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Abstract

Due to the increasing interest of the aerospace industry and the scientific community in missions
targeting halo orbits, a specific family of periodic solutions within the circular restricted three-body
problem, it is highly desirable to find ways to reduce the cost of transfers between these orbits. To
achieve this, depending on the mission characteristics, one could opt for reducing the required propel-
lant mass or the time of flight. As such, with two objectives to be minimized, an ideal implementation
for a mission designer would provide a Pareto front of feasible transfers instead of the single trajec-
tory commonly obtained with conventional methods. Moreover, the necessary propellant mass can be
minimized even further by means of electric low-thrust propulsion due to the significantly larger ex-
haust velocities. Therefore, the purpose of this research is to develop, implement, and study a suitable
approach to obtain a collection of low-thrust transfers between halo orbits optimized in terms of both
propellant mass and time of flight.

The approach employs an optimal control indirect method as thrust law which, combined with a
heuristic optimizer based on differential evolution, can find a wide variety of trajectories that mini-
mize the aforementioned objectives within the circular restricted three-body problem. Heuristic op-
timization is employed to remove the dependency of the solution on the provided initial guess and
find trajectories in the region of the global minima. To satisfy the demanding boundary conditions
characteristic of indirect methods, these constraints are included as a third objective for the optimizer
to minimize as well. Due to the tolerance allowed on the constraints, the trajectories are subsequently
refined with direct collocation methods. Then, they can be transitioned to a high-fidelity model, tak-
ing advantage of the versatility of direct methods. Furthermore, the implementation allows for the
inclusion of invariant manifold phases arising from the departure and target orbits to obtain a wider
set of Pareto-optimal solutions.

To assess the suitability of the proposed procedure, a specific transfer between two halo orbits
around different Lagrange points of the Earth-Moon system was optimized. The results consisted of
100 Pareto-optimal transfers spanning more than 60 days, offering significant mission design freedom.
Moreover, the Pareto front outperforms the trajectory found in the literature for a comparable use
case by 30% in all objectives. Next, an optimized trajectory was first successfully verified with the
mission analysis software ASTOS and then refined with direct collocation. The refined trajectory
exhibited negligible changes in performance, rendering the trajectories obtained with this approach as
promising initial guesses for further optimization with direct collocation methods. Moreover, several
major perturbations not included in the simplified dynamic system were also corrected with direct
collocation. The next steps include: accounting for the eccentricity of the Moon’s orbit to fully
transition the trajectories to a high-fidelity model, assessing the optimization quality with different
use cases, and implementing transfers between different periodic solutions and dynamic systems,
such as the Sun-Earth system.
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Introduction

In this chapter, an introduction to this research is provided. It starts in Section 1.1 with an explanation
on what motivates this investigation and the scientific gap to be filled, and ends in Section 1.2 with a
description of the research questions to be answered. This last section also includes the structure of
the remaining report chapters.

1.1 Motivation and Scientific Gap

Over the past years, the aerospace industry has developed a great interest in missions targeting a spe-
cial type of orbit: the halo family of orbits. These differ from the conventional Keplerian orbits and
only appear within the so-called Circular Restricted Three-Body Problem (CR3BP). The CR3BP is a
dynamical model in which two massive bodies, such as the Earth and the Moon, revolve around their
common barycenter in circular orbits, exerting a gravitational attraction onto a third body (often the
spacecraft) of negligible mass. Such a system can approximate spacecraft trajectories in numerous
places across the Solar System, as its bodies usually orbit each other in approximately circular orbits.
Well-known examples are the Earth-Moon (EM) system, the Sun-Earth (SE) system, the Sun-Jupiter
system, and even the Jupiter-Ganymede system (Q. Li et al., 2022). The CR3BP presents five equi-
librium points in which the spacecraft would stay in a fixed relative position in relation to the two
massive bodies. From these points, known as the Lagrange libration points, multiple families of peri-
odic solutions arise. Additionally, from these solutions, invariant manifold structures emerge, which
serve as pathways to enter and leave these orbits with virtually no effort.

Periodic solutions around the Lagrange points, such as halo orbits, are interesting for future mis-
sions as they can maintain an almost constant location with respect to the Earth and the Moon, facil-
itating telecommunications as well as improving the scientific output by measuring consistently in a
set place. Missions such as ISEE-3! or Adytia-L1? took advantage of this fact by placing their space-
craft in a halo orbit around the L; Lagrange point of the Sun-Earth system (SEL,) to take consistent
measurements of the Sun by always staying between the Sun and the Earth at a set distance from both.
Moreover, the famous James Webb Space Telescope® is currently in a halo orbit around SEL,, thus
always having the same lighting conditions.

Halo orbits or other periodic solutions in the Earth-Moon system are also of interest especially
for future space stations around the Moon (Kokou et al., 2014), like, for instance, the proposed Deep
Space Gateway*. These stations can serve as gateways for other locations such as the Moon or Mars
due to the available low-cost trajectories from and to these orbits. As an example, a set of CubeSats
could be sent together to a specific space station, and then, each of them would travel independently to
the desired location around the Moon with greatly reduced requirements in their propulsion systems.
In addition, they can serve as continuous communication links to the far side of the Moon, which may
well be useful in the future. Other applications arise from the fact that some specific halo orbits can
ensure lunar south pole coverage (Ozimek and Howell, 2010).

Furthermore, as explained by Sentinella and Casalino (2006), the success of the Smart-1° mis-
sion to the Moon and the Deep-Space-1° mission to the asteroid belt, proved solar-electric propulsion

"URL: https://science.nasa.gov/mission/isee-3-ice/ [Accessed: 16/01/2024]

2URL: https://www.isro.gov.in/Aditya_L1.html [Accessed: 16/01/2024]

3URL: https://webb.nasa.gov/content/about/orbit.html [Accessed: 16/01/2024]

4URL: https://www.nasa.gov/mission/gateway/ [Accessed: 16/01/2024]

SURL https://www.esa.int/Enabling_Support/Operations/SMART-1 [Accessed: 31/01/2024]
SURL: https://science.nasa.gov/mission/deep-space- 1/ [Accessed: 31/01/2024]
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to be suitable to explore the solar system. A more recent example would be ESA’s Bepi Colombo’
mission, which is currently on its way to Mercury. Since electric low-thrust engines present a higher
specific impulse compared to chemical propulsion, low-thrust trajectories have gained extreme in-
terest over the past years to reduce the required propellant mass, thus triggering the development of
better and more refined trajectory optimization methods. An example of a low-thrust mission tar-
geting Earth-Moon halo orbits is the ARTEMIS (Acceleration, Reconnection, Turbulence, and Elec-
trodynamics of the Moon’s Interaction with the Sun)® mission. Two satellites, originally part of the
THEMIS mission, transitioned from their respective Earth orbits to distinct halo orbits around the
first and second Lagrange points, making use of optimal control methods to design the trajectories.
However, no low-thrust mission has ever shifted between halo orbits, highlighting the cutting-edge
nature of this research.

The most successful and commonly used methods for low-thrust trajectory design are the robust
direct collocation methods, within the branch of optimal control. These optimizations are solved with
local, gradient-based optimizers because of their outstanding convergence capabilities and ability to
effectively handle the thousands of design variables required for collocation methods. Nonetheless,
they show a high dependence on the provided initial guess, which must be a complete trajectory,
usually a rough and infeasible one. As such, they tend to converge to suboptimal minima, making it an
arduous task to find the global optimum, with the obtainment of promising solutions dependent on the
astrodynamicist’s expertise. Heuristic optimizers, such as genetic algorithms, do not require an initial
guess, and they offer a much wider exploration of the design space, increasing the odds of finding
trajectories in the region of the global minimum. However, they possess poor numerical accuracy,
and their convergence capabilities are greatly influenced by the selected constraint-handling method
(Sentinella and Casalino, 2006). Therefore, a sensible approach would be to use heuristic optimization
to obtain preliminary solutions, hopefully in the vicinity of the global optimum, in combination with
a direct optimization method that refines these solutions until a minimum is reached and transitions
these trajectories to a high-fidelity model. The use of heuristic optimizers to obtain optimal low-thrust
trajectories within the CR3BP is still in its early phases, especially when combining it with multi-
objective optimization. Moreover, assessing the benefits of using these trajectories as initial guess for
direct collocation methods is a matter in which there is still much that remains to be investigated.

Another disadvantage of direct methods with local optimizers is that they only provide a single
trajectory. Thus, if a different performance is desired, continuation methods must be applied starting
from this probably suboptimal trajectory. Furthermore, as the mission cost can be reduced (or the
mission performance enhanced) by decreasing the required propellant mass or the mission flight time,
it would be beneficial to minimize both, as suggested by Lee et al. (2005). As these two figures of
merit are competing parameters in trajectory optimization problems with coasting phases, there is not
one, but a set of equally optimal minima (a so-called Pareto front). Considering that the choice of a
certain time of flight is determined by characteristics specific to each mission, it would be interesting
to provide a range of minimum propellant mass trajectories as a function of the time of flight, i.e.,
the Pareto front, such that any of them is a suitable initial guess to obtain a refined trajectory near
the requested time of flight (TOF). Henceforth, with all the previous information, the purpose of
this research is to develop, implement, and study a suitable method to generate Pareto-optimal low-
thrust transfers between periodic solutions within the CR3BP. To achieve said objective, the developed
strategy will be implemented within the Orbit Generator Tool (OGT) (Walther and Wiegand, 2023)
from Astos Solutions GmbH.

TURL: https://www.esa.int/Science_Exploration/Space_Science/BepiColombo_overview2 [Accessed: 31/01/2024]
8URL: https://science.nasa.gov/mission/themis-artemis/ [Accessed: 09/08/2024]
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3 Chapter 1. Introduction

1.2 Research Objectives

This M.Sc. thesis aims to contribute to the scientific community by providing an answer to a specific
research question. From the explanations provided in Section 1.1, the main research question for this
work can be derived:

Main Research Question

What would be a suitable approach to obtain a variety of low-propellant-mass low-thrust
transfers between periodic solutions in the cislunar space as a function of the TOF?

As already explained, the idea is to generate a set of Pareto-optimal trajectories with respect to the
TOF and the propellant mass within the CR3BP such that a user without extensive experience in
mission trajectory design and astrodynamics can obtain useful initial guesses at desired times of flight
to use with conventional trajectory optimization methods (e.g., direct collocation). The obtained
solutions are meant to provide a preliminary thrust strategy to design real-life space missions in the
cislunar space. From this research question, several sub-questions arise to aid in answering it:

Sub-Question 1
To what extent is the outcome of the implemented method verified?

Firstly, the implemented method will only be suitable as long as the obtained trajectories are consistent
with the mathematical models used in the space scientific community. Knowing what the accuracy of
the solutions is can help identify the range of applications of the method and its usefulness.

Sub-Question 2
What is the quality of the solutions obtained?

Secondly, the suitability of the approach is also measured by the performance of the trajectories
compared to the ones obtained by other authors with different methods. Poor performance leads to
questioning whether the solutions are promising initial guesses in every context, even if they are very
effective initial guesses for a given situation.

Sub-Question 3
What is the performance of the solutions when used as initial guess for direct collocation methods?

Thirdly, the obtained trajectories are intended to serve as promising initial guesses for further opti-
mization with direct collocation methods, with the goal of outperforming the trajectories that would
be obtained after optimizing with the commonly employed rough and fast initial guesses. In addition,
if without excessive effort the performance of the optimized trajectories corresponds to a great ex-
tent to the performance of the trajectories in the initial Pareto-front, then the proposed initial guesses
can be considered effective since the mission designer can easily find promising trajectories at very
different times of flight to suit the mission.

Sub-Question 4

How accurate is the CR3BP approximation to obtain preliminary trajectories to design real-life mis-
sions in the cislunar space?

Fourthly, the method presented in this report is derived purely within the context of the CR3BP.
Hence, several steps, such as a sensitivity analysis, ought to be carried out to assess the difficulty
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in transitioning the trajectories to a high-fidelity model and their usefulness when designing a real
mission.

Sub-Question 5
To what extent can the use of manifold theory improve the obtained solutions?

Fifthly, the literature supports the idea that the use of manifold theory enables the obtainment of
trajectories that require a lower propellant mass. It would be of value to quantify how much benefit
the use of manifold theory compared to a direct transfer provides.

The report continues in Chapter 2 with a detailed elucidation of the required theoretical back-
ground on the CR3BP for the method presented. Next, the existing functionalities and capabilities of
the Orbit Generator Tool are discussed in Chapter 3, followed by a trade-off between the available
methods to solve the problem at hand given in Chapter 4. Chapter 5 explains the chosen method
to solve the main research question, including its implementation within the tool. Subsequently, in
Chapter 6 the use cases under study are presented, and the problem is analyzed in detail, whereas
Chapter 7 presents the results of the optimizations carried out. The resulting optimized trajectories
are analyzed in Chapter 8 and the report ends with the conclusions and recommendations in Chapter 9.
Lastly, the research planning can be found in Appendix A.



Background Theory on the CR3BP

This work takes place in the context of the Circular Restricted Three-Body Problem (CR3BP), in
which the convenient halo orbits arise. Firstly, the problem at hand and its equations will be explained
in Section 2.1 and Section 2.3, making use of the reference frames defined in Section 2.2. Then, the
existence of Lagrange Points and periodic solutions around them will be discussed in Section 2.4
and Section 2.5, respectively. Lastly, Section 2.6 will explore the generation and use of manifolds
originating from these periodic solutions.

2.1 History

As explained by Wakker (2015), after Newton (1642-1727) formulated the general gravitational equa-
tions of motion and derived the analytical solutions for the Two-Body Problem (2BP), many as-
tronomers, such as Euler (1707-1783), Lagrange (1736-1813), Laplace (1749-1827), Jacobi (1804-
1851), Hamilton (1805-1865), Poincaré (1854-1912) and Birkhoff (1884-1944) attempted to solve
the Three-Body Problem, in which the gravitational attraction of the three bodies is the only force.
This problem was of interest to predict the movement of the Moon in the Sun-Earth environment,
for instance. It is still of great relevance for modern-day astrodynamics to predict the behavior of
a spacecraft in the cislunar regime. However, it exhibits a chaotic behavior and analytical solutions
could only be found under certain symmetry conditions.

The problem was then simplified under a specific set of assumptions. The problem then became
"restricted”, as the mass of the third body was assumed to be negligible compared to the other two,
allowing these two to always move in the same plane, with their movement not being affected by the
third mass. Moreover, the first two masses were assumed to move in circular orbits with constant an-
gular velocities about their common barycenter. These two assumptions lead to the CR3BP, reducing
the system from nine second-order equations of motion (order 18) to three (order six), as the motion
of the first two masses is always known. However, even though the motion is accurately described, as
the mass of the third body is not strictly zero, conservation laws for energy and angular momentum
do not hold.

The CR3BP configuration is interesting since it can be found in numerous places in the Solar Sys-
tem as the planets move in almost circular orbits around the Sun. Also, the eccentricity of the Moon’s
orbit around the Earth is almost zero. Euler, Lagrange, Jacobi, Hill (1828-1914), Poincaré, and others
contributed considerably to this problem, which is still far from being solved. The combination of the
equations of two CR3BP systems led to the creation of the Bi-Circular Restricted Four-Body Problem
(BCR4BP) (Maisch, 2022), which is out of the scope of this thesis.

2.2 Reference Frames and Transformations

The equations of motion (EOM) of the CR3BP are derived in a specific non-inertial reference frame
that needs to be defined. Moreover, it is interesting to visualize the trajectories in a more intuitive
inertial frame centered around the Earth. Lastly, the thrust profiles are usually provided as attitude
commands to the spacecraft, due to the thrusters commonly being fixed to the spacecraft bus. As
such, a third reference frame is utilized.

2.2.1 Earth-Centered Inertial Reference Frame

The Earth-Centered inertial (ECI) reference frame is defined with its origin placed at the Earth’s
center of mass. The x-axis, with I as its unit vector!, points towards the intersection of the Earth’s

!'Unit vectors are always denoted with "A".
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Figure 2.1: Diagram of the ECI reference frame (Vallado, 2013).

equatorial plane with the ecliptic (plane of the Earth’s orbit around the Sun) at the epoch J2000. This
date corresponds to the 1 of January 2000, at noon in the time zone of the Greenwich meridian
(JD =2451545.0 days). This intersection corresponds to the direction of the Vernal Equinox or First
Point of Aries (7). Then, the z-axis (K) points towards the Earth’s geographic north pole. Lastly,
the y-axis (J) completes the right-handed system. Figure 2.1 depicts the aforementioned coordinates
with respect to the Earth and the equatorial plane.

2.2.2 Barycentric Rotating Reference Frame

Under the assumptions of zero gravitational pull from the third mass and circular motion of the pri-
mary (the one with the largest mass) and secondary bodies? around their barycenter, a rotating ref-
erence frame centered around said barycenter can be defined. This frame was found convenient for
expressing the equation of motion of the problem.

In the Barycentric Rotating reference frame (BCR), the x-axis points towards the Moon, rotating
with it at all times. Then, the z-axis is perpendicular to the plane containing the orbits of the Earth
and the Moon around their common barycenter. Lastly, the y-axis again completes the right-handed
system.

2.2.3 Normalization of the BCR Frame

It is common to normalize the CR3BP equations and make them non-dimensional for the sake of
computational accuracy and efficiency. Hence, the BCR frame ought to be normalized first. The
chosen normalization is the one presented by Wakker (2015), which is by far the most common.
Firstly, the masses of the primary, m,, and the secondary, ms, are normalized with respect to their
sum, yielding the mass normalization factor, y:
p=—"2 =" 2.1)
mi + mo mi + Mma
Then, the distance between the primaries (primary and secondary bodies), 7z, is chosen as the
unit of distance, DU, and the inverse of the angular velocity of the Earth and the Moon around their
barycenter, wgjs, becomes the unit of time, 7'U:

DU =rgy TU = — (2.2)

’In this research, the Earth is the primary body and the Moon the secondary body.
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Figure 2.2: Diagram of the barycentric rotating reference frame.

The x-location of the primaries relative to the barycenter (z; for the primary and z- for the secondary)
follows from their normalized distance and the barycenter equation:

$1+3§'2:1 xl(u—l)—i—xQu:O

yielding the following position vectors for the Earth, 7, and the Moon, 7 ;:

rp=(-n 0 0 ru=0—-p 0 0) (2.3)

acknowledging that the primaries and the barycenter are by definition aligned at all times. Next, to
obtain wg,y, it should be noted that in this configuration the angular velocity around the barycenter is
equivalent to the one of the Moon around the Earth. Hence, being a an arbitrary vector, and with the
following notation

lal| = a
the inertial equations of the relative motion between the Earth and the Moon, can be expressed as

.. mi + mao
rey = —G — =3 TEM
TEMm
with G being the gravitational constant. Through the Two-Body Problem (2BP) analytical solution
equations, one obtains (Aziz, 2018)

m m
wen = G2 (2.4)
TEMm
A diagram of the described non-dimensional rotating system can be found in Figure 2.2 (not to
scale), showcasing the location of the primaries (the Earth and the Moon in this case), their orbits,

their distance, rz)s, and the barycenter (BC). Lastly, Table 2.1 displays the values used to define
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Table 2.1: EM CR3BP defining parameters.

Parameter \ Value Unit
Gmy 398600.435507 km?3/s?
Gma 4902.800118 km?3/s?
TEM 384400.0 km
WEM 13.194253 °/day

the Earth-Moon system parameters, with the first three values given by Park et al. (2021). These

parameters lead to a DU, T'U, and unit of velocity, VU = ?g , of:

DU = 384400.0 km TU = 375190.2703 s VU = 1024.546824 m/s (2.5)

2.2.4 Radial-Transversal-Normal Reference Frame

The radial-transversal-normal frame, commonly referred to as the RSW frame or the local-vertical,
local-horizontal frame, is centered at the spacecraft center of mass. Its unit vectors are defined by
the spacecraft’s position and velocity vectors relative to a celestial body. As such, depending on the
chosen body, the frame’s definition will vary. For this research, it is decided to employ the RSW frame
defined with respect to the Earth (the primary body). Then, the radial unit vector, R, corresponds to
the x-axis and points in the direction of the spacecraft’s position relative to the primary’s center of
mass. The transversal or along-track unit vector, S corresponds to the y-axis and lies in the plane
defined by R and the velocity vector, at 90° from R. Finally, the normal or cross-track unit vector,
W, completes the right-handed coordinate system.

The explained frame can be visualized in Figure 2.3, where the aforementioned unit vectors are
showcased, and the ECI coordinates and a generic spacecraft trajectory are included for reference.
The diagram also includes a generic acceleration, f, and shows how it can be related to the RSW unit
vectors by means of two angles, o and 3. The former is the in-plane angle, measured from S within
the RS’-plane and positive in the direction of W. The latter corresponds to the out-of-plane angle,
positive when the deflection is in the direction of W.

2.2.5 BCR to ECI Transformation

The procedure for switching between the frames is provided by Walther (2022) and is explained in
this subsection. Defining the (non-dimensional) position r and (non-dimensional) velocity v of the
spacecraft in the BCR frame with the following notation:

T : T
r= (x Y z) v=1r= (U:c Uy vz) (2.6)
the vectors can be then translated to an auxiliary rotating frame, denoted with "’ ", centered around

the Earth (the primary) instead of around the barycenter. The inertial velocity is considered in this
frame, hence, the rotation of the BCR frame ought to be taken into account:

r=r—rp=(x+p y z)T (2.7)

’U/ =V + wWrp X ’l"/ = (’Ux — WEMY Vy + WEM(ZE + ,U) ’UZ)T (28)
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Figure 2.3: Diagram of the RSW reference frame, including the in-plane and out-of-plane angles, o
and f3, provided by Walther (2022) and based on Vallado (2013).

The last step is to rotate this auxiliary frame to the desired ECI frame by means of rotation
matrices. Defining the right-handed rotations, C,, C,, and C,, by an arbitrary angle o respectively
around the Xx, y, and z-axes as

1 0 0 cosaa 0 —sina cosa  sina 0
C.(a)=10 cosa sina| Cyla)=| 0 1 0 C.(a) = |—sina cosa 0
0 —sina cosa sina 0 cosa 0 0 1

2.9)

the full rotation matrix between the frames can be obtained by successive rotations around specific
axes. For this, the Moon’s Kepler elements around the Earth with respect to the ecliptic plane can be
used: the true anomaly #,,, the argument of periapsis wy,, the right ascension of the ascending node
Q) and the inclination ¢,,. Lastly, a rotation around the resulting z-axis is required to translate from
the ecliptic plane to the equator plane. For this, the mean obliquity of the ecliptic, €, is required. As
such, the transformation matrix between the auxiliary frame and the ECI frame, RECY /, is obtained
by:

RECI = C,(e)C.(011)Cling)C(was + Onr) (2.10)

Hence, the position and velocity vectors in the ECI frame, r po; and v gcy, can be computed as:

TECI = RECI//T‘/ Vgpcr = RECI/I’U/ (211)

It should be noted that the resulting vectors are still non-dimensional. The values for all these
parameters are taken from the United States Naval Observatory et al. (2008). Some of them use
polynomial approximations as a function of the initial epoch %, in days since December 31, 2007, at
0:00.00, again in Terrestrial Time (TT). The eccentricity of the Moon’s orbit is, of course, forced to
be zero due to the assumptions of the CR3BP. With JD being the Julian Date, the aforementioned

values are
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e = 0.409092808 rad

EN — 0.0°
iy = 5.1453964°
Qpr = —0.05295376t, + 330.393098° (2.12)

wyr = 0.16435724¢y + 78.314065°
Oy = 13.06499299¢t, + 131.275374°
to = JD — 2454465.5 days

Although the considered approximations are meant to only be used in 2008, Walther (2022) ex-
plains that even in 2030 the prediction is accurate enough for the purpose of presenting the results
of the method, considering that the trajectory is computed in the time-invariant CR3BP. However,
depending on the application of the obtained solution, a better estimation may be needed when trans-
lating the trajectory to the ECI frame.

2.2.6 BCR to RSW Transformation

The algorithm is retrieved from the work by Walther (2022). The first step is to define the RSW unit
vectors within the auxiliary geocentric rotating frame with inertial velocity from Subsection 2.2.5,
which includes the transformation between the BCR frame and this auxiliary frame:

S = (2.13)

Figure 2.3 can help visualize these definitions. Then, the acceleration vector in the RSW frame,
Frsw = (fr [s fW)T, (in this case the thrust) can be transformed to the BCR frame by:

f'=F=faR + fs8 + fuW = [R’ s W’} frow (2.14)

noting that an acceleration vector would be identical in both the auxiliary (f') and BCR (f) frames.

Lastly, as the required transformation direction is the opposite of the one presented, by pre-
multiplying by the inverse of the matrix in Equation (2.14), the acceleration vector in the auxiliary
frame can be transformed to the RSW frame through:

1
fstz[R s W’} f (2.15)

2.3 Equations of Motion

Now that the BCR frame has been defined, the equation of motion can be obtained in non-dimensional
form. The complete derivation is shown by Wakker (2015). Firstly, the spacecraft position relative to
the primary and secondary bodies, respectively, is defined by
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T T
r=(x+p y z) ro=(x—(1—-p) y =2) (2.16)
Then, the so-called pseudo-potential {2 of the system can be defined as
1 1—
Q=@+ +—L 4+ 8 (2.17)
2 1 9

This conservative, non-central force field accounts for the gravitational and centrifugal accelerations
and not for the Coriolis acceleration present in rotating reference frames. The complete equations of
motion, including arbitrary acceleration terms, f;, in each axis that represent the thrust acceleration
are then (Aziz, 2018)

o2

x_Qy:%"i_fac

. Y

j 2= 5o, (2.18)
. 00
Z—g—i_fz

The acceleration terms must be of course non-dimensional. As such, the thrust and the mass must be
normalized. As they are decoupled from the CR3BP accelerations, they can be scaled independently.
Thus, the following mass unit M U and force unit F'U are selected:

DU
MU = my FU:MUT_U?’ (2.19)
where my is the dimensional initial mass of the spacecraft. Hence, with @ € [0, 1]® being the thrust
attitude unit vector, 7 € [0, 1] the thrust ratio, and 7,,,,, the maximum non-dimensional thrust of the
spacecraft’, the thrust acceleration vector, f ace» 18 Obtained via:
o TmaxdimT/&MU B Tmaxrﬂ
ace Medim U m

Then, as the (non-dimensional) mass varies over time to generate a thrust acceleration, an additional
EOM must be satisfied:

(2.20)

Tazy,, T TU B _TmaxT 2.21)
[Spdimgodim MU ISpQO '

where 11 is the non-dimensional mass flow, gy, is the dimensional gravitational acceleration at the
Earth’s surface (9.81 m/s?) and I, is the dimensional specific impulse (with go and I, being the
non-dimensional variables, respectively).

When excluding the additional forcing term from the equations (and thus Equation (2.21)), a
single analytical integral of motion can be derived, the so-called Jacobi constant C, directly related to
the Hamiltonian A of the system (equal to the sum of the kinetic and potential energy since the EOM
are time-independent and the potential energy is velocity-independent (Cline, 2017)) by:

m= —

C=20-0v"=-2h (2.22)
As predicted in Section 2.1, if this expression is translated to an inertial reference frame, the total

energy of the third body (the spacecraft) is not conserved. However, the sum of the total energy and
the angular momentum around the z-axis does remain constant, coinciding with h.

3In these equations, the subscript "dim" denotes a dimensional quantity.
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Figure 2.4: Diagram of the Lagrange libration points in an arbitrary CR3BP (Eslinger, 2023)

2.4 Lagrange Libration Points

In the CR3BP there are a set of equilibrium points for which the partial derivatives of the pseudo-
potential with respect to the spatial coordinates is zero:

o 00 00 0

or Oy 0z
If both the velocity in the BCR frame and the f .. acceleration vector are also zero, then the acceler-
ation experienced by the spacecraft will also be zero. This means that the spacecraft will rotate with
the Moon around the Earth and maintain the same relative position with respect to them. To obtain
these points, the following equations thus ought to be solved:

(2.23)

1—x 7
t———(nt+z)+ z(1-—p-—z)=0
1 Ty
l—p p
1— —— 1 =0 .
(-5 5) &2
1—
z< 3M+ﬂ3):0:>z:()
r )

The third equation restricts all solutions to lie in the xy-plane. Then, if the y-coordinate is forced to be
zero, the first equation (solved numerically or with a series approximation) yields the three collinear
Lagrange points (Li, L9, and L3). On the other hand, if y is strictly non-zero, the first two equations
yield

ri=rog=1 x:%—,u y:j:%\/g, (2.25)
meaning that the fourth and fifth points (L4 and Ls5) form an equilateral triangle with the primaries.
Figure 2.4 illustrates the location of the five points within the context of the BCR frame. The location
of the primaries is also included in the diagram. As explained by Wakker (2015), if © < 0.0385
(which is usually the case in the Solar System CR3BPs), L, and L5 are stable points. However, L,
L, and L3 are always unstable.
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Figure 2.5: Horizontal and vertical Lyapunov orbits around L, and L, of the SE system (Garcia
Yarnoz et al., 2013).

2.5 Periodic Solutions

As explained in Chapter 1, periodic solutions around these Lagrange points are interesting for the
future of space exploration. This chapter will focus on some of the periodic solutions around L4
and Lo, as they are located close to the secondary body, being thus the most useful. In addition,
when linearizing the equations of motion around these two points (Eslinger, 2023), the six obtained
eigenvalues of the continuous linear system, which determine the stability of the motion (Olsder et al.,
2011), are of the form £\, +iw,,, £iw,. This is a dynamic behavior of the type saddle-center-center
(Langemeijer, 2018). The real eigenvalues give rise to invariant hyperbolic stable (—\) and unstable
(+2) manifolds, which offer extremely cheap routes to enter and leave these points. This does not
occur with L, and L5, making the first two Lagrange points more attractive. Section 2.6 will elaborate
more on the invariant manifolds and show that the periodic solutions themselves also have associated
(un)stable manifolds. It should be noted that quasi-periodic solutions also exist, but they are out of
the scope of this study.

2.5.1 Lyapunov Orbits

The in-plane oscillatory motion determined by the +iw,, eigenvalue pair hints at the existence of
periodic solutions around L, and L, that oscillate strictly within the xy-plane. Even though the lin-
earized equations are only accurate in the vicinity of the equilibrium points, the so-called horizontal
Lyapunov family of orbits can be found using the non-linear equations of motion. The horizontal
Lyapunov families around L; and L, of the Sun-Earth system are depicted in Figure 2.5, correspond-
ing to the kidney-shaped orbits within the orbital plane of the Earth. The figure shows that this family
extends far away from the Lagrange points. They are symmetric with respect to the xz-plane.

In contrast, the +iw, eigenvalue pair yields the vertical Lyapunov family of orbits. These eight-
shaped orbits can also be seen in Figure 2.5. These always pass very close to the equilibrium point
when crossing the xy-plane, which happens twice per orbit, and are symmetric with respect to this
plane and the xz-plane.

2.5.2 Halo Orbits

As explained by Marsden (1978), Langemeijer (2018), and Q. Li et al. (2022), a certain periodic
solution of a family can coincide with a periodic solution of a different family for a specific value
of a parameter p (e.g., the period or the z-amplitude). For the rest of the values of the parameter,
the periodic solutions of the two families must be different. This periodic solution that serves as
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Figure 2.6: Southern halo family around EML,; (left), and northern and southern NRHOs around
EML, and EML, (right) (Davis et al., 2017).

the intersection between two families of orbits is called a bifurcation point, which is the foundation
of bifurcation theory. Bifurcation points are identified by a change in the orbit’s stability properties
compared to the rest of the family. Specifically, there is a change in the eigenvalues of the orbit’s
monodromy matrix, explained in Section 2.6.

The so-called halo orbits then arise from the horizontal Lyapunov family by introducing a non-
zero value for the z-coordinate at the appropriate bifurcation point. Due to the theory of image tra-
jectories (Miele, 2010), every halo with a certain positive z-amplitude (A,) will have an associated
trajectory with a negative A, of the same magnitude. This fact gives rise to the northern and southern
halo families, which are mirror images of each other with respect to the xy-plane. The L, southern
halo family is displayed in the illustration on the left of Figure 2.6, with the orbits (each described
by one color) gradually getting further away from the second Lagrange point and closer to the Moon,
while becoming more and more eccentric.

2.5.3 Near-Rectilinear Halo Orbits

Above a certain orbital energy, the stability properties (eigenvalues of the monodromy matrix) of
the halo family become more favorable. This can be determined by means of the stability index v,
computed by

1 1
=~ (A 2.26
Y73 (‘ I+ \Amm\) (2:20)

where A, is the largest eigenvalue of the monodromy matrix from Equation (2.41), in Section 2.6.
The larger v is, the more unstable the orbit. The Near-Rectilinear Halo Orbits (NRHOs), which still
belong to the halo family, are characterized by lower stability indices, leading to more stable orbits.
Due to this, NRHOs are interesting as target orbits for space stations, since they require less propellant
for station-keeping. The northern and southern families of NRHOs of the Earth-Moon system around
L, and L, can be seen in the illustration on the right of Figure 2.6. Four groups of orbits can be
recognized, all of them displaying highly eccentric trajectories. These orbits are characterized by
short periods and a perilune considerably close to the Moon.

2.5.4 Distant Retrograde Orbits

A fundamentally different family of periodic solutions are the Distant Retrograde Orbits (DROs),
as they orbit the secondary body instead of the Lagrange liberation points, which can be seen in
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Figure 2.7: Distant Retrograde Orbit (DRO) family in the EM system (Bucci and Lavagna, 2016).

Figure 2.7. In this figure, the Earth-Moon family of DRO orbits is displayed, clearly showing that
they are centered around the Moon. The name "retrograde" arises from the fact that the spacecraft
would orbit the secondary body in a clockwise direction when viewing the xy-plane from above.
They are symmetric with respect to the xz-plane, and they are planar and kidney-shaped, much like
horizontal Lyapunov orbits. As explained by Q. Li et al. (2022), these orbits are stable (v = 1), so the
use of manifold theory is not advantageous in this case.

There are other periodic solutions around the first two Lagrange points not explained in this sec-
tion for conciseness. For instance, from the NRHOs, the butterfly family bifurcates (Spreen et al.,
2017), and the horizontal and vertical Lyapunov orbits are connected by the axial orbits (Langemei-
jer, 2018). Lastly, higher-order DROs exist which revolve several times around the Moon before
completing the orbit. These are referred to as PmDRO,,, with "Pm" being the order of period multipli-
cation (e.g., PADRO means that the orbit’s period is roughly four times the one of the original DRO),
and "n" being the subfamily identifier for the same period (Q. Li et al., 2022).

2.5.5 Generation of Periodic Solutions

Initial Solution - State Transition Matrix

An initial periodic solution must be found first to find the complete family of solutions (or the desired
member of the family). To achieve this, a single-shooting differential correction method like the one
explained by (Langemeijer, 2018) or (Tatay Sanguesa, 2021) is adopted. Firstly, the state vector, «,
can be defined in this case as

z=(r" o)’ (2.27)

It should be noted that the state vector will contain the spacecraft mass when thrusting is included
in the dynamics, as this mass will change with time according to an additional equation of motion.
Secondly, the unperturbed (no thrust) equations of motion of the state vector are:
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fd_T_’U
dt
dor _ 52 92 o,
T
z=f(x) = (2.28)
doy _ 00
dt oy
dv, . 09
= = —
\dt 82

These equations correspond to six first-order ordinary differential equations. The partial derivatives
of €2 can be found in Equation (2.24). However, this system is highly non-linear. The system can be
linearized by means of the State Transition Matrix (STM) ®(¢, ¢o) such that an initial state deviation
from the reference trajectory dx, can be related to a deviation dx(¢) at time ¢:
0x(t)
ox(t) ~ —=dx(ty) = P(t,ty)dx 2.29

(t) Dz (o) (to) (t,to)dxo (2.29)
Now, the STM for all times ¢ can be computed numerically via the following equation, being, of
course, initialized as the identity matrix:

A®(t,ty) O

dt — a_w @(tyto) @(to,to) = I67 (2.30)

z(t)

where the derivative of Equation (2.28) with respect to the states is the following Jacobian matrix:

0 0 0 1 00
0 0 0 0 10

o [0 0 0 0 01 [0y I

92 Qe Dy Q. 0 20 _[Q r| (231
Qo Uy Q. ~2 0 0
0., 9, Q. 0 0 0

with (Out, 2017)

1— 1-—
Dy =1 — 3#—%—1-3( 5#(x+u)2+—5(x—1+,u)2)
1 T3 1 2
— 1
Qy=1-—" %+32( 5“+ﬂ5)
1 Ty 1 Ty
l—p p 2(1—u u)
sz__ - —=+3 + —=
G AT

(2.32)
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Initial Solution - Differential Correction Method

Now, having the linearized EOM, one can develop an iterative algorithm to achieve a desired state
from a given starting point. Due to the theory of image trajectories, a periodic trajectory must have
even or odd symmetry with respect to the x-axis (disregarding the time direction). Thus, the idea is
to find an unpowered trajectory that, starting from the xz-plane, intersects with an appropriate state
the Poincaré section corresponding to the xz-plane and all velocity components at a certain time.
This flight time would then be the half-period (7'/2) of the orbit. A Poincaré section ¥ is usually an
(n-1)-dimensional subset of the state space (where n is the dimension of the state space) defined by
S(x) = 0 (Henon, 1982). In this case, 3 is a 5-dimensional surface defined by y = 0. As such, both
the starting point and the half-period point lie within the Poincaré section. Then, as the period is also
a variable, the linearization becomes

5x(T/2) = 2(T*/2) — (T /2) ~ ®(T/2, to)dzo + 6T/2, (2.33)

where T™ is the period of the actual orbit. Hence, (7™ /2) is the state of the orbit at the half-period
point and x(7'/2) is the state obtained with an initial guess after integrating the EOM for an interval
equal to the guessed half-period. The state as a function of time x(¢) obtained with the initial guess is
the one used to compute ®(t, ¢) in Equation (2.30). If the trajectory were to be divided into multiple
time arcs and integrated separately, it would be a multiple-shooting differential correction method
instead of a single-shooting one.

A horizontal Lyapunov orbit, for instance, would require at both the starting point and the Poincaré
section intersection y = z = 0 and v, = v, = 0 to ensure symmetry, meaning that

T
az(T*/Q):(:c*T/2 000 v o) (2.34)

Yr/2

Then, as z7, /2 and U;T , are unknown, and only x, v, and 7'/2 are free, Equation (2.33) reduces to

/

51020 + Pasdvy + vy, ,,0(1/2) = —yr)s

. (2.35)
@41(51’0 + @45(5?@0 + iL'T/g(S(T/Q) = —UxT/z

This system of equations is underdetermined, meaning that one of the coordinates can be fixed
(usually dz is fixed to zero for this family of orbits). However, these are linearized equations of mo-
tion that only hold very close to the reference trajectory, meaning that the computed initial correction
vector will not lead to the desired final state unless the reference trajectory is almost the solution.
The easiest way to solve this issue is to iterate. Thus, every time an initial state correction dx is
computed, the trajectory gets re-propagated, and this new trajectory is used as the reference trajectory
for the next iteration (needing to recompute the STM again). This ought to be repeated until a certain
convergence tolerance is reached.

Nevertheless, due to the strongly non-linear dynamics, this method tends to diverge if the initial
guess is not good enough. For planar (horizontal) Lyapunov orbits, as explained by Tatay Sanguesa
(2021), an accurate enough approach would be to slightly perturb the Lagrange point in the = and v,
directions. Other approaches would be to find a suitable orbit from literature or to use a Richardson
linear approximation (Richardson, 1980a,b).

As another example, to obtain a halo orbit, the initial and final z-coordinate are allowed to be
different from zero at the Poincaré section, however, as for horizontal Lyapunov orbits, yo = y7. 12 =
Vgg = U V0 =0 = 0. Hence,
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Then, with zy now being free to vary, Equation (2.33) in this case reduces to
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This system is also underdetermined, having to keep one variable constant throughout the iteration
process. To obtain an initial guess, again a Richardson approximation can be used or, as explained by
Langemeijer (2018), a bifurcation point can be identified in the horizontal Lyapunov family, in which
a slight perturbation in the z direction is introduced to transition towards the halo family.

The same procedure of adapting Equation (2.33) can be applied for the rest of the orbit families
through bifurcation theory to obtain an initial guess, and more details are provided by Langemeijer
(2018). As a separate note, for this research, however, the initial orbit (already converged) is retrieved
from a database generated by previous authors who worked on Astos Solutions’ "Orbit Generator
Tool" (Walther and Wiegand, 2023). The chosen orbit corresponds to the one closest to the requested
periodic solution.

