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Gaussian Process Repetitive Control With
Application to an Industrial Substrate Carrier

System With Spatial Disturbances
Noud Mooren , Member, IEEE, Gert Witvoet , Member, IEEE,

and Tom Oomen , Senior Member, IEEE

Abstract— Repetitive control (RC) can perfectly attenuate
disturbances that are periodic in the time domain. The aim
of this article is to develop an RC approach that compensates
for disturbances that are time-domain nonperiodic but are
repeating in the position domain. The developed position-domain
buffer consists of a Gaussian process (GP), which is learned
using appropriate dynamic filters and nonequidistant data. This
approach estimates position-domain disturbances resulting in
perfect compensation. The method is successfully applied to a
substrate carrier system, demonstrating performance robustness
against time-domain nonperiodic disturbances that are amplified
by traditional RC.

Index Terms— Gaussian processes (GPs), repetitive control
(RC), spatial disturbances.

I. INTRODUCTION

SPATIALLY periodic disturbances, including cogging,
imbalances, eccentricity, and commutation errors, are

encountered in many mechatronic applications [1], [2].
These often appear nonperiodic in the time domain, while
these are reproducible in the spatial domain, e.g., with the
(angular-)position [3], [4]. In particular, these spatial distur-
bances appear nonperiodic in the time domain for general
tasks. In the case of repeating tasks, these appear periodic,
which is a highly restrictive situation.

Repetitive control (RC) enables the perfect attenuation of
periodic disturbances through the internal model principle
(IMP). The IMP [5] states that a model of the disturbance
generating system must be present in the stable feedback loop
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to enable asymptotic rejection. In traditional RC, a disturbance
model is generated in a time-based fixed memory loop, allow-
ing for attenuation of disturbances that have a fixed time-
domain period, see, e.g., [6]–[8]. Only in the case of periodic
tasks, i.e., if the position-domain disturbances appear periodic
in time, RC is effective.

RC is not effective for disturbances that have a varying
period or appear nonperiodic in the temporal domain due to
inadequate temporal buffer [7], [9]. In the case of nonperiodic
tasks, the resulting performance can be significantly degraded.
Hence, a traditional time-domain memory loop is not effective
for spatially periodic disturbances in the case of nonperiodic
tasks.

High-order RC [9], [10] has been developed to increase
flexibility for disturbances with uncertain period times by
placing multiple delay lines in series. This allows optimizing
a tradeoff between variations in the period time, on one the
hand, and robustness against nonrepeating errors, on the other
hand. In [11], multiperiod RC is designed, which allows for
multiple disturbances with different periods, where, for time-
domain nonperiodic disturbances, a sum of periodic signals
is selected a priori. Furthermore, a variety of adaptive RC
schemes, including [12]–[15], are developed, exploiting the
adaptation of RC parameters, such as the sample time or buffer
length, to cope with spatial disturbances. However, practical
applications mainly operate at a fixed sample rate. While the
above approaches also improve the performance for spatial
disturbances with small task variations, they do not generalize
to arbitrary task variations.

Spatial disturbances can be modeled efficiently in the
position domain, where they appear periodic, in contrast to
existing approaches where a time-based memory is employed
in RC. Spatial disturbance models have been developed for
RC [1], [16], where the disturbance is modeled as a nonlin-
ear potentially time-varying parametric model. Alternatively,
in [17]–[19], a discrete buffer is presented, which contains
position information to model the spatial disturbance. These
discrete buffers require additional interpolation to deal with
the inherently nonequidistant data points in the spatial domain.
Hence, both spatial RC approaches require additional model-
ing effort or interpolation, which complicates their practical
implementation.

Although improvements have been made to traditional RC
to cover wider ranges of disturbances, including spatial dis-
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turbances, a systematic approach to generate spatial buffers
efficiently with the nonequidistant observations in the spatial
domain is not yet available. The aim of this article is to present
a spatial RC approach that can compensate for position-
domain disturbances by using a new type of spatial memory.

Beyond typical buffers in RC, i.e., by a discrete- or
continuous-time delay, recent developments have enabled
modeling functions from data, e.g., as a Gaussian process
(GP). The key idea in GP regression is to estimate a distribu-
tion over functions from data and prior knowledge, see [20],
[21] for a complete overview. This enables efficient interpola-
tion of continuous disturbance models from finite measure-
ment points [22], [23]. The aim is to employ a GP-based
disturbance model in a spatial memory loop for RC.

The main contribution of this article is a continuous
GP-based spatial disturbance model in RC to enable atten-
uation of spatial disturbance for arbitrary task variations. This
includes the following subcontributions:
C1) developing a novel continuous spatial disturbance model

and efficiently utilizing nonequidistant observations
in combination with suitable prior knowledge based
on GPs;

C2) implementation of the GP-based disturbance model in a
memory loop for spatial RC, including stability analysis,
learning filter design, and prior selection;

C3) a computationally efficient implementation of the
GP-based spatial memory loop;

C4) a simulation case study, with full GP, sparse GP, and
traditional RC;

C5) experimental validation on a substrate carrier system.
Preliminary results are presented in [24]. Extensions in this
article are: 1) an improved spatial buffer design; 2) stability
analysis; 3) an efficient implementation of the disturbance
model using a sparse GP; and 4) experimental validation
confirming the benefits of the method.

This article is outlined as follows. In Section II, the problem
setting and spatial disturbance are introduced. In Section III,
a continuous function of the spatial disturbance is identified
as a GP with suitable prior (C1). In Section IV, the spatial
RC framework is presented, including the stability analysis,
the learning filter design, and the integration of the spa-
tial model in a spatial memory loop (C2). In Section V,
a computationally efficient implementation of GP regression
is provided (C3). Finally, in Sections VI and VII, simulations
and experimental validation are carried out (C4 and C5), and
conclusions are presented in Section VIII.

II. PROBLEM FORMULATION

In this section, an industrial relevant motivational applica-
tion is presented, and the considered type of disturbance is
defined. Furthermore, the control setting and spatial distur-
bance rejection problem are defined.

A. Application Motivation

Disturbances that are repeating in the position domain
appear in many industrial applications, e.g., due to imbalances
or imperfections in rotary systems or nonperfect commuta-
tion leading to position-dependent disturbances in positioning

Fig. 1. Industrial substrate carrier setup, where to aim is to position the PoI,
subject to spatially periodic disturbances. The belt is controller using actuated
rollers.

Fig. 2. Schematic representation of the industrial substrate carrier setup.

systems, such as a wafer stage. In this article, the industrial
substrate carrier in Fig. 1 with schematic representation in
Fig. 2 is considered and used for experimental validation.

The aim of the substrate carrier setup is to accurately posi-
tion the point-of-interest (PoI) on the substrate with respect
to a print unit. This is enabled by fixating the substrate to
a steel belt using a vacuum; consequently, the position of the
steel belt is controlled in the three degrees of freedom (DoFs):
rx , ry , and φz; see [25] and [26] for details. Positioning of the
belt is performed with two actuated rollers for the longitudinal
direction ry ; these rollers also contain three segments that
are actuated in the lateral direction to control rx and φz

(see Figs. 1 and 2). The position of the belt is measured with
an encoder in ry , and two sensors on the side of the belt
measure rx and φz . The focus of the remainder of this article
is on the positioning performance in the lateral direction rx .

The rotational nature of this system and slight imperfections
in the rollers and their segments induces a position-dependent
disturbance that repeats every roller rotation. Depending on the
belt velocity, which may vary over time, the disturbance can
appear periodic or nonperiodic in the time domain. The aim
of this article is to reject the spatial disturbance, independent
of roller velocity variations. Furthermore, the roller position
in the experiment setup is measured very accurately and fast,
which is also considered in the remainder of this article.

B. Control Problem

The control configuration is depicted in Fig. 3, where
the substrate carrier is denoted by P and assumed to be a
single-input–single-output (SISO) stable linear time-invariant
(LTI) system, and C is a stabilizing feedback controller. The
reference to be tracked is r(t), which is zero in the industrial
setup, and y(t) is the position output corresponding to φz in the
setup. A roller-induced input disturbance d(t) is present, which
is generated by an unknown static position-domain mapping
d̄(p) ∈ R, driven by an exogenous and known position signal
p(t), i.e., the roller position in the considered experimental
setup. Note that the position signal p(t) and the system output
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Fig. 3. Spatial RC problem with input disturbance d(t).

y(t) are not related in this setting. Furthermore, η(t) represents
measurement noise that is independent and identically distrib-
uted Gaussian zero mean, i.e., η(t) ∼ N (0, σ 2

η ). Throughout
this article, t ∈ R is the continuous time, k ∈ Z is the discrete
time, and the notation ·̄ indicates a spatial signal. The aim is
formulated in the following definition.

