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a b s t r a c t

Coronavirus disease-2019 (COVID-19) poses a significant threat to the population and urban sustain-
ability worldwide. The surge mitigation is complicated and associates many factors, including the
pandemic status, policy, socioeconomics and resident behaviours. Modelling and analytics with
spatial-temporal big urban data are required to assist the mitigation of the pandemic. This study
proposes a novel perspective to analyse the spatial-temporal potential exposure risk of residents by
capturing human behaviours based on spatial-temporal car park availability data. Near real-time data
from 1,904 residential car parks in Singapore, a classical megacity, are collected to analyse car mobility
and its spatial-temporal heat map. The implementation of the circuit breaker, a COVID-19 measure, in
Singapore has reduced the mobility and heat (daily frequency of mobility) significantly at about 30.0%.
It contributes to a 44.3%e55.4% reduction in the transportation-related air emissions under two sce-
narios of travelling distance reductions. Urban sustainability impacts in both environment and
economy are discussed. The spatial-temporal potential exposure risk mapping with space-time in-
teractions is further investigated via an extended Bayesian spatial-temporal regression model. The
maximal reduction rate of the defined potential exposure risk lowers to 37.6% by comparison with its
peak value. The big data analytics of changes in car mobility behaviour and the resultant potential
exposure risks can provide insights to assist in (a) designing a flexible circuit breaker exit strategy, (b)
precise management via identifying and tracing hotspots on the mobility heat map, and (c) making
timely decisions by fitting curves dynamically in different phases of COVID-19 mitigation. The pro-
posed method has the potential to be used by decision-makers worldwide with available data to make
flexible regulations and planning.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The outbreak of coronavirus disease-2019 (COVID-19) prompts a
series of social, economic and environmental issues. It is yet
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. Jiang), fuxj@ihpc.a-star.edu.
difficult to project the lasting impacts, such as on the environment
system and the public health system, due to the uncertainty over
the shape of economic recovery. By 20 May 2020, over 5 M of
COVID-19 cases have been confirmed in 216 countries (WHO,
2020). COVID-19 might coexist with us for a long time. Even after
apparent elimination, a resurgence could be possible as late as 2024
(Kissler et al., 2020). Current priority has been given on treatment,
vaccine development, containment and mitigation strategies to
reduce the mortality and infection rate. Flattening the curve
(Ferguson et al., 2020) is among the most discussed concept to
suppress the surge in COVID-19 cases to support the functionality of
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the healthcare system. Timing (Anderson et al., 2020) and timing
configuration (Zhang et al., 2012) are the critical determinants in
minimising the potential impacts. It can be achieved by contain-
ment strategies such as testing on a massive scale, tracing and
quarantine. When the disease outpaces containment, it has to rely
on mitigation strategies (Walensky and de Rio, 2020), such as social
distancing, closures, movement restriction via circuit breaker and
lockdown. For the implementation of mitigation policies (e.g. cir-
cuit breaker), there are many subsequent socio-economic impacts
needed to be evaluated. For example, whether is the time of a
mitigation policy cautious and prescient? How is the urban sus-
tainability, especially in terms of economic sustainability (eco-
nomic trend, economic recovery, etc.) and environmental
sustainability (air emissions, solid waste pollution, electricity con-
sumption, etc.)? How do decision-makers plan for the subsequent
mitigation after the disease situation is relatively stable? With the
help of urban sustainability analyses, effective decision-making and
planning are essential during this critical period to make sure that
the usage of limited resources is optimised. The spatial-temporal
identification of potential risk with COVID-19 infection (Jia et al.,
2020) can support decision-making and planning to enhance the
success of mitigation implementation.

The decision-making and planning based on spatial-temporal
data analytics have been applied in different areas or domains.
Zhao et al. (2020) explored the urban risk reduction strategy by
spatial-temporal statistics to guide hazard mitigation planning. Luo
et al. (2019) assessed tourist behaviour based on spatial-temporal
information of the venue check-in to improve the management of
gaming destinations. Sikder et al. (2019) estimated the building
intensity using spatial statistics to make data-driven planning de-
cision for urban development. Xu et al. (2019) implemented spatial-
temporal economic analysis to design and plan centralised or
decentralised modes in a resource-oriented system. Nesoff et al.
(2019) evaluated the attributable risk of pedestrian injury accord-
ing to the spatial analysis of alcohol outlet location. The other
studies include assessing (a) global spatial risk of highly migratory
shark for ocean management (Queiroz et al., 2019), (b) temporal
waste-dumping behaviour for waste management planning (Jiang
et al., 2020) and infected plastics dumping (Kleme�s et al., 2020a),
(c) pollution risk area for urban soil risk management (Wu et al.,
2019), (d) coastal flood risk for resilience mechanism (Rumson
et al., 2019), and (e) spatial-temporal characteristics of environ-
mental impacts for the refinement of heavy metal pollution control
(Huang et al., 2019).

The spatial-temporal data analytics for epidemic and pandemic
disease is relatively limited, especially for the ongoing COVID-19
problems. Modelling and analytics (Wang et al., 2020) have sup-
ported COVID-19 mitigation positively, as also reported by Gibney
(2020). A new model that predicts the epidemic course for effec-
tive control strategy is proposed by Giordano et al. (2020),
considering eight stages of infection susceptible. The probability
that newly introduced cases could trigger outbreaks in the other
location/countries has been calculated by Kucharski et al. (2020),
based on the cases reported in Wuhan. The understanding of the
early transmission dynamics of COVID-19 is useful for infection
control measures. However, as the estimation is based on the
pattern and statistic methodology that happened in other coun-
tries, it might be not fully reflecting the situation of a specific place.
A spatial-temporal risk source model was developed by Jia et al.
(2020) based on the population flow tracking using mobile phone
data-based counts in China. The consideration of other possible
influence factors with higher data availability could offer a more
representative estimation. For example, Okunlola and Oyeyemi
(2019) evaluated the risk of malaria transmission in Nigeria by
environmental predictors based on the spatial-temporal analysis.
Van Bavel et al. (2020) highlighted the role of social and behav-
ioural science to support the COVID-19 pandemic response. The
method proposed in this study envisages the potential exposure
risk of COVID-19 based on a set of quantitative big urban data on car
mobility behaviour before and during the circuit breaker (GOS,
2020).