Family Continuation

Once an orbit from the family has been obtained, the rest of the members of the family can be gener-
ated via continuation methods. One option is natural parameter continuation, which simply increases
a chosen parameter (the period or A,, for example) by a constant step and applies the differential
correction method at each step to find the orbit corresponding to the parameter value. Thus, the previ-
ous member of the family with a perturbation in the chosen parameter is used as initial guess for the
differential correction method (leaving the value for the continuation parameter constant in Equation
(2.33)). To ensure convergence and a uniform distance between the family members, the parameter
that has the most monotonous behavior ought to be the one used as continuation parameter. Conse-
quently, for halo orbits specifically (the main focus of this thesis), x-continuation will be used for L,
and z-continuation for L, as demonstrated by Tatay Sanguesa (2021).

However, natural parameter continuation may lead to highly non-uniform distributions of mem-
bers for some families of orbits, such as the vertical Lyapunov family. Although not directly relevant
to this thesis, pseudo-arclength continuation can be used to solve this issue. As explained by Lange-
meijer (2018), instead of only changing a single parameter, the goal is to adjust the step in several
parameters depending on the difference in the previous two members. If the difference in parameters
is very large, the step is reduced to correct for the strong gradient and follow the parameter curve
tangentially. This idea, which aims to correct for steep changes in the z-parameter, is depicted in Fig-
ure 2.8. It displays a generic profile of the z-parameter as a function of the x-parameter, with sample
approximation steps that aim to follow the gradient of the curve. In this case, n is the step index. As
is evident from the figure and the previous explanation, this method requires two family members to
be initialized. The required step can be computed via the difference in parameters of the previous two
family members (4A,,) and a scaling factor p,, to account for strong gradients in A.:

A, =xpt —xf (2.38)
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Figure 2.8: Depiction of the pseudo-arclength continuation method (Langemeijer, 2018)

2.6 Manifold Theory

As mentioned in Section 2.5, a convenient feature of the periodic solutions around the first two La-
grange libration points is the fact that stable and unstable manifolds arise from them. In the context
of the CR3BP, manifolds are trajectories that asymptotically go towards or depart from periodic so-
lutions with virtually the same Jacobi constant (orbital energy) as these solutions. Hence, they are
pathways to leave or reach these orbits for "free" (almost zero fuel consumption). They are very
useful in trajectory optimization for this reason, as the manifold departure or insertion point could be
optimized to reduce the required propellant mass, greatly increasing design freedom.

These structures arise from the stability characteristics of these orbits. By means of the STM
(d(t,10)), the system dynamics can be linearized, as explained in Section 2.5. Furthermore, by
considering the STM exactly one period 7" apart, the behavior of the spacecraft after each orbital
revolution can be characterized by a linearized discrete system:

M is called the monodromy matrix, and it linearly maps the periodic solution. From the stability of
linear systems’ theory (Olsder et al., 2011), the eigenvalues of M define the stability characteristics
of the system. As it is discrete and not continuous, for the system to be stable, the eigenvalues
must lie within the complex unit circle instead of in the complex left-half plane. From the work
by Langemeijer (2018), the eigenvalues of any STM in the CR3BP always come in reciprocal pairs,
meaning that if A\ is an eigenvalue, so is % Moreover, specifically for the monodromy matrix, if
an eigenvalue is complex, its complex conjugate must also be an eigenvalue. Lastly, one eigenvalue
must be exactly one for a linear mapping of a periodic solution (a reciprocal pair in this case, due to

a previous requirement). As a result, the eigenvalues can be ordered as

A1l > [Xa| > [As] =1 = [1/X3] > [1/ o] = [1/N\] (2.42)

Then, the stability properties of the system are mostly determined by the largest and smallest eigen-
values, which give rise to the unstable and stable subspaces, respectively. This fact provides a sensible
explanation for Equation (2.26). Using as nomenclature for the stable and unstable eigenvalues

>\u — )\maz )\s = >\mzn = 1/)\mar7 (243)
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Figure 2.9: Stable and unstable manifolds emanating from a EML, northern halo of A, = 5000 km.

the stable and unstable manifolds at a specific point in the orbit can be triggered by a slight perturba-
tion in the direction of the eigenvector (v, or v,,) associated with the desired eigenvalue:

Vs/u
||I/5/u||

T, = To L€ (2.44)
The perturbing factor ¢, is suggested to be 10° (Gémez et al., 1991) in non-dimensional units, as
it needs to be small enough to achieve almost asymptotic departure but large enough to avoid an
accumulation of numerical errors. This is the approach followed by Langemeijer (2018). Neverthe-
less, for trajectory optimization, authors usually choose values between 10 and 10 to secure faster
departures from the periodic solutions while preserving considerably small perturbations that can
be handled by the GNC (Guidance, Navigation, and Control) algorithm. Moreover, these manifold
structures must be corrected anyway when transitioning the trajectory to a high-fidelity model. For
instance, P. Zhang et al. (2013) employ 10, whereas Ozimek and Howell (2010) and Kokou et al.
(2014) use values slightly larger than 10. For this research, a value of 10 is selected for e,
Unstable manifolds must be propagated forward in time, whereas stable manifolds must be prop-
agated backward in time. In addition, perturbing in a certain eigenvector direction leads to the inner
manifolds (which go toward the secondary body), whereas perturbing in the opposite direction gener-
ates the outer manifolds. As such, a combination of four different manifolds can be generated at any
point in the orbit, yielding the four different manifold families when all points of the orbit are con-
sidered. These families, as could be deduced from the name, present a pipe- or tube-like shape and,
as explained by Koon et al. (2001), "these tubes partition the energy manifold and act as separatrices
for the flow through the equilibrium region: those inside the tubes are transit orbits" (trajectories that
go through the periodic solution from which the manifolds emanate) "and those outside the tubes are
non-transit orbits". This is of course only true for trajectories of the same Jacobi constant as the peri-
odic solution. Figure 2.9 shows the four families of manifolds associated with a certain halo around
L, (by discretizing the orbit in 20 steps), generated with the Orbit Generator Tool (Walther and Wie-
gand, 2023). The inner manifolds correspond to the ones on the left of the halo, and the outer to the
ones on the right side of the figure. In this case, the invariant manifolds were obtained by perturbing
only the velocity components, with no discontinuity in the position. This decision was made by Tatay
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Sanguesa (2021) to make the generated impulsive trajectories feasible within the CR3BP. It is evident
from the figure that the manifolds obtained with this strategy maintain the tubular shape, display the
stable/unstable symmetry, and are spaced in a considerably uniform way. Nonetheless, for this re-
search, Equation (2.44) will be followed, with a perturbation in the position and velocity to guarantee
uniformity, acknowledging that in low-thrust trajectories a perturbation solely in the velocity would
render the trajectory infeasible anyway.

In conclusion, to propagate trajectories and generate periodic solutions within the CR3BP, a large
set of equations and delicate procedures must be followed. Luckily, most of these have already been
implemented and verified within the Orbit Generator Tool (Chapter 3), which is highly advantageous
for the development of this research. All the theory presented in this chapter, including the frames and
transformations, is employed for obtaining the optimized transfers, except for the pseudo-arclength
continuation method. Moreover, the research will focus on transfers between halo orbits, so the rest
of the explained periodic solutions can be disregarded.
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Trajectory Optimization with the OGT

Over the past years, Astos Solutions GmbH has been developing a tool called the Orbit Generator
Tool (OGT, previously called "HaloTool") (Walther and Wiegand, 2023) meant to provide optimized
trajectories between Keplerian orbits and periodic solutions in the two-, three-, and four-body prob-
lems. These trajectories ought to serve as initial guesses for further optimization using the Analysis,
Simulation, and Trajectory Optimization Software (ASTOS). This tool will be especially attractive in
the future for mission design due to the advantages of these periodic solutions and the recent interest
of the aerospace industry in using them in missions. For instance, the James Webb Space Telescope
is currently in a halo orbit around the Sun-Earth second Lagrange point, and the Artemis I mission
orbited the Moon in a DRO.

In this chapter, the capabilities of the OGT prior to the proposed implementations will be ex-
plained in Section 3.1, as they are important factors in the decision-making process due to the fact
that this research ought to extend the tool. Then, the programming architecture of the OGT will be
discussed in a very general way in Section 3.2, followed by a description of the chosen optimization
methods and available optimizers in Section 3.3. Lastly, Section 3.4 explains how the user is meant
to use the OGT to obtain a desired optimal trajectory, and the chapter ends in Section 3.5 with an
overview of the tool’s verification.

3.1 Purpose and Capabilities

The objective of the tool is to provide optimized trajectories within the Earth Two-Body Problem
(2BP, neglecting the gravitational contribution of the spacecraft), the Earth-Moon Circular Restricted
Three-Body Problem (CR3BP), or the Sun-Earth-Moon Bi-Circular Restricted Four-Body Problem
(BCR4BP). It can optimize both impulsive and low-thrust trajectories, which serve as initial guesses
for further optimization using ASTOS with the same model or with a high-fidelity one. The idea is to
find solutions hopefully in the region of the global optimum (using heuristic optimization), such that
ASTOS can then refine these solutions with direct collocation methods that use local optimization
(with the solution being dependent on the initial guess), and thousands of optimizable parameters
efficiently. The OGT is able to minimize the AV (single-objective optimization) as well as generate
Pareto fronts with the AV and the Time of Flight (TOF) as objectives (multi-objective optimization),
which will be explained in Subsection 3.3.4. As such, it provides the user with a wide variety of initial
guesses as a function of the TOF to choose from in order to design a mission. A detailed explanation
of the BCR4BP and how it is implemented into the OGT is provided by Maisch (2022).

The OGT can handle two kinds of trajectories: impulsive and low-thrust. The impulsive transfers
can be between Earth/Moon Keplerian orbits, or to go to or come back from a periodic solution in
the CR3BP, such as a halo orbit or a DRO. Moreover, it can handle trajectories between periodic
solutions as well. For the BCR4BP, the so-called bounded motions are used, which are an adaptation
of these CR3BP orbits to account for the Sun’s influence. A famous example would be the 9:2 synodic
resonant orbit around the Earth-Moon second Lagrange point (EML;). A body in this orbit would
complete nine revolutions at the time the Moon completes two revolutions around the Earth. These
bounded motions are also available around the Sun-Earth Lagrange points (SEL). Intermediate phases
for the impulsive transfers are Lambert arcs, stable or unstable invariant manifolds arising from the
periodic solutions, flybys around the Earth or the Moon, and Weak Stability Boundary (WSB) points
in the BCR4BP to take advantage of the Sun’s influence on the system dynamics.

The periodic solutions are obtained by applying a single-shooting differential correction method
to the orbit closest to the desired one, retrieved from a database. As explained in Subsection 2.5.5,
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a z-continuation scheme is used for L1 halo families and an x-continuation scheme for L2 halo fam-
ilies. Then, the Lambert arcs are generated using a multiple-shooting differential correction (Tatay
Sanguesa, 2021). The manifolds are obtained by a velocity perturbation in the positive or negative
direction of the (un)stable eigenvector of the monodromy matrix at the specific point in the orbit. This
procedure does not lead to the rigorous invariant manifolds explained in Section 2.6, as the position
is not perturbed. Nevertheless, this decision ensures that the trajectories are continuous, and the ob-
tained trajectories are considerably similar to the actual invariant manifolds, preserving the tubular
shape and the symmetry, which can be seen in Figure 2.9. The flybys and WSBs are simply points in

the configuration space connected to two Lambert arcs.
The low-thrust trajectories are only currently available in the 2BP and CR3BP. Unfortunately,

transfers from halo orbit to halo orbit (or between any other periodic solutions) are not implemented
yet, which is the purpose of this research. To connect to Keplerian orbits, the low-thrust law used by
the OGT is the Q-law, explained by Walther (2022) and Petropoulos (2004), which is a control law
that corrects for the difference in the Kepler elements with respect to the target orbit. This law cannot
effectively target the true anomaly, meaning that a specific position and velocity cannot be reached,
impeding transfers strictly between CR3BP periodic solutions. To connect to periodic solutions,
invariant manifolds are used again. However, as previously explained, these manifolds are generated
in the tool employing an instantaneous velocity difference at a specific point in the orbit. This cannot
be achieved with low-thrust, so a “low-thrust perturbation phase” is added to enter the manifolds,
which consists of having the spacecraft continuously thrust in the positive or negative direction of the
(stable/unstable) eigenvector of the orbit’s monodromy matrix at that point (Walther, 2022).

3.2 Programming Architecture

3.2.1 Programming Language

The OGT is written in Java, which offers a comparable speed to other languages extensively employed
for mathematics, such as Python or MATLAB. Speed is a key requirement for the tool as during
the optimization process thousands of function evaluations will be carried out, with some of them
requiring the computation of trajectories in the order of several months, especially for low-thrust
optimization. In addition, Java is especially suitable due to its compatibility with the ASTOS software
(Tatay Sanguesa, 2021), as the goal is to completely integrate the tool within that software. Lastly, as
this thesis is meant to extend the functionalities of the OGT, it would not be sensible to change the
programming language unless strictly necessary. Hence, Java is the chosen language for this research
as well.

3.2.2 Programming Paradigm

The OGT takes full advantage of the Object-Oriented Programming (OOP) capabilities of Java. The
code is structured in classes, instantiated as objects that share functions and variables. As an example,
all trajectory phases are instantiated as objects that connect to each other depending on the requested
trajectory, making it effortless to optimize trajectories that use any reasonable combination of phases.

Hence, the versatility of the tool is greatly increased.
Mathematical operations such as computing the STM, normalizing the variables, or propagat-

ing the EOM are also defined in classes. This makes extending the tool with new trajectory phases
straightforward since just a class for the new phase and a few classes for the new mathematical op-
erations would need to be added to the program. This is ideal in the context of this thesis, as the
goal is to add a new functionality to the tool: a low-thrust phase between periodic solutions. The fact
that the phases and mathematical operations are structured in classes is also extremely convenient for
testing and debugging purposes, since code repetition is mostly avoided. As such, a certain function-
ality would only need to be modified in one place to fix the program in any optimization context.
Moreover, readability is enhanced.
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3.2.3 Propagators

The OGT uses the Cowell propagator!, which employs the traditional cartesian coordinates and tends
to be the least accurate. Due to the highly perturbed motion (CR3BP with trajectories passing close
to the secondary body), most of the alternative propagators lose their advantages. Specifically, Encke,
which defines the state as the difference with respect to a reference Keplerian orbit defined by the
initial state, must be immediately discarded because the resulting trajectories greatly differ from Ke-
plerian orbits. Consequently, the use of Kepler Elements is discouraged, as some trajectories may
well encounter singularities with these formulations. In contrast, Modified Equinoctial Elements or
the Unified State Model (Vittaldev et al., 2012), both of which can be singularity-free, may show
advantages in terms of accuracy and/or speed. More information on these propagator alternatives
is provided by Hintz (2008). However, the equations of motion of the CR3BP are in a non-inertial
frame (as this is where the periodic solutions and the equilibrium points arise), making it difficult to
derive the equations for different propagators. Moreover, the method chosen for this work, explained
in Chapter 5, is fully derived within the context of the Cowell propagator equations, meaning that the
method would need to be adapted if the equations were to be changed, or a transformation would need
to be carried out at every integration step (and sub-steps). Due to the uncertainty in the complexity
and drawbacks of this task and the time constraints of this research, it is decided to not pursue this
approach.

The large variation in the state derivatives can indeed decrease the efficiency of the OGT as the
integrator tolerances will need to be reduced to have an acceptable error. Nevertheless, the use of
non-dimensional quantities helps with coping with the cumulative error arising from the large state
derivative values. Henceforth, Cowell is the most sensible choice.

3.2.4 Integrators

As explained by Tatay Sanguesa (2021), the use of variable step size integrators is encouraged as
the trajectories are expected to get close to the Moon, drastically changing the accelerations. Hence,
reducing the step size only in these regions to maintain the required accuracy will decrease the com-
putational effort of the propagation. As the OGT is written in Java, a choice will be made from the
Apache Commons toolbox?, since implementing one from scratch is probably not worth the effort
as it is not possible to determine a priori which is the best for the problem. As thousands of orbital
propagations are expected to be carried out throughout the optimization, it is crucial to find the fastest
integrator that provides sufficient accuracy. As such, an integrator trade-off will be performed in Sec-
tion 6.2. Specifically, Dormand-Prince, Adams-Moulton, Higham-Hall, and Gragg-Bulirsch-Stoer
integrators and integrator settings will be subjected to a trade-off between speed and accuracy.

3.3 Optimization

The OGT uses static optimization to find minimum AV trajectories (or minimum propellant mass
for low-thrust) by choosing an appropriate set of optimizable parameters or design variables p, of
dimension N, for which the cost or objective (scalar) function f(p) is minimized. In addition, the
vector of parameters must lie within a specified constraining set II, and the solution must satisfy
certain equality (q(p)) and inequality (h(p)) constraints. From the work by Papalambros and Wilde
(2000), this problem can be mathematically expressed in negative null form as

'In this research, the term propagator is used as analogous to the equations of motion formulation.
2URL:https://commons.apache.org/ [Accessed: 30/01/2024]
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min f(p)

subject to  q(p) =0 (3.1
h(p) <0
pell C RN

In static optimization, as opposed to dynamic optimization, the design variables are constant with
time, i.e., constant for each evaluation of f(p). However, in dynamic optimization, the design vari-
ables are functions of time and modify the equations of motion, which are included in the problem
as additional equality constraints (Bryson and Ho, 1975). This is the basis of optimal control. Static
optimization is generally easier to solve, as will be made clear in Section 4.5. Thus, it is convenient to
formulate optimization problems as static optimization problems as much as possible, which has been
the case for all OGT transfer types so far. There are several families of methods to solve optimization
problems: local, heuristic, and hybrid methods. They are common to both static and dynamic prob-
lems, as long as the dynamic optimization problems are put into an appropriate form (more on this in
Section 4.5).

3.3.1 Local Optimization

Local optimization methods, as the name suggests, search the design space until a local minimum
is reached (or maximum, if desired). They can be gradient-based, like Sequential Quadratic Pro-
gramming (SQP), or gradient-free, like Nelder-Mead Simplex (NMS), depending on whether they
use gradient information. Nevertheless, they basically follow the direction in which the objective
function is minimized while attempting to satisfy all constraints.

As the search space is usually narrow, unless the problem is convex the found solution is not
guaranteed to be a global minimum. It is common for these methods to converge to different solutions
depending on the initial guess (they get "stuck" in local minima). In addition, they may experience
convergence problems for difficult objective functions, making it cumbersome to find an appropriate
initial guess when the feasible domain (the subset of design variables that satisfy all constraints)
is small or non-smooth. For these two reasons, a usual approach is to run them numerous times
with different initial guesses. The main advantage of these methods is their convergence speed, with
modern computers being able to handle >100,000 design variables. Moreover, they converge to an
actual mathematical minimum, so with a suitable initial guess in the region of the global minimum, a
solution can be refined very efficiently.

The most popular local optimization algorithms are SQP and Interior Point Optimization (IPOPT).
These have proven to be two of the best-performing and most robust local algorithms for constrained,
highly non-linear problems in a wide variety of realms. For instance, for trajectory optimization
in the three- and four-body problems, SQP is used by Ozimek and Howell (2010) and Pergola et
al. (2009) and IPOPT is employed by Parrish et al. (2016). Furthermore, SQP is used by both the
SNOPT (Sparse Non-linear OPTimizer) (Gill et al., 2005) and WORHP (We Optimize Really Huge
Problems) (Biiskens and Wassel, 2013) optimizers, which are implemented within the ASTOS soft-
ware. WORHP even makes use of IPOPT to solve the quadratic sub-problems of SQP. Even though
no stand-alone local optimizers are currently implemented in the OGT, nor will they be utilized to
generate trajectories with the OGT, the refinement of the trajectories with the ASTOS software will
be carried out with local optimization.

3.3.2 Heuristic Optimization

Another approach to solving optimization problems is heuristic optimization, sometimes referred to
as global optimization. They aim to find the global optimum of the problem by applying search
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strategies that explore the design space in a much broader sense than local methods, attempting to
avoid getting "stuck" in local minima. These are the optimization methods generally used in the
OGT as they are the most likely to find solutions in the region of the global optimum (the aim of
this thesis). The main drawbacks of these optimizers are the fact that convergence to a minimum
is not ensured unless it is set as a constraint in the cost function, and that the computational cost
greatly increases with the number of design variables (in order to obtain a good solution). Thus, they
are usually suitable for problems with a low number of design variables (usually <20 for difficult
problems), especially recommended for non-smooth problems with many local minima. In addition,
the quality of the solution has proven to be dependent on the pseudo-random seed used, as well as on
the optimizer settings and the optimizer itself. Therefore, to obtain a solution to a specific problem the
general approach is first to choose an optimizer, then to tune the optimizer settings to suit the problem
characteristics and behavior, and lastly to run the optimization with several seeds. Lastly, constraint
handling is a point of attention in these methods, as there is a wide variety of strategies to deal with
them, many of which are highly dependent on the tunable parameters.

Most of the heuristic optimizers implemented in the OGT come from the Pagmo scientific library
for parallel optimization (Biscani and Izzo, 2020). This open-source software, greatly supported by
ESA and Google, offers a wide variety of local and heuristic optimizers with the possibility of using
several islands that exchange information in order to parallelize and broaden the search (Ahlborn,
2023). The strategies for the different heuristic methods® usually come from mimicking nature and
adding probabilities to specific decisions throughout the optimization problem.

For instance, the most famous methods are evolutionary and genetic algorithms, which aim to
follow the principles of evolution in nature closely by creating a dynamic population that ensures the
survival of the fittest candidates (the ones with lower values for the cost function) and makes the new
"offspring" come from these fit individuals*. A famous variant of these algorithms based on the same
principle is Differential Evolution (DE). On the other hand, ant colony optimizers such as Genetic
Ant Colony Optimization (GACO), also referred to as extended ant colony optimization, try to mimic
the behavior of ants when they find the shortest route to food by following the paths with the most
pheromones. As such, new individuals are generated by means of Gaussian probability distributions
with numerous kernels that resemble pheromone paths. Another ant colony optimizer implemented
in the OGT is the Mixed Integer Distributed Ant Colony Optimization (MIDACO)’. Other examples
of heuristic optimizers are Particle Swarm Optimization (PSO), which mimics the behavior of food-
searching swarms (in this case the individuals "move around" instead of being substituted by new
ones), Covariance Matrix Adaptation Evolutionary Strategy (CMA/ES), which combines probability
distributions with evolutionary algorithms, and Simulated Annealing (SA), which is an iterative ran-
dom search that narrows down its search with each iteration. SA can be considered a special case of
Tabu Searches, which enhance local search by using memory structures (tabu lists) to avoid revisiting
previously examined solutions and explore the solution space better. MIDACO, SA, and CMA/ES
have shown to generally be the best-performing ones in the OGT, with SA being usually difficult to
tune (Ahlborn, 2023).

3.3.3 Hybrid Optimization

Hybrid optimization methods aim to combine the strengths of both local and heuristic methods. The
idea is to run a heuristic optimizer and let some or all individuals be further optimized with a local
optimizer to fix the issue of not converging to minima. Within the OGT, taken from Pagmo, hybrid

SURL: https://esa.github.io/pagmo2/ [Accessed: 10/07/2024]

“In the context of heuristic methods, an individual is simply a certain combination of design variables, i.e. a specific
point in the design domain.

SURL: http://www.midaco-solver.com/ [Accessed: 22/01/2024]
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optimization is easily implemented by making one of the aforementioned parallel islands run a lo-
cal optimizer (Nead-Melder Subplex) which optimizes the best solutions of the rest of the heuristic
islands and then feeds the new solutions back to them. This is done by placing the islands in a rim
configuration (Ahlborn, 2023), but only works for SO optimizations. Another approach to hybrid op-
timization is to use heuristic optimization to find solutions that satisfy the constraints, which will then
be optimized locally to minimize the actual cost function (Sentinella and Casalino, 2006). Moreover,
heuristic optimization can be used to evaluate the convergence capabilities of each individual when
used as initial guess for a local optimization method (Coverstone-Carroll et al., 2000). However, this
method can be rather inefficient, as assessing the fitness of an individual would require running a local
optimizer for several iterations. For this research, however, hybrid optimization is not employed.

3.3.4 Multi-Objective Optimization

A distinction between single-objective (SO) and multi-objective (MO) optimization should be made.
In the context of trajectory optimization and space mission design, it is equally desirable to reduce the
required propellant mass (Lee et al., 2005), as it will greatly determine the design of the spacecraft
subsystems and drive the mission cost, as it is to reduce the time of flight (TOF) since it will decrease
the operational costs and increase both the reliability of the mission and the spacecraft’s operational
lifetime. Thus, a method that could optimize both the propellant mass and the TOF would be highly
convenient. The optimization problem can be reformulated as

min F(p)= (£(p) L®) - ful@)"

subject to  q(p) =0 (3.2)
h(p) <0
pell CRY,

where m in this case is the number of objectives to be optimized. This problem would then not
converge to a single minimum but to a set of optimal parameters called a "Pareto front" of dimension
m — 1. This set comprises all non-dominated feasible solutions found by the optimizer (Papalambros
and Wilde, 2000), i.e. all individuals that are not worse than any other individual in all objectives
simultaneously. A schematic of a Pareto front for a MO optimization with two objectives can be
found in Figure 3.1. The utopia (ideal) and nadir points can be obtained with the extreme points
of the Pareto set, as shown in the figure. The hypervolume would then be the volume in between
the Pareto front and a chosen reference point, as depicted in Figure 3.2. Note that for m = 2 the

hypervolume corresponds to an area.
To solve MO optimization problems, two approaches are generally used: decomposition and

non-dominated sorting. Decomposition decomposes the problem into several weighted functions of
the objectives and searches for a minimum of each of these functions independently. With enough
functions, a homogeneous Pareto front can be achieved that spans a wide range of objective values.
The simplest decomposition method is the weighted sum decomposition, with the performance index
(cost function) being a weighted sum of the objectives:

F(p) = Z%’fi(lﬁ» a; > 0, Zai =1 (3.3)
i=1 =1

However, not all Pareto-optimal points can be obtained as a minimum of a weighted sum of the ob-
jectives if the Pareto front is not convex. A famous decomposition method that solves this issue
would be Tchebycheff decomposition, explained by Ahlborn (2023). Optimizers in the OGT (includ-
ing Pagmo) that use decomposition are MIDACO or Multi-Objective Evolutionary Algorithm with
Decomposition (MOEA/D), based on DE.
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ideal point and its nadir point (H. Wang et al. respect to a reference point for a MO optimization
2017). of two objectives (Wu et al., 2023).

Then, non-dominated sorting ranks the fitness of the individuals depending on the order of the
non-dominated (Pareto) front to which they belong. The fittest individuals correspond to the first
Pareto front. Next, the second Pareto front is computed by ignoring the first Pareto front and the third
is obtained by ignoring the first two. The fitness of the second front is ranked lower than the first but
higher than the third. This algorithm goes on until all individuals in the population have been ranked.
Within the same non-dominated front, the individuals can be ranked, for instance, by how densely
populated the front is in that region (Coverstone-Carroll et al., 2000). This is called fitness sharing
or niching. Like this, uniformity in all regions of the front is promoted. Another option would be to
rank them depending on how much they contribute to the hypervolume taking the nadir point as the
reference point (Acciarini et al., 2020). As such, the points further away from the nadir are ranked as
fitter. This method is called hypervolume-based non-dominated sorting. In the OGT, Multi-Objective
Hypervolume-Based Ant Colony Optimization (MHACO), Non-dominated Sorting Particle Swarm
Optimization (NSPSO), or Non-dominated Sorting Genetic Algorithm (NSGA) use non-dominated
sorting to solve MO problems. The last two are not yet interfaced with the OGT, as such, they will be
added to the tool in this research to have more MO optimizers available for performance comparison.

3.4 Program Flow

The Orbit Generator Tool aims to reduce the user input and required knowledge of the problem as
much as possible, which is reflected in the brief input files. However, in MO optimization all Pareto-
optimal solutions are equally promising. The choice is subjected to factors and constraints dependent
on the intended mission. Therefore, it makes sense that after the user is presented with the com-
puted Pareto front, they manually have to choose a solution that they would like to refine. For this
refinement, a subsequent SO optimization on the AV or propellant mass will be carried out with the
selected TOF as a constraint. This new optimization can use heuristic, or hybrid optimization as pre-
viously described. Of course, if this new optimization is not deemed necessary, one can simply run
the chosen solution and generate the trajectory files.

The output files of the SO optimization include files to automatically generate an equivalent
ASTOS scenario to better visualize the trajectory, to optimize further with direct collocation, or to
transition the trajectory to a high-fidelity model. The OGT input and output files will be explained in
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Section 5.3, with the required input files to optimize low-thrust transfers between periodic solutions
(the addition of this research to the OGT). A workflow diagram of the explained procedure can be
found in Figure 3.3.

3.5 Verification

The OGT has been under development for several years by authors such as Walther (2022), Tatay
Sanguesa (2021), or Maisch (2022). Each of them performed unit and system testing on their re-
spective implementations. Moreover, verification procedures were carried out, such as a comparison
between the OGT halo orbits and the ones obtained in literature, yielding maximum errors in the
order of 107 (in the non-dimensional state space) (Tatay Sanguesa, 2021). Via the comparison made
by Walther (2022) between the OGT low thrust trajectories with the ones that would be obtained with
ASTOS and GMAT? for the same initial conditions and thrust strategy, the orbit and manifold phases
are considered to be verified for this thesis. Furthermore, the coordinate frames and transformations
have also been tested.

As such, for this work, only the new implementations (the new thrusting phase, its interface
with the optimization procedure, the new optimizers, and the new mathematical tools) and the final
complete trajectories ought to be verified. The unit and system testing overview of the implementation
can be found in Subsection 5.3.4, whereas the trajectory verification is carried out in Section 8.1.

SURL: https://software.nasa.gov/software/GSC-17177-1 [Accessed: 31/01/2024]
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Two-Point Boundary Value Problem

This chapter aims to provide an overview of the existing approaches to solving low-thrust trajectory
optimization problems and illustrate the reasons for the final choice. Each of the methods will be
briefly explained, with the chosen method (indirect optimization) elucidated in greater depth. Then,
their advantages and drawbacks and their suitability to the problem at hand will be assessed. The
collection of methods is largely built from the work by Morante et al. (2021).

The chapter starts with a general description of the problem to be solved in Section 4.1, as well as
general requirements for the tool to be developed in Section 4.2. Then, Section 4.3 explains ways to
obtain initial guesses, whereas Section 4.4 focuses on the different closed-loop control laws. Lastly,
optimal control is discussed in Section 4.5, with a summary of the trade-off present in Section 4.6.

4.1 The Problem

In Newtonian mechanics, the complete state of a body with fixed mass can be described with six
parameters: three position components and three velocity components (the dimension of the state
space). In the 2BP, any trajectory without thrust can be fully described analytically with only five
parameters (the first five Kepler elements), as they are conic sections. The sixth parameter (the true
anomaly) determines the location along the periodic solution. Hence, the first five parameters remain
constant (or vary slowly with time, depending on the assumptions), with the true anomaly being the
only fast-varying parameter. This enables effective transfers between Keplerian orbits using closed-
loop control laws where only five parameters need to be targeted (such as the Q-Law used in the
OGT). However, something like this has not been found for the CR3BP. Therefore, the full state must
be targeted to enter a desired periodic solution.

Regardless of the number of parameters targeted, the transfer problem between two periodic
solutions in the CR3BP is a so-called Two-Point Boundary Value Problem (TPBVP), meaning that the
goal is to achieve a final state «; from an initial state ; while satisfying a set of dynamic constraints
(the EOM) throughout the whole trajectory. This problem can be described mathematically by a set
of equality constraints, with 1) being a boundary conditions vector function:

x = f(x)
Po(xo) = 20 — 25 =0 4.1
¢f(wf) L w} =0

Following Poulsen (2012), if x; and «} define the full state of the body, they are called simple
start and end point constraints. However, as explained in Section 2.3, when thrust is active the
EOM contain an extra equation for the mass flow. Consequently, the state vector must include the
spacecraft’s mass. As no constraint is imposed on the final spacecraft mass, but my = my, the final
constraint is a simple partial end point constraint.

4.2 Implementation Requirements

On top of satisfying the constraints in Equation (4.1), the goal is to find Pareto-optimal trajectories
that minimize both the propellant mass consumption and the flight time. Overall, a suitable method
to solve this problem must satisfy the TPBVP constraints, be versatile enough to handle very dif-
ferent orbit transfers and spacecraft specifications and have an efficient thrusting strategy to increase
performance as much as possible. Moreover, as explained in Section 3.1, the method needs to have

31
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a low enough number of design variables to be suited for heuristic optimizers and MO optimization
in order to hopefully find solutions in the region of the global minimum that trade-off between TOF
and required propellant mass, providing a wide variety of initial guesses for further optimization with
ASTOS.

Additional requirements for the implementation include being compatible with the OGT. This
means that on top of following the same coding architecture, it should have comparable optimization
times, require a similar number of input parameters, be compatible with other OGT phases such as the
manifold and halo orbit phases, and be user-friendly. Lastly, as explained in Chapter 1 and Section 3.1,
the obtained trajectories need not be strictly feasible but serve as promising initial guesses for direct
collocation methods.

4.3 Rough Initial Guesses

Depending on the chosen method, an initial trajectory may be helpful or required to solve the problem.
For instance, local optimization using direct methods or successive convex optimization requires a
complete trajectory to initialize the algorithm, with the quality of the solution greatly depending on the
initial guess. Furthermore, indirect methods can be constructed upon a specific promising trajectory
to improve the performance of the obtained minimum, even if heuristic optimization is used.

4.3.1 Simple Orbit Propagation

The simplest trajectory to use as initial guess would be to propagate the starting periodic solution for
several orbital periods, then "jump" to the target periodic solution at a certain point in time, and lastly
to propagate the target periodic solution for several periods as well. This trajectory will certainly not
satisfy the dynamic constraints but, since it is continuous in time, it is good enough for an appropriate
optimization method to eventually find a trajectory that satisfies all constraints and minimizes the
fuel. This kind of initial guess was used in combination with a direct collocation method by Parrish
et al. (2016), obtaining promising results. Nevertheless, it is explained in the article that the quality
of the results and their time of flight are greatly dependent on the number of periods that each orbit is
propagated. Also, this method takes no advantage of manifold theory.

4.3.2 Manifold Patching

Another more refined way that makes favorable use of the dynamics would be to attempt to connect
an unstable manifold from the starting periodic solution to a stable manifold of the target orbit. Then,
provided they are connected in configuration space, the only discontinuity would be a velocity differ-
ence at the patch point. If the manifolds are connected without any velocity difference, the connection
is called heteroclinic, which is only possible if the starting and target orbits have the same Jacobi con-
stant. This is the method chosen by P. Zhang et al. (2013), connecting two invariant manifolds to
generate a trajectory around which to build the indirect optimization method to smooth the transition
between them with continuous thrust'.

A strategy to find manifold connections between orbits of the same energy is described by Lange-
meijer (2018). It is to find the best connection by varying the location of the connecting Poincaré sec-
tion. This method could be used to find connections between manifolds of different energy, however,
it is not guaranteed that the manifolds that happen to intersect each other are the ones that lead to the
cheapest trajectory in terms of fuel consumption.

INot strictly an initial guess, but a "guide" for how the boundary conditions change as a function of the initial and
final thrusting times.
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4.3.3 Intermediate Orbits

In the particular case where the transfer takes place between periodic solutions of the same family, a
common method is to connect several intermediate orbits of the same family until the desired orbit
is reached. Again this trajectory would not satisfy the dynamic constraints as it is not continuous
in position, but is enough for other methods to refine it. Preferably, the energy of the intermediate
orbits should be in between the energies of the start and target orbits. In addition, the gradient of
the energy throughout the different intermediate orbits should not change sign to avoid inefficien-
cies. This method is used by Kayama et al. (2021) to generate initial guesses for a successive convex
optimization procedure. Hiraiwa et al. (2022) propose a beam search strategy to find the best combi-
nation of intermediate orbits to minimize fuel. The method could in principle be adapted to transfers
between orbits of different families with the proposed beam search algorithm to refine the initial
guess, although no literature supporting this idea has been found so far. Nevertheless, a considerable
drawback of this method is the fact that invariant manifolds are not considered.

4.4 Direct Control Laws

Direct control laws are convenient strategies to generate initial guesses for other optimal control meth-
ods (Morante et al., 2019), as they are usually simple and easy to implement. Furthermore, they often
have a low number of optimizable parameters. Some of them are closed loop, which is convenient to
reduce the required number of correction maneuvers in a real mission, and others are able to target all
position and velocity components. However, due to the nature of how they are generated, the obtained
trajectories are suboptimal, being nevertheless suitable as initial guesses for further optimization us-
ing ASTOS (Walther, 2022). It should be noted that, as explained in Section 4.1, a control law will
only be valid for the problem at hand if it is able to target the full state disregarding the mass (from
now on, the full state). For instance, if the law is defined with respect to the cartesian state, all compo-
nents of the position and velocity vectors would need to be targeted, whereas, if defined with respect
to the Kepler elements or the Modified Equinoctial Elements (MEE), it would need to target all six
elements.

4.4.1 Blended Control

The control strategy for blended control is based on a weighted sum of the thrusting directions that
maximize the change in each of the Kepler elements independently. This is achieved by manipulating
the variation of parameter equations of the Kepler elements (Lagrange Planetary Equations (Vallado,
2013)). For instance, Gao (2007) proposes a control strategy that targets the semi-major axis, the
eccentricity, and the inclination of a Keplerian orbit. Zuiani et al. (2013) explain another blended
control approach to raise the semi-major axis by means of tangential thrusting. None of them can
target the full state, rendering blended control unsuitable for the problem.

4.4.2 Lyapunov Control

As the name suggests, Lyapunov control is based on Lyapunov stability. The goal is to find a control
strategy that minimizes the gradient of the Lyapunov function. From Hatten (2012), for a system of
the form

Az = f(Ax) Ax =x — x, (4.2)

the target state z, is said to be Lyapunov stable if there exists a function V (Ax) such that:

V(0)=0
V(Az) >0 V Az #0

V(Az) <0 V Az #0 4.3)

lim V(Az)= o0

[|Az||—o0
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Hence, the best thrust strategy (which need not be optimal in terms of minimizing fuel consumption)
would make V (Ax) go to zero as fast as possible, i.e., make V(Ax) as negative as possible at all
times.

This is the framework in which the famous Q-Law used in the OGT for transfers between Ke-
plerian orbits and CR3BP periodic solutions was developed (Petropoulos, 2004). The Q-Law is ex-
tremely convenient due to its versatility, as it can target up to five Kepler elements, but fewer if
desired. Moreover, it has a smart coasting strategy, which is lacking in many other control laws, to
only thrust in regions in which it is efficient enough (e.g. when increasing the semi-major axis, only
thrust close to the periapsis) using the effectivity cut-off value. Lastly, only the weights of the targeted
parameters and the effectivity cut-off value need to be optimized, making this law very suitable for
heuristic optimization.

The Q-Law defined with respect to the Kepler elements has been extensively used in literature,
such as by Petropoulos (2004) or Falck et al. (2014), especially for the 2BP. As proved by Walther
(2022), the Q-Law performs considerably well also in the CR3BP, even though the Q-law does not
account for the gravitational perturbations of the secondary body. It has even been successfully for-
mulated in terms of MEE by Varga and Sanchez Pérez (2016). Nonetheless, the Q-Law can only
target five Kepler elements, the true anomaly (or the true longitude in MEE) cannot be reached effi-
ciently as it is a fast-varying parameter, extremely difficult to effectively drive it to the desired value.
In addition to being highly dependent on time, it is also sensitive to thrusting in the radial and along-
track directions. Hence, unless the desired true anomaly is achieved at the same point in time as the
rest of the Kepler elements, having the Q-Law focusing on the true anomaly early on would be highly
suboptimal.

Falck et al. (2014) also propose a Directional Adaptive Guidance control law that is again unable
to target the sixth Kepler element. Furthermore, a collection of seven low-thrust control laws (includ-
ing the Q-Law again) is provided by Hatten (2012). Only one of them, explained by Naasz (2002),
can target all six Kepler elements, however, it is a rather simple control law with constant weights and
a poor coasting mechanism, and, thus, greatly suboptimal.

Lastly, Parrish et al. (2016) deem these kinds of control laws ineffective for generating initial
guesses for transfers between periodic solutions in the CR3BP. Henceforth, it is safe to discard Lya-
punov control as a fitting method.