Definition 1: Define the measured tracking error

em(t) = r(t)− y(t)− η(t) (1)

in the presence of a position-domain disturbance d(t), ref-
erence r(t), and measurement noise η(t). Assume that the
frequency contents of r(t) and d(t) are significantly different
from the frequency content of η(t), such that the aim is to
minimize the disturbance- and reference-induced errors.
The disturbance- and reference-induced errors can be written
as

e = S(r − Pd) = er + ed (2)

with S = 1/(1 + PC) being the sensitivity function, and
ed and er the disturbance-induced error and the reference-
induced error, respectively. This article focuses on the former
by making the following assumption.

Assumption 1: The reference-induced error er (t) is negligi-
bly small after a certain (transient) time t0, that is,

|er (t)| ≤ β ∀t ≥ t0 (3)

with β ∈ R being a sufficiently small constant. This can
be obtained by a suitable design choice of C and possible
feedforward control, i.e., Cff = P−1 and uff = Cffr that is
added to the input u(t), see [27].
Hence, when t ≥ t0, we assume that e(t) = ed(t) so that the
control goal reduces to the attenuation of the spatially periodic
disturbance, as outlined next.

C. Spatial Disturbance

The disturbance d(t) acting on the system may appear
periodic or nonperiodic in time. However, it has an equivalent
counterpart d̄(p) that is repeating in the spatial domain. Hence,
the roller-induced disturbance in the substrate carrier system is
modeled as a static but unknown function of position, defined
as follows.

Definition 2: The disturbance d(t) is composed from the
exogenous and known position signal p(t) and the unknown
static spatial disturbance function d̄(p), that is,

d(t) = d̄(p(t)) (4)

Fig. 4. Simulation example of a position-domain disturbance (top) with
corresponding velocity of p(t) (bottom) as a function of time. The gray area
indicates where the velocity changes, which causes the disturbance to become
nonperiodic in the time domain.

where d̄(p) is periodic in the spatial domain, that is,

d̄(p) = d̄
(

p + n · pper
)
, for n ∈ N (5)

with pper ∈ R being the spatial period.
Remark 1: For this specific application in RC, the spatial

disturbance function d̄ is assumed to be periodic. However,
this is not required in the general case.

Remark 2: In contrast to other existing approaches [4],
[28], the exogenous position signal p(t) is not equal to the
plant output; also, the spatial disturbance is a static function
of position, i.e., not a dynamical model, which removes the
need to convert the system dynamics to the position domain,
resulting in a time-varying system.

The spatial disturbance leads to two major challenges. First,
if p(t) is periodic, then d(t) is periodic. However, if p(t) is
nonperiodic, then d(t) is in general also nonperiodic. This
implies that nonperiodicity of p(t) leads to d(t) being nonpe-
riodic in the time domain. For instance, if ṗ(t) is (piecewise)
constant, then d(t) is (piecewise) periodic in time, and if
ṗ(t) varies, then d(t) is nonperiodic in time, see Fig. 4.
Second, samples of the position-domain disturbance are in the
general case nonequidistant in the spatial domain. The sampled
position signal is denoted by p(tk), where tk = kTs with Ts

being the sample time and k ∈ N, which are equidistant in
time. As a consequence, the corresponding spatial samples are
nonequidistant, that is,

p(tk)− p(tk+1) �= p(ti)− p(ti+1) for some i, k ∈ N (6)

which implies that observations of d̄(p) are nonequidistant in
the spatial domain; see Fig. 5 where d(t) and several samples
that are equidistant in time are shown both in the time and
position domains where they are nonequidistant. This leads to
major challenges for writing to and reading from the buffer,
which are both essential aspects in RC.

D. Problem Definition

The aim of this article is to reject the spatially periodic
disturbance-invariant under velocity variations in p(t). This
is established in the spatial RC framework in Fig. 6, where,
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Fig. 5. Simulation example: the top plot shows a continuous disturbance
as a function of time d(t) ( ) from which equidistant samples ( ) are
taken with a fixed sampling frequency. The bottom plot shows the same
disturbance as a function of position yielding a different shape, where, due to
velocity variations, the same samples that where equidistant in time are now
nonequidistant in position ( ).

Fig. 6. Spatial RC framework, where ( ) represents a position-domain
signal and ( ) is a time-domain signal.

analog to traditional RC, the IMP is applied by learning a
continuous disturbance model through a time-domain filter.
The crucial difference is that a disturbance model is learned in
a spatial memory loop instead of a temporal one in traditional
RC. The disturbance model is learned from nonequidistant
observations ȳd and predicted at other positions for compensa-
tion. To enable learning in the spatial domain, transformations
between time-domain signals and position-domain signals are
used, and a suitable time-domain learning filter L is developed.
Next, in Section III, the spatial disturbance model is derived,
and in Section IV, the spatial RC framework is designed and
analyzed.

III. GAUSSIAN PROCESS SPATIAL DISTURBANCE MODEL

In this section, a continuous model of the spatial disturbance
is identified from nonequidistant observations by means of GP
regression, constituting C1.

A. Identifying a Spatial Disturbance Model

According to the IMP, the spatial buffer in Fig. 6 must
contain a model of d̄(p), which is learned from N training

samples d̄(pi) at nonequidistant positions pi ∈ R for i =
1, 2, . . . , N . At the same time, the RC provides a control
action by evaluating the disturbance model at another position
p j ∈ R, which is, in general, not equal to the training samples.
This implies that interpolation or extrapolation is required to
estimate d̄(p j) from data d̄(pi).

GP regression enables estimation of d̄(p) as a continu-
ous function from nonequidistant training data and suitable
prior knowledge, essentially automating the interpolation that
is required in other spatial approaches [18]. The resulting
GP-based disturbance model is a distribution over functions,
i.e., a collection of random variables in the position domain
determined by a mean and variance, see Fig. 7 for an illustra-
tive example. Loosely speaking, GP regression is a projection
of data on a set of basis functions that do not need to be
defined explicitly, which is a major advantage over parametric
estimation methods. Instead, a class of a potentially infinite set
of basis functions is defined in the form of a kernel function;
it will become clear in Section IV how to design the kernel
function for spatial RC. Furthermore, GP regression can be
split up into two key steps: a training step and a prediction
step by performing inference; these are considered in the
remainder of this section and used in the spatial RC framework
in Section IV.

Remark 3: In contrast to existing spatial RC approaches,
the nonequidistant data are used to estimate a distribution
over (periodic) function, whereas traditional approaches either
require interpolation in a discrete buffer [17]–[19] or require
to reformulate the systems in the spatial domain resulting
in time-varying dynamics [2], [4]. This article presents a
systematic design approach for continuous buffers without
interpolation while also removing the need for complex time-
varying models.

Next, consider the disturbance function that is assumed to
generate the data. Thereafter, a suitable disturbance estimation
for spatial RC is formulated as a GP regression problem (see
Section IV).

B. Spatial Disturbance Function and Training Dataset

Observations of the spatial disturbance ȳd are subject to
independent and identically distributed zero-mean Gaussian
noise with variance σ 2

n , that is,

ȳd(pk) = f̄ (pk)+ ε, with ε ∼ N (
0, σ 2

n

)
(7)

where pk ∈ R is the position at which observation ȳd(pk) is
taken. Note that ε is the result of measurement noise η, filtered
by the closed loop and learning filter, which remains normally
distributed. It will be shown later in Section IV that f̄ (pk)
approximates the actual disturbance function, i.e., f̄ (pk) =
d̄(pk). The function f̄ is parameterized as a linear combination
of a potential infinite number of basis functions and parameters

f̄ (pk) = φ(pk)
�w, with w ∼ N (

0,�p
)

(8)

where φ(pk) is a vector of basis functions and �p = E(ww�)
is the covariance matrix of the weights w. Finally, the train-
ing dataset containing noisy observations and corresponding
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Fig. 7. GP regression example with the disturbance ( ) from which noisy
observations ( ) are generated. With these observations, the GP posterior
mean ( ) and variance ( ) are computed.

positions is denoted as D = (X, ȳd) with

X = [
p1 p2 · · · pN

]� ∈ R
N

ȳd = [
ȳd,1 ȳd,2 · · · ȳd,N

]� ∈ R
N

containing N training positions and observations, respectively,
and is used to train the GP.

Next, the training data D are used to identify a continuous
function f̄ that represents the spatial disturbance d̄ and allows
to make predictions outside the training set.

C. Gaussian Process Regression
In this section, a GP regression problem is formulated

to model the continuous disturbance function from data D
and prior knowledge, i.e., training of the GP, and to make
a prediction at new position p∗ by performing inference;
for further details, see [20]. This separation is used later in
Section IV to establish the spatial memory loop.