Under the lockdown or circuit breaker situations, the mobility
of the population worldwide presents a decreasing trend (Ghosh,
2020), which does a favour to reduce the potential exposure risk of
COVID-19 in the crowds. This is the original intention of imple-
menting the lockdown or circuit breaker policy. The mobility
indices of driving, walking and transit have presented similar
patterns (Apple, 2020). Such mobility patterns of six countries
from different continents are shown in Fig. S1. Compared to the
walking mobility data, the driving mobility data are much more
easily accessible since residential car parks record and save high-
resolution access information. In addition, the driving mobility
near the residence has a better representative of the mobility of
the residents during a circuit breaker compared to transit
mobility, let alone that the disease pandemic in most countries
drove population from municipal mass transport to cars. Biljecki
(2020) suggested that car mobility information recorded by resi-
dential car parks can be a practical measure for the movement of
people.

This study aims to analyse spatial-temporal potential expo-
sure risks and urban sustainability impacts related to the circuit
breaker measure in facilitating the containment and mitigation
planning of COVID-19. Big urban data in Singapore are analysed
to demonstrate the applicability of the proposed method in this
study. Some researchers worried about a possible second coro-
navirus wave (Cyranoski, 2020). Singapore had been one of the
countries threatened for a second wave by COVID-19. In March
2020, its effective control strategies were praised by WHO’s ex-
perts. But the second attack of COVID-19 in April 2020 has been
much more challenging to address. From the early morning of 07
April, Singapore implemented a soft circuit breaker policy (GOS,
2020). Under this policy, people were suggested staying at
home but still permitted going outside for essential activities by
keeping social distancing. Such moderate policy regulation has
also been implemented in the USA, the UK and Spain (Cyranoski,
2020). This study investigates spatial-temporal big urban data
analytics for intelligent decision support of flexible regulations
and planning. The proposed method can assist in mitigating the
current or future pandemic that has been suggested as one of the
biggest threats in the new era. The novelties of this study are
highlighted as follows:

i. Spatial-temporal car park availability data with high reso-
lution are innovatively utilised for representing potential
exposure risks related to COVID-19 to investigate the miti-
gation effect based on an extended Bayesian spatial-
temporal model.

ii. The lag effect through the phase-related dynamic curve
fitting is innovatively identified, which reveals the complex
relationship between cumulative mobility and cumulative
confirmed cases of COVID-19.

iii. Urban sustainability impacts in both environment and
economy related to COVID-19 mitigation are examined and
discussed based on the transportation-related air emissions,
electricity consumption, waste generation statistics and
economic statistics.
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2. Material and methods

2.1. Data

Open-source data are used in this study. The residential car park
information (e.g. name, address, and location with X and Y co-
ordinates) in Singapore is available from the public data platform
(GTA, 2020a). On the data platform, the data of car park availability
(GTA, 2020b) of 1,904 residential car parks (Fig. 1) are updated at a
minute level. More than 3 M pieces of data records (e.g. name, time
of records, total lots and available lots as in Fig. 1) are saved every
day. The 1,904 car parks are located in 31 regions among the 55
planned regions (DOS, 2019). The resident population in the 31
regions covers 99.3% of Singapore (DOS, 2019). The data platform
provides an API documentation for data acquisition. For this data-
set, it has been excluded the occasional outliers with total lots
fewer than available lots. The data of mobility trend reports are
from the Apple COVID-19 data platform (Apple, 2020). The data on
transportation fuel (CSD, 2020) and data on half-hourly electricity
system demand (EMA, 2020) are used to estimate the environ-
mental impacts of the circuit breaker. The data on the daily number
of infected COVID-19 cases are from the COVID-19 Interactive Sit-
uation Report of Ministry of Health (MOH) in Singapore (MOH,
2020).

Despite a comparatively tiny area of 719.1 km2, Singapore has
close to 1 M vehicle population (Diao, 2019). Like the data platform
on car park availability, other data platforms also provide relevant
data. For example, the Singapore Traffic Watch project
(SGTrafficWatch, 2020) offers nation-level and region-level traffic
conditions, especially the hourly bus observation counts and the
available taxis for hire in the last 24 h. Since the main objective of
this study is to measure spatial-temporal potential exposure risks
through near real-time car mobility changes before and during the
circuit breaker, attention is primarily focused on the data coverage
in space and time and the data accessibility. This motivates us to
highlight the high-resolution data on nationwide car park avail-
ability up to several months. After checking for public data online in
Singapore, this data set is undoubtedly the most suitable one to
achieve the research objective.

2.2. Method

2.2.1. Definition of mobility, heat and exposure
Several terms used in this study are defined as follows:
Mobility: The times of cars moving in and out car parks. The cars

include private cars and service cars, such as taxis, Uber cars and
Grab cars.
Fig. 1. The study sites (GTA, 2020a) and th
Heat (the daily frequency of mobility): A relative concept by
comparing total daily mobility with the corresponding total num-
ber of car park lots represented in the heat maps. The heat maps are
referred to as pictures or maps that use colours to show different
levels of activity frequency or values of something in different
places.

Exposure: Civic activities exposing to the active population who
are not staying at home and may carry coronavirus. A similar
concept can be found as ’community exposure’ and ’potential
exposure’ in NCIRD (2020) and ’exposure risk’ in He et al. (2020).

Potential exposure risk is defined as the potential risk caused by
exposing to the active population during disease pandemic. The
exposure may cause potential ‘exposure risk’ (Lai et al., 2020) of
coronavirus contact or disease infection. Since real data on the
behaviour changes of mask-wearing and social distancing are un-
available, the actual exposure risk is challenging to measure. In this
study, it has been assumed that a region with higher heat offers
higher potential exposure risk for civic activities. The exposure risks
in space or time mentioned in the following text are all under such
a definition.

Expressions of daily mobility and heat at a different spatial scale
are given as follows:

Car park-level mobility mi;k in Eq. (1) is denoted as the cumula-
tive daily number of total changes in car park available lots:

mi;k ¼
X
t
Ci;k;t ; ci; ck; (1)

where i is the index of residential car parks; k is the index of days; t
is the index of minutes (00:00 to 24:00) in a day; Ci;k;t denotes the
minutely cumulative counts of the changes of car park available lots
associating to the car park i on day k.