4.4.3 Fourier Expansion

As explained by Hudson and Scheeres (2009), "any piecewise-smooth function f(a) with a finite
number of jump discontinuities on the interval (0, T) can be represented by a Fourier series that
converges to the periodic extension of the function itself" (Fourier’s theorem). As such, each of the
components of the thrust (including coast arcs) can be expressed as a Fourier series of the form:

fla) = i [ak cos (27;{@) + by, sin (27;lfa)} 4.4)

k=0

where « is an arbitrary variable and a;, and by, the constant coefficients of the series. The more terms
k (and therefore coefficients) the series has, the better the approximation of the thrusting function.
Furthermore, with this approximation of the thrust profile, by averaging the Gaussian form of the
Lagrange planetary equations over one orbit, the 2BP EOM can be greatly simplified, using only 14
of the Fourier coefficients (regardless of how many are used to represent the thrust profile). Neverthe-
less, these 2BP equations are probably not applicable to the CR3BP. In addition, even if the Fourier
expansion were to be used to approximate the thrust profile, no technique is proposed to compute the
optimal coefficients for reducing the required propellant mass, or even reaching the target orbit. Thus,
it would be a blind search of coefficients for which heuristic optimization would not be suitable, as
probably a large number of coefficients are required to obtain good enough results.
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4.4.4 Shape-Based Methods

Shape-based methods simply assume a specific shape for the position coordinates and analytically
compute the required thrust profile such that the trajectory satisfies the equations of motion in the
specified TOF. If, additionally, the shape is forced to satisfy the boundary conditions, this method
would solve the TPVBP. Moreover, they are suitable as initial guesses for direct collocation methods,
as supported by Wall and Conway (2009) and shown by Morante et al. (2019).

The problem is choosing a suitable function to ensure low propellant consumption. Shaped-based
approaches are usually employed in interplanetary transfers (rendezvous), assuming the gravitational
attraction of the Sun as the only acceleration from the environment. As such, generalized spirals
(Morante et al., 2019) or exponential sinusoid shapes (Petropoulos, 2004) (Wall and Conway, 2009)
are enough to find good enough initial guesses. De Pascale and Vasile (2006) take as shaping functions
first order deviations of the MEE. However, none of these shapes are general enough to tackle transfers
between periodic solutions in the CR3BP.

Transfer shapes can be generalized by using a Fourier series to describe the desired shape. This
is done by Taheri and Abdelkhalik (2016) for interplanetary transfers. The first twelve coefficients
would be forced to analytically satisfy the twelve boundary conditions (initial and final position and
velocity) and the rest of the coefficients (as many as desired for generality) would be used to optimize
the propellant mass. Something similar is done by Gondelach and Noomen (2015), where the velocity
profile is shaped instead of the position (hodographic shaping), but the chosen functions are less
general.

Heuristic optimization would be suitable for these methods to optimize the extra coefficients.
However, as seen in the work by Taheri and Abdelkhalik (2016), relatively simple shapes already
require >20 optimizable coefficients. Thus. the problem may become too large for heuristic opti-
mization when complex transfers are considered. As the velocity profiles might have simpler shapes
than the position, it might be interesting to combine the methods from Taheri and Abdelkhalik (2016)
and Gondelach and Noomen (2015) into a holographic shaping method that uses Fourier series to
shape the velocity profile. Nonetheless, these methods pose other problems such as the inclusion of
thrust constraints since the required thrust cannot be predicted in advance, the lack of coasting arcs,
or the variable non-zero thrust profile (not bang-bang?), therefore leading to a suboptimal trajectory.

4.4.5 COV-Based Methods

As explained by Yang (2009), the method of Calculus Of Variations (COV), explained in Subsec-
tion 4.5.3, is used to obtain the optimal thrusting direction as a function of the costate parameters.
However, the costate equations are not used to determine the behavior of the costate parameters as a
function of time, instead, the trajectory is discretized at specific points in time, optimizing the costates
at each discretization point via Non-Linear Programming (NLP). As such, at each discretization node,
the costate parameters required to compute the optimal thrusting direction are estimated. Between the
nodes, the estimated parameters are interpolated. The optimization must also satisfy the boundary
constraints. With this strategy, the small radius of convergence of indirect methods is greatly in-
creased, and it has fewer optimizable parameters than direct collocation methods (Subsection 4.5.2),
without the need for a trajectory as initial guess.

In the article, these equations are derived in terms of the MEE, only targeting the first five, being
thus unsuitable for the TPBVP considered if not adapted. Furthermore, no coasting mechanism is
included in this method, leading to suboptimal trajectories. Lastly, the number of design variables
would be too large for a reasonably refined mesh, being then incompatible with heuristic optimization.

2bang-bang control switches between two states: off and on at maximum power.
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4.4.6 Neural-Control

Carnelli et al. (2009), based on the work of Dachwald (2004), propose a direct control law governed
by machine learning. By means of a feedforward Artificial Neural Network (ANN) of three layers
(input, output, and a single hidden layer), the best thrust magnitude and direction can be obtained as
a function of the initial and target states, the current distance to the target, and the propellant mass,
for instance. This strategy is extremely versatile, as the law itself does not require any information on
the system dynamics. However, this means that the law does not take advantage of them either.

The weights for each of the neurons are optimized using heuristic optimization (an evolutionary
algorithm in the article), from which the term evolutionary neurocontroller comes. Unfortunately,
as the solution is not known a priori, only the fitness (whether a certain trajectory is better than the
rest), the problem is a so-called delayed machine learning problem. Consequently, the ANN cannot
be trained, but the weight optimization must be carried out for each specific transfer.

In addition, the number of design variables (optimizable weights) increases proportionally to the
number of weights and inputs. As such, considering that a simple interplanetary trajectory requires
30 neurons (Carnelli et al., 2009), the design variables would exceed 100. As there is not enough
literature on this method applied to low-thrust transfers, it is difficult to assess how many would be
needed to achieve promising results for the problem considered in this thesis, let alone to converge to
a minimum. Nonetheless, probably the number would be too high for the OGT to handle effectively.

4.5 Optimal Control

In a general sense, the optimal control problem is an optimization problem in which the control input
as a function of time u(t) is chosen along the time interval [to, ¢;] to minimize a performance index’
(cost function) J of the form (Lewis et al., 2012):

J = d(zp,ty) + / tf Lz (t), u(t), t)dt, 4.5)

to
where ¢ is the final cost function and L is the integral cost function (both scalars). This minimization
problem is subject to the state equations (EOM) and the boundary conditions (assuming a set initial
state x(tg) = xo):

& = f(x(t), u(t)) (4.6)
Y(x(tr), ul(ty),tr) =0 (4.7)

Additional equality and inequality constraints as a function of time can of course be included in the
problem, but this simplified version is enough to explain the method and solve the TPBVP in this
thesis.

Common performance indexes are the minimum time problem (J = ftzf 1dt) or the minimum

control effort problem (J = Lif uTudt), which in the case of this thesis is equivalent to minimizing
the required propellant mass. Finding a global optimum for the optimal problem thus leads to obtain-
ing the best possible trajectory for the given objective. However, since the design variables are the
input vector at every point in time, the problem has an infinite number of optimizable parameters. To
solve this issue, the conditions for (local) optimality can be derived as a function of time from the
performance index, the EOM, and the boundary conditions as in indirect methods, or the trajectory
and control history can be discretized to have a finite number of design variables as in direct methods.

3This is the case for continuous systems, discrete systems would have a different formulation (Poulsen, 2012)
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4.5.1 Dynamic Programming

As explained by Morante et al. (2021) and Kelly (2015), dynamic programming consists of solving the
Hamilton-Jacobi-Bellman (HJB) equations #, which discretize the complete state space to obtain the
globally optimal solution. Moreover, once a solution is obtained, the control inputs are precomputed,
leading to a closed-loop control approach instead of open-loop (being thus also suited for stochastic
problems). A more thorough elucidation is provided by Poulsen (2012).

Nevertheless, these advantages come with a large drawback: the curse of dimensionality, i.e., the
exponential increase in computational complexity and sparsity of data as the number of dimensions
of the state grows. Discretizing a seven-dimensional state space (including the spacecraft mass) and
optimizing with such complex equations may well be impractical for many applications. To reduce
the toll of the dimensionality issue, techniques such as Differential Dynamic Programming were de-
veloped, however, this method locally approximates the value function, therefore not converging to
the global optimum anymore. In addition, as concluded by Morante et al. (2021), this method does
not have a considerable heritage yet in trajectory optimization. Lastly, this is by far the most complex
method to use, being more complicated than the one used by ASTOS itself (direct collocation), so the
risks associated with using this method just to generate an initial guess may outweigh the benefits, es-
pecially because the suitability of dynamic programming for multi-objective optimization still would
need to be explored.

4.5.2 Direct Methods

Direct methods are based on the discretization of the states and controls of a continuous trajectory
to reduce the optimal control problem with infinite design variables to a Non-Linear Programming
(NLP) problem with finite variables. With N, being the total number of discretization nodes, the
design variable vector, p, adopts the following shape:

p=(zf ul ] u] .. zf, u%d)T (4.8)
As such, the calculus of variations (Subsection 4.5.3) is not used and the Karush-Kuhn-Tucker (KKT)
conditions are solved instead. Hence, the problem is effectively transformed into a static optimization
problem. The obtained local optima tend towards the optimal control problem local optima as the
number of discretization points tends to infinity. These methods require a trajectory as initial guess,
which ought to be discretized to initialize the optimization.

Direct Collocation

As explained by Parrish et al. (2016) and Mingotti et al. (2007), in which direct collocation is used
to compute optimized transfers in the CR3BP, direct collocation aims to replace the propagation of
the EOM with a continuous function that satisfies the dynamic constraints at a set of nodes (the
discretization points). Therefore, the differential defects at each grid point, i.e., the difference be-
tween the analytical derivative of the continuous function and the actual differential EOM, are added
as equality constraints (instead of the continuous dynamic constraint of Equation (4.6)). Two ex-
amples of common direct collocation methods are Hermite-Simpson approximation and Legendre
Pseudospectral approximation, which approximates each element of the state and control at the nodes
by an N,™ order Lagrange polynomial.

“The HJB equations use a different performance index based on the recursion of the one given by Equation (4.5)
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Sequential Convex Optimization

Sequential Convex Programming (SCP) aims to "convexify" the highly non-linear problem by making
both the performance index and the constraints convex in order to make the local optimization con-
siderably more efficient than for collocation methods. Consequently, as described by Kayama et al.
(2021), the EOM are linearized around a reference trajectory ,.r as

T = f(Trey) + Al — x,cr) + Bu 4.9)

being A and B generic matrices. Then, the discretized trajectory can be put in the following form:

Ty = Apxi + Bruy + ¢ (4.10)

where c is a generic vector. Moreover, being h the sampling step for the time variable, the perfor-
mance index, J, can also be convexified by

Ng
T = [l 4.11)
k=1

However, this approximation of the actual non-linear problem only holds close enough to the ref-
erence trajectory, meaning that a local minimum found for the convexified problem will not be a local
minimum in the actual problem. To solve this issue, it is necessary to iterate by using each optimized
trajectory as reference trajectory for a subsequent optimization (successive convex optimization) until
the trajectory satisfies the non-linear dynamics.

This is the approach used by Kayama et al. (2021) and Hiraiwa et al. (2022) to find optimized
trajectories between halo orbits of the same family, leading to very promising results. This method
has also been applied to interplanetary transfers in a similar fashion by Z. Wang and Grant (2018)
or Morelli et al. (2021). The latter showed faster convergence and higher robustness to poor initial
guesses by using Legendre-Gauss-Lobato discretization instead of Equation (4.10) as discretization
scheme, thus combining SCP with collocation methods.

Both collocation methods and SCP display similar advantages and disadvantages, although SCP
appears to be more efficient, sacrificing robustness. The biggest advantage is the fact that they ob-
tain excellent approximations of the optimal control problem’s local optima without the need for the
derivation of the often complicated COV equations. Thus, these methods can be used in very differ-
ent dynamical systems with few modifications. Nonetheless, as this work takes place solely in the
context of the CR3BP, the COV equations can be analytically obtained without excessive effort, and
there is no need to adapt them to different contexts. The main drawback of these methods is that,
since thousands of design variables are usually required to obtain an accurate optimal trajectory, they
are unsuited for heuristic optimization, and thus highly dependent on the initial guess (as proved by
Parrish et al. (2016), for instance). Because the purpose of the OGT is to provide a wide variety of
promising initial guesses as a function of the TOF to be further optimized with collocation methods
using the ASTOS software, it would be rather ineffective to use direct methods to also obtain the
initial guesses, as they show the same disadvantages as ASTOS would regarding global optimality.

4.5.3 Indirect Methods

As previously mentioned, indirect methods employ COV to derive the necessary conditions for a
local minimum constrained by the specific problem dynamics. Instead of the KKT conditions, Pon-
tryagin’s Minimum Principle (PMP) is used, based on the minimization of the problem’s Hamiltonian
and guaranteeing a minimum of the performance index (not simply an approximation like in direct
methods). The quality of the solution does however depend on the truncation error when propagating
the equations of motion and the costate parameters.



39 Chapter 4. Two-Point Boundary Value Problem

By assuming ¢, and x, to be fixed and x(ty) = xy = x, to be automatically satisfied, the
initial boundary constraint in Equation (4.1) can be neglected. Following the derivation provided by
Lewis et al. (2012), by treating the EOM as equality path constraints to be satisfied at all times, and
assuming the final boundary conditions 1) to be independent of w, the augmented performance index
or Lagrange function J', built upon Equation (4.5), is expressed as

J’:¢(ch,tf)+VT¢(ch,tf)+/fL(az,u,t)+)\T f(x,u) — x| dt (4.12)

to
The subscript " f" denotes the final value and v is the Lagrange multiplier vector of the boundary
conditions, whereas A corresponds to the Lagrange multiplier vector of the dynamic constraints, often
referred to as costate parameters or adjoint multipliers. Then, defining the Hamiltonian function H
as

H(x,u,t) = L(xz,u,t) + AT f(z,u), (4.13)
the augmented performance index can be rewritten:
ty
J =gz ty) +vip(zy,ty) + / H(xz,u,t) — X&dt (4.14)
to
Now, making use of the fundamental lemma of calculus of variations and Leibniz’s rule for func-

tionals, and manipulating, the increment of the augmented performance index, d.J', as a function of
increments in &, u, ¢ (as the final time is free and thus optimizable), A, and v can be obtained:

T
dJ' = ((% + % _ A) del, + (% - s - H) dt|,,
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bl /oH O\ 7T oH" OH r '
T el el e .
+ ‘tfdl/—l—/to [<8w+)\> 5w+au 5u+(a)\ m) ON| dt

Then, the necessary condition for a local minimum with equality constraints is that the solution must
be a stationary point of the augmented performance index. Therefore, by setting dJ’ = 0 for all
independent increments in its arguments, i.e., setting the coefficients of the differentials to zero, the
necessary condition is given by the Euler-Lagrange equations:

State Equation = f(x,u) (4.16)
: H

Costate Equation — A= g— “4.17)
T
. . . 0H

Stationarity Condition 0= T (4.18)
Uu

the boundary conditions, which are split into:

To =X P =0 (4.19)

and the transversality conditions’:

Sz s is assumed to be independent of ¢ .
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PP L (4.20)
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However, in real-life problems, the input vector is usually constrained to a set of admissible
inputs Y. For this kind of problem, Pontryagin’s Minimum Principle is applied, stating that, when the
input is constrained, a minimum can only be obtained by choosing the admissible input parameters
that minimize the Hamiltonian function at all times. Henceforth, the stationarity condition, Equation
(4.18), must be replaced with

u = arg minH 4.22)
ueld

The costate equation, Equation (4.17), dictates the behavior of the costate parameters as a func-
tion of time. This means that, if they are integrated together with the EOM, Equations (4.16) and
(4.17) will be automatically satisfied. With the aforementioned equations, the optimal control prob-
lem can be solved with conventional local optimization methods by estimating the initial value of the
costate parameter vector. As such, instead of directly optimizing w (as in direct methods), the input is
indirectly optimized via the initial costate parameters.

The most difficult part of implementing indirect methods is analytically obtaining the partial
derivatives and choosing the control inputs as a function of time such that the Hamiltonian is mini-
mized. Nonetheless, for transfers between periodic solutions in the CR3BP, the required equations
were successfully derived by numerous authors, such as Stuart et al. (2010), Ozimek and Howell
(2010) or X. Pan and B. Pan (2020). Moreover, they have been obtained for transfers between halo
orbits within the four-body problem by P. Zhang et al. (2013) (SEL halo to MEL halo) and Pergola
et al. (2009) (Earth halo to Mars halo), even using manifold theory.

Another key drawback of indirect methods is the small radius of convergence of the method due
to the strong non-linearities and the discontinuous thrust profile. This means that the provided initial
guess ought to be close enough to a minimum for the method to arrive at a solution that satisfies the
conditions for a local minimum in a finite number of iterations. To solve this issue, some authors,
such as Oberle and Grimm (1989), propose multiple shooting, whereas X. Pan and B. Pan (2020)
employ homotopy techniques to avoid divergence. These techniques consist of solving an easier
optimization problem and using the obtained solutions to solve gradually more restrictive problems
until the actual optimal control problem is reached. A simple example would be to increase the
maximum allowable thrust and keep reducing it until the actual spacecraft maximum thrust is used.
However, as the number of design variables is greatly reduced compared to direct methods since the
only optimizable parameters are the TOF and the seven initial costate parameters (in the case of a
single-shooting approach), indirect methods are suitable for heuristic optimization, for which having
a narrow convergence radius is in principle not an issue.

Heuristic approaches have been successfully used for interplanetary transfers by Sentinella and
Casalino (2006), and Pontani and Conway (2010), for the four-body problem by Pergola et al. (2009),
and for the CR3BP by Lee et al. (2005). The latter employs EA and SA for multi-objective optimiza-
tion, proving the suitability of indirect methods for MO optimization, also explored by Coverstone-
Carroll et al. (2000) for interplanetary transfers. In addition, most of these authors, like Pergola et
al. (2009), employ parameters, such as the TOF in the manifolds or the starting point in the initial
periodic solution, that cannot be analytically included in the transversality conditions. For such a
problem, the equations explained in this section only guarantee a local minimum for the TPBVP, not
for the whole problem with the extra parameters. Nonetheless, convergence to the real minima can
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still be achieved with local/heuristic optimizers in the conventional way, thus disregarding the compli-
cated and often sensitive transversality conditions. This method would be considered a mixed indirect
optimization approach.

Nevertheless, constraint handling is one of the weak points of heuristic optimization. This is a
problem in indirect methods since the boundary and transversality conditions must be satisfied, the
former to obtain a feasible trajectory, and the latter to ensure a minimum. To solve this, hybrid op-
timization (Subsection 3.3.3) is generally used. Pergola et al. (2009) propose to simply include the
constraints in the performance index with weighting factors, and then perform a subsequent local op-
timization with the best solution. On the contrary, Coverstone-Carroll et al. (2000) locally optimize
each of the individuals in the population for a set number of iterations, and the convergence capabil-
ities of the iterated solutions are used for the heuristic optimization. Sentinella and Casalino (2006)
deem the previous strategy rather inefficient, as most of the individuals will not converge to a better
solution after a few iterations. Nonetheless, Sentinella and Casalino (2006) suggest only using heuris-
tic optimization to satisfy the boundary conditions and then using local optimization on the obtained
solutions to converge to a minimum.

Olympio (2008) proposes an interesting indirect optimization method for N-bodies, centered
around the Sun. This method converges by means of an extended STM, instead of with optimiza-
tion methods. Making use of an indirect method for the control law, and an iterative single-shooting
differential correction to meet the transversality conditions, a minimum is ensured. The biggest prob-
lem is that the iterative procedure rarely converges, especially when the trajectory is rather long or
gets close to a body. This is solved by a so-called gradient method®. In a very rough way, a second-
order Lagrangian is introduced, with second-order optimality conditions, and guaranteed solutions
are obtained by a set of equations that require a forward and a backward integration run. Although the
convergence capabilities of this gradient method are outstanding with respect to not diverging, conver-
gence is considerably slow, which would be a problem when using heuristic optimization to optimize
the manifolds, for instance. Moreover, the obtained trajectory is dependent on the initial guess (which
would need to be optimized, adding even more computational cost) and the mathematics behind the
method are extremely cumbersome. For all these reasons, the gradient method is discarded.

4.6 Trade-off Summary

Overall, the following conclusions were drawn from the literature study regarding the suitability of
the explored methods to the given problem:

* Rough initial guesses can be discarded because, although their simplicity is outstanding, the
quality of the trajectories would be very poor and the trajectories would be far from feasible.

* Blended and Lyapunov control laws are not suitable as they cannot target all position and ve-
locity components required to enter the final orbit.

* Neural-control laws are not considered for this work due to the lack of heritage in orbit design
and the high number of optimizable parameters required (being thus inadequate for heuristic
optimization).

» Although feasible trajectories can in principle be easily obtained with shape-based methods,
they do not include effective coasting mechanisms (required for MO optimization), they may
require too many optimizable parameters, and the solution performance is not predicted to be
remarkable.

®Not to be confused with gradient-based local optimization methods.
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* Direct methods can be discarded for their incompatibility with heuristic optimizers due to the
large number of design variables. Direct collocation will anyway be used for further optimiza-
tion.

* There are numerous ways of solving the TPBVP with indirect methods. They have shown to
be the most promising to solve the problem at hand due to their reduced number of design
variables, their suitability for multi-objective heuristic optimization (thus also removing the
need for an initial guess), and the superior quality of the attainable solutions. The latter is true
because, if convergence is achieved, they guarantee a local minimum for the TPBVP. Never-
theless, difficulties may arise especially in finding trajectories that satisfy the constraints and in
ensuring convergence to actual Pareto-optimal solutions.



Mixed Indirect Optimization Approach

Having chosen indirect methods to solve the TPBVP, the next step is to derive the relevant equations
specifically for the problem at hand, which is done in Section 5.1. Then, Section 5.2 explains the
optimization procedure for the complete problem, with its design variables and constraints. Lastly,
the implementation of the complete method within the OGT is discussed in Section 5.3, including the
new additions to the software and their testing.

5.1 Calculus of Variations

To solve the TPBVP, the objective function and the constraints must be defined, and Equations (4.13),
(4.16), (4.17), and (4.20) through (4.22) ought to be derived for the problem at hand'. The chosen
equations are mostly based on the work by X. Pan and B. Pan (2020).

Defining the state vector, x, and the input vector, u, as

xz=(r’ o m)T u=(r '&,T)T (5.1)

the state vector derivative with respect to time can be obtained with the EOM in Section 2.3:

=
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As explained in Subsection 4.5.3, if ¢, is chosen to be set, and x(, = x is known and fixed, then, the
second constraint in Equation (4.1) can be excluded. Acknowledging the final mass to be free, the
optimal control problem can be thus formulated as

Tma:p tf
man / Tdt
u(t) [spg(] to
subject to & = f(x,u) (5.5)
_(rrTr
Vi = (”f—”?) Y
uel

In the proposed problem, ¢ = 0 and L does not explicitly depend on time, greatly simplifying the
equations. The Hamiltonian, /, of the optimization problem is

)\r: (>\x >\y )\Z)T )\v = ()\vx )\vy sz)T (56)

I'These equations constitute the necessary and sufficient conditions for a local minimum.

43
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TmasT o | _ 3 2mesT | TnaaT (5.7)
m I spdo ]spgo

A corresponds to the component of the Lagrange multiplier vector A that is multiplied with the EOM

for z, i.e., the first component of the state derivative vector, . The same logic is applied to the

remaining costate parameters. This Hamiltonian yields the following costate differential equations

(using the nomenclature from Equation (2.31)), which are integrated together with Equation (5.2) via

a direct single-shooting approach:

H=Xv+AI'|g(r) +c(v) +

( . H
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Now, according to the PMP (Equation (4.22)), the control vector w shall be chosen such that the
Hamiltonian is minimized at all times. By only including the thrust ratio 7 € [0, 1] and its direction
unit vector & as input, the thrust can never exceed 7,,,.., being thus always within the admissible set.
It is clear from Equation (5.7) that to minimize the Hamiltonian the thrust must be parallel to A, and
in the opposite direction. Hence,

Ay
2
Then, since Equation (5.7) is linear with 7, the thrust must be set to its maximum value when the

coefficient multiplying 7 is negative, and to its minimum value when it is positive. This renders
bang-bang control as the optimal strategy, governed by the switching function .S (the coefficient):

u =

(5.9)

1 S <0
T = (5.10)
0 S>0
I
S =1 — A — =285, (5.11)
m

in which the optimal u is of course assumed. This control strategy presents a singularity when .S = 0,
making the optimal thrust magnitude undefined. Nevertheless, this singularity can be neglected, as
suggested by X. Pan and B. Pan (2020), and P. Zhang et al. (2013), since this phenomenon only occurs
at finite isolated points.

From these equations, one can observe that the mass costate parameter, \,,, only plays a role in
the thrust magnitude, 7, not in the thrust direction. As such, this design variable does not modify
the trajectory unless S changes sign (only if coasting periods are present). Furthermore, if it were
not for A\, and S, the output trajectory would not depend on the specific initial values of the costate
parameters, but on their ratio instead, removing one degree of freedom. This is because the first
two equations of Equation (5.8) would be scaled consistently, and the costate values are normalized
in Equation (5.9), removing the effect of the scaling. Another noteworthy conclusion is the fact
that, according to Equation (5.8), A, is either constant or decreases monotonously (derivative always
negative) if the optimal u is used, since

Tmax
Alap = — =LA, | (5.12)

m2

Tma:cT

A =
m2
in which all variables are positive or zero.
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Lastly, with the provided performance index and boundary conditions, noticing that %, is not an
explicit function of ¢, the transversality conditions (Equations (4.20) and (4.21)) simplify to:

Arf =V,
Avf =1y (5.13)
Amp =0
Hy=0 (5.14)

In these equations, v, and v, are the boundary condition Lagrange multiplier vectors corresponding
to r and v, respectively. These vectors do not interfere with the rest of the equations, so the equa-
tions for A, s and A, can be disregarded as long as Ao and A, are chosen such that the boundary
constraints 1), are satisfied. With these equations and a direct single-shooting approach, the dynamic
optimization problem can be solved with conventional optimization methods, with the optimizable
parameters being the initial costate parameter vector (Ag). Whereas ¢, = 0 is required to obtain a
feasible trajectory, the transversality conditions for \,,; and Hy only guarantee that the trajectory is
a local minimum with respect to the mass state and the TOF, respectively. Therefore, if these two
conditions are not satisfied by a certain trajectory, but the rest are, the trajectory will still be feasible.

5.2 Mixed Optimization Logic
5.2.1 Optimization Method and Design Variables

The procedure described in Section 5.1 can only ensure local minima of the TPBVP with fixed initial
and final points. In this research, the aim is to connect the initial and target orbits utilizing any of their
points. Moreover, to take advantage of manifold theory, the transfers will employ unstable manifolds
to depart from the target orbit and stable manifolds to converge toward the target orbit, with these
manifolds being connected by the explained optimal control strategy. This is predicted to increase
design freedom, easing the obtainment of solutions and enabling the finding of better solutions. As
such, the transfer strategy will consist of five phases in sequence. A sketch of the five phases is
displayed in Figure 5.1. According to the figure, the spacecraft leaves the initial halo orbit via an
unstable manifold, subsequently entering an optimal control phase, i.e., a thrusting phase governed
by the control law of the indirect method. Then, the optimal control phase connects to a stable
manifold that converges to the target halo orbit.

Hence, in the complete problem, the required initial and final positions and velocities of the op-
timal control phase are optimizable as well and the described indirect optimization method does not
ensure a minimum of the full problem. Since the necessary initial and final states are functions of
parameters such as the initial orbit point and the TOF in the manifolds, extra transversality condi-
tions arise from these parameters that are often computed numerically due to their difficult analytical
derivation. For instance, the transversality condition arising from the variation in 7} and v} in Equa-
tion (5.5) due to the dimensional TOF in the target manifold, 7;,,,,,,, would be (Stuart et al., 2010):
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whereas the one due to the point at which the manifold attaches to the target orbit, 7,,4,, would be

81‘}?
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87—o'rl72




5.2. Mixed Optimization Logic 46
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Figure 5.1: Sketch of the five phases employed in this research to optimize transfers between halo
orbits.

The aforementioned transversality conditions are often considerably sensitive equations. Nu-
merous authors, such as Pergola et al. (2009) and Ozimek and Howell (2010), solve this issue by
neglecting the transversality conditions (also Equations (5.13) and (5.14)), directly minimizing the
performance index instead of a root-solving process to satisfy all conditions for a minimum. As such,
the transversality conditions need not be included because they will eventually be satisfied by opti-
mizing the performance (Ozimek and Howell, 2010) (Lee et al., 2005). For the problem at hand, this
idea of disregarding the transversality conditions is also of interest because the goal is to obtain a
wide variety of minimum propellant mass solutions as a function of time with a single optimization
(minimizing both propellant mass and TOF), such that the mission designer can have numerous al-
ternatives. For this matter, heuristic optimization methods will be employed due to the advantages
described in Subsection 3.3.2. Then, having to satisfy the transversality conditions on top of the very
constraining boundary conditions may make the optimizer converge (if at all) to only a few solutions.
Furthermore, even though these solutions would be rigorous local minima, they might be far from
the global minimum, so a heuristic optimization that explores more solutions is predicted to arrive at
better results. For this research, a single-shooting approach was chosen to carry out such a task, as
the use of multiple-shooting would increase the number of optimizable parameters beyond the capa-
bilities of heuristic optimization. Therefore, the proposed approach is not a pure indirect method, but
a mixed (hybrid) direct/indirect optimization method.

The strategy to generate a single trajectory such that it is easier for the optimizer to find trajecto-
ries is as follows:

1. Propagate the initial and target orbits for one period.

2. Choose the starting point in the initial orbit, parametrized with respect to its orbital period,
Torby € [O, 1]

3. Perturb this point in the selected direction of its unstable eigenvector (with €, = 10*) and prop-
agate the corresponding unstable manifold for a specific TOF, 7},,,. The mechanism to choose
the eigenvector direction is explained in Section 5.3.

4. Choose the final point in the target orbit, also parametrized with respect to its orbital period,
Torby € [O, 1].

5. Perturb this point in the selected direction of its stable eigenvector and propagate the corre-
sponding stable manifold backward in time for a certain amount of time defined before the
optimization.



47 Chapter 5. Mixed Indirect Optimization Approach

6. Starting from the end-point of the unstable manifold and with the chosen A, propagate the
so-called optimal control phase using the equations from Section 5.1 for a certain amount of
time defined before the optimization.

7. Find the closest state between the optimal control trajectory and the stable manifold or the target
orbit (Subsection 5.2.3).

8. Adjust the states and times of flight of the optimal control and stable manifold phases accord-
ingly. If the closest state to the optimal control phase lies within the target orbit, the stable
manifold phase is removed and 7,,, is updated.

In this method, it is assumed that the propellant mass required to transition between the manifold and
orbit phases is negligible compared to the one required throughout the optimal control phase (Stuart
et al., 2010) (P. Zhang et al., 2013). This assumption is also necessary as it is not possible to predict
how much mass the spacecraft would still have at the target orbit before propagating the optimal
control phase, so the acceleration provided by the thrusters would be unknown and iteration would be
required. Nonetheless, the validity of this assumption is explored in Section 8.2.

Therefore, the extra parameters that need to be added to the optimization problem are the initial
and target points of the periodic solutions, 7, and 7,.,, and the TOF in the unstable manifold,
T'nan. Beforehand, the maximum TOFs for the stable manifold and the optimal control phases must
be defined. Then, the complete design variable vector would consist of ten parameters:

b= (Torbl Tman Ag; Torb2>T (517)

It should be noted that several trajectory combinations are possible:

* From periodic solution directly to the target periodic solution (case Tan = Timan, = 0).

* From periodic solution to a stable manifold connecting to the target periodic solution (case
Trnan = 0).

* From an unstable manifold arising from the initial periodic solution to the target periodic solu-
tion (case 1r,an, = 0).

* From an unstable manifold arising from the initial periodic solution to a stable manifold con-
necting to the target periodic solution.

Hence, not all the described parameters need to be used for every optimization problem. If the unsta-
ble manifold phase is not used, 7;,,, would not be needed. Moreover, if the stable manifold phase
is disregarded, 7,,;, can be neglected as the complete orbit is used to find the closest state anyway.
Consequently, accounting for all combinations, the maximum number of design variables would be
ten, and the minimum eight. These numbers, although not small, are suitable for heuristic optimiza-
tion. Removing manifold phases can be convenient for obtaining faster transfers and for more rapid
optimization convergence (fewer design variables). In addition, for marginally stable orbits such as
DROs or less unstable periodic solutions such as NRHOs, the benefits of manifold theory disappear.

On a separate note, depending on the mission and the mission design stage, the dry mass of the
spacecraft or the mass required at the target orbit may be known instead of the total initial mass at
the start of the transfer. As such, to increase design freedom, the optimal control phase can also be
propagated backward in time if desired. Thus, the supplied total mass will actually be the final mass,
and the optimal control phase will attempt to connect the stable manifold arising from the target orbit
to the unstable manifold arising from the initial orbit. In addition, 7},,,, would then correspond to the
TOF of the stable manifold and 7;,,,,,, to the TOF of the unstable one.



5.2. Mixed Optimization Logic 48

5.2.2 Boundary Constraints

As mentioned in Subsection 3.3.2 and Subsection 4.5.3, heuristic optimizers may struggle with find-
ing feasible solutions if the constraint handling strategy is not appropriate. Although the constraint
handling strategy will be treated in Section 7.1, due to the highly restrictive equality boundary con-
ditions from Equation (5.5), it is crucial to define an appropriate tolerance level to help the optimizer
explore a diverse set of trajectories. Having disregarded the transversality conditions, the only con-
straints required are the six boundary constraints to connect the optimal control phase to the target
manifold-orbit structure (three for position and three for velocity).

The trajectories generated by the OGT are meant to be suitable initial guesses for further opti-
mization with ASTOS. Thus, the allowable discontinuities ought to be small enough to not only be
able to be corrected with the software without excessive effort but also to ensure that the performance
(TOF and required propellant mass) does not significantly change. In this framework, the obtained
initial guesses would be considered promising for mission design. As a first estimation for appropriate
position and velocity constraint values, considering that the perturbation to enter the manifold phase
is already 10 in non-dimensional units, a value of 10 for both position and velocity was deemed
fitting. If dimensionalized with DU and V' U, this value amounts to 384.40 km and 1.02 m/s. It should
be noted that this discontinuity would be several orders of magnitude smaller than the ones that usu-
ally need to be corrected with the rough initial guesses commonly used with collocation methods,
such as the ones employed by Pritchett et al. (2017) or Parrish et al. (2016).

However, close to the Moon, due to the fast varying dynamics, a difference of 384 km may lead
to a completely different trajectory. If the connection point between the target manifold and optimal
control phase takes place close to a lunar flyby, even when the position and velocity constraints are
satisfied, the difference in Jacobi constant (related to the orbital energy in the rotating frame) might
be too large to be easily corrected with direct collocation methods. To circumvent this issue, an
additional constraint for the Jacobi constant error is introduced, such that the majority of the required
orbital energy change is supplied. As the Jacobi constant in the EML, halo family ranges between
3.02 and 3.17 (Hiraiwa et al., 2022), a value of 10 is deemed appropriate. Given this number,
problem analysis showed that when the phase connection does not take place near a flyby, the Jacobi
constraint is not active. Nevertheless, for some use cases, it may be convenient to revisit this value.

Although most of the optimization tuning in Section 7.1 is carried out with the aforementioned
constraint limits, for the OGT optimizations it would be convenient to relax the constraints as much
as possible. As will be demonstrated in Section 8.2, the proposed discontinuities are easily corrected
with ASTOS without changing the trajectory performance at all. Moreover, Subsection 8.2.2 will
show that larger discontinuities can also be rectified without penalizing the performance. Therefore,
for the final optimizations and results, the constraints were relaxed to a value of 3-1073, corresponding
to an error of 1153.20 km and 3.07 m/s. To summarize:

« Position and velocity constraints before relaxation: 10 [-]
« Position and velocity constraints after relaxation: 3-107 [-]

« Jacobi constant constraint: 1072 [-]

Lastly, to provide the user with more control over the search areas of the optimizations, two ad-
ditional constraints are included: one for the maximum allowable propellant mass and another for the
maximum time of flight. The values for these constraints are defined before the optimization. Evi-
dently, these two constraints are not close to being as restrictive as the boundary conditions, provided
that the selected values are sensible. It should be noted that for the use case explored in this research,
the values are chosen such that these two constraints are never active.
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5.2.3 Closest State Search Strategy

Due to the extended durations of the optimal control phase and the target phases (manifold and pe-
riodic solution), finding an efficient way to retrieve the closest state between the phases is essential.
With such demanding constraints, it is expected that a very large number of runs are required for the
optimizations to converge. Hence, any reduction in the computational cost of each run is valuable.
However, the step size ought to be small enough such that the difference in state error between two
adjacent steps is not more than the constraint values. Otherwise, the discretized trajectories will not
have enough resolution to satisfy the constraints. For this matter, the maximum step size for the
manifold and orbit phases when acting as target phases is half of the nominal maximum step size of
the OGT. The nominal maximum step size was chosen by Tatay Sanguesa (2021) to be 10" in non-
dimensional units (roughly 375 seconds). Thus, 5-10 is the new maximum step size for the target
phases. For the optimal control phase, the maximum step is kept at 10~ as the location of these points
is more flexible to design variable changes. Interpolation between the steps was explored but deemed
unnecessary and too time-consuming.

The general strategy to find the closest state is simply to evaluate, at each step of the optimal
control trajectory, the position and velocity errors with respect to every point of the target trajectory
(consisting of the target manifold and target orbit phases) and store the minimum value. The overall
minimum difference is found by taking the lowest of all stored errors. As iterating through thousands
of points in every step of the optimal control phase propagation can be very time-consuming, a coarse
search is first carried out by taking (at each step of the optimal control phase) every ten steps of the
target trajectory. Once the minimum is obtained, a fine search is performed by evaluating the twenty
points surrounding this coarse minimum.

To prove that the maximum step size is appropriate and that taking every ten steps is enough to
not miss any close approach, the nominal trajectory that will be presented in Section 6.2 (which is a
feasible transfer) was analyzed. At every step of the optimal control phase of the nominal trajectory,
the state error with respect to all discretization points of the target trajectory was computed simply by
taking the norm of the six-dimensional vector difference in position and velocity. The sharpest mini-
mum of this function, i.e., the minimum with the largest second derivative, is found at the connection
point between the phases. Disregarding this point for now, one can find the second-sharpest minimum
by examining the second derivative of the state error relative to the rest of the optimal control steps.
Figure 5.2 displays the state error between the target trajectory points and the optimal control step
that leads to this second-sharpest minimum in state error. From this figure, it can be seen that the
local minima are very well described, even by the coarse grid (taking every ten steps). The oscilla-
tions follow the general dynamics of manifolds. As manifolds gradually depart from the halo orbit
while revolving similarly to the original orbit, appreciable periodicity in the state error is exhibited.
Moreover, the first manifold revolution tends to be very similar to the original halo orbit (especially
for less unstable halos such as the ones considered in this use case), which explains why the last two
minima in the plot are almost identical.

Then, Figure 5.3 shows the state error with respect to the target trajectory taking the actual con-
nection point. It should be noted that in these figures, the portion of the target trajectory that is not
part of the final trajectory is not displayed. As would be expected, the error starts from a value close
to zero (the connection point). Again, the coarse grid describes the state error evolution accurately,
even at the beginning, where the change in state error is most severe. Focusing on the cut-out, one
can see that the difference in state error between the first two orange points (the ones describing the
minimum) does not exceed 3-107. As there are nine additional points in between, several points sat-
isfy the boundary constraints. Furthermore, the computation of this state error groups the position and
velocity errors, which is not the case in the constraint computations, making this analysis conservative
by a factor of v/2. In the search for the minimum state error, the following equation is employed:
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Figure 5.2: State difference between the target
manifold and halo discretization points and the
optimal control phase point that leads to the
sharpest minimum excluding the connection
point.

Figure 5.3: State difference between the target
manifold and halo discretization points and the
optimal control phase point that connects to said
target trajectory.

€s = wpos”r - Ttarget” + wvele - vtarget“ + |C - Ctarget| (518)

where ¢, is the state error, w,,s and w,,; are weights, and the subscript "target" refers to the point being
evaluated in the target trajectory. The values for the weights will be defined in Section 7.1. Following
this nomenclature, the relaxed position, velocity, and Jacobi constant constraints, symbolized by /05,
hyets and h,, respectively, are expressed as:

hpos = HT - rtarget” -3 1073
hvel = ||’U - vtarget” -3 10_3 (519)
hfc = |C - Ctarget’ - 1072

where the minimum state error between the optimal control phase and the target trajectory according
to Equation (5.18) is selected. With these definitions, a trajectory is considered feasible provided that
Ppos, huwer and h, are negative.