First, define a set of N∗ test positions p∗ ∈ R
N∗ with

corresponding function values f̄∗ = f̄ (p∗), and the training
points ȳd . Next, assume that f̄∗ and ȳd have a joint Gaussian
distribution p(ȳd, f̄∗) given by[

ȳd

f̄∗

]
∼ N

([
0
0

]
,

[
KX X + σ 2

n IN KX∗
K �

X∗ K∗∗

])
(9)

where KX X ∈ R
N×N denotes the matrix of covariances

evaluated at all pairs of training positions in X and similar

for KX∗ ∈ R
N×N∗

and K∗∗ ∈ R
N∗×N∗

, which also includes
test positions with ∗. The covariance matrix K is selected
by the user (see Section IV-E) and also known as the kernel
matrix that expresses prior knowledge on the function f̄ to be
estimated.

Predictions of f̄ at a test point p∗ from training data D are
given by the conditional posterior distribution of f̄ ∗

p
(

f̄∗|p∗,D
) = N (

μ̄post, Ppost
)

(10)

where

μ̄post = K �
X∗

(
KX X + σ 2

n IN
)−1

ȳd (11a)

Ppost = K∗∗ − K �
X∗

(
KX X + σ 2

n IN
)−1

KX∗ (11b)

are the posterior predictive mean and covariance, respectively.
The GP mean can be computed efficiently for a single test

point p∗ as

μ̄post(p∗) =
N∑

i=1

αiκ(pi, p∗) (12)

where κ(pi, p∗) is the kernel function evaluated at training
points and test point, and

α = (
KX X + σ 2

n IN
)−1

ȳd = [
α1 α2 · · · αN

]�
(13)

is essentially the link between the trained GP and the predic-
tion step, as will become clear later.

The posterior mean, i.e., (11a) or (12), involves inverting
an N × N matrix that solely depends on the training data D.
Due to a lack of structure, the computational complexity of
this inversion scales cubically with N . Note that this inversion,
i.e., training of the GP, can be done independently of the pre-
diction step such that new predictions are less time-consuming.
In addition, in Section V, a sparse GP approximation is
presented, which reduces the computational effort.

Remark 4: Inversion of the matrix (KX X + σ 2
n I ) ∈ R

N×N

can be done efficiently using the Sherman–Morrison formula,
essentially using rank 1 updates on the previous inverse,
similar to [22]. This reduces the computational complexity to
O(N2) for each training update instead of O(N3) if standard
inversion algorithms are used.

Remark 5: If the position signal p(k) in the training data
X is not known sufficiently accurate, then input noise can be
taken into account for GP regression, see, e.g., [29], [30].

D. Prior Selection

GP regression relies on data and suitable prior knowledge;
the latter is essential to extrapolate the estimated model beyond
the training points, which is a key in the spatial RC framework.
The function f̄ in (8) is defined by a set of basis function φ
and parameters w. Instead of selecting these basis functions
explicitly, the prior distribution (9) contains a covariance
function that specifies a class of basis functions. Consequently,
the prior spans a potentially infinite set of basis functions,
without explicitly defining them, which is a result known as
Mercer’s Theorem, see [20, Sec. 4.3].

To show this, the covariance of two training observations
of the disturbance is written as

cov
(

ȳi
d, ȳ j

d

)
= E

[(
ψ(pi)

�w + εi
)(
ψ

(
p j

)�
w + ε j

)�]
= φ�(pi)�pφ

(
p j

) + δi jσ
2
n (14)

such that

cov(ȳd) = ���p�+ σ 2
n IN (15)

and the mean of a training observation

μ(ȳd) = E
[
φ(p)�w + ε

] = φ(p)�E[w] (16)

is assumed to be zero, i.e., p(f̄) ∼ N (0,����)
with f̄ = f̄ (X).

Remark 6: GP regression can easily be extended for
nonzero mean in the case that a prior estimate of the dis-
turbance function is known, see [21].
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By comparing the covariance of the observations in (15) with
the joint prior in (9), it follows that the kernel expresses prior
on the function f̄ , i.e., KX X = ����, such that the covariance
matrix (15) becomes

cov(ȳd) = KX X + σ 2
n IN . (17)

Details on how to choose the kernel matrix for the application
in RC follow in Section IV-E.

Remark 7: It follows from Mercer’s theorem that any sym-
metric positive definite kernel matrix can be mapped into
an inner product K (p, p′) = 〈ψ(p), ψ(p′)〉 with φ(p) =
�
(1/2)
p ψ(p) being a potentially infinite sum of basis functions,

see [20], [21]. This enables to perform inference with an
infinite set of basis functions, while the kernel matrix is of
size N × N .

This completes the GP-based disturbance modeling; in
Section IV, the disturbance model is incorporated into the
spatial RC framework.

IV. SPATIAL GAUSSIAN PROCESS REPETITIVE CONTROL

In this section, the spatial GP-based RC as briefly intro-
duced in Section II is further analyzed (contribution C2).
This includes stability analysis, suitable learning filter design,
integration of GP-disturbance model in a memory loop, and
prior selection for the GP. Finally, a procedure is provided to
implement spatial GP-based RC.

A. Spatial Repetitive Controller

The spatial repetitive controller indicated in gray in Fig. 6
is depicted in detail in Fig. 8, where the solid lines represent
time-domain signals, and dashed lines are position-domain
signals. The GP-based disturbance model is included in two
blocks, i.e., G Py that represents training of the GP by comput-
ing (13) from data D, and G P(p) is the prediction step at test
point p∗ = p to generate the RC output fRC. The link between
the training and prediction steps is given by (13) and indicated
by the dotted line. Furthermore, transitions between time and
position domains are indicated by t,p and p,t , respectively,
which are defined as follows.

Definition 3: The mappings t,p and p,t map a time
domain signal x(k) at sample k to the spatial signal x̄(p) and
vice versa, that is,

t,p : x(k) → x̄( p̄), x̄( p̄) = x(k) (18a)

p,t : x̄(p) → x(k), x(k) = x̄(p) (18b)

where p̄ is the position at which the observation x(k) is stored
in D, and p is the current position at sample k.

A stable learning filter L is present, which filters the error
to obtain the learning signal � that is used to update the GP.
Since the disturbance will be suppressed over time, the error e
and, consequently, � will converge to zero. Hence, the learning
signal � cannot be fed directly to the GP. A memory element
in the form of a feedback loop, i.e., similar to traditional RC
(see [7]), is present in the spatial RC such that the identified
model remains present in the loop. This constitutes the update

yd(k) = �(k)+ fRC(k) (19)

Fig. 8. Spatial RC with GP-based memory loop, where ( ) is a position-
domain signal and ( ) a time-domain signal ( ).

where � = Le, and fRC is the RC output at sample k.
Using Definition 3, the spatial observation is generated by
transforming yd to the spatial domain, that is,

ȳd(p) = yd(k) (20)

essentially including yd(k) at position p(k) in the training
dataset D. The spatial RC output fRC is generated by eval-
uating the GP at test position p(k) and converting to the time
domain as in Definition 3, that is,

fRC(k) = μ̄(p) (21)

with μ̄(p) being the mean of the GP at position p, i.e., (12)
with p∗ = p.

Remark 8: Note that, in classical RC, the learning filter
can be placed either before or after the buffer because of
the commutative property of SISO LTI filters. In spatial RC,
the commutative property no longer holds, and the position
of the learning filter L before the buffer determines the
interpretation of the GP, which is of crucial importance.

In the remainder of this section, it is shown how to design
L to ensure closed-loop stability such that ȳd represents an
estimate of the disturbance, i.e., ȳd(p) = d̂(p).

B. Stability Analysis

To analyze closed-loop stability with spatial RC, the
input–output gain of the GP buffer is upper-bounded. This
is a reasonable assumption since the GP will mainly take care
of the interpolation/extrapolation of the data given a certain
prior. Hence, if a perfect model is obtained, then the gain of
the GP buffer, i.e., from yd to fRC, is one. The mean of the
GP is initialized as zero; hence, if no data are available, then
the gain tends to zero.

Assumption 2: There exists γ ∈ R such that the �2-induced
gain of the spatial GP buffer is upper bounded as

‖ fRC‖�2 ≤ γ ‖yd‖�2 . (22)

Assumption 2 implies that the output energy of the GP buffer
is less than or equal to γ times input energy, which is required
to provide stability results for GP-based RC. In contrast to
traditional RC, where the buffer is a delay z−N that has a gain
of one, the GP buffer depends on many variables, including
the hyperparameters and the position p, and often γ �= 1.
Assumption 2 provides a condition to be tested on given a
set of hyperparameters, rather than providing direct design
guidelines for the hyperparameters, as there is not a direct
relation between γ and the hyperparameters.

The following lemma is introduced before the main stability
result is stated.
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Fig. 9. Standard feedback interconnection (left) and GP-based RC casted in
the standard feedback interconnection (right).