Region-level mobility Mj;k in Eq. (2) equals the summation of the
car park-level mobility on a regional scale:

Mj;k ¼
X
i2j

mi;k;cj;ck; (2)

where j is the index of different regions.
Nation-level mobility Mk in Eq. (3) equals the summation of

region-level mobility:

Mk ¼
X
j

Mj;k;ck: (3)

The definition of mobility can be extended to define the
departing/arriving mobility by counting the cumulative increasing/
decreasing number of ‘available lots’ separately.
e diagram of one residential car park.
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Car park-level heat hi;k in Eq. (4) is expressed as the division of
the car park-level mobility to the number of total lots of a specific
car park:

hi;k ¼mi;k
�
Ni;ci;ck; (4)

whereNi is the total car park lots of car park i. After multiple ex-
periments, outliers of heat values have been observed most likely
for those car parks with fewer than 30 total lots. Such car parks are
filtered in this study.

Region-level heat Hj;k in Eq. (5) is expressed as the division of the
region-level mobility to the number of total lots of a specific region:

Hj;k¼Mj;k

,X
i2j

Ni;cj;ck (5)

Although the region-level heat could be a robust heat measure
by eliminating the interference from the extreme values related to
individual car parks, the regions with very few car parks should be
filtered for a fair comparison among different regions. This is
further illustrated in Section 3.6.
2.2.2. Relationship analyses for cumulative mobility and cumulative
cases

In Singapore, to figure out the source of infected cases, the
COVID-19 cases are counted by four categories: imported cases
from foreign countries (Source #1), community cases from
Singapore residents and permanent residents (Source #2), cases
from work permit holders who are not living in workers’ dorms
(Source #3) and cases from work permit holders who are living in
workers’ dorms (Source #4) (MOH, 2020). This study focuses on the
“exposure-related cases”, including cases in Source #2, cases in
Source #3 and some early-time cases in Source #4 before the
isolation of this source group. The imported cases and those cases
of confined areas are out of the explanation scope of the defined
exposure in this study.

Fig. 2 shows the crucial time points of regulation policies in
Singapore from 15 March to 04 May 2020 (the studied time dura-
tion). The circuit breaker policy was implemented from the early
morning of 07 April 2020. By this key time point, the studied time
duration can be naturally divided into two parts to understand
better the changes in the relationship between population mobility
and infected cases. In contrast, the time series of COVID-19 cases is
not separated directly by the beginning time of the circuit breaker,
considering the potential incubation period (i.e. time to onset) of
COVID-19 and the interval between onset and reporting dates. A
Fig. 2. Crucial time points of policies and two-p
five-day incubation period was reported based on the average re-
sults from the first 425 laboratory-confirmed patients in Wuhan (Li
et al., 2020) and 181 worldwide confirmed cases outside Wuhan
(Lauer et al., 2020). The median incubation period was reported as
four days with a mean time to onset, 4.77 days, based on samples in
Singapore (Pung et al., 2020). Both the incubation time and the
interval between onset and reporting dates are uncertain for indi-
vidual persons. In a macro view, the lag period between population
mobility and infected cases should be treated as a variable rather
than calculated by patient statistics and reporting dates directly.
Such a variable can be optimally determined by curve fitting results.
By assuming a six-day lag period as an example, the corresponding
matching is shown in Fig. 2. Consequently, Phase I and Phase II can
be divided accordingly. Since the incubation period has un-
certainties (Li et al., 2020), cumulative values of mobility and cases,
instead of daily values, are taken for relationship analyses. As
shown in Fig. 2, the cumulative infected cases of Phase I match with
cumulative mobility from 15 March to 06 April 2020 (i.e. before the
circuit breaker). The cumulative cases of Phase II match with cu-
mulative mobility from 07 April to 28 April 2020 (i.e. during the
circuit breaker). The best curve fitting among the linear, poly-
nomial, exponential, power and logarithmic functions is deter-
mined by the criterion of the smallest sum of squared residuals
(SSR, also known as the residual sum of squares). For avoiding
overfitting, the degree of the polynomial function is restricted to be
less than or equal to 3.

2.2.3. Air emissions estimation based on mobility changes
The transportation-related average air emissions in Eqs. (6) and

(7) are estimated according to the air emissions estimation
framework in Fan et al. (2019). Ebe in Eq. (6) and Ede in Eq. (7) denote
the average air emissions before the circuit breaker (a total of K1
days from 15March to 06 April 2020) and during the circuit breaker
(a total of K2 days from 07 April to 28 April 2020). e is an index for a
different type of emissions (i.e. CO2, NOx, SO2 and PM). Mk is the
nation-level daily mobility in Eq. (3). Mk=2 calculates the daily
number of trips as Mk counts both daily departing and arriving
activities. Fe is an emission factor (Table 1) of different type of
pollutants/emissions. The emission factor applied in this study is
based on the passenger transport report (CE Delft, 2020). The well
to wheel (i.e. well to tank and tank to wheel in Table 1) life cycle
(Fan et al., 2019) is considered. P is the average number of pas-
sengers. Db and Dd represents the average distance travelled per
trip before and during the circuit breaker. The assumptions of the
calculation specifically for the case of Singapore include that (a) the
main transportation fuel is petrol (CSD, 2020), (b) the car
hase division of the studied time duration.



Table 1
The type of emissions and the corresponding emission factors (CE Delft, 2020).

Type of Emissions Well to Tank (g/pkm) Tank to Wheel (g/pkm) Emission Factor (g/pkm)

CO2 28 134 162
NOx 0.09 0.1 0.19
SO2 0.244 0.0018 0.246
PM 0.01 0.003 0.013
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occupancy rate is 1.7 passengers (DBS, 2020), (c) the average dis-
tance travelled using car before the circuit breaker is 18.59 km
(Numbeo, 2020), and (d) 25.0% (Scenario 1) to 40.0% (Scenario 2)
reduction in average distance travelled are considered during the
circuit breaker (Unacast, 2020).

