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Abstract. Computational heart modeling is a promising approach for
improving the prognosis of patients born with congenital heart defects.
To create accurate physics-based digital cardiac twins of this population,
it is crucial to accurately represent the highly diverse and unique subject-
specific heart geometry. In young pediatric patients, this is a challenging
endeavor given the lack of high-spatial-resolution imaging data and the
risk of slice misalignment. In this study, we set up a multistep shape
morphing and slice correction approach to accommodate these challenges
and establish a population of biventricular heart models for a variety of
healthy, Fallot, and Fontan pediatric patients.

Keywords: Shape Morphing - Congenital Heart Defects - Cardiac
digital twins

1 Introduction

Congenital heart defects (CHDs) are one of the most common birth defects,
affecting approximately 1% of newborns worldwide. Within this population,
approximately 40% of the patients require one or more surgeries during their
lifetime. As surgical treatment is seldom curative, many patients with CHD suf-
fer from complications later in life, the most common being heart failure [9].
Heart failure leads to severe debilitating symptoms, drastically reducing the
patient’s quality of life. Furthermore, it is the most common cause of death in
CHD patients worldwide.

Computational heart models offer a promising platform to improve the long-
term outlook for this challenging patient population [12]. These models integrate
imaging and diagnostic data with physiological and physical principles to provide
detailed insights into cardiac function [13,16]. Given the large variability and
complexity of CHD anatomical configurations, a computational analysis of CHD
cardiac function requires a patient-specific approach [4,8,15,19].

Setting up patient-specific heart models involves geometric reconstruction
and meshing based on cardiac imaging data [17]. Within a CHD population,
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this is a challenging and cumbersome task. Avoiding harmful radiation in chil-
dren, magnetic resonance imaging (MRI) is the most suitable technique [2,6].
Unfortunately, MRI in younger children poses significant challenges due to non-
compliance with breath-holding and faster heart and respiratory rates [11]. This
limits the spatiotemporal resolution of clinically available cardiac MR images in
this young population. Deducing detailed three-dimensional models from these
images is often time consuming and inconsistent [21]. Shape morphing can be
an interesting technique to overcome some of these challenges. This is a tech-
nique to convert one three-dimensional geometrical model into another through
global and local geometric interpolation techniques. Doing so, we can recon-
struct one geometry from another without losing the original topology. Pre-
serving the topology is highly favorable for quantifying individual variations in
heart anatomy between patients and for mapping routinely unavailable geomet-
rical details, such as the cardiac myofiber architecture or the Purkinje networks,
from one model to another. In this study, we set up a shape morphing framework
to construct subject-specific CHD geometries and explore the intrinsic opportu-
nities and challenges this framework entails.

2 Methods

2.1 Cardiac Imaging Data Collection and Segmentation

Anonymized MRI data of seven pediatric patients was collected at the Erasmus
University Medical Center. The image data set comprised two healthy female
patients aged 8 and 9 years, two male patients with repaired tetralogy of Fal-
lot aged 7 and 8 years, and three male single ventricle patients with Fontan
physiology aged 5, 8 and 19. On average, our imaging dataset had a spatial reso-
lution of 1.8-2.0 mm X 1.8-2.1 mm, a temporal resolution of 27-32 ms repetition
time 3.41-3.75 ms, echo time 1.31-1.62 ms, flip angle 45 deg, and slice thickness
8mm and an interslice gap of 1-2mm. Left and right ventricular contours in
the short-axis slices were semiautomatically segmented by a clinician in Medis
(Medical Imaging Systems, Leiden, Netherlands), see Fig. 1 - left. The left and
right ventricular top contours were segmented on the short axis slices containing
the mitral and tricuspid valve respectively.

Fig. 1. Inputs to the shape morphing workflow: (left) cardiac image data collection and
segmentation contours - (right) high-resolution biventricular CAD geometry deduced
from an average 2lyear-old Caucasian male [24].
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2.2 High-Resolution Baseline Model

For our baseline geometry, we make use of a three-dimensional model of the heart
of a healthy, 21 year-old, 50th percentile Caucasian U.S. male, created by the
Zygote Media Group [24]. This model was deduced from high-resolution MRI
data consisting of 0.75 mm thick slices. We imported this geometry in the 3DEX-
PERIENCE platform (Dassault Systemes, Rhode Island, USA) and constructed
three NURBS multipatch surfaces of the left ventricular endocardium, the right
ventricular endocardium, and the biventricular epicardium, respectively, with the
Zygote geometry as a reference (see Fig. 1 - right). The left ventricular geometry
was further morphed to another patient-specific MRI scan.