Lemma 1: For the system interconnection in Fig. 9, with

‖y1‖�2 ≤ γ1‖e1‖�2 (23)

‖y2‖�2 ≤ γ2‖e2‖�2 (24)

the inputs ‖d1‖�2 , ‖d2‖�2 < ∞ have finite �2-induced norm.
Then, for γ1γ2 < 1, the signals e1, e1, y1, and y2 have bounded
�2-induced norms, i.e., the interconnection is internally stable.
For a proof, see [31, Ch. 2].

The stability of the closed loop is given by the following
theorem.

Theorem 1: The GP-based spatial RC is closed-loop stable
under Assumption 2 if∣∣1 − L

(
e jω

)
S
(
e jω

)
P

(
e jω

)∣∣ < 1

γ
∀ ω ∈ [0, 2π]. (25)

Proof: First, the spatial RC framework is casted in the
standard feedback interconnection, as in Lemma 1, and then,
it is shown that, if Theorem 1 is satisfied under Assumption 2,
such that Lemma 1 is satisfied, the system is internally stable.

First, set H1 as the nonlinear mapping from yd(k) to fRC(k);
then, H2 is a linear system

yd = H2 fRC − LSPd (26)

with H2 = 1 − LSP, where LSP is stable since L is stable
by design and C stabilizes the feedback loop, i.e., SP is also
stable.

Second, it remains to show that (25) satisfies Lemma 1 for
some γ1γ2 < 1. Note that H2 corresponds to the mapping
yd → fRC, which is linear; thus, the signal norm bound (24)
is satisfied if

‖1 − LSP‖∞ ≤ γ2 (27)

for some γ2 < 1, which is equivalent to (25) for SISO systems.
From Assumption 2, it follows that γ1 ≤ 1, i.e., γ1γ2 < 1, and
hence, Lemma 1 is satisfied, which completes the proof.
In condition (25) in Theorem 1 an additional robustness
filter Q can be introduced at the output of the GP-based
buffer similar to traditional RC, see [32] for detailed design
guidelines.

Remark 9: Note that the stability condition in Theorem 1
can be tested on the basis of an identified frequency response
function of the system, see [11].

Fig. 10. Spatial RC with GP-based memory loop including preview.

C. Learning Filter Design

From Theorem 1, it follows that, if L is designed as
the inverse of SP, then (25) is satisfied, and the closed-
loop stability is obtained. In addition, recall from (2) that
d = −(SP)−1ed , i.e., this learning filter design is also a
sensible choice since the learning signal � = Le = d generates
an estimate of d to train the GP. Next, a procedure is outlined
to design the learning filter.

Procedure 1: Learning Filter Design

1) Identify a parametric model Ŝ P = P̂ (I + Cfb P̂)−1.
2) Inversion, i.e., L = Ŝ P

−1
.

Direct inversion of ŜP may lead to a noncausal or unstable
inverse, i.e., if the plant contains nonminimum phase zeros or
delays. By employing finite preview, a bounded inverse can
be obtained, see [33], [34], leading to

L = qnl Lc (28)

where q is the forward time-shift operator, Lc is the causal
part of L, and nl is the number of samples of preview in L.

In Section IV-D, the RC scheme in Fig. 8 is extended to
implement the noncausal part of the learning filter.

D. Incorporating Spatial Preview

In traditional RC, preview is incorporated in the time-
domain buffer. This principle is extended toward spatial pre-
view. A noncausal L filter can be implemented in spatial
RC by filtering the error with the causal part of L and
implementing the noncausal part as a preview in the spatial
memory.

To show this, define �d as the error filtered with the causal
part of L

�d(k) = Lc(q)ed(k) = d̂(k − nl) (29)

which corresponds to the disturbance estimate with nl samples
of delay. Substituting (29) in the update (19) gives

yd(k) = qnl�d(k)+ fRC(k) (30)

which requires future values of �d . Multiplying both sides with
q−nl gives the following causal update:

ỹd(k) = �d(k)+ q−nl fRC(k) (31)

where ỹd(k) = q−nl yd(k); this is schematically presented
in the RC memory loop in Fig. 10. Next, from (29), and
by using that q−nl fRC(k) = μ̄(p(k − nl)), the observation

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2023 at 09:34:26 UTC from IEEE Xplore.  Restrictions apply. 



MOOREN et al.: GP RC WITH APPLICATION TO INDUSTRIAL SUBSTRATE CARRIER SYSTEM 351

ỹd corresponds to the position p(k − nl). Hence, the spatial
observation ȳd is included in D at position p(k − nl), that is,

ȳd( p̄) = ỹd(k) (32)

with p̄ = p − δp and δp(k) = p(k) − p(k − nl) is a spatial
shift.

Definition 4: The spatial forward shift operator is defined
as

wδp x̄(p) = x̄
(

p + δp
)
. (33)

To generate fRC(k), the GP is evaluated at the current
position p by employing a spatial preview of δp to μ̄( p̄)
resulting in

μ̄post(p) = wδp μ̄( p̄) (34)

as shown in Fig. 10. Finally, the RC output becomes

fRC(k) = μ̄post(p). (35)

The spatial forward shift allows to compensate for the non-
causal part of L essentially; observations at sample k are stored
in the GP at position p(k − nl) and used to perform inference
at the test point p(k). In contrast to traditional RC, the spatial
preview δp is not limited by the buffer size N . The GP
model can be evaluated at an arbitrary position in the future,
potentially resulting in a posterior mean equal to the prior
mean (zero by default) if there is little correlation between
the test point and the training data.

Finally, the spatial RC with and without spatial preview
is identical; therefore, the stability condition in Theorem 1
remains valid under Assumption 2 where, now, the preview is
included.

E. Periodic Kernel Design

What remains is to select a suitable kernel function that
represents the spatial disturbance prior knowledge for GP
regression. The kernel function imposes prior knowledge on
the disturbance function d̄ , as shown in (15) and (17).

According to Definition 2, the underlying spatial disturbance
is smooth and periodic with period pper. Hence, a periodic
kernel that reflects the class of smooth and periodic functions
is suitable. Note that traditional kernels as often used in system
identification approaches (see [35]–[38]) do not impose these
type of priors.

The periodic kernel function is given by

κ
(

p, p′) = σ 2
f exp

⎛⎝−2 sin2
(
π(p−p′)

λ

)
l2

⎞⎠ (36)

with hyperparameters σ f being a scaling, l the length scale,
and λ the period, see Fig. 11 for an example. The hyper-
parameter λ is known in RC and equal to the period pper;
the additional parameters σ f and l have to be tuned. Tuning
can be done based on measurement data, i.e., increasing the
smoothness l yields more correlation between data points
resulting in a smoother estimate, and σ f is used to express
prior on the amplitude of the disturbance. From an engineering

Fig. 11. Example of a periodic kernel with hyperparameters λ = 2π , l = 0.2,
and σ f = 1.

point of view, choosing l large may be desired to take high-
frequency modeling errors into account, see Remark 10.

Including periodicity and smoothness as prior helps to
extrapolate beyond the currently known training data for fast
learning. Moreover, note that the period λ may be a real
number in contrast to traditional time-domain memory loops
where the periodicity is always an integer multiple of the
sample time. This is an advantage of the GP-based approach,
i.e., it also allows to suppress disturbances with noninteger
period times, which is not possible with traditional RC [7],
or requires interpolation in other spatial approaches [18].

Remark 10: The high-frequency content in the GP-RC out-
put fRC is limited due to the smoothness, i.e., fulfilling a
similar role as a robustness filter in traditional RC.

F. GP-RC Procedure

Based on the above, a procedure to implement GP-RC is
outlined in the following.

Procedure 2: Position-Domain RC Using Full GP
(A) Initialization and prior

1) Design L through Procedure 1.
2) Select hyperparameters σ f , λ, l and noise variance σn .
3) Set counters k = i = 1.

(B) At every sample k

• Obtain �d(k) by filtering e(k) with Lc.

1) if k > nl

• Add the i th training observation to D(X, ȳd)

X(i) = p̄ (37)

ȳd(i) = �d(k)+ q−nl fRC(k) (38)

increase counter i = i + 1.
• Train the GP with data D, i.e., compute α in (13).
• Prediction at test position p∗ by computing (43b)

with precomputed α.
• Set fRC(k) = μ̄post(p).

2) else
• No training data available yet, i.e., fRC(k) = 0.

3) end set k = k + 1.
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An interesting observation is that the GP-RC output is
nonzero from the nth

l sample onward, in contrast to clas-
sical RC, where a delay of one period is required before
the disturbance can be compensated. This is caused by the
extrapolation capabilities of the GP, which allows predicting
the disturbance model nl samples in the future based on the
current observations, leading to much faster learning in the
first period, in contrast to existing spatial approaches.

Remark 11: In this procedure, all samples are included in
the GP training dataset D; furthermore, at every sample, the
GP is trained with the available data. Due to high sample
rates in combination with smoothness and periodicity in the
kernel, there may be a significant amount of redundant data
available. Hence, the above procedure can significantly speed
up by only including a subset of the samples in the training
set; in addition, training of the GP can be done at a lower rate
than the predictions.