Ebe ¼
1
K1

XK1

k¼1

Mk

2
FePDb;ce; (6)

Ede ¼
1
K2

XK1þK2

k¼K1þ1

Mk

2
FePDd;ce: (7)
2.2.4. Modelling for spatial-temporal exposure risk mapping
Bayesian statistical models have advantages to take into account

i) uncertainties in data, ii) missing data and iii) uncertainties in
parameter estimation (Cressie andWikle, 2015). For understanding
the spatial-temporal relationship better and addressing un-
certainties in individual days, an extended Bayesian spatial-
temporal model with Poisson regression in Eqs. (8)e(11) based
on the basic spatial-temporal model (Blangiardo and Cameletti,
2015) is built for the spatial-temporal potential exposure risk
mapping:

Yjk ¼
h
ayjk

i
; (8)

Yjk � PoissonðlikÞ; (9)

ljk ¼ b0 þ uj þ vj þ gk þ 4k þ djk; (10)

Rd ¼

8>><
>>:

Rv5R4; if Type I
Rv5Rg; if Type II
R45Ru; if Type III
Ru5Rg; if Type IV

; (11)

where yjk denotes heat in region j and day k, which is a continuous
variable with a maximal value generally less than 10 for the
regional-level car parks. Let Yjk be a rounded value of ayjk in region j
and day k, where a, being an integer (order of magnitude, e.g. 10,
100 and 1,000), is a coefficient to ensure that Yjk has enough
identifiability for different regions. After experiments, it is valid to
set a to be greater than or equal to 100. The a is set as 1,000 for the
Singapore case. The scaled values {Yjk}, counts of ½ayjk�, are inde-
pendently identically Poisson distributed with a distribution
parameter ljk. The ljk is then modelled as a regression associating
with spatial exposure risks and temporal exposure risks. The b0
denotes the bias of the regression model. The overall risks ujþ vjþ
gk þ 4k þ djk can be decomposed into the baseline temporal risks
gk þ 4k, the intrinsic spatial risks uj þ vj and the spatial-temporal
interacted risks djk. The parameter vector d follows a Gaussian
distribution with a precision matrix tdRd, where td is a scalar
constant and Rd in Eq. (11) is a structure matrix. Ru, Rv, Rg and R4
are also structure matrices. The notation 5 denotes the Kronecker
product. Four interaction types (i.e. Types I, II, III and IV) were
provided in Blangiardo and Cameletti (2015). The parameters of the
regression model are estimated by a computationally effective al-
gorithm, integrated nested Laplace approximations (INLA) (Rue
et al., 2009) that has been proven to be an efficient alternative to
the Markov Chain Monte Carlo (MCMC), on the R package R-INLA
platform (Lindgren and Rue, 2015). As recommended by Zhang
et al. (2019), the most commonly used deviance-based criterion
of model selection for Bayesian models, the deviance information
criterion (DIC) (Spiegelhalter et al., 2002), is employed to select the
best one from different spatial-temporal interactions based on
Types I to IV.
3. Results

3.1. Changes in car mobility behaviour

Fig. 3 shows the distributions of car mobility before and during
the circuit breaker. Conventional patterns (Sun and Axhausen,
2016) are observed before the circuit breaker (Fig. 3a, 3b and 3c),
where the morning, noon and evening peaks are apparent on
working days. The total mobility is much larger than that during the
circuit breaker (Fig. 3d, 3e and 3f). Car mobility in Fig. 3e decreases
significantly. Compared to that on 06 April 2020, the reduction rate
of the nation-level mobility elevates from 13.4% (07 April 2020) to
36.4% (12 April 2020) (Fig. S2). From 12 April to 28 April 2020, the
reduction rate maintains at around 30.0% (Fig. S2). The calculated
rates are in line with the results in the same period based on the
mobility trends reports (Apple, 2020). During the circuit breaker,
the morning peaks on working days almost disappear, which are
dominated slightly by the noon peaks. More details about the
departing and arriving car mobility are presented in Fig. S3. The
results in Fig. 3 and Fig. S3 suggest that the circuit breaker measure
in Singapore has been taken seriously. The changes in dailymobility
are linked with the variation in the potential exposure risk of
COVID-19.
3.2. The spatial-temporal trend of mobility

Fig. 4 shows the spatial-temporal trend of region-level mobility.
The results cover around three-week before and three-week after
the circuit breaker policy. Before 07 April 2020, the region-level
mobility is relatively stable. Before the circuit breaker, spatial
mobility on 03 April and 06 April 2020 are elevated compared to
other days. This can be explained as the circuit breaker policy was
declared at 4 p.m. on 03 April 2020. Mobility was therefore elevated
on the last two working days (03 April and 06 April 2020). The
region-level mobility changes significantly during the first week of
the circuit breaker. Compared to that on 06 April 2020, mobility in
nearly all regions in this week is reduced. This is in line with the
reduction rate of nation-level mobility in Fig. S2. The spatial-
temporal mobility is relatively stable in the following two weeks.



Fig. 3. Distributions of car mobility (a) 16 March (Monday) e 22 March (Sunday) 2020, (b) 23 Marche 29 March 2020, (c) 30 Marche 05 April 2020, (d) 06 April e 12 April 2020, (e)
13 April e 19 April 2020 and (f) 20 April e 26 April 2020.

Fig. 4. The spatial-temporal trend of region-level mobility from 16 March (Monday) to 26 April (Sunday) 2020. Spatial mobility results related to 15 March and 27e28 April are
omitted for ease of the weekly presentation. Regions with white colour are areas without residential car parks, including the central water catchment, western water catchment,
western islands, north-eastern islands and southern islands. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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3.3. Curve fitting between cumulative mobility and cumulative
cases

Fig. 5a shows the relationship between the cumulative lagged
mobility and the cumulative cases (i.e. exposure-related confirmed
cases) from 21March to 04May 2020 (Phases I& II). The variation is
significant in the growth-trend of exposure-related cases before
and after the dividing line in Fig. 5a. When data from two phases
are merged, it is difficult to fit the curve via a smoothing function.
By testing in the time duration before the circuit breaker, Table 2
compares the sum of squared residuals (SSR) under different lag
periods of the cumulative mobility ranging from 0 to 7. The best-
fitting result with the smallest SSR, i.e. 24,083, occurs when the
lag period equals 6. The optimal six-day lag period (Table 2) and the
beginning time of the circuit breaker (07 April 2020) are then uti-
lised to determine the time duration of Phase I (from 21March to 12



Fig. 5. The curve fitting between the cumulative lagged mobility and cumulative cases. (a) Data visualisation by merging two phases. (b) The phase-related curve fitting under a six-
day lag by separating two phases. (c) Dynamic curve fitting results in Phase I.

Table 2
The comparison of curve fitting under different lag period settings.

