al., 2011)

Principle 3: Reciprocal Shaping
This principle focusses on the inseparable in�uences mutually exerted by both the IT
artifact and the organization context. The ADR team performs an iterative process of
going into the �ne details of each domain to get a better understanding, to go back to the
overview to see how that details a�ects the whole (Sein et al., 2011).

Principle 4: Mutually In�uential Roles
This focusses on the importance of mutual learning among the di�erent project partici-
pants. One one hand, the researcher brings knowledge of theory an technological advances
to the table, and on the other hand are the practitioners that bring knowledge of organi-
zational work practices. (Sein et al., 2011)

Principle 5: Authentic and Concurrent Evaluation
This principle emphasizes a key characteristic of Action Design Reseach; evaluation is not
just a �nal stage after developing a product, but is interwoven into the design process(Sein
et al., 2011). By constantly re�ecting with the bridge operators and managers, design
choices will be evaluated during the process, and taken into account by reshaping the
object detection system.

Stage 3: Re�ection and Learning

Stage Description
The third phase moves conceptually from building a solution for one particular instance,
to see if the learnings can be applied to a broader class of problems. This is a continuous
e�ort, which parallels the �rst two stages, as can be seen in �gure 29 . Conscious re�ection
on the problem formulation, the chosen theories and the emerging ensemble is critical to
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ensure the identi�cation of contributions to knowledge (Sein et al., 2011).

Principle 6: Guided Emergence
This principle captures the interplay between two seemingly con�icting perspectives. On
the one hand there is design, which implies external, intentional intervention, and the other
hand there is emergence, which hints at organic evolution. Guided emergence emphasizes
that the ensemble artefact will not only re�ect the preliminary design, as designed by the
researchers (Principle 2), but also its ongoing shaping by organizational use, participants,
perspectives and outcomes of authentic, concurrent evaluation (Principle 5) (Sein et al.,
2011).

Stage 4: Formalization of Learning

Stage Description
The last stage is about formalizing the learning. The ongoing learnings gathered in the
last steps, should be further developed into general solution concepts for a class of �eld
problems. Reseachers outline the accomplishments realized in the artifact, and describe
the organizational outcomes. These outcomes can be seen as the design principles learned
in the project, as re�nements to the theories that contributed to the initial design (Sein
et al., 2011).

Principle 7: Generalized Outcomes
Generalization is challenging because the outcomes of the ADR embody both organiza-
tional change, along with implementation of an artifact. The ensembled artifact repre-
sents a solution that addresses a problem, and both of these elements, can be generalized.
Three steps of conceptual generalization are proposed: (1) Generalizaton of the problem
instance, (2) generalization of the solution instance, and (3) derivation of design principles
form the design research outcomes (Sein et al., 2011).
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A.2. Goal-Directed Research

Figure 55.: Modern Triad of Product Development (Cooper et al., 2007, pg.12)
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Figure 56.: Goal Oriented Design Process (Cooper et al., 2007, pg.24)
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B. Object Detection

Figure 57.: Over�tting and Under�tting Explained (Amidi & Amidi, 2018)
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C. Survey

C.1. Questions
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C.2. Answers
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Working Environment
When it comes down to the general comfort of the working environment, the average
operator was pleased, with a small variance.
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Figure 58.: Survey Results: Workplace (van Veelen, 2018)

Education and Competences
The second �eld is about education and competences.

Figure 59.: Survey Results: Education (van Veelen, 2018)

Relevant Comments:

• Organization could pay more attention to the suggestions of the operators

• Use the operator's experience and skills. Don't limit him to button presser.

• Try to develop a simulator to train on incidents.

Cameras
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Figure 60.: Survey Results: Camera Setup (van Veelen, 2018)

Relevant Comments:

• Mist, darkness, and blinding sunlight/arti�cial light cause problems for the cameras.

• The application of new camera systems is slow.

• Involve experienced operators in setting up the camera plans.

• Knowledge about the local situation is important for controlling remotely.

Incidents

Figure 61.: Survey Results: Incidents (van Veelen, 2018)

Relevant Comments:

• Operators are blamed too quickly when an incident occurs, and no technical mal-
function can be found.

• Controlling remotely misses social control at times of red light negation.
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• There is fear of reporting incidents, because it can back�re on the operator.

• The analysis of the incidents is too seldom used, to prevent future incidents.

• Near-misses happen so frequently, it is impossible to keep up with them.

Organization

Figure 62.: Survey Results: Organization (van Veelen, 2018)

Relevant Comments:

• The workload is too high due to sta� shortage.

• There operator gets limited feedback.

• More investments are done in technologies, than in people.

Safety

Figure 63.: Survey Results: Safety (van Veelen, 2018)
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Relevant Comments:

• Operators feel pressured to continue the opening procedure, even if they actually
don't think it's safe(e.g. poor visibility, malfunctioning cameras).

• Mist, darkness and blinding (sun)light cause unsafe situations, as it is di�cult to
monitor accurately.

Motivation & Commitment

Figure 64.: Survey Results: Motivation (van Veelen, 2018)

Relevant Comments:

• Often, temporary workers are used.

• The costs are often leading in tenders, not the craftsmanship

Workload

Figure 65.: Survey Results: Workload (van Veelen, 2018)
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Relevant Comments:

• Changes in day/night shifts cause concentration problems.

• Many respondents mentioned the changing workload(e.g. summer- and winter pe-
riod), leading to boringness when it is silent, and too much pressure when it is
busy.
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D. Work�ow

Figure 66.: Step 1: Decide to Operate (Intergo, 2019)
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Figure 67.: Step 2: Stop Road Tra�c (Intergo, 2019)

Figure 68.: Step 3: Close Access Road (Intergo, 2019)
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Figure 69.: Step 4: Close Exit Lane (Intergo, 2019)

Figure 70.: Step 5: Close Slow Tra�c (Intergo, 2019)
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Figure 71.: Step 6: Open Bridge (Intergo, 2019)

Figure 72.: Step 7: Allow Shipping (Intergo, 2019)
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Figure 73.: Step 8: Close Bridge Allow Tra�c (Intergo, 2019)
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