V. COMPUTATIONALLY EFFICIENT GP-BASED RC

The computational complexity of GP regression hampers
its practical implementation in RC, i.e., the computation time
of a full GP scales cubically with the number of data points
O(N3). In this section, a sparse GP approximation based on
inducing points is presented, which, in combination with a
periodic kernel, is highly suitable for the implementation in
spatial GP-based RC. Also, optimization of hyperparameters
and inducing points for sparse GP regression is presented [39].

A. Efficient GP for RC

The cubic complexity is caused by the inversion of the
N × N matrix (KX X + σ 2

n IN ), which appears in the posterior
distribution (10). Several methods have been investigated
to address the complexity requirement, including discarding
data [40], full GP approximations [41], and prior approxi-
mations, such as the fully independent training conditional
(FITC) [39]. In view of RC, the FITC approximation is
particularly suitable since it relies on a set of M � N
inducing points Xm . Due to the periodic kernel, the inducing
point positions can be concentrated within one spatial period,
i.e., a small number of inducing points are sufficient. This
reduces the computation complexity to O(M2 N).

B. Sparse GP Regression for RC

To outline the sparse GP approximation, first, define a sparse
training set D̄(Xm, f̄m) consisting of M predefined inducing
points Xm with function values f̄m = f̄ (Xm). This set is used
to support the full training dataset D.

Next, the joint prior (9) is written explicitly as function of
the inducing points function values f̄m , that is,

p
(
ȳd, f̄∗

) =
∫

p
(
ȳd, f̄∗

∣∣f̄m
)
p
(
f̄m

)
df̄m (39)

where f̄m is marginalized out, see [23]. Next, a key assumption
in many GP approximations is that ȳd and f̄∗ are conditionally
independent and only connected through the inducing points
f̄m , i.e., f̄⊥ f̄∗|f̄m. As a result, the joint probability distribution

of two function values is equal to the product of the individual
probabilities, i.e., the joint prior (39) now becomes

q
(
ȳd, f̄∗

) =
∫

q
(
ȳd |f̄m

)
q
(

f̄∗|f̄m
)
p
(
f̄m

)
df̄m (40)

where q(ȳd|f̄m) and q( f̄∗|f̄m) are referred to as the training and
test conditionals, respectively, and the prior on the inducing
points remains exact, i.e., p(f̄m) = N (0, KUU ), see [39]–[41]
for a derivation. Here, the matrix KUU ∈ R

M×M is the covari-
ance function κ evaluated at all combinations of inducing
points Xm . The FITC algorithm approximates specifically the
training conditional as follows:

q
(
ȳd | f̄m

) = N (
KXU K −1

UU f̄m,�+ σ 2
n IN

)
(41)

with � = diag[KX X − QX X ] being a diagonal approximation
of the kernel matrix KX X and Q AB = K AU K −1

UU KU B , whereas
the test conditional remains exact. The posterior distribution
for a new test point p∗ is given by

p
(

f̄∗|p∗, Xm,D
) = N

(
μF I T C , PFITC

post

)
(42)

where the mean and covariance are

μFITC = K∗U�
−1 KU X

(
�+ σ 2

n IN
)−1

ȳd (43a)

PFITC
post = K∗∗ − K �

U∗
(
K −1

UU −�−1
)
KU∗ (43b)

� = KUU + KU X
(
�+ σ 2

n IN
)−1

KXU . (43c)

In line with the full GP, a single test point in the FITC
algorithm is also of the form (12) with

αFITC = �−1 KU X
(
�+ σ 2

n IN
)−1

ȳd . (44)

In the posterior distribution (43a), the inversion of the
matrix � is now M × M instead of N × N . In addition, the
inversion of � ∈ R

N×N is inexpensive since it is a diagonal
matrix. This reduces the computational effort to O(M2 N).

Remark 12: The sparse GP scales linearly with the number
of data points N , instead of cubically for the full GP, signif-
icantly reducing the computational complexity. In a practical
application, N should be limited, e.g., by using a subset of the
data containing the most recent N observations, which is an
alternative simple sparse GP approximation. Note that many
results for efficient GP computation [40] can be used in the
context of spatial GP-based RC.

The sparse FITC GP is implemented in Procedure 1 by
additionally selecting the number of inducing points M and
their positions Xm in step (A). Then, in step (B), replace α
with αFITC to compute the sparse mean with (43b).

C. Hyperparameters and Inducing Points Optimization

The location of the inducing points, as well as the hyper-
parameters, can be chosen manually. Alternatively, these can
be optimize by maximizing the log marginal likelihood

log p(ȳd |Xm) = −1

2
log |Q| − 1

2
ȳ�

d (Q)
−1ȳd (45)

where Q = KUU +� with respect to the inducing points Xm

and optionally hyperparameters. This can be performed offline
to initialize the inducing point locations and hyperparameters
in one step, see [39].
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VI. SIMULATION CASE STUDY

In this section, a simulation case study is carried out to
show that spatial RC, with full and sparse GP, can effec-
tively compensate for spatially periodic disturbances that are
nonperiodic in the time domain. To evaluate the obtainable
performance, a comparison is made with traditional RC, which
can obviously not deal with the velocity variations.

A. System and Disturbance

The setting in Fig. 3 is considered, where P replicates
the dominant dynamics in the φz direction of the industrial
substrate carrier. It is modeled as a second order mass-spring-
damper system

P(s) = 1

Js2 + ds + k
(46)

with inertia J = 1 kg·m2, damping d = 1 Nm/s, and stiffness
k = 104 N/m and discretized by zero-order-hold with sampling
frequency fs = 1000 Hz. A stabilizing feedback controller is
designed as given by

C(z) = 67539(z + 1)(z − 0.9196)

(z − 0.4524)(z + 0.1137)
. (47)

Furthermore, a spatially periodic disturbance d(t) acts on the
system, collocated with the control input torque T . The torque
T in the substrate carrier corresponds to the sum of the lateral
forces generated by the roller segments, multiplied by the
length from the roller to the PoI on the belt, i.e., the effective
torque at the PoI in rz . The spatial disturbance is given by

d̄(p) = 1.5 sin(p)+ 0.8 sin(3 p)+ 0.6 sin(9 p)

+ 0.4 sin(18 p)+ 0.2 sin(27 p)

where the velocity of p(t) is 2π rad/s at the start of the
simulation, resulting in a time-domain disturbance period of
exactly 1 s. In the second phase, the velocity varies over time,
resulting in a nonperiodic time-domain disturbance. Finally,
the velocity is constant at 10.9 rad/s such that the time-
domain disturbance is periodic, and the period is not an
integer multiple of 1 s. The time-domain disturbance is shown
in Fig. 4. The reference signal is set to zero, i.e., a pure
disturbance attenuation problem is considered.

B. Design of GP-RC, Sparse GP-RC, and Temporal RC

1) Spatial GP RC: The learning filter is designed according
to Procedure 1, resulting in nl = 1 samples of preview.
The marginal likelihood (45) is optimized with respect to the
hyperparameters to obtain σ f = 2.7, l = 0.13, and pper = 2π .
The noise variance used throughout the simulation is σn =
10−4, which is additive white noise on the disturbance.
To reduce the computational load, every tenth sample is added
to D, and subsequently, the GP is trained.

2) Sparse Spatial GP RC: For the sparse GP RC, the num-
ber of inducing points M is set to 100, which are equidistantly
distributed in the range [0, pper). The same hyperparameters
are used as in the full GP case; every tenth sample is used to
train the sparse GP.

Fig. 12. True spatial disturbance ( ) and the estimated GP posterior
distribution evaluated on position [0, 4π ] depicted for two training sets. First,
training points ( ) in the interval [0, (π/2)] resulting in the mean ( ) and
the standard deviation ( ), which shows that the estimate extrapolates beyond
the data due to periodicity, and the mean becomes zero where no information
is available. Second, the full training set with N = 1600 points ( ) on [0, 2π ]
resulting in the mean ( ) and variance ( ), showing that a good estimate
of the disturbance is obtained in the entire range [0, 4π ] based on data in the
first spatial period.

3) Temporal RC: For traditional RC, the learning filter
is designed as the inverse of the complementary sensitivity
function T = 1 − S, see [6]. The memory loop size is equal
to the disturbance period at the start of the simulation, i.e.,
NRC = 1000 samples. Traditional RC provides a measure for
the obtainable performance in the first constant velocity phase.