Lag (d) 0 1 2 3 4 5 6 7

SSR 66,377 57,063 41,904 30,472 25,529 24,236 24,083 26,624
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April 2020) and Phase II (from 13 April to 04 May 2020) in Fig. 5b.
Three-order polynomial curves fit both phases well. The fitted
curve in Phase I has a convex trend with a more and more steep
slope near 12 April 2020. The fitted curve in Phase II has a concave
trend with a more and more relaxed slope near 04 May 2020. The
better phase recognition and phase division help to understand the
disease outbreak trend and the policy effects. More discussion is
provided in Section 4. The above evidence demonstrates the po-
tential relationship between the cumulative lagged mobility and
cumulative cases. Fig. 5c shows the dynamic curve fitting results for
Phase I. The two-order polynomial trend fits the relationship well
from 21March to 06 April 2020. The fitting effect gets worse during
the incubation period after starting the circuit breaker on 07 April
2020. In contrast, the exponential trend approaches the relation-
ship better and better. For the curve fitting in Fig. 5, as the pa-
rameters of functions are time-varying with the increasing of
cumulative cases, we do not intend to attract focus on the specific
fitting functions. Instead, we aim to emphasise the benefit of phase
recognition and the aid of emergent situation assessment via the
dynamic curve fitting.
3.4. Air emissions changes based on the mobility

Fig. 6a and b show the comparison of the transportation-related
average air emissions estimation before and during the circuit
breaker. Compared the duration before the circuit breaker (15
March to 06 April 2020), the reduction rate of the transportation-
related average air estimations during the circuit breaker (07
April to 28 April 2020) is calculated as 44.3% (Scenario 1) and 55.4%
(Scenario 2). For example, the NOx emissions are estimated to
reduce from 4.65 kt to 2.59 kt (Scenario 1) or 2.07 kt (Scenario 2).
The reduction is significant to the transportation sector in
Singapore, as the cars and taxis are the major motor vehicle group
(68.4%) of fuel consumption (CSD, 2020). The positive impact of the
adoptedmeasure due to the COVID-19 outbreak to the environment
is also reported in Europe (Collivignarelli et al., 2020). However, the
lasting impact on the environmental stimulates by the change in
economic structure, and the policy is yet to be assessed as discussed
by Kleme�s et al. (2020b). A contradict opinion is also suggested by
UNenvironmnet (2020) on the CO2 emission. In addition to the
transportation-related air emissions, the electricity and heating
system also deserves an investigation. Based on the half-hourly
electricity system demand data (EMA, 2020) from the Energy
Market Authority in Singapore, the average daily electricity con-
sumption during the circuit breaker is calculated as a 6.7% reduc-
tion compared to that before the circuit breaker. By weighting the
effects in air estimations reductions from the transportation system
and the electricity system in Singapore, the final percentage of
emission reduction should be basically in line with the 30.0%
reduction in Singapore reported by Fogarty (2020). Notably, the
lasting reduction in emissions cannot be expected without a
fundamental shift in global energy production and the reduction in
deforestation and wildfires.

3.5. Spatial-temporal heat map of car mobility

Fig. 7a shows the average car mobility from 07 April to 28 April
2020 for a total of 1,904 residential car parks in Singapore. The
mobility in the east-southern area is relatively higher than that in
the north-western area. The mobility ranges from 0 to 2,736.82
with a mean of 680.49, a sample skewness of 0.99 and a variance of
185,410. Among a total of 17 distributions, the best-fitted distri-
bution of mobility (Fig. 7b) obeys a Generalised Extreme Value
(GEV) distribution with a shape parameter of 0.021, a scale
parameter of 329.70 and a location parameter of 482.10 (Table S1).



Fig. 6. The comparison of the transportation-related average air emissions estimation before and during the circuit breaker under (a) the 25.0% (Scenario 1) and (b) the 40.0%
(Scenario 2) reduction in average distance travelled. For air emissions, four components are analysed, i.e. CO2, NOx, SO2 and particulate matter (PM). The reported units for CO2 is kt,
NOx, SO2 and PM are t.

Fig. 7. (a) The residential car park locations in Singapore, the average car mobility from 07 April to 28 April 2020 and the corresponding spatial heat map. (b) The best-fitted
probability distribution of mobility. (c) The best-fitted probability distribution of heat, where the histograms are transformed into scaled frequencies to display the probability
distribution fitting and the histogram synchronously. The X and Y coordinates are in Geodetic CRS: SVY21 (GTA, 2020a).
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By the spatial heat map in Fig. 7a, heat ranges from 0 to 39.15 with a
mean of 2.81, a sample skewness of 3.86 and a variance of 11.31. The
estimated parameters of the best-fitted GEV distribution of heat
(Fig. 7c) are 0.39, 1.17 and 1.39 (Table S2). The probability distri-
butions of mobility and heat have a similar longtail characteristic,
although the longtail of heat is more intuitive than that of mobility.
The intersection of both longtail parts corresponds to these hot-
spots in Fig. 7a, i.e. points with high mobility and high heat.

Among the 1,904 residential car parks, the first half car parks
(i.e. 957) with higher average mobility from 07 April to 28 April
2020 are selected for the temporal heat map analyses. The temporal
heat map of the top 50 most active ones (i.e. car parks with higher
average heat values) among the 957 car parks is shown in Fig. 8. For
each identified car park in the vertical axis of Fig. 8, its temporal
heat values from 07 April to 28 April 2020 (i.e. the horizontal axis)
are visualised with coloured rectangles. The darker red rectangle
means higher heat. Judged by the heat range in the legend of Fig. 8,
these car parks correspond to the longtail part in Fig. 7c. Among the
50 active car parks, C2, C3, C13, C18, C28, C29, C36 and C45 are
suspected of not following the regulations strictly during the circuit
breaker. In addition, the temporal heat map suggests that the
mobility on 16 April 2020 exists systematic anomaly, as the activity
elevates significantly in several car parks.
3.6. Spatial-temporal potential exposure risk mapping

Fig. 9 shows the spatial-temporal trend of heat. The four regions,
i.e. Bukit Timah, Changi, Downtown Core and Tanglin, have only 2,
2, 1 and 1 residential car parks. As introduced in Section 2.2.1, these
four regions should be filtered among the 31 regions in Fig. 4. The
resident population in the remaining 27 coloured regions in Fig. 9
covers 96.7% among that of the total of 55 regions in Singapore
(DOS, 2019). Overall, the regional heat is reduced significantly after
06 April 2020, especially in these regions with relatively high heat.
The significant decreasing trend from 06 April to 12 April 2020 has
been observed. The spatial variations are apparent between Sunday
and other days. Uncertainties of heat, which manifest as the un-
certain fluctuations of heat values (Fig. S4), exist in not only the
time horizon but also the space scope. For example, judged by the
temporal variation of colours (i.e. heat values) of the regions with
high heat in Fig. 9, noticeable fluctuations are observed for the
region-level heat on 18 March, 26 March, 03 April, 06 April and 10
April 2020. Due to the uncertainties of heat, it is challenging to yield
the spatial exposure risk distribution by simply adopting the dis-
tribution of a certain day or aggregating heat values of some days.
There is no need to measure the uncertainties quantitatively before
the risk mapping modelling, as the Bayesian spatial-temporal risk



Fig. 8. The temporal heat map of the top 50 most active car parks among residential car parks with the first half of high mobility during the circuit breaker (07 April to 28 April
2020). The car park names numbered as C1 to C50 are anonyms for privacy concerns.