2.3 Shape Morphing Workflow

We followed a four-step approach to morph the high resolution baseline geom-
etry to the subject-specific contours: global scaling, global alignment, paramet-
ric morphing, and manual morphing (see Fig.2). In the global scaling step, we
matched the volumetric dimensions of the left and right ventricles to those of
the segmented contours. We updated the dimensions by adjusting the affinity
dimensions of the endocardium surfaces, which automatically rescaled the epi-
cardial surface. In the global alignment step, we semi-automatically found the
best translation and rotation parameters to align the globally scaled reference
geometry with the endo- and epicardial constraints. The parametric morphing
step involved making localized adjustments to the endo- and epicardial sur-
faces. We adjusted the LV and RV long axis length, septal long axis angle,
anterior/posterior long axis angle parameters, and ventricle diameter parame-
ters. In the final manual morphing step, we selected control nodes on the LV
endocardium, RV endocardium, and epicardium surfaces and made additional
localized adjustments to each NURBS surface. Throughout the entire shape
morphing workflow, we conducted interference checks to ensure that no surfaces
intersected.

Global Global alignment Parametric Morphing Manual
scaling Morphing

localized
sculpting

translation rotation
parametric LV
left and right Yes
ventricular dimension N
o

morphing
scaling? No

'

moments
of inertia
aligned?

center of
mass
aligned

parametric RV
morphing

N

Fig. 2. Shape morphing workflow including a global scaling, global alignment, para-
metric morphing and manual morphing step.
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2.4 Slice Shift Correction

MR imaging can result in both short- and long-axis slice misalignment, also
known as slice shift, due to inconsistent breath-holding and/or movement. To
address this issue prior to morphing, we proposed two correction approaches. In
our first approach, we assumed that the left ventricular papillary muscles was an
anatomical straight line landmark. Following this assumption, we translated all
short-axis MR segmentation contours within their respective plane such that the
segmented papillary muscles were aligned. In our second approach, we assumed
the center of mass of each LV endocardial contour to be aligned. We translated
all short-axis MR segmentation contours with respect to their respective LV
endocardial centers of mass.

For the patient in our cohort with the slice shift, we qualitatively and quanti-
tatively compared long-axis MR-based segmentation with long-axis slices made
from our resulting short-axis-image-morphed geometry. More specifically, we
computed the Dice Similarity Coefficient (DSC), which evaluates the overlap
between the ground truth (long-axis MR image contours) and long-axis slices of
the morphed geometry on a pixel-by-pixel basis [23].

3 Results

3.1 Morphing Accuracy

The final result of the morphing workflow for one of the patients is shown in
Fig.3. For each of the patients, we computed DSC scores that quantified the
local match between the clinically segmented short-axis contours and short-axis
slices of the final morphed geometries. The respective resulting DSC scores are
shown in Table1l. We report DSC scores ranging between 0.830 (best case -
patient 7) and 0.681 (worst case - patient 6).

Table 1. Morphing accuracy, expressed in terms of short-axis Dice Similarity Coeffi-
cients (DSC).

Patient Sex | Age | DSC

1. Healthy F |8 0.691 + 0.155
2. Healthy F |9 0.750 £+ 0.073
3. Tetralogy of Fallot | M |7 0.768 £ 0.040
4. Tetralogy of Fallot | M |8 0.711 4+ 0.138
5. Fontan M |5 0.801 £ 0.138
6. Fontan M |8 0.681 + 0.204
7. Fontan M |19 |0.830 £ 0.037
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Fig. 3. Final result of shape morphing workflow: a patient-specific Tetralogy of Fallot
heart CAD geometry (patient 3).

3.2 Slice Shift Correction

Figure 4 showcases the original slice shift present in Patient 2, and the two
different approaches we followed to correct for this misalignment. It can be seen
that both approaches tend to restore a more natural ellipsoidal shape for the
left ventricle after correction. More specifically, the papillary muscle-based and
endocardial center of mass correction approaches amounted to slice shifts of
13.937 + 3.11 mm and 10.123 £ 4.26 mm respectively.

== -

3

(b) . (€

Fig. 4. Slice shift misalignment comparison of correction methods in LV of Patient 2
(healthy heart). Comparison of original data with two correction methods using the
center-of-gravity points. (a) Original contours (b) Alignment through papillary muscle
(c) Alignment through LV endocardial center of masses.