C. Results: GP-Based Disturbance Model

First, the obtained GP-based disturbance model that is
captured in the spatial memory loop is further investigated.
In Fig. 12, a snapshot of the GP-based memory loop is shown.
The actual disturbance and GP posterior are given for two
training cases: 1) where N = 1600 observations in the interval
[0, π/2] are used and 2) where only the training values on
[0, 2π] are used to train the GP. As a result, a good estimate
of the disturbance is obtained over the entire range. Due to
the periodicity and smoothness in the kernel, i.e., a sample at
the current position p is connected to its neighboring samples
and samples at p − n · pper, the identified disturbance model
clearly extends beyond the training points. Where no data are
present, the GP mean tends to zero, and the variance grows.

To investigate the model quality of the sparse GP, Fig. 13
shows the root mean squared (rms) estimation error for the full
GP and the sparse GP as a function of the number of inducing
points M . The inducing points are equidistantly distributed on
(0, 2π]. This shows that, from M = 80 onward, the sparse
GP obtains an equivalently good estimate of the disturbance
compared to the full GP with 1600 training points. This indi-
cates that a small number of inducing points, in combination
with the periodicity of the kernel, are sufficient to support the
full dataset.

D. Results: Performance Comparison

The spatial RC and traditional RC error responses are shown
in Fig. 14, where the gray area indicates where the disturbance
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Fig. 13. RMS estimation error of the full GP ( ) with N = 1600 training
points and the sparse GP rms estimation error ( ) as function of the number
of inducing points M, indicating that a small number (M ≈ 80 � N ) of
equidistantly distributed inducing points in [0, 2π] sufficiently support the
full dataset.

Fig. 14. Simulated positioning error for traditional RC ( ) and the spatial
RC ( ). Spatial RC is invariant under the velocity change, as indicated
by ( ), whereas traditional RC leads to performance degradation in case of
velocity change.

is nonperiodic in time. In addition, the two-norm of the error
for each spatial period j normalized by its length N j is given
in Fig. 15. The following observations are made.

1) The time response shows that spatial RC ( ) signifi-
cantly reduces the error from sample nl = 1 onward, i.e.,
suppression is obtained in the first period, after which the
error is reduced when more training data are gathered.
Note that traditional RC does require one full period
before compensation.

2) The error norm shows that spatial RC ( ) and sparse
spatial RC ( ) are not influenced by the change in veloc-
ity and maintain to have good performance. Of course,
traditional RC performance ( ) decreases due to the
inadequate buffer size. The temporal buffer size can
be adapted for each velocity change; however, this
introduces additional transients, requires interpolation
to use the learned compensation signal at the other
velocity, and cannot cope with noninteger buffer sizes
and continuous velocity changes.

3) The performance of spatial RC, utilizing only 10% of
the data, is equal to the traditional RC performance in
the first constant velocity part. Hence, it uses the data
very efficiently due to the suitable prior knowledge.

Fig. 15. Simulated error 2-norm normalized with the period length N j
as function of the repetition number j for traditional RC ( ), spatial RC
with full GP ( ), and with sparse GP for M = 100 inducing points
( ). This indicates that spatial GP-RC obtains highly similar performance
compared to traditional RC while being able to maintain performance during
velocity changes, indicated by ( ) as in Fig. 4, where traditional RC degrades
significantly.

Fig. 16. Computation time of the full GP with a cubic fit O(N3) ( ) and a
sparse FITC GP for M = 50 inducing points with a linear fit O(M2 N) ( )
as function of the training data N . The implementation for this example is not
yet optimized; therefore, a large buffer size is chosen to avoid the overhead
of the implementation, yielding relatively large computation times.

Indeed, it follows that spatial RC is not influenced by the
changing disturbance. The sparse GP approaches the full GP
performance relatively well, while, at the same time, reducing
the computational load.

E. Results: Computation Time

To show the benefit of the FITC GP in contrast to a
full GP in terms of computation time, the computation time
is measured as a function of the number of training data
points, see Fig. 16. The number of inducing points for the
FITC GP is M = 50 points. It can be seen that, indeed,
the full GP computational complexity grows with O(N3),
as indicated by the fit. The sparse GP with computational
complexity O(M2 N) scales linearly with N , as shown by the
linear fit. Furthermore, it can be observed that the computation
gain starts to become significant for N > 500 data points,
which is easily reached in mechatronic applications. Note that
these results are obtained on a regular PC for illustration
purposes, and efficient employment on dedicated hardware can
significantly reduce the computation time.
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VII. APPLICATION TO A SUBSTRATE CARRIER SYSTEM

In this section, spatial GP-RC is applied to the industrial
substrate carrier in Fig. 1 introduced in Section II-A, which
is subject to spatially periodic roller disturbances. The aim is
to validate that spatial RC can reject the spatial disturbance-
invariant under variations in the roller velocity.

A. Substrate Carrier Setup

As mentioned in Section II-A, the control goal of the
substrate carrier is to accurately position a medium, e.g., paper
or plastic, which is fixated to the steel belt by means of a
vacuum. The steel belt is steered using two segmented rollers
that control the rx -, ry-, and φz-directions of the PoI, see Fig. 2.
In this experiment, the aim is to keep φz equal to zero; hence,
this is a pure disturbance rejection problem.

B. Spatial Disturbances in the Substrate Carrier

Due to imperfections in the rollers and segments, a spatially
periodic disturbance appears in the error that repeats every
roller rotation. To show this, a single experiment is performed,
which consists of three parts as follows:

1) constant roller velocity of 9 [rad/s];
2) deceleration of 5 [rad/s2] for 0.8 s, which is approxi-

mately two roller rotations;
3) constant roller velocity of 5 [rad/s].

The error is measured with a baseline proportional derivative
(PD) controller, see ( ) in Fig. 17, where a periodic compo-
nent is visible, which changes frequency during the different
parts. The power spectral density (PSD) and the cumulative
power spectrum (CPS) of the error without offset with velocity
9 [rad/s] ( ) and velocity 5 [rad/s] ( ) are given in Fig. 19
as function of the spatial frequency [1/rotation], i.e., the
frequency [Hz] scaled by the rotational velocity of the rollers
[rotation/s]. This shows that, especially at 1 and 3 [1/rotation],
the error contains clear contributions that are repeating in the
roller-position domain-invariant under velocity variations. The
first part corresponds to one roller revolution, and the third
harmonic is most likely induced by having three segments in
each roller that does not perfectly align.

During the normal operation, the belt runs at several oper-
ating velocities; this leads to a situation where the disturbance
becomes nonperiodic in time. Traditional RC can only atten-
uate this disturbance for constant velocities and may even
amplify the disturbance when the velocity changes. In the
remainder of this section, it is shown that spatial GP-based
RC attenuates the spatial disturbance-invariant under velocity
variations.

C. Spatial GP-RC Design

To implement spatial RC, a parametric model of the sub-
strate carrier has been identified, and the learning filter is
constructed according to Procedure 1. The zero phase error
tracking control (ZPETC) algorithm is used to obtain a non-
causal but stable learning filter with nl = 2 samples of preview.

The periodic kernel hyperparameters are tuned such that the
prior represents the actual spatial disturbance function. Tuning

Fig. 17. Error response as function of scaled time for the PD controller ( ),
traditional RC ( ), and spatial RC ( ). The gray area ( ) indicates
where the roller velocity is changing. This shows that the periodic components
and the dc offset are removed by the spatial RC controller independent of
velocity changes. Here, AU is the arbitrary unit.

Fig. 18. Experimental error data filtered with the learning filter L (•) as
function of the roller position used as an estimate of the disturbance. The GP
standard deviation 6σ ( ) and mean ( ) with hyperparameters σ f = 27,
σn = 1.7, λ = 2π , and l = 0.2. To illustrate the effect of varying the length
scale, the GP posterior mean is also computed for l = 0.05 ( ), resulting
in a much more erratic function.

is performed with the measured error that is filtered by the
learning filter; this results in an estimate of the spatial distur-
bance, as shown in Fig. 18. Representing the filtered error as
a function of position enables to tune the hyperparameters as
follows.

1) The spatial disturbance period is known and equal to
one roller rotation, i.e., λ = 2π .

2) The gain σ f = 27 is an estimate of the deviation around
the mean of the disturbance estimate.

3) The GP estimate given the data is shown with l = 0.05
( ) and l = 0.2 ( ) in Fig. 18; this shows that a
shorter length scale yields more high-frequency content
in the estimate. To be more robust to noise and high-
frequency modeling errors, a length scale l = 0.2 is
preferred.

4) σn = 1.7 is an estimate of the standard deviation of the
noise, yielding the confidence bound ( ) in Fig. 18.