Further proof that the adopted settings are suitable is the fact that the optimizer can find vast
numbers of extremely similar feasible trajectories around the nominal solution by slightly modifying
the design variables, even with the tight constraints. However, due to the aforementioned similarity
between the target orbit and the first revolution of the stable manifold, on numerous occasions, the
coarse search may not accurately identify where the actual minimum is. To solve this and any other
special cases, in the coarse search the second-lowest state error point is also stored, and, if it is not
adjacent to the lowest, the region corresponding to the second lowest is explored with a fine search as
well. After both fine searches (storing the minimum and the second-lowest state errors), if the second-
lowest error is still not adjacent to the lowest, the point that leads to the smallest TOF is selected (the
propellant mass does not vary for a given point in the optimal control phase).

To further increase the search speed, it is desirable to not evaluate the state error when the space-
craft has a state that is considered "not useful” to find the minimum state error within the trajectory.
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Figure 5.4: Workflow diagram of the strategy to search for the closest state between the optimal
control phase and the target trajectory for a single run.

The state error at the initial propagation state is always evaluated. However, when the spacecraft
is too far from the Moon or the Jacobi constant is too far from the target value (virtually constant
for the complete target trajectory), the search for the closest state is not carried out. A conservative
value of 0.3 in non-dimensional units was selected for the Moon distance. In contrast, for the Jacobi
constant, the state error is not evaluated unless the difference with the target value is less than 3-1072.
These numbers are intended to be suitable for a general transfer between halo orbits, but may not be
appropriate in other cases (such as for DROs). In addition, they should not be too constraining to
avoid most of the trajectories returning the initial propagation state as the best state 2, providing no
help to the optimizer on how close they got to the target. A workflow diagram that summarizes the
computational logic is provided in Figure 5.4.

5.2.4 Termination Conditions

As already explained, each of the phases is propagated separately. Aside from the predefined times of
flight, several termination conditions have been added to avoid infeasible trajectories and to increase
efficiency:

* The periodic orbits are propagated for one period each.
* The departure manifold is propagated for a TOF of 71,,,,,,.

* The target manifold phase is propagated for a maximum TOF predefined by the user before the
optimization.

* The Optimal control phase is propagated for a maximum TOF predefined by the user before the
optimization, until the distance to the Moon exceeds a non-dimensional value of 0.45 (being
0.5 half of the distance between the Earth and the Moon), or until the spacecraft acceleration
due to the thrust is more than 100 times the initial acceleration (the spacecraft mass is too close
to zero).

* The propagation of any of the phases is stopped if the distance to the Moon falls below 50 km.

ZPerformance-wise, these trajectories would require a propellant mass of 0.0 kg and a TOF of 0.0 days for the optimal
control phase. Nevertheless, the constraint violations would be substantial.
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5.3 Implementation Within the OGT

5.3.1 Architectural Design

As already explained, the method developed in this research had to be integrated as part of the OGT.
As such, the implementation was made to be compatible with the already existing transfer strategies
(such as impulsive transfers), even when the optimal control phase is not used. Figure 5.5 displays a
simplified diagram of the architectural design of the OGT, focusing solely on the trajectory optimiza-
tion problem considered in this research. In the figure, all blocks within the Orbit Generator Tool
correspond to a separate class. As the diagram suggests, the user only needs to modify the two input
files to set up the desired optimization problem. Then, the main program is run, which instantiates
the Optimization Problem class, in which the design variables, objectives, and constraints are set up.
This class is linked to the Pagmo library and carries out the optimization by instantiating the Mission
Configuration class with the specific connected phases and optimizable parameter values. For the
transfers considered in this research, three phases are used: the Periodic Orbit phase (the halo orbits),
the Manifold (stable or unstable) phase, and the newly implemented Optimal Control phase. The first
two phases employ the general class for the CR3BP equations of motion, whereas the latter requires
a new class for the ordinary differential equations (ODE) according to the optimal control law. This
class modifies the state EOM to include the thrust law and adds the seven costate EOM. Lastly, the
Dynamic System class includes the necessary information on the CR3BP and celestial bodies.

After the optimization is complete (or after the user chooses to stop it), a set of output files is gen-
erated with the solution set and detailed information on the optimization. As opposed to Figure 3.3, in
which a single-objective optimization is usually carried out around a chosen trajectory to refine it and
obtain the final trajectory file, for the trajectories including optimal control phases all optimizations
in this research must be multi-objective since the constraint violations are minimized as a separate
objective, as will be explained in Section 7.1. Moreover, the trajectories are meant to be refined with
ASTOS to correct the instantaneous discontinuities between the phases. This is because the OGT has
a certain tolerance on the boundary conditions, meaning that a reduction in propellant mass around a
given solution, may well entail an increase in the final position and velocity errors (with the constraint

Input Files Orbit Generator Tool Output Files

optControl_pareto_front.txt
initialSettings.txt Main Proaram | optControl_trajs.txt
initialGuess.txt 9 | ' o pagmo_history.txt

T | pagmo_output.txt

imization Problem’ = ----- Lo ini_traj.txt
Optimization Problem > Additional Files for ASTOS integration

Dynamic System ——>Mission Configuration €«——

4

Optimal Control | | o timal Control ODE
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A
I 1
Periodic Orbit Phase Manifold Phase
A , A
CR3BP Coasting
ODE

Figure 5.5: Architectural design of the OGT with a focus on the implementation of this research.
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Table 5.1: Example of the parameters required within the initialSettings.txt file for a transfer between
two halo orbits that employs an optimal control phase connecting an unstable and a stable manifold.

Parameter | Value
Trajectory String [-] PMOMP
Julian Date [days] 2460000
Maximum TOF [days] 200
Maximum Propellant Mass [kg] 100
Dynamic System [-] EM
Maximum Evaluations [-] 999999999
Maximum Time [min] 999999
Seed [-] 11
Solver [-] Pagmo
Islands [-] 10
Population per Island [-] 120
Generations [-] 5000
Migrations [-] 1000
Topology [-] ring
Replacement Rate [-] 1
Selection Rate [-] 1
Balance [-] 30
Algorithm [-] moead
Algorithm-specific Parameters...

Departure Orbit [-] HALO-L2-NORTHERN
Defining Parameter [-] Periapsis
Value [km] 34660.33
Arrival Orbit [-] HALO-L1-NORTHERN
Defining Parameter [-] Periapsis
Value [km] 27086.02
Thrust Force [N] 0.1
Initial/Final Mass [kg] 500
Exhaust Speed [m/s] 19620
Backward Propagation [-] false
Maximum Optimal Control Phase TOF [days] | 80

violations still being nominally 0). Hence, the SO optimization is not carried out and the final trajec-
tory file (ini_traj.txt) is obtained by commanding the tool to only run the initial guess, which ought to
be the selected optimized trajectory from the final Pareto front.

5.3.2 Input Files

All the required setup information is summarized in two input files: one with the use case and op-
timizer settings (initialSettings.txt), and one with the optimizable parameters and their bounds (ini-
tialGuess.txt). These files include different parameters depending on the transfer type, however, in
this section only the required configuration for transfers with an optimal control phase is described.
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initialSettings.txt

The initialSettings.txt file is divided into three main sections: the general transfer information, the
optimization data, and the use case information, which consists of the orbital parameters and the
spacecraft specifications. Table 5.1 displays the necessary parameters for the optimization carried out
in this research, using the first use case, explained in Section 6.1.

In the table, the trajectory string lists the (in this case five) transfer phases in order. The letter
"P" corresponds to a periodic solution phase (in this case, a halo orbit), "M" to a manifold phase, and
"O" to the new optimal control phase. Then, maximum evaluations dictates the allowable number of
trajectory computations carried out by the optimizer, whereas maximum time specifies the maximum
optimization time. The balance parameter determines the relative weighting between the propellant
mass and TOF objectives®. As such, a balance of, for instance, 30 means that the TOF is weighed
30 times less than the propellant mass. A negative value would make the optimizer maximize the
TOF instead (with the specified relative weighting). Moreover, the strings "mass" and "TOF" would
make the optimizer focus solely on the propellant mass and the TOF, respectively, having only two
objectives when including the constraints objective. The rest of the settings related to the optimizer
are explained along Chapter 7. In addition, there are several parameters not included in the table that
depend on the chosen optimizer. For MOEA/D, these parameters can be found in Table 7.1.

Regarding the use case parameters, for transfers with optimal control phases, the only possible
departure and arrival orbits are currently halo orbits within the Earth-Moon system (around L; or
L, and northern or southern) or DROs. To define the specific orbit, six different parameters can be
employed: the period, the distance between the Moon and the periapsis, the Jacobi constant, the out-
of-plane orbit amplitude, A,, the orbit amplitude in the x-direction relative to the pertinent Lagrange
point, A,, or the orbit amplitude in the y-direction, A,. Then, value must be set according to the cho-
sen defining parameter. The provided spacecraft mass can be the initial or the final mass depending
on if the transfer is propagated forward or backward, respectively (specified by the backward propa-
gation boolean). Lastly, Maximum Optimal Control Phase TOF specifies the maximum time of flight
for which the optimal control phase can be propagated if no other termination condition is triggered.

initialGuess.txt

The iniGuess.txt file consists of three lines: the first one contains the design variables of the initial
guess, the second the lower bounds for the design variables, and the third the upper bounds. A table
with sample values for the required parameters of a "PMOMP" trajectory can be found in Table 5.2.
As the optimal control phase ("O") can only connect manifold ("M") or periodic orbit ("P") phases,
this example file encompasses all possible optimizable parameters within an optimization problem
with an optimal control phase (the problem explored in this research).

The periodic solutions only have one optimizable parameter each, the orbit point (7,5, and 7,,4,),
parametrizing the orbit between 0 and 1 with respect to its orbital period. This parameter is common
to both halo orbits and DROs.

Lastly, according to Equation (5.17), only the departure manifold phase has an optimizable pa-
rameter, which is the phase’s TOF in days, T,,,.,,. As such, in the other parameter, the lower and upper
bounds coincide with the initial guess. Namely, the base-ten logarithm of the perturbation parameter,
log(€,), is forced to be -4 (as explained in Section 2.6), but this parameter could be optimized as well
if desired. For the stable manifold, the TOF is in this case fixed to 38 days. As explained in Sec-
tion 5.2, because it is the target manifold, this value corresponds to the maximum propagation time
of the manifold and is not an optimizable parameter. In every trajectory evaluation, the TOF of the
target manifold, 7,,,,,, 1s automatically updated once the closest state to the optimal control phase

30nly when Pagmo is used. MIDACO has its own balance parameter.
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Table 5.2: Example of the parameters required within the initialGuess.txt file for a transfer between
two halo orbits that employs an optimal control phase connecting an unstable and a stable manifold.

Phase Parameter \ Initial Guess Lower Bound Upper Bound
Departure Halo T1 ‘ 0.5 0.0 1.0
Unstable Manifold 7T,,,,, 15.0 12.0 22.0
log(ep) -4.0 -4.0 -4.0
Optimal Control Az 0.05 -0.1 0.1
Ay 0.05 -0.1 0.1
A 0.05 -0.1 0.1
Aoz 0.05 -0.1 0.1
Avy 0.05 -0.1 0.1
Avz 0.05 -0.1 0.1
Am 0.0 -1.0 1.0
Stable Manifold Max. Tran, | -38.0 -38.0 -38.0
log(ep) -4.0 -4.0 -4.0
Target Halo 7 | 0.5 0.0 1.0

is found. If backward propagation in Table 5.1 were set to "true", the roles of the manifolds would
be reversed (becoming the unstable manifold the target one), and the bounds ought to be changed
accordingly. It should be noted that the direction of the manifold (interior or exterior) can be adjusted
by setting negative times of flight. For example, for the departure manifold, the bounds can be set
from -10 days to 10 days to include both the interior and exterior manifolds in the optimization, with
a maximum TOF of 10 days. For the target manifolds, only one direction can be used, again selected
based on the sign. For reference, the general convention followed by the OGT is that the manifolds
that go toward the Earth (regardless of the Lagrange point from which the periodic solution arises)
have positive TOFs.

Then, the optimal control phase has the seven initial (non-dimensional) costate parameters, A,
as the optimizable parameters. In Table 5.2, the subscript "0" is dropped for visualization purposes.
There are no physical bounds for these design variables, making the selection of a suitable set of
optimization bounds a demanding task, which will be addressed in Chapter 6.

5.3.3 Output Files

The main output files, specified in Figure 5.5, are the following:

* optControl_pareto_front.txt: It consists of a list of all Pareto-optimal solutions in terms of pro-
pellant mass and TOF that are feasible (they satisfy the three constraints). Each line corresponds
to a trajectory and displays the dimensional objective values, the five values for the constraint
functions (propellant mass, TOF, position error, velocity error, and Jacobi constant error), and
the design variables of the given trajectory. This file is updated every time a new feasible
trajectory is found, so it is safe to stop the optimization at any time.

* optControl_trajs.txt: It includes a list of all feasible trajectories found throughout the optimiza-
tion. The trajectories are presented in the same format as in optControl_pareto_front.txt, and
this file is also updated every time a feasible trajectory that is sufficiently different from the
rest in terms of performance is found. Sufficiently different in this case corresponds to a 0.5%
variation in any of the objectives.
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* pagmo_history.txt: It consists of a list of all trajectory evaluations carried out by the optimizer,
regardless of their performance or constraint violations. The trajectories are displayed in the
same format as the previous two files.

* pagmo_log.txt: This file displays general information on the optimization and specifies the
optimizer and the optimization topology. Moreover, according to the LogPeriod parameter, it
displays in subsequent lines the elapsed time and the utopia point of each island.

* ini_traj.txt: Includes the output data of a single trajectory generated with the OGT. For each
step in time, it includes in a line the phase, the date, the ECI and BCR states, the thrusting
attitude vector (in the RSW frame, as well as with the in-plane and out-of-plane angles), and
the normalized thrust magnitude. For transfers with an optimal control phase, this file also
includes the costate parameters and the Jacobi constant. This file is helpful to plot trajectories
and to use the trajectory as initial guess for ASTOS optimization.

* Additional files: They include data and variables to automatically create the ASTOS scenario
for a given trajectory and to accurately replicate it.

5.3.4 Unit and System Testing

To verify the implementation, a series of unit and system tests were carried out. These tests ought
to be specific and account for all allowable trajectory options, as this multipurpose tool must not be
only limited to the use cases explored in this research. As such, tests were performed for trajectories
propagated forward and backward, including and excluding manifolds. In addition, the closest state
search strategy was thoroughly tested to account for all situations. Since the OGT is meant to even-
tually be incorporated within the ASTOS software, user-friendliness checks were also implemented®.
Although the outcomes of several tests were checked via visual inspection of the data, most of them
were evaluated numerically. A summary of the main tests can be found in Table 5.3. The table in-
cludes the titles of the tests, an identifier, and a general description of their purpose. The purpose
of this table is simply to provide an overview of the verification process. Specific information on
the tests would require a much deeper understanding of the program’s internal structure and is more
suited to the developer’s documentation of the tool. The tests themselves are divided into five gen-
eral categories of increasing scope: testing of the equations of motion (EOM), testing of the phases
(PHASE), evaluation of the complete trajectories (TRAJ), assessment of the optimization procedure
(OPT), and user-friendliness tests (USER).

After the implementation, a readily available testing tool for the complete OGT was run to ensure
that the new code did not negatively interact with the existing software. The outcome was successful,
and new tests were added to this testing tool to now account for the new implementation (transfers
with an optimal control phase).

“Most of the necessary user-friendliness checks have already been implemented by previous developers.
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Table 5.3: Overview of the most relevant unit and system tests carried out on the implementation of

this research.

Test ID ‘ Title Description
EOM-01 State Derivative Ensures that the 14 equations of motion are correct by
Computation Test comparing their results for a given state vector with those
from an independent computation.
EOM-02 State Derivative Ensures that NaN values are never returned, even when all
Limits Test states are zero.
EOM-03 Thrust Computation  Ensures that the provided thrust acceleration vector is
Test correct by comparing their results for a given state vector
with those from an independent computation.

EOM-04 Thrust Limits Test Ensures that NaN values are never returned, which can
occur when all components of A\, are zero.

EOM-05 Jacobi Constant Test Ensures that the Jacobi constant is computed correctly by
comparing their results for a given state vector with those
from an independent computation.

PHASE-O1 | Parameter Setting Ensures that the optimizable and other necessary

Test parameters are set correctly when instantiating an optimal
control phase by commanding a specific set of parameters,
also with backward propagation.

PHASE-02 | Collision Test Ensures that the optimal control phase propagation is
stopped when the spacecraft gets too close to a celestial
body by running a sample case, also with backward
propagation.

PHASE-03 | Minimum Mass Test  Ensures that the optimal control phase propagation is
stopped when the spacecraft mass is too close to zero by
running a sample case.

PHASE-04 | Maximum Distance  Ensures that the optimal control phase propagation is

Test stopped when the spacecraft is too far from the Moon by
running a sample case.

PHASE-05 | Manifold Direction  Testing tool that checks the manifold generation

Tests implementation to ensure that the direction of the manifold
phases (interior/exterior) is the one desired for a range of
orbit points, orbits, and perturbation parameters.

TRAJ-01 Closest State Tests Collection of tests that ensure that the closest state between

the optimal control phase and the target phases is found
correctly for all trajectory cases ("PMOMP", "PMOP",
"POMP", and "POP") by propagating sample trajectories.
Backward propagated trajectories are also included, as well
as trajectories that ignore the target manifold and directly
connect to the target orbit, which must remove the manifold
phase altogether. The time and state continuity and the
phase durations were also checked.
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TRAJ-02

TRAJ-03

Backwards
Propagation Test

Target Phase
Discretization Test

Ensures that the backward propagation feature is
implemented correctly by replicating a forward-propagated
trajectory with backward propagation. Continuity in states
and time was also checked.

Ensures that the target phases (halo orbit and manifold)
have a maximum step size reduced by a factor of two (also
with backward propagation) by checking a sample
trajectory.

OPT-01

OPT-02

OPT-03

Pagmo DLL Tests

Pareto Front Test

Trajectory Storing
Test

Collection of tests that ensure that the new Pagmo
Dynamic-Link Library (DLL) that includes NSGA?2 and
NSPSO works correctly and provides the same output as
the original when using the rest of the optimizers. This was
done by directly comparing the complete output of a
sample optimization with that obtained with the older DLL.
Ensures that the Pareto front is computed correctly from the
array of feasible trajectories by providing a sample array of
trajectories and comparing the result to the expected
outcome.

Ensures that feasible trajectories are only stored when the
performance is sufficiently different compared to the
previously found feasible solutions.

USER-01

USER-02

USER-03

USER-04

Allowable Transfer
Check

Manifold
Parameters Check

Target Orbit
Parameter Check

Optimizer
Parameters Check

Ensures that the supplied transfer phases are logical and fall
within the scope of the implementation. Thus, the program
throws an error when incorrect trajectory strings are
provided.

Ensures that the upper and lower bounds for the fixed
manifold phase parameters are equal to the initial guess. If
this is not the case, the program automatically fixes the
bounds and notifies the user. For the target manifold
(including backward propagation), the manifold TOF
bounds are also fixed to the initial guess as it corresponds to
the maximum TOF.

Ensures that the target orbit point’s bounds coincide with
the initial guess when no target manifold is used, as it is not
needed (including backward propagation). If this is not the
case, the program automatically fixes the bounds and
notifies the user.

Ensures that the optimizer parameters are within the
appropriate bounds for NSGA2 and NSPSO (the two new
interfaced optimizers) and notifies the user if this is not the
case.




Analysis of the Problem

Having finalized all code implementations to generate and optimize trajectories, the next step before
optimizing is to analyze the problem to assess its difficulty and understand its behavior to hopefully
draw relevant conclusions that will aid the optimization process. Firstly, two use cases explored
by other authors are chosen in Section 6.1. Secondly, the integrator and its settings to maximize
performance are selected in Section 6.2. Thirdly, Section 6.3 carries out a design space exploration of
the problem, exploiting the design of experiments theory. Lastly, the final optimization bounds and
the selected constraint-handling strategy can be found in Section 6.4.

6.1 Proposed Use Cases

To explore the design space, two fairly complicated transfers between halo orbits are selected from
published work. These use cases are sufficiently different from each other to make the drawn conclu-
sions from the analysis applicable to a wide range of scenarios. Nevertheless, only the first use case
will be optimized in Chapter 7 due to the time constraints of this research. However, the developed
tool can in principle be employed to optimize any use case within the CR3BP, also for orbital families
other than the halo family.

6.1.1 First Use Case

The first transfer under consideration aims to imitate the one proposed by Pritchett et al. (2017).
As they utilize a direct collocation method based on Gauss-Legendre discretization to obtain their
optimized trajectory, it is an interesting use case as it enables a comparison between the proposed
indirect approach and the commonly used collocation methods with rough initial guesses.

Table 6.1 displays the orbital parameters of both the departure and target orbits. It should be
noted that the parameters moderately differ from the ones provided by Pritchett et al. (2017). Hence,
although the transfers are still similar and comparable, small variations in performance lose their sig-
nificance'. In addition, the use case in this research is arguably more demanding due to the larger
difference in Jacobi constants. As can be seen from the table, the transfer takes place between halo
orbits of similar orbital energies but belonging to families around different Lagrange points. In ad-
dition, because both of them are northern halos, the spacecraft will not only need to move from one
side of the Moon to the other but also to change the direction of rotation around the Moon in the BCR
frame. The spacecraft thrust, its initial mass, and the specific impulse of the thrusters are shown in
Table 6.2, leading to an initial acceleration of 2-10* m/s?> and a mass flow of 5.10-10° kg/s or 0.44
kg/day. Even though the selected mission Julian Date (JD) will not affect the CR3BP trajectories
(as it is time-invariant), it plays a role when translating it to the inertial frame. An arbitrary date of
2460000 days (February 24", 2023, at noon) was selected for both use cases.

6.1.2 Second Use Case

The second use case can be found in the work by Kayama et al. (2021), specifically, it corresponds to
"case 3" of the article. In this case, they use SCP to obtain the optimized transfer instead of collocation
methods. From the orbital parameters of the orbits presented in Table 6.3, it can be seen that both

I'The discrepancy in orbital parameters is attributed to the fact that the perilune radii were used to generate the halo
orbits because they uniquely parameterize the halo families (Tatay Sanguesa, 2021). However, the radii provided by
Pritchett et al. (2017) may have been accidentally swapped between the departure and target orbits in their article. This
seems to be the cause, as using the opposite perilune radii yields halo orbits with Jacobi constants that match those reported
by Pritchett et al. (2017). Unfortunately, this difference was discovered too late in the research project.

59
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Table 6.1: Parameters of the departure and target orbits in the first use case.

Parameter \ Departure Target

Orbit Type Northern EML, Halo Northern EML; Halo
Period [days] | 13.43 10.85

C[-] 3.05327 3.00387

Perilune [km] | 34660.33 27086.02

Table 6.2: Spacecraft specifications of the first use case.

Parameter | Value

Thrust [N] 0.1
Initial Mass [kg] 500
Specific Impulse [s] | 2000

are southern halos around the second Lagrange point, meaning that the spacecraft need not change
rotation directions and that it will stay on the far side of the Moon. Nonetheless, the difference in the
Jacobi Constant is greater than for the first use case, which may make the problem more difficult.

Table 6.4 shows the spacecraft specifications, now having a larger specific impulse but half the
acceleration than in the first use case. As Kayama et al. (2021) restrict the maximum allowable
acceleration throughout the transfer to 10* m/s?, the final mass is supplied to the OGT tool instead
of the initial mass to ensure that this value is never exceeded. As such, the equations of motion will
be propagated backward in time, and the optimal control phase will aim to connect to the unstable
manifold of the departure orbit starting from the stable manifold of the target orbit instead of the
opposite. With these values for the parameters, the mass flow will be 3.40-10° kg/s or 0.29 kg/day.
Visualization of the orbits of both use cases is provided along Sections 6.2 and 6.3.

6.2 Integrator Analysis

One of the main factors that determine the speed of each simulation is the EOM integrator speed,
especially when the trajectories can last longer than a hundred days. Other parameters are, for in-
stance, the termination conditions, the calculation of the thrusting attitude and magnitude, and, in this

Table 6.3: Parameters of the departure and target orbits in the second use case.

Parameter \ Departure Target

Orbit Type Southern EML, Halo Southern EML, Halo
Period [days] | 14.75 12.83

C[-] 3.14011 3.03644

Perilune [km] | 49092.79 30392.27

Table 6.4: Spacecraft specifications of the second use case.

Parameter \ Value
Thrust [N] 0.1
Final Mass [kg] 1000

Specific Impulse [s] | 3000
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Table 6.5: Design variable values and performance of the obtained nominal trajectory.

Parameter | Value Unit
Torb, 0.367882 -
Tran 14.431031 days
Az 0.103116 -

Ay -0.032238 -

A, 0.209432 -

Aoz -0.460699 -

Avy -0.612191 -

Aoz 0.964264 -

Am -2.695675 -
Torbs 0.379583 -
m, 6.93 kg
TOF 60.13 days
TOF (Opt. Control Phase) 15.71 days
Tnans 30.00 days
Position Error 308.40 km
Velocity Error 0.93 m/s
C' Error 7.30-10* -

case, the computation of the closest state between the thrusting and target trajectories. Reducing the
computational cost of each simulation is of great interest as the optimization runs require more than
100,000 trajectory simulations, especially with such tight constraints. The focus of this section is
then to choose the fastest integrator and integrator settings for the given dynamic system while ensur-
ing that the trajectories have an appropriate level of accuracy to be useful initial guesses for further
optimization.

6.2.1 Nominal Trajectory

The first step is to find a nominal trajectory that can be used to carry out the integrator analysis.
This trajectory ought to be "challenging" enough such that the error estimation can be generalized
to the whole set of trajectories, i.e., to ensure that the optimized transfers also satisfy the accuracy
requirement. In addition, it should satisfy the constraints imposed in Section 5.3 (it should be a
feasible solution). This is not a strict requirement for the integrator analysis, however, this nominal
trajectory will be used in the design space exploration (Section 6.3), for the trajectory refinement
with ASTOS (Section 8.2), and in the sensitivity analysis (Section 8.3). Thus, to draw generalized
conclusions for the whole solution set, the nominal trajectory must be feasible.

A feasible solution was obtained by running a preliminary optimization with MIDACO using the
first use case. All phases were integrated with the DormandPrince853 integrator, using relative and
absolute tolerances of 10, a maximum non-dimensional step size of 103 (~375 s), and a minimum
of 10" (numerical accuracy of the Java double data type). These are the settings employed by Tatay
Sanguesa (2021), Walther (2022), and Maisch (2022) for the other OGT functionalities. Its design
variable values and performance parameters are shown in Table 6.52. In the table, sufficient significant
figures were included for each optimizable parameter to ensure accurate reproducibility. It should be
noted that the subscript "0" has been removed from the initial costate parameters for conciseness. The

These performance values already correspond to the nominal trajectory re-propagated with the final integrator and
integrator settings from Subsection 6.2.4. The differences were found to be very small.
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complete transfer takes 60.13 days, divided into the times of flight of the (unstable) departure manifold
(Lonan), the optimal control thrusting phase, and the (stable) target manifold (7,,,,,,). Compared to
the one obtained by Pritchett et al. (2017), with a TOF of 47.5 days and a required propellant mass
of 8.02 kg, the nominal trajectory has a longer TOF but a lower propellant consumption, thus being
competitive. For reference, the required propellant mass, m,, of the nominal trajectory corresponds
to ~1.4% of the total spacecraft mass.

If made non-dimensional with the values from Equation (2.5), the position and velocity discon-
tinuities between the optimal control and the target manifold phases lie within the non-dimensional
constraints of 10~ (constraint values before the constraint relaxation (Subsection 5.2.2)). Moreover,
the Jacobi Constant constraint of 10 is comfortably satisfied. Hence, the trajectory is deemed feasi-
ble.

The top and side views of the trajectory in the BCR frame can be found in Figure 6.1 and Fig-
ure 6.2, respectively. These figures include the departure (parking) and target orbits as well. The
departure halo corresponds to the one on the right side of the Moon. Thus, five phases are present: the
initial EML, halo, the departure manifold (green), the optimal control phase (red), the target manifold
(blue), and the target EML,; halo. It can be seen in the figures that this transfer includes two flybys
considerably close to the Moon during the optimal control (thrusting) phase. As the accelerations and
acceleration rates are generally larger the closer the spacecraft is to the Moon (the dynamics of the
system are faster, being the most critical regions of the transfer), a nominal trajectory with such char-
acteristics is considered to be "challenging" enough for useful analysis. In addition, 60 days of travel
time is a long enough period to properly evaluate the error propagation. It should be noted that the
308.35 km discontinuity between the thrusting phase and the stable manifold is present in the figure,
even though it is difficult to see, suggesting that the trajectories that satisfy the constraints require a
considerably small refinement. The 10 discontinuities to transition between the manifold and halo
phases are also present but cannot be discerned in the figure.

During the optimal control phase, one can notice that the spacecraft is continuously thrusting,
presenting no coasting periods during this phase. From the theory presented in Section 4.1, this entails
that )\, can take any value without modifying the trajectory at all, as long as the switching function,
S, in Equation (5.11) does not become positive. By examining the equation, one can conclude that
any value higher than the one in Table 6.5 would never modify the trajectory. Moreover, as long as
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Figure 6.3: Top view of the nominal trajectory Figure 6.4: Attitude unit vector components and
used for the integrator analysis in the inertial ~ thrust profile for the nominal trajectory as a func-

frame (ECI). tion of time.

S does not switch signs along the trajectory, changing \,, by a certain amount will simply shift the
switching function upwards or downwards by exactly the same amount at all points in time (since Ao
is independent of \,,,). Further analysis of S as a function of time for this transfer led to the conclusion
that the trajectory will not be affected provided that \,,, > —5.652505. Any value below this one will
trigger a coasting phase in the second flyby.

The top view of the trajectory is also displayed in the ECI frame in Figure 6.3, with dimensional
quantities. As expected, the halos are not periodic in this frame and appear like arbitrary motions. All
phases are connected in this figure (ignoring the 308 km discontinuity), verifying that the trajectory
is indeed continuous in time and that the transfer between the orbits is carried out successfully while
rotating with the Moon around the Earth (assuming an eccentricity of 0). The flybys, and the portions
of the transfer that are closer to the Moon in general, can be identified in the figure as the sharp
"peaks" that deviate from a quasi-circular motion since the spacecraft changes position considerably
faster in these regions. Lastly, the length of the phases can be estimated in this frame, with the stable
manifold (blue) being clearly the longest phase, since it performs more than one revolution around
the Earth.

The normalized thrust magnitude, 7, and the thrust attitude unit vector components, &, in the
RSW frame (with respect to the Earth) are plotted in Figure 6.4 as a function of time. These are only
shown for the optimal control phase since the spacecraft coasts during the other phases. It should
be pointed out that in the displayed trajectory, the departure and target halos were propagated for
one orbital period each, and this propagation time was included in the time axes of the figures. This
explains why the optimal control phase starts on day 27.86, instead of on day 14.43, as would be
deduced from Table 6.5. Nonetheless, at the chosen JD, the spacecraft is at the starting point of the
transfer itself, i.e., the starting point of the unstable manifold phase.

Since the spacecraft is thrusting during the full optimal control phase, 7 has a constant value
of one, as expected. A more interesting behavior can be found in the components of the attitude
vector, which exhibit a slowly changing behavior all along the trajectory, except on days ~33 and
~40.5. These points in time correspond to the aforementioned lunar flybys during this phase. The
rapid change in the unit vector direction can be attributed to the faster dynamics close to the Moon.
Nevertheless, the attitude change is still gradual when considering the large timescale, having the
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Figure 6.5: Costate parameter values for the nominal trajectory as a function of time.

spacecraft more than an hour to turn not even 140°. This is important from a mission design point
of view because flybys tend to be the most critical part of transfers as they are the places where the
orbital energy is changed the most in the shortest amount of time. Overall, the attitude displays a
smooth behavior, which is one of the usual characteristics of optimal transfers (Pritchett et al., 2017).

Since the attitude components are related to the costate parameters according to Equation (5.9),
one would expect to observe a similar sudden change in the costate parameter values during the
flybys, specifically in the costates related to the velocity components (A,z, Ay, and A,.). The seven
costate parameters as a function of time are displayed in Figure 6.5, grouping the position and velocity
costates into two plots. As predicted, there are "peaks" present in the behavior at the points in time
at which the flybys take place. The effect is more severe in the position costates than in the velocity
ones, and this rapid variation affects the velocity costates following Equation (5.8). Interestingly, the
magnitudes of the costates tend to return to the original order after leaving the flyby points. Finally,
the mass costate decreases strictly monotonously since there are no coasting phases.

6.2.2 Required Accuracy Level

For the trajectory to be a suitable initial guess for optimization with ASTOS, the OGT transfers
must ensure a low enough error in the integration of the EOM, such that they are realistic enough
to be transitioned to a real-life scenario. Due to the simplicity of the mass equation of motion (the
derivative is either O or a negative constant), the leading errors will be present in the position and
velocity components. Having, from Subsection 5.2.2, non-dimensional constraint values for both
position and velocities of 10~ (before relaxation), the propagation accuracy should be at least an
order of magnitude lower to properly quantify the error. However, the imposed perturbing factor to
enter the manifold from the periodic solutions, €,, (Section 2.6) is chosen to be 10*. Therefore, to
correctly describe this discontinuity, the position and velocity errors ought to be below 10~ (in non-
dimensional quantities). In dimensional values, this would correspond to a maximum position and
velocity error norms of 3.84 km and 1.02 cm/s, respectively.
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Having lower errors would in principle not be of use considering that, firstly, the trajectory would
still need to be transitioned to a high-fidelity model using ASTOS, being this error correction neg-
ligible in comparison with the transitioning error, and, secondly, because the state-of-the-art Orbit
Determination (OD) capabilities in the cislunar environment are on the order of several kilometers for
the position, and several centimeters per second for the velocity (Newman et al., 2022) (Scorsoglio
etal., 2023). As such, it will probably not be possible for the guidance, navigation, and control (GNC)
subsystem to correct for such small deviations anyway. Henceforth, 107 is the value chosen for the
allowable position and velocity errors of the trajectory. Now, the goal is to find the integrator that
guarantees this level of accuracy for the lowest computational cost.

6.2.3 Benchmark Generation

To estimate the error of the trajectories, a benchmark needs to be first generated. This benchmark will
be taken as the ground truth, the zero-error trajectory. For the estimation to be accurate, the maximum
error of the benchmark itself must be at least one order of magnitude lower than the error that is to
be estimated. However, in an integrator analysis, one would like to examine the behavior of the
integrators for a wider range of accuracy levels, going below the allowable value of 10”. Therefore,
the selected benchmark maximum error is two orders of magnitude below the allowable one, namely
10”7 in non-dimensional quantities.

For the benchmark, it is interesting to propagate the trajectory with a constant step size to have
the points more evenly distributed, making the calculation of the difference in position and velocity
more accurate when interpolating. A common approach to estimating the benchmark error is to
compute the difference with respect to the same trajectory propagated with half the step size. Thus,
to obtain the position error, for instance, as a function of time, the three position components of the
benchmark are interpolated to estimate the value at each of the time steps of the trajectory for which
the error is to be approximated. Then, at each point in time, the error is taken as the norm of the
vector difference in position. The same procedure applies to the velocity computation. It should be
noted that the benchmark is interpolated instead of the other trajectory as it takes more steps, making
the interpolation more accurate. For the interpolation, Hermite cubic splines are employed (Fritsch
and Carlson, 1980), as not only do they ensure continuity and differentiability, but also piecewise
monotonicity, greatly reducing the typical overshoots of the conventional cubic splines. Moreover,
piecewise interpolation is preferred to avoid Runge’s phenomenon for higher degrees. Thus, this
interpolation method is considered to be the most accurate over the entire trajectory.

In the OGT, the costate EOM, Equation (5.8), are integrated together with the state EOM, Equa-
tion (2.28). As these costate equations describe the necessary conditions for local dynamic optimality,
it is desirable to solve them as accurately as possible. Hence, for this analysis, the decision was made
to not fix the thrust strategy but to compute the thrust according to the costate EOM. Consequently,
the estimated error will be a combination of the actual trajectory error and the change in the thrust
strategy due to the error in the computation of the optimality equations. With this approach, the tra-
jectory with the ideal (zero-error) thrust profile will not differ from the nominal trajectory by more
than 107 in position and velocity at any point.

A preliminary inspection of the nominal trajectory propagation led to the conclusion that the
leading errors take place during the optimal control phase. The observed difference is in the order
of several orders of magnitude. Moreover, this phase is the one with the largest computational cost,
even with the search strategy for the closest state from Subsection 5.2.3 not active. These observa-
tions make sense since for this phase fourteen EOM are propagated instead of the seven state EOM.
Moreover, the presence of flybys drastically increases the error in the trajectory. Therefore, the focus
of this integrator analysis will be on the optimal control phase, which is not connected to the target
manifold anyway.
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For the periodic orbit and manifold phases, the error with the nominal settings (DormandPrince853
with tolerances of 10, a non-dimensional maximum step size of 10~ and a minimum of 10"'> (Tatay
Sanguesa, 2021)) is in the rounding error regime at all times, thus being negligible and not affecting
the optimal control phase. As these phases are used in the OGT for other types of transfers (such as
impulsive), for the sake of consistency within the phases, the integration settings for the orbits and
manifolds are kept the same (except for the reduction in maximum step size for the target phases
explained in Subsection 5.2.3).

Having explained the approach, Figures 6.6 and 6.7 display the position and velocity error profiles
as a function of time for different (constant) step sizes, in non-dimensional units. To generate these,
DormandPrince853 was used again. In this case, the time axis does not include the halo phases, so the
optimal control phase occurs at a different time. Both position and velocity errors behave similarly
over time: the error is practically zero before the first flyby (day ~19), which then steadily increases
over time until experiencing a sharp peak at the second flyby (day ~27). Then, the error appears to
decrease down to the value before the flyby. By examining the amount of noise in the error profiles as
a function of the step size, it can be concluded that the computer rounding error does not play a role
above errors of 10 for both position and velocity. Below 107!°, the error is completely dominated by
the rounding error. In between, the obtained profiles seem to be a combination of the rounding error
and truncation error (error arising from the integrator approximations when solving the EOM).

The error in velocity for a given step size is consistently larger than in position, presenting the
biggest differences along the flyby regions. As such, the velocity errors will determine the chosen
benchmark. Since the maximum trajectory error ought to be below 107, any step size below 7-10*
would satisfy this requirement (looking at Figure 6.7). However, it is also desirable that the trajectory
error is dominated by the truncation error to avoid random "jumps" in the error and such that the
results of the analysis are independent of the hardware. Hence, the trajectory with a constant step of
7-10* is selected as the benchmark.

Figure 6.8 displays the maximum position and velocity errors as a function of the step size. Two
major quasi-linear slopes can be identified in this figure: an almost horizontal slope below a step size
of 5-10* (which would probably be noisy if more step sizes were added), and a considerably steep
positive slope above said step size. This is the behavior to be expected when plotting the data in a log-
log plot, with a clear separation between the regime dominated by the truncation error (above 5-107#)
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and the one dominated by the rounding error. This figure acts as further verification for the obtained
error profiles and helps to confirm the fact that the benchmark is indeed in the regime dominated by
the truncation error.

6.2.4 Integrator Trade-off

Different integrators and integrator settings can be compared now that an appropriate benchmark has
been generated. The error profiles are computed with respect to the benchmark, and the computa-
tional effort of each run is quantified through the number of times the integrator calls the differential
equations (i.e., the number of function evaluations). This number includes the sub-steps and any cor-
rection steps that the integrator computes. This is deemed a more reliable figure of merit than the CPU
time because the latter depends on factors external to the integration method, such as the computer
background processes. The goal is then to find the integrator and integrator settings that provide the
required accuracy level with the lowest number of function evaluations.

The analysis is carried out for the maximum and velocity errors, even though the velocity error
will probably be the determining factor error source. Only variable step size integrators are considered
in this analysis as they are generally more efficient when dealing with dynamical systems of highly
varying dynamics (Tatay Sanguesa, 2021). For instance, as can be deduced from Figure 6.7, the step
size required close to the Moon ought to be much smaller than far from it to obtain the same level of
accuracy. The following integrators from the Apache Commons toolbox? will be put to assessment:

¢ DormandPrince54 (DOPRI54) and DormandPrince853 (DOPRIS53)

HighamHall54 (HIHAS4)

* Adams-Moulton, taking four (AMO4), seven (AMO7), and twelve (AMOI12) interpolating
points.

* Gragg-Bulirsch-Stoer (GRABUSTO)

In this list, DOPRI and HIHA are multi-stage integrators of varying order, AMO is an implicit
multi-step integrator, and GRABUSTO employs Richardson extrapolation to solve the ordinary dif-
ferential equations. For all these, the relative and absolute tolerances were varied to span several

3URL:https://commons.apache.org/ [Accessed: 21/06/2024]
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orders of magnitude in maximum error values. For every single run, it was decided to make the ab-
solute tolerance equal in value to the relative one. The maximum time step was kept as 10~ (~375
seconds) to ensure that the number of steps is large enough to accurately find the closest state to the
target trajectory (Subsection 5.2.3).