Fig. 9. The spatial-temporal trend of heat from 16 March (Monday) to 26 April (Sunday) 2020. Spatial heat results related to 15 March and 27e28 April are omitted for ease of the
weekly presentation.
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Table 3
Performance comparison of six spatial-temporal interactions.

Interaction Type I Type II*a Type II*b Type III Type IV*a Type IV*b

DIC 13,903 13,893 13,955 13,917 13,912 13,986

Notes: *a denotes the interaction with a first-order random walk; *b denotes the
interaction with a second-order random walk.
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mapping model in Eqs. (8)e(11) of Section 2.2.4 provides a Poisson
regression solution for such a problem with uncertainties of heat.

For the Bayesian spatial-temporal risk mapping modes with
different interaction candidates, six spatial-temporal interactions
derived from Types I to IV in Eq. (11) are compared to select the best
model. Table 3 shows the model selection results based on the
minimal deviance information criterion (DIC) (Spiegelhalter et al.,
2002), which is introduced in Section 2.2.4. The model with the
Type II interaction and a first-order random walk produces the
smallest DIC value (i.e. 13,893), which is identified as the best
model among the six models.

Based on the best model, Fig. 10 shows the scaled computational
results of temporal exposure risks and spatial exposure risks. The
temporal exposure risks are the summation of baseline temporal
risks and spatial-temporal interacted risks. In Fig. 10a, the calcu-
lated risks fit well with the observed heat values. The closematch of
the curves indicates the adequacy of the spatial-temporal statistical
model. Temporal exposure risks are reduced significantly after
implementing the circuit breaker policy. The average reduction rate
exceeds 30.0% compared to the day before the circuit breaker.
Compared to the peak value, the maximal reduction rate of po-
tential exposure risk reaches 37.6%. The spatial exposure risks
include intrinsic spatial risks and spatial-temporal interacted risks.
Fig. 10b shows the scaled spatial exposure risks for a total of 27
coloured regions. Fig. 10b offers an intuitive impression on the
potential exposure risks of individual regions and their relative
Fig. 10. Visualisation for (a) the scaled temporal exposure risks from 15 March to 28 April 2
risks. The temporal risks and spatial risks are scaled based on their respective maximal ris
hazards. Such a visualisation could be helpful for decision-makers,
especially when resources are limited to disease mitigation. The
areas with top 5 or top 10 exposure risks can be easily identified. As
a supplement to decision support, Fig. 10c shows the six-level di-
vision results of scaled spatial risks from Fig. 10b.
4. Discussion

4.1. The circuit breaker policy in Singapore

Fig. 5b demonstrated the effectiveness of the circuit breaker in
Singapore. Two crucial questions should be of interest for the
decision-makers in implementing the circuit breaker policy. First, is
the time right for the circuit breaker policy? The sub-exponential or
polynomial growth has been observed for other Chinese provinces
except for Hubei (Roosa et al., 2020), South Korea (Shim et al., 2020)
and Singapore (Tariq, 2020). The exponential growth has been
observed for those epicentre areas, including Italy, Spain (Saez
et al., 2020) and Hubei province of China (Roosa et al., 2020). In
this study, the three-order polynomial trend in Fig. 5b is identified
to fit the second-wave disease outbreak well in Singapore. How-
ever, during the last several days in Phase I, there has been already
an indication of a possibly exponential-growth trend (Fig. 5c). This
kind of evidence indicates that the decision on the time of starting
the circuit breaker (07 April 2020) is cautious and prescient. Sec-
ond, when does the turning point of community spread appear?
According to the curves in Fig. 5a and 5b, the increasing trend slows
down from 22 April 2020. In other words, the turning point appears
for the exposure-related cases on the 16th day after implementing
the circuit breaker. The trend indicates the disease situation in the
community gets stable under the mitigation measures. However,
this trend does not guarantee a non-occurrence of a new-wave
disease outbreak. This might be the reason why the government
authority in Singapore extends the circuit breaker from 05 May to
020, (b) the scaled spatial exposure risks and (c) the six-level division of scaled spatial
k values.
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01 June 2020.

4.2. Lockdown/circuit breaker & urban sustainability

The lockdown or circuit breaker policy is a double-edged sword
(Gilbert et al., 2020). On the one hand, it reduces the potential
exposure risk of infection and further brings nations back to regular
status. On the other hand, it changes the economic structure and
lifestyle rapidly, which causes more challenges for almost every
aspect of urban sustainability, especially in environment health and
economy development (Chakraborty and Maity, 2020). Regarding
environmental sustainability, although single-use plastics in regu-
lar life and medical waste are elevated sharply, the total municipal
waste is not necessarily increased. An additional 1,334 t of house-
hold plastic waste was estimated to be produced by residents in
Singapore during the circuit breaker period in April and May 2020
(Low and Koh, 2020). Few densely populated cities (e.g. Manila,
Jakarta, Kuala, Bangkok, Ha Noi and Wuhan) have the capacity to
cope with the excessive amounts of medical waste during disease
pandemic (Asian Development Bank, 2020). The average solid
waste amount in large andmedium cities in Chinawas estimated to
be reduced by about 30.0% during the COVID-19 outbreak (Liu,
2020). In contrast, the average domestic waste amount in
Singapore is elevated by about 3% during the circuit breaker (Low
and Koh, 2020). Worldwide air emissions have been significantly
reduced during lockdown periods. Evidence can be found from
cases in China (Bao and Zhang, 2020) and Brazil (Dantas et al.,
2020). The calculation in this study indicates that a) the average
electricity consumption during the circuit breaker has a 6.7%
reduction in Singapore, and b) the transportation-related average
air emissions in Singapore are reduced by 44.3% (Fig. 6a) and 55.4%
(Fig. 6b) under two scenarios. Greenhouse gas emissions and air
pollutants have to be assessed simultaneously (Fan et al., 2018)
across different sectors, not limited to transportation. This is
important to prevent the shifting of environmental footprints and
for a conclusive picture, as the pandemic could have changed the
economic and social structure considerately. Although the lasting
impact on environmental sustainability still requires a systematic
assessment, economic sustainability is cautiously thought to be the
major issue to maintain urban sustainability. During each disease
pandemic, public health should be prioritised over all other con-
siderations; meanwhile, economic restart and recovery plans need
to be developed suitably (Kleme�s et al., 2020b). The worldwide
economic sustainability has been severely threatened. Fernandes
(2020) estimated that GDP growth ranges from �3.5% to �6% in
different countries if the shutdown of economic activity lasts for 1.5
months. Nicola et al. (2020) reviewed the socio-economic impacts
of COVID-19 on different sectors, including agriculture, petroleum,
manufacturing, education, finance, healthcare, tourism, sports and
food. Economic sustainability and its recovery are highly related to
lockdown exit strategies, as discussed in Section 4.3.