A qualitative and quantitative validation of this slice shifting approach can
be found in Fig. 5. As can be seen, the original model suffered from the slice shift
with a long-axis based DSC = 0.747. Both the papillary muscle-based (DSC =
0.916) and LV endocardial center of mass-based (DSC = 0.877) improved the fit
to the collected long-axis image slice.
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papillary muscle-based slice LV center of mass-based
shift correction slice shift correction

no slice shift correction

DSC: 0.747 ~ DSC:0.916 DSC: 0.877

Fig. 5. Qualitative and quantitative validation of our slice shift correction approaches.

4 Discussion

We established and validated a shape morphing framework to develop subject-
specific heart models for pediatric patients with complex CHD heart anatomies.
Subsequently, we tested two approaches to correct slice shifts, a known problem
in pediatric magnetic resonance imaging, both qualitatively and quantitatively.

Shape Morphing Flexibility. We found that our shape morphing workflow pro-
vided us with ample flexibility to establish subject-specific heart models while
maintaining the original high-fidelity adult human heart model topology, as
shown in Fig.3. Such an approach makes it easier for us to map unavailable
geometrical details in the clinical imaging routine (e.g. cardiac myofiber architec-
ture or the geometrical Purkinje network) from one model to another. By map-
ping relevant anatomical landmarks from the baseline model to various subject-
specific hearts, our approach also enables systematic quantitative descriptions
of anatomical variability within a specific patient population.

Accuracy. Our local geometric accuracy studies, shown in Table 1, show an aver-
age Dice Similarity Coefficient ranging from 0.681 to 0.830. This demonstrates
that our approach generated geometric models with good spatial agreement
(DSC > 0.70 [23]) with the segmented MR images. Current state-of-the-art
deep learning cardiac image segmentation approaches have reached biventric-
ular segmentation (differentiating tissue and blood volumes) Dice scores rang-
ing between 0.780 and 0.950 [5]. However, these approaches worked with vast
amounts of ground-truth image segmentations for healthy adults to train these
networks. For the more challenging young CHD populations, we did not find
any works reporting Dice scores with respect to deep learning based myocar-
dial tissue segmentation accuracy. For relatively easier segmentation of left and
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right ventricular blood volume, state-of-the-art approaches achieved Dice scores
ranging between 0.537 and 0.906 in a young CHD population [7].

Slice Shift Correction. We demonstrated the validity of two strategies to correct
for slice shift misalignment in the original short-axis image stack. Based on
our analysis of the healthy patient with the greatest slice shift, we found that
the papillary-muscle based re-centering approach provided slightly better results
than the LV center of mass re-centering approach. However, it is important to
note that this conclusion is limited by the absence of long-axis image slices for
the other patients, which prevented us from conducting a systematic evaluation
across the entire pediatric CHD patient population. If these long-axis slices were
available, a multi-view loss objective function could be incorporated to automate
the slice shift correction [20], and quantify the validity of our two approaches.
Working only with short-axis image slices, another potential solution would be
to incorporate an additional anatomic landmark, such as the spine, into the
imaged region of interest, and use this landmark for realignment. In our case,
such a landmark unfortunately fell outside the imaged region of interest.

Manual Work. Our proof-of-concept framework involves a substantial amount
of manual morphing work, where we iteratively tune global dimensions (global
scaling), update the translation and rotation vector (global alignment), modify
the LV and RV shape parameters (parametric morphing), and finally locally
sculpt the endocardial and epicardial surfaces (manual morphing). To a trained
fellow, these steps easily take a few hours per subject-specific heart. As such,
we aim to automate the global alignment, scaling and parametric morphing
steps in our framework. With this goal in mind, we envision our approach can
greatly benefit from — but also provide greater flexibility to — statistical shape
modeling techniques [3,10,18,22]. On the one hand, statistical shape modeling
techniques can automate some steps in our shape morphing framework [14].
On the other hand, the flexibility of our final manual morphing allows us to
create more subject-specific heart models that are potentially not represented
by statistical shape models trained on limited pediatric CHD imaging datasets
[1]. Additionally, we currently started from a healthy human heart as a high-
fidelity starting point. In the future, we aim to collect CHD-specific medical
imaging data with a higher spatial resolution that allows the development of
CHD phenotype-specific high-fidelity heart models to start the shape morphing
process from.

Note

This chapter is a summary of the MSc graduation project conducted by
Puck Pentenga (AY 2022-2023) at Delft University of Technology. A more
detailed description of this work and the developed population of CHD-
image-informed biventricular CAD model geometry files can be found on the
TU Delft MSc Thesis repository.


https://repository.tudelft.nl/
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