The outcome of the analysis is displayed in Figure 6.9 for the position error, and in Figure 6.10
for the velocity error. In these figures, the maximum errors of each trajectory are plotted against
the required number of function evaluations for the different integrators and integrator settings. The
boundary line at an error of 10~ corresponds to the required accuracy. As predicted, the maximum
velocity errors dominate over the position errors in all cases. Thus, the velocity error will be the decid-
ing factor. Nonetheless, the error behavior of the integrators compared to each other is considerably
similar in both figures, being Figure 6.9 roughly equivalent to Figure 6.10 if it were scaled down by
two orders of magnitude in the error axis. It should be noted that for the top point of GRABUSTO and
the top two points of DOPRI853, the maximum step size was slightly increased to obtain trajectories
of lower accuracy (for those integrator settings, the step size taken was always the maximum allow-
able value). This fact explains the sudden change in slope. Lastly, except for AMO4, all integrators
comfortably reached the accuracy level of the benchmark (10”7 in Figure 6.10).

By examining the figures, it is safe to conclude that the best-performing integrators are AMO7
and AMO12. Not only are they the ones that require the fewest function evaluations for all accuracy
levels, but they also exhibit a robust trend. It is also interesting to note that the default integrator
of the OGT, DOPRI853, although extremely accurate, it is the worst performing of all for the given
nominal trajectory and EOM. This fact showcases the benefits of the integrator analysis: aside from
estimating the error of the trajectories, two integrators 16% faster in terms of function evaluations
have been found.

To choose between AMO7 and AMO12, the error profiles as a function of time can be inspected.
Figure 6.11 and Figure 6.12 show, respectively, the position and velocity error behavior as a function
of time for the different integrators. For each integrator, the run with a maximum error closest to
the required accuracy level was selected. One can conclude from these figures that all integrators
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accumulate errors in a very similar fashion, displaying peaks at the flyby points. As experienced in
Figure 6.7, the second flyby error decreases when moving away from the Moon and the rounding
error dominates the profile before the first flyby. Focusing on AMO7 and AMO12, although the
error behavior towards the end is roughly the same, AMO12 shows a considerably larger error at the
beginning of the trajectory, before the first flyby, something not experienced by any other integrator.
This may be because multi-step integrators need to be initialized with a different integration strategy to
obtain the number of points used in the interpolation. As AMO12 requires an initialization of twelve
steps (compared to the seven required by AMO7), the accuracy at the beginning of the trajectory may
be affected, especially when the error is dominated by the rounding error.

Henceforth, even though AMO12 would still be a promising integrator, AMO7 is chosen as the
final integrator, with relative and absolute tolerances of 10°%, a minimum step size of 105, and a
maximum of 10-}. Looking at Figure 6.10, one could argue that for roughly the same computational
effort, higher accuracy can be achieved just by choosing tighter integration settings. Nonetheless, it
is uncertain that this steep slope in accuracy can be extrapolated to all trajectories in the transfer (the
accuracy level may be maintained, but more function evaluations might be required). Moreover, being
the flybys so detrimental to the trajectory accuracy, the error estimation may be poor in trajectories
with three or more flybys. This topic will be addressed in the verification section (Section 8.1). How-
ever, it can be safely concluded that AMO7 and AMO12 will generally be the least computationally
expensive integrators for this dynamic system and these equations of motion.

6.3 Design Space Exploration

In this section, the problem itself is analyzed using the Taguchi method (Taguchi, 1987), theory be-
longing to the branch of Design Of Experiments (DOE). Then, the variance of the outcome of the
experiments for both use cases is subsequently statistically examined with the method of Analysis
of Variance (ANOVA). As such, conclusions can in principle be drawn to identify promising design
variable bounds or suitable constraint-handling strategies. Moreover, understanding the problem and
its complexity provides insight into how to overcome the optimization challenges, or even to assess if
optimization of a fitted response surface would be appropriate.
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6.3.1 Design of Experiments: The Taguchi Method

Problems with numerous design variables (factors) make their analysis extremely cumbersome, as
a large number of simulations (experiments) are required to explore the design space effectively. A
usual approach is the so-called Monte Carlo simulation, which randomly samples the design domain
according to a set of probability density functions for each factor, which depend on the physical
behavior of the factors. Uniform and normal distributions are common examples of these probability
functions. The main advantage of this method is its supreme suitability to identify trends in the
data. However, as demonstrated by Mistree et al. (1993), the outcome of the Monte Carlo method
is highly dependent on the chosen pseudo-random seed and the number of experiments. As a result,
statistics such as the variance or the mean value of the response significantly vary according to these
parameters. Furthermore, a vast number of experiments are usually required to properly estimate these
statistics, especially for problems with many factors. To solve these issues, an alternative approach,
DOE, can be used.

DOE is defined as "the technique of defining and investigating all possible conditions in an ex-
periment involving multiple factors" (Roy, 2010), also referred to as factorial design. For instance, if
one has a problem with four factors each of which is varied over two levels, the problem would have a
total of 2* = 16 combinations. Then, one or more experiments for each combination would be carried
out, and the results would be analyzed. In this case, as the outcome of the experiments is constant for
a given set of design variables, there is no need for experiment repetition.

Because most engineering problems deal with multiple factors with continuous values, it is desir-
able to find a balance between the accuracy of the output and the number of experiments by selecting
an appropriate number of factor levels. As explained by Roy (2010), for preliminary analysis, two
levels are usually used, however, to obtain an estimation for the curvature behavior of the problem on
top of the linear one, in this study an extra level is selected, since the problem is predicted to be highly
complex and non-linear. Hence, the factorial design for this problem would consist of ten factors var-
ied over three levels: a minimum value, a maximum value, and the average of the two (the nominal
value). This configuration would lead to a total of 3'° = 59,059 combinations, which is considered
to be too large for the necessary computational costs of this problem, especially if several runs with
different configurations (design variable bounds) and for various use cases are to be carried out.

Paraphrasing Montgomery et al. (2009), a possible solution to have fewer runs would be to use a
so-called Central Composite Design (CCD), which consists of a factorial design of the factors varied
over only two levels (maximum and minimum), one run with all factors at their nominal level, and
a set of runs varying each factor one-at-a-time relative to the nominal, with a value at a normalized
distance +( from the nominal value for each factor. ( is normalized with the distance between the
nominal and the two-level factorial design bounds. With this design, the factorial design would esti-
mate the linear effects, whereas the extra runs provide a measure for the quadratic effects. Having ten
factors, only 2'° + 1 + 2x10 = 1045 runs would be necessary. Nevertheless, to accurately estimate
the quadratic effects, the CCD ought to be rotatable, i.e., the normalized distance to the center of
the design (the nominal experiment) is the same for all design points (experiments), entailing that
the prediction variance depends only on this distance (Siva Prasad et al., 2012). However, from the
NIST/SEMATECH (2003), the required normalized distance to the nominal values for a rotatable
design depends on the number of factors, /V, according to:

c= @97 6

Then, the required value of ( for ten factors would be 5.66, meaning that the distance has to be 5.66
times greater than that between the nominal and the factorial design bounds. This would be an issue
with factors such as T},,,, as there are physical limits to the bounds (the TOF cannot be shorter than
zero). In addition, 7,4, 1s necessarily between O and 1. Figure 6.13 displays the schematics of the
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Circumscribed Face centered Inscribed

Figure 6.13: Diagram of the different CCD configurations commonly used (Cai, 2013).

three most commonly used CCD configurations. Being the intersection between the vertical dotted
lines and the middle horizontal line the nominal point, and the outer horizontal lines the bounds of
interest for the analysis, the circumscribed configuration would place the extra runs to estimate the
curvature "outside" the factorial bounds (the square vertices). As is evident from the figure, this
configuration is rotatable since all design points are at the same distance from the center. However,
as already explained, it is not suitable for this analysis due to the physical limits of the problem. A
potential solution would be to use an inscribed configuration (also rotatable), fixing the extra runs
to the physical limits and scaling down the factorial design bounds. Nevertheless, even though the
curvature behavior may be accurate, the obtained results would only be precise within the region of
the factorial design bounds. With such a large value of (, the analysis would not be meaningful.
A compromise would be to opt for the face-centered configuration, having the factorial bounds and
the extra runs at the same level. The main disadvantage of this setting is that it is non-rotatable (the
square vertices are farther away from the center than the points on the sides), thus, the accuracy of the
curvature estimation will probably be poor (Siva Prasad et al., 2012), making it undesirable for the
analysis of a problem as complex as this one. In conclusion, CCDs ought to be discarded as a suitable
DOE method due to the large number of factors and the physical limits of the problem.

Orthogonal Arrays

Going one step further, one can greatly reduce the required number of experiments while still ob-
taining statistically accurate results utilizing the aforementioned Taguchi method. As thoroughly
explained by Roy (2010), this method is based on the use of the so-called orthogonal arrays, which
choose a subset of factor combinations out of the full factorial design (thus falling within the category
of Fractional Factorial Designs (FFDs)), while ensuring that for any pair of factors, all combinations
of factor levels occur an equal number of times. Consequently, the number of runs at each level of
every factor is also the same. These characteristics of the columns of an orthogonal array constitute
the balancing property of these arrays. This property guarantees consistent results regardless of the
selected orthogonal array, as proven by Mistree et al. (1993), and allows obtaining almost the same
degree of insight as would be acquired with a full factorial design (Roy, 2010).

To visualize this balancing property, Table 6.6 displays an orthogonal array consisting of nine
experiments with four factors varied over three levels (Lo(3*)). As such, instead of 3* = 81 experi-
ments, only nine are carried out, and, in this case, each level combination between any two columns
takes place only once. For instance, the combination 1-2 between factors A and B can only be seen
in experiment 2, and the same goes for the combination 3-1 between columns B and D in experiment
9 or any other combination. Lastly, it is evident from the table that for every factor three experiments
are always carried out at each level (1, 2, and 3). If the problem had three factors instead of four, this
orthogonal array could still be used simply by choosing three of the columns.
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Table 6.6: Possible orthogonal array for four factors varied over three levels (Lo(3*)) (Roy, 2010).

Experiment | Factor A Factor B Factor C Factor D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1
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Figure 6.14: Effect on the response of an interaction between two parameters, T and H, at two
different levels, compared to a case without interaction (Roy, 2010).

As previously stated, once the orthogonal array experiments have been set up and executed, the
data can then be analyzed to obtain accurate estimations of statistics such as the mean or the standard
deviation for the given design bounds. Furthermore, the contribution of each of the factors to the
variability of the output or response can be investigated, as well as the effect of the interactions
between said factors. The interaction contribution, AB, between two factors A and B is a measure
of the change in the contribution of factor A to the response depending on the value of factor B (and
vice-versa). This effect is showcased in Figure 6.14, where it can be seen that when there is interaction
between the factors H and 7, the effect of varying H from H; to H, differs depending on the value
of T'. This is not the case when no interaction is present, as seen in the second plot. The estimation
of the interaction contributions in addition to the main factor contributions is of interest as strong
interactions can make a certain factor look irrelevant when, in reality, its interaction with another
parameter (or parameters) may be "eclipsing" the effect in the data (Montgomery et al., 2009). The
problem at hand, apart from being expected to be highly non-linear, is predicted to have significant
interaction contributions between most of the parameters.

Confounding

One of the main difficulties when analyzing problems with numerous interacting parameters with
FFDs is that, since not all possible factor combinations are explored, when computing the contri-



73 Chapter 6. Analysis of the Problem

bution of factor A, for instance, the estimation may include the contribution of, for example, the
first-order interaction C'D, meaning that the obtained value is actually a measure of A + C'D instead
of simply the contribution of factor A, making the estimations unreliable. This is known as confound-
ing or aliasing. A fractional factorial design with the explained characteristic would be said to have
resolution 111 (NIST/SEMATECH, 2003), as there is confounding between the main factor contribu-
tions and the first-order interactions (I + II = III). Subsequently, if the main factor contributions are
free of confounding, but the first-order interactions are confounded with each other, the resolution of
such an array would be IV (II + II). If confounding between first-order interactions is also not present,
but they are aliased with second-order interactions (e.g., ABC'), the resolution would be V; and so
on. Of course, a full factorial design would have maximum resolution. For this problem, to keep the
complexity of the computations at an acceptable level and to make it easier to draw conclusions, only
the main factor contributions and the first-order interactions will be estimated. In addition, it is hy-
pothesized that the higher-order interactions are less relevant than the aforementioned contributions.
Therefore, an orthogonal array of resolution V is sufficient for this design space exploration. If this
hypothesis is not correct, a Monte Carlo simulation or even a CCD would be more suited due to the
computational complexity required to estimate the contributions of the higher-order terms.

As explained by Roy (2010), Taguchi himself dedicated strong efforts to identifying the con-
founding between the columns of the orthogonal arrays. Consequently, he developed triangular or
interaction tables, which display for a given orthogonal array what contributions will be confounded
in each column. Hence, by using these tables, one could choose the array columns for the factors (also
formulated as "assigning the factors and interactions to appropriate columns") so that no undesirable
confounding takes place and the required array resolution is achieved. These tables are provided by
Taguchi (1987) and Roy (2010), however, they are not large enough for a problem with ten factors
and 45 first-order interactions. As generating these tables requires a very high level of expertise in the
fields of DOE and statistics, it is not feasible to generate a suitable one for this research. Hence, an
alternative approach will be followed to deal with confounding, which will be explained in Subsec-
tion 6.3.3.

To conclude, FFDs allow for an accurate estimation of the output’s statistical behavior, with a
significantly reduced number of simulations, greatly outperforming CCDs and Monte Carlo simula-
tions when many factors are present. However, selecting an appropriate orthogonal array with enough
resolution is crucial.

6.3.2 Analysis of Variance (ANOVA)

One of the biggest advantages of full factorial designs is the fact that Analysis Of Variance (ANOVA)
can be applied without the need for a response surface fitting, unlike Monte Carlo methods. Fractional
factorial designs with orthogonal arrays also possess this characteristic, thanks to the balancing prop-
erty of the arrays. ANOVA is employed to analyze, for the given design bounds, the variance of the
response and compute the percentage of contribution of the factors and interactions, i.e., a measure
of how much a factor or interaction explains the variability in a data set. In addition, this method
provides a measure of the confidence level as well. The following ANOVA equations are retrieved
from the explanations by Roy (2010).

Sum of Squares

The first step of the method is to compute the total sum of squares, 5SS, via:

Nexp Nexp Nexp

SSr =3 (g = PP ="y - Youm _ > yi-CF (6.2)

i=1 Neap i=1 feap i
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where y; is the outcome of each experiment, ¥s,,, is the sum of all response values, n.,,, is the number
of experiments, and C'F" is denoted as the correction factor. Then, defining S5 4 as the sum of squares
of factor A (for instance), and S.S4p as the sum of squares of the interaction between factors A and
B, the sum of squares of the factors and the first-order interactions can be obtained through

kA A2
SS, = Z nl% —CF (6.3)
i=1 ev
k k
A CB(AB)?
SSap = Z Z <n—ﬂ) —CF - SS4— SSp (6.4)
wnt

i=1 j=1

In these equations, k4 is the number of levels of factor A (in this problem common to all factors), ne,
is the number of experiments at each factor level (common for all factors), and A; is the sum of the
response values for all experiments with factor A at level <. In addition, the number of experiments
per interaction level is represented by n;,; and the sum of the response values for all experiments with
factor A at level ¢ and factor B at level j is denoted as A;B;. An interaction level is any combination
of factor levels between the interacting factors (2-1, 2-3, 3-3...). Having three levels for each factor in
this problem, the number of interaction levels would be 32 = 9 for the first-order interactions. The last
sum of squares to be computed is the error sum of squares, S.S., which is simply the sum of squares
not accounted for by the modeled factors and interactions:

SS. =857 - S8 —Y 5SS, (6.5)
i ij

Degrees of Freedom

The DOF indicate the number of independent quantities that can vary in the analysis, with more
degrees of freedom allowing for a better fit of the data, thus improving the statistical estimates. The
total number of degrees of freedom (DOF), fr, is, as usual, the number of output data points minus
one (one degree of freedom is used to estimate the mean). Then, the number of DOF of each factor f4
corresponds to the number of factor levels minus one and the interaction DOF are obtained through
the product of the degrees of freedom of each factor. Similarly to S'S., the DOF of the error, f., is the
remainder of the total DOF minus the modeled DOF. Mathematically, all this would be written as:

fT:nerp_l fA:kA_l fAB:fAfB (66)
fe:fT_Zfi_Zfij (6.7)

Variance and Variance Ratio

Once the sums of squares and DOF have been computed, all variances, V', which quantify how much
a set of values spreads out from their mean, reflecting the degree of variability in the data, can be
obtained by a simple division:

55, SSap v _ S5 ©5)

Va=pr = s 7.
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Furthermore, by dividing the variances of the factors and interactions by the variance of the error, V,
one can obtain the variance ratios or F-ratios, F':

— % Fap = VQB F, = ; =1 (6.9)
The F-ratio measures "the significance of the factor under investigation with respect to the variance
of all of the factors included in the error term" (Roy, 2010). The higher the value of this ratio, the
more confidence one has that said factor is the one contributing to the sum of squares of the response
(assuming no confounding). Thus, by increasing the DOF of the error, f., the error estimation be-
comes more accurate, reducing its variance, V., and consequently increasing the variance ratio and
the confidence in the results. To quantify the confidence level, several tables (F-tables) depending on
the desired percentage of confidence are provided in Appendix B of the work by Roy (2010). Then,
given the number of DOF of the numerator (factor or interaction contribution) and the denominator
(error), the table provides a value that ought to be lower than the value of the F-ratio, otherwise, the
factor does not contribute to the sum of squares within the confidence level.

Fy

Percentage of Contribution

Having computed the DOF and the error variance, the pure sum of squares of, for instance, factor A,
S5, of interaction AB, S5, 5, and of the error, S.S., would be obtained as:

SS' = SSu — faV, (6.10)
SS' s = SSup — fasVe 6.11)

85S¢ =55+ <Zfi+2fij) Ve (6.12)
i i

The pure sum of squares aims to estimate the "true" contribution of the factors by correcting for the
error variance and the degrees of freedom. Then, the percentage of contribution, P, of the factors, the
interactions, and the error term can be computed by dividing each pure sum of squares by the total
sum of squares:

SS'y SS'g SS!

Pyp =100 P, =100—=°
SSr AP SSr SSr
As P refers to the percentage of contribution to the variance (which deals with sums of squares),
when comparing the relative influence between parameters the square root of the ratio ought to be
taken. For example, if P4 =27% and P = 3% with enough confidence level, it can be concluded that

P, =100

(6.13)

factor A influences the response (not the variance) \/% = 3 times more than factor B for the provided
bounds.

To finalize the analysis, the quality of the model can be assessed with the coefficient of determi-
nation, R*. This coefficient represents the proportion of the total variance that is explained by the
employed model. In addition, the adjusted coefficient of determination, R?,;;, is equivalent to R* but
corrected for the degrees of freedom in the model (the number of predictors), making comparisons
between models with different numbers of predictors fairer. These two coefficients are obtained by:

SS, ,

frSSe P,
— =1
SSt i

2
= ]_ = —
h £.55r 100

—1—

(6.14)

adj



6.3. Design Space Exploration 76

Pooling

By examining Equations (6.11) and (6.12), one can realize that the pure sum of squares of a factor
or interaction can become negative, meaning that its contribution to the variance of the response is
negligible. When this is the case, that factor or interaction needs to be pooled: it should be removed
from the modeling (thus increasing S.S.), its degrees of freedom added to the error DOF, and the
ANOVA analysis recomputed. Factors ought to also be pooled if the F-ratio for a given factor or
interaction is lower than the required value for the desired confidence level of the analysis (obtained
with the F-tables). In addition, as suggested by Taguchi (1987), the least significant terms should
be pooled until f, ~ %T to ensure that the estimation of the error term is accurate enough and that
significant factors are not eclipsed by a too large number of modeling variables.

It is likely that for a given ANOVA calculation run, several factors or contributions do not satisfy
the criteria to not be pooled. Then, the recommended procedure is to only pool the factor or interaction
with the lowest sum of squares and recompute everything again. Hence, factors are pooled one at a
time to avoid removing too many modeling variables at once. If not automated, this procedure can be
considerably time-consuming.

6.3.3 Experiments Set-Up

The first step is to define the list of experiments to be carried out, i.e., choose an appropriate orthog-
onal array. Having ten variables varied over three levels and 45 first-order interactions, the required
number of degrees of freedom is 10x2 + 45 x4 =200 (Equation (6.6)). Thus, the minimum number of
experiments is 201, leaving no simulations to estimate the error. In addition, the number of columns
of such an array would be obtained by (Leung and Y. Wang, 2001):

#Rows — 1
Col = 6.15
#Columns #Levels — 1 ( )

where the number of rows equals n,. As such, said orthogonal array would have 100 columns, each
of which with two degrees of freedom (Forestryani et al., 2022). However, to obtain greater statistical
confidence in the results, a larger array is required. Moreover, having more experiments may help to
identify trends in the response. To generate the Taguchi orthogonal arrays, the algorithm described
by Leung and Y. Wang (2001) is used, by means of the MATLAB function oa_permut (Jeppu, 2024).

To obtain a resolution V orthogonal array with so many factors and interactions, the proposed
approach is to generate an orthogonal array much larger than required to minimize the probability of
confounding when sampling ten random columns to assign the factors. The chosen number of exper-
iments is 3° = 19,683, leading to a 3'>! FFD and a complete orthogonal array with 9,841 columns,
from which ten are selected to assign the factors and set up the experiments. With this array, all
experiments will be run with the following test function:

N N N
Yy = ZQCH—ZZ:WUJ (6.16)
i=1 i=1 j=1
where N is the dimension of the design space, i.e., the number of factors (ten), y is the response
value, and z; corresponds to the value of factor ¢ at the level specified by the experiment. Provided
that the experiment bounds are the same for all factors, the contribution of each factor to the variance
should be equal for all factors, as well as the contribution of each interaction should be equal for
all interactions. This is because the coefficients (weights) of the proposed function are equal for all
linear and quadratic terms (z; and x?), regardless of the factor. The same goes for all first-order
linear interaction terms (x;x;). If differences in the contributions are found, there is confounding
between the factors and/or interactions with the chosen array columns. Then, ten new columns are
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selected from the complete orthogonal array and the process is repeated until the outcome of the test
is satisfactory. For further verification, three different orthogonal arrays were generated following this
approach, and the first ANOVA analysis of Subsection 6.3.4 was run once with each array. Comparing
the three sets of results, no factor or interaction contribution varied by more than 1%, suggesting that
the results are reliable.

As the orthogonal array has three times fewer runs than a full factorial design, more ANOVA
analyses can be carried out, allowing for additional bounds combinations to be assessed. In this
research, two sets of ANOVA analyses will be conducted: the so-called general runs, with the factor
bounds aiming to span the feasible domain, and the local runs, which are centered around the nominal
solution from Section 6.2, varying its factor values firstly by 1%, then by 10%, and lastly by 50%.
For the general runs, both use cases will be utilized to aim to draw more general conclusions.

For the general runs, the maximum TOF of the optimal control phase was chosen to be 80 days.
To define the maximum TOF for the target manifold phases, the approach was to discretize the halo
orbits in 20 points, spaced by equal flight times, and propagate the corresponding stable or unstable
manifolds for a long enough time such that the regularity in the manifolds is already lost due to the
perturbation introduced by ¢,. The outcome for the first use case is displayed in Figure 6.15, where
one can see the departure orbit on the right side of the Moon, the target orbit on the left, and the 20
stable manifolds, chosen to go in the direction of the Moon (interior manifolds) due to the geometry of
the problem. Each color denotes a manifold arising from a different orbit point. As can be concluded
from the figure, after 38 days the manifold "tube" loses its regularity and all manifolds pass close to
the Moon at least once, being this TOF thus suitable for the optimization.

Figure 6.16 shows the result of the equivalent analysis for the second use case. Even though the
right-most orbit is the departure orbit, as in this use case the optimal control phase uses backward
propagation, it becomes the target orbit for the optimization, and the unstable manifolds become the
target manifolds. Again, due to the use case geometry, the manifold direction was chosen towards the
Moon. The target orbit of the first use case is evidently more stable than the one for the second case
since in the latter all manifolds reach the lunar vicinity in less than 18 days (compared to 38 days,
describing more revolutions). The regularity is also lost after the chosen period. Nonetheless, because
of the lower stability in the second use case, the manifolds display a more uniform tube-like shape
(showcased by the smooth color gradient), presenting a higher resemblance to the invariant manifolds
of Section 2.6. Regarding the departure manifold phases, 7},,, was chosen in a similar fashion. 22
days were deemed appropriate for the first use case, choosing again the interior manifolds, whereas
18 were selected for the second use case, opting for the outer manifolds in this instance (the ones
heading away from the Moon). For a real optimization, it would probably be convenient to use both
the interior and exterior manifolds as it is uncertain which are more advantageous, however, as for
this analysis only three levels are used, more insight will be obtained by focusing on a single manifold
direction.

Torb, and 7,4, Were both bounded between 0 and 1, expecting a periodic result. Choosing the
bounds for the costate parameters requires more engineering judgment than the rest of the factors.
In principle, there are no physical bounds for the values of these parameters, and depending on the
problem the solution variables can be significantly different. However, finding a suitable design
domain for the variables is important to force the heuristic optimizer to focus its search on promising
regions. If the bounds are too wide, the optimizer may struggle to thoroughly explore these regions
and get "stuck" in worse-performing feasible points, especially if solutions can be found at several
orders of magnitude (the optimizer will tend to find solutions within the order of magnitude of the
bounds).

As )\, cannot increase over time, and the transversality condition for the mass costate in Equation
(5.13) requires \,,, = 0, the initial value for this costate parameter ought to be positive. Nevertheless,
when using low-thrust bang-bang control, the only way to obtain lower propellant mass solutions
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propagated for 38 days for the 1% use case. propagated for 18 days for the 2" use case.

at larger TOFs is to include coasting phases in the trajectory. Thanks to manifold theory, this can
already be achieved without the need for coasting periods during the optimal control phase. However,
incorporating these will provide a wider range of trajectories of even better performance. Then,
looking at Equation (5.11), which governs the coasting periods (present when .S > 0), one realizes that
a negative value for )\, will tend to trigger more coasting phases. Hence, even though the solutions
will not be rigorous mathematical minima with respect to the mass state, acknowledging the difficulty
in finding solutions that satisfy the constraints, it is predicted that by allowing negative values for \,,,
the number and quality of the results will be increased.

Furthermore, in Equation (5.11) the orders of magnitude of \,, and A, play a big role in triggering
coasting phases. As the last term of the equation is always negative, the lower the order of magnitude
compared to 1 (the first term), the more and longer coasting phases will be obtained. Then, A, will
promote the spacecraft to coast or to thrust depending on if it is positive or negative. The approach
followed in this research to achieve a balance between thrusting and coasting periods is to make all
terms in Equation (5.11) of the same order of magnitude. Thus, \,, should not be much larger than 1,
whereas ||, || should be one order lower since I‘"’% ~ 19. Smaller orders of magnitude may restrict
the design space too much, excessively prioritizing coasting phases, while all trajectories obtained
with larger orders of magnitude that do not coast can be replicated with these bounds by having a
positive enough value for the mass costate *.

Regarding the three components of \,q, since the behavior of A, and A, strongly depend on each
other (Equation (5.8)), it is desirable to choose the bounds such that the order of magnitude of the
velocity costates does not vary too much. Examining the equation for A,, one can observe that both
A, and A, contribute to the derivative on the same order of magnitude, provided that both vectors
also have the same order. Hence, \,o was chosen to have the same bounds as \,o. Lower bounds
may be too restrictive, and larger bounds might excessively modify \,. Moreover, as the position
and velocity have been normalized in this system, it is sensible to assume bounds of the same order.
It is noteworthy that with this configuration, A, tends to be one order of magnitude larger than A,
especially when flybys are present (as can be seen in Figure 6.5). Lastly, no compelling reason has
been found to specify different bounds within the components of X\,q or A.

“Recall that if no coasting phases are present in a trajectory, \,,, does not play a role and the trajectory is fully defined
by the ratio between the six other costate parameters instead of by their actual value (Section 5.1).
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Table 6.7: Parameters and their level values for the general runs of both use cases.

Parameter \ 1%t Use Case Levels 2" Use Case Levels Unit
Torb, 0.0,0.5,1.0 0.0,0.5,1.0 -
Tonan 0.0, 11.0, 22.0 0.0, 9.0, 18.0 days
Aro -0.1,5.0-103, 0.11 -0.1,5.0-103,0.11 -
A0 -0.1,5.0-103,0.11 -0.1,5.0-103,0.11 -
Amo -1.0,0.0, 1.0 -1.0,0.0, 1.0 -
Torbs 0.0,0.5,1.0 0.0,0.5, 1.0 -
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Figure 6.17: Comparison between propellant mass, TOF, and position error for the different
experiments of the general FFD for the 1% use case.

The factor bounds for the general runs of the use cases are indicated in Table 6.7. The position and
velocity costate bounds are not centered around zero to avoid the case in which all costate parameters
are exactly zero. If this is the case, the thrust direction is undefined, and )\r and XU will always be
zero. To assess the suitability of the chosen bounds, which are only an initial guess, several general
runs will be carried out varying the order of magnitude of the bounds of Ag (and keeping the rest
constant). Hence, if the bounds of Table 6.7 are referred to as A, for each use case, three extra runs
will be conducted with differing bounds: 0.1Aj, 10A;, and 100;.

Finally, for all ANOVA runs, w,,s and w, in Equation (5.18) are chosen to be equal to 1, as
preliminary values. In addition, the Jacobi constant error is omitted in the equation, and the closest
state computation explained in Subsection 5.2.3 is performed at every spacecraft state, regardless of
the Jacobi constant error or the distance to the Moon. This is because these functionalities were added
later on in the research.
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6.3.4 Results

General Runs

Figure 6.17 plots the required propellant mass against the TOF of all experiments for the first use
case (using the bounds from Table 6.7). In addition, the non-dimensional position error is color-
coded within the points themselves. As one would expect, there is an identifiable linear trend in the
data, since the longer the spacecraft flies, the longer it will tend to thrust. This relationship can be
modified by adding coasting phases, which explains the width of the data stream in terms of TOF.
As such, the lower limit corresponds to the trajectories that do not use manifolds or coast during
the optimal control phase. This is a physical limit because, for a given TOF, T, the thrusters can
only expel a maximum mass of 1, 1", where 14, is the dimensional mass flow. The upper limit
corresponds to the trajectories that make use of the upper bound of 7,,,, and of most of the target
manifold. Moreover, some coasting periods may well be present during the optimal control phase.
Nevertheless, this is not a physical limit, as longer TOFs can be obtained by longer coasting periods
during the optimal control phase. This also explains why the upper line presents some outliers in
comparison to the lower line. However, the fact that an upper limit can be identified hints at the fact
that either not enough coasting phases were triggered, or that they increased the state error relative
to the target trajectory, stopping prematurely. This does not necessarily suggest that the bounds are
not adequate since only ~20,000 experiments were performed, but it should lead to setting a focus on
generating these coasting periods.

Regarding the position error, it can be seen that relatively low error trajectories can be obtained
at a wide range of times of flight and propellant masses, which is something promising to generate
an extensive Pareto front. Then, numerous trajectories of zero propellant mass were obtained, corre-
sponding to trajectories for which the initial state of the optimal control phase (the end-point of the
departure manifold) is the best. As it is logical, these exhibit large position errors. Still, for the opti-
mizations, it may be beneficial to penalize these trajectories in terms of propellant mass and TOF, as
it would be desirable to exclude these individuals from the population as fast as possible. Overall, due
to the concentration of the data, it seems to be easier to obtain low TOF trajectories, and connecting
to target manifolds appears to be more convenient than directly patching to the target orbit since most
of the points are close to the upper bound in Figure 6.17.

To evaluate the quality of the trajectories in terms of state error, the position error of the trajec-
tories of the first use case is compared to their velocity error in Figure 6.18. Both the position and
velocity errors span a wide range, limited by the use case architecture, without revealing any clear
trends. Relatively low velocity errors can be paired with relatively low position errors and vice versa.
From the figure, it can be seen that the largest errors tend to correspond to trajectories with low pro-
pellant mass, i.e., the ones whose best state is the initial state or somewhere close. Furthermore, low
position and velocity error trajectories (bottom-left corner) can be obtained at considerably different
propellant mass values.

Unfortunately, none of the trajectories satisfy the boundary constraints (errors below 3-107%),
evidencing the highly restrictive nature of the constraints. Thus, the behavior that is being analyzed
here corresponds to the behavior of the unfeasible transfers, without acquiring any insight into the
feasible domain. This fact strengthens the need for the local runs. Nevertheless, a sensible conclusion
is that it is generally easier to find lower velocity error transfers than lower position error ones. This
can be identified in Figure 6.18 by the large number of points near the x-axis compared to the few that
approach the y-axis. Intuitively, this phenomenon can be understood by considering that the thrusters
(and the gravity forces) only directly modify the acceleration, which in turn changes the velocity
over time. Only the integral of this change with respect to time will cause a change in position.
Hence, there is a "delay" in varying the position compared to altering the velocity, making it more
difficult to arrive at the desired position value or to explore a wider range of values. Therefore, for the
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Figure 6.18: Comparison between position error, velocity error, and propellant mass for the different
experiments of the general FFD for the 1% use case.

optimizations, it will be better to prioritize the position constraint over the velocity constraint, a fact
that will ease the weight tuning.

Figure 6.19 displays the equivalent position versus velocity error plot but for the general run of
the second use case instead. Low velocity error trajectories were again less challenging to obtain,
generalizing the previous conclusion. Due to the location of the departure and target orbits in space,
the maximum position and velocity errors are half the ones found for the first use case. However,
the second use case appears to be more demanding since fewer promising trajectories were obtained
in this run, as manifested by the sparsely populated lower left corner of the figure. Furthermore, a
large fraction of the data is grouped in several clusters of very low mass, meaning that the best state
was found near the initial state. The higher complexity of the transfer can be attributed to the larger
difference in Jacobi constant between the departure and target orbits compared to the first use case.
Probably, including interior manifolds on top of the exterior manifolds for the departure trajectory
will help the optimizer find feasible trajectories. The linear relationship between propellant mass and
TOF is also present in this use case, with a however narrower width compared to Figure 6.17.

As already described, the influence of the factors and interactions on the response was analyzed
through ANOVA. Specifically, four objectives were investigated: propellant mass, TOF, position error,
and velocity error. Unfortunately, in none of the use cases nor objectives, an R? or dej value above
0.5 was obtained, going as low as 0.16 for the propellant mass. Thus, the modeling error is always
primary, suggesting that the problem is highly non-linear and complex, with leading contributions of
higher-order interactions. This strong non-linearity may be attributed to several reasons. Firstly, the
highly complex nature of the CR3BP can yield rather different trajectories with similar initial states
or thrust profiles. Secondly, the strong coupling between the equations of motion, as evident from
Equations (2.28) and (5.8), can make the contributions of higher-order interactions leading. As a
last hypothesis, the closest state between the optimal control phase and the target phases can greatly
differ for similar trajectories, since several connection points along the target trajectory may have very
similar state errors, resulting in pronounced differences in propellant mass and TOF.

No general conclusions can be retrieved from the data itself, as it might be confounded with
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Figure 6.19: Comparison between position error, velocity error, and propellant mass for the different
experiments of the general FFD for the 2" use case.

the contributions of higher-order interactions and the quality of the fit is poor. Moreover, for such
a complex problem, an FFD of three levels may well not be sufficient to accurately describe the
behavior. Therefore, not only is the optimization challenging due to the very restrictive boundary
conditions but also the behavior of the objectives is exceptionally non-smooth and highly complex.
Future steps to further study the general problem would be to conduct Monte Carlo simulations to
hopefully identify trends in the response as a function of the design variables thanks to the larger
amount of data points. In addition, response surface methods may be interesting to recognize relevant
behaviors. However, this process may become very time-consuming (a driving factor in this research)
and not rewarding enough for the optimizations.

Since no information could be retrieved from the factor contributions to evaluate the design
bounds for Ag, the approach was to carry out three extra runs with the bounds for A\, set at differ-
ent orders of magnitude, as described at the end of Subsection 6.3.3. Then, the response averages and
standard deviations were compared. The outcome of the analysis for the second use case can be seen
in Figure 6.20, where the average position and velocity errors and their standard deviations are plotted
against the costate bounds. As usual, the position error average is always considerably larger than the
velocity error one. The run with the costate bounds set at 0.1 corresponds to the original run from Ta-
ble 6.7. Recall that the bounds for A, are one order of magnitude larger than for A,q and A,o. From
the figure, it can be observed that the runs with the costate bounds of 1 and 10 are identical in terms of
average and standard deviation, and very similar to the run with costate bounds of 0.1. An examina-
tion of the output data revealed that most of the obtained trajectories were equal. The performance is
significantly different for the fourth run. These observations can be explained by the fact that with the
larger bounds, no coasting periods are triggered during the optimal control phases, so changing the
order of magnitude of the costates will not change the trajectories (as explained in Subsection 6.3.3).
However, decreasing the order of magnitude led to new trajectories with longer coasting periods and
different performances. Overall, the original bounds are deemed to be the most promising, as they
present trajectories that promote coasting without excessively constraining the design space.
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Figure 6.20: Mean and standard deviation of the Figure 6.21: Mean and standard deviation of the
position and velocity errors as a function of the ~ position and velocity errors as a function of the
costate parameter bounds. percentage of parameter variation with respect to
the nominal trajectory.

Local Runs

As already mentioned, the local ANOVA rounds are centered around the nominal solution, perturbing
the design variables by 1%, 10%, and finally by 50%. Recall that the nominal trajectory corresponds
to the first use case. These runs will help analyze the sensitivity of the trajectories, their local behavior,
and the span of the feasibility regions.

Firstly, the evolution of the position and velocity error averages and standard deviations as a
function of the parameter variation is displayed in Figure 6.21. The 300% variation corresponds to
the general run from Table 6.7 (the percentage is an estimation as the actual relative change varies
per parameter). The figure shows that the average errors sharply increase with the percentage of
variation. The standard deviations display a more unpredictable behavior, although there is a strong
increase between the parameter variation of 1% and the one of 10%. Interestingly, even though at
1% the position error is larger than the velocity error, the roles reverse at 10% and 50%, getting the
velocity error average again surpassed by the position error average in the general run, not centered
around a trajectory. Nevertheless, it would be imprudent to generalize this result to all trajectories.

Secondly, the propellant mass is plotted against the TOF for the run with 1% variation on Fig-
ure 6.22. The position error is again added in a color bar. As would be expected, the trajectories
with the minimum position error present a similar performance to the nominal trajectory: 6.93 kg and
60.13 days. In this case, the linear trend found in Figure 6.17 cannot be identified, as the variations
are very small. It is present however for the runs with variations of 10% and 50%. The interesting
characteristic of Figure 6.22 is the difference in ranges between the TOF and the propellant mass. As
this trajectory never coasts during the optimal control phase, a reduction in mass requires a reduction
in the TOF of the optimal control phase. However, the reduction in mass that some of the trajectories
exhibit (the ones with larger position errors) does not translate to the required reduction in total TOF.
The reason for this is that the perturbed trajectories find the new minimum state error somewhere else
in the target manifold, effectively exchanging TOF in the optimal control phase with TOF in the target
manifold phase. This phenomenon of attaching somewhere else to the manifold decreases the error
of the trajectories in general, something that will greatly benefit the optimization and is the whole
purpose of the proposed search strategy in Subsection 5.2.3. Moreover, the patterns of roughly par-
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Figure 6.22: Comparison between propellant mass, TOF, and position error for the different
experiments of the FFD around the nominal trajectory with a 1% variation (1* use case).

allel curves that can be identified in the figure may also be due to the search strategy, as the optimal
control phase seeks the best connection point among a discrete set of states, removing homogeneity
in the response.

Then, the position and velocity errors again for the 1% variation run are shown in Figure 6.23.
Unfortunately, most of the trajectories do not satisfy the boundary constraints (indicated by the red
lines). However, a fraction of them still do, and, since 1% is a significant perturbation, this suggests
that the trajectories are not extremely sensitive and that the spacecraft can still remain close to the
target trajectory when there is uncertainty in the parameters (which is convenient for a real transfer).
This will be analyzed more deeply in Section 8.3. Nevertheless, this also shows that the optimizer will
need to vary all parameters by less than 1% to find a single feasible solution. With such a narrow and
non-smooth feasible domain, not only will the heuristic optimizer struggle to find feasible solutions,
but it will probably prematurely converge to the found solution, without appropriately exploring the
remainder of the design space. Hence, the constraint handling strategy is crucial in this problem, with
a focus on diversification.