4.3. Economic sustainability & lockdown exit strategies

As governments cannot minimise both the economic impact of
COVID-19 and the deaths caused by COVID-19 (Anderson et al.,
2020), the nation managers worldwide have a high probability of
facing the trade-offs between risk reduction via extending a circuit
breaker and economic recovery by lifting a circuit breaker. At the
beginning of May 2020, such a dilemma is haunting worldwide
countries, such as the USA, Singapore, India, Spain, Germany and
Italy. For a more specific example, the Straits Times has pointed out
that the Singapore economy plunges in coronavirus pain, and the
quarter-on-quarter growth of the first quarter of 2020 will
be �10.6% (Subhani, 2020). On 26 May 2020, Ministry of Trade and
Industry (MTI) has slashed its economic growth forecast in 2020 to
a range of �7.0% to �4.0% (MTI, 2020b), from the estimate of �4.0%
to �1.0% (MTI, 2020a) on 26 March (before the circuit breaker) and
the estimate of �0.5% to 1.5% (MTI, 2020a) during the first-wave
disease outbreak. Global economic recession due to disease
pandemic leads to company bankruptcy and unemployment, which
might cause a series of ‘butterfly effects’ for the whole society,
including the adverse effects on disease prevention and control.
After implementing more than one-month circuit breaker, the
disease surge in the community of Singapore has shown an easing
trend (Fig. 5b), without considering the cases of confined areas.
What is the next step in the near or far away future? Regarding
lockdown exit strategies, other than an overall lockdown exit
strategy and the responsible lockdown exit strategy (Gilbert et al.,
2020) (e.g. systematic tests, contact tracing and priority rework of
people with a low-risk profile), the flexible local circuit breaker
strategy and the precise management measures might be beneficial
for the whole society. In the following, we extend the discussion
and offer several suggestions from the perspective of spatial-
temporal potential exposure risks.

4.4. Spatial exposure-risk distribution & flexible local circuit
breaker

The report from Harvard University suggested that intermittent
or prolonged social distancing might be necessary into 2022
(Kissler et al., 2020). One of the negative cases occurred in Ger-
many, where the infection rate is rising just days after Germany
eased the nationwide lockdown (BBC, 2020). Conservatively, a
flexible local circuit breaker based on big urban data analytics may
be an alternative way of lifting lockdown. The spatial exposure-risk
distribution in Fig. 9b and 9c can be used to identify crucial regions
with high potential exposure risk for maintaining local circuit
breaker. Notably, the regionwith the highest mobility in Fig. 4 is not
necessarily the riskiest region measured by heat in Fig. 8. Those
regions with moderate and low potential exposure risks may
gradually lift the restriction measures; however, residents should
be aware of avoiding high-risk areas. The decision on the range of
local circuit breaker can be adjusted dynamically according to the
performance of these crucial regions and the overall disease miti-
gation effects. For crucial regions with high potential exposure
risks, e.g. regions with dark red colours in Fig. 10c, strict but flexible
measures are also needed, such as 1) the segregation plan with
Team-A and Team-B to reduce about half of the working crowds,
and 2) working under permission if essential works require to be
done.

4.5. Peak hour distribution & temporal crowd division

When relaxing the circuit breaker, the mobility has a high
probability back to the regular situation from 15 March to 06 April
2020 (Figs. 3 and 4) unless additional measures are taken. Peak
hour distribution of mobility would be enlarged significantly,
especially 07:00e08:00 and 18:00e19:00 on working days, as
shown in Fig. 3a, 3b and 3c. In the aspect of working, a more flexible
working duration is recommended for staffs to decrease the peaks.
Effective regulations on working hours can be coordinated among
firms according to real-time monitoring and peak hour analytics. In
the aspect of life at home, residents can acquire more online in-
formation on the distribution of crowds, as shown in Fig. 3e and 3f,
and select a suitable time to go outside buying necessities to avoid
peak hours and crowds. Government authority may regulate the
extension of working hours of shops to divert the crowd. The above
measures can promote an effective temporal crowd division based
on the information of peak hour distribution.
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4.6. Mobility heat map & key hotspot identification

Worldwide experiences have demonstrated the effects of social
distancing and circuit breaker in mitigating infectious diseases, e.g.
COVID-19 (Saez et al., 2020). To ensure the effectiveness of ongoing
policies and not to waste the efforts of other residents, the gov-
ernment authority may pay more attention to those residential
areas with both high mobility and high heat. This study makes such
precise management possible via tracing the mobility heat map. As
shown in Figs. 7 and 8, the hotspots of mobility can be quickly
identified. The hotspot identification allows zooming to specific
locations for precise mitigation based on the evidence of the
calculated mobility index in Fig. 7. Then, a) appropriate warning or
punishment against uncooperative/illegal acts of the hotspot
communities and b) timely anonymous notification via social me-
dia may consolidate the circuit breaker management efficiently.