Note that a very short length scale l allows for more
high-frequency components in the GP-RC output, i.e., the
length scale acts as a low-pass filter similar to a robustness
filter in traditional RC. Because the smoothness l influences
the GP input–output behavior, there is a direct connection
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Fig. 19. PSD (top plot) and CPS (bottom plot) as a function of the spatial
frequency for the error with PD controller at two different velocities ( )
(9 [rad/s]) and ( ) (5 [rad/s]). The disturbance is most prominent at the
fundamental frequency [1/rev] and its second harmonic [3/rev] where the CPS
shows significant increases in power independent of the velocity change. The
error with spatial RC ( ) and classical RC ( ) after deceleration is also
shown, indicating that spatial RC is not affected by the velocity change,
whereas classical RC performance is severely degraded. Here, AU is the
arbitrary unit.

between smoothness and stability through Assumption 2 and
Theorem 1. Finally, to further reduce computational load, the
data used to train a full GP are limited to 50 samples that
are distributed equidistantly over the last spatial period. The
Sherman–Morrison update is used for GP regression to further
improve the computational load for practical implementation,
see Remark 4. The experimental setup runs at a sampling
frequency of 4000 Hz.

D. Implementation Aspects

In the general case for motion systems, the gain of (PS)−1

is large for high frequencies, leading to the amplification of
high-frequency noise by the learning filter. Therefore, as a
pragmatic solution, an additional zero-phase low-pass filter is
placed in series with the learning filter that mitigates the effect
of noise in �. This does result in high-frequent modeling errors,
but it improves the convergence of the disturbance model in
the relevant frequency range, i.e., where a good disturbance
model is most relevant. Note that the low-pass filter is designed
such that the stability condition in Theorem 1 is still satisfied.

In addition, traditional RC is implemented as a comparison,
with a buffer size that is equal to the disturbance period in the
first constant velocity part of the experiment.

E. Results

The experiment outlined in Section VII-B is carried out
to analyze the performance of spatial RC in comparison to
the baseline PD controller and the traditional RC. The error
responses are also shown in Fig. 17. The converged error

after deceleration is analyzed in the spatial frequency domain,
i.e., Fig. 19 shows in addition to the baseline PD error ( ),
the spatial RC error ( ), and the traditional RC error ( ),
the corresponding CPS are also given. Note that a significant
offset is present in the PD controlled error and, this, is removed
from the data before computing the PSD and CPS such that
the harmonics are better visible.

To analyze performance during velocity change, i.e., where
the disturbance is nonperiodic, the two-norm of the error
for each rotation j , normalized by the period length N j ,
is given in Fig. 20. Note that all experimental results have
been normalized for confidentially, and the unit is denoted by
the arbitrary unit (AU). The following observations can be
made.

1) The dominant components in the error CPS, indicated by
the increases in power at 1 and 3 [1/rotation] in the CPS
in ( ) in Fig. 19, are completely suppressed by the
spatial RC ( ). In addition, Fig. 17 shows that an offset
is present in the PD controlled error ( ) due to the
lack of an integrator, which is learned and compensated
for by the spatial RC ( ). The overall performance
improvement, including the offset, is a factor 12 on
the rms error, where a factor 3.5 is attributed to the
suppression of the harmonic components.

2) The PSD in Fig. 19 shows that the error mainly at
the fundamental frequency 1 [1/rotation] and the second
harmonic 3 [1/rotation] are significantly reduced by the
spatial RC ( ) compared to the baseline error ( ) that
shows significant increases in the CPS. Note that only
the first and third contribute significantly to the CPS.

3) The error-norm in Fig. 20 shows that spatial RC ( )
and traditional RC ( ) have similar performance in the
first constant velocity part, i.e., where the traditional
RC buffer size (N = 2787) is compatible with the
disturbance period, both resulting in an overall perfor-
mance improvement of approximately a factor 12. This
shows that spatial GP RC, with a low number of training
points (N = 50), obtains equal performance for constant
velocities.

4) During deceleration, indicated by the gray area in
Figs. 20 and 21, the spatial RC error ( ) is unaffected.
This implies that the approach is robust with respect
to velocity variations by using the spatial model. As
a comparison, traditional RC ( ) shows a performance
degradation if the disturbance frequency changes. Due to
inadequate buffer size, the traditional RC is not able to
converge to a small error in the second constant velocity
part.

5) The PSD in Fig. 19 shows that a periodic component
at spatial frequency 0.3 [1/rev] is present, which most
likely originates from a belt disturbance, which is ampli-
fied by the GP-RC ( ). This can be explained since,
in general, nonperiodic components will be amplified
by any RC as they do not align with the buffer size,
see [42].

From these observations, it follows that, indeed, the spatial
GP-RC approach suppresses the spatial disturbance and is
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Fig. 20. Two-norm of the error scaled with
√

N for the PD controller
( ), spatial RC ( ), and traditional RC ( ). The gray area ( ) indicates
where the velocity changes, showing the benefit of spatial RC where the
performance is unaffected, whereas the traditional RC performance degrades
due to inadequate buffer size after the velocity changes.

Fig. 21. Zoomed-in-view of the error as a function of time with PD only
( ), traditional RC ( ), and GP-based spatial RC ( ) during the
velocity change phase. This shows that indeed GP-based RC maintains good
performance during and after the velocity changes. Traditional RC obviously
degrades the performance due to the changing disturbance frequency that does
not comply with the buffer size.

not affected by changes in velocity, resulting in a major
performance increase of a factor of 12 of the rms error.

VIII. CONCLUSION

Position-domain disturbances that appear nonperiodic in the
time domain but are repeating in the position domain can be
completely rejected by spatial RC, where a key enabler is the
introduction of a GP-based spatial memory loop, as presented
in this article. The approach uses a memory loop in the
position domain together with a suitable learning filter to
learn a spatial disturbance model. In contrast to existing RC
approaches, a spatial memory loop is established by means
of a GP with a suitable periodic kernel, thereby efficiently
dealing with nonequidistant observations. The disturbance is
modeled as a stochastic process, i.e., a collection of random
variables in space, which is estimated from data and suitable
prior knowledge. The resulting distribution, in particular, its
mean, is a continuous function that is utilized in a spatial
memory loop. The approach is validated in simulation and
on an industrial substrate carrier. Experimental results show
a performance improvement of a factor of 12 compared to
currently implemented PD control, i.e., automatically learning
and suppressing roller disturbances for arbitrary operating
velocity in the industrial substrate carrier.

Ongoing work focuses on utilizing the full GP posterior
distribution, i.e., also including the GP variance as a confi-
dence measure on the disturbance model, see [43], which can
act as a learning gain similar to traditional RC. In addition,
extend the approach to cover multiperiod spatial disturbances
with different spatial periods [11], [15], e.g., to suppress roller
and belt disturbances that have different (spatial) periods in
the considered example or to automatically learn commutation
functions for brushless motors that minimize torque ripples.

ACKNOWLEDGMENT

The authors would like to thank Tom van de Laar, Lennart
Blanken, Ibrahim Açan, and Joep Kooijman for their con-
tributions to this work and the collaboration with Sioux
Technologies.

REFERENCES

[1] X. Huo, M. Wang, K.-Z. Liu, and X. Tong, “Attenuation of position-
dependent periodic disturbance for rotary machines by improved spatial
repetitive control with frequency alignment,” IEEE/ASME Trans. Mecha-
tronics, vol. 25, no. 1, pp. 339–348, Feb. 2020.

[2] C.-L. Chen and G. T.-C. Chiu, “Spatially periodic disturbance rejection
with spatially sampled robust repetitive control,” J. Dyn. Syst., Meas.,
Control, vol. 130, no. 2, pp. 021002-1–021002-11, Mar. 2008.

[3] P. Y. Li, “Prototype angle-domain repetitive control-affine parameter-
ization approach,” J. Dyn. Syst., Meas., Control, vol. 137, no. 12,
pp. 121009-1–121009-9, Dec. 2015.

[4] Z. Sun, “Tracking or rejecting rotational-angle dependent signals using
time varying repetitive control,” in Proc. Amer. Control Conf., vol. 1,
2004, pp. 144–149.

[5] B. A. Francis and W. M. Wonham, “The internal model principle of
control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976.

[6] R. W. Longman, “On the theory and design of linear repetitive control
systems,” Eur. J. Control, vol. 16, no. 5, pp. 447–496, 2010.

[7] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control
system: A new type servo system for periodic exogenous signals,” IEEE
Trans. Autom. Control, vol. AC-33, no. 7, pp. 659–668, Jul. 1988.

[8] M. Tomizuka, “Dealing with periodic disturbances in controls of
mechanical systems,” Annu. Rev. Control, vol. 32, no. 2, pp. 193–199,
Dec. 2008.

[9] M. Steinbuch, S. Weiland, and T. Singh, “Design of noise and period-
time robust high-order repetitive control, with application to optical
storage,” Automatica, vol. 43, no. 12, pp. 2086–2095, Dec. 2007.

[10] G. Pipeleers, B. Demeulenaere, J. De Schutter, and J. Swevers, “Robust
high-order repetitive control: Optimal performance trade-offs,” Automat-
ica, vol. 44, no. 10, pp. 2628–2634, 2008.

[11] L. Blanken, P. Bevers, S. Koekebakker, and T. Oomen, “Sequential
multiperiod repetitive control design with application to industrial wide-
format printing,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2,
pp. 770–778, Apr. 2020.