As usual, there are many more trajectories with a low velocity error than with a low error in
position, with the velocity constraint being satisfied by a considerable fraction of the trajectories. In
addition, a linear trend can be identified for a significant portion of the trajectories, which is expected
since, to find the closest state, the same penalty is given to the position and velocity errors, i.€., Wpos
and w,; in Equation (5.18) are both equal to 1. Nevertheless, not all points follow this trend due to
the highly non-linear problem. All linearity is lost in the 10% variation run, with the plot looking
similar to Figure 6.18.

Regarding the ANOVA analyses of the local runs, the adjusted coefficients of determination of the
position error, velocity error, TOF, and propellant mass are displayed Table 6.8. For a 1% variation,
the accuracy of the fit for the propellant mass is already below 80%, making it the most difficult
objective to estimate, followed by the TOF, the position error, and, lastly, the velocity error. For all
objectives, the quality of the fit tends to decrease as a function of the variation percentage around the
nominal solution. Even with a 1% variation, the modeling error is above 10% in all objectives, again
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Figure 6.23: Comparison between position error, velocity error, and propellant mass for the different
experiments of the FFD around the nominal trajectory with a 1% variation (1* use case). The red
lines correspond to the boundary constraints of 10~ in both position and velocity.

Table 6.8: Ridj values of the ANOVA analyses for the different objectives as a function of the run.
The fraction of promising trajectories is added for each run as well.

Objective \ Run \ 1% 10% 50% General
Position Error Rgdj [-] 0.86 0.87 0.8 <0.5
Velocity Error R [-] 0.89 0.87 084 <0.5
TOF R2,, [-] 0.85 0.63 0.63 <0.5
propellant Mass R7;; [-] 0.71 052 <05 <05

Fraction Promising Points [%] ‘ 88.2 5.1 3.4 0.4

proving the problem to be highly non-linear. As already stated, for the general runs, all Rgdj values

are below 0.5. A row was added to Table 6.8 incorporating the percentage of points that have both
position and velocity errors below 20 times the constraint values. This value was chosen to denote
points that could be relatively promising in terms of feasibility because only very few points satisfy
the constraints. Even though almost 90% of trajectories satisfy this measure for the 1% variation
run, the amount of promising points is very low for the rest of the runs. Once again, this shows the
difficulties that the optimizer will encounter in obtaining a feasible transfer, being also the specific
heuristic method an essential factor.

Focusing on the 1% variation run, Table 6.9 displays the ANOVA table for the position error®,
which has strong similarities to the one for the velocity error. Comparable percentages of contribution
are obtained for the rest of the local runs, although not shown here. Nevertheless, these variance
analyses correspond to runs that only explore a narrow region of the design space, meaning that their
conclusions cannot be safely extrapolated to the general case. It should be noted that in Table 6.9, a

3 Again, the subscript "0" is dropped when talking about the initial costate parameters for conciseness.
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Table 6.9: ANOVA table of the position error corresponding to the 1% variation local run. The terms
that were pooled due to insufficient statistical confidence are not included.

Term | DOF [-] SS[Mm?] Variance [-] F-Ratio[-] S5 [Mm?] | Contrib. [%]
Torb, 2 1054 527 1044 1053 1.45
Tinan 2 27982 13991 27731 27981 38.71
Moz 2 28 14 27 27 0.04
Ao 2 152 76 150 151 0.21
Torbs 2 17 8 17 16 0.02
Torby, X Timan 4 14209 3552 7041 14207 19.66
Torb, X Ag 4 14 4 7 12 0.02
Torby X As 4 33 8 16 31 0.04
Torby X Avz 4 360 90 178 358 0.50
Torby X Auy 4 825 206 409 823 1.14
Torby X Avs 4 4400 1100 2180 4398 6.08
Torby X Torby 4 8 2 4 6 0.01
Tonan X s 4 30 8 15 28 0.04
T X s 4 47 12 23 45 0.06
Tonan X Avx 4 1543 386 765 1541 2.13
Trnan X Aoy 4 1794 449 889 1792 2.48
Tonan X Aos 4 9625 2406 4769 9623 13.31
Aoz X Auy 4 9 2 4 7 0.01
Moz X Aoz 4 60 15 30 58 0.08
Aoy X Auz 4 181 45 90 179 0.25
Avz X Torby 4 10 3 5 8 0.01
Error | 19608 9897 0.5 1.00 9936 | 13.75
Total | 19682 72278 NA NA NA | 100.00

good fraction of the estimated terms were pooled due to the statistical confidence of the results not
being above 90% (their contribution is too low). As already explained, the statistical confidence is
measured with the F-ratio, and for a confidence level of 90%, according to the tables provided by Roy
(2010), an F-ratio value of 2.2 is required for the factors, and a value of 1.9 for the interactions.

Looking at the specific values, as expected, \,, shows no contribution, since, from the explana-
tion in Section 6.2, a much larger variation in )\, is necessary for it to affect the trajectory at all.
In addition, A, also seems to have no significant contribution to the variance. However, this can be
explained by the fact that the nominal value for this parameter is one order of magnitude below the
rest of the position and velocity costates (Table 6.5), meaning that a 1% variation in ), is negligi-
ble compared to the rest. The table suggests that the most important terms are: 7o4,, Liman (Which
determines on its own roughly 40% of the variance), and their interaction between themselves and
with other parameters. As an example, the contribution of 7,,,,,, is ~14 times larger than \,,’s contri-
bution®. This conclusion about the relevance of Torb, and 13,4, In determining position and velocity
errors applies consistently across all local runs (1%, 10%, and 50%). These are the most contributing
factors for the general runs as well in both use cases, suggesting that either the starting point of the

Recall that to quantify the relative contribution to the objectives instead of the variance, the square root of the ratio
must be taken.
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Figure 6.24: Position and velocity errors as a Figure 6.25: Position and velocity errors as a
function of the level of 7,,, for the FFD around function of the level of )\, for the FFD around the
the nominal trajectory with a 1% variation (1* use nominal trajectory with a 1% variation (1* use
case). case).

optimal control phase is paramount in the problem or that the main contribution of these parameters
is of lower order (in terms of interactions) than the costates parameters, for instance. It makes sense
that 7,,,, 1s not as important since the complete target manifold and target orbit are taken as suitable
end-points to find the closest state. Then, in the local regime, the velocity costates appear to be more
influential than the position ones when considering the interactions as well. But this can be attributed
to the fact that the nominal values are larger for the velocity costates (Table 6.5), being \,, the one
with the largest value and therefore the largest contributor. Overall, if the design space is too large to
find solutions, probably bounding 7;,,,,, or 7,5, more restrictively would be the most helpful to focus

the optimization search.
Now, having found the two most critical factors, it would make sense that the deviations from the

linear trend in Figure 6.23 correspond to trajectories with these factors not in their nominal values.
The effect of '1;,,,,, on the position and velocity errors can be visualized in Figure 6.24, where it can be
seen that the different clusters correspond to 7,,, being at different levels, with the best trajectories
being obtained when the factor is at its nominal level. Further analysis led to the conclusion that all
trajectories that satisfy the constraints require both 7;,,,,, and 7,,, to be at their nominal levels. For
comparison purposes, Figure 6.25 shows the position and velocity errors as a function of the level of
Ay. As this parameter is barely influential to the response, the distribution appears to be random, with

the nominal level not necessarily leading to better trajectories.
To conclude, this design space exploration section provided a better understanding of the problem,

denoting that its complexity and non-linearity are severe. As such, an appropriate constraint handling
method, optimizer choice, and optimization tuning will be required to obtain a large enough number
of feasible trajectories. Nevertheless, suitable ranges for the design variable values were identified,
and the most influential parameters and constraints were distinguished.

6.4 Selection of Bounds and Constraint Handling Approach

With the conclusions drawn from the design space exploration, the optimization procedure can be
chosen in a more informed way. In this section, the final optimization bounds are selected, as well
as a preliminary constraint-handling strategy that will be employed to obtain the results. Due to time
constraints, only the first use case from Section 6.1 will be optimized.
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Table 6.10: Parameter lower and upper bounds used in the optimizations.

Parameter \ Lower Bound Upper Bound Unit

Torby 0.0 1.0 -
Tran 12.0 22.0 days
Ao 0.1 0.1 -
Ao -0.1 0.1 -
Amo 2.0 2.0 -
Torby 0.0 1.0 -

6.4.1 Optimization Bounds

Following the analysis carried out in Section 6.3 to choose adequate bounds for the design space,
Table 6.10 displays the final bounds used for tuning the optimizations and to obtain the final results.
They are very similar to the ones selected during the problem analysis displayed in Table 6.7. In these
optimizations, the initial costate parameter bounds were all centered around zero. The allowable
range for \,,o was doubled to hopefully guide the optimizer towards trajectories that present longer
coasting periods during the optimal control phase. Moreover, the only other variation is present in the
bounds for 7,,,,,, setting a minimum TOF of 12 days in the unstable manifold phase. This was found
to help the optimization, as 7,,,., is a very influential optimizable parameter, and restricting the design
space in this dimension leads the optimizer to focus its search. The first 12 days in the manifold phase
are anyway very similar to the departure orbit in terms of states, showing barely any advantages in
using the unstable manifold. With this configuration, all trajectories are "forced" to spend at least
12 days in the unstable manifold, meaning that the fastest transfers will not be found. Nonetheless,
optimizations without manifolds will also be carried out to find these faster trajectories.

6.4.2 Constraint-Handling Strategy

Due to the highly demanding boundary constraints that this problem presents, the choice of the con-
straint handling strategy is paramount to finding a wide variety of feasible solutions to maximize the
optimization in terms of propellant mass and flight time. An overview of the main constraint-handling
techniques used in heuristic optimization over the years is provided by Mezura Montes and Coello
Coello (2011). Due to the time limitations of this research, off-the-shelf optimizers will be employed,
namely MIDACO and the ones implemented in Pagmo (with all MO optimizers being unconstrained).
Therefore, some promising constraint-handling strategies cannot be used, as their implementation
would require the modification of the heuristic philosophy of the algorithms. Moreover, as the idea
is to compare the performance of the different optimizers, it is desirable to use a constraint-handling
strategy that is not specific to a certain heuristic algorithm. Namely, stochastic ranking (which was the
approach chosen by Lee et al. (2005) in combination with indirect methods to solve the MO problem
in the CR3BP), feasibility rules, e-constrained method, and special operators were not considered
for the given problem. For the same reason, hybrid optimization is not employed, although some
authors have made use of it in combination with indirect methods, such as Coverstone-Carroll et al.
(2000) and Sentinella and Casalino (2006). Nonetheless, the fact that the OGT solutions are meant to
serve as initial guesses for direct collocation is already a form of hybrid optimization. Furthermore,
due to the narrow and highly non-convex feasible domain, decoders to map the feasible domain and
repair algorithms to turn infeasible solutions into feasible ones are not sensible options. Moreover,
for highly constrained problems, the augmented Lagrangian method, as described by Mahdavi and
Shiri (2015) and Sedlaczek and Eberhard (2006), has proven to be successful. However, this method
is complicated, is meant for single-objective optimization, and requires several optimization runs to
tune the parameters, thus being undesirable for the OGT.
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For the actual constraint-handling strategy trade-off, three families of methods were compared:
penalty functions, separation of objective and constraints, and multi-objective concepts. These strate-
gies were compared using MIDACO with default settings as a preliminary optimizer. Penalty methods
add a function of the constraint violations to the objective(s), thus penalizing unfeasible trajectories.
A common approach, employed with indirect methods by Pergola et al. (2009), Lee et al. (2005), and
Pontani and Conway (2010), is for the penalty function to simply be a weighted sum of the constraint
violations. As described by Smith et al. (1997), penalty functions are often also a weighted sum of the
square of the constraint violations. In addition, Coello Coello (2002) shows that penalty functions can
take many different and more complex shapes, with their weights being static or dynamic (changing
throughout the optimization). MIDACO has the more complex Oracle Penalty function built-in for
constraint handling (Schliiter and Gerdts, 2009). After optimizing with numerous penalty function
configurations (and combinations of them), including the Oracle penalty, the main conclusion is that
with penalty methods, due to the highly restrictive constraints, the optimizer may or may not con-
verge to a feasible solution depending on the tuning parameters, seed, and function shape. The Oracle
penalty function appeared to be the most robust, however, the optimizer then failed to find sufficiently
different solutions that also satisfied the constraints’, prematurely converging to suboptimal solutions,
and not providing a wide Pareto front. These observations are common disadvantages of penalty func-
tions, according to Coello Coello (2002). Moreover, due to the larger number of tunable parameters
and the case-dependency of their values®, this constraint-handling approach may not be the best for
the OGT, since, ideally, it should work for different use-cases without excessive modifications. For
the aforementioned reasons, penalty functions are discarded.

To help the optimization converge to a feasible solution, separation of objectives and constraints
can be used to ensure that an infeasible transfer is never considered better than a feasible one. The idea
is to map the performance of feasible solutions into the interval (-co, 1), and of infeasible solutions
into [1, co) (Coello Coello, 2002). Hence, following the nomenclature from Section 3.3 and being
the objective function f(p) scaled to the interval (-0o, 1), a trajectory would be ranked as:

f(p) if feasible

fitness(p) = & 6.17
) l1+a ( E w; max(0, hl(p))) otherwise (©I7
i=0

where a and w; are constant weights, h the specific inequality constraint function, and 7.y, 1S the
number of constraints. Nevertheless, even though this method converges to feasible trajectories more
often, the loss in diversity is significant since the objective value is not considered if the trajectory
is unfeasible (Mezura Montes and Coello Coello, 2011). Moreover, with this method, infeasible
trajectories that may satisfy the constraints with further optimization are generally discarded if a
feasible trajectory has already been found.

Lastly, multi-objective constraint-handling methods include the constraints as additional objec-
tives to be minimized by the optimizer. This method is convenient for this research, as MO optimizers
are used anyway to minimize the propellant mass and TOF. Then, the solution Pareto-front will be
the section of the higher-dimensional Pareto-front for which the constraint violations are zero. The
tuning parameters in this case are the relative weighting of the objectives, being hence more appli-
cable to a general case. This method promotes diversity as it favors trajectories that minimize the
mass and TOF, even if the constraint violations are large. Then, the optimizer will in principle try to
minimize the constraint violations for these promising trajectories. Nevertheless, a balance ought to
be found, as these low-cost trajectories may be too unrealistic to ever satisfy all constraints. As such,

"Many solutions are obtained, but they are extremely similar to each other.
8This is not the case for the Oracle penalty function, as it is self-tuning.
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separating the three constraints (position, velocity, and Jacobi constant) as three extra objectives led
the optimizer to dedicate excessive efforts to exploring these unrealistic areas. The best configuration
found for MIDACO is to perform an optimization with two objectives: the propellant mass and the
weighted sum of the constraint violations. However, for MIDACO to find trajectories, the algorithm
needed to solely focus on the constraints objective (through the built-in balance parameter). Hence,
even though with this strategy MIDACO always finds several sufficiently different solutions (unlike
the other methods, which would only find solutions extremely close to the first one that was found),
the diversity problem still persists. Nonetheless, to move forward and proceed to the optimization
tuning in Chapter 7, this last constraint-handling strategy is utilized.

In conclusion, this chapter found the Adams-Moulton integrator with seven interpolating points
to be the best-performing option for the given problem. The design space exploration highlighted the
highly non-linear nature of the problem and the restrictive nature of the constraints. Consequently,
having selected appropriate optimization bounds and a preliminary constraint-handling strategy based
on treating the constraints as a separate minimization objective, optimization tuning will be crucial to
obtain a diverse set of promising trajectories for the proposed use case.



Use Case Optimization and Results

In this chapter, the results of the OGT optimizations with the proposed approach will be presented.
As already mentioned, only the first use case of Section 6.1 will be optimized in this research. The
optimizer and optimizer settings are chosen in Section 7.1, making a distinction between the results
obtained before and after relaxing the constraints. Only then, the final Pareto front is presented in
Section 7.2. Lastly, Section 7.3 assesses the effect of manifolds by running optimizations without the
use of manifold theory.

7.1 Optimization Tuning

This section is divided between the decisions made with the initial (tight) constraints and the ones
determined after relaxing the constraints. Nevertheless, all tuning decisions were re-assessed after the
relaxation to ensure their applicability to the final product.

7.1.1 Before Constraint Relaxation

Optimizer Selection

After selecting a preliminary constraint-handling technique in Section 6.4, the performances of dif-
ferent optimizers were compared. As explained in Subsection 3.3.4, the optimizers compared were:
MIDACO, MOEA/D, MHACO, NSGA2, and NSPSO (all with default settings). The last four be-
long to the Pagmo library. The advantage of this library over MIDACO is the fact that it offers the
possibility of using several optimization islands (populations) running in parallel that can exchange
the most promising trajectories. This analysis showed that the only two optimizers that would consis-
tently find trajectories, even with several islands, were MIDACO (based on ant-colony optimization)
and MOEA/D (based on differential evolution), both of which use the decomposition strategy to han-
dle the MO optimization. For MOEA/D to robustly find trajectories, a weight of 10° is applied to
the (non-dimensional) constraint objective compared to the mass and TOF objectives, both in dimen-
sional quantities. This value is considered to apply to a general case due to the vast difference relative
to the other two objectives. As already mentioned in Section 6.4, MIDACO requires the balance pa-
rameter (which tunes the focus of the optimizer on the different objectives) to completely concentrate
on minimizing the constraints objective.

Special Settings

Following further analysis, several arrangements proved to improve the overall quality of the solu-
tions. Firstly, the DOE showed that with the selected search strategy, a fraction of the trajectories
would have zero propellant mass and an optimal control phase of zero TOF due to the initial state of
this phase! being the closest state to the target phases. When including the Jacobi error limit of 3-1072
to compute the closest state at a given point in time (Subsection 5.2.3), the number of zero-propellant
mass trajectories increased significantly. For the constraints objective this is not a problem as the state
error in these trajectories is rather large. However, to prevent MOEA/D from favoring these extreme
trajectories, for the mass and TOF objectives (although, for now, only the mass is being used) they are
penalized by setting the objective values to twice the maximum allowable propellant mass or TOF.
To further promote diversity, punishing feasible points that have already been found seems to
help. The idea is to store every feasible trajectory for the final results, but in the optimization, a non-
zero constraint violation will be set for these trajectories to force the optimizer to search somewhere

'Recall that this is the end-point of the unstable manifold phase.

91



7.1. Optimization Tuning 92

14

12 — v-l- —

=
o
I

|

—e—Combined Front
Wpos = 3; Wyeg = 1
Wpos = 2, Wyt = 0.5
Wpos = 4: Wyel = 2
Wpos = 5a Wyel = 1
Wpos = 67 Wyel = 2
Wpos = 107 Wyel = 2
Wpos = 10, wyey = 2 (Dif. Seed)
Wpos = 0.5, wye = 0.1
Wpos = 207 Wyel = 5
Wpos = 100, wye = 10
[

Propellant Mass [kg]
T

- O ¥ 4 % O + P O x

Time of Flight [days]

Figure 7.1: Trajectories found by MIDACO in several runs with differing constraint weights and
their combined Pareto front.

else. In addition, feasible trajectories that do not have a sufficiently different performance (0.5% in
any of the objectives) also receive this penalty. Following the analogy of the ant colony optimization,
finding a feasible trajectory would be equivalent to locating food, but at some point, the food in
that area runs out, and the ants are urged to explore different regions. This practice is predicted to
only be beneficial with highly constrained problems like this one, where the feasible domain is made
up of strict and narrow regions of feasibility. The chosen penalty value is 0.01 for the objective
of the constraints in non-dimensional units. This number is larger than the surrounding infeasible
trajectories to compel the optimizer to leave the area, but low enough to not completely disregard the
promising parameters of the trajectory. When using MOEA/D, this value is scaled by 10°, according
to the objective weighting.

Constraint Weights

As all constraints are grouped within a single objective, the weights of each of them within the ob-
jective ought to be tuned?. For the constraint weighting, the same structure as Equation (5.18) will be
used. It is sensible that the search strategy weighs the position, velocity, and Jacobi constant errors
equally as much as the optimizer weighs the constraint violations (since the latter is the function to
be minimized). As a result, the weights for the position and velocity constraints will be equal to wy,s
and w,,; from Equation (5.18), respectively. As such, the constraints objective function, f.,s, shall
be formulated as:

feonst(D) = Wpos Max(0, hpos (P)) + Wyer max(0, hyer(p)) + max(0, he(p)) (7.1)

where w,,,; and w,,; are positive constants.
Figure 7.1 displays the performance of MIDACO for differing values of w,,,s and w,;, with the
position weight always being larger than the velocity one to prioritize the position errors (due to the

2If they were separated into three objectives, the relative objective weighting would be tuned instead.
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Figure 7.2: Trajectories found by MOEA/D in several runs with differing population sizes and their
combined Pareto front.

conclusions from Chapter 6). In this figure, all feasible trajectories are plotted according to their
objective values: propellant mass and TOF. From these preliminary optimizations, it can be seen that
MIDACO does not find many feasible trajectories with a single run. However, the quality of all of
them is outstanding, considering that the transfer can be completed generally with 1-2% of the total
spacecraft mass (500 kg). In addition, the combined Pareto front® spans a considerably large range of
propellant mass and TOF values, although it is scarcely populated and required numerous runs to be
generated. Nevertheless, the proposed approach already offers general advantages over conventional
methods, as it provides more than one competitive trajectory to choose from.

Regarding the performance with different weights, it is difficult to draw conclusions as all behave
similarly in terms of the number of feasible points. In terms of the quality of the solutions, weighing
the Jacobi constant constraints more than the other (by having w,,s and w, being smaller than 1)
led to slightly poorer results. This is also observed when weighing the Jacobi constraint too little.
Moreover, the same settings with distinct pseudo-random seeds lead to very different outcomes, as
evident from the two runs with w,,s = 10 and w,, = 1, which found trajectories in the opposite
extremes of the front. Therefore, the performance of the optimization, at least for MIDACO, appears
to be more dependent on the seed than on the constraint weights, as long as they are within a sensible
range. For the rest of the tuning and the final optimizations, wp,s = 5 and w,,¢; = 1 are chosen.

This analysis showed that MIDACO struggles to preserve diversity and find a large variety of
feasible solutions. Hence, MOEA/D may be a more promising choice due to the possibility of us-
ing several islands in parallel that exchange information thanks to the Pagmo library. In the next
paragraphs, a suitable population size is selected for MOEA/D, and then different optimization archi-
tectures are explored to obtain a more diverse set of solutions.

Population per Island

MOEA/D was run with four different population sizes per island: 50, 80, 120, and 200 individuals.
The rest of the settings were left as default, taken from the original authors’ recommendations (H.

3To represent the Pareto fronts, it was decided to use a staircase plot to take the worst-case scenario. This is probably
not the case in the real, physical solution, but as trajectories in between the points have not been found, it would be
misleading to approximate the front with a smoother shape.
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Li and Q. Zhang, 2008). In addition, three islands were used in each optimization with migrations
every five generations. As suggested by Ahlborn (2023), only the best member from each island
migrates to the others to preserve diversity. Thus, the selection rate parameter is set to one member
and the replacement rate (the probability of accepting an incoming migration) is set to 100% for all
optimizations (including the final results).

The results can be visualized in Figure 7.2. The optimization with a population of 200 individuals
is not displayed because it did not find any feasible transfer within the allocated number of genera-
tions (~2500), meaning that, although it may eventually obtain results, the required convergence time
is too large for a useful tool. It is evident from the figure that, even though the optimization with 50
individuals obtains trajectories of lower propellant mass, the number of feasible trajectories obtained
is considerably low compared to the other two configurations. The optimizations with 80 and 120
individuals performed similarly, each of them finding more than 100 sufficiently different feasible
trajectories, spanning more than 20 days. A final population size of 120 is selected, as all members
forming the Pareto-front belong to this run (disregarding the ones obtained by the run with 50 indi-
viduals). Moreover, this run also found several transfers of very different performances (10 kg and 70
days), denoting a more diverse search.

Optimization Architecture

The previous analysis of population sizes demonstrated the better capabilities of MOEA/D (with
several islands) in exploring the feasible domain compared to MIDACO, which found more iso-
lated points. Furthermore, looking at the time evolution of the MOEA/D optimizations, the worst-
performing points are the first to be found, progressively finding better and better solutions over the
generations. This observation is common to all MOEA/D runs presented in this research, proving
that the method actually optimizes for propellant mass even with very tight constraints (TOF is not
considered in this case) and it is not just randomly finding feasible points.

The goal now is to identify an appropriate number of islands and migrations to maximize perfor-
mance. How the islands are connected is also of importance, the so-called archipelago structure. One
can decide to have them unconnected (essentially having no migrations) partially connected, or fully
connected. To prevent all islands from prematurely converging to the same set of trajectories, the
fully connected configuration is avoided. Then, Pagmo offers a way of connecting them partially by
placing them in a ring configuration, in which the best members can only migrate to the two adjacent
islands, providing a balance between diversity preservation and information exchange to obtain better
solutions and delay convergence.

Figure 7.3 shows the results of several runs with differing numbers of islands and migration rates
using the ring archipelago structure*. "Unconnected" refers to no migrations, "many migrations" cor-
responds to having migrations every five generations, and "few migrations" to every 20 generations. It
can be seen that the run with 20 islands and many migrations performed incredibly similarly to the run
with 10 islands and few migrations (but requiring roughly twice as many function evaluations). This
makes intuitive sense, since increasing the number of islands can have a similar diversity-preserving
effect as decreasing the number of migrations when disposed in a ring configuration. As expected,
these runs found the most diverse set of feasible points, however, they are the worst performing in
terms of propellant mass and Pareto-optimality overall. The least diverse run in terms of variety of
performance in the obtained solutions is the one with five unconnected islands, followed by the one
with four islands. This can be attributed to the fact that migrations prevent the islands from prema-
turely converging by introducing new promising parameters (but too many will remove the diversity

“The density of the found feasible points is too high for some of the runs because this correction was not yet imple-
mented.
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Figure 7.3: Trajectories found by MOEA/D in several runs with differing architectures and their
combined Pareto front.

in the populations). In addition, some of the unconnected islands may never find a feasible point. The
run with four islands also obtained the trajectories with the lowest propellant mass, since with few
islands and a lot of migrations, the exploration capabilities within a promising region are enhanced.
Lastly, a good compromise between the diversity of solutions and their quality is attained by using
ten islands and migrations every five generations, thus being the chosen configuration.

A more exhaustive tuning could be carried out, also including the selection and replacement rates,
however, due to time constraints this was not possible for this research. Moreover, the hardware used
for this optimization only has 12 logical processors, making larger numbers of islands inefficient in
terms of CPU time (only 12 trajectories can be computed in parallel). For more powerful hardware,
the use of more islands with adjusted topology, migrations, selection rates, and replacement rates
could be beneficial.

The Pareto-fronts obtained by MIDACO and MOEA/D with all runs are compared in Figure 7.4.
With fewer runs, the trajectories found by MOEA/D outperform the ones from MIDACO except for
the faster trajectories. MOEA/D also showed better search capabilities and smoother Pareto fronts
in the explored regions. As MIDACO can find trajectories of very different performance, in fu-
ture research it may be interesting to feed populations optimized by MIDACO to MOEA/D for it
to thoroughly explore these different regions. Overall, even though the obtained trajectories are of
outstanding quality, currently both optimizers provide underpopulated fronts, probably far from the
optimal solution and not ideal for the mission designer to choose from. This is attributed to the highly
restrictive constraints, which explains the relaxation analysis carried out in Subsection 8.2.2.

7.1.2 After Constraint Relaxation

By increasing the allowable position and velocity discontinuities by a factor of three, MOEA/D’s per-
formance improved significantly, consistently finding more than a thousand feasible points instead of
barely a hundred. This can be explained by the fact that, with tighter constraints, most of the indi-
viduals in a population would need to be very close to a certain feasible point (thus all having very
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Figure 7.4: Comparison between the Pareto fronts obtained by MIDACO and MOEA/D.

N

similar parameters) to modify the design variables by a small enough amount to eventually satisfy the
constraints. Therefore, most of the diversity is lost once a feasible trajectory is found. By relaxing
the constraints, the feasible domain is enlarged such that solutions can be obtained without excessive
required accuracy in the design variables, being thus easier for the optimizer to "unlock" new areas
of feasibility within a single island and not prematurely discard promising parameter combinations.
Nevertheless, this was not the case for MIDACO, which, even though it increased the number of
trajectories discovered, it would still get "stuck" around the found solutions, which may be far from
optimal. Furthermore, it still displayed a high dependency on the pseudo-random seed. These phe-
nomena demonstrate the benefits of using several connected islands running in parallel when dealing
with highly constrained problems.

Weighting of Objectives

So far, the optimization strategy was to only minimize the propellant mass and the constraint vio-
lations, completely neglecting the TOF. This was found to work best for MIDACO but was never
put to assessment using MOEA/D. With relaxed constraints, other regions of the Pareto-front can
in principle be explored better by varying the weighting between the propellant mass and the TOF
(having the weighted sum of constraints as a third objective). The outcome of this exercise is plot-
ted in Figure 7.5. The figure shows the performance of all feasible trajectories found with different
objective weightings: focusing solely on the TOF, only on the propellant mass (two runs with dif-
fering seeds were carried out), on both, or 30 times more on the propellant mass than on the TOF.
The value of 30 is chosen as the dimensional TOF values are one order of magnitude larger than the
dimensional propellant mass values. As expected, the relative importance of each objective makes the
optimizer explore different regions of the Pareto front. With more runs, scarcely populated regions
would in principle be filled. When comparing Figure 7.5 to Figure 7.3, one can directly observe the
improvement achieved by the relaxation of the constraints. As already mentioned, for all these runs,
the optimizer first found the worst-performing trajectories, and it gradually pushed the Pareto front
towards the lower left corner through the obtainment of better-performing transfers. Nevertheless,
most of the feasible transfers found would be very promising solutions anyway.

The best run in terms of propellant mass was obtained by solely focusing on the propellant mass,
as could be predicted. Furthermore, the effect of the seed, although non-negligible, is not severe in
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Figure 7.5: Trajectories found by MOEA/D in several runs with differing objective weighting and
their combined Pareto front.

terms of performance or the explored regions of the front. However, the lowest times of flight were
attained by the run which gave equal importance to both objectives, instead of the one that disregarded
the propellant mass. This might be due to the pseudo-random seed or because also focusing on the
propellant mass led to finding new trajectories, thus discovering more promising regions of the feasi-
ble domain. The most balanced run corresponds to the last one, which, although it only contributed to
a specific portion of the combined front, the solutions found span almost the full Pareto front range,
exploring all the main regions. As such, with a single run, one would have obtained a front ranging
from 33 to 72 days, and from 3 to 7 kg. Overall, this analysis proves that as a mission designer, one
can modify the objective balance parameter to obtain optimized solutions with a performance that
would suit the mission better.

Effect of Penalizing Already Found Trajectories

The aforementioned effect of penalizing trajectories that have already been found or that have a per-
formance within 0.5% variation relative to these can be visualized in Figure 7.6. Here, two runs were
carried out with the same settings, including the seed, but with the punishment mechanism turned on
or off. The run with punishment corresponds to the one in which the mass and the TOF are weighted
equally, displayed in Figure 7.5. In both runs, the explored regions of the front are the same, start-
ing with an almost identical distribution of solutions. However, over time the run with punishment
managed to get the mass down to 5.5 kg, whereas the unpunished one got "stuck" around 6.7 kg.
Nonetheless, the unpunished run obtained the fastest trajectories, since the information of the found
trajectories can be exploited to obtain more promising runs. The fact that this only occurred with
a small fraction of the combined front suggests that an appropriate balance between keeping these
trajectories and forcing the optimizer to search somewhere else was found (by penalizing the tra-
jectories by a pertinent amount). To conclude, for the given highly constrained problem, penalizing
already-found trajectories seems to enhance the exploration capabilities of the optimization.
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Table 7.1: Optimizer settings used to obtain the final Pareto-front.

Archipelago Parameter | Value | MOEA/D Parameter | Value
Number of islands 10 Weight generation Grid
Population per island 120 Decomposition Tchebycheff
Migrations Every 5 gen | Neighbours 20
Topology Ring Crossover parameter | 1
Replacement rate 1 member | F-parameter 0.5
Selection rate 100% Distribution index 20

Realb-parameter 0.9

Reinsertion limit 2

Preserve diversity True

7.2 Final Results

The results presented in this section simply combine all the previously presented runs. No extra runs
were carried out for the sake of transparency, although by changing the balance parameter a better
and more populated Pareto front would be obtained. The final optimization settings are displayed in
Table 7.1. An explanation of the MOEA/D settings® is provided by H. Li and Q. Zhang (2008). The
design variable bounds correspond to the ones displayed in Subsection 6.4.1. As can be observed in
Section 7.1, to obtain most of the Pareto-optimal solutions, the only parameters that were varied over
the different runs were the seed and the objective balance parameter (user-definable). These settings
are of course catered toward the given use case, although a more exhaustive tuning of the MOEA/D
parameters should improve the results to a certain extent. For a different use case, the user can modify
these parameters as they see fit.

SURL: https://esa.github.io/pagmo2/ [Accessed: 10/07/2024]
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and the one found by Pritchett et al. (2017) are included as well. In green, the selected
Pareto-optimal solution is highlighted.

7.2.1 Final Pareto Front

The complete Pareto front using manifold theory is presented in Figure 7.7. This front includes 79
feasible transfers from which the mission designer can choose. The diversity of options is large, as
the front spans 50 days and 6 kg of propellant mass. Although the front was generated for the given
use case, it can be scaled up or down as long as the initial and final orbits are the same, and that
the I, and thrust acceleration are also equal. For instance, a satellite of 50 kg with 10 N of thrust
(instead of the current 500 kg and 0.1 N), would lead to the same Pareto front (and the same trajectory
parameters), but with the mass scaled down by a factor of ten. It should be noted that all trajectories
except for three were obtained with MOEA/D.

In the figure, the performance of the nominal trajectory from Section 6.2 is displayed, manifesting
how much the optimization quality was improved by the tuning process. The optimized solution
obtained by Pritchett et al. (2017) for a similar use case is also included. Even though this transfer
is already promising, it is greatly outperformed by the obtained Pareto front. For instance, with 47.5
days available, a trajectory was found that requires 5.4 kg of propellant instead of 8.02 kg. On the
other hand, with 8.02 kg of propellant consumption, the transfer could be completed in 30 days.
As such, a roughly 30% reduction can be obtained in any of the objectives. This demonstrates the
advantages of the proposed indirect method in combination with MO heuristic optimization compared
to direct collocation with a rough initial guess: not only is a variety of solutions obtained instead of a
single one, but their performance can be superior.

Regarding the speed, the optimizations with the provided architecture required roughly 2.5-10°
trajectory evaluations to converge (no more feasible points are found). Using an 8" generation CPU
of six dual-cores, a speed of 2.2GHz, and 16 GB of RAM, each evaluation takes ~0.28 seconds.
Thanks to the ten islands running in parallel, the average time per evaluation is around 0.05 seconds,
entailing optimization convergence in 35 hours. However, as shown throughout the tuning process,
several runs were carried out with different values for the objective balance parameter, with 35 hours
corresponding to a single run.

Although the results are incredibly promising from a mission design standpoint, the shape of the
Pareto front does not look optimal, at least as expected for a physical problem. There are unpopulated
"Jjumps" in the front, denoting regions that could be explored better. Moreover, looking at the design
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Table 7.2: Design variable values and performance of the selected Pareto-optimal trajectory.

Parameter | Value Unit
Torby 0.348125 -
Tran 15.348539 days
Az 0.003460 -

Ay -0.002889 -

Az -0.003816 -
Aoz 6.847047-10* -

Ay -4.298818-10* -
Aoz 0.001008 -

Am 0.930790 -
Torby 0.512709 -

m, 2.66 kg
TOF 66.29 days
TOF (Opt. Control Phase) 19.82 days
Trnans 31.13 days
Position Error 383.13 km
Velocity Error 0.203 m/s
C Error 9.576-10* -

variable values of the obtained solutions, for a single run, the trajectories around a given region
share strong similarities between their design variables. For a different run, completely different
trajectories may be obtained (with maybe a similar performance), showing that there is still room for
improvement in the exploration capability and diversity of solutions. All this is again attributed to
the very demanding boundary conditions. In addition, the design variables of most of the obtained
solutions have the same order of magnitude as the bounds, so urging the optimizer to explore lower
orders of magnitude may lead to a different set of trajectories.

Nevertheless, the shape of the Pareto front resembles that of the one obtained by Lee et al. (2005)
with a similar approach in a transfer between DROs. In addition, the large "jump" in TOF from 33
to 56 days with roughly the same propellant mass can be to some extent explained by the fact that all
trajectories below 40 days directly connect to the target orbit, without the use of the stable manifold
phase. As the rest of the transfers employ both manifolds (which need a propagation time of at least
15 days to substantially separate from the halo and thus be advantageous), considerably larger TOFs
are needed to reduce the required propellant mass. As such, when removing both manifold phases, it
is expected to obtain even faster trajectories and extend the Pareto front of Figure 7.7 toward the left.

7.2.2 Selected Pareto-Optimal Solution

The idea now is to choose a solution from the final Pareto front and correct its discontinuities between
the phases with direct collocation methods by means of the ASTOS software. The design variable
values of the selected Pareto-optimal solution (highlighted in Figure 7.7) and its performance are
outlined in Table 7.3. The required propellant mass for this trajectory is minuscule, roughly 0.5% of
the spacecraft mass, so several coasting periods are present. For reference, 2.66 kg would correspond
to a AV of 104.7 m/s. The position, velocity, and Jacobi constant errors are far from the constraint
limits, making it easier for the ASTOS refinement. Furthermore, the initial position and velocity
costate parameters of this trajectory are at least one order of magnitude lower than the provided
bounds. The transfer requires 66.29 days, from which 15.35 days take place in the unstable manifold,
19.82 days in the optimal control phase, and 31.13 days in the stable manifold.
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Figure 7.10: Attitude unit vector components and thrust profile for the chosen Pareto-optimal
trajectory as a function of time.

The top and side views of the trajectory are portrayed in Figure 7.8 and Figure 7.9, respectively.
The manifold phases resemble those present in the nominal trajectory (Figure 6.1). Moreover, many
optimized transfers start their optimal control phase when the spacecraft is near the highest point
of the unstable manifold, thus being a very promising starting point. The optimal control phase is
however rather different from the nominal trajectory, carrying out in this case three lunar flybys,
although farther away from the Moon. In addition, three coasting periods can be identified during
the optimal control phase, greatly reducing the thrusting time to minimize mass consumption. The
first coasting period is connected to the unstable manifold, being essentially equivalent to staying in
the manifold phase for longer. The discontinuity between the optimal control and the stable manifold
phases can be discerned in Figure 7.9.

The thrust profile (including the normalized attitude vector) is presented in Figure 7.10. For the
sake of visualization, the attitude components have been set to zero during the coasting periods. As
such, the discrete "jumps" in attitude are not physical and the profile itself is smooth. The fastest
change in attitude (on day 45.6) corresponds to the third flyby, and the spacecraft does not thrust
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Figure 7.11: Costate parameter values for the chosen Pareto-optimal trajectory as a function of time.

during the other two flybys. The plot shows that the spacecraft coasts during most of the phase and
that bang-bang control is employed, which is a necessary condition for optimality arising from the
indirect method derivation.

The values of the seven costate parameters as a function of time can be found in Figure 7.11.
As usual, strong variations in the position and velocity costates are experienced during the three
flybys. Differently from the nominal trajectory, in this case, the mass costate remains constant over
three distinct intervals, corresponding to the three coasting phases. To prove this statement, vertical
dotted lines have been added to the mass costate plot corresponding to the points in time in which the
thrusters are turned on or off. At these points, the mass costate either adopts a slope of zero or stops
having a slope of zero. This in accordance with the costate EOM (Equation (5.8)). It should be noted
that because the final value of ), is not 0, this is not a mathematically optimal trajectory with respect
to the spacecraft mass, so an even better trajectory for this TOF could in principle be obtained.

7.3 Optimization without Manifolds
7.3.1 Set-up

For these optimization runs, both manifold phases were removed, having thus no need for 7,,,, or
Torby- 1he bounds for the rest of the design variables were kept the same as the ones in Table 6.10.
The optimizer settings were also the same as the optimizations with manifolds (Table 7.1). When
trying to minimize both the TOF and the propellant mass, the optimizer would always only find a
small number of solutions, all around the same very promising trajectory with a TOF of 19.46 days.
Said trajectory exhibits no coasting phases, meaning that much faster transfers are not expected to be
possible. These poor results are attributed to the fact that, as the transfer without manifolds is more
difficult, the islands would get populated with extremely fast trajectories that could never satisfy the
constraints (one of the dangers of this constraint-handling strategy). Increasing the weight of the
constraints objective even by four orders of magnitude had no effect on the results. Without resorting
to a cumbersome re-tuning of the optimization settings, a suitable way of solving this issue was to
minimize the propellant mass while maximizing the TOF, something easily done with the objective
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Figure 7.12: Trajectories found by MOEA/D and their combined Pareto front for several runs with
differing seeds and departure orbit bounds. The boundary line corresponds to the upper limit due to
the thruster capabilities.

balance parameter. This strategy urges the optimizer to find solutions with longer TOFs and discard
the utopian trajectories from the populations. The proposed solution is of course not ideal, as the
obtained Pareto front will not be optimal, but from a practical point of view, it is interesting as a wider
front is obtained.