4.7. Phase-related dynamic curve fitting & timely decision-making

The exponential trend can only fit the confirmed cases in the
early stage of the COVID-19 outbreak (Remuzzi and Remuzzi, 2020).
It is complicated to estimate the trend in a country with ongoing
disease outbreak via other countries’ experiences due to the dif-
ferences in social distancing measures and facility capacity
(Remuzzi and Remuzzi, 2020). What makes the problem chal-
lenging is that the social distancing measures would change in
different mitigation phases in the same country. This study inno-
vatively separates the time duration of pandemic mitigation and
the time series of confirmed cases into different phases according
to the adjusted measures in Singapore. Under different phases, the
curves in Fig. 5bwith the best-identified lag period (Table 2) fit well
between the cumulative lagged mobility and the exposure-related
cases in Singapore. In a specific phase, the dynamic curve fitting, as
illustrated in Fig. 5c, offers a visual impression on the variation of
the fitted trend. This phase-related dynamic curve fitting method
can be used further to separate the time in subsequent mitigation
period. Timely decisions are suggested being made based on the
trend of the dynamically updated curve fitting.

It has been already a suitable time to look forward to the post-
pandemic period, and it has to be maintained a foresight
perspective for the future. For example, what has been seen in
Europe, the population is still uneasy about using public transport
and is predominantly moving to cars. Such social consciousness is
being cultivated by the COVID-19 epidemic and even more by the
pandemic. What has been a high probability is that urban sus-
tainability could be influenced profoundly, and air emissions might
increase worldwide compared to the regular time before COVID-19
pandemic. During and after the disease outbreak, timely decision-
making and consciousness training deserve more attention and
especially planning, even if it may be needed using some likely
scenarios as, e.g. the second and following waves.

4.8. Limitation and strength

Each study has some limitations naturally. First, the car mobility
of this study is approximated by the dynamically updated data on
available lots of car parks. However, Biljecki (2020) suggested that
car park availability data can be regarded as a good proxy for the
movement of people in the absence of better data. The results and
applicability of the method proposed in this study are still valid
despite the limitation. This is the case, especially when the change
in car mobility behaviour is a relative concept.

Second, although the driving mobility has been observed as a
good representation of population mobility in terms of walking,
driving and transit (Fig. S1), macro population mobility is just a
component of the entire daily mobilities in society. The higher heat
at some specific car parks and even at some specific regions cannot
totally represent micro human interactions. The other micro fac-
tors, such as the destination (e.g. crowded) and the personwho has
met with, are having a considerate impact on the infection risk.
However, it is an open and challenging task to measure the entire
daily mobilities at bothmacro andmicro levels. It needs to integrate
more subsystems for such a task, as stated in the future work
agenda.

The strength of the proposed method is that there is a massive
high-resolution spatial-temporal data with usually every-minute
updating available for big urban data analytics and modelling
before and during the circuit breaker. Buckee et al. (2020) appealed
to the society that aggregated mobility data with real-time infor-
mation have been urgently needed to fight the COVID-19 pandemic.
This study provides a novel perspective and puts a small step for-
ward on this topic.
5. Conclusions

This study has provided a novel perspective to analyse the
spatial-temporal potential exposure risk of COVID-19 by capturing
human behaviours based on high-resolution data of car park
availability. A testing ground, Singapore, which is threatened by a
second coronavirus wave from the beginning of April 2020, has
illustrated the analytical procedure and demonstrated its applica-
bility. For a nation or an area with available spatial-temporal data
on mobility, the proposed method offers a possibility for precise
urban management (i.e. the hotspot identification and temporal
crowd division) and timely decision-making related to COVID-19
mitigation. Regarding urban sustainability, although there is an
apparent improvement in environmental performance, arises from
the lockdown measures, e.g. the pollution reduction by trans-
portation and industrial sector, the long-term impact of environ-
mental sustainability requires to be assessed further. The post
effect, especially dealing with medical waste disposal and single-
use plastics should also be considered. When the epidemic/
pandemic eases during the lockdown or circuit breaker period, the
main challenges lie in economic sustainability and its recovery, as
themitigationmeasuremakesmany social contacts and production
activities pause citywide. The spatial-temporal potential exposure
risk analytics in this study offers intelligent decision support to plan
a flexible local circuit breaker strategy, by which the decision-
makers might be guided to gradually reopen partial regions of
the city or country for economic recovery.
5.1. Quantitative results

The quantitative results derived from the Singapore case, being
obviously of crucial importance, are summarised as follows:

a) The reduction rate of mobility reaches 36.4% in the first week
during the circuit breaker. It maintains at around 30.0% in the
following two weeks. Compared to regular times, the
morning peaks on working days during the circuit breaker
almost disappear, which are dominated slightly by the noon
peaks.

b) Three-order polynomial (i.e. sub-exponential) functions well
fit the curves between cumulative lagged mobility and cu-
mulative cases (exposure-related cases) for both two phases.
The six-day lag setting produces the smallest sum of squared
residuals than other lag settings.

c) The 16th day after implementing the circuit breaker policy is
observed as the turning point for the exposure-related
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COVID-19 cases, by which the cumulative exposure-related
cases tend to present a gradually decreasing trend.

d) The longtail characteristic is observed for the probability
distributions of both nationwide mobility (skewness ¼ 0.99)
and nationwide heat (skewness ¼ 3.86), indicating that,
regarding the hotspot identification, decision-makers should
focus on the intersection of both longtail parts, rather than
those active car parks with high heat only.

e) The transportation-related average air emissions are esti-
mated to be reduced by 44.3% (Scenario 1) to 55.4% (Scenario
2) during the circuit breaker, indicating that the circuit
breaker not only keeps residents safe but also contributes to
environmental health from the transportation pollution
perspective. This would be more interesting by simulta-
neously considering that the disease pandemic triggers some
companies, e.g. Twitter, to let some employees work from
home ‘forever’ if they choose (Fung, 2020).

f) The average daily electricity consumption during the circuit
breaker is reduced by 6.7% compared to that before the cir-
cuit breaker. The 2020 economic growth forecast in
Singapore has been slashed to a range of �7.0% to �4.0%
(MTI, 2020b).

g) The maximal reduction rate of potential exposure risk rea-
ches 37.6% by comparing with its peak value. Fluctuations
and uncertainties along the time horizon have been observed
for the heat and potential exposure risks, implying the
spatial-temporal interactions among different regions.
5.2. Future work

At least two research directions deserve investigations in future.

(i) It is worthwhile to integrate more subsystems under big
urban data, e.g. transportation, environment, electricity, ex-
press delivery and social media, into a comprehensive plat-
form to guide decision-making better in a system-of-systems
manner under the premise of privacy protection.

(ii) Since the exposure risk defined in this study has a ‘relative’
and ‘potential’ concept, there is not necessarily a strong
causality between spatial potential exposure risks and
regional infection rates. While the possible relationship be-
tween them still deserves to be investigated with regional
infection data available in future.
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