[12] G. Hillerstrom, “Adaptive suppression of vibrations—A repetitive con-
trol approach,” IEEE Trans. Control Syst. Technol., vol. 4, no. 1,
pp. 72–78, Jan. 1996.

[13] E. Kurniawan, Z. Cao, and Z. Man, “Design of robust repetitive control
with time-varying sampling periods,” IEEE Trans. Ind. Electron., vol. 61,
no. 6, pp. 2834–2841, Jun. 2014.

[14] T. J. Manayathara, T.-C. Tsao, and J. Bentsman, “Rejection of unknown
periodic load disturbances in continuous steel casting process using
learning repetitive control approach,” IEEE Trans. Control Syst. Technol.,
vol. 4, no. 3, pp. 259–265, May 1996.

[15] X. Chen and M. Tomizuka, “A minimum parameter adaptive approach
for rejecting multiple narrow-band disturbances with application to
hard disk drives,” IEEE Trans. Control Syst. Technol., vol. 20, no. 2,
pp. 408–415, Mar. 2012.

[16] C.-L. Chen and Y.-H. Yang, “Adaptive repetitive control for uncertain
variable-speed rotational motion systems subject to spatially periodic
disturbances,” in Proc. Amer. Control Conf., Jul. 2007, pp. 564–569.

[17] N. Mooren, G. Witvoet, I. Açan, J. Kooijman, and T. Oomen, “Sup-
pressing position-dependent disturbances in repetitive control: With
application to a substrate carrier system,” in Proc. IEEE 16th Int.
Workshop Adv. Motion Control (AMC), Sep. 2020, pp. 331–336.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2023 at 09:34:26 UTC from IEEE Xplore.  Restrictions apply. 



358 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2023

[18] W.-S. Yao, M.-C. Tsai, and Y. Yamamoto, “Implementation of repetitive
controller for rejection of position-based periodic disturbances,” Control
Eng. Pract., vol. 21, no. 9, pp. 1226–1237, 2013.

[19] Z. Cao and G. F. Ledwich, “Adaptive repetitive control to track variable
periodic signals with fixed sampling rate,” IEEE/ASME Trans. Mecha-
tronics, vol. 7, no. 3, pp. 378–384, Sep. 2002.

[20] C. Williams and C. E. Rasmussen, Gaussian Processes for Machine
Learning, vol. 2, no. 3. Cambridge, MA, USA: MIT Press, 2006.

[21] K. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

[22] H. Bijl, J.-W. van Wingerden, T. B. Schön, and M. Verhaegen, “Online
sparse Gaussian process regression using FITC and PITC approxima-
tions,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 703–708, 2015.

[23] E. Snelson and Z. Ghahramani, “Local and global sparse Gaussian
process approximations,” in Proc. Artif. Intell. Statist., 2007,
pp. 524–531.

[24] N. Mooren, G. Witvoet, and T. Oomen, “Gaussian process repetitive con-
trol for suppressing spatial disturbances,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 1487–1492, 2020.

[25] A.-J. Beltman, R. Plak, J. Hazenberg, R. Pulles, B. Brals, and
G. van Ooik, “Improved ink registration through advanced steel belt
steering,” in Proc. NIP Digit. Fabr. Conf., 2012, pp. 222–225.

[26] A.-J. J. Beltman, A. Brals, R. Plak, and J. A. F. M. Simons, “Belt
conveyor with an actuator for moving the belt in a lateral direction,”
U.S. Patent 8 807 331, Aug. 19, 2014.

[27] T. Oomen, “Control for precision mechatronics,” in Encyclopedia of
Systems and Control. Cham, Switzerland: Springer, 2019.

[28] Z. Sun, Z. Zhang, and T.-C. Tsao, “Trajectory tracking and disturbance
rejection for linear time-varying systems: Input/output representation,”
Syst. Control Lett., vol. 58, no. 6, pp. 452–460, Jun. 2009.

[29] H. Bijl, T. B. Schon, J.-W. Wingerden, and M. Verhaegen, “System
identification through online sparse Gaussian process regression with
input noise,” IFAC J. Syst. Control, vol. 2, pp. 1–11, Dec. 2016.

[30] A. McHutchon and C. Rasmussen, “Gaussian process training with
input noise,” in Proc. Adv. Neural Inf. Process. Syst., vol. 24, 2011,
pp. 1341–1349.

[31] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. Philadelphia, PA, USA: SIAM, 2009.

[32] L. Blanken, T. Hazelaar, S. Koekebakker, and T. Oomen, “Multivariable
repetitive control design framework applied to flatbed printing with
continuous media flow,” in Proc. IEEE 56th Annu. Conf. Decis. Control
(CDC), Dec. 2017, pp. 4727–4732.

[33] J. V. Zundert and T. Oomen, “On inversion-based approaches for
feedforward and ILC,” IFAC Mechatronics, vol. 50, pp. 282–291,
Apr. 2018.

[34] M. Tomizuka, “Zero phase error tracking algorithm for digital control,”
ASME Trans. J. Dyn. Syst. Meas. Control, vol. 109, no. 1, pp. 65–68,
Mar. 1987.

[35] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel
methods in system identification, machine learning and function estima-
tion: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, Mar. 2014.

[36] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer func-
tions, regularizations and Gaussian processes—Revisited,” Automatica,
vol. 48, no. 8, pp. 1525–1535, Aug. 2012.

[37] C. Jidling et al., “Probabilistic modelling and reconstruction of strain,”
Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At., vol. 436,
pp. 141–155, Dec. 2018.

[38] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian
inference and learning in Gaussian process state-space models with
particle MCMC,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 3156–3164.

[39] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” in Proc. Adv. neural Inf. Process. Syst., 2006,
pp. 1257–1264.

[40] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse
approximate Gaussian process regression,” J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[41] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets
big data: A review of scalable GPs,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 11, pp. 4405–4423, Nov. 2020.

[42] X. Chen and M. Tomizuka, “New repetitive control with improved
steady-state performance and accelerated transient,” IEEE Trans. Control
Syst. Technol., vol. 22, no. 2, pp. 664–675, Mar. 2014.

[43] S. Devasia, “Iterative machine learning for output tracking,” IEEE Trans.
Control Syst. Technol., vol. 27, no. 2, pp. 516–526, Mar. 2017.

Noud Mooren (Member, IEEE) received the B.Sc.
degree from the Fontys University of Applied Sci-
ences, Eindhoven, The Netherlands, and the M.Sc.
(cum laude) and Ph.D. degrees from the Eindhoven
University of Technology, Eindhoven, in 2017 and
2022, respectively.

His research interest includes motion control
and learning control techniques for applications in
mechatronic systems.

Dr. Mooren was a recipient of the 2020 AMC Best
Paper Award.

Gert Witvoet (Member, IEEE) received the
M.Sc. (cum laude) and Ph.D. degrees from the
Eindhoven University of Technology, Eindhoven,
The Netherlands, in 2007 and 2011, respectively.

He is currently a Senior Dynamics and Con-
trol Specialist at the Netherlands Organisation for
Applied Scientific Research (TNO), Delft, The
Netherlands, and a part-time Assistant Profes-
sor with the Mechanical Engineering Department,
Eindhoven University of Technology. His research
interest includes the application of advanced motion

control techniques on high-tech instruments and applications in the semicon-
ductor, astronomy, and space markets.

Dr. Witvoet is a recipient of the Unilever Research Prize and several best
master teacher awards.

Tom Oomen (Senior Member, IEEE) received the
M.Sc. (cum laude) and Ph.D. degrees from the
Eindhoven University of Technology, Eindhoven,
The Netherlands, in 2005 and 2010, respectively.

He held visiting positions at KTH, Stock-
holm, Sweden, and The University of Newcastle,
Callaghan, NSW, Australia. He is currently a Profes-
sor with the Department of Mechanical Engineering,
Eindhoven University of Technology. He is also a
part-time Full Professor with the Delft University
of Technology, Delft, The Netherlands. His research

interest includes data-driven modeling, learning, and control, with applications
in precision mechatronics.

Dr. Oomen is a member of the Eindhoven Young Academy of Engineering.
He was a recipient of the 7th Grand Nagamori Award, the Corus Young
Talent Graduation Award, the IFAC 2019 TC 4.2 Mechatronics Young
Research Award, the 2015 IEEE TRANSACTIONS ON CONTROL SYSTEMS
TECHNOLOGY Outstanding Paper Award, the 2017 IFAC Mechatronics Best
Paper Award, the 2019 IEEJ Journal of Industry Applications Best Paper
Award, and a Veni and Vidi Personal Grant. He is an Associate Editor of
the IEEE CONTROL SYSTEMS LETTERS (L-CSS), IFAC Mechatronics, and
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2023 at 09:34:26 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