Furthermore, even with the new balance, all optimization runs found roughly the same solutions,
exploring similar design variables. To obtain a more diverse set of solutions, the approach was to
adjust the bounds of 7,4, such that these solutions could not be found. After a new set of trajectories
was obtained, 7,5, Was restricted even more also to exclude this set. As such, three runs were carried
out, keeping everything the same except for the bounds of the initial orbit point.

7.3.2 Results

Figure 7.12 displays the feasible solutions obtained with the three runs and their combined Pareto
front. An extra run was included with complete bounds in which the Jacobi limit for the computation
of the closest state (Subsection 5.2.3) was removed. It can be seen from the figure that the Jacobi
limit had barely any influence on the performance, even for a different pseudo-random seed. Hence,
at least in some cases, the Jacobi constant limit reduces the optimization time without sacrificing
performance.

The boundary line corresponds to the physical limit of the spacecraft propulsion system since, for

. . . Trmaz ;:
a given TOF, the thrusters cannot expel more mass than the maximum mass flow (g, = ——24=
SPdim

times the TOF. As such, since bang-bang control is employed, all trajectories in Figure 7.12 that do
not lie in the boundary line present coasting periods within the optimal control phase. This shows the
importance of choosing appropriate design bounds to maximize the generation of coasting trajectories
as much as possible. The combined front reaches this physical limit, meaning that the fastest solution
always thrusts at its maximum level. Consequently, having found this Pareto optimal solution of 8.57
kg, this problem cannot have any Pareto-optimal solution that requires more than 8.57 kg. Moreover,
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Figure 7.13: Final Pareto front of the chosen use case, including the optimization without manifold
theory (with the new trajectories highlighted in red). The performances of the nominal trajectory and
the one found by Pritchett et al. (2017) are included as well. The boundary line corresponds to the
upper limit due to the thruster capabilities.

as explained by X. Pan and B. Pan (2020), the necessary conditions for the input controls (% and 7)
to minimize the TOF instead of the propellant mass are the same as the ones presented in Section 5.1
except for 7, which is forced to always be 1 (continuously thrusting). Hence, the proposed indirect
optimization method is also capable of obtaining the fastest trajectories possible. A simple way to
force the trajectories to not coast would be to set A, to an extremely high positive value (thus not
affecting the EOM).

Regarding the individual runs, each found roughly 200 trajectories, an order of magnitude lower
than the optimizations with manifolds. The obtained Pareto-front is considerably smooth and spans
ten days and a kilogram of propellant mass. All trajectories except for the fastest correspond to the
run that excluded the fastest trajectory from the design bounds. As such, the optimizer was forced to
explore a different region, arriving at better results in terms of propellant mass. When restricting the
bounds even more, the worst run was obtained.

Because the manifold phases need not be propagated and because the computation of the closest
state is faster as the target trajectory is solely made up of the target orbit (without a 38-day manifold),
the average computational time of each trajectory evaluation is only 0.012 seconds when having ten
islands in parallel. Since convergence is achieved roughly around 3.5-10° evaluations, each run only
took 12 hours, three times less than the optimizations with manifolds. Nevertheless, as already men-
tioned, the number of obtained trajectories and the range of the Pareto front is much lower. Several
factors have been identified to probably contribute to this difficulty in finding trajectories:

» With manifolds, the collection of effective target points is one dimension larger, as any point in
the manifold "tube" is a suitable connection. Without manifolds, the target trajectory is simply
the halo "line". Even for a single trajectory evaluation, the target trajectory is four times longer
if a 38-day manifold is added.

* For the same reason, there is a much wider variety of starting points for the optimal control
phase.
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Table 7.3: Design variable values and performance of the fastest Pareto-optimal trajectory.

Parameter | Value Unit
Torby 0.600930 -

Az -0.070783 -

Ay -0.091913 -

A, 0.023994 -

Aoz -0.058566 -

Ay -0.094567 -

Avz 0.054386 -

Am 1.578137 -

my 8.57 kg
TOF 19.46 days
Position Error 72578 km
Velocity Error 2.894 m/s
C' Error 2.896-10% -

* Related to the previous, a different region in space may be a more promising and easier starting
point than the initial halo.

* The required TOF of the optimal control phases when manifolds are not used are longer. This
complicates the optimization as the indirect control law is very restrictive and "blind" since it
does not consider the state error in the EOM.

This new Pareto-front can be patched with the front from Figure 7.7, obtaining Figure 7.13,
which highlights the new trajectories in red. The optimization runs without manifold theory extended
the original front with faster trajectories, dominating only a few of the original solutions and making
them obsolete. Hence, both optimization configurations complemented each other, exploring different
regions of the Pareto front and providing the mission designer with 100 optimized trajectories from
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Figure 7.14: Top view of the fastest obtained Figure 7.15: Side view of the fastest obtained
trajectory. trajectory.
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which to choose. From the figure, it can be seen that both the nominal solution and the trajectory
found by Pritchett et al. (2017) are contained in the hypervolume of the Pareto front with respect to
the nadir point. Moreover, with 8.02 kg of available propellant mass, the optimal transfer now only
requires 24.9 days. For reference, the utopia point of the Pareto front is 1.99 kilograms and 19.45
days, and the nadir point is 8.75 kg and 79.32 days.

The parameters and performance of the fastest trajectory can be found in Table 7.3. The error
values lie within the constraints, although the velocity error is close to the allowable limit. Since this
solution exhibits no coasting periods, the value of ),, again does not influence the trajectory as long
as it is positive enough. The transfer can be visualized in Figure 7.14 from the top, and in Figure 7.15
from the side. Evidently, there are no manifold phases in this case. Furthermore, the spacecraft does
not perform any revolutions around the Moon, as would be expected for the fastest transfer when
considering that the rotation direction ought to be inverted.

In conclusion, not only does the proposed approach provide a wide variety of promising initial
guesses for the considered use case, but also the trajectories greatly outperform literature values in
terms of propellant mass and time of flight for a comparable use case. Nevertheless, the trajectories
ought to still be refined with ASTOS to remove the instantaneous discontinuities between the phases.
Lastly, manifold theory has proven to discover new areas of the Pareto front on top of easing the
obtainment of feasible transfers.



Analysis of Results

In this chapter, the obtained trajectories will be analyzed, focusing on their verification and sensi-
tivities. Moreover, the suitability of the transfers to be used as initial guesses for direct collocation
methods is studied. The verification process of the nominal trajectory and the selected Pareto-optimal
solution is presented in Section 8.1. Then, the trajectories are refined with collocation methods us-
ing ASTOS in Section 8.2. Next, a sensitivity analysis of the nominal trajectory is carried out in
Section 8.3. Lastly, Section 8.4 explores the main accelerations not modeled by the CR3BP.

8.1 Trajectory Verification
8.1.1 Switching Function Check

To satisfy the necessary conditions for local optimality, the normalized thrust magnitude, 7, ought
to obey Equations (5.10) and (5.11). As such, the switching function, S, of a given trajectory must
change signs precisely when the thrust is activated or switched off.

Figure 8.1 plots the switching function of the selected Pareto-optimal solution (Subsection 7.2.2)
as a function of time. This function is, of course, only meaningful during the optimal control phase.
When S is positive, the spacecraft must coast, elsewhere, it must thrust at its maximum level. In the
figure, the points in time at which the spacecraft starts or stops thrusting can be identified by the red
dotted vertical lines. These lines correspond to the coasting and thrusting intervals of Figure 7.10. As
required, these red lines coincide with the points where the switching function changes signs and the
thrust is indeed off whenever S is positive.

8.1.2 Jacobi Constant and Mass Check

Whenever the spacecraft is coasting, both the Jacobi constant, C', and the mass of the spacecraft must
remain constant. The Jacobi constant of the selected Pareto-optimal solution as a function of time is
displayed in Figure 8.2 for all phases. The plot suggests that C' is indeed constant during the orbit
and manifold phases. Although not distinguishable, there is a slight change in C' when transitioning
between the orbit and manifold phases, generated by the perturbation parameter €, required to trigger
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Figure 8.1: Switching function, .S, of the selected Pareto-optimal trajectory as a function of time. The
red vertical lines correspond to the time points at which the thrust is switched on or off.
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Pareto-optimal trajectory. The red vertical lines
correspond to the time points at which the thrust is
switched on or off.

the manifolds. Then, a strong variation in C' can be recognized during the optimal control phase,
almost connecting to the target Jacobi constant. The difference is, of course, within the allowable
error of 102, During the coasting intervals of the optimal control phase, C' appears to be constant.
Via a close examination of the specific C' values when independently computing C' using the trajectory
states, it was found that the order of accuracy is at least 10"!! in non-dimensional units, as no variation
is observed up to this order. For reference, the difference in C' of the orbits is 4.9396-1072.

Focusing on the optimal control phase, Figure 8.3 compares the spacecraft mass and the Jacobi
constant as a function of time. As mandated by the EOM displayed in Equation (5.2), the mass must
remain constant while the spacecraft is coasting, coinciding with the plateaus in C'. The figure proves
this fact by also pointing out the points at which the thrust is switched on and off (vertical red lines).
Moreover, whenever the thrust is on, both C' and the mass vary over time, with the mass linearly
decreasing with a constant slope of 1y, = TI’”ZA (checked numerically).

This analysis reveals that not only are the cdgyésting equations of motion implemented correctly,
but also that the integrator settings are accurate enough when coasting in any phase, even when flybys
are included. In addition, the thrust was proven to indeed not affect the EOM when the spacecraft is
meant to be coasting.

8.1.3 Trajectory Error

For the reasons explained in Section 6.2, only the error of the optimal control phase ought to be
assessed. The integrator analysis aimed for maximum non-dimensional position and velocity errors
of 107, including the effect of the error in the thrust strategy computation via Equation (5.8) as well.
Taking again the selected Pareto-optimal solution, the approach was to compare the trajectory to
one integrated with much tighter tolerances and a significantly smaller maximum step size, i.e., the
benchmark.

The position and velocity errors of the optimal solution as a function of time are displayed in
Figure 8.4. In the figure, the peaks in error due to the three flybys can be identified, with the third one
being the steepest as it is the only one in which the thrust is active. Even though the final position and
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errors as a function of time of the selected Pareto- velocity errors as a function of time of the
optimal trajectory when allowing the thrust profile selected Pareto-optimal trajectory when
to vary. interpolating a fixed thrust profile.

velocity errors are below 107 as desired, the velocity error significantly exceeds this limit in the third
flyby, which was not the case for the nominal trajectory. This phenomenon has two main reasons.
Firstly, this trajectory exhibits three flybys instead of two, which are the most critical segments in
terms of error accumulation. Secondly, discrete "jumps" in velocity can be identified roughly on days
31.5, 32.7, and 40.5. These time points correspond to when the thrust is switched on or off. They
can be explained by the fact that the spacecraft starts or stops thrusting slightly earlier or later due
to the error when solving Equation (5.8). The sensitivity of the switching function is something that
P. Zhang et al. (2013) already warned about.

Nevertheless, the error displayed in Figure 8.4 is not the actual error of the trajectory within
the CR3BP, as it includes the deviations due to the thrust strategy not being completely optimal
(essentially being a different trajectory since the thrust profile is distinct). To quantify the actual
errors in position and velocity due to the integration accuracy, Equation (5.8) can be disregarded, and
the original thrust profile is interpolated when generating the benchmark. The resulting errors are
plotted in Figure 8.5. Now, only the first "jump" in velocity error is present, which may have to do
with interpolation inaccuracies, anyway entailing considerably small errors. As predicted, the other
two "jumps" are absent and the maximum error of the velocity is now 107.

In conclusion, this proves to an acceptable extent that the chosen integrator settings are appropri-
ate for the thrusting periods as well. Furthermore, even if for some transfers the accuracy requirements
are not satisfied, these errors would be an order of magnitude lower than the discontinuity present be-
tween the optimal control phase and the target manifold. As such, these trajectory errors can be easily
corrected with direct collocation using the ASTOS software, as a much larger deviation is corrected
anyway.

8.1.4 Verification with the ASTOS Software

The complete trajectory can be verified by replicating it using exhaustively verified software such
as ASTOS. The procedure is to repropagate each phase by solely supplying the initial states of each
phase, their duration, and the thrust magnitude and attitude vector as a function of time. Of course,
the same dynamic model and Julian Date is used. In addition, the trajectory ought to be propagated
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Figure 8.6: Visualization of the replica of  Figure 8.7: Difference in inertial position and velocity
the nominal trajectory using the ASTOS  between the nominal trajectory generated with the OGT
software. and the replicated trajectory in ASTOS.

with similar settings. As such, DormandPrince78 with absolute and relative tolerances of 10 and a
maximum non-dimensional step size of 10~ was used to replicate the nominal trajectory.

Figure 8.6 displays the top view of the replicated nominal trajectory as visualized in ASTOS. The
spacecraft trajectory is shown in yellow, whereas the blue line corresponds to the path of the Moon.
The trajectory looks very similar to Figure 6.1. To quantify their degree of similarity, the difference
in position and velocity between the nominal trajectory and the replica is plotted in Figure 8.7. It can
be seen that during most of the first two phases (up to day 28) the errors are mostly dominated by the
computer rounding errors. The same goes for the last phase, the target EML; halo. In the optimal
control phase (from day 28 to day 44) and the stable manifold phase (from day 44 to 74) the error in
both position and velocity gradually increases over time. The two flybys during the optimal control
phase can be identified as the two sharp peaks in velocity error, as usual. However, as the nominal
trajectory already exhibits these peaks in error in Figure 6.12, the aforementioned peaks in Figure 8.7
are not of relevance. As the nominal trajectory itself has a maximum error of roughly 50 meters
and 1 cm/s, the obtained maximum differences are considerably close to the trajectory error. In the
case of the velocity, the difference is almost an order of magnitude lower than the trajectory error.
Henceforth, the generated trajectories can be considered to be verified with this exercise, proving that
the thrusting equations of motion are also implemented correctly.

Fully validating the trajectories is an infeasible task since no low-thrust missions have been
launched between halo orbits, let alone within the specific use case employed in this research. The
most that can be said is that the performance of the trajectories seems to be in accordance with the
one obtained by Pritchett et al. (2017) for a comparable use case, as demonstrated in Section 7.2, and
trajectories of similar shape have been found.

8.2 Trajectory Refinement with ASTOS

The goal of this section is to prove that the OGT trajectories serve as promising initial guesses for
collocation methods. For this purpose, the Collocation And Multiple Shooting Trajectory Optimiza-
tion Software (CAMTOS) (Gath, 2002), implemented in ASTOS, is employed. Due to trajectory
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optimization problems with collocation methods usually requiring thousands of design variables, a
local optimizer is the best option. Within CAMTOS, the chosen local optimizer to solve the non-
linear programming problem will be WORHP, as it tends to have good performance even with large
numbers of design variables and is not too sensitive to set-up settings. It should be noted that in this
research, the OGT trajectory discontinuities will be refined with direct collocation without focusing
on propellant mass minimization. As such, the transfers, which are already outstandingly promising,
could in principle be optimized further. The objective is to make them feasible while maintaining the
same TOFs and similar propellant consumptions.

8.2.1 Nominal Trajectory

The first trajectory to be refined is the nominal trajectory, making use of the replica displayed in Fig-
ure 8.6. To evidence the need for this refinement process, Figure 8.8' shows the (infeasible) nominal
trajectory compared to the trajectory that would be obtained if the instantaneous discontinuity of 308
km and 0.93 m/s between the optimal control and the stable manifold phases would not be applied.
Due to the Jacobi constant difference being small, both trajectories remain considerably close during
the first revolution around the Moon, gradually diverging until the continuous trajectory leaves the
halo vicinity. Hence, although the discontinuity is considerably small, due to the system’s instability,
the correction with ASTOS is necessary for the trajectory to be useful in mission design. Aside from
the discontinuity between the optimal control and manifold phases, the two smaller discontinuities to
transition from the orbit phases to the manifold phases must also be rectified.

The trajectory was then refined with direct collocation using the Hermite-Simpson approximation.
The chosen number of collocation nodes to approximate the states was roughly 30 nodes per day. For
the optimal control phase, however, due to the presence of flybys, it is interesting to have a higher grid
density where the dynamics are faster to ease the optimization and make it more accurate. Therefore,
the grid for this phase was generated by taking every five steps of the OGT trajectory, which uses a
variable-step integrator to adapt to the dynamics. For the refinements, the TOFs of each phase were
fixed to the initial guess values, and the thrust magnitude was allowed to vary. It should be noted that

'None of the displayed trajectories are continuous in the rigorous sense, as the solution of the EOM is approximated
with a finite number of steps. Nevertheless, the word "continuous" here refers to a trajectory that exhibits no instantaneous
discontinuities between the phases, thus satisfying the EOM.
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refined with the ASTOS software. refined with the ASTOS software.

the grid generation strategy and the optimization settings are common to all ASTOS refinements in
this research.

The refined trajectory can be seen in Figure 8.9, from the top, and in Figure 8.10, from the side.
As expected, the trajectory looks very similar to the nominal trajectory (Figure 6.1 and Figure 6.2),
however, the aforementioned discontinuities are not present in this case. The thrust only appears to
be on during the optimal control phase because, due to the highly unstable system, a negligibly small
thrust perturbation at the appropriate time can make the spacecraft transition between the manifold
and periodic orbit phases. For reference, the obtained values of 7 to carry out this transition never
exceeded 107, a value far smaller than the thrust magnitude uncertainty. Moreover, in a high-fidelity
model, the halo and manifold phases would adopt significantly different shapes, so much larger cor-
rections would be required anyway. For these reasons, the orbit and manifold phases are not explored
further in this research within the CR3BP and are left for the GNC subsystem to handle or for when
the trajectories are fully transitioned to a high-fidelity model.

As already mentioned, the TOF of the refined trajectory is identical to that of the initial guess.
Moreover, the required propellant mass is 6.94 kg, virtually equivalent to the original 6.93 kg. Hence,
the performance variation is minimal, making the Pareto-fronts arising from the OGT accurate and
helpful in estimating the performance of the final trajectory. Furthermore, the optimization of this
trajectory (end-to-end) took less than 20 minutes®. The thrust profile during the optimal control phase
is displayed in Figure 8.11. This profile also closely resembles the thrust profile of the nominal trajec-
tory (Figure 6.4). The difference between both figures is presented in Figure 8.12, with the difference
in attitude components and normalized thrust magnitude being generally below 102. This demon-
strates that the OGT trajectories are very promising initial guesses that require small corrections to be
feasible within the CR3BP.

In terms of states, the position and velocity differences between the refined trajectory and the
optimal control phase are shown for the optimal control phase in Figure 8.13. As usual, the differ-
ences rise steeply at the flyby points, getting reduced after leaving the lunar vicinity. The difference
is already considerable at the beginning as the starting point is not the same, however, at the end,

21t should be noted, however, that this optimization time does not account for the challenges involved in correctly
setting up the optimization problem in ASTOS to converge to a sufficiently accurate solution.
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Figure 8.13: Difference in inertial pOSition and Figure 8.14: Integration position and Velocity

velocity between the nominal trajectory generated  defects at each collocation node of the refined
with the OGT and the refined trajectory. trajectory.

the difference corresponds to roughly 300 km and 1 m/s, the magnitude of the discontinuity to be
corrected.

Lastly, each collocation node’s position and velocity defects are shown in Figure 8.14. These
defects were obtained by propagating the trajectory in ASTOS using the integrator settings specified
in Subsection 8.1.4 in multiple-shooting mode. This means that each node is propagated up to the
point in time corresponding to the subsequent node, then, the trajectory "jumps" to the state of this
subsequent node and a new propagation between nodes starts. As such, the defects from Figure 8.14
include the propagation error of the integrator. Looking at the figure, the defects are generally larger
whenever the spacecraft is closer to the Moon, presenting oscillations according to the trajectory
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Table 8.1: Design variable values and performance of the nominal trajectory with relaxed constraints.

Parameter | Value Unit
Torb, 0.367695 -
Trnan 14.4479322 days
Ao 0.090420 -

Ay -0.021418 -

Az 0.202595 -

Aoz -0.481627 -

Avy -0.632665 -

Aoz 0.986062 -

Am -2.756724 -
Torbs 0.379244 -

my 6.94 kg
TOF 60.08 days
Position Error | 1110.80 km
Velocity Error | 1.17 m/s
C' Error 2.06-103 -

dynamics. The highest peaks correspond to the two flybys, as could be predicted. Including the
integration error, the least accurate node exhibits an error of 10 meters and 1 mm/s, making this
trajectory highly accurate considering that the disturbances due to the unmodelled accelerations would
be much larger. For reference, when propagating each phase with single-shooting, the final error never
exceeds the orbit determination lower limit of a few kilometers and several centimeters per second
(Subsection 6.2.2).

8.2.2 Constraint Relaxation

Realizing that the original constraints are tight enough for the OGT trajectories to be easily refined
with ASTOS, this subsection aims to determine to what extent the constraints could be relaxed while
still obtaining feasible trajectories of performances similar to the initial guess without excessive effort.
The purpose of this relaxation is to improve the results of the heuristic optimizations of the OGT, as
proven by Section 7.1.

Firstly, the magnitude of the discontinuity between the optimal control and the target manifold
phase was doubled. This new transfer was again easily corrected in ASTOS. Then, the constraint val-
ues were increased to three times the original, i.e., 3-10" both in position and velocity. The parameters
and performance of this relaxed trajectory can be found in Table 8.2. This trajectory is profoundly
similar to the nominal trajectory, also in terms of thrust profile, with the main difference being the
position and velocity errors.

The thrust profile of the refined trajectory? is displayed in Figure 8.15. The largest differences in
attitude with Figure 8.11 occur after the second flyby. Moreover, the thrust magnitude was reduced
during the refinement, requiring 6.91 kg of propellant mass instead of the original 6.94 kg for the
same TOF.

The node defects are shown in Figure 8.16, with the peaks again corresponding to the two flybys.
In this case, the trajectory is more accurate, with the least accurate node revealing an error of 0.1
meters and 10 um/s. To further demonstrate the accuracy of the trajectory, Table 8.2 shows the final
position and velocity discontinuities with respect to the target manifold when taking the optimized

3Recall that only the optimal control phase is corrected here.
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Figure 8.15: Attitude unit vector components Figure 8.16: Integration position and velocity
and thrust profile as a function of time of the defects at each collocation node of the refined
trajectory with relaxed constraints refined with trajectory with relaxed constraints.

the ASTOS software.

Table 8.2: Design variable values and performance of the nominal trajectory with relaxed constraints.

Propagation Mode \ Final Position Error [km] Final Velocity Error [m/s]

Collocation Points | 1.24-1077 6.65-10°!"
Single-Shooting 0.10 2.54-10*

collocation points and when propagating in single-shooting from the first node. As expected, the
obtained error with the collocation points is null and simply proves that the optimization converged
to a feasible solution in terms of final constraints. Of greater interest is the fact that the final errors
with single-shooting are again lower than the spacecraft OD capabilities in the cislunar environment.
It should be noted that the expected final integration error of this trajectory is 50 meters and 0.1 mm/s,
so the actual values of the position and velocity errors are not as meaningful.

This analysis proves that it is appropriate to relax the position and velocity constraints by a fac-
tor of three. In addition, it is also possible to reduce the position and velocity errors to the original
constraint values (and even further) by means of a refinement run within the OGT itself, to ease the
ASTOS optimization. Lastly, the constraints could probably be relaxed even more, but this conserva-
tive approach ensures that the trajectories can be refined without excessive effort while maintaining
roughly the same performance.

8.2.3 Selected Optimal Solution

A similar trajectory refinement was carried out with the selected Pareto-optimal trajectory displayed
in Figure 7.8. This transfer is of interest as it not only is an optimized trajectory that requires a very
low propellant mass but also exhibits large coasting intervals during the optimal control phase, unlike
the nominal trajectory. It is important to ensure that the refinement process can also easily correct the
large leaps in thrust magnitude.

The refined thrust profile is displayed in Figure 8.17. In this case, the complete attitude profile is
included for the sake of visualization as the thrust, although low, is not zero during some portions of
the coasting intervals. Throughout the original thrusting intervals, the throttle remains at its maximum
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Figure 8.18: Integration position and velocity

defects at each collocation node of the refined

Pareto-optimal solution.

Figure 8.17: Attitude unit vector components

and thrust profile as a function of time of the

selected Pareto-optimal solution refined with
the ASTOS software.

level. With the same TOF, this trajectory has a slightly worse performance in terms of propellant mass:
2.72 kg instead of the original 2.66 kg. Nevertheless, this suggests that the optimized trajectories can
be suitable initial guesses for direct collocation, and by freeing up the TOF and focusing on mass
minimization, the performance could in principle be improved even more.

As with the rest of the refinements, the position and velocity defects of each node are shown in
Figure 8.18, with maximum defect values similar to those in Figure 8.16, suggesting that the accuracy
of the trajectory is sufficient. In this case, three peaks can be recognized, logically corresponding to
the three flybys. Furthermore, there are five vertical (due to the scaling) lines present in the figure
that correspond to the time points at which the thrusters are switched on or off. These indicate that
the optimizer needed to more strongly focus on these events, as they are critical in terms of error
propagation.

8.3 Sensitivity Analysis

In this section, the sensitivities of the nominal trajectory (Section 6.2) with respect to the initial state
and parameters are analyzed via a Monte Carlo method. In each evaluation, the optimal control phase
is propagated with a perturbation, and the resulting position and velocity errors relative to the target
trajectory (stable manifold and target halo) are computed. Instead of propagating for a specific TOF,
the phase is propagated for a very long time and the closest state to the target trajectory is computed
via the procedure described in Subsection 5.2.3 (with wp,s and w,,; both set to 1). The analysis
is carried out in this manner to quantify how far the spacecraft would tend to get from the target
trajectory instead of simply from a point in space, exploiting the recovery capabilities of the transfer
by attaching somewhere else to the stable manifold. As such, a more realistic measure of the severity
of the uncertainties can be acquired. This also means, however, that the thrust strategy will need to be
recomputed in each evaluation according to the indirect method theory presented in Section 5.1, being
slightly different every time due to the change in states (thus contributing to the error). Nonetheless,
this is not predicted to have a great influence as long as the errors are relatively small.

Two Monte Carlo runs will be carried out in this analysis, one in which there is only uncertainty in
the initial position and velocity of the optimal control phase and another in which the thrust magnitude
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and initial mass uncertainties are also included. For a complete robustness analysis in a real mission,
other parameters could be included, such as the thrust alignment, but the proposed variables are
considered sufficient to analyze the controllability of the trajectory and the instabilities of the dynamic
system. Each run will comprise 40,000 trajectory evaluations to obtain sufficient statistical confidence
and to ease the identification of trends. It should be noted that the nominal trajectory already has errors
in position and velocity. As such, it was refined with the OGT to get the errors down to ~40 km and
~0.2 m/s. Due to the discrete nature of the search strategy, it would be difficult to obtain trajectories
of lower error. Nevertheless, this trajectory is accurate enough for the purposes of this analysis, as the
expected errors are considerably larger on average.

For all variables, a normal distribution is assumed, thus sampling from a multivariate normal
distribution. The Java class employed for the sampling is MultivariateNormalDistribution* from
the Apache Commons library, which employs the algorithm Well19937¢ as pseudo-random number
generator and Cholesky decomposition for the multivariate distribution. An arbitrary pseudo-random
seed of 31 was selected. For the uncertainty in the initial position, the state-of-the-art OD capabilities
within the cislunar environment are estimated from the work by Scorsoglio et al. (2023). Hence, a
standard deviation of 3 km was selected for the x-coordinate, 1 km for the y-coordinate, and 300
m for the z-coordinate. Similarly, the standard deviations of the velocity vector are (4, 2.5, 2.5)7
cm/s. The order of magnitude of these values is also in accordance with Newman et al. (2022). The
standard deviation of the thrust magnitude is 5-10* N (0.5%), as suggested by Maestrini et al. (2023)
for accurate thrusters. Lastly, an arbitrary value of 1 kg (0.2%) was selected for the mass standard
deviation, as there is no extra information on the spacecraft itself and the mass uncertainty is highly
dependent on the mission. Nonetheless, the specific value is not essential because the aim of this
analysis is simply to quantify how sensitive the trajectory is to the considered parameters

8.3.1 Initial Position and Velocity Sensitivities

The fitted probability density functions of the position and velocity errors of the first Monte Carlo run
are presented in Figure 8.19 and Figure 8.20, respectively. The cumulative distributions and the mean
value are also included for reference. Both the position and velocity errors appear to be governed
by a log-normal probability distribution, which is sensible since the norm of the error components
is taken. The figures show that the magnitude of the errors is outstandingly low, with almost all
trajectories being within the original tight optimization constraints of 384 km and 1 m/s. Moreover,
the average position error is only 109 km, an outstanding value when considering that no corrections
were carried out and that the propagation lasted 15.7 days and included two flybys considerably close
to the Moon. The ranges of variation in propellant mass and TOF are around 20 grams and 1.5 hours,
meaning that the optimal control phase connects to the stable manifold always in practically the same
spot.

Figure 8.21 plots the final position error as a function of the initial position and velocity devia-
tions. Figure 8.22 displays the same data with the x-axis and color bar data swapped. From these
figures, it can be concluded that the velocity uncertainty is more detrimental to the trajectory than the
position uncertainty due to the linear trend that can be identified in Figure 8.26. This trend can also
be recognized in Figure 8.21 through the uniform color gradient, positively correlated with the final
position error. In addition, low error trajectories can be obtained even at large position deviations.
This higher sensitivity to the velocity might be attributed to the fact that the standard deviations of the
velocity are roughly three times larger than those of the position in non-dimensional units. The empty
spot in the bottom left corners of both figures is due to the inherent error of the original trajectory and
to the closest state search strategy. For the final velocity errors, similar trends are identified, and the
same conclusions can be drawn.

“URL:https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/
distribution/MultivariateNormalDistribution.html [Accessed: 15/07/24]


https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/distribution/MultivariateNormalDistribution.html
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/distribution/MultivariateNormalDistribution.html
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Figure 8.23 displays the position error as a function of the initial velocity error components in the
RSW frame. The figure shows that the radial velocity perturbation is the dominant one, as the large
final errors are only obtained with large initial deviations in this component. This may be explained by
the fact that, because the spacecraft is rotating with the Moon around the Earth, the radial component
roughly coincides with the x-component of the BCR frame, which is the component with the largest
standard deviation in its uncertainty (by a factor of 1.6).
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8.3.2 Sensitivities Including Mass and Thrust
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The new fitted probability density functions of the position and velocity errors that include the mass
and thrust uncertainties can be found in Figure 8.24 and Figure 8.25, respectively. Even though the
shapes of the probability density functions still resemble log-normal curves, the position error mean is
roughly five times larger than when not including the mass and the thrust uncertainties. The velocity
error mean is seven times as large. Nevertheless, more than 90% of the trajectories have a position
error lower than the relaxed constraints (~1150 km), and the same goes for the velocity error. As
such, even though the mass and thrust uncertainties have a significantly stronger impact on the error,
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Figure 8.26: Scatter plot of the position and velocity errors of the Monte Carlo analysis including
mass and thrust uncertainties.

the thrusting arcs still remain close to the target trajectory even when no correction maneuvers are
applied.

Figure 8.26 scatters the position and velocity errors of all trajectory evaluations, as well as the
TOF. A clear linear relationship can be identified between the errors, resembling that of Figure 6.23.
This can be explained by the fact that to compute the closest state, the function to be minimized is
a linear function of the position and velocity errors according to Equation (5.18). As such, when
the trajectories are relatively close to the target manifold, the minima will tend to follow a linear
relationship. Moreover, in this case, the position and velocity errors were weighted equally. When
performing an extra run focusing more strongly on the position error, the resulting linear relationship
attains a larger slope, as would be expected (the position errors tend to be lower). As there is a linear
trend between the errors, it can be concluded that roughly 90% of the trajectories satisfy both the
position and velocity constraints at the same time (from the data presented in the histograms). From
the figure, it can be seen that the spread in TOF is rather small, however, the spread in propellant
mass is in the order of several kilograms, unlike in the Monte Carlo analysis with only initial position
and velocity uncertainties. Hence, in this case, many trajectories connect to a different point of the
stable manifold phase, exchanging coasting time in the manifold with thrusting time in the optimal
control phase. Nonetheless, this variation in propellant mass considers the case where no correction
maneuvers are performed, so it should not be regarded as the uncertainty in the transfer’s required
propellant mass.

Figures 8.27 and 8.28 show the influence of the thrust and mass uncertainties on the position
error. Due to the roughly linear relationship between the errors, the plots for the velocity error look
extremely similar. These figures prove the thrust uncertainty to be the dominant one, since when
the thrust deviation is zero, the maximum error is only ~900 km and there are recognizable linear
lower and upper bounds when AT is non-zero. An extra run excluding this uncertainty shows that
the initial mass uncertainty has a more severe impact than the initial position or velocity deviations.
From the equations of motion, one can observe that the influence of the mass and the thrust should
be similar, as doubling the thrust would have the same effect as halving the spacecraft mass in terms
of instantaneous acceleration. However, the thrust has more impact as increasing the thrust also
increases the mass flow, leading to larger accelerations over time. Nevertheless, the large difference
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in sensitivity can be attributed to the fact that the standard deviation of the thrust is 2.5 larger than
the one of the mass. The inverse relationship between the influences of the mass and the thrust can
be recognized in the color gradients of Figure 8.27, where, for an increase in thrust, an increase
in spacecraft mass is beneficial to lower the position error and vice versa. The color gradient in
Figure 8.28 is as expected when the leading factor is the thrust deviation.

Overall, these Monte Carlo results suggest that the trajectories are controllable and not exces-
sively sensitive for a real mission, even when flybys take place highly close to the Moon. For a real
mission, a more thorough analysis ought to be performed in a high-fidelity model to determine the
reserve propellant mass required for the transfer, depending on the GNC capabilities.
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Figure 8.31: Difference in position as a function Figure 8.32: Difference in velocity as a function

of time for several sampling step sizes (obtained of time for several sampling step sizes (obtained

through different integrator tolerances) using the through different integrator tolerances) using the
nominal trajectory. nominal trajectory.

8.3.3 Sampling Sensitivity

The thrust profiles are generally provided in the RSW frame (as their pointing is usually fixed to the
spacecraft attitude) in steps of constant attitude. However, the indirect method provides continuous
thrusting functions (the "ground truth") that the integrator uses to solve the EOM by approximating
said thrusting functions. When transitioning this continuous thrust profile to a step-wise constant
profile, a different trajectory is expected to be obtained as the thrust profile changes. The sampling
frequency plays a role since the difference with respect to the original thrust profile is reduced the
smaller the step size. This can be visualized in Figure 8.29 and Figure 8.30, where a generic thrust
profile is sampled with two different frequencies. As Figure 8.30 has a higher sampling frequency,
the profile is closer to the continuous one. As the frequency tends to infinity, the step-wise constant
profile converges to the original.

To analyze the effect of sampling in the nominal trajectory, Figure 8.31 and Figure 8.32 were
generated. These figures display the difference in position and velocity over time with respect to the
trajectory obtained with a tolerance one order of magnitude tighter (the relative and the absolute tol-
erances adopt the same value). This was computed for a variety of tolerances (reducing the tolerance
increases the sampling frequency) using the Dormand Prince integrator. The strategy to generate the
trajectories was to interpolate a given thrust strategy and keep the thrust constant over each integration
step (also for the computation of the sub-steps.).

Even though these figures were generated by keeping the thrust step-wise constant in the BCR
frame instead of the RSW, the analysis is accurate enough to prove that the most critical regions are
the flybys, especially regarding the differences in velocity (Figure 8.32). In these points, there are
singularities, introducing uncertainty in the resulting differences since to compute the difference the
trajectories are compared to others that show the same singularities. For reference, the OD accuracy
level is on the order of 107 in both position and velocity, something only achievable in terms of
position difference, requiring integrator tolerances of 1072,

3The thrust is only updated once a new step is accepted. This is achieved through the integrator step handler.
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Figure 8.33: Magnitude as a function of time of the main disturbing accelerations for the optimal
control phase of the nominal trajectory.

Further analysis is of course required, but this sampling sensitivity is something for the GNC
subsystem to take into account. Nevertheless, a practical way of solving this issue would be to refine
the trajectory in ASTOS forcing a step-wise constant thrust profile instead of a linearly interpolated
one. A different trajectory will be obtained (maybe also in terms of performance), but the trajectory
will be feasible.

8.4 Unmodeled Disturbances

So far, all analyses have been performed within the context of the CR3BP. Although the trajectory
sensitivities were explored, for the optimized transfers to be useful for a real mission, they ought to
be transitioned to a high-fidelity model. As explained by Frueh et al. (2021), the main unmodelled
accelerations by the CR3BP within the cislunar space, excluding the eccentricity of the Moon’s orbit,
are the Sun’s and Jupiter’s gravitational pulls, and the solar radiation pressure. For the trajectory from
Subsection 8.2.2, these disturbances are plotted as a function of time in Figure 8.33. The thrust ac-
celeration is also included for reference. These acceleration profiles were obtained using the ASTOS
software, employing a cannonball model for the solar radiation pressure with a diffuse reflection pa-
rameter of 0.8 and an area-to-mass ratio of 0.02 m?/kg (Frueh et al., 2021). The largest perturbation
is generated by the Sun, followed by the solar radiation pressure two orders of magnitude below, with
Jupiter’s disturbance being the lowest, five orders of magnitude below the Sun’s. Due to Jupiter’s
perturbation being so low, it is predicted that any other unmodelled accelerations would have a negli-
gible effect, at least for the purposes of this analysis. Because of the two flybys passing considerably
close to the Moon, the J; effect of the Moon was also examined, however introducing no perceivable
modifications to the trajectory. As the figure evidences, the thrust acceleration for this use case is one
order of magnitude larger than the Sun’s perturbation. Hence, in cases where the thrust acceleration
is lower, correcting for the Sun’s third body perturbation can become an arduous task.

The thrust profile of the trajectory corrected for the perturbations in Figure 8.33 is presented
in Figure 8.34. For this task, direct collocation in CAMTOS was again used, showing the superior
versatility of direct methods to adapt to different dynamic systems compared to indirect methods. The
main differences with respect to Figure 8.15 lie in the thrust magnitude profile. The thrust magnitude
in this new dynamic model is slightly lower in general, entailing a new required propellant mass
of 6.81 kg, 100 g lower than the original (6.91 kg). Thus, for this transfer, the perturbations help
the spacecraft reach its final destination more easily, requiring less propellant for the same TOF.
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Nevertheless, the profile, although useful, is not as smooth as one would expect for an optimal transfer,
hinting that the trajectory could be optimized further. Regarding the node defects in Figure 8.35, the
magnitude and behavior resemble those of Figure 8.16, rendering the transfer feasible.

Then, to fully transition this transfer to a high-fidelity model, a more accurate ephemeris model
ought to be used for the Moon, since the CR3BP assumes a perfectly circular orbit, whereas the
real Moon’s orbit has an average eccentricity of 0.0549. This transition to a full-ephemeris model is
more demanding than the other acceleration corrections because, at a given Julian Date, the Moon
is located somewhere else, making the states of the initial guess inappropriate. This is something
especially problematic for the flyby segments (when the spacecraft is closest to the Moon). This task
is considered to be out of the scope of this research due to time constraints. Moreover, for transfers
between halo orbits, this issue would be an obstacle to overcome regardless of the method employed
to generate the initial guesses (the main goal of this research), as these orbits are only purely periodic
within the CR3BP. Anyhow, for a similar use case, Pritchett et al. (2017) successfully transitioned an
optimized transfer to a full-ephemeris model, proving that it is certainly possible. Moreover, the same
was accomplished by Kayama et al. (2021) for a different transfer between halo orbits.

To conclude, this chapter proved the obtained trajectories to be verified and extremely promising
initial guesses for direct collocation methods, as they were refined in ASTOS with negligible changes
in performance and without excessive effort. Furthermore, although the trajectories seem sensitive
to thrust sampling, they remain close to the target phases when including uncertainties in initial state
and thrust magnitude, with the latter being the most critical. Lastly, taking advantage of collocation
methods, the trajectories can account for most of the unmodelled accelerations without major changes,
and literature shows that they can be transitioned to a full-ephemeris model if more time is invested.



Conclusions and Recommendations

In this chapter, the main conclusions of this research work are presented, with a focus on answering the
main research question and the sub-questions formulated in Chapter 1. This discussion is provided in
Section 9.1. Then, Section 9.2 supplies an overview of recommendations and potential investigations
to expand this research.

9.1 Conclusions and Answer to Research Questions

The main question of this investigation work was the following:

Main Research Question

What would be a suitable approach to obtain a variety of low-propellant-mass low-thrust transfers
between periodic solutions in the cislunar space as a function of the TOF?

After comparing numerous methods to compute low-thrust transfers between periodic solutions
within the dynamically complex CR3BP, such as halo orbits, it was concluded that an indirect method,
which belongs to the branch of optimal control, is the most suited. The nature of the indirect method
ensures the performance of the obtained solutions is competitive, and its low number of required
optimizable parameters makes the technique suitable for heuristic optimization, increasing the odds
of finding globally optimal solutions. Moreover, a multi-objective optimization was successfully
carried out to minimize both the propellant mass and the time of flight of the transfer, obtaining a
wide range of Pareto-optimal trajectories for a given use case between two halo orbits, which was the
main research goal, as common low-thrust optimization methods such as direct collocation, provide
a single trajectory as the solution.

The implementation of the optimization algorithm was made sure to adapt to the architectural
design of the Orbit Generator Tool, living up to its user-friendliness and generality requirements, and
making use of readily-available phases such as the periodic orbit or manifold phases. The integra-
tor analysis proved the obtained trajectories to have an accuracy (within the CR3BP) in the order of
the current orbit determination capabilities. Then, the design space exploration demonstrated that
the optimization problem is highly non-linear and difficult, making the fulfillment of the demand-
ing boundary constraints a challenge for heuristic optimization. The best-performing algorithm for
the proposed use case turned out to be differential evolution, namely, the MOEA/D optimizer imple-
mented in the Pagmo library. To deal with the constraints, a multi-objective approach was found to be
the best, in which a weighted sum of the constraints was added as a third objective, with the propellant
mass and the TOF being the other two. The tuning process revealed that the relative weighting of the
constraints is not critical as long as there is a focus on the position constraint over the rest. The same
cannot be said for the weighting of the three objectives, as to maximize the obtainment of feasible
trajectories the constraints objective shall have a weight orders of magnitude larger than the other
two. In addition, the relative weighting of the propellant mass and TOF leads the optimizer to explore
different areas of the Pareto front. This relative weight is thus provided as a user-definable parameter.
Furthermore, the optimization topology also proved to play a large role in the quality of the results,
as with inappropriate settings the optimizer would tend to converge to a small set of feasible solu-
tions. The outcome of the tuning process deemed ten islands positioned in a ring configuration with
migrations of the best solutions every five generations as a suitable architecture to obtain promising
results.
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The explained strategy in the proposed use case found a wide range of trajectories ranging from
20 to 80 days, and from 2 to 8.5 kilograms of propellant mass, providing the mission designer with
100 Pareto-optimal trajectories to choose from. Moreover, the quality of the solutions is outstand-
ing, rendering the indirect method combined with differential evolution heuristic optimization as a
promising approach to answer the main research question.

The conclusions and accomplishments of this research can be understood more deeply by ad-
dressing the sub-questions:

Sub-Question 1
To what extent is the outcome of the implemented method verified?

Thorough unit and system testing were carried out on the implementation to ensure that not only does
the code work for the analyzed use case but also for any other transfer between halo orbits, with dif-
fering numbers of phases and spacecraft specifications. Furthermore, the trajectories themselves were
verified via analysis. An appropriate thrusting strategy was ensured by examining the optimal control
switching function, whereas the coasting equations of motion and integrator settings were verified by
analysis of the mass and the Jacobi constant as a function of time. In addition, the investigation of the
trajectory error on optimized transfers proved the integrator settings to be suitable over the thrusting
phases as well. Lastly, the trajectories were successfully replicated employing the extensively verified
ASTOS software, verifying the equations of motion during the thrusting periods.

Sub-Question 2
What is the quality of the solutions obtained?

For the use case under study, most of the feasible trajectories that were found displayed a very com-
petitive performance compared to the trajectory obtained by Pritchett et al. (2017) in a similar case.
Moreover, the Pareto-optimal solutions can outperform said trajectory by roughly 30% in both objec-
tives, proving the superiority of indirect methods with heuristic optimization over direct methods with
local optimization in terms of solution performance. The proposed approach also provided a wide va-
riety of low-propellant mass trajectories as a function of the time of flight thanks to multi-objective
optimization, again outperforming conventional methods, which only provide one trajectory highly
dependent on the initial guess. As such, from a mission design standpoint, the implementation not
only provides better solutions but also wider design freedom to suit differing mission requirements.

Sub-Question 3
What is the performance of the solutions when used as initial guess for direct collocation methods?

As the solutions obtained with the indirect method display position and velocity discontinuities in
the patch point between the optimal control and the target manifold phases, the general flow is to
refine them with direct collocation methods using the ASTOS software. Several trajectories were
refined this way, requiring identical times of flight and with negligibly small differences in propellant
mass. As such, the trajectories are deemed to be very promising initial guesses for direct collocation
methods, greatly outperforming the commonly used rough initial guesses. Hence, the combination
of indirect and direct methods for trajectory design is very powerful, as the main advantages of both
methods are exploited. However, the trajectories obtained by the OGT are almost final solutions, with
the shape or performance barely altered by collocation methods. As such, the constraints could be
relaxed even further to obtain more trajectories faster.
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Sub-Question 4

How accurate is the CR3BP approximation to obtain preliminary trajectories to design real-life mis-
sions in the cislunar space?

The analysis of the results proved the trajectories to not be too sensitive to initial state deviations or
parameter uncertainties, even when presenting flybys very close to the Moon, with the thrust uncer-
tainty being the most influential. Moreover, an optimized trajectory was successfully corrected with
direct collocation to include some of the main unmodelled perturbations, such as the Sun’s gravity
pull. What would be left to transition the trajectories to a high-fidelity model would be to account
for the eccentricity of the lunar orbit, something not carried out due to time constraints and its higher
difficulty. Nonetheless, other authors, such as Pritchett et al. (2017) and Kayama et al. (2021), have
accomplished this task using collocation methods also starting from the CR3BP. It should be noted
that transitioning the trajectories to a full ephemeris model would be an obstacle regardless of the
method selected to generate the CR3BP transfers. As such, even though extra steps such as the GNC
algorithm would still be required to finalize the trajectory design for a real mission, the obtained initial
guesses in combination with direct collocation can be considered useful for mission design.

Sub-Question 5
To what extent can the use of manifold theory improve the obtained solutions?

The main advantage of manifold theory is that it provides a wider and probably more promising
set of initial and final points for the optimal control phase to connect. Since the main difficulty of
the method is finding trajectories that satisfy the demanding boundary conditions, the inclusion of
manifold phases helped the optimizer find a larger number of feasible trajectories, thus exploring
the design domain better. Moreover, although the Pareto-optimal trajectories obtained with manifold
theory were in general slower, they greatly outperformed direct transfers in terms of propellant mass,
thus "unlocking" new areas of the Pareto front.

Some more general conclusions can be drawn from this research work. Firstly, the Taguchi
method can be employed in lieu of Monte Carlo simulations to analyze computationally demanding
problems with a fewer number of evaluations, allowing more runs to be carried out. However, for
highly interacting and non-linear problems, the Monte Carlo method would be more suitable for
identifying trends, acknowledging that the main advantage of the Taguchi method, the calculation
of the percentage of contribution of the factors and interactions, does not provide very useful results
in this kind of problem. On a separate note, most of the research is focused on dealing with an
optimization problem exhibiting a highly non-smooth and narrow feasible domain. Analysis showed
that a multi-objective approach that considers the constraint violations as a separate objective can help
the optimizer find a wider set of solutions than the commonly used penalty functions. In addition,
an essential point is to find an adequate balance between focusing on exploiting the best solutions
and preserving diversity in the population. This prevents the optimizer from converging to a sub-set
of solutions, while still finding feasible transfers. The aforementioned balance can be obtained via
the parallelization of an appropriate number of islands that exchange the most promising trajectories
between them. Lastly, even though indirect methods are sometimes used for trajectory optimization,
they are rarely combined with heuristic methods, which greatly help in overcoming the problem of
the small radius of convergence of these methods and allow for multi-objective optimization.

Overall, the general quality of the results obtained with the proposed approach is more than
satisfactory since, even though tuning the optimizations can be a challenging task, a great variety of
Pareto-optimal solutions were obtained, all of which with outstanding performance. Moreover, all
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research questions were answered, thus contributing to filling the scientific gap, and valuable insight
was obtained on the suitability of combining heuristic optimization with direct and indirect methods
for mission design within the cislunar space.

9.2 Future Work Recommendations

Even though the results and conclusions are encouraging, some aspects will benefit from additional
research. Moreover, the tool can still be enhanced to ease mission design even further.

Firstly, the obtained solution set does not exhibit the characteristic smooth curvature of gen-
eral optimal Pareto fronts, hence, an investigation to find the reasons for the shape exhibited would
be interesting. The optimization performance could in principle be improved with a more exhaus-
tive tuning of the specific MOEA/D parameters or the optimization architecture, also considering
constraint-handling strategies that modify the optimization logic, such as stochastic ranking, which
has shown to work well with indirect methods (Lee et al., 2005). Additionally, it would be interesting
to assess if the use of hybrid optimization to more easily find feasible transfers or a Tabu search to
avoid converging to suboptimal trajectories could lead to better results.

Secondly, the optimization tuning process was carried out considering a single use case. Thus,
a sensible next step would be to evaluate the quality of the optimizations with different spacecraft
specifications and between other halo orbits, or even between different families of periodic solutions
such as distant retrograde or Lyapunov orbits. This exercise can provide valuable insight into the
limitations of the implementation and into the optimization settings that provide better solutions in
general.

Thirdly, regarding the trajectory refinement with collocation methods, it would be desirable to
assess if the propellant mass could be reduced even more by focusing on the minimization of this
performance parameter, instead of simply aiming to obtain a feasible transfer. In addition, a lot of
time is spent on obtaining the Pareto-front with the OGT. It would be desirable to study how much the
constraints could be relaxed to obtain transfers that can be successfully refined with ASTOS without
excessive effort or change in performance. Moreover, the trajectories are still yet to be transitioned
to a full ephemeris model that accounts for the eccentricity of the Moon’s orbit, for which a robust
strategy that works for any trajectory obtained with the OGT would be desirable.

Then, the implementation is limited to the Earth-Moon (EM) CR3BP. It would be beneficial to
include transfers in other systems, such as the Sun-Earth (SE) system, and even transfers between
periodic solutions within different systems. For instance, a possible use case could start from an EM
halo orbit and finish in one within the SE system.

Lastly, for the sake of user-friendliness, the OGT could be included as part of the ASTOS soft-
ware, with an appropriate GUI. This would be especially convenient to automatize the refinement of
a selected trajectory with direct collocation, and also its transitioning to a high-fidelity model.



References

Acciarini, G., D. Izzo, and E. Mooij (July 2020). “MHACO: a multi-objective hypervolume-based ant colony optimizer for
space trajectory optimization”. In: 2020 IEEE Congress on Evolutionary Computation (CEC). Paper No. 9185694.
Glasgow, United Kingdom.

Ahlborn, M. (2023). “Comparison of Global Optimization Methods for Cis-Lunar Transfer Trajectories”. BSc Thesis.
University of Giessen.

Aziz, J.D. (2018). “Low-Thrust Many-Revolution Trajectory Optimization”. PhD thesis. University of Colorado.

Biscani, F. and D. 1zzo (2020). “A parallel global multiobjective framework for optimization: pagmo”. In: Journal of Open
Source Software Vol. 5, No. 53, 2338.

Bryson, A.E. and Y.C. Ho (1975). Applied Optimal Control: Optimization, Estimation, and Control. Routledge.

Bucci, L. and M. Lavagna (Mar. 2016). “Coupled Dynamics of Large Space Structures in Lagrangian Points”. In: 6th
International Conference on Astrodynamics Tools and Techniques. Darmstadt, Germany.

Biiskens, C. and D. Wassel (2013). “The ESA NLP solver WORHP”. In: Modeling and optimization in space engineering
Vol. 73, pp. 85-110.

Cai, H. (2013). “Reliability of analog-to-digital Sigma-Delta converters”. PhD thesis. Télécom ParisTech.

Carnelli, I., B. Dachwald, and M. Vasile (2009). “Evolutionary neurocontrol: A novel method for low-thrust gravity-assist
trajectory optimization”. In: Journal of guidance, control, and dynamics Vol. 32, No. 2, pp. 616-625.

Cline, D. (2017). Variational principles in classical mechanics. Rochester, New York: University of Rochester River
Campus Librarie.

Coello Coello, C.A. (2002). “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:
a survey of the state of the art”. In: Computer methods in applied mechanics and engineering Vol. 191, No. 11-12,
pp. 1245-1287.

Coverstone-Carroll, V., JJW. Hartmann, and W.J. Mason (2000). “Optimal multi-objective low-thrust spacecraft trajecto-
ries”. In: Computer methods in applied mechanics and engineering Vol. 186, No. 2-4, pp. 387-402.

Dachwald, B. (2004). “Low-Thrust Trajectory Optimization and Interplanetary Mission Analysis Using Evolutionary
Neurocontrol”. DEng Thesis. Institut fiir Raumfahrttechnik, Universitit der Bundeswehr, Miinchen.

Davis, D., S. Bhatt, K.C. Howell, J. Jang, R. Whitley, F. Clark, D. Guzzetti, E. Zimovan, and G. Barton (Feb. 2017).
“Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits”. In: AAS/AIAA Space
Flight Mechanics Meeting. Paper No. 269. San Antonio, Texas.

De Pascale, P. and M. Vasile (2006). “Preliminary design of low-thrust multiple gravity-assist trajectories”. In: Journal of
Spacecraft and Rockets Vol. 43, No. 5, pp. 1065-1076.

Eslinger, J. (2023). “Development and Implementation of Station Keeping Approaches in Halo Orbits”. MSc Thesis.
University of Stuttgart.

Falck, R.D., W.K. Sjauw, and D.A. Smith (July 2014). “Comparison of low-thrust control laws for applications in plane-
tocentric space”. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Paper No. 3714. Cleveland, Ohio.

Forestryani, V., N. Rosyadi, and M. Ahsan (2022). “Multi-response optimization of dielectric fluid mixture in EDM using
grey relational analysis (GRA) in Taguchi method”. In: BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol. 16,
No. 3, pp. 949-960.

Fritsch, FEN. and R.E. Carlson (1980). “Monotone Piecewise Cubic Interpolation”. In: SIAM Journal on Numerical Anal-
ysis Vol. 17, No. 2, pp. 238-246.

Frueh, C., K.C. Howell, K.J. DeMars, and S. Bhadauria (Feb. 2021). “Cislunar space situational awareness”. In: 31st
AIAA/AAS Space Flight Mechanics Meeting. Paper No. 290. Charlotte, North Carolina.

Gao, Y. (2007). “Near-optimal very low-thrust earth-orbit transfers and guidance schemes”. In: Journal of guidance,
control, and dynamics Vol. 30, No. 2, pp. 529-539.

Garcia Yéarnoz, D., J.P. Sanchez, and C. Mclnnes (Apr. 2013). “Easily Retrievable Objects among the NEO Population”.
In: Celestial Mechanics and Dynamical Astronomy Vol. 116, No. 4, pp. 367-388.

Gath, P.F. (2002). “CAMTOS - A software suite combining direct and indirect trajectory optimization methods”. DEng
Thesis. University of Stuttgart.

Gill, PE., W. Murray, and M.A. Saunders (2005). “SNOPT: An SQP algorithm for large-scale constrained optimization”.
In: SIAM Review Vol. 47, No. 1, pp. 99-131.

Goémez, G., A. Jorba, J. Masdemont, and C. Sim6 (1991). Study Refinement of Semi-analytical Halo Orbit Theory. Con-
tract Report. ESOC Contract No.: 8625/89/D/MD (SC). European Space Agency.

Gondelach, D.J. and R. Noomen (Aug. 2015). “Analytical low-thrust transfer design based on velocity hodograph”. In:
AAS/AIAA Astrodynamics Specialist Conference. Paper No. 594. Vail, Colorado.

Hatten, N.A. (2012). “A Critical Evaluation of Modern Low-Thrust, Feedback-Driven Spacecraft Control Laws”. MSc
Thesis. University of Texas at Austin.

129



References 130

Henon, M. (1982). “On the numerical computation of Poincaré maps”. In: Physica D: Nonlinear Phenomena Vol. 5, No.
2, pp.- 412-414.

Hintz, G.R. (2008). “Survey of orbit element sets”. In: Journal of guidance, control, and dynamics Vol. 31, No. 3, pp. 785-
790.

Hiraiwa, N., M. Bando, and S. Hokamoto (Feb. 2022). “Halo-to-Halo Low-Thrust Transfer via Successive Convex Op-
timization with Intermediate Orbit Design”. In: 33rd International Symposium on Space Technology and Science.
Paper No. 48. Oita, Japan.

Hudson, J.S. and D.J. Scheeres (2009). “Reduction of low-thrust continuous controls for trajectory dynamics”. In: Journal
of guidance, control, and dynamics Vol. 32, No. 3, pp. 780-787.

Jeppu, Y. (2024). MATLAB Central File Exchange. URL: https://www.mathworks.com/matlabcentral/fileexchange/47218-
orthogonal-array (visited on 06/26/2024).

Kayama, Y., K.C. Howell, M. Bando, and S. Hokamoto (Feb. 2021). “Low-Thrust Trajectory Design with Convex Op-
timization for Libration Point Orbits”. In: AAS/AIAA Space Flight Mechanics Meeting. Paper No. 231. Charlotte,
North Carolina (Virtual Event).

Kelly, M.P. (2015). Transcription methods for trajectory optimization. Tutorial. Cornell University, Ithaca, New York.

Kokou, P, S. Lizy-Destrez, and B. Le Bihan (Jan. 2014). “Computing an optimized trajectory between Earth and an EML2
halo orbit”. In: AIAA Guidance, Navigation, and Control Conference. Paper No. 0450. National Harbor, Maryland.

Koon, W.S., M.W. Lo, J.E. Marsden, and S.D. Ross (2001). “Low energy transfer to the Moon”. In: Celestial Mechanics
and Dynamical Astronomy Vol. 81, No. 1-2, pp. 63-73.

Langemeijer, K. (2018). “Connecting hyperbolic invariant manifolds at variations of the Poincaré section orientation”.
MSc Thesis. Delft University of Technology.

Lee, S., W. Fink, R. Russell, P. Von Allmen, A. Petropoulos, and R. Terrile (Sept. 2005). “Evolutionary Computing for
Low Thrust Navigation”. In: American Institute of Aeronautics and Astronautics Space Conference. Paper No. 6835.
New York.

Leung, Y.W. and Y. Wang (2001). “An orthogonal genetic algorithm with quantization for global numerical optimization”.
In: IEEE Transactions on Evolutionary Computation Vol. 5, No. 1, pp. 41-53.

Lewis, FL., D. Vrabie, and V.L. Syrmos (2012). Optimal Control. 3rd ed. John Wiley & Sons Inc.

Li, H. and Q. Zhang (2008). “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II”.
In: IEEE transactions on evolutionary computation Vol. 13, No. 2, pp. 284-302.

Li, Q., Y. Taoand, and F. Jiang (2022). “Orbital Stability and Invariant Manifolds on Distant Retrograde Orbits around
Ganymede and Nearby Higher-Period Orbits”. In: Aerospace Vol. 9, No. 8, 454.

Maestrini, M., A. De Vittori, J.L. Gonzalo Gémez, C. Colombo, P. Di Lizia, J. Miguez Arenas, M. Sanjurjo Rivo, A. Diez
Martin, Pau Gago Padreny, and D. Escobar Anton (Jan. 2023). “ELECTROCAM: assessing the effect of low-thrust
uncertainties on orbit propagation”. In: 2nd ESA NEO and debris detection conference. Paper No. 87. Darmstadt.

Mahdavi, A. and M.E. Shiri (2015). “An augmented Lagrangian ant colony based method for constrained optimization”.
In: Computational Optimization and Applications Vol. 60, No. 1, pp. 263-276.

Maisch, A. (2022). “Design of trajectories between Lagrangian orbits in the 4-body problem”. MSc Thesis. University of
Stuttgart.

Marsden, J.E. (1978). “Qualitative methods in bifurcation theory”. In: Bulletin of the American mathematical society Vol.
84, No. 6, pp. 1125-1148.

Mezura Montes, E. and C.A. Coello Coello (2011). “Constraint-handling in nature-inspired numerical optimization: past,
present and future”. In: Swarm and Evolutionary Computation Vol. 1, No. 4, pp. 173-194.

Miele, A. (2010). “Revisit of the theorem of image trajectories in the earth-moon space”. In: Journal of optimization
theory and applications Vol. 147, No. 3, pp. 483—490.

Mingotti, G., F. Topputo, and F. Bernelli-Zazzera (2007). “Combined Optimal Low-Thrust and Stable-Manifold Tra-
jectories to the Earth-Moon Halo Orbits”. In: New Trends in Astrodynamics and Applications 11l (AIP Conference
Proceedings) Vol. 886, No. 2710047, pp. 100-112.

Mistree, F., U. Lautenschlager, S.O. Erikstad, and J.K. Allen (1993). Simulation reduction using the Taguchi method.
NASA Contractor Report, CR 93-4542. National Aeronautics and Space Administration.

Montgomery, D.C., G.C. Runger, and N.F. Hubele (2009). Engineering statistics. 5th ed. John Wiley & Sons.

Morante, D., M. Sanjurjo-Rivo, and M. Soler (2019). “Multi-objective low-thrust interplanetary trajectory optimization
based on generalized logarithmic spirals”. In: Journal of Guidance, Control, and Dynamics Vol. 42, No. 3, pp. 476—
490.

—  (2021). “A survey on low-thrust trajectory optimization approaches”. In: Aerospace Vol. 8, No. 3, 88.

Morelli, A.C., C. Hofmann, and F. Topputo (2021). “Robust low-thrust trajectory optimization using convex programming
and a homotopic approach”. In: IEEE Transactions on Aerospace and Electronic Systems Vol. 58, No. 3, pp. 2103—
2116.

Naasz, B.J. (2002). “Classical element feedback control for spacecraft orbital maneuvers”. MSc Thesis. Virginia Tech.


https://www.mathworks.com/matlabcentral/fileexchange/47218-orthogonal-array
https://www.mathworks.com/matlabcentral/fileexchange/47218-orthogonal-array

131 References

Newman, C.P., J.R. Hollister, D.C. Davis, and E.M. Zimovan-Spreen (Aug. 2022). “Investigating solar radiation pressure
modeling for operations in near rectilinear halo orbit”. In: AAS/AIAA Astrodynamics Specialists Conference. Paper
No. 728. Charlotte, North Carolina.

NIST/SEMATECH (2003). e-Handbook of Statistical Methods. URL: https://doi.org/10.18434/M32189 (visited on
05/16/2024).

Oberle, H.J. and W. Grimm (1989). BNDSCO: a program for the numerical solution of optimal control problems. Tech.
rep. Report No. 515. Inst. fiir Angewandte Math. der Univ. Hamburg.

Olsder, G.J., JJW. van der Woude, J.G. Maks, and D. Jeltsema (2011). Mathematical Systems Theory. 4th ed. Delft, The
Netherlands: VSSD.

Olympio, J. (Aug. 2008). “Algorithm for low-thrust optimal interplanetary transfers with escape and capture phases”. In:
AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Paper No. 7363. Honolulu, Hawaii.

Out, I. (2017). “Formation Flying in the Sun-Earth/Moon Perturbed Restricted Three-Body Problem”. MSc Thesis. Delft
University of Technology.

Ozimek, M.T. and K.C. Howell (2010). “Low-thrust transfers in the Earth-Moon system, including applications to libration
point orbits”. In: Journal of Guidance, Control, and Dynamics Vol. 33, No. 2, pp. 533-549.

Pan, X. and B. Pan (2020). “Practical homotopy methods for finding the best minimum-fuel transfer in the circular
restricted three-body problem”. In: IEEE Access Vol. 8, pp. 47845-47862.

Papalambros, P.Y. and D.J. Wilde (2000). Principles of optimal design: modeling and computation. 2nd ed. Cambridge,
United Kingdom: Cambridge University Press.

Park, R. S., W. M. Folkner, J. G. Williams, and D. H. Boggs (Feb. 2021). “The JPL Planetary and Lunar Ephemerides
DE440 and DE441”. In: The Astronomical Journal Vol. 161, No. 3, pp. 105-120.

Parrish, N.L., J.S. Parker, S.P. Hughes, and J. Heiligers (Mar. 2016). “Low-thrust transfers from distant retrograde orbits to
L2 halo orbits in the Earth-Moon system”. In: 6¢h International Conference on Astrodynamics Tools and Techniques.
Darmstadt, Germany.

Pergola, P, K. Geurts, C. Casaregola, and M. Andrenucci (2009). “Earth-Mars halo to halo low thrust manifold transfers”.
In: Celestial Mechanics and Dynamical Astronomy Vol. 105, No. 1-3, pp. 19-32.

Petropoulos, A. (Aug. 2004). “Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coast-
ing”. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Paper No. 5089. Providence, Rhode Island.

Pontani, M. and B.A. Conway (2010). “Particle swarm optimization applied to space trajectories”. In: Journal of Guid-
ance, Control, and Dynamics Vol. 33, No. 5, pp. 1429-1441.

Poulsen, N.K. (2012). Dynamic Optimization: Optimal Control. Kongens Lyngby, Denmark: IMM DTU.

Pritchett, R., K.C. Howell, and D. Grebow (Aug. 2017). “Low-thrust transfer design based on collocation techniques:
applications in the restricted three-body problem”. In: AAS/AIAA Astrodynamics Specialist Conference. Paper No.
626. Stevenson, Washington.

Richardson, D.L. (1980a). “Analytic construction of periodic orbits about the collinear points”. In: Celestial mechanics
Vol. 22, No. 3, pp. 241-253.

— (1980b). “Analytical construction of periodic orbits about the collinear points of the Sun-Earth system”. In: Astrody-
namics conference. Paper 79-127, 15 p., page 127.

Roy, R.K. (2010). A primer on the Taguchi method. 2nd ed. Southfield, Michigan: Society of manufacturing engineers.

Schliiter, M. and M. Gerdts (2009). “The oracle penalty method”. In: Journal of Global Optimization Vol. 47, No. 2,
pp- 293-325.

Scorsoglio, A., A. D’ Ambrosio, L.Ghilardi, R. Furfaro, and V. Reddy (Sept. 2023). “Physics-informed orbit determination
for cislunar space applications”. In: Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS)
Technologies Conference. Maui, Hawaii.

Sedlaczek, K. and P. Eberhard (2006). “Using augmented Lagrangian particle swarm optimization for constrained prob-
lems in engineering”. In: Structural and Multidisciplinary Optimization Vol. 32, No. 4, pp. 277-286.

Sentinella, M.R. and L. Casalino (July 2006). “Genetic algorithm and indirect method coupling for low-thrust trajectory
optimization”. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Paper No. 4468. Sacra-
mento, California.

Siva Prasad, K., C. Srinivasa Rao, and D. Nageswara Rao (2012). “Application of design of experiments to plasma arc
welding process: a review”. In: Journal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 34,
pp. 75-81.

Smith, A.E., D.W. Coit, T. Baeck, D. Fogel, and Z. Michalewicz (1997). “Penalty functions”. In: Handbook of evolutionary
computation Vol. 97, No. 1, C5.

Spreen, E., K.C. Howell, and D. Davis (May 2017). “Near Rectilinear Halo Orbits and their Application in Cis-Lunar
Space”. In: 3rd IAA Conference on Dynamics and Controls of Space Systems. Paper No. 125. Moscow, Russia.


https://doi.org/10.18434/M32189

References 132

Stuart, J., M. Ozimek, and K.C. Howell (Aug. 2010). “Optimal, low-thrust, path-constrained transfers between libra-
tion point orbits using invariant manifolds”. In: AIAA/AAS Astrodynamics Specialist Conference. Paper No. 7831.
Toronto, Canada.

Taguchi, G. (1987). System of experimental design, engineering methods to optimize quality and minimize costs. New
York: UNIPUB/Kaus International.

Taheri, E. and O. Abdelkhalik (2016). “Initial three-dimensional low-thrust trajectory design”. In: Advances in Space
Research Vol. 57, No. 3, pp. 889-903.

Tatay Sanguesa, J. (2021). “Optimal trajectories in the Earth-Moon system”. MSc Thesis. Delft University of Technology.

United States Naval Observatory, Nautical Almanac Office, Great Britain, Nautical Almanac Office, Science and Engi-
neering Research Council (Great Britain), Science Research Council (Great Britain), Rutherford Appleton Labo-
ratory, Council for the Central Laboratory of the Research Councils (Great Britain), United States, Department of
the Navy, United States, Congress, Great Britain, and Hydrographic Office (2008). The Astronomical Almanac for
the Year 2008: Data for Astronomy, Space Sciences, Geodesy, Surveying, Navigation, and Other Applications. U.S.
Government Printing Office. ISBN: 9780160773969.

Vallado, D.A. (2013). Fundamentals of astrodynamics and applications. 4th ed. Hawthorne, California: Space Technology
Library.

Varga, G.I. and J.M. Sanchez Pérez (Mar. 2016). “Many-revolution low-thrust orbit transfer computation using equinoctial
g-law including j2 and eclipse effects”. In: 6th International Conference on Astrodynamics Tools and Techniques.
Paper No. 590. Darmstadt, Germany.

Vittaldev, V., E. Mooij, and M.C. Naeije (2012). “Unified State Model theory and application in Astrodynamics”. In:
Celestial Mechanics and Dynamical Astronomy Vol. 112, No. 3, pp. 253-282.

Wakker, K.F. (2015). Fundamentals of astrodynamics. Delft, The Netherlands: TU Delft Library.

Wall, B.J. and B.A. Conway (2009). “Shape-based approach to low-thrust rendezvous trajectory design”. In: Journal of
Guidance, Control, and Dynamics Vol. 32, No. 1, pp. 95-101.

Walther, M. (2022). “Definition and optimization of cislunar low-thrust transfers”. MSc Thesis. University of Stuttgart.

Walther, M. and A. Wiegand (June 2023). “ASTOS Orbit Generator — Rapid Creation of Quasi-Optimal Orbital Transfers
in the CR3BP”. In: ESA GNC-ICATT. Paper No. 48. Sopot, Poland.

Wang, H., S. He, and X. Yao (2017). “Nadir point estimation for many-objective optimization problems based on empha-
sized critical regions”. In: Soft Computing Vol. 21, No. 9, pp. 2283-2295.

Wang, Z. and M.J. Grant (2018). “Optimization of minimum-time low-thrust transfers using convex programming”. In:
Journal of Spacecraft and Rockets Vol. 55, No. 3, pp. 586-598.

Wu, D., D. Sotnikov, G. Gary Wang, E. Coatanea, M. Lyly, and T. Salmi (2023). “A Dimension Selection-Based Con-
strained Multi-Objective Optimization Algorithm Using a Combination of Artificial Intelligence Methods”. In:
ASME Journal of Mechanical Design Vol. 145, No. 8, 081704.

Yang, G. (2009). “Direct optimization of low-thrust many-revolution earth-orbit transfers”. In: Chinese Journal of Aero-
nautics Vol. 22, No. 4, pp. 426-433.

Zhang, P., J. Li, H. Baoyin, and G. Tang (2013). “A low-thrust transfer between the Earth-Moon and Sun-Earth systems
based on invariant manifolds”. In: Acta Astronautica Vol. 91, No. 10, pp. 77-88.

Zuiani, F., Y. Kawakatsu, and M. Vasile (Feb. 2013). “Multi-objective optimisation of many-revolution, low-thrust orbit
raising for destiny mission”. In: 23rd AAS/AIAA Space Flight Mechanics Conference. Paper No. 264. Kauai, Hawaii.

Additional Information: Access to Walther (2022), Maisch (2022), Eslinger (2023), and Ahlborn
(2023) can be provided upon request.



Research Structure Outline

In this chapter, the structure and schedule of this research are outlined. Section A.1 presents the Work
Flow Diagram (WFD), whereas the Work Breakdown Structure (WBS) can be found in Section A.2,
with an explanation of the work packages and tasks, followed by a Gantt Chart in Section A.3. Lastly,
as the presented schedule was of course generated before carrying out the research, a reflection on
how closely the planning was followed is provided in Section A.4.

A.1 Work Flow Diagram

The research, excluding the literature study, is divided into five main phases: the implementation of
the optimal control phase within the OGT, the optimization of a selected use case, the evaluation of
the optimization results, finalizing the report, and preparing the M.Sc. Thesis defense. Each phase
consists of several work packages, each of which may be divided into a certain number of tasks. The
WED can be found in Figure A.1.

A.2 Work Breakdown Structure

The WBS is displayed in Figure A.2, with the work packages divided into tasks with allocated dura-
tions. Additionally, an explanation of the tasks can be found in Table A.1.

Table A.1: Explanation of the specific research proposal tasks.

Task ID | Explanation

1.1.1 Following the architectural design of the OGT, a class is created with the EOM of the
method. A second class is developed that generates the optimal control phase and
propagates the EOM.

1.1.2 The class that handles the phases and mission data is updated to include the new
optimal control phase.

1.1.3 Having implemented the trajectory computation strategy, the next step is to feed this

strategy to the optimization problem class, with the objectives, the design variables,
and the constraints.

1.1.4 The selected trajectories must be exported with enough information for them to be
plotted and replicated in ASTOS.

1.2 \ The feedback obtained on the literature review is implemented.

1.3.1 The Pagmo shared library is updated to include NSGA2.

1.3.2 The Pagmo shared library is updated to include NSPSO.

1.4.1 The new phase and interfaces are thoroughly tested to safely proceed.

1.4.2 The new phase and interfaces are tested for user-friendliness such that the OGT can
be incorporated within ASTOS in the future.

143 Check that the implementation and method work via an easy use case optimization, in
which a feasible transfer ought to be found.

1.44 This preliminary trajectory is used to code a test on the Jacobi constant to verify the
EOM.

1.4.5 The goal is to learn to use ASTOS and replicate this preliminary trajectory with the
software for verification purposes before proceeding.

133
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2.1 Two promising use cases explored by other authors are chosen for problem analysis.

2.2 The integrator analysis, design space exploration, and optimization sections are
reported.

2.3 A nominal feasible trajectory within the first use case is found to be employed in the

problem analysis.

24.1 The necessary code to generate a benchmark trajectory and to carry out an integrator
analysis with the nominal trajectory is written and tested.
242 An integrator trade-off is carried out to find, using the nominal trajectory, the fastest

integrator and integrator settings that still provide a suitable accuracy level in terms of
position and velocity.

25.1 The goal is to learn about design of experiments and the Taguchi method, and about
how it should be applied to analyze the given problem.

25.2 Employing the Taguchi method, the setup to analyze the problem via a fractional
factorial design and the ANOVA method is coded.

2.5.3 The method is run for both use cases and the output is analyzed with a focus on

determining suitable design variable bounds.

2.6.1 Using MIDACO as the reference optimizer and solely focusing on the first use case
from now on, optimizations with numerous constraint-handling strategies are carried
out and the most promising strategy is selected.

2.6.2 With the chosen constraint-handling strategy, the use case is optimized with all
available multi-objective optimizers, each of which with default settings.

2.6.3 After the best optimizer is found, the most promising constraint-handling strategies
are re-evaluated. The optimizer selection may also be re-assessed depending on the
outcome.

2.6.4 A tuning process is carried out on the chosen constraint-handling strategy for the

proposed use case.

2.7.1 The optimization parameters (such as the population or the number of islands) are
tuned to maximize the performance of the final optimizations.
272 With the tuned optimization settings, several optimizations are run with differing

seeds to obtain the final Pareto front of the problem with manifolds.

3.1.1 Within the trajectory verification process, to ensure that the propagation error of the
trajectories is appropriate, an optimized solution is re-propagated with tighter
integrator settings, and the error in position and velocity is quantified.

3.1.2 The EOM are verified by analyzing the behavior of the spacecraft mass and the Jacobi
constant over the coasting and thrusting periods.
3.1.3 The trajectory is replicated in high-fidelity space trajectory analysis software such as

ASTOS to finalize the trajectory verification.

3.2 The verification, ASTOS optimization, sensitivity analysis, and manifold effect
sections are reported.

3.3.1 The goal is to learn how to optimize in ASTOS using direct collocation methods,
using as an initial guess a trajectory generated with the OGT.
3.3.2 The instantaneous discontinuities because of the constraint tolerances of the nominal

trajectory from 2.3 are corrected with ASTOS.
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3.33 The instantaneous discontinuities because of the constraint tolerances of a selected
optimal trajectory are corrected with ASTOS for further proof that the trajectories are
suitable initial guesses for direct collocation methods.

34.1 A Monte Carlo analysis is carried out on a chosen optimized solution accounting for
the uncertainties in the spacecraft’s initial state.

342 A Monte Carlo analysis is carried out on a chosen optimized solution accounting for
the uncertainties in the modeling parameters.

3.5.1 Using the same optimizer and constraint-handling strategy as in 2.7, the optimization
is re-tuned to find a Pareto front of trajectories without manifold phases.

3.5.2 The Pareto front without manifold theory is obtained, and the results are compared to
those of 2.7.

4.1.1 The problem analysis chapter, which includes the integrator analysis and the design
space exploration, is finalized.

4.1.2 The results chapter, which includes the optimization tuning and the optimizations

with manifolds, is finalized.

4.2.1 The verification and validation section is finalized, including the unit tests.

422 The trajectory refinement with ASTOS section is finalized.

4223 The sections on the sensitivity analysis and the optimizations without manifolds are
finalized.

4.3 The original literature review chapters are updated with the decisions made

throughout the research.

4.4 ‘ The conclusions and recommendations chapter is written.

4.5 \ The abstract and preface chapters are written.

4.6 \ The report is finalized by applying the feedback from the Green-Light review.

5.1 \ The final presentation structure and storyline are developed.

5.2 \ The presentation slides are made according to the previous work package.

5.3 ‘ The presentation is improved with the generation of explanatory diagrams and videos

5.4 ‘ The presentation is rehearsed for the final defense.
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A.3 Gantt Chart

The Gantt Chart is displayed in Figure A.3 and Figure A.4. Some tasks, such as reporting, are done
in parallel with other tasks, however, it is difficult to predict what percentage of the time will be
dedicated to each task. As such, for the sake of readability and to simplify the analysis, the tasks are
structured sequentially. "Day #" at the beginning of a task refers to the day of the week in which the
task ought to be started.
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A.4 Reflection on the Planning

Overall, the Gantt Chart provided an accurate prediction of the tasks to be carried out and helped with
keeping track of what was left to be done and how delayed the project was getting over time. However,
due to the difficulty of the research project, several work packages took longer than expected, entailing
roughly a 3.5-week delay relative to the planning in terms of hand-in date of the final draft. In addition,
the OGT optimizations required extensive computation times, forcing the need for parallelization
of the tasks. Fortunately, comfortable periods were allocated to reporting, so the delays could be
alleviated, and because of the thorough code testing during the implementation process, the project
was rarely delayed due to bugs in the program.

For instance, learning about design of experiments and fully understanding the ANOVA method
took longer than expected, due to the large number of design variables and the high complexity of the
problem (all interactions were estimated). Moreover, learning how to properly set up an optimization
problem with direct collocation in ASTOS was more complicated than predicted because of the dif-
ficult scaling of the parameters. In addition, after some preliminary optimizations and analyses, the
original optimization strategy was majorly restructured with the addition of the closest state search
strategy, something not included in the planning that took roughly three days. Also related to coding,
ensuring that the manifolds were propagated in the desired direction (interior/exterior) for all cases
required the development of a new functionality and a testing tool. Lastly, the transitioning of the tra-
jectories to a different dynamic model that included the Sun and Jupiter was not part of the planning.
However, this exercise helped to gain confidence in the usefulness of the provided trajectories and
elevated the quality of the analysis.

Nevertheless, the main source of delay was the OGT optimizations, especially finding an appro-
priate constraint-handling strategy and tuning the optimizer. A vast number of ideas and combinations
were explored without promising results, suggesting the necessity to relax the constraints. The key to
mitigating the delays due to the long optimization times was to start the third research phase before
obtaining the final results. As such, the verification and the refinements with ASTOS were carried
out in parallel with the OGT optimizations. This decision permitted the analysis of the severity of
the constraints, allowing the constraint relaxation that triggered a major improvement in the results.
On a separate note, one week of delay can be attributed to the fact that an additional final review was
carried out at Astos Solutions GmbH, so most of phase 5 had already been completed by the time the
report was handed in.

In conclusion, the thorough planning was crucial for the completion of this research without major
delays. This is due to the unexpected difficulties encountered in several tasks. A key takeaway is the
positive influence that parallelizing work packages can have on the outcome of a project, especially
when dealing with long and complex optimizations.
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